7 Elastic Contact

In this chapter, we consider a nonconforming approach for the elastic contact between
deformable bodies with and without friction. We follow the lines of [KW00, KW01], in
particular [KWO01], and we discuss a nonlinear Dirichlet—Neumann algorithm. No pene-
tration between the bodies occurs but free tangential displacement is permitted, at least
in case of frictionless contact. The resulting algorithm leads to an efficient solver of the
arising discrete system. Moreover, even for a small number of unknowns the computed
discrete boundary stresses are highly accurate. For simplicity, we restrict ourselves to the
case of two deformable bodies in contact.

The main difficulty when numerically solving contact problems involving two or more
bodies is the information transfer at the interface, since, in general, one can not expect
the meshes at the interface to match. To obtain a stable and optimal discretization
scheme for the global problem, the information transfer and the communication between
the subdomains is of crucial importance. Different strategies, e.g., creating point-point
or element-point correlations, are known, see [Wri95] for a survey. Here, we follow an
approach based on the weak formulation of the contact problem. The interface coupling
is realized in terms of a weak continuity condition, i.e., in terms of Lagrange multipliers.
Our discretization scheme is based on mortar techniques [BMP93, BMP94|. Originally
introduced as a domain decomposition method for the coupling of spectral elements, these
techniques are used in a large class of nonconforming situations. Thus, the coupling of
different physical models, discretization schemes, or non-matching triangulations along
interior interfaces of the domain can be analyzed by mortar methods. These domain
decomposition techniques provide a more flexible approach than standard conforming
formulations.

This chapter is structured as follows. In a first step, we state the problem of frictionless
elastic contact and give it’s weak formulation. We explain the discretization used. Here,
we put particular emphasis on the information transfer between the two deformable bodies,
which is realized in terms of a scaled mass matrix arising from a dual Lagrange multiplier
space. In Section 7.1, we present the nonlinear Dirichlet—-Neumann algorithm. This
Algorithm is used to solve the arising discrete system. In each step of the nonlinear
Dirichlet-Neumann algorithm, we have to solve a linear problem and a nonlinear one—
sided contact problems. This is done using a standard multigrid method and our monotone
multigrid method for contact problems, respectively. Numerical examples illustrating the
performance of the method are given in Section 7.2. In Section 7.3, we consider teh
elastic contact of two bodies with Coulomb friction. The Dirichlet Neumann algorithm
is generalized to the case of frictional contact. Finally, in Section 7.4, we give numerical
results. Let us point out, that the resulting method shows to be efficient and highly
accurate. This demonstrated by giving several numerical examples.

We point out, that for notational convenience we drop any level indices in this chapter.
Furthermore, we have to redefine certain quantities as the bilinearform a(-, +) or the convex
set of admissible displacements K. The two bodies in their reference configuration are
identified with the domains B C R, k = 1,2, d = 2,3, and we decompose the solution
u in v = (uy,us), and write (ug), = uy - ng, k = 1,2, where ny is the outer unit
normal on 9Bj. By definition, the Lagrange multiplier is defined on the non-mortar side.
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7 Elastic Contact

Here, we associate the non-mortar side with subdomain B;. Let us start with the case
of frictionless contact. Following the lines of Chapter 2, we decompose the boundary of
B into three disjoint parts, I'p is the Dirichlet part, I'yy denotes the Neumann part and
I's stands for the contact boundary. The actual contact zone between the two bodies is
a priori unknown and is assumed to be a subset of I's. In addition to the equilibrium
conditions in By and B and the boundary conditions on 9B, see Chapter 1, we have the
following conditions on the possible contact boundary I'g

or(u1) = or(uz) = 0,
oulw)) = onlus) < 0 (7-1)
and the linearized contact condition on I'g
0 = ((u)n+ (u2)n —t)on(u1) .

