
3 CoffeeStrainer Explained

This chapter explains how constraints can be expressed with CoffeeStrainer. In Section 3.1,
the basic ideas of the CoffeeStrainer framework are introduced. Section 3.2 explains how
static constraints can be implemented, and Section 3.3 explains CoffeeStrainer’s support for
dynamic constraints.

3.1 CoffeeStrainer basics

CoffeeStrainer’s main contribution is to support static constraints by making the program’s
structure available to constraints that check for certain structural properties. This section
introduces to the CoffeeStrainer framework by explaining how the program’s structure is
represented (Section 3.1.1), by walking through a simple example constraint (Section 3.1.2),
and finally, by giving an overview of the different kinds of static constraints which can be
implemented with CoffeeStrainer (Section 3.1.3).

3.1.1 The abstract semantics graph

In CoffeeStrainer, the static structure of a program is represented by the abstract semantics
graphs (ASGs) of the program’s compilation units. In Java, compilation units are single files
which can be compiled independently by a compiler. The abstract semantics graph of a Java
compilation unit is based on the abstract syntax tree built along the Java grammar. To build
an abstract syntax tree, each occurrence of a terminal symbol is represented by a leaf node
of the tree, and each occurrence of a nonterminal symbol is represented by an inner tree
node; consequently, the root node of the abstract syntax tree represents the whole compila-
tion unit. This tree, as explained below, is augmented with information obtained from name
analysis and type analysis, turning the abstract syntax tree into an abstract semantics graph
[Devanbu et al. 1996]. The ASG built by CoffeeStrainer completely represents one compila-
tion unit.

By name analysis, each use of a name is associated with its definition. For example, the
leaf node representing a local variable access is associated with the tree node that represents
the local variable’s declaration, and, similarly, the tree node representing the local variable’s
declaration is associated with the tree node representing the local variable’s declared type.
Note that this type may be defined in a different compilation unit, and thus that the asso-
ciation may be with a node of a different abstract semantics graph. However, because the
distinction between different abstract semantics graphs is important only when considering
whether or not a system supports separate compilation, the set of abstract semantics graphs
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3 CoffeeStrainer Explained

of a program often may be viewed as a single ASG which is formed by one (virtual) root
node representing the program whose child nodes are the nodes representing the different
compilation units of the program.

By type analysis, each tree node representing an expression is associated with its static type
which is determined according to the type rules of the programming language. In Java, an
expression’s type is completely determined by the constituents of the expression and does
not depend on the expression’s context.

In Figure 3.1, an example program together with its ASG is shown. The tree part of the ASG
is drawn using normal connection lines; the graph references obtained from name and type
analysis are drawn as dashed arrows. The example program consists of two classes A and
B in a package p. Both classes contain one field declaration; field f in class A, and field g in
class B, which has an initializer expression. The tree part of the ASG consists of the nodes
and the solid lines, while additional references obtained from name and type analysis are
shown using dashed arrows. There are dotted arrows from both node A and node B to node
Object because both classes extend the root class java.lang.Object. (The ASG nodes
for the methods of Object are omitted from the diagram.)

p :  Package

A :  Class

f :  Field

Constructor

Block

B :  Class

g :  Field

ObjectAl locat ion

constructors

classes

fields

body

fields

initializer

type

type

calledConstructor

Object :  Class

java. lang :  Package superclass
superclass

classes

...

package p;

public class A {

  public A() {
  }

  B f;
}

public class B {

  A g =
         new A();
}

t ree reference

graph reference

Figure 3.1: An example abstract semantics graph (ASG).

A complete description of the structure of the abstract semantics graphs built by Cof-
feeStrainer is given in Chapter 6, which documents all accessor methods that may be called
on objects representing graph nodes.
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3.1 CoffeeStrainer basics

3.1.2 A simple example

In this section, we present a simple CoffeeStrainer constraint to explain the principles on
which CoffeeStrainer is based.

The main idea of CoffeeStrainer is to execute constraint-checking code, called constraint meth-
ods1, at compile-time (or constraint checking time). The constraint methods, which are meth-
ods returning boolean values, are called by CoffeeStrainer during a single traversal of the
ASG which is to be checked. They are written by programmers who want to enforce con-
straints regarding the classes, interfaces, methods or fields they have defined. Constraint
methods are embedded in Javadoc comments [Gosling et al. 1996, Aitken 1996] just before
the program element with wich they are associated. Normally, constraint methods have a
single parameter, the ASG node which CoffeeStrainer is currently visiting during the ASG
traversal. If a constraint method returns false, CoffeeStrainer reports a constraint violation
on the currently visited ASG node.

