
Chapter 6

2-D Inversion of inter-station

transfer functions

Since a few years, isotropic two-dimensional forward modelling of electromagnetic transfer
functions can no longer be regarded as a state-of-the-art technique in explaining field data,
since a number of effective 2-D inversion codes have been written, which mostly are freely
available (e.g. de Groot-Hedlin and Constable [1990], Siripunvaraporn and Egbert [2000],Rodi
and Mackie [2001]). Unfortunately, none of the commonly used codes includes an inversion of
any inter-station transfer functions. Fortunately, however, an existing code can in general be
expanded to the inversion of such data type, without major interference with the preexisting
inversion routines. In this work, by the courtesy of the authors, the REBOCC code from
Siripunvaraporn and Egbert [2000] was used as a frame.

6.1 General considerations . . .

6.1.1 . . . on the amount of information

As demonstrated in section 2.2, the multivariate data analysis provides an estimate of the
array’s response on incident uniform source fields, i.e. the two-dimensional response space
R, from which all possible inter-component transfer functions of the processed array can be
calculated. The reflections on the indeterminacy of the response itself show that only 2m− 4
inter-component transfer functions can be linearly independent, if m is the number of compo-
nents within the array. An exhaustive modelling will aim at reproducing this response space,
represented (at least) by a complete set of transfer functions, yielding a minimum structured
(see below) estimate on the subsurface conductivity distribution.

A complete set of transfer functions could comprise the local impedance tensor Z, the lo-
cal geomagnetic tipper functions Tx & Ty and the geomagnetic perturbation Whor with
respect to a chosen reference site for each station (the ”−4” from above is reflected in the
null-information of the perturbation at the reference). For true 2-D structures with strike
direction x, a complete set of transfer functions would thus be Zxy, Zyx, Ty and dD. To fit an
exceeding set of true 2-D data (e.g. additionally inverting for zD) in any forward or inverse
modelling means dealing with redundance and might be avoided in order to save computa-
tional resources. However, an expansion of the set to e.g. additional perturbation matrices
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

with respect to further references could eventually stabilize the modelling procedure, as the
impacts of data quality and location of the reference station are reduced.

6.1.2 . . . on the uniqueness of inversion solutions

Magnetotelluric and geomagnetic field data are in a strong sense not invertible, since any
analytical model will always be just an abstraction of the real conductivity distribution,
the number of free parameters of this abstraction in general exceeds the number of data
(i.e. transfer functions), and real data are in addition always faulty. However, under idealized
conditions – i.e. an infinite amount of precise data and models of mathematically well-behaved
conductivity distribution – it is possible to derive mathematical proofs on uniqueness of in-
version solutions and thus invertability. Tikhonov [1965] showed that a piecewise analytical
1-D conductivity distribution is uniquely determined by knowing the impedance as a func-
tion of frequency. Weidelt [1978] found an analytical proof (only for TE-mode), that also the
2-D magnetotelluric inversion problem has a unique solution. Gusarov [1981] formulated a
uniqueness theorem for 2-D media that covers the impedances of both modes independently
(M. N. Berdichevsky, pers. comm.). The theorem from Weidelt [1978] states:

Let σ(y, z), z > 0 be an analytical bounded function of the variables y and z (0 < σ− ≤
σ(y, z) ≤ σ+ < ∞), which shades off into a 1-D distribution for y → ±∞. Induced is a
quasi-uniform field: By(y, ω) → BN (ω) for y → ∞. Then:

If the function e(y, ω) = E(y, ω)/BN (ω) is given on the continuum (y−, y+) and (ω−, ω+),
then the conductivity distribution σ(y, z) is determined uniquely.

