
2 Categories of Constraints

In an attempt to find out what kind of constraints are typical for object-oriented
libraries and application frameworks, we have searched the Java 1.2 API docu-
mentation [Sun Microsystems, Inc. 1999a] of the standard java classes [Chan, Lee 1997,
Chan et al. 1998, Chan et al. 1999] for occurrences of the words “should”, “must”, “require”,
“ensure”, “expect”, and “need”.

The standard java classes consist of 35 packages whose names start with “java.”, contain-
ing a total of 823 classes. According to the conventions for documenting Java source code,
the standard Java classes contain formal comments starting with “/**” which describe the
classes, interfaces, methods, and fields. Using JAVADOC, a tool that is part of Sun’s Java de-
velopment kit (JDK), hyperlinked HTML files can be generated which contain the documen-
tation. We have used the UNIX tool GREP on the HTML files for searching for occurrences
of the above-mentioned words.

Each occurrence of the search words “should”, “must”, “require”, “ensure”, “expect”, and
“need” has been checked for whether it can be understood as a constraint or whether it is a
spurious occurrence. Using this method, a total of 592 constraints have been found in 210
classes. Most probably, more constraints could be found in the standard Java classes which
either are not documented at all or are documented using words that do not include one of
the words we have searched for. However, we believe that the number of constraints that
have been found is large enough to be a representative set of constraints found in today’s
object-oriented software.

Two constraints seem to be impossible to enforce programmatically, because they refer to
semantic properties of the program which probably can only be understood by a human. For
example, the documentation of the empty interface java.util.EventListener states:

“A tagging interface that all event listener interfaces must1 extend”

This interface, which is not used at all in the Java standard classes, should be used to mark
classes that play an event listener role as opposed to classes that produce events, in order to
make it easier for a human reader to distinguish between the two. The other constraint can
be found in java.rmi.server.UnicastRemoteObject (“Objects that require remote
behavior should extend RemoteObject”).

In a sense, the two constraints that cannot be enforced automatically are similar to the fol-
lowing important rule: “Use meaningful names!” Clearly, this rule can only be checked by
human readers, not by a tool that performs checks algorithmically.

1Occurrences of the searched words are underlined in cited documentation text.

19

2 Categories of Constraints

Each of the remaining 590 occurrences has been classified using three independent classi-
fication dimensions, which emerged during several passes over the list of occurrences of
the search words. The classification dimensions are described in Section 2.1. The resulting
constraint categories are explained by means of example constraints from the Java standard
classes in Sections 2.2 and 2.3. In Section 2.4, other possible categorization schemes are dis-
cussed.

2.1 Classification dimensions

By iterating repeatedly over the list of search word occurrences in the documentation of the
Java standard classes, we have found three independent classification dimensions. In this
section, we will explain each classification dimension in turn.

2.1.1 Static constraints vs. dynamic constraints

One can distinguish between constraints that can be checked at compile-time and constraints
that can only be checked at run-time. We call the former static constraints and the latter
dynamic constraints.

A good example of a static constraint can be found in the documentation of the class
java.rmi.RemoteException:

“Each method of a remote interface, an interface that extends java.rmi.Re-
mote, must list RemoteException in its throws clause.”

Clearly, this constraint can be checked at compile-time.

The documentation of the static method copy in the class java.util.Collections
contains a dynamic constraint regarding its arguments src and dest of type
java.util.List:

“The destination list must be at least as long as the source list. If it is longer, the
remaining elements in the destination list are unaffected.”

This constraint refers to run-time entities, objects of type java.util.List, the lenghts of
which cannot be known – except for some special cases – at compile-time.

Of the 590 checkable constraints, we have found 401 dynamic constraints and 189 static
constraints. For some of the constraints, the distinction was not as clear as in the above
examples. When in doubt, we have classified a constraint as a dynamic constraint — see
Section 2.3 for a discussion of the types of dynamic constraints which could be classified as
static constraints under certain circumstances.

20

2.1 Classification dimensions

2.1.2 Type constraints vs. method constraints vs. field constraints

All constraints that have been found are associated with a particular program element (i.e., a
class, an interface, a method, a constructor, or a field) without which the constraints would
not exist. For example, the documentation of the class java.awt.PrinterJob states:

[A] “PrinterJob object should be created using the static getPrinterJob
method”.

In other words, objects of class PrinterJob should not be created using the new operator.
This constraint is associated with a type (i.e., a class or an interface; in this case: the class
PrinterJob) because it would not exist if the class PrinterJob did not exist.

If a constraint is associated with a class (as in our example) or an interface, we call it a type
constraint. If it is associated with a method or a constructor, we call it a method constraint,
regarding constructors as a special kind of methods. Finally, if the constraint is associated
with a field, we call it a field constraint.

