1 Einführung

1.1 G-Protein-gekoppelte Signalübertragung

G-Protein-gekoppelte Rezeptoren (GPCRs) werden auf der Zelloberfläche exprimiert und sorgen für die Weiterleitung extrazellulärer Signale in das Zellinnere. Die Bezeichung dieser Rezeptoren leitet sich von ihrer Gemeinsamkeit ab, an heterotrimäre G-Proteine zu koppeln. Diese vermitteln Signale über verschiedenste Effektoren wie Adenylatzyklasen, Phosphodiesterasen, Phospholipasen, Phosphoinositol-3-kinasen oder Ionenkanäle (Hamm, 1998). Die Komplexität der Signalweiterleitung wurde in den letzten Jahren durch neue Erkenntnisse erweitert, nach denen auch Proteinkinasen abhängig von der Stimulierung diverser GPCRs aktiviert werden können (Knall und Johnson, 1998). Für die Regulation der G-Protein-gekoppelten Signalübertragung sind Mechanismen aufgedeckt worden, die einerseits durch posttranslationale Modifikationen an GPCRs wie Phosphorylierungen und Glykosylierungen, andererseits durch enzymatische Beeinflussung der G-Proteine wirken (Pitcher *et al.*, 1998; De Vries *et al.*, 2000; Foord und Marshall, 1999).

1.1.1 Rezeptoren

G-Protein-gekoppelte Rezeptoren bilden die größte Protein-Superfamilie mit mehr als 1000 unterschiedlichen Mitgliedern (Kolakowski, 1994). Dementsprechend groß ist auch die Vielfalt ihrer Liganden, die von biogenen Molekülen wie Peptiden, Lipiden, Aminen, Glykoproteinen, Nukleotiden, Proteasen und Ionen bis hin zur Wahrnehmung exogener Stimuli wie Licht, Geruch und Geschmack reichen (Kolakowski, 1994; Hoon *et al.*, 1999). Obwohl sie sich durch keine allgemeine Sequenzhomologie auszeichnen, haben sie charakteristische strukturelle und funktionelle Gemeinsamkeiten, die im folgenden erläutert werden.

Abbildung 1.1: Schlangendiagramm der drei Hauptfamilien G-Protein-gekoppelter Rezeptoren (Abbildung nach Gether, 2000). (A) Rhodopsin-ähnliche Rezeptoren, (B) Glucagonrezeptor-ähnliche Rezeptoren, (C) metabotrophe Neurotransmitterrezeptor-ähnliche Rezeptoren. Konservierte Aminosäurereste in den einzelnen Untergruppen sind entsprechend hervorgehoben.

Struktur

Zu den strukturellen Gemeinsamkeiten aller GPCRs gehören die sieben α -helikalen Transmembrandomänen (TMs), die durch alternierende intrazelluläre und extrazelluläre Schleifen miteinander verbunden sind, sowie der extrazelluläre Aminoterminus (N-Terminus) und der intrazelluläre Carboxyterminus (C-Terminus). In verschiedenen Unterfamilien bestehen zudem signifikante Sequenzhomologien, die die Rezeptoren in drei Hauptunterfamilien einteilen lassen. Dazu zählen die Rhodopsin-verwandten Rezeptoren (Familie A), die Glucagonrezeptor-ähnlichen Rezeptoren (Familie B) und die Rezeptoren, deren Struktur den metabotrophen Neurotransmitterrezeptoren ähnlich ist (Familie C, Abb. 1.1). Die Pheromonrezeptoren STE2 (Familie D) und STE3 (Familie E) der Hefen sowie vier unterschiedliche cAMP-Rezeptoren aus *Dictyostelium Discoideum* (Familie F) bilden drei kleinere Untergruppen.

Die mit Abstand größte Unterfamilie A zeichnet sich durch eine hoch konservierte Disulfidbrücke zwischen der ersten und zweiten extrazellulären Schleife sowie durch ein ebenso hoch konserviertes Arginin im Glu/Asp-Arg-Tyr (E/DRY) Motiv auf der zytoplasmatischen Seite der TM3 und einer Palmitoylierungsstelle am zytoplasmatischen Ende aus, die zur Ausbildung einer vierten intrazellulären Schleife führt (Abb. 1.1A). Zur Unterfamilie B zählen zur Zeit etwa 20 Rezeptoren, die sich vor allem durch einen langen N-Terminus mit etwa 100 Aminosäuren auszeichnen. Außer der Disulfidbrücke zwischen der ersten und zweiten extrazellulären Schleife haben sie keine gemeinsamen strukturellen Eigenschaften mit den Rezeptoren der Familie A

Abbildung 1.2: Modell der Anordnung der sieben Transmembrandomänen (TM1-7) des Rhodopsins aus Rind, von der extrazellulären Seite aus gesehen (SwissProt Datenbankeintrag P02699).

(Abb. 1.1B). Letzteres gilt auch für die Rezeptoren der Unterfamilie C, die sich vor allem durch einen sehr langen N-Terminus mit 500 bis 600 Aminosäuren auszeichnen und zudem ein kurzes und hoch konserviertes Sequenzmuster in der dritten intrazellulären Schleife gemeinsam haben (Abb. 1.1C).

