
1 Introduction

For functioning correctly, complex object-oriented software relies on application-specific con-
straints regarding the definition and use of program elements. Constraints are formalized
programming rules that can be checked automatically. This thesis presents a framework for
checking programmer-defined constraints.

Like strong typing in object-oriented programming languages, they either constrain how
program elements, i.e., interfaces, classes, methods, and fields, have to be defined in a certain
context, or they constrain how program elements have to be used. Unlike strong typing,
which prevents errors on the level of the execution environment, constraints prevent errors
on the semantic level of the program. This applies in particular to software that uses object-
oriented frameworks [Lewis et al. 1995], which often make non-trivial assumptions on their
correct adaptation and usage.

Semantic errors caused by violation of constraints may or may not manifest themselves as
run-time errors on the level of the execution environment. In the case where constraint vi-
olations do not cause run-time errors, they lead to other undesirable effects, such as perfor-
mance problems, semantic errors at the problem domain level, deadlocks, or maintainability
problems due to violations of structural constraints. In the case where constraint violations
do cause run-time errors, there is often no apparent connection to the place in the program
which caused the constraint violation.

For example, a software system might be designed using a layered software architecture,
in which each class belongs to a specific layer of the system. Using constraints, it is possi-
ble to allow method calls only between classes within one layer or from a higher layer to a
lower layer. In most cases, a violation of this constraint, although creating undesired interac-
tions that may lead to maintainability problems, will not manifest itself as a run-time error.
However, if the initialization of the system proceeds from lower layers to higher layers, a
constraint-violating call from a lower layer to a higher layer during the initialization phase
might cause accesses to uninitialized data, which might lead to immediate run-time errors,
or to run-time errors which occur at a later time.

It is important to note that constraints are created by programmers who want their classes
to be used or extended only in a certain way. Thus, it is important that tools for check-
ing constraints be useable both for advanced programmers who specify constraints and for
everyday programmers whose code is checked against the constraints. Ideally, constraint
specifications can serve as a means of formalizing assumptions underlying a certain software
design and thus as a way of communicating these assumptions between different software
developers.

We believe that it is important to study constraints in the context of a real language which is
widely used. Therefore, the discussion in this thesis is based on the programming language

13



1 Introduction

Java [Gosling et al. 1996], and we have not tried to make it language-independent.

1.1 CoffeeStrainer – a framework for checking constraints

This thesis presents a framework, called CoffeeStrainer, which allows to check programmer-
defined constraints for Java. A previous version of CoffeeStrainer is described in
[Bokowski 1999]. CoffeeStrainer constraints are unique in that they are modular, extensible
and composable, and special support is provided for constraints on the usage of program
elements. Additionally, CoffeeStrainer constraints can consist of static (compile-time) and
dynamic (run-time) parts. CoffeeStrainer has been fully implemented. It supports separate
checking of compilation units, and its performance in terms of static checking time is com-
parable to running a compiler.

Unlike previous work [Devanbu 1992, Chowdhury, Meyers 1993, Klarlund et al. 1996,
Minsky 1996, Crew 1997] (see Chapter 7 for a detailed comparison), CoffeeStrainer takes
a pragmatic approach and does not define a special-purpose constraint language. Instead,
constraints are specified using Java, so that the programmer need not learn new syntax. This
choice is based on the observation that many programmers like to stick to the syntax they
have used for some time already, as demonstrated by the success of Java whose syntax is
based on the widely-used programming language C++ [Stroustrup 1991].

Constraint code is embedded in Javadoc comments [Gosling et al. 1996]. Thus, constraint
code and base-level code share the same structure, making it easy to find the rules that apply
to a given part of the program, and allowing arbitrary compilers and tools to be applied to
the source code that contains constraints. When defining a new rule, the programmer has
access to a complete abstract syntax tree of the program that is to be checked.

Constraints refer to entities of the abstract semantics graph (ASG) [Devanbu et al. 1996] of a
program, an abstract syntax tree [Aho et al. 1985] which is augmented with information
gathered from name and type analysis. Thus, the primary focus of CoffeeStrainer is on
static constraints, i.e. rules that can be automatically checked at compile-time. Tools or lan-
guage support for checking dynamic constraints, first introduced under the name assertions
[Floyd 1967], are well known and widely used [Meyer 1992, Meyer 1997]. CoffeeStrainer’s
contribution in this area is the integration of dynamic and static constraints in a single frame-
work, which is unique in that it allows to insert run-time checks programmatically at arbi-
trary places of the program.

