Chapter 2

Decomposition

In different research fields, decomposition usually describes the process of split-
ting a problem in smaller problems with less complexity. As was already mo-
tivated in section 1.2, a suitable reduction of a cluster problem can be achieved
via a grouping of nearly maximally homogeneous objects and a representation of
each group by a single object with compressed frequency value. If this kind of
partitioning of the data sét exhibits a certain homogeneity property, we will call

it a decomposition. After giving a general definition, we will introduce a special
type of decomposition, the so callegpproximate box decompositiotdere the
objects are pre-grouped in a way that they build a special subspéceat has

the shape of a multidimensional box(¥ is a metric space. We will develop a
theory for an efficient reduction of cluster problems via representative clustering
based on decomposition and we will present a basic reduction algorithm that will
be refined in chapter 4. Finally we will show how an approximate box decom-
position can be used to derive an efficient cluster description based on a minimal
number of so callediscriminating attributes

2.1 General Definition

Let V = {vy,...,v,} C Q be any data set if2 with frequency functiornf and
homogeneity functioth.

Definition 2.1.1 Assumen;, € N withn, < n ande € R with € < . (V).
We call® := {04, ...,0,, } ane-decomposition ofV, i) with partitions©y, if

ng

U@Szv, O:;#0, 0,N0,=0 forl <s<p<ny

s=1

and  h(v,w) > e (V) — € forallv,w € O4,s = {1,...,nx}.
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We further call

214(0) = 77 2 7767 22 2 theelV) =) 70 () = i
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the decomposmon error @& with respect tof andh.

Since0 < h(v,w) < Ay (V) for all v,w € Q, any ng-clustering ofV' is an
e-decomposition of V, h) with € = h,,... (V). The following Lemma guarantees
P4 1(0) € [0, hymae (V)] for anye-decomposition of V, h):

Lemma 2.1.2 Let© anye-decomposition ofV, »), then we haved;,(0) < e.
Proof. We have(h,,q: (V) — h(v,w)) < e forall v,w € ©, and therefore
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We will refer to© as a decomposition of, if there exists a homogeneity function
h and are € [0, hyq. (V)] SO thato is ane-decomposition ofV, h).

If we use the homogeneity measure= h, (see Lemma 1.1.2) based on a
distance functionl, one easily checks that we havg,, = 1 and

1

f(V)maxaaevde Zf > D dww)fo)f(w).

UG@ wWEB

Jrn(©) =

Therefore, in this special case, we can use algorithms that try to optimize the sum-
of-squares cost function to compute a decomposition for givewith minimal
decomposition error. Figure 2.1 shows two possible decompositionsith 6
partitions®, for our example of a geometric cluster problemiihusing the Eu-
clidean distance functiod = d...;s- The decomposition on the left hand side
has been computed automatically via a simple hierarchical optimization method
and leads te = 0.137 andd;,(©) = 0.019. The decomposition on the right
hand side has been additionally optimized manually and leads=td).135 and
Vrn(©) = 0.018. Obviouslye is only a very rough upper bound of the decompo-
sition error.
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Figure 2.1:Example: Two possible decompositions with six partitions ink?.

2.2 Approximate box decomposition

In the following we call any subse® C  aboxin €, if there exist non-void
subsetsB,, ..., B, with B; C A; andB = @j_, B;. We setBOX(Q) :=
{B| Bboxin2}.

Definition 2.2.1 Assumen;, € N with n, < n. We call (©,A) an approxi-
mate box decomposition &f with respect tof, wheneve© = {©,,...,0,, }

is a decomposition o and A is a set ofn, boxesAy, ..., A, € BOX(Q)

so thatoverlap;(A) ~ 0 and f(©, N A,) > 0fors = 1,...,n,. The value
overlay ;(©, A) € ]0, 1] indicates how good\ approximates.

