
Chapter 2

Decomposition

In different research fields, decomposition usually describes the process of split-
ting a problem in smaller problems with less complexity. As was already mo-
tivated in section 1.2, a suitable reduction of a cluster problem can be achieved
via a grouping of nearly maximally homogeneous objects and a representation of
each group by a single object with compressed frequency value. If this kind of
partitioning of the data setV exhibits a certain homogeneity property, we will call
it a decomposition. After giving a general definition, we will introduce a special
type of decomposition, the so calledapproximate box decomposition. Here the
objects are pre-grouped in a way that they build a special subspace inΩ that has
the shape of a multidimensional box ifΩ is a metric space. We will develop a
theory for an efficient reduction of cluster problems via representative clustering
based on decomposition and we will present a basic reduction algorithm that will
be refined in chapter 4. Finally we will show how an approximate box decom-
position can be used to derive an efficient cluster description based on a minimal
number of so calleddiscriminating attributes.

2.1 General Definition

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf and
homogeneity functionh.

Definition 2.1.1 Assumenk ∈ N with nk ≤ n and ε ∈ R+
0 with ε ≤ hmax(V ).

We callΘ := {Θ1, . . . ,Θnk
} an ε-decomposition of(V, h) with partitionsΘs, if

nk⋃
s=1

Θs = V , Θs 6= ∅ , Θs ∩ Θp = ∅ for 1 ≤ s < p ≤ nk

and h(v, w) ≥ hmax(V ) − ε for all v, w ∈ Θs, s = {1, . . . , nk}.
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We further call

ϑf,h(Θ) :=
1

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

(hmax(V ) − h(v, w))f(v)f(w) → min

the decomposition error ofΘ with respect tof andh.

Since0 ≤ h(v, w) ≤ hmax(V ) for all v, w ∈ Ω, anynk-clustering ofV is an
ε-decomposition of(V, h) with ε = hmax(V ). The following Lemma guarantees
ϑf,h(Θ) ∈ [0, hmax(V )] for anyε-decomposition of(V, h):

Lemma 2.1.2 LetΘ anyε-decomposition of(V, h), then we have:ϑf,h(Θ) ≤ ε.

Proof: We have(hmax(V ) − h(v, w)) ≤ ε for all v, w ∈ Θs and therefore

ϑf,h(Θ) ≤ 1

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

εf(v)f(w)

=
ε

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

f(v)
∑
w∈Θs

f(w)

=
ε

f(V )

nk∑
s=1

1

f(Θs)

∑
v∈Θs

f(v)f(Θs)

=
ε

f(V )

nk∑
s=1

∑
v∈Θs

f(v) =
ε

f(V )

nk∑
s=1

f(Θs) =
ε

f(V )
f(V ) = ε

�

We will refer toΘ as a decomposition ofV , if there exists a homogeneity function
h and anε ∈ [0, hmax(V )] so thatΘ is anε-decomposition of(V, h).

If we use the homogeneity measureh = hd (see Lemma 1.1.2) based on a
distance functiond, one easily checks that we havehmax = 1 and

ϑf,h(Θ) =
1

f(V )

1

max
ev, ew∈V d(ṽ, w̃)2

nk∑
s=1

1

f(Θs)

∑
v∈Θs

∑
w∈Θs

d(v, w)2f(v)f(w).

Therefore, in this special case, we can use algorithms that try to optimize the sum-
of-squares cost function to compute a decomposition for givennk with minimal
decomposition error. Figure 2.1 shows two possible decompositions withnk := 6
partitionsΘs for our example of a geometric cluster problem inR2 using the Eu-
clidean distance functiond = deuclid. The decomposition on the left hand side
has been computed automatically via a simple hierarchical optimization method
and leads toε = 0.137 andϑf,h(Θ) = 0.019. The decomposition on the right
hand side has been additionally optimized manually and leads toε = 0.135 and
ϑf,h(Θ) = 0.018. Obviouslyε is only a very rough upper bound of the decompo-
sition error.
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Figure 2.1:Example: Two possible decompositions with six partitions inR2.

2.2 Approximate box decomposition

In the following we call any subsetB ⊂ Ω a box in Ω, if there exist non-void
subsetsB1, . . . , Bq with Bj ⊂ Aj andB =

⊗q
j=1Bj . We setBOX(Ω) :=

{B |B box in Ω}.

Definition 2.2.1 Assumenk ∈ N with nk ≤ n. We call (Θ,∆) an approxi-
mate box decomposition ofV with respect tof , wheneverΘ := {Θ1, . . . ,Θnk

}
is a decomposition ofV and ∆ is a set ofnk boxes∆1, . . . ,∆nk

∈ BOX(Ω)
so thatoverlapf(∆) ≈ 0 and f(Θs ∩ ∆s) > 0 for s = 1, . . . , nk. The value
overlayf (Θ,∆) ∈ ]0, 1] indicates how good∆ approximatesΘ.