After a remark from Weidelt [1978], σ(y, z) was chosen analytical to simplify the proof and
the analytical nature does not imply a principal restriction: the range of possible models can
particularly be expanded to the class of piecewise analytical models. The author also pointed
out that the proof of the theorem does by no means provide the determination of σ(y, z).
Integrating ∂Ex/∂y = iωBz (from Maxwell equation 2.5b, see also eq. 2.22), and dividing
it by the normal horizontal magnetic field BN yields:

e(y, ω) = ZN (ω) − iω

∫ ∞

y

zDdy′ (6.1)

The Hilbert-transformation, here derived from the Maxwell equation (quasi-static approxi-
mation) ∇×B = µ0j (cf. Rokityansky [1982], p. 277) and again normalized to BN , relates
the vertical and horizontal magnetic field components to each other:

zD(y) = −
1

π

∫ ∞

−∞

dD(y′)

y′ − y
dy′ (6.2)

Thus, it seems that the transfer functions dD and zD, if known on the continuum (−∞,+∞;
ω−, ω+), do only uniquely determine the conductivity distribution, if the normal impedance
ZN is additionally given.

Very recently, Berdichevsky et al. [2000] could show for the same class of models (provided
that σ(y, z) 6= σ(z), i.e. there is spatial conductivity variation) that the ‘local anomalous’

56



6.2 THE INVERSION SCHEME OF THE EMPLOYED PROGRAM

impedance

Za
‖ (y, ω) =

Ea
x

Ba
y

=
e(y, ω) − ZN (ω)

dD

=
1

dD

(

−iωµo

∫ ∞

y

zD(y′)dy′
)

(6.3)

approximates to ZN (ω) for distances far away from conductivity contrasts. They give the
physical explanation that the external part of the anomalous field, which is due to anomalous
currents in the inhomogeneities, gets quasi uniform towards the remote zone and thus obeys
the Tikhonov-Cagniard impedance relations.

Additionally, they find an iterative method to relate the transfer functions dD and zD to the
local geomagnetic tipper Ty, provided that the former are known on the entire y-axis.
Altogether, we can derive for conductivity distributions as in Weidelt [1978], with spatial
variation of conductivity:

If any of the transfer functions related to the TE-mode (Z‖, Tyz, dD, zD) is given on the en-
tire y-axis and on the continuum (ω−, ω+), then the conductivity distribution is determined
uniquely.

Now let D0 be the horizontal magnetic field at a specific coordinate y0. Then with D =
BN = By(∞) = (1 + dD0(∞)) ∗ D0, we can write:

dD(y) =
dD0(y) − dD0(∞)

1 + dD0(∞)
(6.4)

zD(y) =
zD0(y)

1 + dD0(∞)
(6.5)

As these data can be transformed into each other, the uniqueness theorem is also to valid for
the transfer functions dD0 and zD0 (cf. Hilbert transformation in eq. 6.2) with an arbitrarily
chosen reference.

6.2 The inversion scheme of the employed program

All details on the REBOCC inversion algorithm that will be described here are taken from
Siripunvaraporn and Egbert [2000] and from thorough inspection of the source code itself.
The considerations on the uniqueness of inversion solutions from above are, as pointed out,
only valid for ideal data sets with analogue character, i.e. continuous in time/frequency and
space. Dealing with real, discrete and faulty data implies on one hand that the misfit of each
datum has to be related the corresponding uncertainty, and on the other hand that a number
of models can explain the data equally well.

Let d be the vector of all N data to be inverted (d = (d1, d2, . . . , dN )), and F be the highly
nonlinear function, yielding the synthetic response of the model m, which consists of M
discrete blocks of constant resistivity. Then out of the space of models, which’s responses fit
the measured data sufficiently well, i.e. the data misfit

χ2
d = (d − F(m))T C−1

d (d− F(m)) (6.6)
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

(where Cd is the – in general diagonal – covariance matrix of the data, containing the errors)
is close to a desired misfit χ2

∗, the algorithm shall find the model with the least structure, as
this is supposed to be one of high physical relevance. As a measure for the model structure,
the norm

χ2
m = (m −m0)

