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Chapter VI

1 Discussion

When this work was begun, the function of the wtHtt remained a

mystery. Since then two studies reported putative functions, either as part of

an iron-regulatory pathway or membrane fusion processes (Hattula and

Peranen, 2000; Hilditch-Maguire et al., 2000). The study presented here

sought to address the question of wtHtt function as well.

Neuronal striatal cell lines that model cellular behaviour in vivo were

used to study Htt effects. When challenged with an apoptotic stimulus, wtHtt

expressing cells are protected, whereas muHtt cells are sensitized. This

effect is observed when the N548 Htt truncation is expressed. Furthermore,

even full length Htt constructs show the same apoptotic characteristics as the

N548 truncation mutants (data not shown). Further deletion of the protein to

an N-terminal 63aa fragment results in the loss of the pro-survival effect

(data not shown). These data indicate that the protective effect of wtHtt

requires at least a segment of the protein between aa63 and aa548. All the

effects described here are verified in different clones of wtHtt or muHtt

expressing cell lines and therefore do not represent a random integration

effect of the stably transfected plasmids.

Previous work demonstrated that homozygous mice with a targeted

disruption in the Htt gene do not survive to term and suffer early post-

implantation embryonic lethality (Duyao et al., 1995; Nasir et al., 1995;

White et al., 1997; Zeitlin et al., 1995). More recent morphometric and

ultrastructural analysis performed on heterozygous mice, which survive to

adulthood, identified neuronal loss with signs of apoptosis in the basal

ganglia of adult animals (O'Kusky et al., 1999).
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In the ST14A system, wtHtt specifically interferes with the cell death

machinery. Serum withdrawal and differentiation leads to apoptotic death in

parental cells. In contrast, these stimuli are ineffective in cells expressing

wtHtt. The data indicate that wtHtt directly influences cell survival by acting

as an anti-apoptotic protein during brain development. Htt is also an

important survival factor earlier in development since its absence evokes

increased apoptosis in the epiblast, a structure of the embryo known to give

rise to the future ectoderm (Duyao et al., 1995). Moreover, Htt is

upregulated in some cancer cell lines, potentially taking part in their cellular

transformation and thus enabling them to escape apoptotic anti-cancer

surveillance mechanisms. Taken together, these data indicate that wtHtt

indeed acts mainly as a pro-survival, anti-apoptotic protein.

The anti-apoptotic activity of wtHtt is localized to caspase-9, more

specifically to the catalytic domain of caspase-9, as this domain mediates

interaction between the two proteins. Interaction is most likely not direct but

requires additional cellular factors that either stabilize it, or serve as

adapters. The identity of these factors remains unknown. As a consequence

of wtHtt interaction, cells are protected from several apoptotic stimuli,

including DR and mitochondria-induced apoptosis. cytochrome c-release is

not affected, but caspase-9 processing is inhibited and caspase-9 activity is

suppressed, as well as activity of downstream caspase-3 (data not

shown)(Rigamonti et al., 2000). Indeed, wtHtt completely suppresses all

caspase-9 activity, but is unable to prevent some caspase-9 processing. This

is probably due to processing of caspase-9 by some caspase-9-independent

mechanism, as the occurrence of the p35 cleavage product is largely

unaffected, but the p37 product is inhibited in an in vitro processing assay.
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The molecular basis for the inhibitory effect possibly lies in the

observed interaction between caspase-9 and Htt. Interaction only takes place

with the zymogen form of caspase-9, but not with the active enzyme.

Therefore, Htt inhibits a step upstream of caspase-9 activation. Caspase-9 is

activated in (at least) two steps: Cytochrome c-mediated oligomerization of

Apaf-1 leads to the formation of the apoptosome, to which caspase-9 is

recruited; this huge multi-protein complex activates caspase-9 by inducing a

conformational change in the zymogen, which increases its intrinsic catalytic

activity (Li et al., 1997; Stennicke et al., 1999), leading to auto-processing of

caspase-9 molecules. Gel filtration experiments with apoptotic ST14A cell

lines show inhibition of the widening of the Apaf-1 elution profile in Htt

expressing cells, suggesting that formation of the apoptosome is disturbed by

the presence of the N-terminal Htt fragment. This effect is partially observed

with the muHtt fragment, indicating that muHtt still performs some

functions of the wt protein.

