Chapter 1

Introduction and definitions

The aim of this chapter is to recall and introduce notions and terms that are used
throughout the rest of this thesis. Most of them are known in the framework of stan-
dard statistical mechanics. However, some of them have to be redefined (extended) in
order to be of use for small # systems. Most of these notions recover their usual sense
at the thermodynamical limit. It is by no means an exhaustive overview of thermostatis-
tics’ realm. Moreover, dynamical issues like ergodicity, mixing or “approach to equilib-
rium” [SAS85, KRY79] are out of the scope of the present thesis, though arguments based
on dynamics and time—scales are used. Finally, for simplicity the definitions are worked
out within the classical mechanics framework although the basement of thermostatistics
on quantum mechanics is needed as it is done in standard textbooks on statistical mechan-
ics, viz. [LL94, CAL85, DGLR89, BAL82, HIL56]. Nevertheless, once the phase-space
volume is given the type of mechanics (either classical or quantum) plays only a marginal
role in the rest of the theory as it is shown below.

1.1 Microcanonical ensemble

1.1.1 Definitions

Let us consider an isolated physical system whose (microscopic) state at a given time ¢ is
described by a set of N generalized positions and momenta

{a,p}(t) = {ai(t),..-,an(t),p1(t),---, PN (t)}- (1.1)

The set over which {q,p} is defined is called the total phase space Q. Its dimension is
usually huge even for a small system, e.g. for a system of N classical particles the dimen-
sion of 2 is 6 N. The dynamical evolution of the system is described by its Hamiltonian
H ({q,p}). For a time-independent (conservative) Hamiltonian P, this Hamiltonian and
an initial state say {qo,po} = {q,p}(t = 0) define a unique trajectory of the microscopic
state {q,p} in Q °. This trajectory does not span the whole phase space Q but it is
dense only on a sub—manifold of €2 noted by W. The dimension of W depends on the
number and type of the (macroscopic) “eztensive” dynamical conserved quantities noted

#In the following, the quotation marks around small are dropped if there is no ambiguity.

YHere and hereafter only time—independent Hamiltonian are considered.

“Since the Hamiltonian is time—independent any point of the trajectory can be taken as the initial
state.
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by X ={X1,..., Xm} de. The number of conserved quantities and their nature depend
on the system considered. E.g. the total energy FE f, the total linear momentum P (if H is
invariant by translation), the total angular momentum with respect to the system center of
mass L (if H is invariant by translation and by rotation), the number of classical particles
N, the total charge Q, the system volume V which can be included in the Hamiltonian as
a static potential is also a macroscopic conserved quantity €.

Now if one assumes ergodicity [HiL56, LL94, KrY79], i.e. that the time average (O);
of an observable O along a trajectory defined by {qo, po} and # is equal to (O)w(x,) the
average over W (Xj), where Xy = X ({qo, po}),

t
(O); = lim % dr O(1)

t—o0 0
_ Jodadp O ({q,p}) 4 (X ({a,p}) — Xo)
B Jodadp § (X ({q,p}) — Xo)

Le. the temporal averaging (-); for a single state can be replaced by an ensemble of (in-

finitely) many states averaging (-)yw(x(1=0)) over the accessible phase-space W (Xp). The
h

= (O wxy)- (1.2)

density probability of the microstates {q,p} € W (Xy) is uniform, i.e.

6 (X ({a,p}) — Xo)
W (Xo) ’

P({q,p}) = (1.3)

where W is the volume of the accessible phase-space W.

Definition 1. A collection of systems whose probability distribution follows eq. (1.3) is
called a microcanonical ensemble.

Boltzmann’s principle

S(X) = kglnW (X)], (1.4)

defines the system entropy S as the logarithm of W times Boltzmann’s constant kp .

Note that so far no assumption has been made on the extensive nature of S J nor the
thermodynamical limit N — oo, N/V = const has been invoked. S is a purely “mechanical
based” quantity defined for any system size. S may or may not be extensive.