TC−1
m (m−m0) (6.7)

is calculated in this code. Here, m0 is an initially defined prior model, and Cm is a model
covariance “characterizing the expected magnitude and smoothness of resistivity variations
relative to m0” (see appendix of Siripunvaraporn and Egbert [2000] for details). Instead of
a model covariance, often ‘roughness’ operators are employed, realized by matrices which
act as first- or second-differences operator on the model vector containing the resistivities
(e.g. Schwalenberg [2000]).
Seeking for a model with the described qualities leads to the mathematical formalism of
implicit functions and to the introduction of a Lagrange-multiplier λ, acting as a ‘trade-off’
parameter between data misfit and model norm. The preferred model is supposed to be a
stationary point of the ’penalty functional’:

U(m, λ) = χ2
m + λ−1(χ2

d − χ2
∗) (6.8)

Without the restriction to minimize the model norm, the inversion would generate erratic
models with extreme variations. Since the model response function F is nonlinear, the prob-
lem cannot be solved directly. Therefore, an iterative scheme has to be adopted, where F(m)
is linearized by an expansion into Taylor series:

F(mk+1) = F(mk) + Jk(mk+1 −mk) (6.9)

Jk = (∂F/∂m)|
mk

is the sensitivity matrix or Jacobi-matrix calculated for model mk. Dis-

carding the term χ2
∗ and fixing λ, with the above linearization, a stationary point of equation

6.8 can be calculated for each iteration k, yielding a model mk+1 which is dependent on λ.
Iterative repetition of these calculations will presumably converge to a ‘final’ model and a
‘final’ data misfit χ2

d, which strongly depends on the choice for λ and can be highly different
from the desired misfit χ2

∗.

Employing conventional inversion algorithms, the operator is constrained to run this proce-
dure for various λ until a reasonable trade-off between model structure and data misfit is
achieved, eventually reaching a misfit close to the desired χ2

∗. Following the here adopted
OCCAM1 method, first introduced by Constable et al. [1987], λ is varied within each itera-
tion, and finally that value of λ is taken, which’s response F(mk+1(λ)) minimizes the data
misfit χ2

d for the actual iteration (in early iterations, the condition χ2
d ∼ χ2

∗ will not be met).
Once the desired misfit is reached, in a second phase a significantly narrower range of values
is tested for λ in following iterations. This should keep the misfit down at the desired level,
while minimizing the model norm.

1named after William of Occam, respectively his well-known ‘razor’: “It is vain to do with more what can
be done with fewer.” (e.g. Russell [1959])
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6.3 CALCULATION OF SENSITIVITIES

The DATA SPACE OCCAM method, which is implemented in REBOCC, takes advantage
of the circumstance that stationary points mk+1 of equation 6.8 (again discarding χ2

∗) can
be expressed as

mk+1 −m0 = CmJT
k βk+1 (6.10)

(Parker [1994]), where the N elements of the coefficient vector βk+1 correspond to distinct
data elements and have to be determined solving ∂U(mk+1)/∂mk+1 = 0, with the above
identity inserted. This formalism leads to the inversion of (N×N) matrices (→ data space)
instead of the usually much larger (M ×M) matrices, which saves significant computer re-
sources with regard to storage and time.

As magnetotelluric and geomagnetic transfer functions vary rather slowly in space and fre-
quency, their sensitivities with respect to changes in the model can also be supposed to vary
slowly and thus bear significant redundances. Therefore, the above sketched data space ap-
proach suggests that a reduced set of data representers αk+1, e.g. for data of every i-th period
and/or j-th station, together with a subset sensitivity matrix Gk should yield comparable
results, if inserted in equation 6.10 instead of the term JT

k βk+1. To solve the inverse problem
(∂U(mk+1)/∂mk+1 = 0), the subset sensitivity matrix then has to be interpolated to the full
sensitivity matrix by an interpolation scheme (which does not have to be very sophisticated),
realized by a matrix B:

Jk = BGk (6.11)

From the implementation of this method, the name of the program is derived: REBOCC
stands for REduced Basis OCCam inversion.