Herein we use the terntwerlapandoverlayin the following way:

Definition 2.2.2 Let M := {M,, ..., M, } be any set ofy, € N subsets of2 with
f(Ms) >0fors=1,... ,n. Let© be adecomposition df with n,, partitions
O,. Then the overlay ab and M with respect tof is given by

overlay ;(©, M) := %V) Z f(M;NOy), (2.1)

whereas the overlap 0$1 with respect tof is given by

i f(MSmUp sMp)
overlap ;(M) := Z ra ;;) :

If overlay ;(©,A) = 1, we call(©, A) a perfect box decomposition &f, Note
that if A(V) :={A1NV,...,A,, NV} is adecomposition of, (A(V),A) is
always a perfect box decomposition.

(2.2)
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Figure 2.2 presents two approximate box decompositions based on the decom-
positions shown in Figure 2.1. On the left hand side, the six boxes does not ap-
proximate the decomposition perfectly, because two boxes overlap each other and
four points are not covered, i.e. there is an insufficient overlay. On the right hand
side of Figure 2.2, the decomposition is approximated perfectly with six boxes.
Note that for the automatically computed decomposition, shown on the left hand
side of Figure 2.1, no perfect approximation with six boxes is possible at all.
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Figure 2.2:Example: Approximate box decomposition i, = 6) in R%. Left
hand side: Approximate box decomposition with insufficient overlay and overlap.
Right hand side: Perfect box decomposition.

Example: Uniform box decomposition

We can always construct a perfect box decomposition;jFkoK1, . .., ¢} choose
anym; € N and any disjoint non-void subsets, ;, ..., B, ; C A; so that
Uiy Bij = A;. Setm := []i_; m; and for any index tupléi,, ..., i,) with
1 <i; < m; choose an unique numbee= p(iy,...,4,) € {1,...,m} and define
A, = Q)j_, Bi, ;. Obviously we have), € BOX(Q2) for eachp € {1,...,m}.

If we setl(V) := {p|A, NV # 0} andA;y) == {A,|p € I(V)}, then
one easily checks that\;(V), Ajw)) is a perfect box decomposition f
becauseA ;) (V) = {A, NV |p e I(V)} is a decomposition o¥. Since the
construction ofA,, is uniform in the sense that each attributeois divided into
m; disjoint subsets, we callA;(V'), Ajvy) an uniform box decomposition of
Q.

Note that the construction of the decomposititypyy (V') is independent of
the homogeneity functioh and so the decomposition error is not guaranteed to
be small. Further remember that, with increasjpghe numbern grows expo-
nentially, even if we split each attribute in only two subsets, i.e. if werget= 2
for j = 1,...,q. For example; = 20 leads tom > 10°. So we usually have
m > n and thereforé/ (V)| ~ n. But this makes an uniform box decomposition
unsuitable for a reduction of high-dimensional cluster problems.
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Figure 2.3 shows an example of an uniform box decomposition for our geo-
metric cluster problem k>

Figure 2.3:Example: Uniform box decomposition in R2.

In chapter 3 we will present an adaptive method based on self-organized neural
networks that allows to compute approximate box decompositions without the
described shortages of an uniform procedure.

2.3 Decomposition based representative clustering

In section 1.2 we motivated the basic idea of a cluster problem reduction via repre-
sentative clustering. We have presented a simple way to compute representatives
w; € Q with compressed frequency valf(ey;). Further, we have shown that an
optimal clustering of the representatives corresponds to an optimal clustering of
the original data sét’, if the homogeneity functioh meets a local maximum and

a global correspondence condition for all objects that are compressed to the same
representative. Unfortunately this often leads to an unsatisfactory problem reduc-
tion, i.e. too many representatives are needed. The described conditions seems to
be too strong for practical applications.

In this section we will develop a theory for cluster problem reduction via de-
composition based representative clustering, without using any conditiohs for
The objects are grouped together so that they are building partitions of a decom-
position of the data sét. For the computation of an optimalcluster set of the
representative sét/, the original homogeneity functioh is replaced by a com-
pressed functiorh. We will show that if the decomposition is suitably fine, i.e.
the decomposition error is small, thiscluster set can be extended to an optimal
k-cluster set o/ with respect tof andh.
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Definition 2.3.1 Assumey, € N withn, < n. LetW := {wy,...,w, } CV
any subset o and let© any decomposition df with n;, partitions©,.

