
Appendix

A.1 Cation Ordering

As already discussed in Section 2.2.4.1 the typical cation ordering of the chalcopyrite

structure is re�ected in the XRD-spectra by the appearance of additional re�ections (group

(iii) in Section 2.2.4.1) referred to as super lattice re�ections. In the case of vanishing anion
displacement u = 0 the structure factor of group (iii) re�ections is given by

F
(iii)
hkl ∝ f 2

Cu
− 2fCufIn + f 2

In
, (A.1)

i.e. the appearance of these re�ections originates from the di�erence in the atomic scat-
tering factors of group I and group III cation lattice sites in the chalcopyrite structure.

In the case of u �= 0.25 there is a small additional contribution to the scattering factor
which depends on u as well as the speci�c (h, k, l) indices. In a sphalerite lattice where
the cations sublattice sites are randomly occupied by group I and group III atoms the

di�erence cancels out on a macroscopic scale and group (iii) re�ections can not be ob-
served. In this sense the intensity of these re�ections is a direct measure for the degree

of chalcopyrite ordering in the crystal lattice. However, the interpretation is not straight-
forward since the magnitude of the structure factors of the group (iii) re�ections is also

very sensitive to the occupation of the cation sublattices and to the displacement of the

anion in the chalcopyrite lattice. Therefore a precise analysis of the intensities of group
(iii) re�ections can also provide informations about lattice imperfections such as vacancies

or antisite defects. Albin [166] showed a correlation between the intensity of group (iii)

re�exes and the molecularity m = [Cu]/([Cu] + [Ga]) of CuGaSe2 thin �lms, which was
in agreement with calculated structure factor values Fhkl for a lattice containing copper

vacancies and gallium atoms at copper sites.

The relative intensity of group (iii) re�ections with respect to the (112) re�ection was

already discussed in Section 3.3 in order to demonstrate the improvement in lattice ordering
during the recrystallization step of the �lm growth process. In order to evaluate the

in�uence of structural deviations from an ideal chalcopyrite unit cell onto the group (iii)

re�ections the e�ects of
• cation order/disorder transitions,

• deviations from molecularity,
• changes in the anion displacement u, and
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• the isovalent substitution of In with Ga.
have been incorporated in the structure factor calculations (Section 2.2.4). Since each

of these e�ects in�uences the intensity of individual group (iii) re�ections in a di�erent

way the role of each factor can, at least qualitatively, be determined when comparing

the calculations to trends of the experimental data. Several calculated examples and a

comparison to experimental data will be given in the following.

Structure factors were calculated according to Equation (2.6). The atomic form factors
fα have been altered to account for the deviations from the ideal occupation of lattice

sites. In the perfect chalcopyrite crystal group I atom sites are occupied by Cu, group III

atom sites are occupied by In, and group VI atom sites are occupied by S. An undisturbed
sulfur sublattice has been assumed in all calculations, i.e. fVI = fS. It has to be noted that

texture e�ects have not been taken into account here. This seems to be justi�ed by the

fact that no substantial discrepancies between the calculated zincblende (group (i)) XRD

re�ections and the experimental data could be found in this work.

Cation order/disorder transitions As mentioned above cation antisite disorder, such

as In at Cu lattice sites (InCu) and vice versa (CuIn), ultimately leads to the cubic sphalerite
structure. Pamplin et. al. [22] have proposed a disorder parameter

δdisorder =
CuIn

CuCu
=

InCu

InIn
, (A.2)

which ranges from zero in the case of perfect ordering to unity for perfect disorder. Under

the presence of antisite disorder the atomic scattering factors at the group I atom lattice
site and the group III atom lattice site change as follows

fI =
(

δdisorder + 1
)−1

fCu +

(
1

δdisorder
+ 1

)−1

fIn ,

fIII =
(

δdisorder + 1
)−1

fIn +

(
1

δdisorder
+ 1

)−1

fCu . (A.3)

Anion displacement The in�uence of variations in the anion displacement can be cal-

culated in a straight forward manner by accounting for the change of the fractional coor-

dinates of the atomic position of the S-atom in Equation (2.6).

