Chapter 1

Cluster Analysis in
High-Dimensional Data

Clustering can be loosely defined as partitioning a set of objects into a given num-
ber £ of disjoint subsets, so called clusters, so that the homogeneity between ob-
jects within each cluster is strong. Instead of homogeneity, the terms relationship
or similarity are used synonymously in the literature.

Obviously, the definition given above does only make sense together with a
measure for the homogeneity between objects. In this case any possible set of
k clusters has a certain quality, depending on the measured homogeneity between
all objects within each cluster.

One easily checks that the number of ways to partition a setafjects in
k disjoint non-void subsets is given by [18]:

K(n, k) := %ZO <f) (—=1)'(k — i)™ (1.1)

The functionC(n, k) grows exponentially fast in. Already in a very small set
of objects the number of possible partitioningscidisjoint subsets is staggering,
e.g., forn = 100 objects, there aré&(100,2) ~ 10*° ways to partition them in
two subsets. It can be shown that the problem to compute a getlokters of
high quality is NP-complete [33]. Therefore fast solutions usually can only be
achieved by using heuristic algorithms.

In addition to the identification of clusters, one is also interested in their de-
scription, i.e. in rules that allow to determine the cluster membership of each
object, based on its properties. Especially in the case of high-dimensional data,
where the objects have a high number of properties, such rules have to be efficient
in the sense that their number is as small as possible and that they depend on a
minimal number of properties only.
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Given the above terminology, we definkister analysis in high-dimensional
dataas the process of fast identification and efficient description of clusters. The
clusters have to be of high quality with regard to a suitably chosen homogeneity
measure.

1.1 Modeling

In the following we suggest a general model for cluster problems, supposing that
the measure for the relationship between objects is given explicitly. It will be
shown that the model — in contrast to other models suggested in the literature
that are designed for geometric cluster problems — is usable for different fields of
applications, because it is not only suitable for a geometrically based modeling,
but also for dynamic cluster problems.

Let A := {A,,..., A,} be aset of not necessarily ordered domains and define

Q= QI A4 = {(a,...,a)" |a; € A;,5 = 1,...,q}. We will refer to
Ay, ..., A, as theattributesof (2 and tog as thedimensionof 2. Each finite
subsetV = {vy,...,v,} C Q, n > 2, is called adata setin 2 and for each

data object; := (v;1,...,vi4)" € V, the valuey; ; € A; denotes thgroperty
of v; for attribute A;. We will further call each functiory : Q@ — R with
f(v) =0 < v ¢ V afrequency functiorior the data set V and we define
f(M) =", f(v) forany subseds C .

Suppose now that there exists a functton(2 x 2 — [0, 1] so thath(v, w) =
h(w,v) for anyv,w € V. Thenh will be called ahomogeneity functiofor the
data sel/. We seth, 4, (V) := max, ey h(v,w) and call two objects;, v, € V
maximally homogeneous, if(vy, v2) = Ay (V).

Based on given functiong and i the problem of clustering” in a given
numberk of subsets can be stated in the following general way:

Definition 1.1.1 Letk € {1,...,n} andC := {C},..., Cx} any set ok non-void
subsets’, C V.

(i) f U, ¢, =VandC,NnC, =0 for 1 < s <t <k, then we calC a
k-cluster set of the data sét.

(17) LetC anyk-cluster set of/. If C maximizes the weighted intra-cluster homo-
geneity

| =

:
I'rn(C) = Z ! Z Z h(v,w)f(v)f(w) — max, (1.2)

f(CS) veCs weCl

then we callC an optimalk-cluster set ofV, f, h).
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1.1.1 Geometric cluster problems

Many of the traditional clustering methods, including the famouseansnethod
[46], have in common that they are geometrically driven, i.e. they suppose that
can be modeled as a metric space, €g., R?, and that the relationship between
objects is given by aistance functionl : 2 — Ry, satisfying the following
requirements for alb, w, z € Q:

(D1) d(v,w) >0

(D2) d(v,v)=0

(D3) d(v,w) = d(w,v)

(D4) d(v,w) <d(v,z)+d(z,w).