Herein we use the termsoverlapandoverlayin the following way:

Definition 2.2.2 LetM := {M1, . . . ,Mk} be any set ofnk ∈ N subsets ofΩ with
f(Ms) > 0 for s = 1, . . . , nk. LetΘ be a decomposition ofV with nk partitions
Θs. Then the overlay ofΘ andM with respect tof is given by

overlayf (Θ,M) :=
1

f(V )

nk∑
s=1

f(Ms ∩ Θs), (2.1)

whereas the overlap ofM with respect tof is given by

overlapf(M) :=
k∑

s=1

f(Ms ∩
⋃

p 6=sMp)

f(
⋃k

p=1Mp)
. (2.2)

If overlayf(Θ,∆) = 1, we call (Θ,∆) a perfect box decomposition ofV , Note
that if ∆(V ) := {∆1 ∩ V, . . . ,∆nk

∩ V } is a decomposition ofV , (∆(V ),∆) is
always a perfect box decomposition.
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Figure 2.2 presents two approximate box decompositions based on the decom-
positions shown in Figure 2.1. On the left hand side, the six boxes does not ap-
proximate the decomposition perfectly, because two boxes overlap each other and
four points are not covered, i.e. there is an insufficient overlay. On the right hand
side of Figure 2.2, the decomposition is approximated perfectly with six boxes.
Note that for the automatically computed decomposition, shown on the left hand
side of Figure 2.1, no perfect approximation with six boxes is possible at all.

 overlap

insufficient
overlay

Figure 2.2:Example: Approximate box decomposition (nk = 6) in R2. Left
hand side: Approximate box decomposition with insufficient overlay and overlap.
Right hand side: Perfect box decomposition.

Example: Uniform box decomposition

We can always construct a perfect box decomposition: Forj ∈ {1, . . . , q} choose
anymj ∈ N and any disjoint non-void subsetsB1,j, . . . , Bmj ,j ⊂ Aj so that⋃mj

i=1Bi,j = Aj . Setm :=
∏q

j=1mj and for any index tuple(i1, . . . , iq) with
1 ≤ ij ≤ mj choose an unique numberp = p(i1, . . . , iq) ∈ {1, . . . , m} and define
∆p :=

⊗q
j=1Bij ,j. Obviously we have∆p ∈ BOX(Ω) for eachp ∈ {1, . . . , m}.

If we setI(V ) := {p |∆p ∩ V 6= ∅} and∆I(V ) := {∆p | p ∈ I(V )}, then
one easily checks that(∆I(V )(V ),∆I(V )) is a perfect box decomposition ofV
because∆I(V )(V ) := {∆p ∩ V | p ∈ I(V )} is a decomposition ofV . Since the
construction of∆p is uniform in the sense that each attribute ofΩ is divided into
mj disjoint subsets, we call(∆I(V )(V ),∆I(V )) an uniform box decomposition of
Ω.

Note that the construction of the decomposition∆I(V )(V ) is independent of
the homogeneity functionh and so the decomposition error is not guaranteed to
be small. Further remember that, with increasingq, the numberm grows expo-
nentially, even if we split each attribute in only two subsets, i.e. if we setmj := 2
for j = 1, . . . , q. For exampleq = 20 leads tom > 106. So we usually have
m > n and therefore|I(V )| ≈ n. But this makes an uniform box decomposition
unsuitable for a reduction of high-dimensional cluster problems.
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Figure 2.3 shows an example of an uniform box decomposition for our geo-
metric cluster problem inR2.

Figure 2.3:Example: Uniform box decomposition inR2.

In chapter 3 we will present an adaptive method based on self-organized neural
networks that allows to compute approximate box decompositions without the
described shortages of an uniform procedure.

2.3 Decomposition based representative clustering

In section 1.2 we motivated the basic idea of a cluster problem reduction via repre-
sentative clustering. We have presented a simple way to compute representatives
wi ∈ Ω with compressed frequency valuef̌(wi). Further, we have shown that an
optimal clustering of the representatives corresponds to an optimal clustering of
the original data setV , if the homogeneity functionhmeets a local maximum and
a global correspondence condition for all objects that are compressed to the same
representative. Unfortunately this often leads to an unsatisfactory problem reduc-
tion, i.e. too many representatives are needed. The described conditions seems to
be too strong for practical applications.