In-Ga substitution The incorporation of Ga at group III lattice sites is modeled by

assuming a statistical substitution of In by Ga. For the atomic scattering factor fIII it
follows

fIII = (1 − x) fIn + x fGa , (A.4)

where x refers to the [Ga]/([In] + [Ga]) ratio. Lattice constant a and c and the anion

displacement u are assumed to vary linearly with x according to Vegard's Law (see Fig-

ure 2.13).



A.1. Cation Ordering 125

Deviations in molecularity Defect-dependent structure factors for a Cu-de�cient lat-
tice have been calculated for the CuInS2 lattice following a similar approach as in [166]. The

considerations have been restricted to the one phase region of CuInS2 along the pseudo-

binary line (Cu2S)m-(In2S3)1−m, where m refers to the molecularity [Cu]/([Cu] + [In]). Fur-
thermore, it will be assumed that the anions form a perfect lattice and that the structure

of the defected compound will be that of a defect adamantine with decreasing Cu-content

(Cu excess can not be accommodated by the chalcopyrite lattice and will rather lead to

Cu2−xS segregation). For the normalized atomic fractions of the defect compound follows:

(Cu2S)m(In2S3)1−m → Cu2m[2/(3−2m)]In2(1−m)[2/(3−2m)]S2 . (A.5)

From Equation (A.5) is becomes clear that with decreasing m, i.e. if the material becomes

Cu-poor, one In atom is added to the lattice for every 3 Cu atoms removed from it:

∆[In]

∆[Cu]
=

2(1 − m)[2/(3 − 2m)] − 1

1 − 2m[2/(3 − 2m)]
=

1

3
. (A.6)

This suggests that defects pairs of the type 2VCu+InCu are introduced into the lattice

with decreasing molecularity, as such a defect pair was found to be the energetically most
favorable type of defect in Cu-chalcopyrites by Zunger et al. [124]. In the considered case
it is further assumed that only Ga atoms substitute for Cu at group I atomic sites. Such a

situation refers to an incorporation of Ga at group I and group III lattice sites in contrast
to the isovalent substitution at group III lattice sites only as considered above. In such a
case the atomic form factors read as follows:

fI = 2m[2/(3 − 2m)]fCu + (2(1 − m)[2/(3 − 2m)] − 1)fGa ,

fIII = (1 − x) fIn + x fGa . (A.7)

Calculations The intensity of some of the most intense group (iii) re�ections i.e. (101),

(121), (301) with respect to the (112) re�ection have been calculated for each of the cases
discussed above. CuInS2 lattice constants and the anion displacement have been taken

from [24] (see Table 1.1). Intensity values have been obtained by applying the corrections

as discussed in Appendix A.3.

Figure A.1 shows the obtained intensity ratios for a CuInS2 thin �lm of 2.5µm thickness. As
discussed above cation antisite disorder or in other words the transition from a chalcopyrite

to a sphalerite lattice leads to a signi�cant reduction of the group (iii) intensities. As can

be seen in the Figure A.1 (a) a disorder parameter of 0.2 causes a decrease in XRD intensity

down to a half or even one third of the initial intensity of the undisturbed lattice. Large

changes are also indicated by Figure A.1 (c) where the anion displacement parameters u
is varied. The isovalent substitution of In by Ga does not greatly e�ect the group (iii)
intensities (Figure A.1 (b)). And even the incorporation of Ga at group I atom lattice

sites does only a�ect the (101) re�ection signi�cantly. Thus the �gure demonstrates that

whereas structural changes lead to quite large changes in the group (iii) the incorporation
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Figure A.1: Calculated intensities of some group (iii) re�ections (chalcopyrite superlattice)

relative to the (112) intensity for a CuInS2 thin �lm of 2.5µm thickness of (a) Cu-In
antiside disorder on the cation sublattice (�xed u-value), (b) varied Ga-In substitution on

the atom III sublattice (u varied acc. to Figure 2.13), (c) varied anion displacement, (d)

varied molecularity, i.e. GaCu + 2VCu.
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of Ga does not have such a big e�ect. The ratio between the (101) intensity and the (121)
intensity can serve as an indicator whether deviations in group (iii) intensity are due to

disorder e�ects or changes in anion displacement.