In the case tha C RY, theEuclidean distancéunction is often used:

deetia(v,0) = |lv — w| == /(v — w)T(v —w) ,v,w € R

The basic idea of almost all geometrically driven cluster methods is the identifi-
cation of ak-cluster seC := {C,...,Cy} so thatZ’j:1 cost(C5) is minimized,
wherecost : () — Ry is a cost function based on the distance function. The
methods differ in the choice of the cost and the distance function and the several
possible optimization strategies lead to different cluster algorithms. Many popular
algorithms try to minimize theum-of-squaresost function [20]:

cost(Cy) 1= ! Z Z d(v,w)*f(v)f(w) — min .

The corresponding cluster problem can be formulated within our general defini-
tion:

Lemma 1.1.2 Let ) be a metric space with a distance functién Q@ — R{.
Further letV = {vy,...,v,} C Q, n > 2, be any finite data set if2 and
f: V. — R{ be any frequency function fdf. Finally suppose tha€ is any
k-cluster set ol/.

(@) Thenh, : 2 x Q — |0, 1], with

d(v, w)?

h =1-
a(v, w) (maxg gey d(v,w))?

v,w € .

is a homogeneity function far.
(b) C is an optimalk-cluster set of V, f, h), if and only if

Z : Z Z d(“aw)Qf(U)f(w) — min .
f(Cs)

s=1 veCs wels
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Proof: (a) i, is well defined, becaude, (v, w) € [0,1] for all v, w € Q. Sinced
is a distance function, i.el(v, w) = d(w,v) for anyv, w € Q, one further checks
thathy(v, w) = hg(w,v) and thereforéy,; is a homogeneity function.

(b) Sincemaxs zey d(v, w), f(V') are constant and positive values, we have:

mlnzf ZZde (w)

) & iz,
= mz PP d)2 =l 0w

— max (V) i — 2(;;; ) )
- Z( 101y 2 2 it ))2f<v>f<w>>
= Z ( T Y G L ))2f(v)f(w)>
= Z G2 2 (1 E:vlfzf ) S
— %Z € 2 2 el w)f(@)f (w)

vels wels

O

If d = d..qiq, then the sum-of-squares cost function is equivalent to the cost
function used by algorithms based on theneans method:

Lemma 1.1.3LetC C V C R?any non-void subset & and f : Q@ — R any
frequency function for the data s&t Then we have

> v =mel® fv ZZHU—UJH f) f(w),
veC UGCU}EC
where
Zf
UGC

denotes the centroid of .
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Proof:
S o — el £(v)
veC
= Zvva(v) -2 (Z f(U)UT> me + Z fo)meime
velC velC vel
= S uTuf(v) — F(C)mEme
veC
- 5 (Z F(CYTuf(v) f<0>2m£mc>
veC
= —C)<ZZU vf(v w)—ZZUwa(U)f(w)>
veC wel veC wel
B yie ( > > vl w>—2ZZvaf<v>f<w>>
veC wel veC wel
_ §f_zz VT f () f(w) — 207w f (v) f(w) + wTwf (w) f(v))
veC wel
= 570 2 2 I vl F)
UGC wel

O

A combination of Lemma 1.1.2 and Lemma 1.1.3 guarantees that geometric
cluster problems, where tihiemeans method is suitable, can always be formulated
within the suggested general model. Figure 1.1 shows a simple example of such
a cluster problem in?? with £ = 3. In the following sections, we will use this
example for demonstration purposes.
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Figure 1.1:Example: Clustering of data set inR? with k = 3.
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1.1.2 Dynamic cluster problems

Recently new cluster methods have been suggested using homogeneity measures
not derived from a distance function or a more general data model [1, 5, 36]. The
reason for this conceptual change is the emergence of new fields of application for
cluster analysis, like e.g., the clustering of web-pages or of genomic data, where
a geometrically driven modeling is often not suitable.

One of these new fields of application is the the analysis of dynamic systems.
Here, an interesting problem is the identification of metastable sets of states, i.e.
sets of states with a high probability that the dynamic system moves between
states within the same set and a low probability of transitions between states of
different sets. Although the state space of a dynamic system might be modeled as
a geometric space, it is not advisable to equate metastable sets with geometrically
based clusters inside this space: The dynamics between different states may not
only depend on their geometric similarity. In the following we transform the iden-
tification of metastable sets of states of a dynamic system in a dynamic cluster
problem, which will be described within our general model.

