Symbols

General Notation

|M| number of objects in a finite set M

 $||\cdot||$ Euclidean distance

Sets

N natural numbers

 $\mathbf{R}, \mathbf{R}_0^+$ real numbers, positive real numbers including zero

 A_j , A attribute, finite set of attributes Ω direct product of attributes

V data set

 C_i , C cluster, k-cluster set (finite set of disjoint clusters)

 $\wp(\Omega) \qquad \qquad \text{power set of } \Omega \\ I,J \qquad \qquad \text{index subset}$

 $\mathcal{A}(J)$ reduced set of attributes (only A_j with $j \in J$)

 $\Omega(J)$ direct product of attributes in $\mathcal{A}(J)$ V(J) canonical projection of V on $\Omega(J)$

 Θ_s partition

 Θ decomposition (finite set of disjoint partitions)

 B_j subset of attribute A_j

 B, Δ_s box

 Δ, Δ_I set of boxes, reduced set of boxes (only Δ_s with $s \in I$)

W codebook

 $\mathcal{C}(W)$ compressed clustering $\hat{\mathcal{C}}$ extended clustering

 Θ_W decomposition based on SOM codebook

 \hat{W}_s codebook box

Matrices

 $egin{array}{lll} \mathcal{S} & & \text{stochastic matrix} \\ \hat{\mathcal{S}} & & \text{coupling matrix} \\ \mathcal{D} & & \text{weighting matrix} \\ \end{array}$

96 Symbols

Variables

 $egin{array}{ll} q & \mbox{dimension of } \Omega \ v, v_i & \mbox{data object in } V \end{array}$

n number of data objects in V

k number of clusters v(J) projection of v on $\Omega(J)$

 n_k number of decomposition partitions

 w_s codebook vector

T, L time steps

 l_i, r_i left and right boundaries of interval in R

X random variable

u average number of codebook updates

 λ_i, Y_i eigenvalue, eigenvector

Functions

f frequency function h homogeneity function

 $h_{max}(V)$ maximal value of homogeneity function in V

 $\Gamma_{f,h}$ weighted intra-cluster homogeneity

d distance function

 h_d homogeneity function based on distance function

S conditional transition probability function

 \hat{S} set extension of S

 h_S homogeneity function based on transition probability function

 χ_M characteristic function of set M

r membership rule (set) $\vartheta_{f,h}$ decomposition error

 \check{h} compressed frequency function compressed homogeneity function

 \hat{f} set extension of f set extension of h

 ρ probability density function

 P_{ρ} probability function corresponding to ρ

 α learning rate

 γ neighborhood radius function

 η grid distance function

E(X) conditional expectation value of XP weighted homogeneity function

 \hat{P} set extension of P