1.2 Contributions of this thesis

This thesis makes contributions in two different but related areas.

The main contributions are in the area of tools for checking programmer-defined constraints.
CoffeeStrainer makes the following original contributions:

� modular constraints: Constraints are bound to classes, interfaces, or methods — there is
no global set of checked constraints. Thus, compilation units can be checked indepen-
dently, making the tool usable even for large systems. Moreover, constraints even from

14



1.3 Thesis Structure

different sources, and referring to different parts of the program are combined in a nat-
ural way as the program is combined from those parts. Finally, by using inheritance,
programmers can extend and refine constraints incrementally.

� openness: The system is implemented as an open object-oriented framework that ex-
ecutes programmer-defined constraint code at compile-time; it can be extended and
modified by defining new object-oriented abstractions that are used by the constraint
code.

� usage constraints: Like other tools, CoffeeStrainer supports constraints that refer to the
definition of program elements. Unlike other tools, CoffeeStrainer also supports con-
straints that refer to the usage of program elements in other contexts, numerous exam-
ples of which have been found in existing software.

� accessibility for practicians: Unlike other approaches, CoffeeStrainer does not define a
new constraint language; instead, it uses Java for constraints as well, considerably
reducing the effort that would be required from a proficient Java programmer to start
specifying constraints.

On top of that, this thesis contains additional contributions in the area of automatically
checkable constraints:

� study of constraints in existing software: Often, constraints are already documented in ex-
isting software, but they cannot be checked because they are not formalized. We have
examined a well-known set of classes, the Java standard library classes, for constraints
that may be checked automatically (Chapter 2).

� useful example constraints: Throughout the thesis, a number of example constraints are
presented in detail. The constraints are typical for modern object-oriented, framework-
based software development, taken from actual experience in building and examining
object-oriented software (see the list of example constraints on page 7).

� confined types: As an extended, non-trivial example, a system of constraints for strong
encapsulation is presented. Confined types are useful for constructing secure software
in the presence of dynamically-loaded, untrusted code by separating the types in a
package into two different sets: While objects of ordinary, unconfined types form the
public interface of the package, objects of confined types form the secure kernel of the
package which can only be accessed from within the package (Chapter 5).

1.3 Thesis Structure

The remaining chapters of this thesis are organized as follows:

� Chapter 2 consists of a study of the Java standard classes, and presents several example
constraints taken from the standard classes’ documentation.

15



1 Introduction

� Chapter 3 explains CoffeeStrainer, namely, how constraints can be specified and how
they are checked at compile-time and at run-time.

� Chapter 4 discussed CoffeeStrainer’s virtues and limitations .

� Chapter 5 gives an extended example for using CoffeeStrainer in the area of
software-based security. This chapter is based on a paper co-authored by Jan Vitek
[Bokowski, Vitek 1999].

� Chapter 6 contains information about the implementation of CoffeeStrainer.

� Chapter 7 compares CoffeeStrainer to related work.

� Chapter 8 draws conclusions and points out directions for future work.

1.4 Terminology

In this thesis, the terminology used for describing entities of the Java language is taken from
the Java language specification [Gosling et al. 1996] wherever possible. For readers who are
not familiar with the Java terminology, here are brief definitions of some key terms:

A Java program is made up of compilation units containing definitions of classes and/or inter-
faces. In Java, all variables and expressions are statically typed.

There are a number of primitive types — boolean, byte, char, short, int, long, float,
and double — and reference types. Reference types are either class types, interface types, array
types, or the special null type, the static type of the constant null.

There are rules for when one type is assignable to another type, i.e. when a value of a certain
type may be assigned to a variable of another type. For primitive types, there are certain
allowed type conversions that determine whether one primitive type is assignable to another
primitive type. Primitive types are assignable only to other primitive types. Likewise, ref-
erence types are only assignable to other reference types. A reference type S is assignable to
another reference type T iff S is equal to T or S is a subtype of T. The null type is a subtype of
every reference type, and all reference types are subtypes of java.lang.Object. An array
type AS is a subtype of another array type AT if the element type S of AS is a subtype of the
element type T of AT; if either of the element types of AS or AT is a primitive type, AS and
AT are not subtypes of each other. A class type is a subtype of its declared superclass; if a class
does not declare a superclass, its superclass is java.lang.Object. An interface type is a
subtype of java.lang.Object and of all declared superinterfaces. Subtyping is transitive,
i.e., if S is a subtype of T and R is a subtype of S, then R is also a subtype of T. Sometimes,
we will refer to the supertypes of a type S, the set of all types of which S is a subtype.