In this section we will develop a theory for cluster problem reduction via de-
composition based representative clustering, without using any conditions forh.
The objects are grouped together so that they are building partitions of a decom-
position of the data setV . For the computation of an optimalk-cluster set of the
representative setW , the original homogeneity functionh is replaced by a com-
pressed functioňh. We will show that if the decomposition is suitably fine, i.e.
the decomposition error is small, thisk-cluster set can be extended to an optimal
k-cluster set ofV with respect tof andh.
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Definition 2.3.1 Assumenk ∈ N with nk ≤ n. LetW := {w1, . . . , wnk
} ⊂ V

any subset ofV and letΘ any decomposition ofV with nk partitionsΘs.
(i) We callW a codebook ofΘ, if ws ∈ Θs for s = 1, . . . , nk. We will refer to the
data objectsws as representatives or codebook vectors.
(ii) LetW any codebook ofΘ, then we call the functioňf : Ω −→ R+

0 with

f̌(ws) := f(Θs) for s = 1, . . . , nk and f̌(v) := 0 for v ∈ Ω \W,

the compression off onW . We seťf(M) :=
∑

w∈M f̌(m) for any subsetM ⊂ Ω.
(iii) LetW any codebook ofΘ, then we call the functioňhf : Ω −→ [0, 1] with

ȟf (ws, wp) :=
1

f̌(ws)f̌(wp)

∑
v∈Θs

∑
w∈Θp

h(v, w)f(v)f(w) for s, p = 1, . . . , nk

andȟf(v, w) := 0 for v, w ∈ Ω\W , the compression ofh onW with respect tof .
(iv) For anyk-cluster setC := {C1, . . . , Ck} of V , setCs(W ) := Cs ∩W . Then
we callC(W ) := {C1(W ), . . . , Ck(W )} the compression ofC onW .
(v) For anyk-cluster setC := {C1, . . . , Ck} of a codebookW of Θ, we define
Ĉ := {Ĉ1, . . . , Ĉk} with Ĉs :=

⋃
wp∈Cs

Θp and call Ĉ the extension ofC onV .

Lemma 2.3.2 Assumenk ∈ N with k ≤ nk ≤ n and letΘ be any decomposition
of V with nk partitionsΘs and a codebookW . Then we have:
(a) The compressioňf is a frequency function forW and the compressioňhf is a
homogeneity function forW .
(b) If C is ak-cluster set ofW then the extension̂C is ak-cluster set ofV .

Proof: (a) and (b) follow directly from Definition 2.3.1. �

A decomposition is fine enough for a givenk-cluster set, if each partition belongs
to only one cluster:

Definition 2.3.3 Let C := {C1, . . . , Ck} be anyk-cluster set ofV . Further as-
sumenk ∈ N with k ≤ nk ≤ n and letΘ := {Θ1, . . . ,Θnk

} be any decomposi-
tion ofV . We callΘ a covering ofC, if there exist non-void disjoint index subsets
I1, . . . , Ik with

⋃k
s=1 Is = {1, . . . , nk} so thatCs =

⋃
p∈Is

Θp.

ObviouslyΘV := {{v} | v ∈ V } andΘC := C are trivial coverings ofC. But
there exists also non-trivial coverings ifC meets a stronger version of the optimal
cluster assumption (see section 1.2):

Lemma 2.3.4 Let C be anyk-cluster set ofV and ε ∈ R+
0 with ε < hmax(V ).

If we have(v ∈ C =⇒ w ∈ C) for any clusterC ∈ C and all v, w ∈ V with
h(v, w) ≥ hmax(V ) − ε, then anyε-decompositionΘ of (V, h) is a covering ofC.
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Proof: Let nk ∈ N with k ≤ nk ≤ n and Θ := {Θ1, . . . ,Θnk
} be any

ε-decomposition of(V, h). For any clusterCs ∈ C setIs := {p |Θp ∩ Cs 6= ∅}.
Then we have

⋃k
s=1 Is = {1, . . . , nk} andCs ⊂

⋃
p∈Is

Θp. Obviously we are
ready, if we show:

(∀p ∈ Is) Θp ⊂ Cs.

But this follows directly: Sincep ∈ Is there exists an objectv ∈ Θp ∩ Cs. Then
for all w ∈ Θp we haveh(v, w) ≥ hmax(V ) − ε and therefore alsow ∈ Cs. �

The next Lemma shows that the weighted intra-cluster homogeneity of any
k-cluster setC of V and its compression onW are equal if there exists any cover-
ing of C. We will use this fact in combination with Lemma 2.3.6 within the proof
of the basic Theorem 2.3.7.

Lemma 2.3.5 Let C := {C1, . . . , Ck} be anyk-cluster set ofV and Θ be any
covering ofC with nk partitionsΘp and a codebookW := {w1, . . . , wnk

}. Then
the compressionC(W ) is ak-cluster set ofW with Γf̌ ,ȟf

(C(W )) = Γf,h(C).

