
Chapter 3

Adaptive Decomposition by
Self-Organized Neural Networks

In this chapter we will describe two methods, based on self-organized neural net-
works 1, that can be used to compute a decompositionΘ := {Θ1, . . . ,Θnk

} of
a data setV with homogeneity functionh. The decomposition is adaptive in the
sense that the numbernk is chosen automatically — only an upper bound|∈ N
has to be fixed a priori — so thatΘ is fine enough to use it within our basic reduc-
tion algorithm (see section 2.3). Moreover, the second method that is an recently
developed extension of the first one (see [29]), allows to compute non-uniform
approximate box decompositions.

Since each decomposition ofV is also a kind of clustering ofV , the computa-
tion of a decomposition with small decomposition error (see Eq. (2.1)) has to be
done heuristically in a shorter time thanO(n2). Otherwise there is no advantage
of our basic reduction algorithm in comparison with a direct computation of an
optimalk-cluster set ofV .

We suppose thatΩ ⊂ Rq is a metric space, otherwise we will extend it suffi-
ciently as described in the appendix. Further we assume that there exists a distance
functiondist : Ω×Ω −→ R so that for allv, w ∈ V the following local maximum
condition holds:

dist(v, w) ≈ 0 =⇒ h(v, w) ≈ hmax(V) . (3.1)

Usually, this condition is given for geometric cluster problems and also for many
dynamic cluster problems (see the earlier discussion in section 1.2).

1For an introduction to neural networks see, e.g., [55]

42 Adaptive Decomposition by Self-Organized Neural Networks

3.1 Self-Organizing Maps (SOM)

Let V any data set inΩ with frequency functionf . The following Lemma de-
scribes a way to compute an adaptive decomposition based on a given codebook:

Lemma 3.1.1 Assume|∈ N andW := {w1, . . . , w|} ⊂ Ω.
SetΘW := {Θw1, . . . ,Θw|} with partitionsΘwp ⊂ Ω so that for allv ∈ Ω:

v ∈ Θwp ⇐⇒ p = min{s | dist(v, ws) = min
i=1,...,|

dist(v, wi)}. (3.2)

Further setI := {p |Θwp(V) 6= ∅, p = 1, . . . ,|}with Θwp(V) := Θwp ∩ V . Then
ΘWI

(V) := {Θwp(V) | p ∈ I} is a decomposition ofV with nk := |I| partitions.

Since we havedist(v, w) ≤ dist(v, ws) + dist(w,ws) for all v, w ∈ Θws(V),
each method that tries to compute aW so that forv ∈ Θws(V) the distances
dist(v, ws) are minimized, can be used to generate a decomposition ofV with
small decomposition error.

At first, one might think of pure vector quantization (VQ) methods (see [35]).
These methods often try to minimize thedistortion valuewhich is defined as:

1

f(V)

|∑
s=1

∑
v∈Θws (V)

dist(v, ws)f(v). (3.3)

However, they have the tendency to produce codebook vectors that are maximally
different, to achieve a more uniform decomposition ofV . This might cause prob-
lems of so calledpseudo-clusters, i.e. clustersC with nearly zero frequency value
f(C). Therefore it seems better to use a method that tends to gather codebook
vectors in some more robust way. Here a powerful method are KOHONEN’ S Self-
Organizing Maps (SOM). The corresponding algorithm usually produces fast and
good solutions even for high-dimensionalΩ. It can be easily adapted to the case
of cyclic data which will be essential for using it within biomolecular data (see
chapter 5). Further it has the feature of topology approximation which avoids the
appearance of pseudo-clusters and leads to decompositions that are rather robust
under changes of the number|.

In the following we give a short general description of the SOM method. For
an exhaustive presentation see [48].

To be in correspondence with the usual notation in the literature, we suppose
that there exists a probability distributionPρ onΩ with a probability density func-
tion ρ : Ω → R+

0 so thatρ(v) = f(v)
f(V)

for v ∈ V . If this is not the case, one has to
replace all integral signs by sums and has to usef directly.