As an example for a method constraint, i.e., a constraint that is associated with
a method, consider the documentation for method readObjectOverride in class
java.io.ObjectInputStream:

“This method is called by trusted subclasses of ObjectInputStream that con-
struct an ObjectInputStream using the protected no-arg constructor. The
subclass is expected to provide an override method with the modifier final.”

This constraint is a method constraint because if this method was not needed in the interface
of ObjectInputStream, the constraint would not exist.

There are a small number of field constraints as well. For example, the documentation for
java.awt.AWTEvent states:

“The event masks defined in this class are needed ONLY by component sub-
classes which are using Component.enableEvents() to select for event types
not selected by registered listeners.”

This constraint, which is associated with certain static fields in class AWTEvent, is a field
constraint because it would not exist if these fields did not exist.

Of the 590 checkable constraints, we have found 109 type constraints, 479 method con-
straints, and 2 field constraints, respectively.

2.1.3 Definition constraints vs. usage constraints

Given a particular program element (type, method, or field), and a constraint that is as-
sociated with it, one can distinguish between constraints that govern the definition of that
program element and constraints that govern the usage of that program element. The places

21

2 Categories of Constraints

in a program where a program element might be used differ depending on the used program
element: Types can be used in declarations, as the declared type, or in expressions, as the
expression’s static type, or in the definition of other types, as their supertypes. Methods can
be used in method call expressions, or in the special case of constructors, they can be used
in implicit or explicit constructor calls. Fields can be used in field access expressions.

To understand the distinction between the two kinds of constraints, it is helpful to proceed
in two steps: In the first step, we explain the distinction as if subtyping did not exist, and in
the second step, we explain how subtyping is handled.

First, without taking subtyping into account, it is easy to explain the distinction by consider-
ing a constraint which is violated: If the violation is due to the program element with which
the constraint is associated, it is a definition constraint. If, however, the violation is due to
another part of the program in which the program element is used, it is a usage constraint.

The constraint associated with the method getAlignment in java.awt.Component is a
good example for a definition constraint2:

“The [returned] value should be a number between 0 and 1 where 0 represents
alignment along the origin, 1 is aligned the furthest away from the origin, 0.5 is
centered, etc.”

A violation of this constraint would be caused by an incorrect implementation of getAl-
ignment, and hence, the constraint is a definition constraint.

In the same class, there is a usage constraint associated with the public method addNotify:

“This method is called internally by the toolkit and should not be called directly
by programs3 .”

A violation of this constraint would be caused by a non-toolkit class calling addNotify,
and hence, the constraint is a usage constraint.

After motivating the difference between definition and usage constraints, we now proceed
to the second step and take subtyping into account:

In general, a definition constraint applies not only to the program element associated with
the constraint, but also – by the principle of substitutability [Liskov, Wing 1994] – to derived
types or overriding methods that might, at run-time, be substituted for the associated pro-
gram element. Thus, a definition constraint that is associated with a class C applies not only
to C itself, but also to all subclasses of C. Similarly, a definition constraint that is associated
with a method m applies not only to m itself, but also to all methods that override m. In the
above example, the constraint applies not only to the implementation of getAlignment
in java.awt.Component, but to all implementations of getAlignment in subclasses of
java.awt.Component as well. In fact, a subclass of java.awt.Component, the class

2As we will see, the given constraint, a method postcondition, is a dynamic definition constraint. Note that
method preconditions are dynamic usage constraints, not dynamic definition constraints.

3The reason for this constraint (instead of making the method non-public) is that some toolkit classes belong to
other packages.

22

2.1 Classification dimensions

java.awt.Container, overrides the method getAlignment and notes the same defi-
nition constraint in its documentation. The reason for definition constraints applying to
derived program elements as well is that users of the particular program element rely on
the constraint being satisfied. However, at run-time, they might actually be using a derived
program element, which therefore must satisfy the constraint as well.

A usage constraint applies to all places in the complete program where the program ele-
ment associated with the constraint is used. An important question is whether usage con-
straints can be weakened for derived program elements, or whether they should also apply
to all places where derived program elements are used. The derived program elements of
types are their subtypes, and the derived program elements of methods are their overrid-
ing methods. Based on the – limited – experience with CoffeeStrainer, we have decided
that usage constraints cannot be weakened for derived program elements; they can only be
made stronger. We have made this decision for pragmatic reasons listed below, despite the
fact that the vaguely related concept of preconditions (as known, for example, from Eiffel
[Meyer 1992]), can indeed be weakened in subclasses. The reasons are as follows:

� From the constraints found in the Java standard classes, no usage constraints were
weakened for derived program elements. Instead, usage constraints always apply to
derived program elements as well. In the above example, non-toolkit classes were not
allowed to call the method addNotify in class java.awt.Component. Clearly, if a
subclass of java.awt.Component had a method addNotify (overriding the origi-
nal method), it should not be possible for non-toolkit classes to call this method either.
In fact, a subclass of java.awt.Component, the class java.awt.Container, over-
rides the method addNotify and notes the same usage constraint in its documenta-
tion.