Proof: ObviouslyC(W ) is ak-cluster set, ifCs(W ) 6= ∅ for s = 1, . . . , k. But
this follows immediately from the fact thatΘ is a covering ofC with codebook
W . Further it follows that the index subsetsI1, . . . , Ik with Is := {p |wp ∈ Cs}
are non-void and disjoint and that we haveCs =

⋃
p∈Is

Θp.

Sincef(Cs) = f̌(Cs(W )), this yields:

Γf,h(C) =
1

k

k∑
s=1

1

f(Cs)

∑
v∈Cs

∑
w∈Cs

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
p1∈Is

∑
p2∈Is

∑
v∈Θp1

∑
w∈Θp2

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f(Cs)

∑
p1∈Is

∑
p2∈Is

ȟf(wp1, wp2)f̌(wp1)f̌(wp2)

=
1

k

k∑
s=1

1

f̌(Cs(W ))

∑
p1∈Is

∑
p2∈Is

ȟf (wp1, wp2)f̌(wp1)f̌(wp2)

=
1

k

k∑
s=1

1

f̌(Cs(W ))

∑
wp1∈Cs(W )

∑
wp2∈Cs(W )

ȟf(wp1, wp2)f̌(wp1)f̌(wp2)

= Γf̌ ,ȟf
(C(W ))

�

The covering property of a decomposition can be transmitted to its extension:
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Lemma 2.3.6 Let Θ be any covering of̃C with nk partitionsΘp and a codebook
W := {w1, . . . , wnk

}. If C := {C1, . . . , Ck} is a k-cluster set ofW , thenΘ is a
covering of the extension̂C of C onV .

Proof: SetJs := {p |wp ∈ Cs} for s = 1, . . . , k. SinceC is ak-cluster set ofW ,
we haveJs 6= ∅, Js ∩ Jp = ∅ for 1 ≤ s < p ≤ k and

⋃k
s=1 Js = {1, . . . , nk}. By

definition ofĈ, we further havêCs :=
⋃

wp∈Cs
Θp =

⋃
p∈Js

Θp and thereforeΘ is

a covering ofĈ. �

Using the previous lemmata we can proof the basic theorem of decomposition
based representative clustering:

Theorem 2.3.7 Let C̃ := {C̃1, . . . , C̃k} be any optimalk-cluster set of(V, f, h).
Further let Θ be any covering of̃C with nk partitions Θp and a codebookW .
If C is an optimalk-cluster set of(W, f̌ , ȟf), then the extension̂C is an optimal
k-cluster set of(V, f, h).

Proof: (i) Let C̃(W ) := {C̃1(W ), . . . , C̃k(W )} with C̃s(W ) := C̃s ∩W be the
compression of̃C. SinceΘ is an covering of̃C, we can apply Lemma 2.3.5 and
yield:

Γf,h(C̃) = Γf̌ ,ȟf
(C̃(W )).

(ii) Let Ĉ(W ) := {Ĉ1(W ), . . . , Ĉk(W )} with Ĉs(W ) := Ĉs∩W be the compres-
sion ofĈ. Then one easily checks thatĈ(W ) = C. Since Lemma 2.3.6 guarantees
thatΘ is a covering ofĈ, we can again apply Lemma 2.3.5 and yield:

Γf,h(Ĉ) = Γf̌ ,ȟf
(C).

(iii) SinceC is an optimalk-cluster set of(W, f̌ , ȟf) andC̃ is an optimalk-cluster
set of(V, f, h), we have

Γf̌ ,ȟf
(C) ≥ Γf̌ ,ȟf

(C̃(W )) and Γf,h(C̃) ≥ Γf,h(Ĉ).

Using(i) − (iii) we get

0 ≥ Γf,h(Ĉ) − Γf,h(C̃) = Γf,h(Ĉ) − Γf̌ ,ȟf
(C̃(W )) ≥ Γf,h(Ĉ) − Γf̌ ,ȟf

(C) = 0

and thereforeΓf,h(Ĉ) = Γf,h(C̃). SinceC̃ is an optimalk-cluster set, this guaran-
tees that̂C is also optimal. �

From Theorem 2.3.7 we can derive a basic algorithm for the reduction of clus-
ter problems via representative clustering based on decomposition:
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Basic reduction algorithm

Suppose we want to compute an optimalk-cluster set of a data setV with respect
to a frequency functionf and a homogeneity functionh.
(1) To reduce the complexity of the cluster problem, we have to compute first a
decompositionΘ := {Θ1, . . . ,Θnk

} of V and a codebookW so thatΘ is an cov-
ering of an optimalk-cluster set of(V, f, h).
(2) Next we compute an optimalrepresentative clustering, i.e. an optimalk-cluster
setC of (W, f̌, ȟf ).
(3) Finally we have to extendC onV . The resultingĈ is an optimalk-cluster set
of (V, f, h).