Each SOM is formed by aq-dimensional input-layer that is fully connected
with the two-dimensional Kohonen layer, which is a neuralmx ×my gridG with

3.1 Self-Organizing Maps (SOM) 43

rectangular or hexagonal topology and| = mxmy grid neurons. The coordi-
nate tuple of each neurons on the grid is denoted byzs ∈ G and each neu-
ron s is uniquely related to aq-dimensional codebook vectorws. After a suit-
able initialization of the codebook vectors, the SOM is trained inL time steps
by a repeated presentation of vectors of theq-dimensional input spaceΩ ac-
cording to the probability distributionPρ. For each presented input vector the
SOM computes a so called winner neuron and its neighboring neurons on the grid
and adapts the related codebook vectors so that the distance to the input vector
is reduced. To achieve convergence, the learning rate of the distance reduction
α : {0, . . . , L} → [0, 1] and the width of the neighborhood of the winner neuron,
the so called neighborhood radius functionγ : {0, . . . , L} → R+

0 , shrink to zero
with time. After a suitable number of training steps the codebook vectors that are
related to neighboring neurons on the grid, are neighboring in the input space ac-
cording to the chosen distance function. Therefore the codebook vectors not only
determine via Eq. (3.2) a decomposition ofΩ, but also approximate the topology
of the input space via the neighborhood structure of the grid.

Algorithmic Realization In the following we describe the initialization of the
codebook vectors, the definition of the winner neuron together with its grid neigh-
borhood and the specification of the codebook adaptation rule.

Initialization. We suggest to choose the initial valuesw1(0), . . . , w|(0) as
approximatelyPρ-distributed random vectors withws(0) ∈ Ω.

Winner neuron and grid neighborhood.Let x = (x1, . . . , xq)
T ∈ Ω be an

any input vector andw1, . . . , w| ∈ Ω the actual codebook vectors of the
SOM. Then we call neuronp ∈ {1, . . . ,|} thewinner neuronfor inputx, if

p = min{s | dist(x, ws) = min
i=1,...,|

dist(x, wi)}. (3.4)

Note that Eq. (3.4) is equivalent tox ∈ Θwp, if Θwp is defined according to
Eq. (3.2).

To determine the neighboring neurons of the winner neuron, one has to
specify a grid distance functionη : G×G×R+ → [0, 1]. Usually one uses
either the bubble grid distance

ηbubble(zs, zp, γ) :=

0 if ‖zs − zp‖ ≤ γ

1 else,

or the Gaussian grid distance

ηgaussian(zs, zp, γ) := 1 − exp

(
−‖zs − zp‖2

2γ2

)
,

44 Adaptive Decomposition by Self-Organized Neural Networks

whereγ denotes the actual neighborhood radius and‖·‖ the two-dimensional
Euclidean distance. A neurons belongs to the neighborhood of winner neu-
ron p if η(zs, zp, γ) < 1. If we chooseηgaussian, then the neighborhood of
each neuron coversall grid neurons.

Codebook adaptation rules.Let neuronp be the winner neuron for input
x(t) = (x1(t), . . . , xq(t))

T ∈ Ω at time t andw1(t), . . . , w|(t) ∈ Ω the
actual codebook vectors. Further letα(t) andγ(t) be two time-dependent
linear or log-linear functions that decrease to zero withα(0) ≤ 1 andγ(0) ≤
min{mx,my}

2
.

Then the new codebook vectorsw1(t+ 1), . . . , w|(t+ 1) are computed as

ws(t+ 1) := ws(t) + α(t) neigh(zs, zp, t) (x(t) − ws(t)) (3.5)

with neigh(zs, zp, t) := 1 − η(zs, zp, γ(t)).

In the case that we setγ(0) = 0, the SOM is a pure VQ algorithm and there-
fore optimizes the distortion value [48]. If we allow neighborhood learning, e.g.,
γ(0) > 0, the formulation of an energy function that is minimized by the SOM is
not possible [47]. Recently slight modifications of the adaptation rules have been
suggested that allows the formulation of an energy function without destroying the
essential features of the SOM [38, 40]. For further theoretical investigations of the
SOM algorithm, especially a comparison to pure VQ methods, see [54, 11, 12].

3.2 Self-Organizing Box Maps (SOBM)

The basic idea of the recently developed Self-Organizing Box Maps (SOBM)
method [29] is to computecodebook boxeŝWs := (Ŵs1 , . . . , Ŵsq) ∈ BOX(Ω)

with Ŵsi
= [lsi

, rsi
] ⊂ R instead of codebook vectorsws ∈ Ω. This is done in

such a way that each codebook box is a nearly optimal box approximation of its
corresponding partitionΘŴs

⊂ Ω:
We will call any setB =

⊗q
i=1[li, ri] ∈ BOX(Ω) with li, ri ∈ R an optimal

box approximation of a setM ⊂ Ω with respect toPρ, if

Pρ(B \M) + Pρ(M \B) → min .