(1) We calliv a codebook o®, if w, € ©, for s =1,...,n,. We will refer to the
data objectsu, as representatives or codebook vectors.

(i4) LetW any codebook d, then we call the functiofi : 2 — R with

fws) == f(©,) fors =1,...,n; and f(v):=0forve Q\W,

the compression of onW. We setf (M) := 3", _,, f(m) for any subsed/ C Q.
(iii) LetTW any codebook a®, then we call the functioh, : Q — [0, 1] with

;Lf(ws,wp) = - Z Z h(v,w)f(v)f(w) fors,p=1,... ,n

f(ws)f(wp) vEO, WED,

andh (v, w) := 0 forv,w € Q\ W, the compression éf on W with respect tof.
(iv) For anyk-cluster seC := {C},...,Cy} of V, setCs(W) := C;nW. Then
we callC(W) := {Cy (W), ..., Cx(W)} the compression af on V.

(v) For any k-cluster setC := {C,...,C\} of a codebookl?” of ©, we define
C:={C,...,Ci}with C; :=J,, ¢, ©, and callC the extension af on V.
Lemma 2.3.2 Assume;, € N with k£ < n;, < n and let®© be any decomposition
of V with n;, partitions©, and a codebookl’. Then we have:

(a) The compressioji is a frequency function fa” and the compressiofmf is a
homogeneity function fdi'.

(b) If C is a k-cluster set ofV/ then the extensiofi is a k-cluster set of/.

Proof. (a) and (b) follow directly from Definition 2.3.1. O

A decomposition is fine enough for a givércluster set, if each partition belongs
to only one cluster:

Definition 2.3.3 LetC := {C4,...,Cy} be anyk-cluster set oft’. Further as-
sumen;, € N with £ < n; < nandleto := {0y,...,0,,} be any decomposi-
tion of V. We call© a covering ofC, if there exist non-void disjoint index subsets
I,... . Lywith U I, = {1,... n;} so thatC, = |, ©,.

Obviously®y = {{v}|v € V} and©, := C are trivial coverings of’. But
there exists also non-trivial coveringgifmeets a stronger version of the optimal
cluster assumption (see section 1.2):

Lemma 2.3.4 Let C be anyk-cluster set o ande € R with ¢ < hp. (V).
If we have(v € ¢ = w € () for any clusterC € C and allv,w € V with
h(v,w) > hpa (V) — €, then anye-decompositio® of (V, ) is a covering of.
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Proof: Letn, € N withk < n, < nand® := {6,...,0, } be any
e-decomposition ofV, k). For any cluste’; € C setl, := {p| 0, N C;s # 0}.

Then we have J*_ I, = {1,...,n,} andC, c | ., ©,. Obviously we are
ready, if we show:

pEls

(Vpel,) O, CCs.

But this follows directly: Since < I, there exists an objeete ©, N C,. Then
for all w € ©, we haveh(v, w) > hp.. (V) — e and therefore also € Cs. O

The next Lemma shows that the weighted intra-cluster homogeneity of any
k-cluster set of V and its compression o’ are equal if there exists any cover-
ing of C. We will use this fact in combination with Lemma 2.3.6 within the proof
of the basic Theorem 2.3.7.

Lemma 2.3.5LetC := {C4,...,Cy} be anyk-cluster set ofi” and © be any
covering ofC with n,, partitions©,, and a codebookV" := {w;,...,w,, }. Then
the compressio6i(IV) is ak-cluster set ofV with 'y ; (C(W)) = L'z (C).