Da bis vor kurzem keine Kristallstruktur eines GPCR vorlag, diente lange Zeit die hochauflösende Struktur der durch Licht induzierten Protonenpumpe aus *Halobacterium halobium*, Bakteriorhodopsin, das ebenfalls sieben α -helikale Transmembrandomänen besitzt, als Modell (Henderson *et al.*, 1990; Roper *et al.*, 1994). Allerdings ist Bakteriorhodopsin eine Protonenpumpe, die nicht an G-Proteine gekoppelt ist und zudem keinerlei Sequenzhomologie zu irgendeinem GPCR aufweist. Zudem sind in den vergangenen Jahren Strukturen geringerer Auflösungen sowie vor kurzem auch eine hochauflösende Struktur von Rhodopsin bekannt geworden, die deutliche Unterschiede zwischen Bakteriorhodopsin und Rhodopsin aufzeigen, so daß die vorliegenden strukturellen Daten des Rhodopsins als Vorlage für eine dreidimensionale Modellvorstellung eines typischen GPCR dienen (Schertler *et al.*, 1993; Unger *et al.*, 1997; Davies *et al.*, 1996; Palczewski *et al.*, 2000). Danach sind die sieben Transmembrandomänen von der extrazellulären Seite gesehen sequentiell gegen den Uhrzeigersinn angeordnet, wobei TM3 in das Zentrum dieser Struktur gerückt ist (Abb. 1.2, Übersicht: Gether, 2000).

Ligandenbindung

Die Ligandenbindung ist abhängig von den strukturellen Eigenschaften der Rezeptoren sowie der Art der Liganden. Zahlreiche Studien haben gezeigt, daß die Bindung von größeren Peptidliganden wie beispielsweise Chemokine oder Angiotensine vor allem über die extrazellulären Domänen, insbesondere über den N-Terminus der Familie A Rezeptoren erfolgt (Leong *et al.*, 1994; Hjorth et al., 1994; Feng et al., 1995; Heerding et al., 1997). Kleine Moleküle wie Rhodopsin, Eicosanoide, Purine und biogene Amine hingegen gehen Wechselwirkungen tief in der von den Transmembrandomänen gebildeten Bindungstasche der Familie A Rezeptoren ein (Sakmar, 1998; Ji et al., 1998; Mansour et al., 1992; Wang et al., 1993; Gantz et al., 1992). Die Peptidliganden der Familie B und C Rezeptoren binden vor allem an den ausgeprägten N-Terminus, wobei bei den Familie B Rezeptoren zusätzliche Wechselwirkungen mit den extrazellulären Schleifen eingegangen werden (Stroop et al., 1996; Holtmann et al., 1996; Wilmen et al., 1997; Tones et al., 1995).

Eine wichtige pharmakologische Erkenntnis war, daß Peptidliganden in einigen Fällen durch kleine peptidfremde Moleküle ersetzt werden können, die deutlich stabiler und leichter zu applizieren sind und häufig als Antagonisten, in einigen Fällen auch als Agonisten eingesetzt werden können (Schwartz *et al.*, 1995; Rohrer *et al.*, 1998). Nach der ersten spektakulären Entdeckung dieser Art 1975, bei der die Enkephaline und Endorphine als endogene Peptidliganden die bis dahin bekannten Morphine und Naloxone als peptidfremde exogene Liganden der opioiden Rezeptoren ergänzten, wurden die GPCRs das Ziel eines sich schnell entwickelnden Gebietes zur Entdeckung neuer pharmakologischer Komponenten (Hughes *et al.*, 1975; Schwartz *et al.*, 1995). Interessant in diesem Zusammenhang ist vor allem, daß die kleinen peptidfremden Moleküle, die an die GPCRs binden, keinerlei strukturelle Verwandtschaft zu den endogenen Peptidliganden aufweisen und unterschiedliche Aminosäurereste der GPCRs an der Bindung beteiligt sein können (Zoffmann *et al.*, 1993; Turcatti *et al.*, 1997). Somit kann es mehrere Möglichkeiten geben, ein und denselben GPCR zu aktivieren (Schwartz und Rosenkilde, 1996).

G-Protein-Kopplung

Die Signalweiterleitung von GPCRs wird durch heterotrimere GTP-bindende Proteine, auch G-Proteine genannt, vermittelt (Kap. 1.1.2). Diese koppeln an der zytoplasmatischen Seite der GPCRs und werden von diesen aktiviert. An der Kopplung der G-Proteine spielen die zweite und dritte intrazelluläre Schleife sowie zumindest bei einigen Rezeptoren auch der proximale Teil des C-Terminus der GPCRs eine entscheidende Rolle (Strader *et al.*, 1994; Wess, 1998). Untersuchungen mit chimären adrenergen und muscarinen GPCRs haben gezeigt, daß die dritte intrazelluläre Schleife eine Schlüsselrolle bezüglich der Kopplungsspezifität unter den diversen α -Untereinheiten heterotrimärer G-Proteine spielt (Kobilka, 1992; Savarese und Fraser, 1992). Im Gegensatz dazu ist die zweite intrazelluläre Schleife nicht für die Spezifität, sondern für die Effizienz der G-Protein-Aktivierung entscheidend (Dohlman *et al.*, 1991; Wess, 1997). Interessanterweise haben Mutationsanalysen ergeben, daß Substitutionen von Aminosäureresten an

einer Seite der vermutlich erweiterten TM3 α -Helix in die zweite intrazelluläre Schleife hinein eine konstitutive Aktivierung des M5-muscarinen Rezeptors bewirkt, während entsprechende Substitutionen auf der anderen Seite der vermuteten α -Helix am N-terminalen Ende der zweiten intrazellulären Schleife die G-Protein-Kopplung inhibieren (Burstein *et al.*, 1998). Daraus wurde gefolgert, daß die zweite intrazelluläre Schleife als "Schalter" dienen könnte, der eine G-Protein-Kopplung ermöglicht (Burstein *et al.*, 1998).