Taken together, these data suggest a possible molecular mechanism

for Htts anti-apoptotic activity (Fig.1). Htt interacts with the catalytic

domain of caspase-9 and inhibits its catalytic activity. Possibly, as a side

effect of binding to caspase-9, Htt also inhibits formation of a properly

assembled apoptosome, likely brought about by steric hindrance due to its

size. Furthermore, the ability of Htt to not only interact with caspase-9, but

also with the catalytic domains of other initiator caspases, further stresses its

function as mainly inhibiting catalytic activity. Thus, Htt acts like an IAP,

preventing caspases to fully realize their catalytic potential (Goyal, 2001).

The fact that the N-terminal fragment mediates interaction also suggests that

the anti-apoptotic function of Htt becomes activated during apoptosis, again

paralleling IAP. Regulation of the anti-apoptotic activity is potentially
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brought about through phosphorylation by the anti-apoptotic protein kinase

Akt, but further studies are needed to confirm this.

During HD striatal neurons are selectively eliminated by an apoptotic

mechanism. How this mechanism is activated or why it takes years for

clinical symptoms to develop is still unclear. While expanded poly-Q

peptides are cytotoxic for a variety of cells, in HD mainly striatal neurons

are killed (Sharp and Ross, 1996). This effect is likely brought about by the

context of the larger Htt protein that might shield the poly-Q stretch from

exposure. caspase-mediated release of the N-terminal cleavage fragment

relieves some of the protection and leads to increased accumulation of the

cleavage product, which activates apoptotic pathways, thus starting a self-

amplifying loop that ultimately results in cell death. In fact, the ST14A cell

system recapitulates this effect. MuHtt-N548 increases apoptosis by a

variety of stimuli, whereas the full length muHtt exhibits decreased

cytotoxic effects. While N548 muHtt cells are killed by serum withdrawal,

BAD and caspase-3, FL-muHtt cells do not die by serum withdrawal (data

not shown) (Rigamonti et al., 2000). Because the N548 fragment roughly

corresponds to the released cleavage product, the ST14A-muHtt cells

represent a model system for striatal neurons during HD. These cells, and by

analogy all cells that have elevated levels of the N-terminal poly-Q

expanded Htt fragment, become sensitized to a broader range of apoptotic

stimuli. They eventually succumb after a critical threshold has been reached

or a particular apoptotic pathway has finally been activated. Thus, the

ST14A cell system reflects the situation in vivo.

However, this sensitization scenario still fails to explain the

mechanisms of initial muHtt cleavage, but the observations made by FPLC
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fractionation of ST14A lysates might provide an explanation. Even in

ST14A cells kept at regular growth conditions, a Htt cleavage product of the

same size and elution pattern as the overexpressed N-terminal fragment is

observed. Why and how FL-Htt is cleaved to generate this fragment remains

unclear. However, the presence of this fragment has grave consequences for

HD pathology. If indeed a N-terminal Htt fragment is present at all times,

this fragment will carry an expanded poly-Q in HD. But it is exactly this N-

terminal muHtt fragment that sensitizes striatal neurons to apoptosis. Thus,

no initial toxic insult is needed for neurodegeneration to occur, but it will

happen rather “naturally”.

The results in the ST14A system also explain the gain-of-function

effect of muHtt. As shown, muHtt still protects weakly from a limited

number of apoptotic stimuli (DR, BIK and BAK). However, it also activates

pathways that lead to caspase-3 activation, thereby gaining additional

functionality. It was shown previously that Htt colocalizes with caspase-8

and that expanded poly-Q peptides are able to activate caspase-8 (Sanchez et

al., 1999). While this offers an explanation for muHtt-induced caspase-3

activation, it is not exclusive of other scenarios. Currently, a lot of work

focuses on potential transcriptional effects of the nuclear muHtt fragment

(Cha, 2000; Nucifora et al., 2001).

If wtHtt is an anti-apoptotic protein and muHtt is pro-apoptotic, the

question arises whether wtHtt is able to protect from muHtt-induced cell

death. Very recent studies with Htt -/- mice, which have been rescued by a

YAC expressing FL-muHtt, are sterile and exhibit massive apoptosis in the

testes (Leavitt et al., 2001). This phenotype is rescued by introduction of

wtHtt, further confirming Htts anti-apoptotic function. It is unclear at this

point, however, whether wtHtt is also able to rescue these mice from the
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neurological HD phenotype that develops later in life. The data presented

here suggests that wtHtt is not able to protect from muHtt, because the

pathway engaged by muHtt activates the common arm of apoptosis

downstream of Htts proposed point of action. However, special

circumstances could exist in certain tissues, like testes, that allow wtHtt

rescue from the detrimental effects of muHtt. If the observations presented

here are correct, then striatal neurons cannot be protected and thus these

mice are predicted to still develop HD.