Proof: ObviouslyC(WW) is ak-cluster set, ifCs(W) # () fors = 1,..., k. But
this follows immediately from the fact th& is a covering ofC with codebook
W. Further it follows that the index subséts . . ., I, with I, .= {p|lw, € Cs}
are non-void and disjoint and that we have= U

Sincef(C,) = f(Cy(W)), this yields:
k

ra(C) = %Z PIDILCRONONT

s=1 UGCq U}GCQ

=EZ 322 D 2 hww)f()f(w)

plEIs p2€ls vEO, WEBy,
1 Z
k

Z Z hf wpl’wp2 wPl)f(wp2>
- %Z f Cl(W Z Z hf wpl’wPQ wpl)f(wm)

pGI

—_
=

e

plEIs pQGIs

s=1 p1€Iq p2€ls
k
1 1 . . .
= - S — Z Z hf(wpu wpz)f(wm)f(wpz)
k s=1 f(CS(W)) wpy €Cs (W) wpy €Cs (W)
= Dgp, (C(W))
O

The covering property of a decomposition can be transmitted to its extension:
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Lemma 2.3.6 Let © be any covering of with ny, partitions©,, and a codebook
W= {wy,...,w,, }. IfC:={C,...,Ck} is ak-cluster set of//, then® is a
covering of the extensiahofC onV.

Proof: SetJ; := {p|w, € Cs} fors =1,... k. SinceC is ak-cluster set ofV,
we have/, # 0, J,NJ,=0for1 < s <p<kandJ"_, J, = {1,...,n}. By
definition ofC, we further have’, := U, .. ©, = U, ©, and therefor® is
a covering ofC. o

Using the previous lemmata we can proof the basic theorem of decomposition
based representative clustering:

Theorem 2.3.7LetC := {C}, ...,C)} be any optimak-cluster set of V, f, h).
Further let © be any covering of with ny partitions ©,, and a codebookV'.

If C is an optimalk-cluster set of W, £, h;), then the extensiof is an optimal
k-cluster set of V, f, h).

Proof: (i) LetC(W) := {C,(W),...,Ci(W)} with Co(W) := C; N W be the
compression of. Since® is an covering of’, we can apply Lemma 2.3.5 and
yield:

Irn(€C) = Tyj, (C(W)).

(i7) LetC(W) == {C1(W), ..., C(W)} with Cs(W) := C;NW be the compres-

A

sion ofC. Then one easily checks thatlV') = C. Since Lemma 2.3.6 guarantees
that® is a covering o, we can again apply Lemma 2.3.5 and yield:

Lra(C) = T4, (C).

(i1i) SinceC is an optimak-cluster set of W, f, i) andC is an optimak-cluster
set of(V, f, h), we have

Ts5,(C) > T (C(W)) and Tya(C) > Tpu(C).
Using (i) — (7it) we get
0 > Tyu(C) = Tpu(C) = Tyu(C) = Ty (CW)) > Tyn(C) — Tz, (C) = 0

and thereford';,(C) = nyh(f). SinceC is an optimalk-cluster set, this guaran-
tees that is also optimal. O

From Theorem 2.3.7 we can derive a basic algorithm for the reduction of clus-
ter problems via representative clustering based on decomposition:
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Basic reduction algorithm

Suppose we want to compute an optirhalluster set of a data sét with respect

to a frequency functiorf and a homogeneity function

(1) To reduce the complexity of the cluster problem, we have to compute first a
decompositior® := {Oy,...,0,,} of V and a codebook’ so that® is an cov-
ering of an optimak-cluster set of V, f, h).

(2) Next we compute an optimedpresentative clusteringe. an optimak-cluster

setC of (W, f, hy).

(3) Finally we have to extend on V. The resulting is an optimal-cluster set

of (V. f,h).

Obviously such an algorithm makes only sense if in step (1) the optirolister
set has not to be known a priori and the numieis much smaller than the num-
bern of objects inV/.

Using the optimal cluster assumption (see section 1.2) and Lemma 2.3.4, we
can suppose that for sufficiently smalleache-decomposition o/ is a covering
of each optimak-cluster set of V, f, h). This motivates the following assump-
tion:

Covering assumption

If a decompositior® of V' is sufficiently fine, i.e. ifd;,(©) is small, then there
exists a nearly optimai-cluster set of V, f, h) so that® is a covering of it.