� The context of the particular program element (in our example, the “toolkit”) may
assume that a constraint established for the usage of this program element cannot be
weakened by derived program elements. This is particularly important in cases where
subtypes may be defined that are outside of the context, for example when a subclass
of java.awt.Component is defined which is not part of the “toolkit”.

� There are usage constraints which are based on syntactic notions – usages of pro-
gram elements –, unlike preconditions, which are based on a precise semantic notion,
namely the invocation of a method at run-time. This makes it difficult to argue formally
whether or not usage constraints can be weakened for derived program elements. The
safe choice, then, is to say that usage constraints cannot be weakened.

To sum up, a constraint that, for example, applies to all usages of an interface I (e.g., in
variable declarations) also applies to all usages of subtypes of I as well (e.g., it applies to
variable declarations with a static type U which is a subtype of I), and a constraint that
applies to all usages (i.e., method calls) of a method m also applies to all usages of methods
that override m. Because there are no derived program elements from a field, field usage
constraints only apply to usages (i.e., field accesses) of the field itself.

Of the 590 checkable constraints, we have found 175 definition constraints and 415 usage
constraints.

23

2 Categories of Constraints

It is noteworthy that both field constraints that have been found are field usage constraints.
This is no surprise when considering the two main motivations for definition constraints:
first, to constrain overriding definitions in subtypes, and second, to ensure properties of the
defined program element itself. The first motivation does not exist for field definitions be-
cause in Java fields cannot be overridden by subclasses. The second motivation only applies
if the definition to which it applies is more complex than the specification of the constraint,
which can be true for class, interface, or method definitions, but hardly for field definitions.

2.1.4 Resulting categories

Figure 2.1 shows how many example constraints have been found in the twelve resulting
categories of constraints. As already noted, field definition constraints do not make much
sense given that Java does not allow overriding of fields in subclasses, leading to only ten
categories of constraints. Note that dynamic field usage constraints might be useful, al-
though no example for this category has been found in the Java standard classes. For ex-
ample, dynamic field usage constraints might be used to disallow access to static fields in
classes that are not yet properly initialized during class loading. Such field accesses, if al-
lowed, could lead to different and difficult to understand behavior depending on the order
in which classes are loaded.

static constraints dynamic constraints
definition usage definition usage

type constraints 68 19 6 16
method constraints 43 57 58 321

field constraints (0) 2 (0) 0
total 111 78 64 337

189 401

Figure 2.1: Constraint categories

2.2 Static constraints

The following five sections on the different categories of static constraints give an overview
of the constraints that have been found in the Java standard classes for each category. In
each section, we identify the three packages that contain the most constraints of the corre-
sponding category and discuss the constraints in these packages. Each section also describes
a typical constraint from one category in detail. In Chapter 3, we will use these constraints
as examples to explain how CoffeeStrainer works.

2.2.1 Type definition constraints

Static type definition constraints can be found in many packages, as shown in Figure 2.2. We
will first describe the constraints that can be found in the three packages that contain most

24

2.2 Static constraints

of the static type definition constraints.

� In package java.util, containing mostly collection classes, virtually all of the static
type definition constraints are constraints associated with interfaces that require that
implementing classes have certain kinds of constructors in order to be consistent with
the existing collection classes. In Java, interfaces cannot contain abstract constructors—
within the language, it is not possible to express the requirement that implementing
classes should provide certain constructors.

� The package java.rmi.activation contains classes that support remote object ac-
tivation in the context of the remote method invocation (RMI) framework. Like in
package java.util, there are constraints that require activatable objects to have con-
structors of a certain form. Additionally, there are static type definition constraints that
require certain export methods to be called during a remote object’s activation.

� In package java.awt, two new kinds of static type definition constraints can be
found: First, some of the classes in the package need to be immutable, i.e., instance
fields should only be written to in the classes’ constructors. Second, there is an in-
teresting constraint for class FontMetrics. Many methods of this class form closed,
mutually recursive loops — with all methods being concrete methods — so that sub-
classes need to override one method of each such loop to prevent infinite recursion.

1java.awt.image
1java.awt.image.renderable
1java.net
1java.rmi
1java.text
2java.applet
2java.sql
4java.awt.font
4java.io
4java.security
6java.awt.dnd
6java.beans

11java.awt
11java.rmi.activation
13java.util

(total: 68)

Figure 2.2: Static type definition constraints per package

We now describe an interesting static type definition constraint in detail that has been found
in package java.io.