Algorithmic Realization Obviously, this change of concept induces changes of
the SOM algorithm, which we arrange here:

Initialization. Let w1(0), . . . , w|(0) be different initial values for the code-
book vectors of the traditional SOM, e.g., approximatelyPρ-distributed ran-
dom vectors withws(0) ∈ Ω for s = 1, . . .|. For our extended algo-
rithm, we chooseŴs(0) :=

⊗q
i=1[lsi

(0), rsi
(0)] with lsi

(0) = Wsi
(0) and

3.2 Self-Organizing Box Maps (SOBM) 45

rsi
(0) = Wsi

(0) + ε in terms of a small positive valueε, the initial width of
the interval so that̂Ws ∩ Ŵp = ∅ for all s, p ∈ {1, . . . ,|}.

Winner neuron.We suppose that the problem specificq-dimensional dis-
tance functiondist(x, y) with x, y ∈ Ω can be written as a functionF of q
one-dimensional distance measuresdi(xi, yi), which means thatdist(x, y) =
F (d1(x1, y1), . . . , dq(xq, yq)). Note that many popular distance measures, as
e.g., the Euclidean distance, just exhibit this feature. Obviously we need a
distance measureDIST that permits to compute the distance between an
input vectorx ∈ Ω and codebook boxeŝWs ∈ BOX(Ω). For that purpose,
we suggest

DIST(x, Ŵs) := F (d̂1(x1, Ŵs1), . . . , d̂q(xq, Ŵsq))

with

d̂i(xi, Ŵsi
) :=

 0 if xi ∈ Ŵsi

min{di(xi, lsi
), di(xi, rsi

)} else.

Then the winner neuronp has to match a condition analogous to Eq. (3.4):

p = min{s |DIST(x, Ŵs) = min
i=1,...,|

DIST(x, Ŵi)}. (3.6)

Obviously we can use Eq. (3.6) to define for each codebook boxŴs the
corresponding partition̂Θs := ΘŴs

⊂ Ω analogously to Eq. (3.2).

Codebook adaptation rules.In analogy to the SOM algorithm, the SOBM
algorithm has to adapt the codebookboxes. This will be done by the fol-
lowing rules:

lsi
(t+ 1) := lsi

(t)

+ g(lsi
(t), rsi

(t), xi(t)) α(t) neigh(zs, zp, t) (xi(t) − lsi
(t))

−α(t) c(lsi
(t), rsi

(t))

rsi
(t+ 1) := rsi

(t)

+ g(−rsi
(t),−lsi

(t),−xi(t)) α(t) neigh(zs, zp, t) (xi(t) − rsi
(t))

+α(t) c(lsi
(t), rsi

(t))

with a linear functiong : R3 → [0, 1], g(a, b, x) :=

1 if x < a
0 if x > b

b−x
b−a

else

46 Adaptive Decomposition by Self-Organized Neural Networks

and a functionc : R2 → R+
0 that is independent of the inputx(t) and will

be defined later.

Note that instead of the above functiong, also a smoother ”sigmoid” function
like g(a, b, x) := 1 − 1

1+exp(−x+ a+b
2

)
can be chosen in principle.

Suppose for the time being thatc = 0, then one easily verifies that the left
interval boundary is only adapted, if the input is left of the right interval boundary
and vice versa. Further one observes that inputs outside the interval have a greater
influence on the adaptation of the nearest interval boundary, as when they are
inside the interval. In the following we will motivate the suggested adaptation
rule.

One easily verifies, that after the initialization we haveŴs ⊂ Θ̂s for all
s = 1, . . . , k. Suppose now an inputx that belongs tôΘs. If xi /∈ Ŵsi

, we have
to widen the interval. Therefore the nearest interval boundary is “pulled” towards
xi. This is just the same method as in the original SOM algorithm. Ifxi ∈ Ŵsi

the
first strategy is to do nothing, because in this case the box seems to be all right.
This however, turns out to be not a good idea, because theΘ̂s change over time so
that we can observêWs \ Θ̂s 6= ∅ after several adaptation steps. If this difference
becomes larger, it is not only possible thatPρ(Ŵs \ Θ̂s) increases so that̂Ws is
no longer a good box approximation ofΘ̂s. Also the probability grows that one
observes overlaps between the boxes after the algorithm stops (see Figure 3.1).

Figure 3.1:Poor partitioning in the absence of interval shrinkage.