Cu(In1−xGax)S2-thin �lms - experimental data Ga-incorporation in the CuInS2

surface phase of sequentially prepared layers has a great in�uence on the chalcopyrite su-

perlattice peaks. Figure A.2 compares the three most intense group (iii) re�ections normal-
ized to the (112) intensity of a Ga-free reference sample and two samples with a nominal

[Ga]/([In] + [Ga]) ratio of 0.05 and 0.14 (according to SNMS), respectively (Table 3.6).

The integrated peak intensities as a function of Ga-content are plotted in Figure A.3. The

dashed lines in the plot correspond to the calculated intensity of a layer of 2µm thickness.

There is a clear increase in the integrated peak-intensity of all group (iii) intensities as

a result of Ga-incorporation from values clearly below the calculated intensities to values

which agree very well with the calculations. With respect to the calculations presented
in the previous section this clearly indicates an increase in the structural quality of Ga-
containing samples. i.e. the signi�cant increase in the (101) intensity has to be assigned to

an improvement in cation ordering. Best agreement between experimental and calculated
values could be reached when assuming a �xed [Ga]/([In] + [Ga]) ratio of the group III

sublattice and varying the anion displacement. Table A.1 lists measured and calculated

17o 18o 19o

0.00

0.02

0.04

0.06

0.08

0.10

27o 28o 29o

0.0

0.2

0.4

0.6

0.8

1.0

37o 38o

0.00

0.01

0.02

0.03

0.04

49o 50o 51o

0.00

0.01

0.02
(101)

2 Theta

 

N
or

m
.  

X
R

D
-I

nt
en

si
ty

 (
co

un
ts

)

 

(112)

  

 

(121)

  

 

[Ga]/([In+Ga])
acc. to SNMS

 Ga free
 0.05
 0.14

(301)

  
 

Figure A.2: XRD super lattice re�ections of CuInS2 top phase of samples with varied

Ga-concentration in the phase.

intensities for the case of the [Ga]/([In] + [Ga])=0.14 sample in Figure A.2. The obtained
values suggest a smaller displacement of the anion as published by [24], however taking into

account the considerable scatter of reported u values for CuInS2 (Table 1.1) such a devia-

tion is not surprising. Substantial changes in molecularity induced by Ga-incorporation at
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Figure A.3: Measured intensities

of super lattice re�ections of the

CuInS2 phase of three samples of

varied [Ga]/([In] + [Ga]) ratio: 0.0

(squares), 0.05 (diamonds), 0.14

(circles). Dashed lines refer to cal-

culated intensities for a CuInS2 thin

�lm (thickness 2µm using the pa-

rameters of Table 1.1.
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group I atom lattice sites can be ruled out, as they should cause an increase in the intensity
of the (101) re�ection. Instead the slight decrease in the (101) intensity with increasing

Ga-content is in qualitative agreement with the behavior predicted by the calculations,
thus the incorporation of Ga into the CuInS2 lattice acts mainly via isovalent substitution.

In conclusion, the analysis of chalcopyrite superlattice peaks can be of valuable assistance
in the analysis of the degree of chalcopyrite ordering in CuInS2 �lm, assuming texture

related e�ects can be ruled out. A comparison of calculation XRD intensities and ex-
perimental data collected at Ga-free and Ga-containing thin �lms clearly show an im-
provement in cation-ordering with Ga-incorporation. The observed qualitative correlation

between XRD-intensity and Ga-content agrees with the assumption that Ga in CuInS2 is
incorporated by isovalent substitution at In lattice sites.

Table A.1: Measured and calculated group (iii) intensities of Ga-containing CuInS2 thin
�lm.