Obviously such an algorithm makes only sense if in step (1) the optimalk-cluster
set has not to be known a priori and the numbernk is much smaller than the num-
bern of objects inV .

Using the optimal cluster assumption (see section 1.2) and Lemma 2.3.4, we
can suppose that for sufficiently smallε, eachε-decomposition ofV is a covering
of each optimalk-cluster set of(V, f, h). This motivates the following assump-
tion:

Covering assumption

If a decompositionΘ of V is sufficiently fine, i.e. ifϑf,h(Θ) is small, then there
exists a nearly optimalk-cluster set of(V, f, h) so thatΘ is a covering of it.

Obviously the fineness ofΘ corresponds with the number of partitionsnk.
Therefore we need a method that — given an upper bound ofnk — tries to
compute a maximally fine decomposition, while using only a minimal number
of partitions. In chapter 3 we will present such a method based on KOHONEN’ S

Self-Organizing Maps (SOM). Since the choice of the upper bound fornk is rather
arbitrary, in chapter 4 we will refine our basic reduction algorithm to a multilevel
algorithm that iterates the steps (1) and (2) until a sufficiently fine decomposition
and corresponding optimal representative clustering is found.

Example: Representative clustering of a geometric cluster problem inR2

We will give a short demonstration of our basic reduction algorithm by our exam-
ple of a geometric cluster problem inR2.

Sincehmax(V ) = 1, any ε-decompositionΘ with ε = 0.05 should be fine
enough to use it within our algorithm. Figure 2.4 shows a suitableε-decomposition
of the100 points in the data setV with nk = 10 partitions.
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Figure 2.4:Example: Covering with nk = 10 partitions of 3-cluster set inR2.

Now we have to choose any codebookW := {w1, . . . , w10} of Θ and to com-
pute the compressed functionsf̌ andȟ according to Definition 2.3.1.

One easily checks that{{w1, w2, w3}, {w4, w5, w6, w7}, {w8, w9, w10}} is an
optimal3-cluster set of(W, f̌ , ȟ). An extension onV directly leads to the three
clustersC1, C2 andC3 (see Figure 1.1). Note that the3-cluster setC := {C1, C2, C3}
meets the condition(v ∈ C =⇒ w ∈ C) for any clusterC ∈ C and allv, w ∈ V
with h(v, w) ≥ hmax(V )− ε. Therefore Lemma 2.3.4 guarantees that our decom-
positionΘ is a covering ofC, i.e. that it was fine enough.

Decomposition clustering

Instead of clustering codebook vectors, we can also cluster a decomposition itself:
Let Θ := {Θ1, . . . ,Θnk

} be any decomposition ofV . ThenΘ can be interpreted
as a data set in̂Ω := ℘(Ω), where℘(Ω) := {M |M ⊂ Ω} denotes the power set
of Ω. We can extend the frequency functionf and the homogeneity functionh on
subsets ofΩ:

Definition 2.3.8
(a) We callf̂ : ℘(Ω) −→ N with f̂(M) :=

∑
v∈M f(v) for any subsetM ⊂ Ω,

the set extension off . We setf̂(M) :=
∑

M∈M f̂(M) for M ⊂ ℘(Ω).

(b) We callĥf : ℘(Ω) × ℘(Ω) −→ [0, 1], with

ĥf(V1, V2) :=

{
1

f̂(V1)f̂(V2)

∑
v∈V1

∑
w∈V2

h(v, w)f(v)f(w) if V1 ∩ V, V2 ∩ V 6= ∅
0 else

for any subsetsV1, V2 ⊂ Ω, the set extension ofh with respect tof .
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Note that we have0 ≤ ĥf (V1, V2) ≤ 1 and ĥf(V1, V2) = ĥf (V2, V1) for any
non-void subsetsV1, V2 ⊂ V .

The following Theorem guarantees that the computation of an optimalk-cluster
set of (W, f̌, ȟ) is equivalent to the computation of an optimalk-cluster set of
(Θ, f̂ , ĥ), if Θ is any decomposition ofV with codebookW . This makes it pos-
sible to replace the clustering of codebook vectors by a direct clustering of the
corresponding partitions of the decomposition within step (2) of the basic reduc-
tion algorithm.

Theorem 2.3.9 LetW := {w1, . . . , wnk
} be any codebook ofΘ.

(i) LetC := {C1, . . . , Ck} be anyk-cluster set ofΘ. Then there existk non-void
disjoint index subsetsIs with

⋃k
s=1 Is = {1, . . . , nk} so thatCs = {Θp | p ∈ Is}.

If we setČs(W ) := {wp | p ∈ Is}, then Č(W ) := {Č1(W ), . . . , Čk(W )} is a
k-cluster set ofW with Γf̂ ,ĥf

(C) = Γf̌ ,ȟf
(Č(W )).