Obviously the fineness dd corresponds with the number of partitionsg.
Therefore we need a method that — given an upper bound, 6f tries to
compute a maximally fine decomposition, while using only a minimal number
of partitions. In chapter 3 we will present such a method based@mndfEN s
Self-Organizing Maps (SOM). Since the choice of the upper boundfa rather
arbitrary, in chapter 4 we will refine our basic reduction algorithm to a multilevel
algorithm that iterates the steps (1) and (2) until a sufficiently fine decomposition
and corresponding optimal representative clustering is found.

Example: Representative clustering of a geometric cluster problem ik

We will give a short demonstration of our basic reduction algorithm by our exam-
ple of a geometric cluster problem it?.

Sinceh,q. (V) = 1, any e-decompositior® with ¢ = 0.05 should be fine
enough to use it within our algorithm. Figure 2.4 shows a suitadiecomposition
of the100 points in the data sét with n, = 10 partitions.
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Figure 2.4:Example: Covering with n;,, = 10 partitions of 3-cluster set in 2.

Now we have to choose any codebddk:= {w;, ..., wo} of © and to com-
pute the compressed functiofiind/ according to Definition 2.3.1.

One easily checks thdt{w,, wy, w3}, {ws, ws, we, we }, {ws, we, wio}} is an
optimal 3-cluster set of I, f, ). An extension ori/ directly leads to the three
clusters”;, Cy andCs (see Figure 1.1). Note that tBecluster se€ := {C, Cs, C5}
meets the conditiofw € C = w € C) for any clustelC € C and allv,w € V
with i(v, w) > hpe (V) — €. Therefore Lemma 2.3.4 guarantees that our decom-
position® is a covering or, i.e. that it was fine enough.

Decomposition clustering

Instead of clustering codebook vectors, we can also cluster a decomposition itself:
Let® := {©,...,0,,} be any decomposition df. Then© can be interpreted

as a data set ift := p(Q), wherep(Q) := {M | M c Q} denotes the power set

of Q2. We can extend the frequency functipmnd the homogeneity functionon
subsets of:

Definition 2.3.8 R

(@) We callf : p(©2) — N with f(M) := > _,, f(v) for any subsef\/ C €,
the set extension gf. We setf (M) := 3, ., f(M) for M C p(Q).

(b) We callh; : p(Q) x p(2) — [0, 1], with

D S i
hy(Vi, Vo) = { TRV 2ovevi ZwOEVQ Ao, w) ()] (w) ;fls‘(:l VRNV

for any subset¥;, 1, C €2, the set extension afwith respect tof.
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~

Note that we hav® < h;(Vi,V3) < 1 andhs(Vi, Va) = hy(Va, Vi) for any
non-void subset®;, V5, C V.

The following Theorem guarantees that the computation of an optirolister
set of (W, f,h) is equivalent to the computation of an optimiatluster set of
(O, f h) if © is any decomposition of with codebooki’. This makes it pos-
sible to replace the clustering of codebook vectors by a direct clustering of the
corresponding partitions of the decomposition within step (2) of the basic reduc-
tion algorithm.

Theorem 2.3.9LetW := {w, ..., w,, } be any codebook @&.

(1) LetC := {C4,...,Cy} be anyk-cluster set oB. Then there exist non-void
disjoint index subsets; with U’;Zl Iy ={1,...,m} sothatCs = {O©,|p € I}.

If we setC(W) := {w,|p € I}, thenC(W) = {Cy(W),...,C(W)} is a
k-cluster set otV with I'; ; (€C) =Ty5, (C(W)).