[Ga]/([In] + [Ga]) hkl Ihkl/I112 Ihkl/I112 u u
(exp.) (calc.) (calc.) Ref.[8]

(101) 0.928 0.928
0.14 (121) 0.032 0.032 0.235 0.222

(301) 0.011 0.007
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A.2 Di�usion in Polycrystals

Figure A.4: Types of di�usion ki-

netics in a polycrystal of uniformly
spaced grain boundaries, z = refers
to the depth of penetration of the

di�usant, t = anneal time, Db

= grain boundary di�usion coe�-

cient, D = bulk di�usion coe�cient,
d=grain width, δ=grain boundary
width, (from [139]).

This section brie�y discusses the general behavior of di�usion in polycrystals. A very de-

tailed review of various analytical models and current experimental results describing grain
boundary di�usion phenomena can be found in [139]. This discussion will be restricted
to the ideal case of a semi-in�nite perfect crystal with uniformly spaced grain boundaries

embedded in it. Here the term grain boundary refers to a high-di�usivity, isotropic slab
of uniform thickness. The surface of the crystal which is in contact with the reservoir of
the di�usant is perpendicular to the grain boundaries. Di�usion within the grain may be

described by the volume di�usion coe�cient D and within the grain boundary slab by the
grain boundary di�usion coe�cient Db, which in general is much higher than D (Db � D).

In an experimental situation the di�usant will penetrate the crystal directly via volume

di�usion from the reservoir into the grain, along grain boundaries due to grain bound-

ary di�usion and by leakage or out-di�usion from the grain boundaries into the adjoining

grains. Depending on the relative magnitudes of D and Db and on the experimental con-

ditions such as temperature and annealing time three types of di�usion kinetics can be

distinguished. These are referred to as type A, B, and C after Harrision [167]. Figure
A.4 gives an schematic illustration of the model situation just described under the three

di�usion regimes.

Type A This situation refers to the case of long annealing times, small grain size, and/or a
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volume di�usion coe�cient not much smaller than the grain boundary di�usion coe�cient.
As a result the volume di�usion length

√
Dt is much larger than the spacing between the

grain boundaries so contributions due to leakage from adjacent grain boundaries overlap.

There are no signi�cant di�erences between the concentration of the di�usant in the bulk

and in the grain boundary. On a macroscopic scale the whole system appears to obey

Fick's law as for a homogeneous system, i.e. there is an almost planar di�usion front par-

allel to the the di�usion source.

Type B Here too, grain boundary di�usion takes places with simultaneous volume dif-
fusion from the boundary into the crystal, but in contrast to type A kinetics the grain

boundary spacing is large enough for the boundaries to be considered as isolated. This

results in a maximum in concentration at the grain boundary and a rapid decrease in

the direction perpendicular to it. Further, the di�usant penetrates much deeper into the

crystal along the grain boundary than anywhere else.

The resulting di�usion pro�le of the average concentration in a type B domain consists of

two parts: a high-concentration steep part close to the source which is due to volume di�u-
sion and a low-concentration �at part in the deeper region which represents grain boundary
di�usion. According to Kaur [139] the condition for type B kinetics is approximately given

by:
10δ < (Dt)1/2 < d/10 , (A.8)

where δ refers to the thickness of the grain boundary slab (grain boundary width).

Type C In the case of short anneal times and/or a negligibly small volume di�usion co-

e�cient compared to the grain boundary coe�cient the volume di�usion lengths will be
much smaller than the grain boundary width ((Dt)1/2 << δ). Then considerable di�usion

only takes place within the grain boundaries.

A.2.1 Grain Boundary Di�usion in Thin Films � Gilmer-Farrell

Analysis for Type B Kinetics

An analytical solution for di�usion in an array of uniformly spaced parallel grain bound-

aries in a specimen of �nite thickness was given by Gilmer and Farrell [138]. This sections

closely follows a review of Gilmers solution given by Kaur [139].

The experimental geometry underlying the derivation is depicted in Figure A.5. The sy-
stem is described by the following assumptions

- Fick's laws of di�usion are obeyed in both the crystal and the grain boundary.

- The di�usion coe�cient D and Db are isotropic and independent of concentration, posi-

tion and time.

