Chapter 6

Microcanonical properties

6.1 Microcanonical definitions

Consider a system of N classical particles on a disk of radius R whose interaction is
described by a Plummer softened potential [PLU11, YEP97]
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Pij = — 57

where m; and q; = {qil,qz-z} are the mass and position of particle ¢ respectively, s is the

softening length and G is the gravitational constant. The fixed total energy F is described

by the Hamiltonian

2
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H= —
~ 2m;

7

+ ¢(a), (6.2)

where p; = {p},p?} is the linear momentum of particle i, ¢ = dicjPij- Qlis a 2N-
dimensional vector whose coordinates are {qu,...,qn}, representing the spatial configu-
ration. q is an element of the spatial configuration space V,, q € V, C R?V.

The entropy S is given through Boltzmann’s principle

S(E,L,N) =InW(E, L, N), (6.3)

where W(E, L, N) is the volume of the accessible phase-space at E, L and N fixed (under
the assumptions given in chap. 5 on page 87)

wiean) = 5 [T1(f o0 S
x0(L =3 ai xpi)d (D ai), (6.4)

where q; X p; = ¢} p? —¢’p,. After integration over the momenta eq. (6.4) becomes [LAL99,
CLYS]

1
W(E,L,N) =C | dq—=EN5/26( 2, 6.5
( ) L4 (Zi:q) (6.5)
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Chapter 6. Microcanonical properties

(271.)(N—9/2) ]-_-[z m;
2r h)2NN'(Z m;)[(N—-3/2)
and E, = F — £ — @ the remaining energy ?. From the point of view of the remaining
energy, if L 7é O one can already notice that the equilibrium properties are the result of
a competition between two terms: the rotational energy g—; and the potential energy ¢.
The former tries to drive the particles away from the center of mass in order to increase
I whereas the latter tries to group the particles together in order to decrease ¢, but since
the center of mass is fixed this will lead to a concentration of particles near the center and
consequently will decrease 1.

The microcanonical temperature T is defined by

where C = is a constant, I = )", miqz2 is the inertial momentum

1. .85 ,N-5/2
7P~ F (6.6)
where () is the microcanonical average
N—5/2 5(2
W/ fE 7505 a) (6.7)

The angular velocity w is defined as minus the conjugate force of L times 7' [DGLR89]

. 188 (LE!
YT TBoL <<IE;1>>' (6.8)

v is defined has the conjugate of L?

.98 1 N-5/2
B = 2 = <2ITT>’ (6.9)
w = —2Lv. (6.10)

6.2 Momentum average and dispersion

In this section the average and the dispersion of the linear momentum of a particle is
derived, its mean angular velocity is also computed and related to the one of the system
as defined in eq. (6.8).

The derivation of (pg)q, the average momentum of particle k at fixed position qy,
(while the other particles are free) is similar to that of W. Details of the derivation can
be found in Appendix C on page 133, and the result is

2

(Pr)ay = LI Daeme D €ard]eas (6.11)
a,y=1

where € is the antisymmetric tensor of rank 2 and &, the unit vector of coordinate «.
Equation (6.11) shows that (pj)q, is a vector perpendicular to q; whose module is a
function of ||qx||. In other words the orbit of a particle is in the mean circular (this result
is expected since the system is rotationally symmetric). One can compute (wg)q, the

*the number 3 in eq. (6.5) is due to the different delta functions in eq. (6.4) that are integrated out:

1 for the conservation of L, 2- 1 = 1 for P and one for the total energy E.
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6.2. Momentum average and dispersion

mean angular velocity of k at distance ||qx|| by first considering (Lj)q, the mean angular
momentum of k at distance ||qg||

(Lik)ay, = qk X (Pk)ax
LIV, I, (6.12)

where I}, = mkqi. The angular mean velocity of a particle on a circular orbit is classically
linked to (Ly)q, by

(Lk)ar = (Wi)ag L (6.13)
Using egs. (6.12) and (6.13) leads to the following expression for (wy)q,
(wWr)ay, = L<I_1>qk- (6.14)

The dependence of (w)q, on ||qx|| is of the order 1/N P, therefore for large N, (w)q
becomes (see eq. (6.8) on the preceding page)

k

(W), ~ L) = (). (6.15)

For large N the mean angular velocity is the same for all the particles at any distance from
the center, in other words the system in the mean rotates like a solid body. Moreover (wg)q,
corresponds to the thermostatistical angular velocity w defined by eq. (6.8) on the facing
page. These are also a classical results for extensive systems at low L [DGLRS89, LL94].
Note also that these results do not depend explicitely on the interaction potential .