If, however the overlap between the boxes is too large,Ŵ and its correspond-
ing decomposition are no longer an approximate box decomposition. Therefore
it is necessary to shrink the intervals. This could be done by adapting the inter-
val boundaries when even the inputxi is inside the interval, the so called interior
adaptation. It is obvious that the adaptation of the nearest boundary should be
greater than that of the opposite side. By doing this a new problem arises: Usu-
ally after some time there are more inputsxi inside the interval than outside. As a
consequence, the interval shrinks faster than it grows, which implies that the value
Pρ(Ŵs) shrinks, too. But then the box approximation ofΘ̂s is not as good as it

3.2 Self-Organizing Box Maps (SOBM) 47

could be. Therefore one has to introduce something like a damping coefficient or
a correction term, which reduces the inter-interval adaptation. Such a parameter
will depend on the ratio of the inputs inside and outside the interval. A direct
computation would be impracticable, because it is very time consuming. So one
has to think about certain heuristics, which only consider the interval width. Our
approaches with a damping coefficient, appeared to supply unsatisfactory results.
Excellent results were obtained by another approach, which uses an analytically
derived correction term. This approach will be presented subsequently.

Correction term

Without loss of generality, we suppose that there existai, bi ∈ R so that we
haveΩρ := {x ∈ Ω| ρ(x) > 0} ⊂

⊗q
i=1[ai, bi]. Let Θ̂s(t) be the decomposition

that is defined viaŴs(t) and let∆s(t) :=
⊗q

i=1[l
∗
si
(t), r∗si

(t)] be an optimal box
approximation of̂Θs(t) with minimal volume, i.e.

boxvol(∆s(t)) :=

q∏
i=1

(r∗si
(t) − l∗si

(t)) → min .

For our further expositions we define forM ⊂ Ω with Pρ(M) > 0, the condi-
tional probability density functionρM onM via

ρM (ω) :=

{
ρ(ω)

Pρ(M)
if ω ∈M

0 else.

UsingρΘ̂s(t)
, we can compute the conditional expectation valueE(Ŵs(t+ 1))

for each actual codebook vector̂Ws(t) under the condition thats is the winner
neuron. Note that this implicitly ensuresPρ(Θ̂s(t)) > 0.

We haveE(Ŵs(t+ 1)) =
⊗q

i=1[E(lsi
(t+ 1)), E(rsi

(t+ 1))] with

E(lsi
(t+ 1)) :=

∫
Ωρ

lsi
(t+ 1)ρΘ̂s(t)

(X) dx =

∫ bi

ai

lsi
(t+ 1)ρΘ̂s(t),i

(xi) dxi ,

E(rsi
(t+ 1)) :=

∫
Ωρ

rsi
(t+ 1)ρΘ̂s(t)

(X) dx =

∫ bi

ai

rsi
(t+ 1)ρΘ̂s(t),i(xi) dxi

and

48 Adaptive Decomposition by Self-Organized Neural Networks

ρΘ̂s(t),i
(xi) :=

∫ b1

a1

· · ·
∫ bi−1

ai−1

∫ bi+1

ai+1

· · ·
∫ bq

aq

ρΘ̂s(t)
((x1, . . . , xq)

T) dx1 . . . dxi−1 dxi+1 . . . dxq .

Upon considering our above adaptation rule we obtain:

E(lsi
(t+ 1)) = lsi

(t)

+

∫ lsi(t)

ai

α(t)(xi − lsi
(t))ρΘ̂s(t),i

(xi) dxi

+

∫ rsi(t)

lsi (t)

(rsi
(t) − xi)

(rsi
(t) − lsi

(t))
α(t)(xi − lsi

(t))ρΘ̂s(t),i(xi) dxi

−α(t) c(lsi
(t), rsi

(t))

and

E(rsi
(t+ 1)) = rsi

(t)

+

∫ bi

rsi (t)

α(t)(xi − rsi
(t))ρΘ̂s(t),i(xi) dxi

+

∫ rsi(t)

lsi (t)

(xi − lsi
(t))

(rsi
(t) − lsi

(t))
α(t)(xi − rsi

(t))ρΘ̂s(t),i(xi) dxi

+α(t) c(lsi
(t), rsi

(t)) .

Since∆s(t) is an optimal box approximation of̂Θs(t), we may assume that

Pρ
Θ̂s(t)

(∆s(t)) =

∫
ω∈∆s(t)

ρΘ̂s(t)(ω) dω ≈ 1.

Therefore, for simplicity, we suppose that the i-th componentsxi of the inputs
X ∈ Θ̂s(t) are uniformly distributed over[l∗i (t), r

∗
i (t)] so that

ρΘ̂s(t),i(xi) :=

{ 1
r∗i (t)−l∗i (t)

if X = (x1, . . . , xq)
T ∈ ∆s(t)

0 else .