- The di�usant �ow is continuous at the grain boundary/crystal interface.
- The width of the grain boundary is so small that the concentration variation across it is

negligible.
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Figure A.5: Geometry of thin-�lm specimen used by Gilmer and Farrell [138] to derive an
analytical solution for grain boundary di�usion in thin �lms containing uniformly spaced
grain boundaries.

The di�usion equation for the system are in the grain:

D∇2cg =
∂cg

∂t
for 0 6 y < (ds − δ)/2 , (A.9)

and in the grain boundary

Db∇2cb =
∂cb

∂t
for

ds − δ

2
< y <

ds + δ

2
. (A.10)

Furthermore the system is determined by the following boundary conditions. At the �walls�

of the grain boundary (y = (ds ± δ)/2) the condition is:

Db
∂2cg

∂z2
+

2D

δ

∂cg

∂y
=

∂cg

∂t
. (A.11)

Due to the symmetry of the situation the solution must also satisfy the condition

∂cg

∂y

∣∣∣∣
y=0

= 0 . (A.12)

Gilmer and Farrell obtained an analytical solution using the technique of Fourier analysis.

Without going into the details of the actual derivation the �nal results of their work will
be described here only. According to this, the solutions can be constructed from functions

of the form

F (y, z, t) =
∞∑

n=1

∞∑
m=1

AnmYnm(y)Zn(z)Tnm(t) (A.13)
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where Ynm and Zn are given by

Ynm = cos(αnmy) , (A.14)

Zn = sin(βnz) , (A.15)

and (A.16)

Tnm = exp(−Dt(α2
nm + β2

n)) . (A.17)

Substituting Equation A.13 into Equation A.11 as a trial solution, the boundary condition

y = (ds ± δ)/2 reduces to

(∆ − 1)β2
n − α2

nm = (2αnm/δ) tan(αnmds/2) , (A.18)

where ∆ refers to Db/D. The coe�cients αnm, βnm and Anm are determined by the speci�c

boundary conditions at the free surface z = h.
In case of a re�ecting boundary, i.e. a di�usion barrier at the surface, the additional

conditions is given by
∂c(y, z, t)

∂z

∣∣∣∣
z=h

= 0 . (A.19)

For coe�cient βn it follows

βn =
(2n − 1)π

2h
. (A.20)

Since βn is determined by Equation A.20 values for αnm can be evaluated numerically

by means of the transcendental relationship given by Equation A.18. The condition of a
constant source at z = 0 requires the solution to be of the form

cg(y, z, t) = c0

[
1 −

∞∑
n=1

∞∑
m=1

AnmYnm(y)Zn(z)Tnm(t)

]
, (A.21)

since F (y, 0, t) = 0. Additionally the condition of zero initial concentration in the grain

was employed by Gilmer and Farrell to determine the coe�cients of the parameter Anm,

i.e.

Anm =

(
16

αnmds
sin

αnmds

2
+

8δ

ds
cos

αnmds

2

)
×
[
(2n − 1)π

(
1 +

sin(αnmds)

αnmds
+

2δ

ds
cos2 αnmds

2

)]−1

(A.22)

In an experiment it is usually the average concentration c in a thin section parallel to the

�lm that is measured

c(z, t) =
2

d

∫ ds/2

0

c(y, z, t)dy . (A.23)

Substituting Equation A.22 into the integral in the region 0 6 y 6 (ds−δ)/2, (the amount

of di�usant in the actual grain boundary is neglected here) yields

c(z, t) = c0

[
1 −

∞∑
n=1

∞∑
m=1

2

αnmds

Anm sin
αnmds

2
Zn(z)Tnm(t)

]
. (A.24)
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When numerically evaluating Equation A.24 the series has been truncated for n > ntrunc

and m > mtrunc where

ntrunc =
1

2

[(√
− ln(1/1000)

Dt

2h

π

)
+ 1

]
(A.25)

mtrunc =
1

2

[(√
− ln(1/1000)

Dt

ds

π

)
+ 1

]
(A.26)

since Tnm < 1
1000

for n > ntrunc or m > mtrunc.