In Java, objects that implement the empty marker interface Serializable may be saved
into a stream for later retrieval. Normally, marking a class as implementing Serializable
is all a programmer needs to do for making it a serializable class. However, there is an

25

2 Categories of Constraints

additional constraint that the programmer must be aware of. The “Java Object Serialization
Specification” [Sun Microsystems, Inc. 1999b] states (emphasis added):

“A Serializable class must do the following:

� Implement the java.io.Serializable interface
� Identify the fields that should be serializable (Use the serialPersis-
tentFields member to explicitly declare them serializable or use the
transient keyword to denote nonserializable fields.)

� Have access to the no-arg constructor of its first nonserializable superclass"

Consider an object b of class B, which is serializable, and the non-serializable superclass A of
B. During serialization of b, only the values of fields declared in B are written to the stream4.
Then, if the serialized object is retrieved again, a new object of class B will be created, without
calling B’s constructor (since B’s fields will be set to their saved values); but for initializing
the fields declared in A, the constructor with no arguments (no-arg constructor) of A will be
called. Since no constructor of B is called, there is no sensible way of calling a constructor of
A that needs an argument.

Unfortunately, this constraint is not enforced statically; even worse, a constraint violation
becomes apparent only when already serialized objects are retrieved from a stream. As the
API documentation for java.io.Serializable puts it,

“To allow subtypes of non-serializable classes to be serialized, the subtype may
assume responsibility for saving and restoring the state of the supertype’s pub-
lic, protected, and (if accessible) package fields. The subtype may assume this
responsibility only if the class it extends has an accessible no-arg constructor to
initialize the class’s state. It is an error to declare a class Serializable [if there is
no such constructor]5. The error will be detected at runtime.”

It would be easy to detect the error at compile-time, by checking that a no-arg constructor
exists in the superclass. However, one might be reluctant to incorporate such checks in the
Java compiler, because object serialization is not part of the Java programming language; it
is realized as a standard library.

2.2.2 Method definition constraints

The most static method definition constraints have been found in the packages java.awt
and java.lang (see Figure 2.3):

4It is possible to write the values of A’s fields as well if B has access to A’s fields and if it implements a serial-
ization method.

5This sentence is incomprehensible in the original documentation; it reads “It is an error to declare a class
Serializable in this case”.

26

2.2 Static constraints

� The package java.awt contains three kinds of static method definition constraints:
First, some methods should never be declared synchronized when overridden in
subclasses. Second, for a number of methods, overriding methods are required to call
the overridden method (see below for an extended example). Third, there are abstract
methods whose implementations are expected to call the Java security manager for
checking whether access to these methods can be granted.

� The static method definition constraints in package java.lang apply to the class Se-
curityManager. When subclasses override methods of this class, the overridden
method in the superclass needs to be called because otherwise security could be com-
promised.

2java.awt.image
2java.security
2java.text
4java.io
4java.util
5java.beans.beancontext
5java.sql

9java.awt
10java.lang

(total: 43)

Figure 2.3: Static method definition constraints per package

We now present a typical example for the common constraint that an overriding method
should call the overridden method.

The class java.awt.Container, responsible for managing graphical user interface com-
ponents that contain embedded components, contains several add methods for adding em-
bedded components. All of these methods forward the call to a generic method called ad-
dImpl which performs the addition and – if necessary – notifies the layout manager reg-
istered for the container object. For certain purposes, e.g. for tracking all add requests to
a container, this method may be overridden in subclasses. However, as the documentation
states,

“an overriding method should usually include a call to the superclass’s version
of the method”.

This rule is not very precise and leaves room for several possible interpretations. One inter-
pretation could be the following: the first statement in overriding methods must be a call to
the overridden method. Only after this call to super, additional actions are allowed.

2.2.3 Type usage constraints

Static type usage constraints, shown in Figure 2.4, are not as common as static type definition
constraints. We will first examine the three packages that contain the majority of static type

27

2 Categories of Constraints

usage constraints:

� In package java.lang, constraints apply to certain types of exceptions that should
not be caught by application code. Most notably, ThreadDeath, the exception used
for aborting threads preemptively, should not be caught as this prevents aborting
threads. In a context where security is important, e.g. in a web browser that displays
Java applets, this constraint is important because some of the security properties rely
on the fact that threads that an applet has started cannot continue to run when the web
page containing the applet is no longer displayed.

� The package java.security, which provides the classes and interfaces for the Java
security framework, contains a number of classes each of which have two kinds of
clients, providers of security infrastructure on one hand and users of security services
on the other hand. The constraints in this package state that the different clients of
these classes should call only methods from their respective method subsets because
these classes cannot be split into smaller classes for compatibility reasons with previous
versions of the security framework.