4This definition of an extensive variable, say X, is different from the conventional one: consider a system
where X = X and divide it in two equal pieces A and B. X is extensive if X4 = Xp = ); [DGLR&9].
At the thermodynamical limit, if it exists, both definitions are equivalent (see sec. 1.2.1). In the following,
to avoid cumbersome notations, the dynamical conserved quantities are called “extensive”.

¢To avoid cumbersome notations X refers also to a single “extensive” variable.

fAs only conservative Hamiltonian are considered, E = # is a constant of motion. Therefore E is
always an element of X; X; = E.

EContrary to e.g. E, the conservation of the volume does not necessarily decrease the dimension of W.

BFor a quantum system the discrete nature of X leads to [DGLR89]

1

P({aq,p}) = W(Xo)

ikp is set from now on to 1.
JIn the classical sense S (X) is said to be extensive if X is extensive (see footnote (d)) and if for any
A>1
S(AX)=AS(X).
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From now on, the “extensive” variables X are assumed to be continuous ¥ (since the
following does not apply to discontinues variables), and S is assumed to be a smooth
many time differentiable (at least three times) function of X. Moreover, the nature of the
mechanics (classical or quantum) governing the system does not matter it is “hidden” in
W, the measure of the accessible phase-space [GRO01].

Once the entropy is defined one can introduce new, auxiliary, variables. These intensive

variables z = {z1,...,zAr} are the conjugate of X = {X,..., X} with respect to the
entropy
oS
= —,1=1,..., M. 1.5
Ty 8XZ~’ ? > ( )

E.g. the conjugate of F is f which is defined as the inverse temperature, the conjugate of
the system volume V is BP where P is defined as the pressure.
There is a clear hierarchy among the quantities mentioned above

i. first, the “extensive” dynamically conserved quantities X;

ii. then, the entropy S which is proportional to the logarithm of the space—phase volume
accessible to the system at fixed X (i);

iii. finally, the intensive variables derived from S (ii) with respect to the mechanical
conserved quantities (i).

All this quantities are well defined and there is no quantity defined a priori.

It is worth to notice that the sign of C‘}l = %, the microcanonical heat capacity,

depends on the sign of the second derivative of S with respect to the energy

-1 9%s
=987 _om

.
o (5

o (1.6)

At the thermodynamical limit van Hove’s theorem [VH49] states that ‘g% <0forall E

i.e. Sisa concave function of E. The proof of this theorem relies on the thermodynamical
limit. Therefore, it does not apply to small systems. A priori, for these systems % can
either be positive or negative, i.e. in small systems there is nothing that forbids negative
specific heat capacity regions. This point is of great importance and is further discussed

in chapter 2.

1.1.2 On the choice of X

Following the discussion in the previous section one should incorporate in X all and only
all the conserved quantities of the considered system. However, in practice one has often
to loosen this constraint:

e An isolated system of N classical particles has 6N — 1 constant of motions. For
N > 2 their functional form are known only when the system equations of motion
are integrated [FER65], which is usually an impossibly difficult task. So, all the

*Or quasi-continuous, e.g. the number of particles N when N is sufficiently large, or any other conserved
quantity when the system is described by quantum physics.

In fact, the constraint applies to all X, i.e. gj{sg <0,i=1,..., M for all the values taken by X, see
sec. 1.2.3. )
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W/'

Figure 1.1: Schematic view of W. C can have two “macroscopic” values: C; and Cs.

constant of motions cannot be in practice incorporated in X. Nevertheless, seven of
these constants are known: the energy, three components for the total linear and the
total angular momentum [PAD90]. Moreover, some of them can be less relevant. For
example, the total linear momentum can be set to zero by a suitable choice of frame
coordinates. Finally, for practical use one is forced to study the system with a small
number of parameters. This is the basic historical reason of introducing statistical
mechanics.

