Appendix A

Avoided volume

The volume part wycce of the total microcanonical weight (see eq. (3.12a) on page 48) de-
scribes the accessible volume to Ny non-overlapping fragments positioned within a spher-
ical container of volume V. For low pressures (~ large volumes) analytical forms (exact
and approximation) of wycc can be worked out (see sec. A.1). At very high densities,
near the critical packing fraction (see below) a free—volume theory can be formulated (see
e.g. [AW62] and refs. quoted therein). Unfortunately for intermediate pressures these
approximations are not valid and there is no available ansatz suitable for MMMC even for
simple models of hard spheres, see e.g. [LuD01]. This issue is yet an unsolved, mathemat-
ical problem, that generates a lot of literatures in mathematics [WI1L98, CS89, ARHIS]
but also for concrete applications in crystallography [WiL91, BS97], in chemical physics
(via the equation of state, see sec. A.1.2), nuclear physics [BBIT95, RRS88, RADO01],
molecular biology (see e.g. [KSS01]), etc.

A.1 Analytical expressions — EOS ansatz

A.1.1 Exact expressions

For clarity, let us first recall the definition of NCC

fV...derl...der

NCC = A.la
fv...fvdrl...derG(rl,...,er)n(rl,...,er) ( )
Ny
- 4 , (A.1b)
fV...derl...derG (rl,...,er) n (rl,...,er)
where © forbids the overlapping of a cluster with the system boundary
. |0 if at least one cluster overlaps with the boundary,
@(I‘l,. .,I‘Nf) = P y (A2)
1 else;
7 forbids the overlapping between two clusters
. | 0 if at least two clusters overlap,
D (e e, = {1 it P (A3)

NCC is the inverse probability to find a set of positions so that the clusters fit into the
system volume.
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Appendiz A. Avoided volume

For a single particle of radius r; in a container of volume V = %”R?’, the inverse
probability to find a position that fits in V is

-3
Noo - Y (1-1Y "
TW (R — T1) R
where 4 (R — r;)® is the accessible volume to (the center of mass of) the particle, it is
called the “eigen—accessible volume”. Let us define the packing fraction x = %, where V
4m .3

is the sum of the fragment volumes (here Vj is simply *'r7). NCC diverges at R = ry,
i.e. the critical packing fraction k. is equal to 1.
The one-particle NCC given by eq. (A.4) is called in the following “eigen-NCC”.
When there are two spheres of radius 71 and ry the divergence of x is located at
R=r1+m9

1/2 < ke =

NCC can also be computed analytically for the two spheres case. First consider that the

cluster number 1 is fixed far from the boundary. The accessible volume to the second clus-

ter is its eigen accessible volume %’r (R - 7"2)3 minus the avoided volume due to cluster 1,

am (rp 4 r2)3. An integration over all the positions allowed for 1 yields to a first estimate

3
of Vyee, the total accessible volume
. 47'(' 3 47T 3 47'(' 3
Vi = |5 (R=10)* ][5 (B=r2)® = 5 (ri +72)° . (A.5)

However when 1 is close to the boundary the forbidden volume for 2 produced by the
wall and by 1 overlap partially (dotted region in fig. A.1 on the facing page). This common
part is therefore counted twice in eq. (A.5). The volume of this common part is equal to
the spherical segment one of a sphere of radius r1 + r2 and height r179 sin-y (outer spheres
in fig. A.1) minus the spherical segment volume of a sphere of radius R — 79 and height
R —r9 — 1 — rirysiny. At fixed r the volume which is counted twice is

™
Vior(r) = 3 (r1 + T2)3 (1 —cos 7)2 (2 + cosv)
™

-3 (R—ry —7 — (r1 +12) cosy)? (2(R —r2) + 7+ (r1 + 1r2) cosy), (A.6)

where

172 P~ (R—ry)?
COS’YZ——T +(’I‘1+’I"2) ( ’1"2) .

2 r(r1 +72) (A1)

An integration of 4wV}, (r) dr between the radiuses r = R — 7 — 2rg and r = R — 1y
yields
167>
T”r;” (3r2ry — 3R 7% + 3R%ry + 3ry 12 + 6R2%ry — 6r2R — 9rraR +13) . (A.8)
The total accessible volume is the sum of the right hand sides of egs. (A.5) and (A.8).
Finally, NCC is the inverse of this sum times V2

Vf or —

6
NCC = i . (A.9)
(R3 +3rirgR — 13 — r2) (R—1711 —19)
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A.1. Analytical expressions — EOS ansatz

<<

rl r2

Figure A.1: Tlustration of the avoided volume for two particles near the boundary. The
forbidden region (dotted region) is counted twice in eq. (A.5) on the preceding page. In
this two dimensional representation the surface counted twice is a crescent. Its area is

equal to the outer disk segment area (radius of r; + 9, angle 27) minus the inner one area

(R—72)%+1r2—(r1+72)? ] )
2r(R—r3) :

(radius r + 71 + r9, angle arccos [

Using eq. (A.9), one can build a “two body” estimate of NCC for a system of N; hard
spheres

Nf Nfl—l
NCCy = | [[ NCC, j) : (A.10)
i<j
1
N; 1
that the avoided volume of a given particle has been counted Ny — 1 times in eq. (A.10).
The NCC given by eq. (A.10) is a sort of geometric average. On the plus side, NCCs
has a critical packing fraction which varies which the mass distribution g and is smaller
than one. One the minus side, from an algorithmic point of view, the updating scheme of
NCCy when two fragment sizes are changed is of the order of O(N).

where NCC(i,j) is given by eq. (A.9). The exponent takes into account the fact

A.1.2 Approximations

The results presented in the previous subsection are the only exact ones used in MMMC.
For N > 3 approximations are needed.