(ii) LetC := {C1, . . . , Ck} be anyk-cluster set ofW . If we setIs := {p |wp ∈ Cs},
then the index subsetsI1, . . . , Ik are non-void and disjoint with

⋃k
s=1 Is = {1, . . . , nk}.

The extension̂C(Ω̂) := {Ĉ1(Ω̂), . . . , Ĉk(Ω̂)} with Ĉs(Ω̂) := {Θp | p ∈ Is} is a
k-cluster set ofΘ with Γf̌ ,ȟf

(C) = Γf̂ ,ĥf
(Ĉ(Ω̂)).

Proof: Since(ii) follows analogously, we only show(i):

(a) Γf̂ ,ĥf
(C) =

1

k

k∑
s=1

1

f̂(Cs)

∑
V1∈Cs

∑
V2∈Cs

ĥf(V1, V2)f̂(V1)f̂(V2)

=
1

k

k∑
s=1

1∑
p∈Is

f(Θp)

∑
p1∈Is

∑
p2∈Is

ĥf (Θp1,Θp2)f̂(Θp1)f̂(Θp2)

=
1

k

k∑
s=1

1∑
p∈Is

f̌(wp)

∑
p1∈Is

∑
p2∈Is

∑
v∈Θp1

∑
w∈Θp2

h(v, w)f(v)f(w)

=
1

k

k∑
s=1

1

f̌(Čs(W ))

∑
p1∈Is

∑
p2∈Is

ȟf (wp1, wp2)f̌(wp1)f̌(wp2)

= Γf̌ ,ȟf
(Č(W ))

�

We will use this equivalence of representative clustering and decomposition clus-
tering in the discussion of our main Theorem 4.3.9 in chapter 4.
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2.4 Efficient cluster description via approximate box
decomposition

In this section we will describe, how approximate box decompositions can be used
to generate efficient cluster descriptions according to section 1.3.

2.4.1 Computation of membership rules

We can easily determine cluster membership rules for ak-cluster setC, if we have
an approximate box decomposition ofV that is a covering ofC:

Lemma 2.4.1 Assumenk ∈ N with k ≤ nk ≤ n. Let C := {C1, . . . , Ck} be
anyk-cluster set ofV andΘ := {Θ1, . . . ,Θnk

} be any covering ofC with non-
void disjoint index subsetsI1, . . . , Ik so thatCs =

⋃
p∈Is

Θp. Further suppose
the existence of any∆ := {∆1, . . . ,∆nk

} so that(Θ,∆) is an approximate box
decomposition ofV with respect tof .
(i) For p ∈ {1, . . . , nk} there exist for eachj ∈ {1, . . . , q} a subsetBp,j ⊂ Aj so
that∆p =

⊗q
j=1Bp,j.

(ii) SetBp := {Bp,1, . . . , Bp,q} for p ∈ {1, . . . , nk} and definerBp : Ω −→ {0, 1}
with

rBp(v) :=

{
1 if (∀j ∈ {1, . . . , q}) v∗,j ∈ Bp,j

0 else
, v := (v∗,1, . . . , v∗,q)T ∈ Ω.

If p ∈ Is and f(∆p \ Cs) = 0, thenrBp is a membership rule for clusterCs.
(iii) If f(∆p\Cs) = 0 for all p ∈ Is andCs ⊂

⋃
p∈Is

∆p, thenrs := {rBp | p ∈ Is}
is a complete membership rule set of clusterCs.

Proof: (i) Follows directly from∆p ∈ BOX(Ω).
(ii) We have

f(∆p \ Cs) = 0 ⇐⇒ ∆p ∩ V ⊂ Cs

and therefore

rBp(v) = 1 =⇒ v ∈ ∆p ⊂ Cs for all v ∈ V.

(iii) From(ii) follows thatrBp is a membership rule ofCs for eachp ∈ Is. Since
Cs ⊂

⋃
p∈Is

∆p, we have

v ∈ Cs =⇒ (∃p ∈ Is) v ∈ ∆p ⇐⇒ (∃p ∈ Is) rBp(v) = 1 .

�

Note that the conditionf(∆p \ Cs) = 0 is only violated if boxes from different
clusters overlap each other. Therefore this condition is weaker than the condition
overlapf(∆) = 0.
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Membership rule set algorithm

From Lemma 2.4.1 we can derive an algorithm to compute complete membership
rule sets that are nearly minimal for ak-cluster setC:
(1) Compute an approximate box decomposition(Θ,∆) of V so thatΘ is a cov-
ering ofC, ∆ fits the conditions of Lemma 2.4.1 andnk � n.
(2) Construct thenk membership rulesrBp as described in Lemma 2.4.1. Since
for each cluster a minimally complete membership rule set must contain at least
one rule, we need at leastk membership rules to describe ak-cluster setC. If the
difference ofnk andk is not to large, the complete membership rule setsrs are
nearly minimal.