3.2 Self-Organizing Box Maps (SOBM) 49

Hence, we arrive at:

E(rsi
(t+ 1)) = rsi

(t)

+

∫ r∗i (t)

rsi (t)

α(t)

(r∗i (t) − l∗i (t))
(xi − rsi

(t)) dxi

+

∫ rsi(t)

lsi (t)

(xi − lsi
(t))

(rsi
(t) − lsi

(t))

α(t)

(r∗i (t) − l∗i (t))
(xi − rsi

(t)) dxi

+α(t) c(lsi
(t), rsi

(t))

= rsi
(t)

+
α(t)

(r∗i (t) − l∗i (t))
(r∗i (t) − rsi

(t))2

2

+
α(t)

(r∗i (t) − l∗i (t))

∫ rsi (t)

lsi(t)

(xi − lsi
(t))(xi − rsi

(t))

(rsi
(t) − lsi

(t))
dxi

+α(t) c(lsi
(t), rsi

(t))

= rsi
(t)

+
α(t)

(r∗i (t) − l∗i (t))
(r∗i (t) − rsi

(t))2

2

− α(t)

(r∗i (t) − l∗i (t))
(rsi

(t) − lsi
(t))2

6

+α(t) c(lsi
(t), rsi

(t)) .

For the left hand boundary, we analogously obtain:

E(lsi
(t+ 1)) = lsi

− α(t)

(r∗i (t) − l∗i (t))
(lsi

(t) − l∗i (t))
2

2

+
α(t)

(r∗i (t) − l∗i (t))
(rsi

(t) − lsi
(t))2

6

−α(t) c(lsi
(t), rsi

(t)) .

50 Adaptive Decomposition by Self-Organized Neural Networks

By means of the intuitive choice

c(lsi
(t), rsi

(t)) :=
1

6
(rsi

(t) − lsi
(t)) (3.7)

we end up with

E(lsi
(t+ 1)) = lsi

− 1

2
α(t)

(lsi
(t) − l∗i (t))

2

(r∗i (t) − l∗i (t))

−α(t) (1 − ψsi
(t)) c(lsi

(t), rsi
(t))

and

E(rsi
(t+ 1)) = rsi

+
1

2
α(t)

(r∗i (t) − rsi
(t))2

(r∗i (t) − l∗i (t))

+α(t) (1 − ψsi
(t)) c(lsi

(t), rsi
(t))

in terms of some model quantity

ψsi
(t) :=

(rsi
(t) − lsi

(t))

(r∗i (t) − l∗i (t))
.

This quantity measures the deviation of the actual interval width from the op-
timal one.

In the following, we have to assure that the intervals are always well defined,
i.e. we always havelsi

(t) < rsi
(t) for all t ∈ {0, . . . , L}.

Lemma 3.2.1 For anys ∈ {1, . . . , q} and all t ∈ {0, . . . , L} we have

lsi
(t) < rsi

(t) =⇒ lsi
(t+ 1) < rsi

(t+ 1).

3.2 Self-Organizing Box Maps (SOBM) 51

Proof: Let p be the winner neuron for input X(t). Then one easily verifies:

(1) xi(t) < lsi
(t) =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

− α(t)︸︷︷︸
≥0

neigh(zs, zp, t)︸ ︷︷ ︸
≥0

(xi(t) − lsi
(t))︸ ︷︷ ︸

<0︸ ︷︷ ︸
≤0

≥ rsi
(t) − lsi

(t)

(2) xi(t) > rsi
(t) =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

+ α(t) neigh(zs, zp, t) (xi(t) − rsi
(t))︸ ︷︷ ︸

≥0

≥ rsi
(t) − lsi

(t)

(3) xi(t) ∈ [lsi
(t), rsi

(t)] =⇒

rsi
(t+ 1) − lsi

(t+ 1) =

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

+α(t) neigh(zs, zp, t)
(xi(t) − lsi

(t))

(rsi
(t) − lsi

(t))
(xi(t) − rsi

(t))

−α(t) neigh(zs, zp, t)
(rsi

(t) − xi(t))

(rsi
(t) − lsi

(t))
(xi(t) − lsi

(t))

=

(
1 +

α(t)

3

)
(rsi

(t) − lsi
(t))

− 2α(t) neigh(zs, zp, t)︸ ︷︷ ︸
≤1

(rsi
(t) − xi(t))(xi(t) − lsi

(t))

(rsi
(t) − lsi

(t))︸ ︷︷ ︸
≤ 1

4
(rsi(t)−lsi (t)) (∗)

≥
(

1 +
α(t)

3
− α(t)

2

)
(rsi

(t) − lsi
(t))

=

(
1 − α(t)

6

)
(rsi

(t) − lsi
(t))

(∗) max
l≤x≤r

(r − x)(x− l) =
1

4
(r − l)2 for all l, r ∈ R

52 Adaptive Decomposition by Self-Organized Neural Networks

Becauseα(t) ≤ 1 for all t ∈ {0, . . . , L}, we have in all three cases:

(rsi
(t) − lsi

(t)) > 0 =⇒ (rsi
(t+ 1) − lsi

(t+ 1)) > 0.