Recently it has been shown that symptoms of HD are dependent on

the continous presence of muHtt in a mouse model expressing muHtt Exon1

under inducible expression control (Yamamoto et al., 2000). As soon as

expression of muHtt is turned off, the HD phenotype is arrested. Thus, the

presence of muHtt is required for disease progression, suggesting that the

apoptotic pathway engaged by muHtt is under strict control and is not able,

once activated, to amplify itself.

These data, together with experiments described in this work, lend

support to a “Trojan Horse” hypothesis (Fig. 1) of muHtt function. Since

muHtt interacts with caspase-9 (in order to perform its wild type function), it

acquires the potential to activate directly the downstream caspase-3. While

this hypothesis is consistent with data showing poly-Q aggregation with

caspase-8 (Sanchez et al., 1999), it, however, still needs to explain the

observations that in experiments with primary striatal neurons muHtt acts in

the nucleus to induce cell death, but not in the cytoplasm (Saudou et al.,

1998). As a consequence of this observation, current thinking favours

abnormaly regulated transcription by muHtt as a cause for

neurodegeneration in HD.



195

Nonetheless, the effects that are the basis for the “Trojan Horse”

hypothesis are not only supported by observation in the ST14A system, but,

importantly, also by data gathered in the C. elegans system. Both, CED-3

and CED-4, interact with muHtt, and nematodes expressing the N-terminal

muHtt fragment increase their number of developmentally regulated

programmed cell deaths. Because CED-3 and CED-4 constitute the (sole)

core components of the C. elegans death machinery, interaction of muHtt

with these molecules is the likely cause for CED-3 activation and apoptosis.

Experiments are under way to further clarify the mechanism. By analogy,

the same mechanism can be extrapolated to mammalian cells and thus

represents a mechanism for HD pathology. If the “Trojan Horse” hypothesis

is correct, the long incubation times of HD are explained by inefficient

activation of caspase-3 by muHtt. Only when a certain threshold of caspase-

3 activity is reached, will caspase-3 activate other parts of the cell death

machinery. Possibly, a lifetime of accumulation of the N-terminal Htt

fragment is needed to overcome the safety-catch mechanism of caspase-3

(Roy et al., 2001). Furthermore, ubiquitination of the abnormal Htt fragment

and its subsequent degradation by the proteasome adds a second protective

layer to counteract any detrimental Htt effects. Thus, it is conceivable that

long incubation times are needed for HD to develop. Longer poly-Q

stretches are more able to activate caspase-3, leading to juvenile onset HD.

Caspase-3 belongs to the common effector arm of apoptosis and acts

downstream of caspase-8 and caspase-9. Furthermore, it directly cleaves

ICAD, which leads to release and activation of CAD, the apoptotic DNase.

If the protective function of wtHtt indeed acts at the level of caspase-9, then

wtHtt is unable to protect from muHtt-induced apoptosis. This seems to be
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the case, because if muHtt is expressed at similar levels as endogenous wtHtt

in mice, these mice still develop HD symptoms (Hodgson et al., 1999).

In conclusion, a function of wtHtt is determined. Htt is an important

anti-apoptotic protein that acts to prevent caspase-9 mediated apoptosis thus

affecting the common effector arm of apoptosis. The molecular basis for its

activity lies in the interaction between Htt and caspase-9, which prevents

assembly of the apoptosome and activation of caspase-9. MuHtt retains

some of the protective activity of the wt protein, markedly interaction with

caspase-9. In this case, this effect is detrimental, as it introduces a “Trojan

Horse” into a protective complex, which leads to direct activation of the

downstream effector arm of apoptosis via caspase-3.
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Apaf Apoptotic Protease Activating Factor

ATP Adenosinetriphosphate

Bcl B-cell lymphoma

BH Bcl-2 homology

bp Base Pairs

CAD caspase-activated DNase

CARD caspase Recruitment Domain

caspase Cysteine Aspartase

CED Cell Death Abnormal

CNS Central Nervous System

D Dalton

DD Death Domain

DED Death Effector Domain

DISC Death-Inducing Signaling Complex
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DR Death Receptor
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GST Glutathione-S-Transferase

HD Huntingtons Disease

Htt Huntingtin

HSP Heat Shock Protein

IAP Inhibitor of Apoptosis
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ICAD Inhibitor of CAD

IIN Intranuclear Inclusion Bodies

IP Immunoprecipitation

NGF Nerve Growth Factor

mu mutant

R Receptor

RNA Ribonucleicacid

SF(D)M Serum Free (Deprived) Medium

S/N Supernatant

TNF Tumor Necrosis Factor

TM Transmembrane

TUNEL Terminal Transferase-mediated dUTP Nick-End Labeling

wt wild type
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