e In some systems there exist several processes (degrees of freedom) with very different
time—scales. Hence, some quantities might be considered as constant though there
are not formally, i.e. some degrees of freedom may relax very quickly compared to
other ones. Then, as an approximation one can build a ME where the degrees of
freedom with long relaxation time are considered as fixed. This kind of argument is
used in part III and in general to define the statistical mechanics of self-gravitating
systems, see for example [HK77, SAs85, CP01]. Of course, terms like “majority”,

SYN13

“sensibly”, “quickly”, etc, have to be carefully discussed and defined for each system
depending on e.g. the precision asked.

e It can also happen that the phase space is made of two (or more) “basins” connected
with each other by “tunnels” (see Fig. 1.1). If the system is ergodic, the time spent
in each basin is simply proportional to their respective volume. In some cases,
these basins can unambiguously be labeled with a quantity say C, for example a
symmetry [JGO0O]. Strictly taken the definition of the microcanonical ensemble given
in the previous section, one should not use C as a new parameter in X. However,
it is again a matter of time-scales. If in an experiment, one can control C and
prepare a collection of systems having all the same value of C, and if the time of
experimentation is smaller than the typical time over which this quantity is conserved
(the typical time that the system spends in the corresponding basin), then just like
in the previous point, one may consider C as quasi—conserved and add it in X.
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1.2 Canonical ensemble

1.2.1 Definitions

Consider a large isolated system called hereafter HT. Its Hamiltonian and the value of
the constant of motions are noted by Hyr and X7, respectively. Now consider a part of
HT, say A, and the rest of HT, say B. Hyr can be written as

Hoar = Ha+ Hp + Has, (1.7)

where H 4 and H 4 are the Hamiltonian of A and B resp., and H 4p describes the interac-
tions between A and B.
If Hap can be neglected compared to H4 and Hp, i.e. if

Hor ~Ha+ Hp, (1.8)

then HT can be seen as the union of two independent systems HT' = AU B. The following
relation holds

Xygr = XA—I-XB, (19)

where X 4 and X p are the values taken by X in A and B. Therefore, X is a set of extensive
variables in the conventional sense (see footnote d on page 4). A priori X4 and Xp are
not fixed, they can both fluctuate ™. The volume of the phase space Wpgr accessible to
HT is written as a folding product

XA maz
Warr (Xur) = /X Wa(Xa)Ws (Xa — Xa) dX 4, (1.10)
A min
where W, and Wpg are the phase space volumes of A and B, respectively. The bounds of
the integral in eq. (1.10) depend on the domains of definition of A and B.

Now if A is small compared to B, i.e. if H4 < Hp and X4 < Xpg, then B can be
seen as a reservoir of X for A, i.e. the exchange of amounts of X between A and B does
neither change notably the entropy of B (%’;‘j}f |x; =0 for k£ =2,3,...) nor the value of
Xp. Under those conditions, the probability P(X 4) for the subsystem A to have a given
value of X4 is [LL94]

P(X,) = —zo- X4+ Sa(X 1.11
(Xa) Z(xo)exp( 2o+ Xa + 54(X4)), (1.11)
where Z(xg) is the normalization constant called the partition function
XA maz
Z(z) = / dX exp(—z- X + Sa(X)), (1.12)
XA min

zy = g%b@ o~ gf(’:]gXHT is imposed to A by the reservoir. S4 (X) is the entropy

that A would have if it was isolated. The domain of definition of S4 is [X 4 min, X A maz]-
Thus the values of the intensive variables are imposed by the reservoir HT on A while
its extensive variables are free to fluctuate according to the distribution (1.11). The
probability distribution P depends explicitely on zg. Therefore, in the following, it is
noted P (X, zg).

"For simplicity, all the components of X are assumed to fluctuate. Of course, depending on the context
some of them might be fixed.
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Definition 2. A collection of systems whose extensive variables X are distributed accord-
ing to the distribution (1.11) is called a canonical ensemble ™.