Let ) be the set of all possible states of a dynamic system and choose any
representative trajectoty (1),..., X (7) € Q. SetV = {X(t)|t =1,...,T}
and define a frequency functigh:= Q@ — R{ via f(v) := [{t| X(t) = v, }|,
where|M | denotes the number of elements in a finite &et Further define for
anyv,w € V:

{t] X(t) = v, X(t + 1) = w}]
f(v)

so thatS(v, w) is the conditional probability of transitions from statéo statew
in a single step. We can directly exteSdon subsets oV, if we define for any
non-void subset$;, V5, C V:

S(Vi,Va) - sz (1.4)

vEV] wEVS

S(v,w) := (1.3)

One easily checks thd?(vl, V,) is the conditional probability of the dynamic
system being in a state of S&tto move to a state of séf in a single step.

The identification oft metastable sets of states of a dynamic system corre-
sponds to the computation bfdisjoint subset§’, C V' so thatﬁ(Os, Cy) =~ 1 for
s = 1,..., k. Since this is equivalent to a maximization¥}'_, S(C,, C;), the
identification ofk metastable sets is equivalent to the identification of an optimal
k-cluster set fofV, f, hs) wherehg is a suitable homogeneity function:
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Lemma 1.1.4 Definehgs : Q@ x Q@ — [0, 1] via

l S(’U,u}) S(’LU,U) .
hS('U,’U}) = { 2 < f(w) + O] > lf’l},w cV
0 else

Thenhg is a homogeneity function of.

Proof: Since0 < |{t|X(t) = v, X(t+ 1) = w}| < f(v) forall v,w € V, we
haveS(v,w) € [0,1]. Thereforehg is well defined and one easily checks that
hs(v,w) = hg(w,v) for anyv,w € V. O

Lemma 1.1.5 For any k-cluster seC of V' the weighted intra-cluster homogene-
ity with respect tof andhg is given by

1 k
Frns(C Ez (Cs, Cy).
Proof:
k
Cn@ = 13 gy o 3 st w01 @)
s=1 UEngGCq
k
- %Z 52 S 5 (S ,w) + f(w)S(w,v))
s=1 vGC weCs
k
- %Z (Zf Zs<v,w>+2f<w>25<w,v>>
s=1 velCy weCy weCy veCs
1< 1

1.2 Problem reduction via representative clustering

A point very critical within the application of algorithms for the identification of
clusters in high-dimensional data is the computational complexity, i.e. the corre-
spondence between the time one needs to compute a solution and the number of
data objects, respectively the number of attributes

Suppose we have an algorithm that computes an optirthlister setC of a
data set/ of sizen and dimensiom with respect to a frequency functighand
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a homogeneity functioh. One easily checks that we ne€dn?) valuesh(v, w)

to compute the weighted intra-cluster homogengEity(C). This usually makes a
direct optimization of s ;,(C) impossible, if the number is large. In the literature
several heuristic optimization approaches are suggested, but unfortunately, most
algorithms are designed for special applications and are therefore not generally
usable. Moreover a mathematical justification is very often missing. In the fol-
lowing, we will describe another way to deal with large data sets that is motivated
by principles of vector quantization and signal compression (see [35]) and that we
will call representative clustering

The reduction of cluster problems to a handier size via representative cluster-
ing rests upon the following assumption:

Optimal cluster assumption

LetC be any optimak-cluster set of a data set C (2 with respect to a frequency
function f and a homogeneity functioln ThenC assigns nearly maximally ho-
mogeneous objects in a predominant portion to the same cluster, Zec it is
any cluster and, w € V' are any data objects with(v, w) < hyu.. (V) — € for
smalle > 0, then usually we have: € C — w € C.

Since each optimalt-cluster set of(V, f, h) maximizes the weighted intra-
cluster homogeneity, this assumption should be true for most cluster problems.

Suppose now that the homogeneity functtomeets the following two condi-
tions:

e Local maximum condition: Objectsv,, v, € V are nearly maximally ho-
mogeneous, if they have nearly the same properties.

e Global correspondence conditionThe homogeneity functioh is nearly
identical for any two nearly maximally homogeneous obje¢ts; € V':

h(v1,v9) & hpar (V) = h(vy,v) = h(vy,v) forallv € V.