where the function ¢: I's ¢ R? — R is the distance between the two bodies in normal
direction taken with respect to the reference configuration, see [HH80, BGK87|. We
assume that ¢ is continuous. The interpretation of the boundary conditions (7.1) is similar
to that given in Chapter 2. As in the case of Signorinis problem, we assume frictionless
contact. Thus, the tangential stresses vanish at the contact boundary, and are set to zero
in the first equation of (7.1). We have only contact pressure at I'g. If there is no contact
between the two bodies, the boundary stresses at I'g are zero, see (7.1) and (7.2).
In this chapter, the bilinear form a(-,-) is given by

2 K
a(v,w) := Z/Hiﬂmwi,jvl,m dr, w,v€ H H'(By) ,
k=l k=1

where Hooke’s tensor Hjj,, is assumed to be constant on each subdomain and H 1(Bk) =
(HY(By))?. We write f(v) := (v, Fr2) + (v,P)2(r,,) and denote by fi(-) and ak(,)
the restriction of f(-) and a(-,-) to By, k = 1,2, respectively.

As it is the case for Signorini’s problem, the weak solution of the nonlinear contact
problem can be obtained by a minimization problem on a convex set K. We define the
convex set K of admissible displacements by

K = {veHi(B) x Hi(B2)| (1) + (v2)n <1},

where H(By) C H'(By) satisfies homogeneous Dirichlet boundary conditions on 9B, N
I'p. To avoid confusion, we do not drop the dependency of the solution space on the body
B, k = 1,2, respectively.

Then, the weak solution of (2.9) and (7.2) is defined by: Find w € K such that

J(u) < Lneillclj(v) , (7.3)

where the energy functional J(-) is given by J(v) := 3a(v,v) — f(v) on K, see, e.g.,
[HH80, BGKS87]. The minimization problem (7.3) is equivalent to a variational inequality:
Find u € K such that

a(lu,v —u) > f(v—u), veK .
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Our approach on the discrete level is based on a Neumann—Dirichlet algorithm and
inexact solvers. In each step, a linear inhomogeneous Neumann problem has to be solved.
This is done by standard multigrid techniques. Furthermore, a nonlinear one-sided con-
tact problem has to be solved. Here, we use our monotone multigrid method introduced
in Chapter 3. The information transfer at the contact boundary is realized in terms of
the scaled mass matrix. The major advantages of this new approach are the efficiency
of the iterative solver, and the a priori estimates for the boundary stresses at the ac-
tual contact zone. Introducing the boundary stress formally as Lagrange multiplier, the
Neumann—Dirichlet formulation can be interpreted as a mortar setting. In contrast to
penalty methods, the discretization error of the boundary stresses does not depend on
regularization parameters. We recall that the Lagrange multiplicator is associated with
the non-mortar side 4.

To motivate our approach, let us assume for the moment that the contact stress o, is
known on I'g. Then, problem (2.9)-(7.2) can be decoupled in the following way: In a first
step, we solve an inhomogeneous Neumann problem on By: Find uy € H.(By) such that

as(uz,v) = fo(v) + (O, vn)g2pg), v € Hi(B2) . (7.4)

Having us € HL(By), wy € HL(B;) can be obtained in terms of U . We define the

convex set K(vy) of admissible displacements for a given vy € HL(By)
IC("UQ) = {’Ul S Hi(Bl) | ('Ul)n <t-— (’Ug)n on Fs} .

Then, the one-sided contact problem on 37 can be written as a variational inequality:
Find u; € K(u2) such that

ar(uy,v —u1) > fi(v —uy), v e K(uz) . (7.5)

The discretization of the set C(v2) is given by
Kj(v2) = {v1 € S7 | (W1)a(p) < 1(p) ~ (Tw2)a(p) for all p € Ps}