Figure A.6 (a) shows an contour plot of a grain for ∆ = Db/D = 104 and ds = h at

di�erent values of the reduced time tf = Dt/h2. Figure A.6 (b) shows the corresponding

plots of log c.
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Figure A.6: (a) Iso-concentration contour plots (line spacing = c0/10) in a grain of ds = h
calculated for a thin �lm system of �xed ∆ = Db/D and di�erent values of tf = Dt/h2

using Equation A.21. (b) The respective average-concentration pro�les according to Equa-

tion A.24

.
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A.3 XRD-Correction Factor

When evaluating results from a X-ray di�raction experiment and comparing the measured

intensity to values derived form Equation (2.6) several additional e�ects have to be taken

into account. The most important e�ects, which will be discussed below, arise from the

following experimental �constrains� [168]:

• dispersion,

• polarization of incident and di�racted beam,
• sample rotation (Lorentz factor),

• temperature,
• geometry of sample and experimental set up,

• absorption,

• multiplicity.

Correction not applicable for polycrystalline powder samples, such as e.g. extinction, are
not considered here.

Dispersion When deriving Equation (2.6) it is assumed that the x-ray wavelength is
much smaller than any of the X-ray absorption edge wavelength of the atom in the crystal.

Since this is not generally satis�ed in an experimental situation, a dispersion correction
for the atomic scattering factor has to be introduced:

f = f0 + ∆f ′ + i∆f ′′ , (A.27)

where f0 is the tabulated value, and ∆f ′ and ∆f ′′ are the real and imaginary parts of the

dispersion correction. The correction is complex and accounts for a small shift in phase

of the scattered radiation. The angular dependence of ∆f ′ and ∆f ′′ is much smaller than

that of f0 [169]. The values used in this work are based on calculated values by Cromer

and Libermann [92].

Polarization factor The polarization factor P accounts for the partial, angle dependent

di�raction of incident radiation polarized parallel to the sample surface. For unpolarized

incident radiation P is given by

P = (1 + cos2 2θ)/2 . (A.28)

Lorentz factor During an experiment the crystal (or the incident beam) is usually
rotated at an constant angular velocity ω about an axis parallel to the planes hkl and
normal to the primary beam (crystal axis). The time ∆t during which the incident beam

makes roughly the right angle to satisfy the Bragg law, i.e. |k| ±∆k = |G| is di�erent for
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di�erent lattice planes and can be expressed as ([168] p. 85)

∆t =
|∆k|
|ω| L where, L =

λ

sin 2θ
. (A.29)

|∆k| and ω are given for a certain experiment. The quantity L is called the Lorentz factor.

Temperature factor Equation 2.5 is based on the assumption that the atoms occupy a

de�nite position in the crystal. However, even at room temperature the thermal oscillation

and the resulting momental displacement may be appreciably. According to Warren, who

has given a derivation that includes temperature vibration, equation 2.5 has to be replaced

by

I(G) = K
I0

r2
N2F 2

T (G)|F0(G)|2 , where, F 2
T (G) =

∑
α

fαe−Mαe-iG·rα . (A.30)

where fα is the atomic form factor, and Mα =B sin2 θ/λ2 is a factor called Debye-Waller
temperature factor.

Geometry factor The geometry of the experimental set up leads to a number of sys-

tematic errors which require additional corrections. When using polycrystalline or powder

Figure A.7: Geometry factor of

a powder sample. The area

Mm/2 cos θdθ refers to the num-

ber of crystals in a powder sample

whose hkl planes make angles be-

tween θ+dθ with the primary beam.
The area sin 2θdθ refers to the cone

of di�racted beams.
Mm
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.

samples, as in this work, the sample contains an enormous number of very small crystals
having (in the ideal case) completely random orientations. The number of crystals, with

the right orientation to cause a Bragg re�ection at 2θ, is proportional to cos θ (Fig. A.7).