In the case of geometric cluster problems, the possible homogeneity functions
should meet the first condition and usually also the second one. For dynamic
cluster problems, itis necessary that the state s@aséuild by a set of attributes.

In this case moves between states with identical values for most attributes are
usually very frequent, i.e. the local maximum condition holds, and typically, such
states have very common dynamic properties, i.e. also the global correspondence
condition holds.
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If we successively replace objeats, v,,, . .. that have nearly the same prop-
erties by a representative object e.g.,w; := v;,, and define forw; a compressed
frequency valuef(w;) := f(v;,) + f(vi,) + ..., we come out with a data set
W = {wy,w,, ...} and a compressed frequency functjoof V.

LetC := {C}, ..., Cy} be any optimak-cluster set of W, f,h), then we can
extendC onV, if we deflneC = {Cy,...,C} with C, : = Uw,ec. 1Virs Vigs - - - }-

ObviouslyC is ak-cluster set of/. The Iocal maximum condition assures that
andv € {v;,, v, ...} are nearly maximally homogeneous. Therefore the global
correspondence condition guarantees:

th(C)
- Y T X M)
S w; €Cs wj€Cs

— kz Z S ohwiw) Y f) DS flw)

S w; €Cs wjeCls v1€{viy Wiy, } v2€{Vj; Vjg,-- }

= - Z Z Z Z Z h(wi, wy) f(v1) f(v2)

S w;i €C%s v1€{Viy Wiy, } WHECs va€{vj; ,vjy,.- }

kZ DIDIED SRR

S U1 eC, wi€Cs U2E{U]1 Vjg s -}

/{;Z Z ZhUhUQ Ul f(UQ)

S U1€C UQECQ

Q

Q

= FM(C).

Suppose now thatis not nearly optimal fofV, f, h). Then the optimal cluster
assumption guarantees that there exist objects, € V that are assigned to
different clusters irt, althoughh(vq, 1) is large. But this is a contradiction to the
fact that nearly homogeneous objects are replaced by the same representative and
therefore are assigned to the same clustét in

Let V(j) := {vsj|v = (vsn,...,v.4)" € V} be the projection of” on the
attributeA;. SetVy .= QI_, V(j) = {(a1,...,a))" [a; €V(j), i =1,...,q}.
Obviously we have” C V, € Q andn = |V| < |Vu| < n% When analyzing
high-dimensional data one often observes thats rather sparse with respect to
V, i.e. thesparsity factor|'V“ is very small. This guarantees thélt'| is smaller
thann, i.e. we have reduced our cluster problem.
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Figure 1.2 shows a reduction of our geometric cluster problef¥iia rep-
resentative clustering in principle.
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Figure 1.2:Example: Reduction of geometric cluster problem ink?.

A problem reduction via representative clustering is only efficienti¥if is
significantly smaller than the number Obviously the number of representatives
depends strongly on the criterion that is used for the identification of objects with
nearly the same properties. As a brute force approach one could think about using
a very weak criterion that allows to replace much objects by the same representa-
tive. In this case the local maximum condition only holds, if we call two objects
v1, v9 Nearly maximal homogeneous, evemifv;, v) is not so high. But then
we cannot be sure that their homogeneity in relation to all other objects is nearly
identical, i.e. that(vy,v) ~ h(vy,v) holds for allv € V. If the global correspon-
dence condition is violated too often, this usually has negative consequences for
the quality ofC.

In chapter 2 we will describe a concept caletompositiothat can be used
as a basis for the development of methods for an efficient problem reduction via
representative clustering. We will replace the global correspondence condition
for h by the construction of a compressed homogeneity fundii@amd define a
more convenient condition that guarantees the optimality, of C is an optimal
k-cluster set of W, f,h). Moreover in chapter 4 a multilevel approach is pre-
sented that uses decomposition based representative clustering for a fast cluster
identification.

1.3 Efficient cluster description

Besides the identification of clusters in high-dimensional data, also their efficient
description is very important for most practical applications (see chapter 5). We
want to know, which objects are homogeneous and also why they are homoge-
neous.
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Obviously such a description can be achieved via rules that allow to determine
the cluster membership of each object, based on its properties, i.e. rules like:

If v = (vi1,...,0.q)" €V hasthe properties, ; = a; and. .. andv, , = a,,
thenv belongs to cluste’;.