In most of the cases the range of X 4 in the integral (1.12) can be changed to [0, +o0].
Then Z(z) becomes the Laplace transform of exp (S(X)). For simplicity, in the following
Z(x) is called the Laplace transform of exp (S(X)). Hereafter, the argument of the ex-
ponential in eq. (1.12) is noted by f (X,z) = —z- X 4+ S(X); and F (z) = —%ln(Z(m))
is called the free energy, or the thermodynamical potential in CE. Note that one can
alternatively write the previous functions of the intensive parameters = (i.e. P, Z, f, F)
as functions of the “extensive” parameters X, provided that zy = g—§| X,- Hence, in the
following, f (X, zo) is also noted f (X, Xy). Note that X is not necessarily unique, i.e. a

priori, nothing forbids X; # Xy from satisfying g = g—§| Xy -

1.2.2 Link between ME and CE

Equation (1.12) shows that the main mathematical ingredient that transforms ME to CE
is a Laplace transform. In order to facilitate the following discussions it is worth to spend
some time to acquire a “pictorial” representation of this transform.

For sake of simplicity let us suppose that E is the only parameter (X = E) and that
the entropy S (X) is a concave function for all values of X as required by conventional
thermodynamics.

Fig 1.2(a) shows the entropy (thick plain line) and the line zy - X (thick dashed line).
The value of zo(= ) has been set to zg = g—§|X0. The plain line is just zo- X + K where K
is a constant chosen so that this line touches S (X) at Xy. By definition the line zo- X + K
is tangent to S (X) at X,

0 oS
—(zg- X+ K =To = —|x,-
8X (1‘0 + )|X0 ‘(BO aX|X0
[(X,Xo) = f(X,z0) = —zo - X + S(X) is plotted in Fig. 1.2(b). It is the result of
the shearing of S by the line of equation zy - X = 0. By construction, f (X,zy) has an
extremum at X
of os

ox X0 = 0¥ pxhra =0

For the present example this extremum is even a maximum since %| Xo = %| X, < 0.
Note that this extremum is a maximum because S is concave at Xj.

In Fig. 1.2(c) the argument of the integral in Eq. (1.12), ie. exp(f (X, Xp))
P (X, Xy) is plotted. As one can see, it is a peaked function with a maximum at Xj.
In the canonical ensemble and for this system, the most probable value of X is Xy. The
most probable value of X is always X if the entropy S is a strictly concave function of X,
ie. % < 0 for all values of X. It can be shown that in the Gaussian approximation the
width of this distribution is proportional to 3~2CYy,, where Cy is the heat capacity. Cy is
defined in CFE in the following way

O(E)
oT
"In the conventional canonical ensemble, the only fluctuating extensive parameter is the subsystem
energy F4.

Cy = x (E?) — (E)?, (1.13)

8
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exp (f (X))

Xo
(c)

Figure 1.2: Schematic illustration of the integral in Eq. (1.12) on page 7 (see text). (a)
Entropy S(X) (thick line); zo - X = g—§|xo - X (dashed line) and z( - X + K (thin line)
where K is chosen so that zg - Xg + K = S(Xj). (b) Result of the shearing of S by
-z - X, ie. f(X)=—=zo-X+ S(X). (c) Unnormalized probability distribution of X
P(X7 XO) X €xXp (f(Xa XO))

where

(By=-=22 (1.14)
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is the mean value of the energy in CE, and

o _ 10°2
(E*) = 28—62 (1.15)
is the mean value of the energy squared in CE. From the definition of the canonical heat
capacity eq. (1.13), it immediately follows that it is a positive quantity. This is in sharp
contrast with ME where nothing forbids a priori the entropy to have a convex part for
finite size systems and consequently a region of negative heat capacity. If one identifies the
two definitions of Cy then S must be a concave function of X. However, when CE and
ME are not equivalent this identification is simply no longer legitimated (see sec. 1.2.3).
In order to generalize the previous results to multidimensional parameter spaces, first
Hg is defined as the Hessian matrix of S

_Haxax H ii=1... M. (1.16)

Hg is a M x M symmetric matrix. Therefore, one can always find a basis {vi,...,va}
where Hg is diagonal. Its M eigenvalues are A1 > Ao > ... > Ayy. Furthermore, Dg =
AL+ A2+ Ap is the determinant of Hg also called the Hessian of S. Note that H; the
Hessian matrix of f is equal to Hg since f is S plus a linear function of X.