The momentum dispersion op, can also be derived. Using eq. (6.11) and eq. (C.16) on
page 135, one gets for large N

o = (PRay — (PR,
~ 2%+IkL2mk (172 = (I71?) (6.16)

The second term of eq. (6.16) is proportional to the square of the dispersion of 7! and
to qi (Ix = myq:). When this term vanishes relatively to the first one, e.g. when the
fluctuations of I~ are small, or at high energy (low ) and low L, the usual dispersion
of the Maxwell-Boltzmann distribution is recovered. This term also gives a correction to
the usual equipartition theorem; for large N

0.2

(Ep) = ﬁ
~ T+L“2L2 (12— ™h?), (6.17)

where (E}) is the average internal kinetic energy (without the contribution from the collec-
tive hydrodynamic rotational movement) of particle k. Again this correction is position—
dependent via . In the regimes where the fluctuations of the mass distribution cannot
be neglected in egs. (6.16) and (6.17) (e.g. at phase transitions) an estimate of the tem-
perature based on the velocity dispersion would suggest that the temperature is smaller
in the core than at the edge. At high energies and in the limit N — oo the fluctuations
of I=! should vanish faster than L (~ N) grows in order to recover the equipartition of
energy. However this scaling behavior is not known in the whole parameter space. These
fluctuations might play a non-trivial role in phase transition regions even for large .

P =TT +OWT)
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Chapter 6. Microcanonical properties

6.3 Numerical method

From now all the particles have the same mass, i.e. m; = m, Vi = 1,--- , N and the
following dimensionless variables are used
ER
E — €= W, (618&)
2 L
L — 1 5GBS RN? (6.18b)
s — 0—}%, (6.18c¢)
q
- r=— 6.18d
Ve = v, (6.18¢)
R 1 1
= b= 5mP =" , (6.18f)
Gm2N?2 N2 ; Vo2 + (ri—r;)?
I —

1=y "r. (6.18g)
i
The weight is now

W (e,Q) = c’/ drie,’,v—f’/?&(?) (> _r), (6.19)
W VI Z.
where €, = e— % — ¢ is the dimensionless remaining energy and C’ a constant. Later on this
constant is omitted since it plays classically no significant role (it only shifts the entropy
by logC'). The derivatives of entropy (3, w, ...) are now dimensionless quantities.
One usually estimates (6.19) by means of some Monte Carlo algorithm, updating the
positions r by some small amount dr in order to get a good pass acceptance and using the

configuration weight W(r) = %e,{v ~5/2 in the Metropolis pass. Unfortunately this strategy

does not really work (within a reasonable CPU-time), because the 2N—dim configuration
weight—landscape at fixed € and € presents troughs and high peaks [TA99], so exploring
the total configuration—space (or at least a subset containing the highest peaks) would
take a very long, in practice infinite, time. This weight-landscape looks like the energy—
landscape found in spin-glass systems [MPRTZ00].

The strategy adopted here is partly described in the following. First eq. (6.19) can be
rewritten as

W (e) = [ dIdg By(T,9) e, (6.20)

where
By(1,9) = [ des (I'6) = 1)3 (¢®) - 6) (L ). (6.21)
Ve 4
Bg(I,¢) is the density of spatial configurations at given I and ¢. Given Bg one can
compute W, S and its derivatives for any € and €, e.g.