There exist a large literature on infinite (N — oo, N/V = cst) unbounded diluted (~
small pressures) gas of hard spheres (see e.g. [RFL59, SSM87, PCA]). Some results from
these works are used in the following to estimate NCC for finite bounded systems.

The part in NCC due to the interactions with the wall vanishes in the infinite limit, so
in the following only the part in NCC due to the interactions between spheres is worked
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out. In order to add some boundary effect, as a first approximation, NCC' is divided by

%. The latter term is the product of the clusters eigen—-NCC (see eq. (A.4)).
=1 — T

For an infinite gas of hard spheres one defines Z as [PAT72]

. P
Zz = = A1l
L (A.11a)
os
oV e
Z = £ is the equation of state of the gas (% is the compressibility factor). The volume

dependent part of the entropy of a hard sphere gas is

(A.11b)

Szanzln/---/n(rl,---er)drl---der (A.12)
Vv Vv

where 7 is equal to zero when two clusters overlap, and to one otherwise, see eq. (A.3) on
page 109. Of course 2 depends on the mass (size) distribution y = {N1, No,..., Ny, } of
particles. NCC as already defined is

Vs

NCC (p,V) = Q)

(A.13)

In the perfect gas approximation the spheres do not interact therefore 2 is simply

VNr (NCC = 1), and the equations (A.11) and (A.13) lead to the following well-known
equation of state

Ny _p

vV T

For a gas of equal size hard spheres (of radius r) there exists another well-known simple

approximation, the van der Waals approximation [DGLR89, LL94]. Since the minimal

distance between two particles is 2r, the forbidden volume due to these two spheres is
2

. . .. N .
approximatively 2%(2r)3. The total number of pairs is &~ =L, hence the total avoided
3 2
volume per particle is

(A.14)

2
Vinia = -5 3 (2r)? =A%, (219
where Vo = Ny 47”7‘3. Consequently
Q~ (V —4vp)Nr, (A.16)
and eq. (A.11) yields N
Z= V—iiﬂ/o' (A.17)

In the last two examples, Z were computed from NCC (or 2). Conversely, one can
use Z to determine NCC'. Indeed NCC can be linked to Z in the following way

NCC(u, V) = exmgﬁ by (A.12) and (A.13),  (A.18)
_ v by (A.11), (A.19)

exp (C (1, Vo) + i, Z (V) V')
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A.1. Analytical expressions — EOS ansatz

where C (u, Vj) is the constant of integration. At V' =V}, the following relation holds

At fixed mass distribution and in the limit Vi — oo, the forbidden volume is constant
while the accessible one diverges, i.e. limy,_,o,o NCC = 1; therefore

=1. A.21
Vo—o0 Nf ln% ( )

Since in the following, all the quantities are worked out at fized mass distribution pu
and for sake of simplicity the y—dependence is not explicitely written.
An usual approach to estimate Z is to develop it in powers of the density p = %ﬁ

Z =p+ Bop® + B3p® + ... (A.22)

where B; is called the it virial coefficient [DGLR89]. Again there exists a large litera-
ture addressing the computation of these coefficients (see e.g. [EAG98] and refs. quoted
therein).

Another approach is based on the virial equation, e.g. for a mixture of hard spheres

_bp _ Ny ‘9“13 3
Z=r 3TV22 iz J/ (r) ridr (A.23)

where z; = % is the relative density of the species i; u;; (r) is the interaction potential

between two particles from species ¢ and j whose center of mass are separated by distance
r; gij (r) is the pair correlation function between species 7 and j. For a given g;; one can
integrate (at least numerically) the equation of state [THI63, WER63, RFL59].

For MMMC95, the Mansoori-Carnahan—-Starling-Leland [MCSL71] formula for Z is

used 6 ¢ 36,6 363 £33
72 0 162 2 _ 352 } A.24
7T {(1 —&3) * (1- &) i 1-&)° (1-&)° (424

where { = £, pidf, d; = 2r; and p; = % is the density of species 1.
In order to compute NCC one has to calculate [ Z(V)dV, see eq. (A.19) on the facing
page. Because of the V' dependence of Z, terms of the following form have to be integrated

v o VITP

W (p,q,a1,a9) = = . A.25
(p q, Qa1 2) (1_ %)q (V—O@)q ( )
First the substitution Y = V — as is made and the integration of W becomes
Y —-p
/ WV = / o ( +q0‘2) dy. (A.26)

The following cases are of interest

e for ¢ — p = 0 (see the first three terms of eq. (A.24))

[wav = [ ray

{a1 InY when g =1,

A.27
%Yl_q else, ( )
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e for g — p=—1 and g = 3 (see the last term of eq. (A.24) on the preceding page)

aq
= [ — __ay
/de /(Y+a2)Y3d

oyln(Y+a) alnY a1 a1

= - A.28
a3 a3 QY 2a,Y? ( )
a1 [InY —In (Y + a9)] o 1 1
= ———. A2
ag + asY \ay 2Y (A.29)
Now one can define .
=&V = ¢ >N (2r), (A.30)
i=1
where 7 is an index for the species. Combining the results yields
X 6 37172 35
SVE/ZdV:—{ In(V —~3) — -
( ) T Yo ( 73) (V _ 73) 9 (V . 73)2
LV -In(V-y)] % [ 1 _i]}
7 (V-m)[2(V-m)
6 SV —In(V —
= —{VOIH(V—V?,)‘F’YQ[ 2( 7).
s V3
V2 |4 ’Y%) }
—— (It
(V =) ( (V —73) s
6 N
= —n(lV-7)+5 (V). (A.31)
From the definition of $; (V) one immediately deduces
lim $; (V) =0, (A.32)
V—=o0
which is consistent with limy; ;o0 g(Vb) = NyInVp = limy, 00 g'y() In(Vy — v3)-
The denominator of eq. (A.19) on page 112 can be written as
( v v e (5(0)
exo (Ca)+ [ z0mn) - :
" NOC ) oxp (5 04)
N 6 g
_ VY (V= qg) 70 €XP <S1 (V)) (A33)