(1) LetC := {C,...,Cy} be anyk-cluster setofV. Ifwe setl; := {p|w, € (JS},
then the index subsejﬁ -, 1 are non-void and disjointwitb)’“ Io=A{1,... n}.
The extensiok(2) := {Cl( ), ..., Ce()} with Cy(Q) = {6,|p € I} isa
k-cluster set oB with I'; 5 (C) = r, 1, (C(Q).

Proof: Since(i:) follows analogously, we only shof):

(a) Iy5,(€) = kz Z > bV Vo) f(V) £ (V)
VleC Voels
= Z P IPILLCAESYCHICHS
k Zpels p1 €l pa€ls
= kZ oy 2 2 2 2 M w)f)f(w)
pGIq p1€Ig p2€ls vEOp, WEOY,

= kZ C’ W) p;gp;@ hy(wp,, wy,) f wm)f(wpz)

= L5, (C(W))
O

We will use this equivalence of representative clustering and decomposition clus-
tering in the discussion of our main Theorem 4.3.9 in chapter 4.
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2.4 Efficient cluster description via approximate box
decomposition

In this section we will describe, how approximate box decompositions can be used
to generate efficient cluster descriptions according to section 1.3.

2.4.1 Computation of membership rules

We can easily determine cluster membership rules fechuster set, if we have
an approximate box decompositionlofthat is a covering of :

Lemma 2.4.1 Assumen;, € N with k < n, < n. LetC := {C},...,Cy} be
any k-cluster set o’ and®© := {©,,...,0,, } be any covering of with non-
void disjoint index subsets, ..., I so thatC, = Upels ©,. Further suppose
the existence of ang := {A;,...,A,, } so that(©,A) is an approximate box
decomposition oF” with respect tof.

(i) Forp € {1,...,n;} there exist for each € {1,...,¢q} asubseB, ; C A; so
thatA, = Qj_, By

(i) SetB, := {By1,...,Byq} forp e {1,...,n;} and definez, : @ — {0,1}
with

o, (v) = { 1 if(Vje{l,....q}) vij € By,

T
0 olse , V= (Vi1y. ., 0ig) € Q.

If p € I, and f(A,\ C;) = 0, thenrp, is a membership rule for cluster,.
(#i) If f(A\Cs) = 0forallp € IyandCys C ;. Ay, thenrs := {rp, |p € I}
is a complete membership rule set of cluster

Proof: (i) Follows directly fromA, € BOX((2).
(17) We have
F(A\NCs) =0 <= ANV CC;
and therefore
rg,(v) =1 = veA,CC; forallv e V.

it1) From (iz) follows thatrg, is a membership rule af for eachp € /. Since
C, C Upels A,, we have

velC, = (pel)vel, < (Fpecl)rs,(v)=1.
U

Note that the conditiorf(A, \ Cs) = 0 is only violated if boxes from different
clusters overlap each other. Therefore this condition is weaker than the condition
overlap;(A) = 0.
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Membership rule set algorithm

From Lemma 2.4.1 we can derive an algorithm to compute complete membership
rule sets that are nearly minimal fokcecluster set:

(1) Compute an approximate box decompositienA) of V' so that® is a cov-

ering ofC, A fits the conditions of Lemma 2.4.1 ang < n.

(2) Construct they, membership ruless, as described in Lemma 2.4.1. Since
for each cluster a minimally complete membership rule set must contain at least
one rule, we need at leastmembership rules to describéaluster set. If the
difference ofn, andk is not to large, the complete membership rule setare
nearly minimal.

Example: Complete membership rule set for a3-cluster set in R? based on
approximate box decomposition.

For our geometrically based cluster problenfifiwith & = 3, Figure 2.5 shows

an approximate box decompositigf?, A) that covers the optimal-cluster set.
Obviously the overlap between the boxes causes no problems and therefore we
canuse\ := {Aq,..., A, }, withboxesA, = B, ; x B, , and subset®, ; C R
according to Table 2.1, to determine minimal membership rule set for the optimal
3-cluster sef C, Cy, C3}.