The individual crystals can have any orientation around the incident beam. As a results
the di�racted beams at a �xed angle 2θ with the incident beam form a cone of half apex

angle 2θ. Since the total power belonging to the re�ection is spread out over the elements

of this cone, the recorded intensity is proportional to the power per unit length of the
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di�raction circle, i. e. 1/ sin 2θ. If the receiving surface is at a constant distance from the
sample the geometrical factor for a powder sample is

G(θ) = cos θ/ sin 2θ . (A.31)

Absorption factor When the incident X-ray beam penetrates into the sample its in-

tensity is weakened due to the photo e�ect. The relative loss in intensity at a certain
penetration depth ∆x can, to a good approximation, be treated as isotrop and indepen-

dent of intensity, so ∆I/I = −µ∆x, where µ is the linear X-ray absorption coe�cient of

the sample. For a Bragg-Bretano geometry (Figure A.8 (a)) the integral di�racted intensity

is proportional to

I ∝ I0

∫ x

0

e−2µx′
dx′ = I0

1

2µ
(1 − e−µ 2d

sin θ ) . (A.32)

If µd � 1 the absorption correction simpli�es to 1/2µ, i.e. is independent of the refractive
angle 2θ. The linear X-ray absorption coe�cient of a substance (A1)n1(A2)n2 ... (Aq)nq

depends on the mass density ρ and the linear mass absorption coe�cient µm of the atoms
composing the compound

µ = ρ

∑q
i=1 niAi(µm)i∑q

i=1 niAi
. (A.33)

Values for µm for a selection of the most common wavelength used in X-ray di�raction can

be found e.g. in [169].
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Figure A.8: (a) Experimental geometry for calculation of the absorption correction of a

thin �lm sample when measuring in Bragg-Bretano geometry.

When investigating thin �lms 1/µ is usually of the order of d or greater, hence the observed
intensities especially at higher 2θ values is signi�cantly reduced. This has to be considered

when comparing thin �lm XRD-spectra to standard powder patterns from a reference data

base. One way to increase the intensity is measuring in asymmetric Bragg mode, where the
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incident angle is �xed at a small value (θ = 1.0◦ − 5.0◦) and only the detector is scanned
(Figure 2.10). Figure A.8 (b) compares the 2θ dependence of the re�ected intensity for a

thin �lm powder sample of µd = 0.15 measured in symmetric and in asymmetric mode

with respect to a bulk powder sample. Especially at higher 2θ values the gain in scattered

intensity when measuring in asymmetric mode, can clearly be seen.

Multiplicity The multiplicity factor arises from the fact that in general there will be

several sets of hkl-planes, having di�erent orientation in the crystal, but which are equiv-

alent in that they have the same d and |F |2 values. In other words the multiplicity of a

re�ection is given by the number of variations in position and sign which can be given to
±h, ±k, ±l and have the same |Fhkl|2. For a tetragonal unit cell the maximummultiplicity

is 16.
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A.4 XRD Simulation Parameters

The parameters used for calculating XRD-spectra are listed in the following.

Dispersion f = f0 + ∆f ′ + i∆f ′′

Reference: Cromer and Libermann [92].

atom ∆f ′ ∆f ′′

Cu -2.019 0.589

In -0.126 5.045

Ga -1.345 0.777

S 0.319 0.577

Debye-Waller temperature factors See Equation (A.30)
Reference: Abrahams and Bernstein [23].

atom in CuInS2 B (Å)

Cu 1.42± 2

In 0.76± 2

S 0.83± 2

atom in CuGaS2

Cu 1.60± 2

In 1.02± 2

S 1.02± 2

Linear mass absorption coe�cients µm See Equation (A.33)

Reference: Haussühl [168]

atom µm (10
2
mm

2
/g)

Cu 52.9

In 243.0

Ga 67.9

S 89.1
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A.5 Phases Diagrams

Copper-Sulfur

Figure A.9: Cu-S phase diagram (from Ref. [99]).
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Copper-Gallium-Sulfur

Figure A.10: Ternary phase �elds around CuGaS2. Chalcopyrite phase region is denoted
by cross-hatched area (from Ref. [170]).