_ 105
T T Boa
N —5/2 [dI d¢ Bg(I,¢) I-3/2eN 7/
-—3 W e, ) : (6.22)
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6.4. Results

The expectation value (O) of an observable O(r) can be estimated if Bg and (O), ,
are known

J,, dr O@) I 250 (37, 1)

O = e T )
dI dg (0), , By (I, $) I~/
where ' , ®
(O)rp= J,drO(x)s (I' = 1) 3 (¢' — ¢) 6¥ (X, 1) . (6:24)

Bg (I, 4)

Now, the task is to compute Bg(I, ) and (O); ;. A priori Bg(I, ) is highly peaked
around the values of I and ¢ that describe the gas (disordered) phase and should drop
rapidly down to the edges. Nevertheless a good estimate of Bg(I, ¢) is needed for almost
all values taken by (I, ¢) even when Bg(I, ¢) is very small comparing to its maximum.
For example at small total energy € only the part of Bg(I, ¢) for which ¢, = e — 972 —-¢>0
contributes to the integral (6.20) on the preceding page.

In order to get a good estimate of Bg an iterative scheme inspired by multicanonical
algorithms has been used [LEE93, BH93, FS89, SM196]. For further details see app. B.3.

In the present thesis results for o = 0.05 and N = 20 are presented ¢. No qualitative
changes are expected with larger number of particles (preliminary studies for N up to 100
support all the following results).

6.4 Results

6.4.1 Entropy and its derivatives

Figure 6.1 on the following page shows the entropy surface S as a function of € and €.
The ground state energy €,(£2) (thick line in Fig. 6.1) increases with €;. ¢, classically
corresponds to ¢, = 0 implying S = —oo. For all €, €4(£2) is a concave function of €2,

ie. % < 0; at high Q (2 2 12) it is almost linear % — 07. In sec. 6.4.4 dramatic
consequences for the canonical ensemble introduced by Klinko and Miller [KM00] resulting
from this quasi-linear behavior are discussed.

At fixed , S(e€) is not concave for all € but shows for some energy interval a convex

intruder which signals a first order phase transition with negative specific heat capacity
(% > O). This can be better viewed by plotting S(e, Q) = %—f (Fig. 6.2 on page 95). Here
the counter part of the entropy-intruder is a region of multiple valued €(3). This is the
case for 8 between 15 and 20.

The latent heat at fixed 2, g.(©2) decreases for 0 < Q < 12 and is a constant for Q > 12.
There is no critical value of €2, Q. above which S(e) is concave for all €, i.e. there is a first
order phase transition in the energy direction for all values of Q. In another model for
self-gravitating systems such a . was reported [LAL99], but not in the one presented
in [KMO0O].

On Fig. 6.3 on page 96 the microcanonical angular velocity w as a function of €2 and e
is plotted. As a direct consequence of eq. (6.8) on page 90, w tends to zero with €2, and at

“See in app. B.3 a discussion about the technical reasons that limit the value of N.
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Figure 6.1: Entropy surface S ((—:, Q= lz), the mesh lines are at constant € or constant €.
The thick line is the projection of the T = 0 (S — —o0) isotherm. A convex intruder at
constant {2 and for a certain energy range (e.g. —2 < € < 0 for 2 = 20) can be seen for
all Q2. S is not defined in the forbidden region; there the remaining energy e, is negative
for any spatial configuration.

high energies w is proportional to vQ = (o< L). For low energies and Q < 12, w exhibits
some structures with peaks and troughs. In another words at fixed €, w is not necessarily
an increasing function of Q. At high Q (2 > 12) and near the ground states w is almost
a constant. All these structures can be understood in terms of mass distributions which
influence w through I (see sec. 6.4.2).

6.4.2 Mass distribution

In order to understand the origin of the structures seen in the different microcanonical
quantities (S, 8, w, ...) one has to have a closer look at the spatial configurations, i.e. at
the mass distributions. One of the observable studied in this work is the mass density p
(see eq. (6.23) and (6.24) on the preceding page). As the system is rotationally invariant,
p can only be a function of r, the distance from the center of coordinates.