� The three static type usage constraints in package java.io are synchronization con-
straints in the interfaces Reader and Writer (see below for a detailed explanation of
this constraint), and a constraint in class FileDescriptor that states that applica-
tions should not create their own instances of class FileDescriptor. It seems that
this constraint cannot be enforced using Java’s access modifiers, because other Java
standard classes in other packages need access to this class.

1java.awt
1java.beans
1java.rmi.registry
1java.rmi.server
1java.text
2java.awt.event
2java.awt.print
3java.io
3java.security
4java.lang

(total: 19)

Figure 2.4: Static type usage constraints per package

We now describe a synchronization constraint found in package java.io in more detail.

The standard Java library contains a hierarchy of classes for writing to character-based
streams. The common superclass of this hierarchy is the abstract class java.io.Writer,
which provides methods for writing a single character, a character array, or a String. Con-
crete functionality, such as writing to a file, or writing to an array of characters, is pro-
vided by subclasses of Writer. Additionally, certain subclasses of Writer define character
streams that may form a chain. For example, normal writers do not perform buffering, but

28

2.2 Static constraints

when buffering is desired, a BufferedWritermay be used that is based on the unbuffered
Writer. Another example is the class PrintWriter, which provides convenient methods
for writing String representations of objects and values of various types based on the sim-
pler String-writing methods of an underlying Writer. For example, the following chain
of Writer objects is a common idiom in Java for character-based writing to a file:

PrintWriter out = new PrintWriter(
new BufferedWriter(

new FileWriter("foo.out")));

Accesses to Writer objects need to be synchronized, such that if several threads use the
same Writer object concurrently, the internal representation of the character stream remains
consistent, and calls to Writer objects are properly serialized. One solution for this would
be to define all methods on Writer objects as synchronized methods. Unfortunately, this
simple solution would result in duplicate synchronization in all of the chained Writer ob-
jects if there is more than one Writer object in a chain. For this common case, it would be
more efficient to only synchronize once on the front-end Writer object. Determining the
front-end object, however, is not possible, because this object itself might be wrapped in an-
other Writer object, and it is possible that there is no single front-end object if some client
calls are issued directly to Writer objects in the middle of the chain.

Based on the assumption that re-acquiring a lock that is already held is cheaper than the
costly operation of acquiring a lock for the first time, the implementation of all Writer
classes is based on a single lock object per chain, using synchronized blocks rather than
synchronized methods. For this purpose, class Writer contains a protected field lock
referencing the object which should be used in all subclasses of Writer for synchronization
purposes.

The API documentation of Writer contains the following description of the field lock:

“The object used to synchronize operations on this stream. For efficiency, a
character-stream object may use an object other than itself to protect critical sec-
tions. A subclass should therefore use the object in this field rather than this or
a synchronizedmethod.”

There is no simple way to enforce that synchronization in subclasses of Writer is performed
properly, because checking safety and liveness properties is complex and highly application-
specific. However, even if one cannot check sufficient conditions, it is already very useful
to check necessary conditions for proper synchronization: Certain synchronization schemes
clearly do not fit in the scheme that is defined by class Writer. For example, as a first step,
it is possible to disallow synchronized methods in subclasses of Writer (this is a static
type definition constraint). Adding a static type usage constraint, one can do even better,
and disallow synchronized statements that operate on objects of type Writer.

2.2.4 Method usage constraints

Many static method usage constraints have been found; most of them are in two packages,
as shown in Figure 2.5.

29

2 Categories of Constraints

� In package java.awt.image, there are numerous methods that should only be called
by other classes of the AWT framework and not by application code. Additionally,
there are precondition-like constraints that can be enforced statically, such as several
methods that expect certain parameters to be null when called by application code.

� The package java.awt contains similar constraints, most of which state that methods
that need to be public should not be called from application code.

1java.awt.event
1java.awt.font
1java.awt.print
1java.lang.reflect
1java.util
2java.sql
3java.beans.beancontext
4java.security

20java.awt.image
23java.awt

(total: 57)

Figure 2.5: Static method usage constraints per package

In the remainder of this section, we will give a detailed example of such a constraint.

In Java, access modifiers determine whether or not a class or an interface has access to other
entities, such as for example classes, interfaces, fields, and methods. No restrictions — global
accessibility — is denoted by the modifier public. The modifier protected specifies that
access is only possible from within the same package or from subtypes. No access modifier
implies package-only access, i.e. access is permitted only from within the same package.
Finally, the access modifier private allows to access an entity only from within the same
class or interface.

For some purposes, this scheme is too coarse-grained: For example, two packages might be
closely related, such that classes in one package need access to methods in the other package
even if they are not subclasses. This already implies that the called methods need to be
declared as public, making them accessible not only to the closely related package, but to
all other packages as well6. There are a number of methods and constructors in classes of the
abstract window toolkit (AWT), which should not be called by application-specific classes.