NCC (Vo) (v — 73)%70 exp (5'1 (Vo))

Using egs. (A.32) and (A.21) and the fact that g = %Ny, the limit of the denominator of
eq. (A.19) when V) — oo is

v
lim exp (C (Vo) +/ Z (W) dV1> =(V - 73)}\[exp (Sl(V)) . (A.34)
Vo—o0 Vo
Finally NCC is
v Nj-87% 6 V42
NCC (V, u) = S ex [— 72 (3 n ﬁ)] . A.35
(V24) (V—%) PIav—s U T V3 (4.35)
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A.2. Numerical estimates

The first and the second derivatives of In NCC with respect to the volume are also
needed, e.g. to compute the microcanonical pressure (see sec. 3.3)

OImNCC 6 1 1 (v
v

oV aN;V — s vy 003

73
2 (et (54 v 2)]
3y + ~ + . (A.36
V_%(“h Y (73 Vs (A.36)

*InNCC 6 1 1 /1 1 73
5 = vl Tt 073
ov 7TNfV—’)’3 V\V V—’)’g Y3

g5 (23] o

The volume V., at which NCC diverges is V. = -3, which corresponds to a critical
packing fraction of 1.

From an algorithmic point of view using eqgs. (A.35) to (A.37) is very convenient.
They depend only on the 7, for which the updating scheme after each Monte—Carlo step
is straightforward and fast in contrast to the claim of Raduta [RADO1].

On fig. A.2 on the next page are plotted different estimates of NCC using the EOS
eq. (A.35) on the facing page (NCCgos) and the Monte-Carlo sampling presented in the
next section NCCjy¢ as a function of the packing fraction k = % The total masses are
A =200 and A = 1000. For each A two characteristic mass distributions were taken from
MMMC runs; one from the liquid side (N a=200 = 48, Ny a=1000 = 194) and the other
from the gas side (near the multifragmentation region; Ny a—200 = 194, N a=1000 = 545).
The agreement between the two estimates is good and they are equivalent in the limit
k — 0 (V — o0). This agreement is largely enough for low pressure runs. Moreover what
does matter in a Metropolis sampling is the relative differences between the weights of two
consecutive states of the Markovian chain. So, even though the ratio NCCp¢/NCCgos
might be rather big, one can assume that for a proposed move ¢ — ¢’ (see app. B.2)
NCCgos(c)/NCCgos(c) = NCCunc(c)/NCCurc(c') (of course this relation does not
hold near the critical packing fraction). For intermediate pressures the pressure term due
to the avoided volume pycc cannot be neglected. It is a function of the derivative of
In NCC' with respect to V. One can see in figs. A.2 that the slope of In NCC' is quite
accurately reproduced by NCCgos.

NCCEgops underestimate NCC' since the equation of state is based only on two body
correlations.

A.2 Numerical estimates

For large packing fraction the estimate given by eq. (A.35) on the preceding page is not
enough accurate. Although there exist (semi-)analytical estimates of Z for large x (gen-
erally close to k) there are usually worked out for very particular mass distributions
(mono—modal, bi-modal, and, if at all, with Gaussian dispersions around the maxima),
see e.g. [EAGO98]. This is in sharp contrast with the need of computing the avoided vol-
ume of thousands of different mass distributions in one single MMMC run. Moreover these
distributions are not always as simple as the one studied in the above mentioned literature.
Hence the only way to estimate NCC is to use Monte—Carlo schemes.
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Figure A.2: Comparison between NCC given by eq. (A.35) on page 114 (dashed lines) and
its “exact value” (Monte-Carlo estimates; solid lines) as a function of the packing fraction
k for different total masses A and mass distributions p (see text).

A.2.1 Simple Monte—Carlo scheme

A straightforward estimate of the ratio eq. (A.1a) on page 109 consists of placing randomly
each clusters and check for overlapping. A positioning (event) is considered as successful if
all the Ny spheres have been placed successfully. Defining N, as the number of successful
events and NV; as total number of trial events, then an estimate of NCC is given by

Ns
Ny
But since, on one hand, NCC can be very large (see e.g. figs. A.2 where NCC ~ 10'0),

and, on the other hand, a rather good estimate is needed in order to compute accurately the
derivative of NC'C with respect to V' 2, and since the relative statistical error in evaluating

NCC™t = (A.38)

2 . . . .
aazg‘c/'c and 2 3@20 are needed to estimate the pressure and the inverse microcanonical temperature
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A.2. Numerical estimates

NCC~! is of the order of 1/1/Ny, the simplest Monte-Carlo scheme is impractical [RADO1]
(see figs. A.2 on the facing page).

A.2.2 Advanced Monte—Carlo scheme

For the simplest Monte—Carlo scheme a failed positioning of cluster & implies a complete
resampling of all the k£ — 1*! first “successful” positions. Indeed if one keeps the k — 1" first
positions and resamples only the &' one many times one would introduce biases because of
the correlations between the different events and therefore an estimate of NC'C according
to eq. (A.38) on the preceding page would be inaccurate.

