Symbols ## **General Notation** |M| number of objects in a finite set M $||\cdot||$ Euclidean distance Sets N natural numbers $\mathbf{R}, \mathbf{R}_0^+$ real numbers, positive real numbers including zero A_j , A attribute, finite set of attributes Ω direct product of attributes V data set C_i , C cluster, k-cluster set (finite set of disjoint clusters) $\wp(\Omega) \qquad \qquad \text{power set of } \Omega \\ I,J \qquad \qquad \text{index subset}$ $\mathcal{A}(J)$ reduced set of attributes (only A_j with $j \in J$) $\Omega(J)$ direct product of attributes in $\mathcal{A}(J)$ V(J) canonical projection of V on $\Omega(J)$ Θ_s partition Θ decomposition (finite set of disjoint partitions) B_j subset of attribute A_j B, Δ_s box Δ, Δ_I set of boxes, reduced set of boxes (only Δ_s with $s \in I$) W codebook $\mathcal{C}(W)$ compressed clustering $\hat{\mathcal{C}}$ extended clustering Θ_W decomposition based on SOM codebook \hat{W}_s codebook box **Matrices** $egin{array}{lll} \mathcal{S} & & \text{stochastic matrix} \\ \hat{\mathcal{S}} & & \text{coupling matrix} \\ \mathcal{D} & & \text{weighting matrix} \\ \end{array}$ 96 Symbols ## **Variables** $egin{array}{ll} q & \mbox{dimension of } \Omega \ v, v_i & \mbox{data object in } V \end{array}$ n number of data objects in V k number of clusters v(J) projection of v on $\Omega(J)$ n_k number of decomposition partitions w_s codebook vector T, L time steps l_i, r_i left and right boundaries of interval in R X random variable u average number of codebook updates λ_i, Y_i eigenvalue, eigenvector ## **Functions** f frequency function h homogeneity function $h_{max}(V)$ maximal value of homogeneity function in V $\Gamma_{f,h}$ weighted intra-cluster homogeneity d distance function h_d homogeneity function based on distance function S conditional transition probability function \hat{S} set extension of S h_S homogeneity function based on transition probability function χ_M characteristic function of set M r membership rule (set) $\vartheta_{f,h}$ decomposition error \check{h} compressed frequency function compressed homogeneity function \hat{f} set extension of f set extension of h ρ probability density function P_{ρ} probability function corresponding to ρ α learning rate γ neighborhood radius function η grid distance function E(X) conditional expectation value of XP weighted homogeneity function \hat{P} set extension of P