One such situation occurs in class java.awt.Component, the abstract superclass of all
graphical objects: It contains two methods (addNotify and removeNotify) that are to be
called only by classes in packages that form the platform-dependent implementations of the
AWT classes. Application-specific classes, however, should not call these methods although
they are declared as public. The documentation for both methods includes the following:

6This problem is due to a language feature which Java is lacking. In C++, it is possible to declare external
classes as friend classes which makes access-proteced fields and methods accessible to them. In Eiffel, this
can be accomplished by selectively exporting fields or methods to other classes.

30

2.3 Dynamic constraints

“This method is called internally by the toolkit and should not be called di-
rectly by programs.”

With a static method usage constraint, calls of methods that are public can be restricted to
specific packages, barring application-specific classes from accessing these methods.

2.2.5 Field usage constraints

Only two field constraints have been found, both of which are field usage constraints:

The class java.awt.AWTEvent defines static (constant) fields which are used as event
mask values. The class documentation states that

“The event masks defined in this class are needed ONLY by component sub-
classes which are using Component.enableEvents() to select for event types
not selected by registered listeners.”

This constraint adresses usages of the static fields, which should only occur in certain sub-
classes of java.awt.AWTEvent.

In the class java.beans.beancontext.BeanContextSupport, the documentation for
the field services states that

“all accesses to the protected transient HashMap services field should
be synchronized on that object.”

A sufficient condition for this constraint can be checked statically by requiring
that all usages of this field occur either in synchronized methods of the class
java.beans.beancontext.BeanContextSupport itself, or in other places where the
field access to an object is within a synchronized block which synchronizes on that object.

2.3 Dynamic constraints

Dynamic constraints are quite common; they make up the largest part of all constraints that
have been found in the Java standard classes. As has already been noted in Section 2.1.1,
it was difficult to decide for 167 of the 401 dynamic constraints whether they are static or
dynamic constraints. These constraints, which are concerned with genericity, aliasing, and
sequencing of method calls, are described in Section 2.3.1. Interestingly, all remaining dy-
namic constraints, which are discussed in Section 2.3.2, can be classified as class invari-
ants (dynamic type definition constraints), method preconditions (dynamic method usage
constraints), and method postconditions (dynamic method definition constraints) as known
from Eiffel [Meyer 1992].

31

2 Categories of Constraints

2.3.1 Accidentally dynamic constraints

For the constraints in this section, it is unclear whether they are dynamic or static constraints.
In principle, genericity constraints could be checked statically. In practice, this requires an-
notations on the type level which are not supported by Java7. Thus, we have decided to clas-
sify them as dynamic constraints in this context. For aliasing and sequencing constraints,
it is still an open research issue whether they can be enforced statically without restricting
common programming practices. For a detailed discussion of the four constraint categories,
see the following subsections.

Genericity constraints

There are 72 constraints that deal with type compatibility issues which could be checked stat-
ically if Java had parameterized types [Bracha et al. 1998]. Although it is possible to employ
type inference to find out type parameters and bounds for these parameters [Duggan 1999],
explicit declarations of type parameters are required to detect constraint violations — using
type inference, these would only lead to more general bounds and not to type errors. Thus,
we have classified these 72 constraint as dynamic constraints. See Figure 2.6 for an overview
on where genericity constraints have been found. Interestingly, most genericity constraints
appear in only two packages:

� The package java.awt.image provides 40 classes and interfaces for creating and
modifying images. Its documentation states:

“Images are processed using a streaming framework that involves an image
producer, optional image filters, and an image consumer. This framework
makes it possible to progressively render an image while it is being fetched
and generated. Moreover, the framework allows an application to discard
the storage used by an image and to regenerate it at any time. This package
provides a number of image producers, consumers, and filters that you can
configure for your image processing needs.”

The package java.awt.image deals with pixels, arrays of pixels, colors in different
color models, and image transformations. The genericity constraints in this package
mostly concern the correct initialization of the streams from image producers to image
consumers. For example, many constraints require the color model of certain objects
to be compatible. These compatibility requirements seem to be type-based and thus
could be expressed on the type level if Java had parameterized classes.

� The package java.util contains “the collections framework, legacy collection
classes, event model, date and time facilities, internationalization, and miscellaneous
utility classes (a string tokenizer, a random-number generator, and a bit array)” (quote
from the documentation). It is not surprising that there are many genericity constraints
in this package. For example, the classes and methods for sorting and searching require
objects to implement the interface Comparable.

7Other object-oriented languages have a type system in which genericity constraints can be checked statically.
For example, the language Eiffel [Meyer 1992] supports parameterized types for expressing genericity con-
straints.