In one hand, when A\; < 0 holds at X = X, then S (X) is said to be a concave function
at X (it is a local property). In the other hand, when Ay > 0 at X then S (X)) is locally
convex.

Now in the case of a multidimensional parameter space, f (X, zg) is the result of the
shearing of S by a plane of equation zy- X. In the Gaussian approximation, the fluctuation

-1
of the full parameter-vector y/(X?) — (X)? is proportional to ((—1)M+1 DS) . Again,
this implies that (—1)™*! Dg is positive. One can even show that all the eigenvalues
of Hg have to be negative, i.e. A1 < 0 [GV00, FG01]. Or on other words, S must be
concave at Xy. This generalizes the constraint of a positive heat capacity for a system
with M = 1.
1.2.3 Equivalence conditions

At the thermodynamical limit, CE and ME are said to be equivalent at X = Xy if the
following conditions hold

1. (X)cr = Xo,

2. limy_e0(X?2) — (X)2 ~ N,

where L 9z
(X)cE = —E%Lm:g_)s( Xy’ (1.17)
is the mean value of X in CE, and
10°Z
2 _

Condition (2) ensures the specific heat capacity to be a finite and positive quantity.

10



1.8. Microcanonical or canonical ensemble?

At the limit N — oo, if ME and CE are equivalent then % does not fluctuate in CE.

Its distribution function P (%, %Q) as a function of the specific “extensive” variables is a
6—Dirac distribution, i.e.

X Xy

P{—=,— | =Ndé(X - Xp). 1.19

(F%) =¥ x - %0 (1.19)

For finite systems, as % fluctuates one needs a set of “weaker” conditions where small
fluctuations are allowed

0. Z(z0) = [dX exp(—zo-X + S (X)) < +00,
1. Xog—AXp < <X>CE < Xp+ AX(),
2. (X?) — (X)? < §Xo,

where z¢p = g—§| X,- 0Xo and AXj are two arbitrary positive constants. For small systems
a zeroth condition must be added: Z must be finite. This condition holds for all systems
at the thermodynamical limit since their entropies are everywhere concave as van Hove’s
theorem states it ©. In part III, a model is presented for which condition (0’) does not hold
for some values of X and a particular choice of intensive parameters (see section 6.4.4).

In order to fulfill these equivalence conditions at Xy, f (X, X() must have a global
maximum at Xy. Locally this means that f and therefore S must be concave at Xj. I.e.
CE and ME can be equivalent for small systems at Xy only if A (Xy) < 0. But if the
plane z - X + K(Xy) = 0 touches more than one time the entropy surface then at least
condition (2’) is not satisfied, consequently CE is not equivalent to ME at X,. Hence, the
equivalence at X implies that A1 (Xy) < 0, whereas the converse proposition is not always
true.

1.3 Microcanonical or canonical ensemble?

As ME and CE are equivalent at the thermodynamical limit (except at phase transitions,
see below in section 2.2), the choice of the ensemble used to describe the infinite system
is only a matter of conveniency. The canonical description is commonly preferred because
therein the computations are usually “reduced” to optimization problems. They are in
most of the cases technically easier to handle and faster to solve than computing averages
over the whole microcanonical phase spaces. Moreover, the notion of heat bath is well
defined and the assumptions made in sec. 1.2.1 on page 7 in order to define CE are valid.