6.3 Calculation of sensitivities

The described inversion scheme is independent of the transfer functions that are to be in-
verted. The released version of REBOCC is capable to invert for apparent resistivities and
phases of both, TE- and TM-mode, and for real and imaginary parts of local geomagnetic
tipper functions (‘TP’, physically also TE-mode). Implicitly, the data type is reflected in the
model response function F, and as it is its basis, in the sensitivity matrix J. To incorporate
the inversion of inter-station transfer functions, the calculation of the model response func-
tion has to be modified just very little (see appendix A and below), but this has a major
influence on the corresponding sensitivities and the calculation of these.

After linearization, the forward problem for one of the two modes reduces to the solution of
an equation

Kv = f (6.12)

where, for the TE-mode which will be considered here, v is a vector consisting of the values
for the electric field component in strike direction at all model nodes, and f is a vector of the
same length with the respective boundary conditions (the problem is formulated in a way
that elements of f referring to non-boundary nodes result to zero). K is a multi-diagonal
symmetric matrix which’s elements bear most of the information on the model’s dimensions

59



2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

and resistivities. Linearization of the induction problem and thus construction of K is per-
formed as in Aprea et al. [1997] and described in detail in appendix A.1. From the solution
vector v, the geomagnetic field at the earth’s surface can be calculated, applying Maxwell’s
equation ∇×E = −iωB. This is explicitly shown in appendix A.2.

Sensitivities are the first derivatives of the data d obtained by forward calculation with respect
to the variable model parameters m (here: conductivities). In MT, as the absolute values
of the fields are a function of time, data are always ratios between two field components.
Every field component Q can be regarded as a scalar product of a coefficient vector aT and
the solution vector v of the induction problem for the respective mode (cf. A.15): Q = aTv.
Thus for the sensitivities of an arbitrary field component, we have (chain rule):

∂Q

∂m
=

(

∂aT

∂m

)

v + aT

(

∂v

∂m

)

(6.13)

Differentiation of equation 6.12 with regard to the model parameter m

∂K

∂m
v + K

∂v

∂m
=

∂f

∂m
(6.14)

inserted in equation 6.13 yields:

∂Q

∂m
=

∂aT

∂m
v + aTK−1

(

∂f

∂m
−

∂K

∂m
v

)

(6.15)

Taking a closer look to this equation, it can be seen that for the calculation of the sensitivity,
the forward problem, i.e. the equation y = K−1x, where x is replaced by the expression in
brackets, has to be solved at every model node m. Yet, taking advantage of the symmetry
of the matrix K, the equation can be reorganized, so that the forward problem just has to
be solved for all data points, which are usually significantly fewer than the number of model
parameters (i.e. the inversion problem is under-determined):

∂Q

∂m
=

∂aT

∂m
v + K−1a

(

∂f

∂m
−

∂K

∂m
v

)

(6.16)

(Rodi [1976]).

• Sensitivities of magnetic transfer functions dD.

Here, the data are given by the transfer functions dD = By/By0 − 1. It thus has to be
calculated:

∂dD

∂m
=

1

By0

∂By

∂m
−

By

B2
y0

∂By0

∂m

=
1

By0

[

∂aT
y

∂m
v + K−1ay

(

∂f

∂m
−

∂K

∂m
v

)

]

−
By

B2
y0

[

∂aT
y0

∂m
v + K−1ay0

(

∂f

∂m
−

∂K

∂m
v

)

]

(6.17)
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or, numerically more efficient:

∂dD

∂m
=

(

1

By0

∂aT
y

∂m
−

By

B2
y0

∂aT
y0

∂m

)

v + K−1

(

1

By0
ay −

By

B2
y0

ay0

)

(

∂f

∂m
−

∂K

∂m
v

)

(6.18)

Note, that the first term in brackets of the second addend is independent of the model pa-
rameter m, and the second term in brackets is independent of the specific data type of the
TE-mode. The coefficient vectors ay and ay0 are mostly zero (cf. equation A.15), and for
model parameters where ∂aT

y /∂m is unequal zero, the term ∂aT
y0/∂m will be zero and vice

versa, since site and reference site (or: node) are in general not side by side.

• Sensitivities of magnetic transfer functions zD.