Rodgers and Baddley in [RB91] introduced a technic to correct NCC from these
correlations. An algorithm based on this technic by avoiding a lot of resampling is faster
than the simplest one by almost two orders of magnitude. For example on figs. A.3 are
plotted the cPu—time (in seconds) needed to compute NCC for different packing fractions
and mass distributions (these are the same us as in figs. A.2(a) and A.2(b) on the facing
page for A = 200)

1000
100 £

100
10E E

time (s)
time (s)

01f

1 1
0.05 0.1 0

K K

(a) liquid (b) gas

Figure A.3: Comparison of the cPU-time needed to compute NCC, for different mass
distributions (A = 200, see text) as a function of the packing fraction k. The dashed lines
correspond to the simple Monte—Carlo algorithm (at fixed number of attempts), and the
plain lines to the one using the technic presented in [RB91] (at fixed precision).

The results are presented at constant number of trial for the simplest algorithm and
at constant precision for the advanced algorithm. The time for the former decreases with
decreasing volume because the sampling of the positions for one given trial stops earlier  as
the volume decreases. At constant precision the CPU-time would have been an increasing
function of «.

at constant pressure [, see secs. 3.3 and 3.4, and app. D.
PFor one given trial, the center of mass are sampled sequentially. The smaller the volume the higher is
the probability for this chain to be stopped early.
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Figure A.4: Number of possible mass distributions as a function of the total mass A.

A.2.3 Further improvements

Using the results from [RB91] leads already to a drastic gain in cPU-time. However a
typical run at high pressure still takes too much CPU-time. During a typical MMMC run
(one point in the (E, V)-plane) ~ 2.10° events are generated. For each events NCC(u, V),
NCC(u,V — AV) and NCC(u,V + AV) are estimated. By considering that much less
precision is needed than the one asked to the data plotted in figs. A.3 on the page before
(assuming that the statistical errors would be smoothed out due to the averaging) one
ends up with run times of the order of 2.10% x 3 x 0.05 seconds ~ 3 days!

In the following some improvements to the advanced algorithm used in MMMC95 are

briefly reviewed.
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e Several millions of events (mass distributions) are generated during one MMMC run.

Nevertheless there are not all different, on the contrary the value of y (the mass
distribution) usually fluctuates around some mean mass distribution. Therefore
after equilibration MMMC has to compute NCCs which have already be computed
and that many times. The solution is straightforward: the NCCs are stored and
reused whenever needed. The concrete implementation of this simple idea is less
straightforward. Indeed a mass distribution is a set of integers each standing for a
cluster mass. Moreover the typical number of mass distributions to be stored is huge,
see e.g. fig. A.4 where the number of partitions for A = 60 is already ~ 10°. Hence
a straightforward storage would need a huge amount of RAM space for A = 200.
For simplicity the integers are sorted by decreasing order. There exists no simple
direct and efficient way to sort these sets. However the storage of sets of sorted
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integers is a well-known problem in computing science. It can be solved by using
the B—tree technic [BM72, BY89]. Briefly, consider the sets of mass distributions
(here A = 16) in table A.1. These mass distributions can be represented in a tree-

(a) |8 3 3 2
b)[8 3 2 2 1
©]8 3 3 1 1
d |8 4 4

Table A.1: Set of mass distributions #1.

form as in fig. A.5. All the sets in tab. A.1 shares the same biggest mass, i.e. the

N
ffffffff VAN
fffffffffffffffffffffff /N

Figure A.5: Representation of the mass distributions of tab. A.1 on a tree. The numbers
on the left side represent the height of the knots, i.e. the rank of the integer in the mass
distribution.

same root in fig. A.5. The depth of a knot represents the rank of the attached integer
in the mass distribution. The NCCs are stored at the level of the leaves (tips of the
branches). There are as many leaves as mass distributions.

The advantage of the B-tree storage is clear. The knots might be shared by many
mass distributions saving a lot of RAM. The implementation of this kind of storage
by preventing from re-evaluating again and again NCCSs of the most probable mass
distributions saves a large amount of CPU—time (again of an order of magnitude).
One can go a little bit further and instead of performing independent runs in the
(E, V)-plane, one can use the NCC’s at say (E1, V1) to perform a run at Fy+AFE, Vi,
since NCC' does not depend on the system energy.

e Consider the two mass distributions in table A.2 on the following page; they have
the same number of fragments and only their second and sixth clusters are different.
Far from the critical packing fraction, it is reasonable to assume that NCC(a) =
NCC(b) ©. In other word NCC is a “smooth” function of the mass distribution u.

“This assumption has been verified many times in simulations.
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Figure A.6: Mass distributions on the (fi1, fi2, fi4) space at fixed fip, and the projections
of the points on the planes (i1, fi2), ({1, 4) and (fig, fi4). The total mass is A = 200 and
the number of fragment is Ny = fip = 12. This figure does not contain all the possible
mass distributions satisfying jig.

120

One can use this result to interpolate some NCCs between already known values.
The set of integers 1 does not provide a good basis for this interpolation, so one has
to use some continuous parameterization that reduces the number of coordinates.
The parameterization chosen in the present work is based on the set

p= {ﬂ05ﬂ15ﬂ25ﬂ4}1 (A39)

where [, = ﬁ Zf\ifl Nik/ . flg is simply the number of fragments Ny; fi3 is not

used because it is a constant of u, indeed
1 U
fis = ;Ni =1. (A.40)

In fig. A.6 each point corresponds to one given p in the new coordinates fi. The total
mass and the number of fragments (clusters) are resp. A = 200 and Ny = 12 = fio.
Large values of i1, fi2 and fi4 correspond to a monodisperse mass distribution (twelve
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clusters of mass = %), and small values to p with one big clusters and eleven

monomers.