N, ®
21 '..o 20.0 %’ C3
o ® OO0 . o °
o %o °q .0 o ©
° o °©o%%, o
T| ® ¢ |CL % o °
° o 0,° ®°o °®
o L oo O |0g o
o1 JAN ° o,
oo 1 oo ® c2 o o
e o o0 A6 o ®
0%, 0. 0y et
—+ 0.0 .o o o,
As * o 0 o. .o
1 1 1 1 1 1 1 —» Al
2 4 6 8

Figure 2.5:Example: Approximate box decomposition that is a covering of a
3-cluster set in R?. Unproblematic overlap between boxes of the same cluster.
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If we define the membership ruleg, as described in Lemma 2.4.1, then

r1 = {rs,,rs,} (respectivelyry := {rg,,rg,}, r3 := {rg,,rs,}) is a complete
membership rule set of clustél; (respectivelyC;,, C's). One easily checks that

r1, 9 @ndrs are minimal.

‘ P ‘ Bp,l ‘ Bp,Q ‘
1] [0.25, 1.5] | [1.25, 3.75]
2| [0.25, 3.5] | [3.25, 4.75]
3| [2.5,4.125]| [0.25, 2.5]
4| [3.625,6] | [0.25, 1.5]
5|[4.25,7.5] [2.25, 4]
6| [6.25, 9] [1, 4]

Table 2.1:Example: Approximate box decomposition that is a covering of a
3-cluster set in 2,

Instead ofA we could also use the box decomposition that is shown on the
right hand side of Figure 2.2. But note that the approximate box decomposition on
the left hand side leads to an incomplete membership rule set for clustdihe
uniform box decomposition from Figure 2.3 is also suitable, but the corresponding
membership rule sets are not minimal.

2.4.2 Discriminating attributes

Since we are interested in efficient cluster descriptions, we have not only to de-
termine complete membership rule sets, we have also to reduce them as much as
possible (see section 1.3). Therefore we have to identifydiberiminating at-
tributesof the cluster problem, i.e. the attributes that are necessary to determine
the cluster membership of each data object.

LetV = {vy,...,v,} C Q be any data set if2 with frequency functionf
and homogeneity functioh. Further letC := {C},...,C.} be anyk-cluster
set ofV and® := {©4,...,0,,} be any covering o€ with non-void disjoint
index subsetd,, ..., I; so thatJ*_, I, = {1,...,n;} andC, = Uyer, ©, for
s = 1,..., k. Remember that for any index subset {1,...,q}, v(J) denotes
the projection ob € Q2 onQ(V'), whereQ2(1) is spanned by the attributels with
j € J. Remember further that we have defined.J) := {v(J)|v € M} for any
subsetM C (.
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Definition 2.4.2 LetJ C {1,..., ¢} be any non-void index subset and denote by
Je:={1,...,q}\ I its complement.
(a) We call the attribute set(J¢) := {A; | j € J°} redundant forC if we have:

veC, < v(J)e | 6,J) forallv € V.

p€ls

(b) We call the attribute setl(.J¢) maximally redundant fo€ if there exists no
subset/ C {1,...,q} so thatA(J) is redundant foC and|.J| > | J|.

(c) We call attributeA; an univariate discriminating attribute df, if A({j}) is
not redundant foC.

(d) We call the attributesl; € A(.J) multivariate discriminating attributes @f if

A(J¢) is maximally redundant fof.

The following Lemma is an extension of Lemma 2.4.1:

Lemma 2.4.3 Suppose there exist any := {Ay, ..., A,, } so that(0,A) is an
approximate box decompositioniofwith respect tgf. Choose any € {1,...,k}
and anyp € I,. Definerg, according to Lemma (2.4.1) and suppose further that
f(A,\ Cs) =0, then we have:

The functiong, ;) with B,(J) := {B,1(J), ..., By4(J)} and

A else

J

By () :={Bj A o e L)

is a J-reduced membership rule for clustét if .A(J¢) is redundant foiC.