where Sg ) is the finite element space SU) N HY(By,), k = 1,2, of vector valued piecewise
linear hat functions on By, cf. (2.27). Pg denotes the set of vertices onto the non-mortar
side of I'g, and II is a suitable mapping from the mortar side on the non-mortar side.
In the conforming case where II = Id is the standard choice, a priori estimates for the
discretization error can be found in, e.g., [KO88|. We refer to [BHL97, BHL99] for an
a priori analysis in the nonconforming case. Results on a posteriori error estimation for
unilateral contact problems can be found in [CHP00|. Numerical examples for a mortar
coupling with standard Lagrange multipliers in 2D without friction are given in [Hil00].
In the following, we do not use an additional index j to denote the discrete approximation
u = (ug,ug) € ng ) % Séj ), and p stands for the discrete boundary stress. Here, in an
abuse of notation, we do not distinguish between an element v € SU) and its vector
representation with respect to the standard nodal basis. In addition, we identify the
spaces S,(g) and R ng := dim S,(g), k=1,2. For k = 1,2, we denote by Aﬂ“v the stiffness
matrix with respect to ay(-,-) and by f, the vector associated with the right hand side.
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7 Elastic Contact

The index N of Aﬁ, indicates that the stiffness matrix corresponds to Neumann type
boundary conditions at the interface. Before we formulate our algorithm, we consider the
information transfer at the interface in more detail. We define the projection II in terms
of the dual Lagrange multiplier space (6.10), whose definiton is taken from [WohO1]. Since
here the situation is different, we recall the definition. Let A\, p € Pg, be the standard
piecewise linear hat functions associated with the non-mortar side. Here, Ng := #Pg
stands for the number of vertices on the non-mortar side. For convenience, we recall the
definition of the dual Lagrange multiplier space. We denote by 14, ¢ € Pg, a set of locally
defined piecewise linear or bilinearbiorthonormal basis functions, i.e.,

/¢q)\p da = 0pq,0,q € Ps .

s

Moreover, we assume that Py(I's) C span {1,,p € Ps} =: M.
We set 11: ng) — ng),

(Mwv); = Z/vizﬁpdaAp, vesSY, 1<i<d.
PGPSFS

It is clear that II can also be applied to v € H(B,). We denote the algebraic representa-
tion of IT as function from R™ onto R™ by X, and we observe that X is a n1 X ng matrix,
which consists of large zero blocks and one non zero block associated with the vertices on
the non-mortar and mortar side. Solving a discrete Dirichlet problem on B; provides an
approximation for the corresponding flux u € M () on I's. Within the mortar approach
the discrete flux p is uniquely defined by

/u vda = ai(ug,v) — f1(v), vES%j) :
Is

Using p € M) in (7.4), we find for an element v in ng)

/uvzda:/u vada:/ﬂ*u vo da

s s s

where II* denotes the adjoint operator of II. The matrix representation of which is given
by ¥7. Here, we identify MU) with R™ m := dim MU) < n1, and use the embedding
R™ C R™ . Figure 7.1 illustrates the role of discrete transfer operators ¥ and X7

The transfer of the Dirichlet values at the contact boundary is realized in terms of
the linear operator Il and the transfer of the boundary stresses in terms of the adjoint
operator, corresponding to the duality between displacements and stresses. In the alge-
braic formulation, the matrix ¥ is used to transfer the displacements on the mortar side
as Dirichlet values, or more precisely as an obstacle, onto the non-mortar side, and the
scaled boundary stresses are transferred from the non-mortar side to the mortar side in
terms of the transposed matrix ¥7. The interface conditions of the mortar formulation
guarantee that (7.1) and (7.2) are satisfied in a weak integral form.
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7.1 Nonlinear Dirichlet—-Neumann Algorithm

linear non linear
Neumann problem - one-sided contact pb.
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Figure 7.1: Discrete Dirichlet-Neumann coupling

7.1 Nonlinear Dirichlet—Neumann Algorithm

Now, our nonlinear Neumann-Dirichlet algorithm is defined in terms of f,, f, and X:
Algorithm 4
Choose damping parameters: 0 < np,nn < 1.
Initialize: S 5 g% =0, §Y) 5 p! = 0.
Forv=1,... ,N do

Solve linear Neumann problem: Find ug € S

A?vulzj = fo—Dp".

Transfer of the displacement and damping:

().
5

v

g° = (1—np)g” ' +npZuf .