As one can see in fig. A.6 that the positions of the points are strongly correlated.
The coordinates (A.39) on the preceding page are largely sufficient for interpolation
(NCC itself is a smooth function of i). The storage of the j is technically cum-
bersome (because the coordinates are not discrete and the density of points is not
constant), but again it can be solved using some B—tree algorithms.
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Appendix B

Technical “details”

B.1 Introduction

The main method used for numerical applications in this thesis is based on the Metropolis
sampling [MRR53]: one builds a Markovian chain, i.e. from a state ¢ a new state ¢ is
sampled. This new state is accepted with a probability transition P (¢ — ¢) given by

P(c—¢) =min (1, ‘;((CCI))> , (B.1)

where w(c) is the statistical weight of ¢. This probability transition satisfies the detailed
balance equation which is the cornerstone of the Metropolis sampling

p(c—d)wlc)=p(d = c)w(c). (B.2)

The mean value of an observable F' is given by
| N

(F) = = S F(ey). (B3)
j=1

Eq. (B.1) is the simplest form for P (¢ — ¢); for practical reasons (either lack or a priori
information) eq. (B.1) or eq. (B.3) can or have to be modified (see below).

B.2 Monte—Carlo sampling

A priori probability

There is an implicit assumption made from eq. (B.2) to eq. (B.1); namely the a priori
probability A(c — ') to sample ¢’ “from” ¢ satisfies [KRA98]

Alc=d)=A(d = ¢). (B.4)

Eq. (B.4) is not necessarily always satisfied. Hence it is sometimes technically difficult
to ensure that the move ¢ — ¢ is chosen with the same a priori probability than ¢/ — c.
One can also force the Markovian chain to go in a given direction in the parametric space
by using some a priori knowledge.
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Now the detailed balance equation has to be reevaluated and explicitely written with
the a priori probability. The probability p (¢ — ¢') is split up into two separate parts

plc=ad)=A(c=)P(c—> ), (B.5)

where P (¢ — /) is the acceptance probability of the move proposed with A (¢ — ¢). The
full detailed balance is

Alc=d)P(c—>d)w(c) =A(d = ¢) P(d = c)w(d). (B.6)

Now, one form for the acceptance probability is

!/ /
P(c— ) =min (1, c:)((cc)) jgz :;;) . (B.7)
mmmc95
In MMMC95 there is only one move, namely
(M, E3;) + (N, Ey) = (P, Ep) + (Q, Ep) (B.8)

~ J
~~

c

. 7
v~
CI

where M, N, P and @) are clusters, their mass are respectively indicated by their name,
M+ N =P+ Q. Ey, Ey, Ep and Eé? are their respective internal excitation energy.
M € u(c), N € u(cd), N € {0} Uu(c) and Q € {0} U u(c'), where “0” is a “virtual”
vacuum fragment. It has no mass and no excitation energy and does not contribute to the
microcanonical weight factor eq. (3.8) on page 47.

This move spans all the ones used in MMMC77 [GRO97], e.g. “split fragment” is now

(M, Ey;) +0— (P, Ep) + (@, Ep)

but also moves that were not proposed (implying a breaking of the detailed balance con-
dition, see sec. 3.4.1), e.g.
(1,0) + (1,0) — (2,0). (B.9)

A move is performed in two steps. First a new mass distribution is generated then the
excitation energies (Ep, Ef)) are sampled.
B.2.1 Partitioning factor

As in this subsection mass distributions are only considered, the internal excitations en-
ergies of eq. (B.8) can be omitted

M+N—P+Q. (B.10)
N—— N——
c c!

The only weight that might be changed by (B.10) is the partitioning weight wgy, =

—r———, where (i) is the number of cluster of size i in the event c. In order to use

I, &)
eq. (B.1) on the page before in the numerical code eq. (B.4) must be satisfied which is

an impossibly difficult task. So one must use eq. (B.7) where the a priori probability is
explicitely taken into account

N Wsym(c) A(d — ¢)
P(c— ) =min (1, w(ysymc) Ao c’)) . (B.11)
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B.2. Monte—Carlo sampling

In its turn A (¢ — ¢') is split up into two parts, i.e. A(c — ') = p(M,N)p(— P,Q|M,N),
where p(M, N) is the probability to choose M and N and p(— P,Q|M, N) is the proba-
bility to sample P and @ once M and N are chosen.

In order to increase the pass acceptance and to decrease the correlation time, M is
chosen among the clusters in u(c) with a probability proportional to its mass. N is chosen
among the clusters in {0} U u(c) \ M in an equiprobable way, i.e.

p(M,0) ij ) ] N :chjfél) (B.12a)
pOLN A A =MEOD )scjirf) :Mfc(jiuj\)éc(fv) (B.1%b)
(M. ) M) sc(ﬂjfv)f -1 :M£C<ML(§G§M) ) (B

Eq. (B.12a) correspond to the case when a “real” and the vacuum fragments are chosen.
Eq. (B.12b) is the general case when two fragments of different masses are chosen whereas
in Eq. (B.12¢) both fragments have the same mass.