For small systems the situation is dramatically different. CE relies on the assumption
that the interactions between the system A and its reservoir B can be neglected and that
the conserved quantities are extensive. These assumptions generally do not hold for small
systems, i.e. when the range of the forces is of the order of the range of the system. For
a small system the interactions between A and B dramatically affect the whole system
A [Gr097, ScH97, CP01, SSHTO00, STHOO].

Nevertheless, one can go on and simply assume a canonical distribution for the “ex-
tensive” variables. This in order to benefit from technical advantages of CE compared to
ME. In this respect, the canonical ensemble can be seen as a trick (as already noticed by
Ehrenfest eighty years ago [EE12]). But, if one uses this trick, one would loose a lot of in-
formation about the physics of the system near and at phase transitions. This information

°To be more precise, when N — +oo it is ZY/Y which is a finite quantity.

11



Chapter 1. Introduction and definitions

is accessible to ME. Some information is lost because the equivalence conditions (1’) or
(2’) do not hold near and at phase transitions (see section 2.2, see also [GV00] where half
of the parametric space is in practice lost after the Laplace transform P). One could not
observe for example multifragmentation of nuclei [CGD00, DGC*00, DBB*99, GR090]
or of metallic clusters [GMS97, SKM197, GM97, MHGS97]. In a model presented in
part III, all the phenomena of astrophysical interest are overlooked by CE.

As there is a hierarchy of system parameters, X — z (see page 5) there is a hierarchy
of ensembles ME — CE with a loss of information from ME to CE [CH88, GM97].

In summary, ME is the proper ensemble to describe small systems and information is
lost in the transformations ME «> CE.

For all these reasons the microcanonical description of a small system should be pre-
ferred to the canonical one.

1.4 Toy models

In chapter 2 the definitions of phases and phase transitions are illustrated by the following
simple analytical entropy-models. The model considered as one-dimensional S (X) =
S (FE) is adapted from [HUL94A]. The two dimensional model is the one of a gas in
the van der Waals approximation. In sec. 1.4.2 some classical results for this model are
recalled [LL94, DGLRS89].

1.4.1 1-D toy model

Hiller introduced in [HUL94A] several models of typical density of states (or entropy), in
order to illustrate the smearing of information in CE. In the following chapter, one of
these 1-dimensional entropy model is used to illustrate (a) the influence of the surfaces
through the surface entropy Sy, s and (b) the behavior of the caloric curve towards the
thermodynamical limit. The entropy-model S; is defined as

51(6) = Soo(e) + N2/3Ssu7‘f(€); (1.20)
where € is the specific energy € = E/N. sx(€) = Seole) °§’V(6), the “infinite” system specific

entropy (the volume part of S1) as a function of the specific energy € is given by

0 if —d < e < d,

1.21
as (|| —d)* else, (1-21)

Soco (6) = fe — {

with the constants 8y = 1, a4 = 0.04, and d = 0.5. As required by van Hove’s theorem

%ﬁ%l < 0 for all e [VH49]; %ﬁ%l = 0 for a range of energies —d < € < d.

The surface effects are described by an entropy S,y modeled in the following way
Ssurf (€) = —acos (me) , (1.22)

where a = 0.01.

PFormally Z contains the same information as S. But in practice, the inverse Laplace transform, needed
to recover S from Z, is a very unstable transformation when finite precision is used [CH88]. Moreover, in
CE the quantities are mostly computed thanks to some optimization algorithms (e.g. maximization of free
energy, or f, etc.). Hence, the information near minima (\;(Xo) > 0) is overlooked by those methods.

12
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S1 (e) +ae+b
1.5

0.5

-1 -0.5 0.5 1
/

Figure 1.3: Specific entropy s1(€). A linear term in € is added to s1(¢€) in order to emphasize
the convex intruder (a = —0.5, b = 1 and N = 100). For finite N the specific heat capacity
is negative for € €] — 0.5,0.5] and positive elsewhere.