Solve nonlinear one-sided contact problem: Find u} € KC;(g"):

(A u? v —u}) > (f1,v—u}), veK;gr) .
Compute the residual ] € S %j ).
Ty o= A}Vulf —fi-
Transfer of the boundary stress and damping:
P = (L—nn)p” STy

In each step of our algorithm, we use a multigrid methods as solver. The variational
inequality can be solved efficiently by our monotone multigrid methods introduced in
Chapter 3.

Figure 7.2 illustrates the steps of our Neumann—Dirichlet algorithm for np = 1. On
the left, the first step is shown. The choice p! = 0 implies that a homogeneous Neumann
problem has to be solved for ul. In the case that we have a full symmetric problem, it can
be easily seen that the choice ny = 1 does not yield a convergent scheme. The iterates

oscillate between the two first iterates, i.e., u3™ ™! = u}, 3™ = w2, m > 1.
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7 Elastic Contact

Figure 7.2: First iterates (ui,u}) (left), second iterates (middle) and solution (right)

Remark 7.1 If the actual contact zome is known, the nonlinear contact problem will
be linear. In this case, we can expect the same order of convergence as for a standard
Neumann—Dirichlet type preconditioner for mortars, see [Dry99, Dry01].

In the mortar setting, the Lagrange multiplier plays the role of Neumann boundary
conditions. The combination of mortar finite elements, monotone multigrid methods and
domain decomposition techniques defines in a natural way a new solution algorithm for
elastic contact problems. The discrete boundary stress in the v-th iteration step p” is the
residual 7Y restricted on I's., Moreover, we obtain the normal stress o,, and the tangential
stress op by a local rotation from the final p”. We remark, that our approach satisfies
or = 0, although we do not enforce this condition on the discrete space M @),

7.2 Numerical results

Finally, we present numerical examples for the proposed algorithm. Our numerical results
can be found in [KWO01]. Our first test problem is the Hertzian contact of a linear elastic
circle with a linear elastic plane. In this example, the contact stresses can be computed
analytically [Her82]. To test the performance of our algorithm, we compare the computed
boundary stresses with the analytical ones. For comparability, we choose the same problem
data and geometry as in [CSW99]. We consider an elastic circle with scaled material
parameters &/ = 7000, v = 0.3 and radius » = 1, pressed by a point load F' = 100 to a
plane with material parameters E = 10%, v = 0.45.

As is done in [CSW99], we apply the single load as surface load to avoid a singularity.
We use bilinear functions on quadrilaterals. Figure 7.3 illustrates the performance of our
method. In the left, the maximal contact stress on each level is given, in the middle the
contact stresses and tangential stresses are shown, and in the right, the component o9 (u)
of the stress tensor is depicted. The analytical value of o;'** = 495 is already reached
on level 5. Here, only 5 nodes of the circle are actual in contact with the plane. To
demonstrate the flexibility of our approach, we do not enforce o = 0 on the space. The
Lagrange multiplier of the mortar method plays the role of the boundary stresses at I'g.
Thus, the boundary stresses are handled as additional unknowns which are obtained by
restricting the residual. This observation predestinates our algorithm for contact problems
with friction.

As long as the discrete contact boundary is not fully recognized, the convergence of
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7.2 Numerical results

500 500
450 400
400
350
300
250

200
omax — 495

150 n -100
1 2 3 4 5 6 7 -02 0 02 04 06 08 1 12

Level 1 z-Coordinate

On
300

200
100

contact stresses

0

Ot

Figure 7.3: Maximal contact stresses (left), contact stresses (middle) and o092 (right)

the monotone multigrid method might be slow. This is due to the search for the contact
boundary. In this example, the contact boundary is detected after at most three inner
iterations, i.e., three iterations of the monotone multigrid method, and no slowdown
occurs.