M+ N, M > N are repartitioned in the following way. An integer number ¢ is chosen
in the range [—N ,floor X ;’N - N ], where floor z is the biggest integer less or equal to z,

with a probability proportional to m The new mass distribution is given by
Q = N+i, (B.13a)
P = M+N-Q, (B.13b)

for an illustration see fig. B.1 on the following page. This repartitioning favors small
changes in the mass distribution. Moreover it is easy to verify that it ensures p(—
P,Q|M,N) = p(— M,N|Q,P). Thus, in eq. (B.11) only the ratio 2% has to be
estimated.

Now everything can be collected in order to compute the probability transition. As an
example, let us consider the move

M+N > P+Q,

with M # N, M # P, N # Q, Q # 0 and N # 0, i.e. no vacuum fragment is involved
and all the fragments have different masses. The second argument in the min function in
eq. (B.7) on the preceding page becomes

wsym(cl) A(cl — C) o c(M)'gc(N)'fc( )'&c(Q)! Pfc’ (P)gc’(Q)

o@D A5 @)~ G D (Ve (P (Q) ME(NE () O
— P fc M) ) ( (N) - 1)!fc(P)'§c(Q)! (B 15)
M&c (M)'gc’( ) (gc ( ) 1)! (fc’(Q) - 1)! )

( )_1 fc’(N) = fc(N) -1 gc(P) =

) becomes

but the proposed move implies that & (M
£ (P) — 1 and &(Q) = &(Q) — 1, and eq.

Weym(c') A(d = ¢) P

) =

(B.

(d2e) P (B.16)
wsym(c) A(c =) M’ ’

With this sampling, the symmetrization weight factor is ezactly taken into account.
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P(i)

mass:0 12=N3 4 5 6 7 8 9 1C
h-2-10 1 2 3

Figure B.1: Illustration of the repartitioning procedure. The initial cluster sizes are M = 8
and N = 2. The mass of the new smallest fragment ) is given by Q = N +i =2+ ¢
where 7 is a number in the range [—N, floor MEN _ N] = [—2, 3], chosen with a probability

2
. 1
proportional to TN

Example

The simple case of a small system with A = 6 is considered. All the possible partitions
are listed in table B.2.1.0 on the facing page along with their respective wgy;, which can
be easily computed.

Using the values in tab. B.2.1.0 one can compute the mean values of several observables

e < Ny, >mean number of fragments;

e < My >, < My >and < M3 >, mean size of the first, second and third biggest
fragment;

e < N >, probability that a fragment of size N is present in an event (excluding
monomers),

and compare them with the results given by MMMC95. The results® are listed in table B.2.

The numerical result are in very good agreement with the analytical results. For
MMMCT77 the results are really bad for such a small system total mass since the algorithm
used to estimate the partitioning weight in MMMCT77 is valid for large system total mass
A [2ZG93].

B.2.2 Excitation energy sampling

The algorithm for the excitation energy sampling has been developed having in mind the
following constraints

2The results are the averages over 10° events.
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B.2. Monte—Carlo sampling

Configurations Wsym ‘
6 1
5+1 1
442 1
A¥1+1 1/21=1/2
3+3 1/21=1/2
3+2+1 1
3+141+1 1/31=1/6
2+2+2 1/31=1/6
242+1+1 1/ (212 =1/4
241+1+1+1 1/41=1/24
T+14+1+1+1+1] 1/6!=1/720

Table B.1: List of all the possible mass distributions for A = 6 along with their respective
symmetrization weight wgy,.

‘ quantities evaluated ‘ analytical results ‘ MMMC95 ‘

<Nj > 9276/4051 ~ 2.290 | 2.291
<M > 16501/4051 ~ 4.073 | 4.071
<M > 5791/4051 ~ 1.430 | 1.431
< M; > 1651/720 ~ 0.4076 | 0.4080
<6 > 247209 ~ 0.1148 | 0.1147
<5> 24/209 ~ 0.1148 | 0.1144
<4> 36/209 ~ 0.1722 | 0.1724
<3> 52/209 ~ 0.2488 | 0.2488
<2> 73/209 ~ 0.3493 | 0.3498

Table B.2: Comparison of analytical and numerical results for different observables.

1. it must fulfill the detailed balance equation and therefore be reversible,

2. the new sampled excitation energies must as much as possible lead to a positive
remaining energy eq. (3.5) on page 45. This is particularly constraining at small
total energy, where, without this constraint nearly 60% of the proposed moves are
rejected only because of negative remaining energy.

3. it should favor small steps, e.g, consider M — P + @ with P >> (@, then the
algorithm should support £}, ~ Ej,.

To simplify let us consider the following move

(M, B3y) + (N, Fy) > (P, ) + (@, B), (B.17)
ke M
with P > @Q >3, M > N > 3. The remaining (kinetic) energies in ¢ and ¢’ are
Ek(c) = E_'(C) —E}k\/[—E?V—EbM—EbN, (B18a)
Ex(c) E(d)-Ep — Ea — Eyp — Eyg, (B.18b)

where Ej stands for the binding energies.
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During the process (B.17) E is conserved, i.e. E(c) = E(c'). The first step is to check
whether there is enough energy to create ¢, i.e if Ex(c') = E(c) — Epp — Epg > 0.

Now let us rewrite E} = a,-Efnm,i, i=M, N, P and @, where «; €]0,1] and E’;‘naz’i
is minimum between

a. By opr i = (i — 2)€n,, the maximal allowed excitation energy for clusters i (see

sect. 3.2 on page 40),
b. the available excitation energy for the move Eq. (B.17) (constraint #2).