A description based on such rules has to be consistent, i.e. it contains no rules
assigning the same objecto different clusters.

Given anyk-cluster set€ := {C1, ..., C}} of adata seV in (2, we can always
generate rules for a cluster description in the following trivial way:

Define a functiorr, : V. — {1,...,k} via

ey (v) = ZSXCS(U) forallv e V,

s=1

wherey, denotes the characteristic function of clustér Then for any object

v := (vi1,...,v4)" €V we can state a rule:

If v = (ve1,...,v.4)" has the properties.; = v;; and... andv, , = v,
thenv belongs to cluste€. (.,).

Obviously then rulesry, ..., r, describe the clusters,, .. ., C} consistently,

but such a description is surely not efficient. We will demonstrate this by our
example of a geometric cluster problemRA (see Fig. 1.1):

ClusterC; contains33 data objects, i.e. we neel rules to describe this
cluster if we use our trivial approach. If we allow rules that are slightly more
complex, one easily checks that the following two rules are sufficient to describe
clusterC;:

If v = (v.1,v.2)" has the properties, ; = a; andv, 5 = ap With a; € [0, 2],
ay € [1,5], thenv belongs to cluste€’;.

If v = (v.1,v.2)" has the properties, ; = a; andv, 5 = ap With a; € [2,4],
ay € [3,5], thenv belongs to cluste€’;.

This motivates the following definition of cluster membership rules:

Definition 1.3.1 For any setB := {B,,...,B,} with B; C A;forj =1,...,q,
we callrg : © — {0, 1} with

, V= (Vaty ., Ueg)] €Q,

1 if(Vje{l,...,q}) v.; € B,
TB(U) :{0 els(e] { Q}) ) J

a membership rule for cluster,, if

rg(v) =1 = veCy forallveV.
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Usually we need a set := {r.1,...,7sm,} Of ms € N membership rules
for each cluste€’s, to guarantee that each object C, is assigned to clust&r,
by at least one rule, i.e. that we have

velCs, = (dreryr(v)=1 forallveV.

We call such a set, acomplete membership rule det clusterCs.
Based on complete membership rule sets for each cldstewe can easily
generate a description 6f

Lemma 1.3.2 Suppose there exists for each Clustérof C a complete member-
ship rule sets := {rs1,...,7rsm, }. Let’Hy denote the Heaviside function with

0 ift<0
Ho(®) ':{1 if £ > 0.

Then the functiom, : V. — {1, ..., k} with

s=1

e (v) = ZsHo(—l + eryj(v)) forallv e V.
=1

is a consistent description fat, i.e. we have

¢(v)=s <= vel; forallvelV.

Proof. “<=":Choose any € {1,...,k} and anyv € C. Sincer, is a complete
membership rule set, there existsan {1, . .., m,} so that, ,(v) = 1. Therefore
we haveH,(—1 + Z;”;l rsj(v)) = 1. Suppose now that there exists another
pe{l,....k}withp # sandH (-1 + > 7" r,;(v)) = 1. If this is the case,
there must existac {1,...,m,} so that, (v;) = 1. Sincer, > is a membership
rule for ClusterC,, this impliesv € C,. But this is a contradiction to € C;.
Therefore we have.(v) = s.

“—":Choose any € {1,...,k} and any € V' \ C;. SinceC is ak-cluster set

of V there exists @ € {1,...,k} withp # s andv € C,. As already proofed
above this guarantees(v) = p and therefore,. (v) # s. O

Letv = (vs1,...,0.q) € V be any data objectand let: V. — {1,... k}
be a consistent description 6fwith corresponding complete membership rule
setsry, ..., .. Then the determination of the cluster membership of rather
simple: Find a membership rulg € [J*_, r, with 75(v) = 1, i.e, withv, ; € B,
forj = 1,...,q. Sincec, is consistent, there exists exactly one {1,...,k}
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with 5 € r,. Therefore data objeat belongs to cluste€’;. Note that the exis-
tence of more than one membership rule r, with (v) = 1 is possible.

Obviously descriptions should be efficient in the sense that the correspond-
ing complete membership rule sets:= {r,,...,rs,,, } are minimal. i.e. the
numbersn, are as small as possible.

Often not all properties of a data object have to be considered to determine its
cluster membership. Especially in the case of high-dimensional data, with a great
numberg of attributesA;, a description based on a reduced set of attributes is of
great interest.