We define the stopping criteria for our iterative solver in terms of the Lagrange mul-
tiplier. Observing that the choice of our start vectors guarantees A}Vu? — f1 =0 for
all interior nodes on Bj, we find ||(ANu} — f1)rsll = [|[ANul — f1ll. Moreover p” can
be interpreted as boundary stress on the mortar side in the v-th iteration step. This
observation motivates our stopping criteria

P =Pl oy P =P

(7.6)
[p” || 12

which is equivalent to ||p” — X1rY|/|lp¥| < TOL|p? — £¥r?||/||p?|. The use of the
Euclidean vector norm is motivated by the mesh dependent norm Al - Hig (T's) for the
Lagrange multiplier. We note that if the discrete boundary stress p is equal zero, then the
contact problem is degenerated and two linear problems on B; and B with homogeneous
Neumann boundary conditions on I'g have to be solved. In that case since p' =0, g* = 0,
we obtain the solution after one step. Moreover if p # 0, np = 1 and p*° =0, vy > 2, the
algorithm does not convergence and the damping parameter 7y is too large. Table 7.1
shows the number of required iteration steps depending on the damping parameter and
the refinement level. We set TOL = 10~*. If the damping parameters are small enough
the number of required iteration steps can be bounded independently of the refinement
level. Here we use uniform refinement on all levels. We observe a considerably smaller
number of required iteration steps on Level 2 and Level 3 for np = 1 and ny = 0.4,0.5,
see also Figure 7.5.

Figure 7.4 illustrates the influence of the choice of the damping parameters. The
error reduction g(v) := [|p*™2 — Ty 2| ||p?||/|lp* 2| |p? — £'r}|| is shown versus the
number v of iteration steps. If the damping parameter is small enough, level independent
upper bounds for the convergence rates can be observed.

Figure 7.5 illustrates the influence of small and too large damping factors. Small
damping parameters lead to a slow convergence, see the left and middle picture in Figure
7.5. On the other hand, the algorithm does not converge for higher levels if the damping
parameter is too large, see the right picture in Figure 7.5.
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7 Elastic Contact

Table 7.1: Number of iteration steps, Lagrange multiplier norm

‘lev. 0 ‘ lev. 1 ‘ lev. 2 ‘ lev. 3 ‘ lev. 4 ‘ lev. 5 ‘ lev. 6 ‘

np =1,y =0.5 11 11 ) 6 13 10 12
=1,y =04 | 14 14 8 9 18 15 16
np = 0.5, ny = 1 12 11 6 6 6 8 11
np =04, ny =1 16 16 9 10 8 11 11
o =06, ny =08 | 9 8 8 9 7 8 9
o =08, ny =0.6 | 6 7 9 9 10 8 9
o =0.7, my =0.7 | 8 7 10 9 9 8 9
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Figure 7.4: Error reduction for different damping parameters 1y, np

To be on the safe side, one has to chose a small damping factor. Unfortunately, the
optimal damping parameter is in general not known. Adaptive strategies controlling the
damping parameter might yield considerably better results. A different possibility to im-
prove the performance is the use of our algorithm as preconditioner for a Krylov subspace
method. As soon as the actual zone of contact is detected, we are in the linear setting.
Then, our algorithm for np = 1 is equivalent to a preconditioned Schur complement
system, and we can apply a conjugate gradient method.

In our next example, we consider the elastic contact of a wrench and a nut. At the
interior boundary of the nut, i.e., the part of the boundary with outer normal pointing
towards the center of gravity of the nut, we impose Dirichlet boundary conditions corre-
sponding to a rotation. Homogeneous Dirichlet boundary conditions are applied at the
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Figure 7.5: Influence of too small and too large damping parameters
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7.3 Elastic Contact with Coulomb friction

handle of the wrench and on all remaining parts of the boundary we impose homogeneous
Neumann conditions. We use linear elements on triangles, and refinement is done adap-
tively. As can be seen in the right of Figure 7.6, the actual contact zone is only a small
part of the contact boundary I's. We remark, that a more realistic model would include
friction at the interface.
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Figure 7.6: Initial triangulation (left), deformation and final triangulation (middle) and
zoom at the contact zone (right)