Dimerisierung

In den letzten Jahren ist gezeigt worden, daß eine ganze Reihe GPCRs die Eigenschaft besitzt zu dimerisieren (Hébert und Bouvier, 1998). Die genauen Mechanismen sowie die funktionelle Relevanz der Dimerisierung sind bislang nur wenig bekannt. Eine mögliche Konstellation zweier GPCRs zeigt das Modell des antiparallelen Dimers, bei dem TM1-5 des einen GPCR mit TM6-7 des anderen GPCR zwei Bindungstaschen bilden (Gouldson und Reynolds, 1997). Die beobachteten funktionellen Eigenschaften von GPCR Dimeren sind sehr unterschiedlich. Für die Liganden-induzierte Signaltransduktion des Chemokinrezeptors CCR2b durch Bindung des Chemokins MCP-1 beispielsweise ist die Dimerisierung eine notwendige Voraussetzung (Rodriguez-Frade et al., 1999). Im Fall der GABABR1 und GABABR2-Rezeptoren konnte gezeigt werden, daß die Bildung von Heterodimeren wichtig für den Transport der GPCRs an die Zelloberfläche ist (White et al., 1998; Jones et al., 1998; Kaupmann et al., 1998; Kuner et al., 1999). Desweiteren bilden Heterodimere der Opioidrezeptoren δ und κ einen "neuen" Rezeptor mit völlig eigenen Bindungs- und Funktionseigenschaften (Jordan und Devi, 1999). Schließlich konnte auch gezeigt werden, daß die Koexpression des Chemokinrezeptors CCR5 mit der nicht funktionellen Mutante ccr 5δ 32 den Transport des GPCR an die Zelloberfläche inhibiert, was als mögliche Ursache für das verzögerte Auftreten von AIDS-Symptomen bei heterozygoten (CCR5/ccr5 δ 32) HIV-Patienten postuliert wird (Benkirane et al., 1997).

1.1.2 Heterotrimere G-Proteine

Die heterotrimeren G-Proteine sind aus jeweils einer α -, β - und γ -Untereinheit zusammengesetzt. Bei ihrer Aktivierung wirken GPCRs als Guaninnukleotid-Austauschfaktoren (guaninenucleotide exchange factors, GEFs), wobei das an der α -Untereinheit trimärer G-Proteine gebundene GDP durch GTP ausgetauscht wird. Die GTP gebundene α -Untereinheit dissoziiert anschließend vom Rezeptor und von dem an der Zellmembran stabil verankerten $\beta\gamma$ -Dimer. Sowohl die α -Untereinheit, als auch das $\beta\gamma$ -Dimer können in diesem Zustand verschiedene zelluläre Signalwege modulieren, und zwar unabhängig voneinander, synergistisch oder antagonistisch

Untereinheit	Molgewicht	Toxinsensitivität	Expression
$\mathbf{G}\alpha$			
Gs			
$G\alpha_s$	46 kD / 44,5 kD	Cholera	weit verbreitet
$G\alpha_{olf}$	46 kD	Cholera	Gehirn / olfaktorisches System
Gi			
$G\alpha_{i1}, G\alpha_{i2}, G\alpha_{i3}$	40,5 kD	Pertussis	weit verbreitet
$G\alpha_{oA}, G\alpha_{oB}$	39 kD	Pertussis	Gehirn
$G\alpha_{t1}, G\alpha_{t2}$	40 kD	Pertussis	Retina
$G\alpha_g$		Pertussis	Geschmacksknospen
$G\alpha_Z$			
Gq			
$G\alpha_{15}, G\alpha_{16}$			myeloides System
$G\alpha_{14}$			Stroma / Epithel
$G\alpha_{11}, G\alpha_{q}$			weit verbreitet
G ₁₂			
$G\alpha_{12}, G\alpha_{13}$			weit verbreitet
${f G}eta$			
$G\beta_1, G\beta_2, G\beta_3, G\beta_4$	35 kD		weit verbreitet
$G\beta_5$	39,3 kD		Gehirn
$\mathbf{G}\gamma$			
$G\gamma_1$	8,4 kD		Retina
$G\gamma_2, G\gamma_3$	7,3 kD (G γ_2)		Gehirn
$G\gamma_4, G\gamma_5, G\gamma_7$			weit verbreitet
G_{γ_6}			

Tabelle 1.1: Liste bekannter Untereinheiten trimärer G-Proteine (nach Morris und Malbon, 1999; $G\alpha_g$ wurde ergänzt nach McLaughlin *et al.*, 1992).

(Neer und Clapham, 1988). Die intrinsische GTPase-Aktivität der α -Untereinheit sorgt wiederum für die Umsetzung von GTP zu GDP unter Freisetzung eines Phosphatrestes, wodurch die α -Untereinheit wieder an den Rezeptor und die $\beta\gamma$ -Untereinheit koppelt und bei der nächsten Stimulierung des Rezeptors erneut aktiviert werden kann (Conklin und Bourne, 1993; Inglese *et al.*, 1995).