�

Note that Lemma 3.2.1 is usually not true ifα(t) ≥ 6.

Hence iflsi
(0) < rsi

(0), Lemma 3.2.1 guarantees thatc(lsi
(t), rsi

(t)) > 0 and
ψsi

(t) > 0 for all t ∈ {0, . . . , L}.

Therefore we obtain

Ŵsi
(t) ⊂ [l∗i (t), r

∗
i (t)] =⇒ ψsi

(t) ∈]0, 1]

=⇒ E(lsi
(t+ 1)) < lsi

(t) and E(rsi
(t+ 1)) > rsi

(t)

and

Ŵsi
(t) = [l∗i (t), r

∗
i (t)] =⇒ E(lsi

(t+ 1)) = lsi
(t) and E(rsi

(t+ 1)) = rsi
(t).

If we chooseŴs(0) ∈ ∆s(0) we can be confident thatψsi
(L) ≈ 1 and there-

fore Ŵsi
(L) ≈ [l∗i (L), r∗i (L)], whenever we use our extended algorithm withL

time steps andL large enough. This means thatŴs(L) ≈ ∆s(L) and therefore
Ŵs(L) is nearly an optimal box approximation ofΘ̂s(L) with respect toρ. Obvi-
ously the chosen functionc is a suitable correction term for the interval shrinkage.

Using this correction term the presented SOBM algorithm is suitable to gen-
erate approximate box decompositions ofV (see Definition 2.2.1):

Lemma 3.2.2 AssumeŴ := {Ŵ1, . . . , Ŵ|} ⊂ Ω so thatŴp ∈ BOX(Ω) is
a nearly optimal box approximation ofΘŴp

for p = 1 . . . ,|. SetΘŴp
(V) :=

ΘŴp
∩ V . ThenΘŴI

(V) := {ΘŴp(V) | p ∈ I} with I := {p |ΘŴp
(V) 6= ∅}

is a decomposition ofV with nk := |I| ≤ | partitions and(ΘŴI
(V), ŴI) with

ŴI := {Ŵp | p ∈ I} is an approximate box decomposition.

Proof: There exists a smallδ > 0 so that for anyp ∈ I we have

f(Ŵp \ ΘŴp
) + f(ΘŴp

\ Ŵp) < δf(V).

This guaranteesf(ΘŴp
∩ Ŵp) > f(ΘŴp

) − δf(V) for anyp ∈ I. SinceΘŴI
(V)

is a decomposition ofV by construction andf(M ∩ V) = f(M) for any subset
M of Ω, this yields:

overlayf(ΘŴI
(V), ŴI) > 1 − δnk.

3.3 Comparison SOM - SOBM 53

One easily verifies that for anyp ∈ I, we have

f(Ŵp ∩
⋃
ep 6=p

Ŵ
ep) ≤

∑
s∈I

f(Ŵs \ ΘŴs
) =

∑
s∈I

f(Ŵs) −
∑
s∈I

f(Ŵs ∩ ΘŴs
)

Since
∑

s∈I f(Ŵs) ≤ f(V), this yields:

overlapf(ŴI) ≤
∑
s∈I

(
1 −

∑
s∈I f(Ŵs ∩ ΘŴs

)∑
s∈I f(Ŵs)

)
≤

∑
s∈I

(
1 − overlayf (ΘŴI

(V), ŴI)
)
< δn2

k.

�

3.3 Comparison SOM - SOBM

Upon comparing codebooksW andŴ , computed by the original SOM and the
SOBM algorithm with the same parameters and initialization, one will observe
clear similarities. In most cases the orientation of the maps and the visually iden-
tifiable clusters are equal (see subsection 5.2.2 for an example).

For each codebook vectorwp ∈W one can usually find a codebook box̂Ws ∈
Ŵ with wp ∈ Ŵs. Therefore the SOBM algorithm will be at least as powerful
as the classical SOM algorithm. In the following, however, we will show that the
SOBM algorithm has important advantages.

For simplicity we suppose that we have only an one-dimensional input space
Ω = R. We want to compute a2 × 1 map with neuronss ands, the Euclidean
distance function andneigh(zs, zs, t) = 0 for t ∈ {0, . . . , L}.