On Fig. 6.4 on page 97 p is plotted for different energies and for 2 = 0 and 2 = 4.
For 2 = 0 (Fig. 6.4(a)) the classical case (when E is the only fixed “extensive” parameter)
is recovered. At high energy the system is in a homogeneous gas phase (flat p), when
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Figure 6.2: Inverse temperature B(e, Q2 = [?) surface. The mesh lines are at constant e or
constant 2. The intruder in S at fixed €2 corresponds here to a multiple energy value for
a given (3 and 2, e.g. B(e,Q2 = 0) = 20 has three solutions ¢; ~ 0, e2 ~ —1 and €3 =~ —6.
The thick line is the projection of the 8 = oo isotherm; 3 is not defined in the forbidden
region.

the energy decreases the system undergoes a phase transition and eventually ends up in a
collapse phase where a majority of particles are in a cluster near the center of coordinates
(p peaked at 7 = 0). For 2 # 0 (Fig. 6.4(b)) the situation is very different. At high energy
the homogeneous gas phase is still present. But at low energy the system cannot collapse
entirely at the center of mass. This is due to the rotational energy term (e,o; = %) in the
remaining energy, see eq. (6.19) on page 92. If the system contracts at the center then the
inertial momentum I will tend to zero and therefore €,,; will diverge leading to a negative
remaining energy €,. So depending on the value of 2 the main cluster will eject a certain
amount of particles in order to increase I. Near the ground state these “free” particles will
eventually collapse to form a second cluster in order to decrease the potential energy ¢.
Due to the conservation of the center of mass, the position of the biggest cluster will be
shifted from the center by a certain amount (see Fig. 6.4(b) at ¢ = —5). At low Q one
particle will be ejected. With increasing {2 the number of ejected particles raises and this
process stops when two equal-size clusters are formed. This explains the discreteness of
the peaks in w (Fig. 6.3 on the next page); the increase of the ground state energy €,4(€2),
because the potential energy of a single cluster of size N is smaller than the one of two
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Chapter 6. Microcanonical properties

Figure 6.3: Microcanonical angular velocity w (e,Q = 12) surface. The mesh lines are
at constant € or constant 2. w is not defined in the forbidden region. At high energy
w v/ = [; Near the ground states w shows a richer non-monotonic behavior with peaks
and troughs for small €2 and has a nearly constant value for large  (see text).

well separated clusters. At high 2 > 12 the system undergoes a phase transition from a
gas phase to a collapse phase with two equal size clusters close to the boundary. From one
value of 2 = 1 > 12 to another one 9 > (2 the whole entropy curve at fixed angular
momentum is simply shifted along the energy axis, i.e. S (e,Q1) ~ S (e + 92;791 ,). So
the ground state energy €,(f2) at high €2 is almost on a line of equation ¢, + % + ¢y = 0,
where % and ¢, are the rotational energy and the potential energy of 2 clusters of size
N/2 at radius r = 1 respectively. This monotonic behavior has already be mentioned for
all the thermodynamical variables e.g. S, 8, w, see Figs. 6.1 to 6.3 on pages 94-96.

One could object that, as p is only a function of r it cannot be used to infer the angular
distribution of the particles, i.e. there is not enough information to say if a peak in p at
r9 # 0 corresponds to one or many clusters or to a uniform distribution of the particles
lying on a circle of radius ry (ring). However at least at very low energy a many clusters
(more than two) configuration is very unlikely and will not contribute to the average values

for reasons linked to the configurational weight W (r) = %eiv —5/2

. For simplicity let us
assume that there is only one strong peak in p at r = ro # 0. Since the center of mass
is fixed this cannot be the signature of a 1-cluster system. At least 2—clusters lying on
a circle of radius ry are needed. All the n—clusters systems compatible with the assumed
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Figure 6.4: Density as a function of the distance from the center r for different values of
energy € and angular velocity  (arbitrary units). At high energy and for all Q the density
is flat; the system is in the homogeneous gas phase. Near the ground state the density
shows one peak for © = 0 (a) and two peaks for © > 0 (b), which correspond respectively
to a one cluster and to a two clusters phase surrounded by some gas (see text).

radial density have the same rotational energy % = NLTQ, but their corresponding potential
energy ¢, are different. For example, with o = 0.05,0 ro = 0.5 and N = 24 the ratio of
potential energy is % ~ 1.7. So at low energy, the remaining energy e, corresponding
to a 2—clusters system will be much larger than the 3—clusters’ one, leading to a huge
difference ¢ in the weight W (r). So at low energy and for Q # 0 the 2-clusters case is
dominant. At higher energies, the term Bg(I, ¢) in eq. (6.19) on page 92 can compensate
the difference in the weight W (r) and allow many clusters configurations and eventually
at high energy a complete random configuration on the ring of radius ry will dominate the
average mass distribution.