For N finite, s; has a convex intruder (a;ig” > () for a range of energies —d < € < d.

See for an illustration fig. 1.3. As shown in the next chapter, this negative specific heat
signals a first order phase transition [GR0O97|. At the thermodynamical limit, s; = S1/N
must satisfy van Hove’s theorem, so the influence of surface effects must decrease relatively
to the volume ones. A reasonable assumption is that the scaling of the surface effects should
be ~ N?2/3 as already written in eq. (1.20) on the facing page. This scaling implies that
limpy o0 81 = Soo, thus s1 satisfies van Hove’s theorem.

1.4.2 2-D toy model: the van der Waals approximation

The second model is the van der Waals gas [DGLR89, LL94]. It is a simple analytical
model that presents first and second order phase transitions. Its microcanonical specific
entropy (s = %) as a function of the specific energy e and the specific volume v = % is

(up to an additive constant that does not depend on € and v)
3 a
s(e,v) =In(v —b) + 2 In (6 + ;) ) (1.23)

where a and b are two phenomenological constants. Their values depend on the fluid: a is
linked to the interaction potential acting in the mean on one particle, b is an approximation
for the avoided volume per particle 9.

With a suitable choice of units, i.e. 6% — eand § — v, eq. (1.23) becomes

3 1

s(e,v) =In(v —1) + 2 In (6 + ;) . (1.24)

In these units 8 the inverse temperature is

ds 3 1
= — == 1.25
and the pressure p
1 1

Os _ _3 . (1.26)

P = o = o1 2 (e 4 1)

9For a discussion on the avoided volume see app. A.

13
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Figure 1.4: Specific entropy surface of the van der Waals model as a function of the specific
energy € and volume v. €. and v, are the specific critical energy and volume.

This model has a critical point (second order phase transition) at e, = %, v =3 =
Be = %, Pe = 2—17 At this critical point the following relations hold [DGLR89, LY 52B]

0
P =0, )
0%p
O = 0. (129

All quantities written in the following, for this model, are normalized by these critical
values.

Fig. 1.4 shows the specific entropy s as a function of € and v.

In fig. 1.5(a) on the next page isotherms are plotted in the plane (p,v) for different
temperatures. At large volumes, the compressibility x = —g—; is large like in a gas. At
small volumes, x is small like in a liquid. Below (., the isotherms have a loop, i.e. there
is a region of negative x. In other words, the equation p(v) = pg has one solution above
Bc and three below (.. This loop is classically interpreted as a signal of a first order
transition with phase coexistence [DGLR89]. Along the critical isotherm (8 = f.), the
compressibility diverges at v = v.. This divergence signals a second order phase transition.

In fig. 1.5(b) isobars are plotted in the plane (8,h), where h = € + pv is the specific
enthalpy. At low pressure and for a given isotherm, 8 is a multiple valued function of h.
On the critical isobar (p = p + ¢), % diverges at h,.

The domain of physical validity of the van der Waals (vdW) approximation is smaller
than the domain of definition of its entropy (v > —1 and € > —1, see eq. (1.24)). E.g.
in the phase transition region, where for a real liquid—gas phase transition the density is
no longer uniform, in contrast with the uniform density assumption made in the vdW
approximation. Another region where the physical validity of eq. (1.24) breaks down is
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1.4. Toy models
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(a) Isotherms: pressure vs volume. From top (b) Isobars: 3 vs enthalpy. From top to down
to bottom increasing 3. increasing pressure.

Figure 1.5: Isotherms and isobars of the van der Waals model.

where the pressure becomes negative, i.e. % < 0 (see fig. 1.4 at e =0 and v 2> 1, see also
eq. (1.26)). Moreover, S does not have a proper thermodynamical limit since the region
of negative compressibility remains even at the limit N — oo. However, for illustration
in the following the underlying physical system is forgotten and s is taken as it is. It is
simply used as an entropy-model.
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