Die strukturelle und funktionelle Klassifizierung der trimären G-Proteine wurde über ihre α -Untereinheiten definiert. Alle bekannten α -Untereinheiten bestehen aus etwa 20% invarianten konservierten Aminosäuren, die für ebenso hoch konservierte Funktionen wie Rezeptorkopplung, GTP-Bindung, GTP-Hydrolyse oder Assoziation mit dem $\beta\gamma$ -Dimer wichtig sind (Hepler und Gilman, 1992; Wilkie *et al.*, 1992). Die restlichen Aminosäurereste divergieren. Sequenzvergleiche unter den α -Untereinheiten führten zu der Unterteilung in die vier Gruppen s, i, q und 12

(Tab. 1.1). Sie werden am N-Terminus palmitoyliert oder myristoyliert, wodurch die Membranassoziation und Signalfunktionen beeinflußt werden (Casey, 1995; Mumby und Linder, 1994; Linder *et al.*, 1995).

Das $\beta\gamma$ -Dimer kann sich aus fünf unterschiedlichen bekannten β - und sieben γ -Untereinheiten bilden, von denen sechs in Säugetieren vorkommen (Tab. 1.1). Die lineare Sequenz der β -Untereinheiten besteht aus sieben oder acht Tandem-Wiederholungen mit einer zentralen konservierten Trp-Asp-Sequenz, auch "WD-40"-Motiv genannt (Garcia-Higuera *et al.*, 1998). Die γ -Untereinheiten sind in ihrer Primärsequenz weniger konserviert als die β -Untereinheiten und werden zur Verankerung des $\beta\gamma$ -Dimers in der Zellmembran am C-Terminus prenyliert, wobei die retinale G γ 1-Untereinheit farnesyliert und die anderen G γ Untereinheiten in Säugetieren geranylgeranylisiert werden (Casey, 1995; Iniguez-Lluhi *et al.*, 1992).

Reguliert werden die G-Proteine unter anderem durch GTPase aktivierende Proteine (GAPs), die die intrinsische GTPase-Aktivität der α -Untereinheit trimärer G-Proteine unterstützen. Zu den GAPs gehören unter anderem die Effektoren cGMP-Phosphodiesterase und die Phospholipase C (PLC)- β (Arshavsky *et al.*, 1994; Berstein *et al.*, 1992). Außerdem wird die Hydrolyse von GTP an der aktivierten α -Untereinheit trimärer G-Proteine von den Regulatoren der G-Protein-Signalübertragung (RGS-Proteine) stimuliert, deren Familie deutlich mehr als 20 Mitglieder zählt (De Vries *et al.*, 2000). Die $\beta\gamma$ -Untereinheit trimärer G-Proteine wird durch das Protein Phosducin reguliert, das fest an das $\beta\gamma$ -Dimer bindet und so dessen Interaktion mit der α -Untereinheit und den Effektoren inhibiert (Bluml *et al.*, 1997).

1.1.3 Effektoren

G-Protein α - und $\beta\gamma$ -Untereinheiten regulieren die Aktivitäten von strukturell ganz unterschiedlichen Gruppen von Effektormolekülen, bestehend aus Enzymen zur Synthese und Degradation intrazellulärer Signalmoleküle, sogenannter "second messenger" sowie Ionenkanälen (Tab. 1.2). Dabei kann die Regulation der Effektoren über G-Proteine direkt oder indirekt erfolgen.

Die weit verbreitete Adenylatzyklase katalysiert die Bildung von zyklischem AMP (cAMP) aus dem Substrat Mg²⁺-ATP (Iyengar, 1993). Die cGMP-Phosphodiesterase spielt eine zentrale Rolle im visuellen System von Wirbeltieren und katalysiert die Hydrolyse von cGMP (Hamm, 1991).

Die Hydrolyse von Inositollipiden wird von der Phospholipase C (PLC) katalysiert. Es gibt drei PLC-Familien, die als PLC- β , - γ und - δ bezeichnet werden, wobei die PLC- β -Familie mit ihren vier Isoenzymen von G-Proteinen aktiviert werden können (Tab. 1.2). Sie katalysieren die Umsetzung von Phosphatidylinositol-4,5-bisphosphat (PIP₂) in das Protein-Kinase C (PKC)

Gruppe	Isotypen	G-Protein Selektivität				
"second messenger" generierende und metabolisierende Enzyme						
Adenylatzyklase	Ι	$\alpha_{\mathbf{S}}\uparrow,\beta\gamma\downarrow,\alpha_{\mathbf{O}}\downarrow,\alpha_{\mathbf{Z}}\downarrow$				
	II, IV	$\alpha_{s}\uparrow,\beta\gamma\uparrow$				
	III, VI, VII, VIII, IX	$\alpha_{\rm S}$				
	V	$\alpha_{s}\uparrow, \alpha_{z}\downarrow$				
cGMP-Phosphodiesterase		$\alpha_{ m t}\downarrow$				
Phospholipase C	$\beta_1, \beta_2, \beta_3, \beta_4$	$\alpha_{\mathbf{q}}\uparrow,\alpha_{11}\uparrow,\alpha_{15}\uparrow,\alpha_{16}\uparrow,\beta\gamma\uparrow$				
Phosphoinositol-3-kinase	$p120\gamma/p101$	$\beta\gamma\uparrow, \alpha_0/1\uparrow$				
Phospholipase A ₂		$\beta\gamma\uparrow$				
Ionenkanäle						
K ⁺ -Kanäle	IK.ACH	$\alpha_{i}\uparrow,eta\gamma\uparrow$				
	IK.ATP	α_{i}				
Ca ²⁺ -Kanäle	neuronaler N-Typ	$\alpha_{i1}\downarrow, \alpha_{i2}\downarrow, \beta_1\downarrow, \beta_3\downarrow$				
	cardialer L-Typ	α_{s}				
Na ⁺ -Kanäle	cardial	$\alpha_{ m S}$				
	epithelial	$\alpha_{\mathbf{i3}}\downarrow$				
Cl ⁻ -Kanäle	cardial	α_{s}				
	epithelial	αi/₀↓				