This argument can be checked by studying other observables, for example the normal-
ized distance distribution P(d), i.e. the density of probability that the distance between
two given particles is d. To probe the information given by P(d), it has been estimated for

four simple mass distributions: (a) 2—clusters, (b) 3—clusters, (c¢) ring, (d) uniform random

dThe energy €, is put to a power of ~ N, see eq. (6.19).

97



Chapter 6. Microcanonical properties

le-01p ]
i — (a) 2clusters i
r (b) 3 clusters| T
r ---- (c)ring b
-=- (d) random |
1le-02 -
= i
© :
N 3 .
o
1e03H/ R
Jlj ‘.\'\ :
1e04L : i
0 0.5 1 15 2

Figure 6.5: Average of P(d) the distance distribution for different simulated spatial con-
figurations. See text.

distribution. For (a), (b) and (c) the particles were put on a circle of radius 7o = 0.5, and
then randomly shifted several times (in order to give a spatial extension to these idealized
initial configurations). Finally the W distances are recorded for all realizations and
averaged. Figure 6.5 shows the average of P(d) over 1000 realizations. Note that the
density distribution p(r) is by construction exactly the same for the three first cases, i.e.
strongly peaked at ro with a width of about 0.5. The latter value depends on the shift one
applies on the initial idealized spatial configurations.

As one can see on Fig. 6.5 that although the density distribution is the same for (a),
(b) and (c), P(d) gives some new insight on the mass distribution:

(a) There are two peaks, one at small d which corresponds to a clusterisation and another
one at 7 ~ 1 = 2 x r¢; this is exactly the distance between the two clusters (more
precisely between their center of mass). The areas under the small and large d peaks
are equal. Indeed the number of short distance pairs is about NT2 which is also
the number of pairs with d ~ 1. The widths of the first and second peaks are (as
expected) ~ 0.5 and ~ 1 = 2% 0.5, respectively.

(b) There are again two peaks one at small d and another at d ~ 0.8 < 1 and their
respective widths are similar to the case (a). The large d is compatible with the
length of one side of the equilateral triangle on top of which the idealized 3—clusters
mass distribution has been built. This time the area under the large d peak is larger
than the one under the short d peak, since the number of short distance pairs is
about NT2 whereas the number of pairs with d ~ 0.8 is NTQ
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Figure 6.6: Distance distribution P(d) for different values of (e,2). At high energy P(d)
corresponds to a random distribution (see Fig. 6.5 on the facing page). For Q = 0 and
at low energy, P(d) has one peak at d = 0; almost all particles are very close from each
other, and there is a single cluster collapse phase. For €2 # 0 there are two peaks at low

energy: one at very small d which is a sign of clusterisation and another peak at large d
which signals multiple clusterisations; in fact there are two clusters (see text).

(c) For the ring case a trace of the two peaks still exists but they are not well separated
because a lot of intermediate distances are compatible with this model.

(d) When the particles are uniformly distributed P(d) has a binomial-like shape.