Here, the data are given by zD = Bz/By0. Completely analogous, we obtain:

∂zD

∂m
=

(

−
Bz

B2
y0

∂aT
y0

∂m

)

v + K−1

(

1

By0
az −

Bz

B2
y0

ay0

)

(

∂f

∂m
−

∂K

∂m
v

)

(6.19)

with (∂az/∂m = 0, compare equation A.17 in appendix A.2).

Having implemented these sensitivities, with some slight additional changes as calculation of
the new forward responses and in- and output, the program can now invert up to five data
types (nomenclature as used in the program): TE & TM (ρa & φ of the two modes), TP
(real and imaginary parts of the local magnetic transfer function Ty), and dD & zD (both
also real and imaginary parts).

6.4 Synthetic examples

Geomagnetic perturbations W, as introduced by Schmucker [1970], have been thought as
a means to quantitatively describe anomalous geomagnetic variations with respect to a de-
fined, not necessarily purely horizontal normal variation, which is either observed at a chosen
reference or deduced synthetically as the average magnetic field of a certain number of sites.

Schmucker [1993] inverted for an with respect to a normal 1-D background resistivity σN (z)
anomalous two-dimensional conductivity distribution σa(y, z), employing a finite element
algorithm. His input data were anomalous fields, calculated from local TE-mode impedances
and tipper data of a subset of the COPROD2 (see Jones [1993]) data set and responses from
the estimated 1-D background conductivity distribution:

Exa = Zxy/ZN · (1 + Bya) (6.20)

Bza = Ty(1 + Bya), Bya = By − By0 (6.21)

Leibecker [2000] made the suggestion to develop a local, two- or three-dimensional model
which sufficiently well explains the local data at the reference station, to which the geomag-
netic field of all other stations is related. Calculating a synthetic perturbation of the field
from the reference with regard to a synthetic normal site far away from any anomalies of the
model, final perturbations can be calculated between all field sites and the synthetic, true
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

one-dimensional normal field. Though the model does not have to be very sophisticated and
though it only has to explain the data of one site, it has to be constructed before the full
modelling and it should not be too far from the true conditions.

The wish to relate all fields to a true normal reference corresponds to the request, that all
perturbation data shall be related to an anomalous conductivity distribution σa, and this only
via the local fields (e.g., for a 2-D conductivity distribution: By(σa) − By0 = dD(σa) ∗ By0).
For data where this condition cannot be met, forward modelling might be very difficult. As
an inversion scheme is presented here, considerations on uniqueness instead of instructiveness
get more important, and, as could have been seen above, the responses are sensitive to fields
of both, local site and reference. At this point, an additional deliberation arises:
Especially for dD, one could request that the data should equally depend on changes of the
fields at the local site and at the reference, respectively of the conductivities below them.
This would easily be achieved by inverting ln(By/By0) = ln(By) − ln(By0) instead of dD.
If this suggestive but completely unusual change of the data type would further improve the
inversion results shown below has still to be tested.

For the following two synthetic examples, joint inversion results of combinations of modes, as
presented in Siripunvaraporn and Egbert [2000] will not be shown here, as only the physics of
the single data types for the respective models shall be studied. For all inversion calculations
presented below, the data subset of every second period at all stations was chosen for the
calculation of the subset sensitivity matrix, which is interpolated to the full sensitivity matrix
(see section 6.2).

6.4.1 Model from Siripunvaraporn & Egbert

The first model that the code is tested with for the new features, is taken from Siripunvaraporn
and Egbert [2000], who in turn derived it from inversion results of the COPROD2 data set
(cf. Jones [1993]) from Wu et al. [1993]. It is a four layered model (100 Ωm: 0–10 km,
1000 Ωm: 10–40 km, 100 Ωm: 40–100 km, 10 Ωm: 100–∞ km), with three quadratic highly
conductive (1 Ωm) anomalies (A, B & C) in the resistive second layer. The side-lengths of
the anomalies are (from left to right) 15 km, 20 km and 10 km, and they are buried at 15 km,
20 km and 25 km depth, separated by 20 km and 10 km, respectively (see figure 6.1). On top
of the model are 36 stations with a spacing of 3 km, plus – in contrast to Siripunvaraporn and
Egbert [2000] – an additional station, which serves as a reference for transfer functions dD

and zD, situated 40 km left of the second station and 55 km left of anomaly A. The synthetic
input data for the inversion calculations have been generated with the finite element code
from Wannamaker et al. [1987], using a discretization of 374 rows and 86 columns, with 10
additional air layers for the TE-mode. Periods range logarithmically equidistant from 1 s to
1000 s, with 10 periods per decade. Two percent Gaussian noise was added to the synthetic
data, which shall mean that the errors of the data are set to