Tabelle 1.2: G-Protein-Effektoren (nach Morris und Malbon, 1999).↑, aktivierend; ↓, inhibierend.

aktivierende Diacylglycerin (DAG) und das Ca²⁺-Kanäle öffnende Inositol-1,4,5-trisphosphat (IP₃, Rhee und Choi, 1992).

Phosphoinositol-3-kinasen sind ATP-abhängige Enzyme, die die Phosphorylierung der D-3 Hydroxylgruppen der drei häufigsten *myo*-Inositol enthaltenden Phospholipide katalysieren, so daß aus Phosphatidylinositol (PI), Phosphatidylinositol-4-phosphat und PIP₂ Phosphatidylinositol-3-phosphat, Phosphatidylinositol-3,4-bisphosphat sowie Phosphatidylinositol-3,4,5-trisphosphat gebildet werden (Vanhaesebroeck *et al.*, 1997). Die Phospholipase A₂ setzt Arachidonat von Zellmembranlipiden frei, eine Vorstufe bei der Synthese von Prostaglandinen. Man unterscheidet sekretorische Formen mit geringem und zytosolische Formen mit hohem Molekulargewicht (Dennis, 1997). Außerdem spielen G-Proteine eine entscheidende Rolle bei der Aktivierung und Modulierung von K⁺-, Ca²⁺-, Na⁺- und Cl⁻-Kanälen (Clapham, 1994).

Der erste Hinweis, daß neben den klassischen Effektoren auch Protein-Tyrosin-Kinasen (PTKs) in die G-Protein-gekoppelte Signalübertragung involviert sind, wurde durch die Blockierung Lysophosphatidylsäure-(LPA)-stimulierter zellulärer Antworten mit dem PTK-Inhibitor Genistein gezeigt (Van Corven *et al.*, 1993). Seitdem ist die Beteiligung diverser PTKs an

Kinase	Stimuli
c-Src und Src-Familie	Angiotensin II, Carbachol, Endothelin-1, fMLP, IL-8, LPA, Thrombin
Pyk2	Angiotensin II, Bradykinin, Carbachol, Mip 1β , LPA, Rantes, SDF-1
BTK/Tec-Familie	$ m Glpha_i, m Glpha_q, m Geta\gamma$
Syk	Carbachol, fMLP, IL-8, GRO α
JAK	Angiotensin II, α -Melanocyten stimulierendes Hormon
Rezeptor PTK	Angiotensin II, α 2A-adrenerger Rezeptor, Bombesin, Carbachol,
	Endothelin-1, $G\beta\gamma$, LPA, Thrombin

Tabelle 1.3: G-Protein-regulierte Protein-Tyrosin-Kinasen (PTKs, nach: Knall und Johnson, 1998).

G-Protein-vermittelten Signalprozessen in zahlreichen unterschiedlichen Zellsystemen nachgewiesen worden (Knall und Johnson, 1998). Dabei konnte neben der G-Protein-abhängigen Aktivierung zytoplasmatischer PTKs auch eine entsprechende Stimulierung von Rezeptor-PTKs in zahlreichen unterschiedlichen Zellsystemen gezeigt werden. So wurde eine Transaktivierung des "platelet-derived growth factor receptor" (PDGFR) durch Angiotensin II, des "insulin-like growth factor receptor" (IGF-1R) durch Thrombin und des "epidermal growth factor receptor" (EGFR) durch Endothelin-1, LPA und Thrombin nachgewiesen (Linseman *et al.*, 1995; Rao *et al.*, 1995; Daub *et al.*, 1996). Ferner wird EGFR durch den α 2A-adrenergen Rezeptor, den M1-Acetylcholinrezeptor (m1AChR), den Bombesinrezeptor und m2AChR transaktiviert (Luttrell *et al.*, 1997; Tsai *et al.*, 1997; Daub *et al.*, 1997). Die Transaktivierung von EGFR ist entscheidend für die Aktivierung der extrazellulär Signal-regulierten Kinase (ERK) (Daub *et al.*, 1996, 1997; Tsai *et al.*, 1997). Eine Übersicht der bislang identifizierten PTKs, die über G-Protein-gekoppelte Rezeptoren aktiviert werden können, ist in Tab. 1.3 dargestellt.