P(d) has also been estimated for the present gravitational system, as shown on Fig 6.6.
At high energy, P(d) corresponds to the randomly distributed case (see Fig. 6.5 on the
facing page). At low energy with 2 = 0, P(d) has only one peak at d = 0, this corresponds
clearly to a single cluster case surrounded by some gas. For Q # 0 and at low energy (in
Fig. 6.6 ¢ = —5 and Q = 4), there are two well separated peaks, one at small dy = 0 and
the other at d; >~ 1.1. The peaks imply the presence of at least two clusters. However, the
fact that the widths of the peaks are small excludes a large number of clusters and even
more the ring case (see Fig. 6.5). Now one can combine this information with the one
obtained from the study of the radial density p(r) (see Fig. 6.4 on page 97). For e = —5
and Q = 4, p has two peaks at r; >~ 0.15 and ro ~ 1. All in all, this means that there are,

in the mean, two clusters rotating around the center of mass. The distance between these
clusters is 71 + 79 ~ 1.15 ~ d;. Their mass ratio is % = :—; ~ (.15. Since the total mass
is m1 + mo = 20, hence m1 ~ 17 and mo ~ 3.

The distance distribution can be of great help to identify the mass distributions at low
energies. However at the transition regions since there is a superposition of different types
of mass distributions the knowledge p and P(d) is not sufficient and therefore of no help
if one wants to study for example the “fractality” of the mass distribution as it has been

99



Chapter 6. Microcanonical properties

done in other self-gravitating systems [DVS00, SIM*00], and further work is needed to
get a more detailed picture.

At very low energy, near the ground state at least one of the clusters (the smallest)
is very close to the boundary. There the assumption of a small evaporation rate made in
chap. 5 on page 87 does not hold.

6.4.3 Phase diagram
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Figure 6.7: Sign of the largest eigenvalues of Hg the Hessian matrix of S as defined in
chapter 2. The white regions correspond to A\; < 0. These are pure phase regions. The
gray region corresponds to A; > 0 and A2 < 0 and the dark gray ones also to Ay > 0 but
Ao > 0. Ag is the second eigenvalue of Hg. Ay > 0 defines first order phase transition
regions (see text). Points in G (the region filled with dashed lines) correspond to local
maxima (minima) of f(X, Xo) = —zo - X + S(X) (see eq. (1.12) on page 7) if A1(Xp) <0
(A (Xo) > 0). Points outside G correspond to global maxima of f(X,X;). There is a
one-to—one mapping between the microcanonical ensemble and the GBE only outside the
G region (see text). S is not defined in the forbidden region, here in light gray. Note that
(a) the points at = 0 and low energies € < —7 are not included in G, (b) the high energy
limit of G is known only approximatively.

In Fig. 6.7, the sign of A\; as a function of € and €2 is plotted. A; is the largest eigenvalue
of the Hessian matrix of S (see sec. 1.2.2 on page 8)

s 9’8
Hy = | % 95 (6.25)
e o
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Figure 6.8: Locus of second order phase transitions (see text).

This plot can be taken as the phase diagram of the self-gravitating system at fixed € and
[. The white regions correspond to pure phases (A\; < 0 ). At high energy there is a
homogeneous gas phase and at low energy there are several pure collapse phases with one
(I =+ =0) or two (I # 0) clusters. The different 2—clusters phases are characterized by
the relative size of their clusters (see sec. 6.4.2). These regions are separated by first order
phase transition regions where A\; > 0 (gray in Fig. 6.7). There is even one region (dark
gray) where the entropy S is a convez function of € and [; i.e. all the eigenvalues of Hg
are positive (A\; > 0 and A2 > 0). This region is rather stable with respect to the number
of particles (at least for N < 100). Its specific surface slightly increases with the number
of particles N.

The orientation of v; the eigenvector associated with A; (defined as the largest eigen-
value of Hg) is not yet known in details for all (¢,7). However it can already be stated that
at “high” energy vy is almost parallel to the energy axe (phase transition in the e direction)
and should be parallel to the ground state at very low energy. The overall structure of
the collapse phases matches the one of the angular velocity w (see Fig. 6.3 on page 96):
roughly, the peaks in w correspond to pure phases while the valleys between these peaks
belong to the first order phase transition region.