∆ρTM,TE = 0.02 · ρTM,TE
a , ∆φTM,TE = 0.02 · 90/π (6.22)

∆<(Ty, dD, zD) = 0.01, ∆=(Ty, dD, zD) = 0.01 (6.23)
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Figure 6.1: Synthetic model as in Siripunvaraporn and Egbert [2000] with three conductivity
anomalies A, B & C of 1Ωm in the resistive second layer and five models, resulting from inversions
of apparent resistivities and phases of the two modes (TM, TE), real and imaginary parts of
local tipper functions Ty = Bz/By (TP) and the in this version additionally invertible transfer
functions dD = By/By0−1 and zD = Bz/By0. Reference is the leftmost station. For the latter
three data types, also data (black) and responses (colored; red: real parts, blue: imaginary parts)
of stations 10 and 30 (numbered from left upwards) are shown.

and the data itself were modified, subtracting a value according to the above error, whereat
the number 0.02 (0.01) was replaced by a normal distributed random number of standard
deviation 0.02 (0.01).

For the inversion, a homogeneous start and prior model of 100 Ωm resistivity was chosen,
with a discretization of 187×43 elements, i.e. two times coarser than in the forward mod-
elling. Figure 6.1 shows inversion results of apparent resistivities of the two modes (TM, TE),
real and imaginary parts of local magnetic transfer functions (TP) and the newly invertible
transfer functions dD (anomalous horizontal magnetic field) and zD (local vertical magnetic
field related to the horizontal magnetic field of the reference). Inversions of local transfer
functions converged completely (i.e. RMS = 1.00), whereas for transfer functions dD and
zD the achieved minimum RMS was 1.16 and 1.22, respectively. Obviously, currents within
the model plane are very little deflected by the three anomalies A, B & C, and the TM-
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

mode inversion basically reflects the one-dimensional background resistivities. In contrast,
inversion of apparent resistivities and phases of the TE-mode (TE) best recover the overall
conductivity distribution. Inversions of Ty (TP), dD and zD yield comparable models, with
a slightly diminishing quality from TP via zD — both these inversions reconstruct the three
anomalies — to dD, where the vertical and lateral boundaries are poorly resolved.

Looking at the sample transfer functions of stations 10 and 30 (numbering from left upwards)
for the three data types, we see that above the leftmost anomaly A the horizontal magnetic
field increases by a factor > 1.6 (i.e. dD > 0.6), and as a consequence, the transfer function
Ty (TP) is diminished with respect to zD, as the local horizontal magnetic field is in its
denominator. It can be argued that extending the period range towards longer periods,
inversions of data that physically belong to the TE-mode (TE, TP, dD, zD) would better
resolve deeper conductivities and lower boundaries of the anomalies, since the real parts of
the shown magnetic data are still close to their extremal values at 1000 s.

6.4.2 A very crude ANCORP resistivity model

From the results of Schwalenberg [2000] (see also: Brasse et al. [2002]), which were obtained
by 2-D inversion of apparent resistivity and phase data of 30 stations from the ANCORP-
profile, and from the forward modelling studies presented in Soyer and Brasse [2001], fitting
the transfer functions dD and zD, a very crude, schematic conductivity distribution for the
ANCORP-profile was derived, which’s features are not subject to discussion here.