For the purpose of illustration, we define two probability density functionsρ1

andρ2 (see Figure 3.2):

ρ1(x) :=

2.5 if x ∈ [0.8, 1]
0.5 if x ∈ [−1, 0]
0 else

ρ2(x) :=

2.5 if x ∈ [0.8, 1]

0.625 if x ∈ [−1, −0.6]
0.625 if x ∈ [−0.4, 0]

0 else.

We have used the original SOM algorithm and our extended algorithm with
c = 0 and c as defined in Eq. (3.7) to compute the codebooks forρ1 and ρ2.

54 Adaptive Decomposition by Self-Organized Neural Networks

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

ρ
1
(X)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

ρ
2
(X)

Figure 3.2:Probability density functions ρ1 and ρ2

Table 3.1 shows the results (random codebook initialization,α(0) = 0.9 and
L = 10000).

ρ1

SOM ws = −0.5, ws = 0.9

SOBM(c = 0) Ŵs = [−0.75,−0.25], Ŵs = [0.85, 0.95]

SOBM Ŵs = [−1.00, 0.00], Ŵs = [0.80, 1.00]
ρ2

SOM ws = −0.5, ws = 0.9

SOBM(c = 0) Ŵs = [−0.78,−0.22], Ŵs = [0.85, 0.95]

SOBM Ŵs = [−1.05, 0.07], Ŵs = [0.80, 1.01]

Table 3.1:Codebooks forρ1 and ρ2

Obviously, the following three observations are of interest:

• The probability density functionρ1 is positive on[−1, 0] and [0.8, 1]. Al-
though these intervals are of different width, we get no hint about this fact,
if we look at the codebook vectorsws andws.

• The codebook boxes are box approximations of the partitions, which they
implicitly define. These approximations are perfect if we use the correction
termc as defined in Eq. (3.7).

• The point codebooks are equal for both probability density functions, i.e.
althoughρ1 andρ2 are different, we cannot distinguish them by looking at

3.3 Comparison SOM - SOBM 55

the codebook vectors. The situation is quite different if we use the correc-
tion termc and look at the codebook boxes. Here we see that the interval
width of Ŵs in the case ofρ2 is larger then in the case ofρ1. If we look
deeper, we see that the difference is approximately the width of the hole
between−0.4 and−0.6 of ρ2. This is not surprising, because the correction
terms forŴs are equal in both cases, but the power of the interval shrink-
age forŴs is lower in the case ofρ2. Therefore the interval̂Ws can grow
stronger in this case. Although we cannot derive the differences betweenρ1

andρ2 from looking at the different̂Ws, we at least get a hint that there are
differences.

We have made similar observations for higher-dimensional input spaces and
larger maps.

Additionally we want to show an intriguing feature of the SOBM algorithm.
Look at he following probability density functionsρ3:

ρ3(x) :=
1

2σ
√

2π

(
exp(−1

2

(
(x− µ1)

σ

)2

+ exp(−1

2

(
(x− µ2)

σ

)2
)
.

One observes that̂Ws ≈ [µ1 − σ, µ1 + σ] andŴs ≈ [µ2 − σ, µ2 + σ]. The
approximation is the better, the larger the difference is betweenµ1 andµ2. Fig-
ure 3.3 showsρ3 with µ1 = −0.5, µ2 = 0.5 andσ = 0.27 and Table 3.2 gives the
corresponding computational results.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
3
(X)

Figure 3.3:Probability density functions ρ3

56 Adaptive Decomposition by Self-Organized Neural Networks

ρ3

SOM ws = −0.5, ws = 0.5

SOBM(c = 0) Ŵs = [−0.67,−0.33], Ŵs = [0.31, 0.67]

SOBM Ŵs = [−0.85,−0.15], Ŵs = [0.13, 0.86]

Table 3.2:Codebook vectors forρ3

Although the concept of codebook boxes develops its full power still within
the computation of approximate box decompositions the advantages in compari-
son with point codebooks are already obvious.

A disadvantage of the SOBM algorithm is that it requires more computing
time than the classical SOM algorithm. Although the difference depends on the
chosen implementation, one easily checks that the number of variables that have
to be adapted and to be evaluated are doubled. Therefore in the worst case the
SOBM algorithm doubles the computing time of the original SOM algorithm.

3.4 Computational complexity

To speed up the computing time, one may think about a combination of the SOM
and the SOBM algorithm. In the following we suggest such a combination, which
has turned out to be quiet powerful in our first applications (see chapter 5).