7.3 Elastic Contact with Coulomb friction

In this section, we consider a nonlinear contact problem with Coulomb friction, see Chap-
ter 6. The Coulomb law can be applied for two linear elastic bodies in contact if we replace
the tangential displacement by the relative tangential displacement, see [[W92, Eck96].
Then, the equilibrium conditions at the contact boundary and the Coulomb’s law reads
as follows:

or(uy) = or(ug), on(uy) = op(ug) < 0, (77)
lor(ui)| < Flop(ui)l,  or(ur)ur] + Flop(ul)| |[ur]| =0, '

where F > 0 is the friction coefficient and the jump is defined by [ur]| := (u1)r — (u2)7.
An equivalent formulation of Coulomb’s law can be given by |o(u1)|

it |or(u)| < Flop(ur)] = [ur]=0
it  |or(u)| = Flon(ur)l = [ur]| = —sor(u1), s>0;

see also [Has92, KB92]. Then, the equilibrium condition satisfies the boundary value
problem given by (2.9), (7.2) and (7.7). As in the frictionless case, we base our numerical
approach on the variational formulation. To do so, we use the principle of virtual work.
As in Chapter 6, we use the nonlinear functional w(-,-) to describe the virtual work of the
frictional forces. Here, w takes the form

W, v) = /ﬂan(um \[or]| da .
s

Following the lines of [KO88, Chapter 10|, a variational inequality can be obtained from
(2.9), (7.2) and (7.7) by applying Green’s formula. The weak form of (2.9), (7.2) and (7.7)
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7 Elastic Contact

reads as follows: Find u € K such that
a(u,v —u) +w(u,v) —w(u,u) > f(lv—u), vek . (7.8)

Moreover under suitable assumptions on the data, (7.8) and (2.9), (7.2) and (7.7) are
equivalent, see [Eck96, Satz 1.6]. We do not address questions such as existence, unique-
ness and regularity of a solution. Recently existence results for a large class of contact
problems with friction have been obtained. We refer to [Eck96, EJ98, HHNLSS, NJHS80]
and the references therein.

We follow, the lines of the previous paragraph to motivate our algorithm. Let us
assume that the boundary stresses o and o, are known on the contact boundary. Then,
the boundary value problem (2.9), (7.2) and (7.7) can be decoupled. The solution on
PN can be obtained as the solution of an inhomogeneous Neumann problem: Find usy €
H!(%y) such that

ag(ug, v) = f2(v) + (00, V) p2(rgy HOT VD) [2rgy) v € H(BN) -

To obtain w1, we solve a nonlinear one-sided contact problem with Coulomb friction on
Bi. Then, the variational inequality (7.8) reduces to u; € K(u2)

al(ulvv - ul) + wan;ug(v) — Wopiusg (ul) > fl(v - u1)7 v E IC(UQ) )

where the reduced form of the virtual work for a given function 7 and a given displacement
w is defined by

oy (0) 1= /f|7| or — wr| da . (7.9)
I's

Now, we proceed as in the previous paragraph and carry out a fixed point iteration.
Our nonlinear Neumann—Dirichlet algorithm for a contact problem with Coulomb friction
reads as:

Algorithm 5
Choose damping parameters: 0 < np,ny < 1.
Initialize: ng) 54" :=0, ng) > pl:=0.
Forv=1,... ,N do _
Solve linear Neumann problem: Find uj € ng ):
Ajus = fr-p”
Transfer of displacements and damping:

v

g = (1—np)g” ' +npSuj .

Solve nonlinear one-sided contact problem with Coulomb friction:
Find uf € K;(g"):

(Aluf, v — ) + @ o), g (0) = Wiy, o () > (Frov—uf), v eKgl) .
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7.4 Numerical Results with Coulomb friction

Compute the residual r{ € ng ):
r{ = Ayui—f; .
Transfer of scaled boundary stresses and damping;:
P o= (L aw)p STy
Here, w...(-) is the algebraic representation of the nonlinear functional w...(-) defined by
(7.9).
7.4 Numerical Results with Coulomb friction

In this section, we present some numerical results in 2D and 3D illustrating the influence
of the Coulomb friction on the deformation. These examples can be found in [KW01]. In
all our 2D results, the friction coefficient is F = 0.3. We start with the Hertz problem
of Section 7.2. Figure 7.7 shows the boundary stresses at the contact zone. The initial
triangulation has four elements on each subdomain.
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Figure 7.7: Initial triangulation (left) and boundary stresses (right)

Comparing Figure 7.7 with Figure 7.3, we find that the actual zone of contact and
the maximal normal stress are considerably smaller if Coulomb friction occurs. Between
the minimum and the maximum of the tangential stress no sliding occurs at the contact
zone. Sliding nodes can be found in the neighborhood of the left and right endpoints of
the actual contact.