The model is divided into two ‘quarter-spaces’ of 300 Ωm (left) and 100 Ωm (right), with the
following conductivity anomalies inserted (see figure 6.2): The Pacific ocean is simulated by
a highly conductive 4 km deep block of 0.27 Ωm, extending to −∞ towards west. The Pre-
cordillera anomaly is represented by a nearly quadratic structure of ∼9 km side-length and
1 Ωm conductivity, buried at only 4 km depth. On the eastern side, a 2,5 km thick sheet of
superficial high conductivities (1 Ωm), which extends approximately 140 km in E-W direction,
is placed at a depth of 500 m, representing sediments on the Altiplano. At 15 km depth, a
1 Ωm sheet of 8 km thickness and ∼170 km lateral extension, together with a domain of 3Ωm
below, which reaches down to 65 km depth, characterizes the Altiplano high conductivity
anomaly. To numerically stabilize the forward responses, the top layers comprising the upper
100 m were set to a conductivity of 1Ωm.

The locations of the 35 stations are the same as for the field sites, with a spacing of approx-
imately 10 km. Also, the periods are identical with the target frequencies of the processing
of real data, ranging from ∼10 s to ∼23,000 s with 8 periods per decade.

Forward modelling was again performed with the code from Wannamaker et al. [1987], here
with a discretization of 392 columns and 100 rows. For the calculation of the transfer func-
tions dD and zD, the horizontal magnetic field of the sixth station, which represents CTE,
was defined as ‘normal’ and served as reference. As in the previous section, data of the single
types were inverted independently: ρa & φ of the two modes (TM, TE), real and imaginary
parts of local geomagnetic transfer functions (TP), and the inter-station transfer functions
dD and zD. As above, two percent noise was added to the data.
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

In the inversion, discretization was twice as coarse as that for the generation of the synthetic
data, using 196×50 elements. Start and prior models were 100 Ωm half-spaces with the ocean
included, which was fixed during inversion. Inversions of apparent resistivities and phases of
TM and TE-mode converged best (RMS = 1.05 & 1.15), followed by the inversions of inter-
station magnetic transfer functions dD and zD (RMS = 1.27 & 1.41). Surprisingly, inversion
of local magnetic transfer functions Ty (TP) did not converge (RMS = 3.01). The high con-
ductive uppermost 100 meters (see above) are obviously reflected in all inversion results by
downward increasing resistivities within the upper ∼10 km on the western part of the models
(see figure 6.2). Comparable to the previous section, the Precordillera anomaly, being a high
conductivity anomaly of small extension within a resistive host which does not reach to the
surface, has minor influence on superficial apparent resistivities of the TM-mode and is thus
not found in the inversion results. In contrast, all models from inversions of transfer function
that physically belong to the TE-mode (i.e. the other four) show this anomaly very well. The
overall conductivity distribution is again best recovered by inversion of apparent resistivities
and phases of the TE-mode.

Conductivity distribution in the eastern part of the model is locally approximately one-
dimensional, and rather than to resolve the lateral structure of the anomalies as in the
previous section, the task of any inversion here is to reconstruct the vertical structure. As
the vertical magnetic field is about zero above the center of the anomaly for a wide period
range, transfer functions with Bz in their nominator have no information on any vertical
conductivity distribution, resp. they only do contain the information that locally no lateral
variation of conductivity is observed (see zD of site 25, figure 6.2). In contrast, the local
anomalous horizontal magnetic field has ‘full’ signature of the 1-D conductivity distribution
below (see dD of site 25, with values > 1.2, i.e. By > 2.2 · By0). As a consequence, the
resistivity distribution below the ‘Altiplano’ is much better recovered by inversion of dD than
by inversion of local geomagnetic transfer functions Ty (TP) or zD, inversion of the former
even failed to converge. Close to the ocean, the opposite effect is observed: The horizontal
magnetic field is just slightly decreased onshore, whereas the vertical magnetic field partly
even equals the horizontal field (i.e. Ty = 1, cf. transfer functions dD and zD of site 2). This
will be discussed in more detail in section 7.1.