As usual in the original SOM algorithm, we first compute inL1 := u · |steps
the codebook vectorsw1, . . . , w|with a suitable average number of codebook up-
datesu, e.g.,u = 100, a large learning rate at the beginning, e.g.,α(0) = 1, and
with neighborhood adaptation, i.e.neigh(zs, zp, t) > 0 for t < L1. This is often
called theordering phaseof the SOM algorithm.

After this ordering phase one usually passes on to another adaptation cycle
with L2 ≥ L1 adaptation steps, a low learning rateα and no neighborhood adap-
tation, i.e.neigh(zs, zp, t) = 0 for s 6= p andt ∈ [L1, L1+L2]. After this so called
convergence phaseof the SOM algorithm, the codebook vectors are rather stable
and good representatives of the input space and the used probability distribution.

To achieve convergence, in the classical SOM algorithmL2 is usually much
larger thanL1, e.g., a factor3 or more. In our combined approach, we setL2 ≈ L1

and use the SOBM algorithm for an additional convergence phase: We first ini-

3.5 Practical extensions 57

tialize the codebook boxeŝWs(0) by using the earlier computed representatives
ws(L2) within the described initialization routine. Then we adapt the codebook
boxes inL3 ≈ L2 time steps with a low learning rate and no neighborhood adap-
tation.

Summarizing, as a result of this combination — original SOM algorithm plus
additional convergence phase with SOBM algorithm — we obtain a shorter com-
puting time, as if we only use the SOBM algorithm, while getting comparable
results. Additionally we avoid possible negative effects of the neighborhood adap-
tation on the generation of the codebook boxes.

Up to now, we have not answered the question, if the SOM/SOBM algorithm
needs less thanO(n2) operations to compute a decomposition of any data set
V ⊂ Ω with n data objects and dimensionq.

Letu denote the average number of codebook updates that is sufficient to guar-
antee convergence of the SOM/SOBM algorithm, i.e. we needO(u ·|) adaptation
steps. Since we have to compute the winner neuron and to adapt the codebook
within each adaptation step, each of these steps costsO(q · |) operations. There-
fore we needO(u · q ·|2) operations to generate a suitable codebook. In addition,
the computation of a decomposition based on this codebook according to Eq. (3.2)
can be done withO(q · |· n) operations.

Since for large cluster problems we usually have

u · |≤ n and q � n,

we totally need

O(u · q · |2 + q · |· n) = O(|· n)

operations to compute a decomposition of the data setV via the SOM/SOBM
algorithm.

If we choose|significantly smaller thann, e.g.,|= O(log n), this guarantees
that we can compute a decomposition much faster thanO(n2).

Therefore the SOM/SOBM algorithm is a suitable heuristic for the computa-
tion of decompositions.

3.5 Practical extensions

In the following we shortly describe two practical extensions of the SOM and the
SOBM algorithm, whenever they are used for computing decompositions of a data
setV with frequency functionf and homogeneity functionh.

58 Adaptive Decomposition by Self-Organized Neural Networks

3.5.1 Pruning

Neuron pruning is a classical technique in the field of neural networks, to simplify
the network architecture and therefore also the corresponding model. In our set-
ting each neuron of the Kohonen layer corresponds with one codebook vectorwp.
If now nk is too large after the convergence phase of the SOM, we eliminate those
neurons, whose associated codebook vectorws only represents a small number of
input objects, i.e.ws with f(Θwp) < δ1 for sufficiently largeδ1, e.g.,δ1 := f(V)

nk
.

Note that after such a neuron pruning, the corresponding decompositionΘ has
changed, especiallynk is smaller than before. Pruning has the additional advan-
tage that it prevents the appearing of pseudo clusters (see the earlier discussion in
section 3.1).

3.5.2 Early stopping

A main problem of the SOM algorithm is the fact that the number of training
steps of the convergence phase has to be fixed a priori and therefore must be set
to a large value, because otherwise we cannot be sure that we will reach conver-
gence. If we use our combined SOM/SOBM algorithm, the choice of the length
of the SOM convergence phase is rather uncritical, because we have an additional
convergence phase of the SOBM algorithm. At a first view, the determination of
the right number of convergence steps for the SOBM algorithm seems to be as
problematic as for the SOM algorithm. But if we look closer, we detect a nice
early stopping criterion for the SOBM algorithm:

To guarantee that(ΘŴ (V), Ŵ) is an approximate box decomposition, we have
to ensure thatoverlap(Ŵ) is small. Therefore we have to stop the adaptation of
the codebook boxes, ifoverlap(Ŵ) > δ2 with smallδ2, e.g.,δ2 = 0.001.