The energies are sampled sequentially. First P (conversely M) therefore

B, p = min (P = )€, B(c) = Byp — Eyq) (B.19a)
T*naw,M = min ((M_2)6;knaw’E(c) —Eym _EbN) (Blgb)
than @ (conversely N)
~:na;c, Q — min ((Q - 2)6:naaw E(C) —Eyp— Ep Q — E;(:) (B.20a)
~:naa:, N = min ((N B 2)6;knaw'E(c) - Eb M — EbN - E}k\/[) (B.20b)

Considering the move ¢ — ¢/, ap; and ay are known. Their values are both shifted

ap = mod (an + Aay)

ay; = mod (ap + Aag),

where Aa; and Aay are two random numbers sampled in the range [—0.05,0.05]. The
new ap and g are simply either (ap, o) = (aq,a2) or (ap, o) = (a2, a1), each case has
a probability of 1/2.

Now a computation of the a priori probability ratio yields

Ald = ¢)  E* o

max, M Emaz, N

.A(C — Cl) E:num,P E:TLGI, Q (B 21)

B.3 Multicanonical algorithm

In this section the blocking mechanism used to estimate the Bg function for the self
gravitating system studied in part III (eq. (6.21) on page 92) is presented. The estimate of
By is obtained by an algorithm based is based on multicanonical technics [BIN97, BER9IG,
LEE93, FS89].

The usual multicanonical task is to compute the free energy as a function of the total
energy [PARO1]. For the gravitational system presented in part IIT one has to compute
Bg as a function of the inertial momentum I and of the potential energy ¢. The updating
scheme presented in [SM196] is used. One of the reason for this choice is that although it has
been given for a one dimensional task it can be trivially extended to bi-variate problems.
The other reason is that it is one of the few algorithms to give and use information
about the statistical errors on the estimate of the weight Bg (for another recent algorithm
see [BORO01]).

In a multicanonical scheme Bg = W is built iteratively. To improve the performances
of the algorithm blocking mechanism has been added. After an iteration. if it is estimated
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step i step i+1
S
=
= X ThTTTTTTTTTT
< = g
= =
-+ Wt R e — Wt
3 3
@] O]
Xrec Xrec Xlock
X X

Figure B.2: Schematic illustration of the blocking mechanism. The visited state histogram
C(X) is plotted for the iteration steps ¢ and ¢ + 1, the plotted weight W (X) = Bg(X) is
the one obtained after the iterations ¢ and % + 1, respectively. The region where W > W;
are tagged to be locked during the next iterations. W; is a suitable threshold weight.
The consequences of the locking prossecus can be seen in Cj;1(X) where Ciy1(X) = 0
for X > Xii110ck- The weight Wi 1(X > Xii10ck) is corrected simply by W;iq(X >
Xit1 lock) = WZ(X > Xin1 lock) + Weorr where Wegrr = ﬁ f)é:_tlli:kk_AX WZ(X)dX7 where
AX is a suitable positive constant.

that enough information has been collected on a given region of the parametric space (I, ¢)
then this region is tagged as “locked” so that it will not be visited during next iterations (see
fig. B.2). This mechanism enables the program to spread more quickly over the parametric
space and save computation time compared to usual multicanonical algorithms.

Figure B.3 on the following page shows a slice of Bg(I,¢$) for I = 3 at different
iteration steps 7 for the gravitational system and N = 20 (Fig. B.3(a)). The histogram
C(I = 3, ¢) of the visited region is also plotted in order to illustrate the blocking mechanism
(Fig. B.3(b)). As expected By is strongly peaked around the disordered region ¢ ~ —1
(this value correspond to the mean of ¢ over randomly generated spatial configurations).
After 10 iterations the ratio between the maximum and the minimum of Bg is = exp 120.
This ratio increases exponentially with N, e.g. at N = 10 its value is = exp 80.

In fig. B.3 the final estimate of Bg is shown. The CPU-time to compute the whole
Bg but also the observables used in chap. 6 (radial distribution, distance distribution) is
around 40 hours on an ALPHA-workstation.
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Figure B.3: Estimate of the density of state Bg, panel (a), and histogram of the visited
states C, panel (b), for I = 3 at different iteration steps ¢ of the multicanonical algorithm
as a function of the potential energy ¢. Panel (a) shows how Bg is built step by step. Bg is
an extremely peaked function, the log of the ratio between its maximum and its minimum
is about 120. Without the blocking mechanism (see text) C; would have been non null for
all value of ¢ visited during previous steps j < i. In panel (b) one sees that the algorithm
does no longer visit “well-known” regions (¢ > —1.5) already after four steps.
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Figure B.4: Final estimate of Bg for N = 20 as a function of the inertial momentum 7
and the potential energy ¢.
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Appendix C

Momentum distribution

In this appendix < p; >q, the average momentum of particle k at fixed position is
computed.
For simplicity k is set to 1. The a-component of < p1 >q, is

J (TLsdp: TIY., dai ) 50 (B — H) 8 (£,00) 8 (S i X pi — 1) 8 (L, a1)
J (TLdpi TTo dai ) 6 (B — ) 62 (5, p:) 8 (X @i x pi — L) 82 (£, )
(T dai) Pro (5@ o
J (1Y, dai) W ()82 () '

<p? a1 =

where P2 (E, L,{q}) = [ (I1,dp:) p%6 (E — H) 6% (X, pi) 6 (3°; i x pi — L), {q} is a short
hand for {qi,...,qn} and W(q) is the microcanonical weight at fixed spatial configura-

tion {q}, its value is W (E, L,{q}) = C%Eﬁv*sﬂ, where C = H}'V[m" (2w)§+9/2 F(Ni3/2) (see

eq. (1.11) on page 7). H =), % — ¢(q) is the Hamiltonian where ¢(q) is the potential.
The outline of the derivation of P{* is the same as in [LAL99] for W.