Classes and interfaces are user-defined types. They may contain constructors (classes only),
methods, and fields (some restrictions apply). Constructors are invoked upon creation of an
object, or instance, of a class. Like methods, they may have a number of parameters, each hav-
ing a type and a name. Unlike constructors, methods do have a name. They also may have
a return type. The types of the parameters make up the signature of a method or construc-
tor. Defining methods with the same name but different signatures is called overloading. It is

16



1.5 Acknowledgements

not allowed to define two methods with the same name and signature, but different return
types. If a method is not declared static, it is called an instance method. When two instance
methods with the same name and signature are defined in a type T and a subtype S of T, the
method in S is said to override the method in T, and the return types of both methods must be
the same. An instance method may be declared abstract or concrete. Concrete methods and
static methods contain a method body, consisting of statements that make up the method’s
implementation. An abstract method has no method body. A class containing one or more
abstract methods is an abstract class; interfaces must only contain abstract methods. Concrete
classes can be instantiated (abstract classes and interfaces cannot). All abstract methods of
supertypes of a concrete class C must be overridden by a concrete method in either C itself
or in a superclass of C that is a subtype of the type that contained the abstract method. A
field consists of a name, a type, and an optional initializer, which is an expression which will
be evaluated to initialize the field’s value at runtime.

A Java program consists of all classes and interfaces that are needed to execute a certain main
method, which is a method defined as public static void main(String[] args).
Because Java allows dynamic loading of classes which may depend on user input, the term
“program” is a run-time notion. However, because only compiled classes can be loaded dy-
namically, one might think of a program as the set of all classes and interfaces that have been
compiled by the Java compiler. Thus, compiling a program means to compile all compilation
units that contain classes or interfaces that might be executed. Likewise, checking a program
means to check these compilation units.

A named program element – or program element for short – is either a class, an interface, a
method, or a field.

1.5 Acknowledgements

First of all, I would like to thank my advisor Peter Löhr for his support and guidance. His
views on object-oriented – and other – languages, language extensions and software archi-
tecture has certainly shaped my way of thinking. He shared many of his ideas with me and
pointed out several interesting areas of research.

I would also like to thank the external thesis reviewers. Theo D’Hondt of Vrije Universiteit
Brussels, together with his research group, played a very important role on my way to this
thesis. His interest in my work showed me that after three years, finally, I had found a
topic that was worth pursuing. The second external reviewer, Stefan Jähnichen of Technical
University Berlin, supported me in many ways. I am very grateful for his help with finding
a research position at GMD-FIRST in Berlin.

For three years, I received a grant from the graduate college “communication-based sys-
tems”. I would like to thank Günter Hommel and all the other members of the graduate
college for their valuable input but also for exerting the necessary pressure on me.

For several years, I was part of an excellent team from which I have learned a lot. Many
thanks go to my co-authors and colleagues Enno Scholz, Gerald Brose, André Spiegel, and
Markus Dahm for their support, for all the discussions at lunch-time, for valuable feed-
back and help, and for reading parts of this thesis in various stages. I would also like to

17



1 Introduction

thank Boris Groth for what I learned from him during my time at GMD FIRST. Last but not
least, I would like to thank Lutz Kirchner, Christian Schuckmann, and Jan Schümmer for the
learning-by-doing experience with building large and complex object-oriented frameworks
and systems.

Special thanks go to my co-author Jan Vitek of University of Geneva (now Purdue Univer-
sity). It would have been much harder to finish my thesis without this collaboration, which
was a main source of motivation for finishing my thesis.

I owe thanks to many researchers that I met at ECOOPs, OOPSLAs, and other opportunities.
In particular, the many discussions with David Holmes, Doug Lea, James Noble, Jens Pals-
berg, John Potter, Patrick Steyart, Tom Mens, Urs Hölzle, Wolfgang De Meuter, and Yossi Gil
helped me to find my place in the research community. Of course, it was great fun to meet
them, too.

One colleague and friend, Enno Scholz, stands out from the others. He was available at
any time, often enough just before submission deadlines. When there was little time, he
proposed incremental improvements; when there was no time, he cheered me up; and when
there was enough time, he pointed out where I was wrong or not good enough.

Many thanks go to my parents Barbara and Jürgen Bokowski, my family, and my friends for
their kind interest and for not asking too often when I would finish my thesis.

Above all, I am indebted to my wife Petra. She profited the least from my ups and had to
suffer the most from my downs. Thank you for your love.

18