As already mentioned, unlike in the model presented by Laliena in [LAL99] there is
no critical angular momentum L, above which the first order phase transition vanishes
giving rise to a second order phase transition at L.. Nevertheless this does not exclude
second order phase transition (critical point) at all. They are defined in the microcanonical
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ensemble by: (i) Ay = 0; (ii)) VA1 - vi = 0 (see sec. 2.3 on page 30). On Fig. 6.8 on the
page before (just like on Fig. 6.7 on page 100) regions where A\; < 0 (> 0) are in white
(gray). The condition (i) is simply achieved at the boarder between the gray and the
white regions. The thick lines on Fig. 6.8 correspond to condition (ii). Second order phase
transitions are located at the crossing points points of the thick lines and the boarders. One
immediately sees that there are several critical points. However there are not all of (astro—
)physical interest since most of them are close to the ground states line or at very high
angular momentum where the small evaporation rate assumption is not valid. Nevertheless
there are two points one at (¢,Q2) =~ (—0.5,1) and another one at (¢,2) = (0,4) where
this assumption is valid and therefore they deserve further investigations and especially
regarding their corresponding mass distributions.

6.4.4 Loss of information in CE

In a recent paper Klinko and Miller have studied another model for rotating self-gravitating
systems [KMO00]. They introduced the canonical analogous of the X = {¢, ) = I} ensem-
ble namely the z = {3,7} ensemble (GBE), see eq. (6.6) and (6.9) on page 90.

If one inspects the entropy surface S(X) (see Fig. 6.1 on page 94) it is clear that
conditions (1°) € or (2°) f are not satisfied for all the points in the region filled with dashed
lines (G) in Fig. 6.7 on page 100. This is due to the concavity of the energy ground state
€g(2). G includes all the two—clusters collapsed phases, the first and second order phase
transitions (except for w = v = [ = 0). All the information contained in G is smeared
out through the Laplace transform linking ME and GBE (eq. (1.12) on page 7) and, in
practice, lost.

The fact that GBE misses all the two—clusters collapse phases would already be enough
to disqualify it as being a good approximation (mathematical trick) of the ME. But,
furthermore, if one studies more carefully f(X, Xo) = f(X,z0 = g—§|X0) = —z9- X+ 5(X),
Xy € G; one will notice that (a) there is one local maximum at Q = 0 and (b) there is
no maximum for high Q: in the direction of increasing € at low energy, f(X,z¢) is a
never ending increasing function, i.e. f(X,zo) has no global mazimum for X € G (see
Fig. 6.9 on the next page). Therefore the integral in eq. (1.12) on page 7 diverges for all
o, Xo € G. In other words the GBE, for the present model, is not defined for high 8 and
v # 0 (w # 0). Although this result can sound very surprise, it is a direct consequence
of the quasi-linear behavior of the ground state of S as a function of  ~ L?, hence a
similar result can be found for the van der Waals gas presented in chapter 1. The domain
of definition of the entropy of this model (# domain of physical validity) is convex, and
there is a region where although the conjugates of the entropy are clearly defined in the
microcanonical ensemble &, the partition sum diverges for these values of the intensive
parameters.

One could argue that GBE is not the correct canonical ensemble (CE) for this system.
I.e. one should rather fix the conjugate of ¢ and [, the inverse temperature § and the
angular velocity w, respectively.

In order to simplify the discussion, the microcanonical entropy S is plotted in fig. 6.10
(see also fig. 6.1 on page 94) as a function of the energy and the angular momentum /.

¢(X)cr = Xo, see sec. 1.2.3 on page 10.

fSmall fluctuations of X in GBE, see sec. 1.2.3 on page 10.

€The conjugates are clearly defined from a mathematical point of view, physically it is not the case
since there the pressure is negative.
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Figure 6.9: f(€,€,Bo,7) = —€Bo — LBovo + S(€,22) — K as a function of € and €2, where
K is an arbitrary constant; Sy = S(eo, Q0); Qo = Qeo, Qo); Xo = (€0,Q) = (-3,5) =
(©0,7) =~ (27.9,—0.196). The mesh lines are at constant € or constant 2. As expected
f has a saddle point at Xy = (Bo,70) since A\1(Xp) > 0 and Aa(Xp) < 0 (see text and
Fig. 6.7 on page 100). f has a global maximum at = 0 and € = —7, but one sees that it
is an monotonically increasing function for increasing € and €(2) ~ €,(€2) + 2. Therefore
the integral in eq. (1.12) on page 7 diverges and the (8,v/) ensemble is not defined for