1.2 Die EDG-Rezeptorfamilie

Die EDG-Rezeptoren bilden eine neue Unterfamilie G-Protein-gekoppelter Rezeptoren, die Lysophospho- und Lysosphingolipide (LPLs) als spezifische Liganden binden (Goetzl und An, 1998). Der Name leitet sich vom ersten Mitglied der Familie ab, das erstmals während der Differenzierung von Endothelzellen isoliert werden konnte und daher *endothelial differentiation* gene 1 (edg1) genannt wurde (Hla und Maciag, 1990). Strukturell gesehen können sie der Familie A G-Protein-gekoppelter Rezeptoren zugeordnet werden, bilden jedoch keine Disulfidbrücke zwischen der ersten und zweiten extrazellulären Schleife aus (Abb. 1.1, 4.4). Sie koppeln an die $G\alpha_i$ -Untereinheit trimärer G-Proteine, häufig auch an $G\alpha_q$ und $G\alpha_{12/13}$, und variieren deutlich in ihrem Expressionsmuster (Tab. 1.4). Vertreter dieser Familie sind nicht nur in Menschen und verschiedenen weiteren Säugetieren wie Maus, Ratte und Rind identifiziert worden, es konnten Mil

370

S1P

Name	Anz. AS	Ligand	Lokalisation	Expression	G-Protein
humane EDG-Rezeptoren					
EDG1	382	S1P	h 1p22*	weit verbreitet	i
EDG2	364	LPA	h 9q31.3-32, m 4	CV, ZNS, Gon, GI	i, 11
EDG3	378	S1P	h 9q22.1-2	CV, Leuk, verbreitet	i, q, 12/13
EDG4	382	LPA	h 19p12	Leuk, Hoden, Prost	i, q, 12/13
EDG5	354	S1P	h 19, r 8	CV, ZNS, Gon, Pl	i, q, 12/13
EDG6**	384	S1P	h 19p13.3, m 10	Lymph, Häm, Lu	i, 12/13
EDG7	353	LPA		CV, GI, Hoden, Prost	i, q
EDG8	398	S1P	h 19, r 8	ZNS, Milz	i
EDG-verwandte Rezeptoren					
PSP24	372	LPA	Frosch		

Tabelle 1.4: Mitglieder der Lysophospho- und Lysosphingolipid-(LPL)-bindenden EDG-Rezeptor-Familie. CV, cardiovaskuläres System; Leuk, Leukozyten; ZNS, zentrales Nervensystem; Gon, Gonaden; Pl, Placenta; KM, Knochenmark; GI, Gastrointestinaltrakt; Lymph, lymphatisches System; Häm, hämatopoietisches System; Lu, Lunge; Prost, Prostata; h, human; m, murin; r, Ratte; S1P, Sphingosin-1-phosphat; LPA, Lysophosphatidylsäure; Anz. AS, Anzahl der Aminosäuren. *edg1 wurde in dieser Region bei der konstitutionellen Translokation (1;22)(p22;q11.2) lokalisiert (Rhodes et al., 1997). **Siehe Ergebnisteil dieser Arbeit. Referenzen: An et al., 1997a,b, 1998b, 1999; Lado et al., 1994; Lee et al., 1998a; Liu und Hla, 1997; MacLennan et al., 1994, 1997; Macrae et al., 1996; Masana et al., 1995; Okazaki et al., 1993; Sato et al., 1999; Windh et al., 1999; Yamaguchi et al., 1996, 1999. Weitere Referenzen siehe Text.

Zebrafisch

auch LPL-bindende Rezeptoren in Frosch und Zebrafisch nachgewiesen werden (Guo *et al.*, 1996; Kupperman *et al.*, 2000).

Zur Zeit sind acht Vertreter der humanen EDG-Rezeptorfamilie bekannt (Tab. 1.4). Neben der Aktivierung intrazellulärer Signaltransduktionswege wie zum Beispiel des Mitogenaktivierten Proteinkinase-Signalweges, der Stimulierung der Phospholipasen A und C, dem Öffnen intrazellulärer Calciumspeicher oder der Inhibierung der Adenylatzyklase, die von den einzelnen EDG-Rezeptoren induziert werden, ist bezüglich deren Funktion bislang nur wenig bekannt (Zondag et al., 1998; Okamoto et al., 1998; Lee et al., 1996). So zeigen erste Ergebnisse von edg1-defizienten Mäusen, daß der Verlust des edg1-Gens den Aufbau funktioneller Blutgefäße während der Embryogenese inhibiert (Proia, 2000). Verschiedene Studien über die Expression des EDG2-Rezeptors haben gezeigt, daß er während der Entstehung der Myelinschicht von ausdifferenzierten Oligodendrocyten bei der postnatalen Entwicklung des murinen Gehirns sowie in der Neurogenese während der embryonalen Entwicklung exprimiert wird (Hecht et al., 1996; Weiner et al., 1998; Allard et al., 1998; Allard et al., 1999; Chun et al., 1999). EDG2 bewirkt nach Stimulierung mit Lysophosphatidylsäure (LPA) die Abrundung von neuronalen Zellen, ist an der peripheren Schmerztransmission beteiligt und schützt vor Apoptose (Fukushima *et al.*, 1998; Renbäck *et al.*, 2000; Goetzl *et al.*, 1999b).