Proof: We have

FAN\C) =0 ANV CC=[]6, = A)c ] 6,))

pEls p€El;s

and therefore

re,0n(v) =1 = v(J) € Ay(J) C | 6,()) <= veCl.

p€ls

O
Analogously to Lemma 2.4.1 one easily checks thas ., |p € L} is a
J-reduced complete membership rule set of clustgrif f(A, \ Cs) = 0 for
allp € I, andCy C U,c;, Ay Moreover if A(J¢) is maximally redundant,
{rs,) | p € I} is optimally reduced.
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Discriminating attributes identification algorithm

Suppose thaf is any optimalk-cluster set of(V, f, h) and that there exist any
A = {Ay,..., A, } sothat(©,A) is an approximate box decomposition 16f
with respect tof. Then the following algorithm can be used to determine the
multivariate discriminating attributes Gt

(1) Choosd < 0 < 1. SetJ,,: :={1,...,q} andd,, := 0.

(2) LetJ C {1,...,q} be any index subset of minimal size so that

A~

overlap ;(A(J) < overlap;(A) + 0,
whereA(J) := {A(J),..., A, (J)} with
Ay(J)cQandve A(J) < v(J)eA(J) forallv € Q.

(3) If | J| < ¢, then goto step (5).

(4) If 4.,: = 0, then goto step (7), else stop.

(5) If A(JC) is not redundant fo€, then decreaséand goto step (2).
(6) If |.J] < |Jopt|, then set/,,, := J andd,,; := 9, else stop.

(7) If |J| > 1, then increasé and goto step (2), else stop.

For cluster problems with a special type of homogeneity function, that exhibits
a stochastic property, in chapter 4 we are going to present a method that allows to
proof quickly if A(J¢) is redundant fo€.

Example: Discriminating attributes of cluster problem with unknown num-
ber of clusters

If we look again at our simple example from section 1.4, we can easily identify the
discriminating attributes corresponding to the optidaluster sets for differently
chosenk.

Obviously for the clustering§(1) — C(4) we need for each € V only the
value for attributed, to determine the cluster membership.

Formally spoken, if we sef := 1 and choosé < {1,...,4}, then we have
for each cluste€ € C(k) and for allv € V.

vely <= v(J)e ).

Since® := C(k) is always a trivial covering of-cluster set (%), the attribute
setA(J¢) = {Ay} is redundant. Further it is maximally redundant, because it
is not possible that a redundant attribute set contains all attributes. Therefore
Ay € A(J) is a multivariate discriminating attribute 6{k), k = 1, ..., 4.
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To illustrate the working of the suggested identification algorithm, we use it to
determine the discriminating attributes®f= C(2):

At the beginning we se® := C and A := {A;, A}, with boxesA; :=
Bl,l X BLQ = [05, 2] X [05, 3] andAQ = BQ,l X 8272 = [55, 6] X [15, 25]
Then(©, A) is an approximate box decompositionlof

In step (1) we choose a smalle.g.,d := 0.01. We set/,,; := {1,...,q}
andd,,; := 0.

Obviously in step (2) it is enough to investigate:= {1} and.J, := {2}.
Extending the projection&\(./;) := Bs; and Ay(Jy) := B2 we got
Ag(J1) == Bsy x RandAg(Jz) := R x By for s = 1,2. This leads

to overlap;(A(J)) := 0 andoverlap;(A(Jy)) := 0.56. Since we have
overlap;(A) = 0, we set/ := J;.

At step (3) we havéJ| = 1 < 2 = ¢ and therefore we jump to step (5).

Now we have to prove, if{(J¢) = {A,} is redundant. This is the case and
we go to step (6).

Since|J| =1 < 2 = |Jope|, We set],,; := J andd,y; := 6.

At step (7) we stop, becausé| = 1. The result of the algorithm ig,,; := 1

and determines!; as the only multivariate discriminating attribute ©f
One easily checks, thag,, is a kind of quality indicator of the computation.

If 6, is sufficiently small, we can be confident that we have identified the
correct multivariate discriminating attributes of clusterihg
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