We will illustrate this again by our two-dimensional example. Suppose that
we restrict our data set to the data objects of cluSteand clustelC;. Then the
following two rules will be sufficient to describe the clusters:

If v = (v.1,v.2)7 has the property,; = a; with a; € [0, 4], thenv belongs
to clusterC.

If v = (vi1,v.2)" has the property, ; = a; witha, € [4.5, 8], thenv belongs
to clusterCs.

Obviously we only need attributd; for a description of clustef’; and Cj,

i.e. attributed, has no influence on the discrimination of both clusters. Note that
this is not true, for a description that includes cluster

We can easily extend our earlier definitions to work with reduced attribute sets:

Let J := {j1,...,Jm} C {1,...,q} any index subset of lengtln and let
A(J) :=={A;|j € J} be areduced set of attributes(ef Set(2(J) := &, ; 4.
and forv := (ve1,...,0.9)7 € Qdenote by (J) := (vijy, ..., v )" € QJ)
the projection or2(.J). Further setM (J) := {v(J)|v € M} C Q(J) for any
subsetM C (.

We can define/-reduced membership rules a special kind of membership
rules:

Definition 1.3.3 Let vz be any membership rule with := {B,,..., B,} and
B; c Ajforj =1,...,q. We callrz J-reduced, ifB; = A, for j ¢ J. Let
furtherr, be a complete membership rule set of clusterWe callr, a complete
J-reduced membership rule set, if each membershipirdae-, is J-reduced.

There exists an unique projection of ariyreduced membership rule on the
subspacé)(J):

Lemma 1.3.4 Letr; be any.J-reduced membership rule with:= {B,, ..., B,}
andB; C A;forj=1,...,q. Then the functionrg : Q(J) — {0, 1} with

0 else

F(5) = { LtV e v €8 o e T e Q)

is the unique projection ofs on Q(.J).
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Proof: For anyv = (v.1,...,0.4)" € Q we havev, ; € A; = B, forj ¢ J, and
thereforerg(v) = 75(v(J)). O

Analogously to Lemma 1.3.2 we can achieve a description based on the re-
duced set of attributed(.J), if there exists for each cluster a complgteeduced
membership rule set:

Lemmal.3.5Let J C {1,...,q} be any index subset of length. Suppose
there exists for each Clustér, of C a complete/-reduced membership rule set

rs == A{rs1,...,Tsm,} andr, ; denotes the unique projection of the membership
rule r, ; onQ(.J), then the functiom, : V. — {1,..., k} with
k ms

er(v() = sHo(—1+ Y Fa;(v(J))) forallv €V,
s=1 j=1
is a consistent description f@t based on the reduced attribute sét./), i.e. we
have

er(v(J)=s <= vel, forallvelV.

Obviously descriptions should be efficient in the sense that they are based on a
maximally reduced attribute set(.J), i.e. A(J) should contain as less attributes
as possible.

Efficient cluster description algorithm

Using the above definitions, the following general algorithm generates an efficient
cluster description for &-cluster set := {C}, ..., Cy} of a data set’ € Q:

(1) Find an index subset = {ji,...,jm} C {1,...,q} of minimal size so that
there exists a function: V. — {1,..., k} with

cv(J))=s <= veC, forallvelV.

(2) Compute for each cluste&r, a minimally complete/-reduced membership
rule setry == {rs1,...,"sm,}-

(3) User := {ry,...,r;} to construct a consistent descriptionof C based on
the reduced attribute sgt(.J).

Since we are analyzing high-dimensional data, i.e. the dimensistarge,
we obviously need heuristic solutions for step (1) and (2). For the development
of suitable methods the concept of decomposition is very helpful: In section 2.4
we will describe techniques for the computation of membership rule sets based on
approximate box decompositioasd we will introduce the concept adiscrim-
inating attributesthat allows the construction of heuristic algorithms to identify
optimally reduced attribute set(.J).
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1.4 How many clusters?

Up to now, we have supposed that the number of clustassknown a priori.

But in many real world applications this is not the case. Looking at Eq. (1.1) one
easily checks that the number of possibleluster sets explodes, ifis a further
unknown parameter of the cluster problem. Obviouslg the most important
parameter, i.e. with the words of cluster expert &zBEK: “It is clearly more
important to be looking in the right solution space (within k) than it is to be com-
paring partitions across k because k specifies the number of clusters to look for,
while the other parameters control the search for these substructyfgs.”