First P is Laplace transformed E' = E 4+ ¢ ~ s

P L) = [ 4B P (B, L {q}) (C.2)

o

= /Hdpip‘f‘ exp{ —5222:2”}52 (ZPz)
b) (Z Qi X Pi — L) : (C.3)

Using the integral form of the delta Dirac

o(z) = /OO d—wexp {z’w . a:}, (C.4)

—oo 2m
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Appendiz C. Momentum distribution

for the conservation of the linear and angular momenta in eq. (C.3) yields

~ dwi dws
Je% — . _ 2 G
Piioiidah) = [ [l 5ot
2
exp{ - SZZ:;)—’I’TZLZ + 1wy EZ:pZ +’iw22i:qi X Pi —’I:’UJQL}, (C.5)
(wy,w7) is a two dimensional vector. Now one can write explicitly the vectors

where wy =
components in eq. (C.5)

P (s, L, {q}) = /H Pity 3 dwl de - o

exp{ SZZ o, +iﬂ2:1w1 sz —{—zwgz Z €484, D; —zng} (C.6)

i oy,p=1

where € is the antisymmetric tensor of rank 2.
The integration I; over {p }i=1,...,N with 8 # «a gives

B2
L = /Hdpi’gexp{—32%—1—2'210’?105—i—z'ngZeﬁqul’B}
i i ¢ i i

2

(L ma)'"? 1 5y S
Y xp{ — %ZmZ wy +w22675qi } (C.7n
(27s) p =
The integration I over {p{'} i = 2,..., N gives
N (p2)? N N 2
L, = /Hde exp{ SZ 21 +izw?pf‘+z2w226wq1pz}
1=2 mi =2 1=2 Y
1/2 2
(11 m:) M-
= wexp{ ) Zmz W -I—tUQZGrYan } (C.8)
(2ms) 5= =1
Finally an integration over p{ yields
2 2
I; = /dp1 Y — 5 ) + iwpd +zw2267aq1p1}
v
. 2
<m1)1/2{ e .
= — wi + w2 €vaq ]}
(27‘(’3)1/2 S 1 ,YZZ:I Yol
2
(C.9)

2
mi
€Xp { — 2_3 w? + w29 Z e'yaqfly }
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One collects the results from eq. (C.7) to eq.(C.9)

ety = [ e Il g, S ]}
y=1

(2m)? 27 (27s)N
2

2 2
1 .
exp { — —28 E E m; w,lﬁ + w2 E €7ﬂq;y — '“,UQL}. (C].O)
i B=1 7=1

The first term in the argument of the exponential in eq. (C.10) can be expanded and
simplified (using 3, q; = 0)

P = [ G5 - ot 3 ]}
=1

(2m)? 27 (27s)N

’ng

exp{ ~ 3 z:(wf)2 5. ing}, (C.11)

where M = 3, m;, and I =3, miq?.

P (s, L,{q}) is the sum of two multiple integrals. The one which contains an argument
proportional to w§ exp((w$)?) is null since this argument is an odd function of w§. The
remaining multiple Gaussian integrals over w; and ws can straightforwardly be computed,
and the result is

2 Y
~ 1 L [[;mi 25=1€adi L?
o (s I {q}) — b1l i s\ 12
PE (s Lo da)) = i 3T o v exp{ 557} (C.12)
The inverse Laplace transform of P (s, L, {q}) gives [EMOT54]
2
PP =CLmiI %) qleyq BN, (C.13)

=1

2 2 .
and E, = B' — 2 = F— % — ¢({q}). Using

if £, > 0, where C = H]i\/[mi (271_)1\1]+9/2 F(Nig/g)

(C.13) in (C.1) one gets finally

J (Yo dai) L I32 522 glega B 202 (5, i)

< pf >
a N-5/2
S (T dai) 112 52 glera BY 762 (8, ai)
= Lmi <I!'>q Zqzew. (C.14)
v
Finally
<p1>q=Lmi <I ' >4, Y qléyata; (C.15)
7,a

where &, is the a-component unit vector.
< p% >gq, can be derived in a similar way, and the result is

m N —5/2
<Pl >q = 2mk(1—ﬁk) < / >
T
N —5/2
—mplp < IiE/ >qp +IkL2mk < 12 >aks (C.16)
T
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where I, = mkqi.
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Appendix D

Temperature at constant pressure

The entropy of a configuration in MMMC can be written as (see sec. 3.3)

Ny
Szln/ dxC(x)JI[/CCE,gv.

The microcanonical inverse temperature 8 (at constant volume) is

B= (Eﬁk}

and the microcanonical pressure is

- (13- (2]

The microcanonical inverse temperature at constant pressure 3, is given by

9p
/szﬁll_p%gﬁ]a

av B
where
) ﬁ2825| asl ﬂlas
or"V ~ a2V avEtP agav
%y m 2 B8 08 g 28
ov'E OBV oV 'F B
oS Ny OInNCC
av'E_<7>_< ov ><I>
a8 N
s, (o3, 2+<Nf(Nf—1)>_<2Nf81nNCC>
avz'E =T T\ ay'P V2 )%

1

0?’NCC

T e R
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Appendiz D. Temperature at constant pressure

@s (o8 2+<N<N—1>>
o2 — "\ 9E" B2/

and

aEav — aviFaE ~\av By
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