As a second example in 2D we consider a symmetric problem. Here due to the sym-
metry, we expect that the tangential stress is zero even if friction terms are included.
Figure 7.8 shows the boundary stress for the frictionless case and for the case including
Coulomb friction. Comparing the left and right picture in Figure 7.8, we find exactly the
same values for the normal stress and thus the actual zone of contact.

In contrast to the unsymmetric problem in Figure 7.7, no tangential stress occurs.
Since the normal and tangential stress is the same at I'g, the discrete solutions for the
two situations are the same. Figure 7.9 illustrates the stress component g9s close to the
contact zone. Although our Dirichlet Neumann algorithm is non symmetric, we obtain a
symmetric numerical approximation. The numerical results confirms the flexibility and
reliability of the non-conforming approach in terms of dual Lagrange multipliers.

In our last example, we consider the elastic contact of three bodies in 3D. Two cylinders
are in contact with a hexahedral bar. At the top and bottom of the upper and lower
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Figure 7.8: Boundary stresses (frictionless) (left), initial triangulation (middle) and
boundary stresses (Coulomb friction) (right)

Figure 7.9: Boundary stress ooo

cylinder, respectively, a displacement in vertical direction towards the bar is enforced.
As before in 2D, we start with a very coarse initial triangulation, see Figure 7.10. On
Level 0, we only have 5 elements. We use a standard mean value adaptive refinement
strategy. The local refinement is controlled by a residual based local a posteriori error
indicator on the subdomains and the information transfer at the interface is realized by
additional terms in the definition of the local error indicator. On the non-mortar side the
local jump 1/h/[u]|? L2(rg) easures the non-conformity which controls the discrete non-

penetration condition. On the mortar side, we add locally the term A [u]]|? L2(rs) which

controls the discrete equilibrium condition for the stress at the contact boundary. The
local weights 1/h and h reflect the duality between the H 1/2 and H~'/2 spaces. In contrast
to conforming methods, no refinement rules have to be considered at the interfaces.

In the right picture in Figure 7.10 a cut of the adaptive triangulation on Level 7 is
depicted, showing the meshes in the interior of the computational domain. We observe
strong refinement in the neighborhood of the contact zone. Instead of 10,485, 760 elements
in the case of uniform refinement, we have 207, 561 elements on Level 7. Using a coeflicient
of friction of F = 0.25, we obtain 210 non-mortar nodes in contact on the finest level and
186 sticky nodes. We note, that no element at the interface has been refined within the
last refinement step.

The asymptotic convergence rate of our algorithm depends highly on the aspect ratio
of the hexahedral bar. It can be improved by using the proposed algorithm as a precondi-
tioner within a Krylov subspace method. Finally, Figure 7.11 shows the coefficients with
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7.4 Numerical Results with Coulomb friction
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Figure 7.10: Initial (left) and adaptive (right) triangulation of a three body contact prob-
lem in 3D

Figure 7.11: Tangential (left) and normal (right) stress at one of the interfaces

respect to the dual basis of the stress in normal direction and of one stress component
in tangential direction. The second tangential component is of smaller size. The contact
stresses are depicted with respect to the surface of the upper cylinder. This choice is
arbitrary, since the problem is symmetric with respect to the symmetry plane of the two
cylinders. Since the width of the cylinder in direction of the axis of the cylinder is larger
than the width of the bar, the normal stress is zero at the part of the cylinder’s surface
being on the left and right of the bar, respectively. The tangential stresses increase until
their norm reaches the critical value F|o,|. Then, sliding occurs in opposite direction to
the tangential stresses. All node on the contact boundary lying in between the minimum
and maximum of the tangential stresses are sticky nodes, all others are sliding nodes.
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