EDG3 wird in undifferenzierten HL-60 Leukämiezellen exprimiert, nach Induktion der Differenzierung jedoch sukzessive innerhalb von 3 Tagen herunterreguliert (Sato *et al.*, 1998). Außer der Beteiligung von EDG3 an der Zellabrundung nach S1P-Stimulierung ist eine genaue Funktion dieses Rezeptors bislang nicht bekannt (Van Brocklyn *et al.*, 1999). Patientinnen mit Ovarium-Karzinom zeigen eine erhöhte Produktion von Sphingosin-1-phosphat (S1P) und Lysophosphatidylsäure (LPA) sowie eine Expression von EDG4 auf Ovarium-Karzinom-Zellen, die nicht auf Ovarium-Epithelzellen gesunder Patientinnen nachweisbar ist, so daß EDG4 als Marker für Ovarium-Karzinom fungieren könnte und wachstumsfördernd für Ovarium-Karzinom-Zellen wirkt (Goetzl *et al.*, 1999b). Ferner wird EDG4 konstitutiv von CD4-positiven, aber nicht von CD8-positiven T-Zellen exprimiert und spielt vermutlich eine Rolle bei der LPA-induzierten Inhibierung der Interleukin-2-(IL-2)-Sekretion von humanen CD4-positiven T-Zellen, die mit anti-CD3 und anti-CD28 Antikörpern stimuliert wurden (Goetzl *et al.*, 2000a).

Eine Rolle in der frühen Phase der Differenzierung neuronaler Zellen und der Axon-Entwicklung spielt vermutlich EDG5, dessen Expression im Rattengehirn während der Embryogenese am höchsten ist (MacLennan *et al.*, 1997). EDG5 induziert nach Stimulierung mit S1P das Abrunden neuronaler Zellen und wird nach Induktion der Differenzierung von F9-embryonalen Krebszellen innerhalb von vier Tagen auf mRNA-Ebene herunterreguliert (Li *et al.*, 1998; Van Brocklyn *et al.*, 1999). Interessanterweise wird durch den EDG-verwandten Rezeptor Mil in Zebrafisch die Morphogenese des Herzens durch die Regulation der Zellmigration myocardialer Vorläuferzellen zur Herzmittellinie gesteuert und spielt somit eine entscheidende Rolle bei der organspezifischen Entwicklung während der Embryogenese (Kupperman *et al.*, 2000).

1.3 Lysophospholipide

Lysophosphatidylsäure (LPA) und Sphingosin-1-phosphat (S1P) sind die beiden bekanntesten und zur Zeit am besten charakterisierten Lysophospholipide. Beide Lipidderivate binden als spezifische Agonisten an verschiedene EDG-Rezeptoren (Tab. 1.4). S1P ist ein normaler Bestandteil des humanen Plasmas mit einer Konzentration von 191 ± 79 nM sowie des humanen Serums mit einer Konzentration von 484 ± 82 nM (Igarashi und Yatomi, 1998). Außerdem gilt S1P nicht nur als Rezeptor-vermittelter extrazellulärer Mediator, sondern auch als möglicher intrazellulärer "second messenger" (Hla *et al.*, 1999; Spiegel, 1999). Zahlreiche Stimuli sind in der Lage, die Produktion von S1P in Zellen zu induzieren, wie beispielsweise Wachstumsfaktoren, Agonisten

zelluläre Effekte von LPA und S1P	\mathbf{LPA}	S1P
Zellproliferation vieler Zelltypen	+	+
Kerationozytendifferenzierung	+	_
Schutz vor Apoptose	+	+
Thrombozytenaggegation	+	_
Kontraktion glatter Muskelzellen	+	—
Chemotaxis (Kimura <i>et al.</i> , 2000)	+	+
Inhibition der Kommunikation über "gap junctions"	+	_
Erhöhte Permeabilität von "tight junctions"	+	_
Chlorid-vermittelte Membran-Depolarisierung	+	_
Aufbau der Fibronectin-Matrix	+	+
Stimulierung von Zell-Zell Aggregation	+	+
Zellabrundung	+	+
Regulation der Astrozytenmorphologie	+	—
Eindringen von Tumorzellen	+	+
Inhibition der Beweglichkeit von Melanomzellen und Brustkrebszellen	+	_
Inhibition der Beweglichkeit und Migration von Neutrophilen		+
Heilung von Endothelzellverletzungen (Lee <i>et al.</i> , 2000)	+	+

Tabelle 1.5: Auflistung der wichtigsten zellulären Effekte von Lysophosphatidylsäure (LPA) und Sphingosin-1-phosphat (S1P). +: Effekt tritt auf, -: Effekt tritt nicht auf. Tabelle nach Moolenaar, 1999 (zusätzliche Referenzen siehe dort).

G-Protein-gekoppelter Rezeptoren, Cytokine, Phorbolester, Vitamin D3 und Antigene (Pyne und Pyne, 2000).

LPA ist ebenfalls in biologisch aktiven Konzentrationen von $1,7 \pm 0,3\mu$ M im humanen Serum vorhanden, nicht jedoch im Plasma (Moolenaar *et al.*, 1997; Sasagawa *et al.*, 1998). Es bindet mit einer Dissoziationskonstante von 6nM an Gelsolin und 360nM an Serumalbumin als Träger, wodurch der Transport und die Eigenschaften als Mediator positiv beeinflußt werden und ein Schutz vor dem Abbau durch Lipasen aufgebaut wird (Goetzl *et al.*, 2000b; Nietgen und Durieux, 1998). Das sekretierte LPA wird in Mikrovesikeln stimulierter Thrombozyten, Leukozyten und anderer Zellen produziert (Fourcade *et al.*, 1995).