32

2.3 Dynamic constraints

1java.lang
1java.security
2java.awt.datatransfer
2java.io
3java.rmi.activation
4java.awt

28java.util
31java.awt.image

(total: 72)

Figure 2.6: Genericity constraints per package

Aliasing constraints

A total of 24 constraints specify aliasing properties. For example, the documentation of class
java.util.WeakHashMap states that values of

“WeakHashMap are held by ordinary strong references. Thus care should be
taken to ensure that value objects do not strongly refer to their own keys, either
directly or indirectly, since that will prevent the keys from being discarded.”

Checking this constraint statically would require points-to analysis as proposed, for ex-
ample, in [Yur et al. 1999] and [Steensgaard 1996]. However, this analysis usually requires
global program analysis which makes it difficult to use for large systems. A related approach
is research on aliasing declarations [Noble et al. 1998] which can be checked statically and
do not require global analysis. Finally, it is possible to check aliasing constraints dynami-
cally, but this would probably require an instrumented JVM. See Figure 2.7 for an overview
of the packages that contain aliasing constraints.

1java.awt.image.renderable
1java.beans.beancontext
1java.net
2java.awt
2java.security
3java.sql

14java.util

(total: 24)

Figure 2.7: Aliasing constraints per package

Sequencing constraints

We have found 71 sequencing constraints; they state that certain events, usually method
calls, should be performed in a specific order or according to a specific protocol. As can be

33

2 Categories of Constraints

seen in Figure 2.8, the largest number of examples of this class of constraints can be found
in the package java.sql, a stateful interface to relational database systems, which con-
tains 30 sequencing constraints. For example, the documentation of the method wasNull in
java.sql.CallableStatement states:

“Note that this method should be called only after calling the get method; oth-
erwise, there is no value to use in determining whether it is null or not.”

Some of these constraints seem to be a sign of bad design and could be removed if the
package could be restructured. In the above example, it would be possible to wrap the
result of the get method in an object which can be used to retrieve the result and to query
whether or not the result is the SQL null value. Note that most of the other constraints
found in the Java standard classes do not result from bad design. See Chapter 8.2 for a more
detailed discussion of this point.

Sequencing constraints sometimes can be checked dynamically using special variables that
keep track of the current state of an object, and checking the correct order of method calls in
method preconditions. Whether sequencing constraints can be checked statically is still an
open research question that so far has been tackled only for idealized languages or calculi
[Vasconcelos 1994, Nierstrasz 1995, Bokowski 1996, Yellin, Strom 1997, Ravara et al. 1998].

1java.awt
1java.awt.font
1java.lang
1java.net
1java.rmi.activation
1java.rmi.server
1java.text
3java.beans
4java.awt.dnd
4java.io

7java.awt.image
8java.security

11java.util
27java.sql

(total: 71)

Figure 2.8: Sequencing constraints per package

2.3.2 Inherently dynamic constraints

Figure 2.9 shows the package names and corresponding numbers of dynamic constraints
which are neither genericity, aliasing, nor sequencing constraints. It is interesting to note
that about 80% of these dynamic constraints belong to just five of the 35 packages that make
up the Java standard classes. In this section, we will have a closer look at these five packages
and give an overview of the types of dynamic constraints that occur in these packages.

34

2.3 Dynamic constraints

� The package with the most of these dynamic constraints, java.awt.image, deals
with pixels, arrays of pixels, colors in different color models, and image transforma-
tions. Most of the dynamic constraints are method preconditions, requiring, e.g., that
pixel array parameters be of a specific shape corresponding to width and height pa-
rameters, or that certain parameters be non-null. It seems that the problem domain of
image creation, transformation and modification requires many of these preconditions.

� In the package java.util, the collections framework, many constraints are precon-
ditions related to different ways of searching; they require that the collection be sorted
for calling methods that perform searches on it.

� Package java.awt, the abstract window toolkit, contains classes and interfaces for
creating user interfaces and for painting graphics and images. The majority of dy-
namic constraints in this package are simple method preconditions which, e.g., require
alignment or placement parameters to be within a certain range of values, or parame-
ters that specify certain layout choices to be one of a certain set of string or numerical
constants. Many of these constraints, however, could be handled on the type level if
Java included enumeration types and range types.

� The package java.lang provides classes and interfaces that are fundamental to the
design of the Java programming language. Apart from a few simple method precondi-
tions, it repeats the dynamic constraints regarding objects implementing Comparable
and defines additional properties that comparison methods must have. Most impor-
tantly, any class implementing the methods equals and hashCode must ensure that
equals is reflexive, symmetric, and that comparing objects with null using equals
yields false. Furthermore, implementations of hashCode must be consistent with
equals, i.e., objects for which equals returns true must have the same hashCode.