The definition of a general model for cluster problems with unknown cluster
number is still an open problem. Usually it is not suitable to determine a correct
number of clusters by computing for differehtthe optimalk-cluster set& (k)
and comparing the weighted intra-cluster homogenditjigsC(k)), because most
homogeneity functions tend to prefer extreme clusterings withl or k = n.

Example: Cluster problem with unknown number of clusters

We will illustrate this by the following simple example: Suppose we want to com-
pute an optimal clustering of a data $ét= {a,b,c,d, e, f,g,h,i} C R? with

a frequency function so thgt(v) = 1 for all v € V. We choosér = hy (see
Lemma 1.1.2) based on the Euclidean distance funetiend.., ;4. Figure 1.3
shows a plot o#” and the corresponding homogeneity matrix.

A2 B | blc]d | aT]g[h]

4 [1.000.67 | 0.96|0.86 0.800.73] 0.02)0.000.13
_l.'I !3.-'_' I'.l.'l_l'.l“EIH_l.'l Eli-"_l.'l FIH_I.'I ."":'I_I'.I Hd-_ﬂ .'-II-"_I.'I 47
[0.96 0,80 1.00(0.96 0,82 |0.66/ 0.35 0.34|0.46
|0.86 0.82|0.96[1.00 0.98|0.87| 045|048/ 0.61
0,60 0.860.92(0.99 1.00(0.99/0.42 0.46/0.60
[0.73]0.70]0.86(0.97 0.28]1.00/0.36 0.42[0.58
.62 0,24 | 0.35| 048]0, 42 [ 0.36] 1,00 0.9%9(0.95
[0.000.32[0.34|0.48 0.46(0.420.99 1.00(0.98
0.13/0.42[0.46[0.61 0.50]0.58)0.96 0.96[1.00
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Figure 1.3:Example: Cluster problem in R2 with unknown cluster number &.
Left hand side: Plot of data sét. Right hand side: Homogeneity matrix of
based on Euclidean distance.

In Table 1.1 the optimak-cluster set (k) of (V, f, h) and their weighted
intra-cluster homogeneitids; ;, (C(k)) are presented for differerit Obviously
one would expect = 2, 3 or4 as a correct number of clusters, but a maximization
of I'; ,(C(k)) leads always té& = 1. Therefore we cannot udg ,(C(k)) to judge
which k is best.
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optimalk-cluster set (k) | Tn(C(K)) |
c(l) =V 6.17
C(2) :={{a,b,c,d,e, f},{g,h,i}} 4.24
C(3) :={{a,b,c},{d,e, f},{g,h,i} 2.96
C(4) .= {{a} {b,c} {d. e, f},{g, h.i}} 2.23
C9) := {{a}, {0}, {c}, {d}, {e}. {f}. {g}. {R}. {s}} | 1.00

Table 1.1:Example: Optimal k-cluster sets of(V, f, h) for different k.

In the literature [42, 6, 25, 51] several other measures are suggested to deter-
mine the validity of a givert-cluster set and so to find the optimal clustering, but
all of these measures have the deficit that they first need the computation of opti-
mal k-cluster sets for different. In the worst scenario this requires the solution
of n optimization problems. If: is large, this is a really heroic task.

Another possibility to cope with the problem of the unknown number of clus-
ters might be to determine it in a pre-processing step. Via a projection of the
high-dimensional data on a two-dimensional plane, one hopes that the cluster
structure is not destroyed through the transformation and the number of clusters
can be determined by visual investigation. A very popular tool for such a pro-
jection aremultidimensional-scalingnethods [49], e.g., SMMON’ S non-linear
mapping algorithm [56]. The deficits of projection methods are obvious: For high-
dimensional data it is unlikely that the cluster structure on the two-dimensional
plane reflects the original structure. Moreover a visual investigation could be very
subjective.

For cluster problems with a special type of homogeneity functions, exhibiting
a stochastic property, we will present in chapter 4 a new method based on the
theory ofPerron Clusteranalysis that allows the computation of a correct number
of clusters. We will show that this method can be easily used together with the
suggested multilevel cluster identification approach.