Die zellulären Effekte von Lysophosphatidylsäure (LPA) und Sphingosin-1-phosphat (S1P) sind sehr vielfältig und weitreichend (Tab. 1.5). Zu den mitogenen Effekten von S1P und LPA gehört vor allem der Schutz vor Apoptose (Goetzl *et al.*, 1999b). Ein indirekter mitogener Effekt ist in Keratinozyten beschrieben worden, in denen LPA die Produktion des "transforming growth factor" (TGF)- β induziert, der in autokriner Weise den "epidermal growth factor receptor" (EG-FR) stimuliert (Piazza *et al.*, 1995). Außerdem sind bislang auch eine Reihe von morphologischen Effekten auf neuronalen Zellen beschrieben wie beispielsweise auf Neuroblastoma-Zellen, PC12Zellen, cortikalen Neuroblasten und primären Hühnerneuronen (Tigyi und Miledi, 1992; Hecht *et al.*, 1996; Jalink *et al.*, 1993; Jalink et al., 1994; Fukushima *et al.*, 1998; Postma *et al.*, 1996; Saito, 1997). LPA und S1P sind ebenfalls in der Lage, die Migration und das Eindringen von Tumorzellen in eine Fibroblastenschicht zu stimulieren (Stam *et al.*, 1998). Im Gegensatz dazu wurde aber auch eine Inhibition der Zellbeweglichkeit einiger Krebszellinien, vor allem Melanomzellen beobachtet (Sadahira *et al.*, 1992; Yamamura *et al.*, 1996; Yamamura *et al.*, 1997).

Neuere Studien haben gezeigt, daß neben LPA und S1P auch weitere verwandte, bisher wenig charakterisierte Lipidderivate als Signalmoleküle fungieren können. So ist beispielsweise mit dem "ovarian cancer G protein-coupled receptor 1" (OGR1), auch bekannt unter der Bezeichnung GPR68, ein Rezeptor identifiziert worden, der spezifisch Sphingosylphosphorylcholin (SPC) als Ligand bindet (Xu *et al.*, 2000). SPC öffnet Calciumspeicher in den Rattenschilddrüsenzellen FRTL-5 und ist auch ein möglicher intrazellulärer "second messenger" (Nikmo *et al.*, 1999; Meyer zu Heringdorf *et al.*, 1998). Lysophosphatidylcholin erhöht die Expression des CD40-Liganden in aktivierten humanen CD4-positiven Zellen, und das von Bakterien, Hefen und Pflanzen produzierte Diacylglycerol-Pyrophosphat aktiviert Makrophagen für eine erhöhte Sekretion von Arachidonat-Metaboliten (Sakata-Kaneko *et al.*, 1998; Balboa *et al.*, 1999). Zyklisches LPA inhibiert das Eindringen von Tumoren sowie die Bildung von Metastasen und induziert Proliferation, während zyklische Phosphatidylsäure antiproliferativ wirkt (Fischer *et al.*, 1998; Mukai *et al.*, 1999; Kobayashi *et al.*, 1999). Diese Beispiele zeigen, daß vermutlich noch einige weitere verwandte Lipidderivate existieren, die zelluläre Effekte als Rezeptor-vermittelte extrazelluläre Signalmoleküle oder als intrazelluläre "second messenger" auslösen können.

1.4 Der EDG6-Rezeptor

Der EDG6-Rezeptor konnte bei der Suche nach neuen immunologisch relevanten G-Proteingekoppelten Rezeptoren aus *in vitro*-differenzierten humanen dendritischen Zellen isoliert werden (Gräler, 1997). Er hat die höchste Identität zu der Familie der EDG-Rezeptoren, insbesondere zu den Sphingosin-1-phosphat-bindenden Rezeptoren EDG1, EDG3, EDG5 und EDG8. Die nächsten EDG-verwandten Proteine sind die cannabinoiden Rezeptoren (Abb. 1.3). Erste Northern-Blot-Analysen haben gezeigt, daß EDG6 von der Burkitt-Lymphom-Zellinie JBL2, nicht jedoch von der Cervix-Karzinom-Zellinie HeLa exprimiert wird (Gräler, 1997).

Abbildung 1.3: Phylogenetischer Baum der humanen EDG-Rezeptoren zusammen mit der nächsten verwandten Gruppe der humanen cannabinoiden Rezeptoren. Die Summe der Länge der horizontalen Äste, die zwei Sequenzen miteinander verbinden, entspricht der Divergenz dieser Sequenzen in Prozent.

1.5 Problemstellung

In der vorliegenden Dissertation wird der neu identifizierte G-Protein-gekoppelte EDG6-Rezeptor funktionell charakterisiert. Northern-Blot-Analysen sollen zeigen, ob EDG6 ein spezifisches Expressionsmuster zeigt, das eventuell funktionelle Rückschlüsse zuläßt. Mit der Isolierung des murinen Homologs wird die Etablierung eines *edg6*-defizienten Mausmodells angestrebt, um die *in vivo*-Funktion von EDG6 genauer bestimmen zu können. Für die Untersuchung des EDG6-Rezeptors auf Proteinebene mit Hilfe der Durchflußzytometrie und der Western-Blot-Analyse sollen neben N- und C-terminal Epitop-markierten EDG6-Vektorkonstrukten auch monoklonale anti-EDG6 Antikörper hergestellt werden. Die Identifizierung des spezifischen Liganden für EDG6 ist wichtig, um Untersuchungen bezüglich der G-Protein-Kopplung, der Signaltransduktion und zellulärer Funktionen durchführen zu können. Expressionsanalysen in verschiedenen Zellsystemen sollen ferner Aufschluß über zellspezifische Unterschiede beim Transport des EDG6-Proteins aufzeigen.