6.4.3 Inversion of data with various references

In practice, it can be difficult to relate the measured field of all stations to that of one
chosen reference, or eventual calculations to successively combine sub-arrays may lead to
contamination of good data due to bad local data of the important overlapping station(s).
For such cases, one might want to have the possibility to invert inter-station data where the
field of each station is related to that of an individual reference, i.e. at station i:

di
D =

Byi

By0
− 1 ⇒ di

Dj(i) =
Byi

Byj(i)
− 1 (6.24)

(zD analogous). The necessary extension of the code to invert such data is trivial and at
most a task in terms of data organization: besides the calculation of these transfer functions
from the fields of the forward modelling, By0 in equations 6.18 and 6.19 has to be replaced
by Byj(i) in the calculation of the sensitivities. As shown above, the speciality of the reduced
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6.4 SYNTHETIC EXAMPLES

basis data space OCCAM approach is that the full sensitivity matrix is calculated via in-
terpolation from a smaller matrix containing sensitivities at a chosen subset of data. This
interpolation is normally done between values from adjacent periods and stations. Using var-
ious references, the interpolation between stations has to be omitted, since now sensitivities
cannot be supposed to vary smoothly in space.

Yet, the question on the uniqueness of inversion solutions is of different quality here: Imagine a
two-dimensional model which’s conductivity distribution is symmetric with regard to the axis
y = 0 (cf. figure 6.3 for illustration). Then, a transfer function dD(y) = By(y)/By(−y) − 1
will be identically zero for any y and the only information on the subsurface conductivity
is that it must be symmetric with respect to y = 0. It might however be that for ideal,
continuous data as in section 6.1.2 without symmetric organization, a theorem on uniqueness
resp. invertability can be deduced as well.
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Figure 6.3: Over a symmetric model, the transfer function dD with a reference far away from
conductors is also symmetric. Thus, a transfer function dD′ which relates the horizontal field to
that of the ‘mirror’ site (in this example by grouping equal colors, so that the sum of station
numbers results to 14) wipes out any information on the anomalous conductivity.

The inversion with various references has also been tested with synthetic data, which were
generated from the two models of the previous section in the same manner as above. To
check if such an inversion does work at all, a quite complex, random resp. associative site –
reference site combination schema was chosen (table 6.1).
Figure 6.4 shows inversion results for transfer functions dD of the model from Siripunvaraporn
and Egbert [2000]. Though the convergence is very good, the inversion badly reconstructs the
original conductivity distribution. As is clear and has been verified in the previous section,
transfer functions dD between stations above and far away from conductors have generally
the highest absolute values. The site – reference site combinations from table 6.1 for this
model, however, lead to a set of data, where this is only realized for data from two stations
(1 & 17), and data from all other stations are of small value. This is also reflected in a much
smaller starting RMS at the beginning of the inversion.
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2-D INVERSION OF INTER-STATION TRANSFER FUNCTIONS

Site 1 2 3 4 5 6 7 8 9 10 11 12 13

Ref. 18 5 33 7 21 11 25 36 34 15 2 28 31

Site 14 15 16 17 18 19 20 21 22 23 24 25 26

Ref. 3 22 6 1 27 17 8 32 26 12 14 4 37

Site 27 28 29 30 31 32 33 34 35 36 37
Ref. 20 29 16 35 24 13 30 19 9 23 10

Table 6.1: Site – reference site organization for data dD, as they were calculated from the model
of Siripunvaraporn and Egbert [2000]. Each station is only used once as reference.

For the inversion of data from the synthetic ANCORP model, the site and reference grouping
was basically as in table 6.1 (changes only due to the smaller number of stations). Here the
model is recovered very well, which is surely due to the circumstance that for a sufficient
number of sites on the ‘Altiplano’, the respective references lie westward of the major anoma-
lies, where only the – also well recovered – ’Precordillera’ anomaly is situated (see figure 6.5).
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Figure 6.4: Results from the inversion of data dD from the synthetic model shown in figure 6.1,
with the ‘random’ site – reference site relations from table 6.1.
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Figure 6.5: Inversion results from transfer functions dD of the synthetic, schematic ANCORP
model (figure 6.2), with a site and corresponding reference grouping almost identical with that
of table 6.1.
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