Example: Complete membership rule set for a3-cluster set inR2 based on
approximate box decomposition.

For our geometrically based cluster problem inR2 with k = 3, Figure 2.5 shows
an approximate box decomposition(Ω,∆) that covers the optimal3-cluster set.
Obviously the overlap between the boxes causes no problems and therefore we
can use∆ := {∆1, . . . ,∆nk

}, with boxes∆p = Bp,1×Bp,2 and subsetsBp,j ⊂ R
according to Table 2.1, to determine minimal membership rule set for the optimal
3-cluster set{C1, C2, C3}.

C1

C3

C2
∆1

∆

∆

∆

∆

∆3

4

5

6

2

A1
 2  4  6  8

A2

 2

 4

Figure 2.5:Example: Approximate box decomposition that is a covering of a
3-cluster set inR2. Unproblematic overlap between boxes of the same cluster.
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If we define the membership rulesrBp as described in Lemma 2.4.1, then
r1 := {rB1 , rB2} (respectivelyr2 := {rB3 , rB4}, r3 := {rB5, rB6}) is a complete
membership rule set of clusterC1 (respectivelyC2, C3). One easily checks that
r1, r2 andr3 are minimal.

p Bp,1 Bp,2

1 [0.25, 1.5] [1.25, 3.75]
2 [0.25, 3.5] [3.25, 4.75]
3 [2.5, 4.125] [0.25, 2.5]
4 [3.625, 6] [0.25, 1.5]
5 [ 4.25, 7.5] [2.25, 4]
6 [ 6.25, 8] [1, 4]

Table 2.1:Example: Approximate box decomposition that is a covering of a
3-cluster set inR2.

Instead of∆ we could also use the box decomposition that is shown on the
right hand side of Figure 2.2. But note that the approximate box decomposition on
the left hand side leads to an incomplete membership rule set for clusterC3. The
uniform box decomposition from Figure 2.3 is also suitable, but the corresponding
membership rule sets are not minimal.

2.4.2 Discriminating attributes

Since we are interested in efficient cluster descriptions, we have not only to de-
termine complete membership rule sets, we have also to reduce them as much as
possible (see section 1.3). Therefore we have to identify thediscriminating at-
tributesof the cluster problem, i.e. the attributes that are necessary to determine
the cluster membership of each data object.

Let V = {v1, . . . , vn} ⊂ Ω be any data set inΩ with frequency functionf
and homogeneity functionh. Further letC := {C1, . . . , Ck} be anyk-cluster
set ofV andΘ := {Θ1, . . . ,Θnk

} be any covering ofC with non-void disjoint
index subsetsI1, . . . , Ik so that

⋃k
s=1 Is = {1, . . . , nk} andCs =

⋃
p∈Is

Θp for
s = 1, . . . , k. Remember that for any index subsetJ ∈ {1, . . . , q}, v(J) denotes
the projection ofv ∈ Ω onΩ(V ), whereΩ(V ) is spanned by the attributesAj with
j ∈ J . Remember further that we have definedM(J) := {v(J) | v ∈ M} for any
subsetM ⊂ Ω.
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Definition 2.4.2 LetJ ⊂ {1, . . . , q} be any non-void index subset and denote by
Jc := {1, . . . , q} \ I its complement.
(a) We call the attribute setA(Jc) := {Aj | j ∈ Jc} redundant forC if we have:

v ∈ Cs ⇐⇒ v(J) ∈
⋃
p∈Is

Θp(J) forall v ∈ V.

(b) We call the attribute setA(Jc) maximally redundant forC if there exists no
subsetJ̃ ⊂ {1, . . . , q} so thatA(J̃c) is redundant forC and|J | > |J̃ |.
(c) We call attributeAi an univariate discriminating attribute ofC, if A({j}) is
not redundant forC.
(d) We call the attributesAj ∈ A(J) multivariate discriminating attributes ofC if
A(Jc) is maximally redundant forC.

The following Lemma is an extension of Lemma 2.4.1:

Lemma 2.4.3 Suppose there exist any∆ := {∆1, . . . ,∆nk
} so that(Θ,∆) is an

approximate box decomposition ofV with respect tof . Choose anys ∈ {1, . . . , k}
and anyp ∈ Is. DefinerBp according to Lemma (2.4.1) and suppose further that
f(∆p \ Cs) = 0, then we have:
The functionrBp(J) withBp(J) := {Bp,1(J), . . . , Bp,q(J)} and

Bp,j(J) :=

{
Bj if j ∈ J
Aj else

, for j ∈ {1, . . . , q},

is aJ-reduced membership rule for clusterCs if A(Jc) is redundant forC.