� Finally, the package java.sql, which contains the JDBC package, an interface to SQL
database management systems, imposes constraints regarding type compatibility be-
tween Java and SQL. Most of these constraints can be expressed as method precondi-
tions that compare the actual type of the provided or queried Java object with dynamic
type information retrieved from the database system. Because of the interface nature of
the package (bridging between two different programming languages), parameterized
classes would not help in this case.

A typical example for a precondition can be found in the class java.awt.Color for the
method getHSBColor, which creates a Color object based on values supplied for the HSB
color model: The method’s documentation states that

“Each of the three components should be a floating-point value between zero and
one (a number in the range 0.0 =< h, s, b =< 1.0).”

A typical postcondition is documented for the method getAlignmentX in class
java.awt.Component. The method, which can be overridden in subclasses, returns the
component’s alignment along the x axis. The documentation states with regard to the value
returned by the method:

35

2 Categories of Constraints

1java.awt.event
1java.rmi.registry
1java.security.acl
1java.security.cert
2java.awt.font
2java.lang.reflect
3java.awt.geom
3java.awt.image.renderable
3java.beans
5java.io
5java.security

8java.text
9java.net

12java.lang
15java.sql

29java.util
41java.awt

93java.awt.image

(total: 234)

Figure 2.9: Other dynamic constraints per package

“This specifies how the component would like to be aligned relative to other
components. The value should be a number between 0 and 1 where 0 represents
alignment along the origin, 1 is aligned the furthest away from the origin, 0.5 is
centered, etc.”

Only four occurrences of class invariants have been found, two of which are
mentioned in the documentation of the interfaces java.util.SortedSet and
java.util.SortedMap; the other two occurrences are in the two implementations of these
interfaces, java.util.TreeSetand java.util.TreeMap. The four constraints are very
similar, for example, the constraint in java.util.SortedSet reads:

“Note that the ordering maintained by a sorted set (whether or not an explicit
comparator is provided) must be consistent with equals if the sorted set is to
correctly implement the Set interface.”

2.4 Alternative categorizations

The categorization that has been presented is only one possible way of categorizing con-
straints. In this section, we discuss two obvious alternative categorizations and why these
are not suitable for our purposes.

36

2.4 Alternative categorizations

2.4.1 Categorization based on degree of abstraction

One possible categorization focuses on the degree of abstraction, distinguishing between
stylistic constraints that are concerned with aspects of a program that, when changed, do not
affect its semantics — for instance, naming issues; implementation constraints that deal with
problematic language constructs or cover common traps and pitfalls that may easily lead
to subtle programming errors; and design constraints that reflect programming rules for the
correct use of a framework, or coding conventions resulting from the use of design patterns.
This categorization has been chosen in [Chowdhury, Meyers 1993], which describes a system
for checking constraints on C++ programs.

Examples for stylistic constraints could be to require that that package names are lowercase
only, or that in a class definition, the declarations of public variables, public constructors,
and public methods precede the private declarations, or that the scope of local variables is
minimal, i.e. each variable declaration is in the smallest block that contains all uses of the
variable.

Implementation constraints might require, for example, that a class that provides its own
implementation of the method public boolean equals(Object other) also imple-
ments the method public int hashCode() and vice-versa, because equal objects must
have the same hash code to be correctly added to and removed from hash-based collections,
that branches of an if-statement are blocks rather than single statements, because when
adding a new statement to a single-statement branch, programmers often forget to correctly
group both statements in a block, or that String objects are compared using the method
equals() rather than the identity operator “==”.

Thus, while this categorization is useful to convey the broad scope of constraints that occur
in object-oriented software development projects, it is not appropriate for our purpose of
developing a system for automatic checking of constraints. First, it differentiates between
constraints based on the intentions of the constraint designers rather than based on struc-
tural differences inherent to the constraints. Second, it seems no good fit for the constraints
that have been found in the Java standard classes because they would all fall into a single
category, design constraints. It appears that “degree of abstraction” is a dimension for clas-
sifying constraints which is independent from the dimensions presented in the main part of
this chapter. Thus, CoffeeStrainer, the system presented by this thesis, can be used to check
implementation, stylistic, and design constraints as described above.

2.4.2 Categorization based on programming language concepts

Rather than identifying orthogonal dimensions for distinguishing categories, one could use
concepts known from programming language research as categories: aliasing, parameterized
types, sequencing, assertions, preconditions, postconditions, class invariants, immutability, access
control, etc. Some of these research areas have been mentioned already in Sections 2.3.1 and
2.3.2.

While this categorization is certainly useful and helps to focus research interests, it does not
cover all constraints that have been found. It would be unsatisfactory to have a category
“other constraints” for the remaining constraints that do not fall into one of the identified

37

2 Categories of Constraints

research areas. Moreover, this categorization does not help structuring the problem domain
as nicely as the independent classification dimensions of Section 2.1.

38