(Bo,70)-

One can clearly distingish two parts. One for 0 <! < 4 and the other with [ 2> 4. The
ground states at [ < 4 correspond to the two asymetric clusters cases (except at [ = 0)
whereas for [ > 4 two equal size clusters compose the ground states. At large [, the ground
states line is convex as a function of [, i.e. 632;29 > 0. Hence, the origin of the divergences
in GBE is removed in CE. However, one can directly conclude from fig. 6.10 that no point
Xo = (eg,lp) in the region where € < 0 and [ < 5 corresponds to a global maximum of the
function f(e,l, By, wo) = —€By — I Bowo + S(e€,1) (for an example see fig. 6.11). This implies
that all the asymetric pure phases are overlooked by CE. It can be shown that this is also
the case for the two critical regions at relatively high energies.

All the examples of this section show how dramatic can be the information loss if one
studies an isolated system in ensembles where the intensive variables are fixed.
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Figure 6.10: Entropy surface as function of I = v/Q and e. The mesh line are at constant [
or €. The thick line is the projection of the ground states. S is not defined in the forbidden
region.

6.5 Discussion and conclusions

In this chapter the results of the study of the equilibrium properties of a self-gravitating
system is presented. The “extensive” dynamical quantities are the total energy E and the
angular momentum L. This is the first study where no assumption is made about the
spatial properties of the mass distribution.

It is shown that the conservation of the angular momentum plays a non-trivial role.
One can find that these systems have a surprisingly rich phase diagram with a large first
order phase transition region and also non trivial second order phase transitions.

All the phase diagram is not of physical relevance since near the ground states line
the small evaporation rates assumption breaks down. Nevertheless, there are two critical
regions at relatively high energies which could be of astrophysical importance. Further
studies are needed to

e localize more precisely these critical regions,
e check their presence for systems with large number of particles,
e study their corresponding mass distribution.

There is no heat bath for astrophysical system. But if one uses the canonical ensemble
as a mathematical trick one would loose all the information about

e the asymmetric cluster phases,

e the first order transition region,
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Figure 6.11: Contour-density plot of f(e,l,B0,wo) = —€By — Ifowy + S(e,l) — K as a
function of € and [, where K is an arbitrary constant; Sy = S(eo,lo); wo = w(eo,lo).
Xo = (€0,l0) = (—4,2). As expected f has a saddle point at Xy = (8, ly) since A\1(Xy) > 0
and A2(Xp) < O (see text and Fig. 6.7 on page 100). The main contribution to the
partition sum for these values of the intensive variables comes from points located toward
(e,1) = (5,12). Hence, in CE at (8y, wp), The mass distribution is composed by two equal-
size clusters rotating with large mean energies and angular momentum. This is in sharp
constrast to the physical situations at Xgy. f is not defined in the forbidden region.

e the critical point.

Furthermore, for a particular choice of intensive variables the partition sum diverges for
some (microcanonically defined) values of these intensives variables.

Of course, it just an equilibirum statistical model that is presented. It may help to
understand the physics of globular clusters or collapsing molecular clouds, but the results
should be interpreted with caution especially in the case of star formation. A lot of
“ingredients” are missing in order to have a complete picture of the formation of multiple
stars systems and planetary systems, for instance the magnetic field [HMCB00, GSLLO00],
or the presence of vortices [CHAO0Q].

The study of such self-gravitating system is in its infancy [LLI6A, LAL99]. There are
a lot of research directions.

The main weakness of the results presented in this chapter is the very limited number
of particles that could be considered. Though, in many cases, in astrophysical context
all the qualitative equilibrium behaviors could be given with small number of particles
(see e.g. Padmanabhan and its two particles models in [PAD90]). However, if one wants
to study the equilibrium properties of galaxies, one cannot be completely satisfied with
results obtained from 20 particles models. Work is in progress to increase the number of
particles and also to study the system in 3-dimensional space.
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