Proof: We have

f(∆p \ Cs) = 0 ⇐⇒ ∆p ∩ V ⊂ Cs =
⋃
p∈Is

Θp ⇐⇒ ∆p(J) ⊂
⋃
p∈Is

Θp(J)

and therefore

rBp(V )(v) = 1 =⇒ v(J) ∈ ∆p(J) ⊂
⋃
p∈Is

Θp(J) ⇐⇒ v ∈ Cs.

�

Analogously to Lemma 2.4.1 one easily checks that{rBp(J) | p ∈ Is} is a
J-reduced complete membership rule set of clusterCs, if f(∆p \ Cs) = 0 for
all p ∈ Is andCs ⊂

⋃
p∈Is

∆p. Moreover ifA(Jc) is maximally redundant,
{rBp(J) | p ∈ Is} is optimally reduced.
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Discriminating attributes identification algorithm

Suppose thatC is any optimalk-cluster set of(V, f, h) and that there exist any
∆ := {∆1, . . . ,∆nk

} so that(Θ,∆) is an approximate box decomposition ofV
with respect tof . Then the following algorithm can be used to determine the
multivariate discriminating attributes ofC:
(1) Choose0 < δ � 1. SetJopt := {1, . . . , q} andδopt := 0.
(2) LetJ ⊂ {1, . . . , q} be any index subset of minimal size so that

overlapf(∆̂(J) ≤ overlapf (∆) + δ,

where∆̂(J) := {∆̂1(J), . . . , ∆̂nk
(J)} with

∆̂p(J) ⊂ Ω and v ∈ ∆̂p(J) ⇐⇒ v(J) ∈ ∆p(J) for all v ∈ Ω.

(3) If |J | < q, then goto step (5).
(4) If δopt = 0, then goto step (7), else stop.
(5) If A(JC) is not redundant forC, then decreaseδ and goto step (2).
(6) If |J | < |Jopt|, then setJopt := J andδopt := δ, else stop.
(7) If |J | > 1, then increaseδ and goto step (2), else stop.

For cluster problems with a special type of homogeneity function, that exhibits
a stochastic property, in chapter 4 we are going to present a method that allows to
proof quickly ifA(JC) is redundant forC.

Example: Discriminating attributes of cluster problem with unknown num-
ber of clusters

If we look again at our simple example from section 1.4, we can easily identify the
discriminating attributes corresponding to the optimalk-cluster sets for differently
chosenk.

Obviously for the clusteringsC(1) − C(4) we need for eachv ∈ V only the
value for attributeA1 to determine the cluster membership.

Formally spoken, if we setJ := 1 and choosek ∈ {1, . . . , 4}, then we have
for each clusterC ∈ C(k) and for allv ∈ V :

v ∈ Cs ⇐⇒ v(J) ∈ Cs(J).

SinceΘ := C(k) is always a trivial covering ofk-cluster setC(k), the attribute
setA(Jc) = {A2} is redundant. Further it is maximally redundant, because it
is not possible that a redundant attribute set contains all attributes. Therefore
A1 ∈ A(J) is a multivariate discriminating attribute ofC(k), k = 1, . . . , 4.
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To illustrate the working of the suggested identification algorithm, we use it to
determine the discriminating attributes ofC := C(2):

• At the beginning we setΘ := C and∆ := {∆1,∆2}, with boxes∆1 :=
B1,1×B1,2 := [0.5, 2]×[0.5, 3] and∆2 := B2,1×B2,2 := [5.5, 6]×[1.5, 2.5].
Then(Θ,∆) is an approximate box decomposition ofV .

• In step (1) we choose a smallδ, e.g.,δ := 0.01. We setJopt := {1, . . . , q}
andδopt := 0.

• Obviously in step (2) it is enough to investigateJ1 := {1} andJ2 := {2}.
Extending the projections∆s(J1) := Bs,1 and ∆s(J2) := Bs,2 we got
∆̂s(J1) := Bs,1 × R and ∆̂s(J2) := R × Bs,2 for s = 1, 2. This leads
to overlapf(∆̂(J)) := 0 and overlapf (∆̂(J2)) := 0.56. Since we have
overlapf(∆) = 0, we setJ := J1.

• At step (3) we have|J | = 1 < 2 = q and therefore we jump to step (5).

• Now we have to prove, ifA(JC) = {A2} is redundant. This is the case and
we go to step (6).

• Since|J | = 1 < 2 = |Jopt|, we setJopt := J andδopt := δ.

• At step (7) we stop, because|J | = 1. The result of the algorithm isJopt := 1
and determinesA1 as the only multivariate discriminating attribute ofC.
One easily checks, thatδopt is a kind of quality indicator of the computation.
If δopt is sufficiently small, we can be confident that we have identified the
correct multivariate discriminating attributes of clusteringC.
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