We now turn to a very simple implementation of a static type definition constraint. The
constraint requires that, for proper encapsulation, a class should declare all fields (instance
variables) with private access only. This constraint leads to programs that are more main-
tainable, since the internal representation of an object’s state can be changed without requir-
ing changes to all users of that object. When fields are declared with private access, even
subclasses of a class cannot access the fields directly, such that implementation changes in a
base class need not lead to changes in derived classes.

We associate the constraint with the empty marker interface AllFieldsArePrivate, which
makes it apply to all classes which implement the interface, i.e., to all classes which are
marked with AllFieldsArePrivate. To highlight constraint methods, their names are
set in bold face:

package coffeestrainer.examples;

/** Requires all fields of subtypes to be private.
* @constraints
* public boolean checkField(Field f) {
* rationale = "all fields must be private";
* return f.isPrivate();
* }
*/

public interface AllFieldsArePrivate {
}

As can be seen, constraint methods appear in a constraints paragraph of Javadoc com-
ments just before the program element they are associated with. Javadoc comments are com-
ments which start with “/**” and appear directly before a class, interface, method, or field.
Each line of a Javadoc comment is stripped of any leading white space up to and including
an optional asterisk character “*”. They contain zero or more sentences of text which de-
scribe the program element they are associated with, followed by zero or more tags, which

1Note the difference between method constraints, i.e., constraints that are associated with a method of the base-
level program (see Section 2.1 for their definition), and constraint methods, which are methods that implement
constraints and are executed by CoffeeStrainer during constraint checking.
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3 CoffeeStrainer Explained

start with the character “@” at the beginning of a line and end before the next tag or at the end
of the comment. CoffeeStrainer constraints are written as tags named “@constraints”.

The return value of constraint methods is either true, if the constraint is satisfied, or false,
if the constraint is violated. In case of a constraint violation, CoffeeStrainer reports it using
the string stored in the special variable rationale.

Technically, CoffeeStrainer extracts tags named “@constraints” from Javadoc comments,
and inserts the contained constraint methods into newly generated constraint classes, which
are then compiled on the fly, and dynamically loaded into the CoffeeStrainer system. The
constraint class generated for AllFieldsArePrivate is shown in Figure 3.2.

package constraints.coffeestrainer.examples;

import barat.reflect.*;

public class AllFieldsArePrivate
extends coffeestrainer.InterfaceChecker {

public static AllFieldsArePrivate thisInterface = null;
public AllFieldsArePrivate() {
if(thisInterface!=null)

throw new RuntimeException("singleton only!");
thisInterface = this;

}
public boolean checkField(Field f) {
rationale = "all fields must be private";
return f.isPrivate();

}
}

Figure 3.2: Generated constraint class for AllFieldsArePrivate

Constraint classes are placed in a shadow package structure — because the in-
terface AllFieldsArePrivate is contained in package coffeestrainer.exam-
ples, its corresponding constraint class is constraints.coffeestrainer.exam-
ples.AllFieldsArePrivate, i.e., it has the same name as the base-level class or inter-
face, and it is placed in a package whose name is the original package name prefixed with
“constraints.”.

The superclass of the generated constraint class, coffeestrainer.InterfaceChecker,
contains default implementations for all constraint methods. The default implementation
is just to return true. Additionally, it defines the field rationale which is used by Cof-
feeStrainer for generating meaningful messages in the case of a constraint violation.

Each generated constraint class is an application of the singleton design pattern
[Gamma et al. 1995]; it contains a static field thisInterface (or thisClass) which ref-
erences the single instance of the constraint class. This instance is at the same time the
representation of the base-level interface or class for which the constraint class was gener-
ated. In our example, the expression constraints.coffeestrainer.examples.All-
FieldsArePrivate.thisInterface refers to the ASG node object that represents the
interface coffeestrainer.examples.AllFieldsArePrivate at checking-time. For
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3.1 CoffeeStrainer basics

certain constraints, being able to represent the corresponding ASG node is useful (see Figure
3.8 for an example).

The remaining content of the generated constraint class is copied from the @constraints
tag. Note that this makes it possible to define helper methods as well which are not con-
straint methods themselves. These can be used to factor out code which is common to sev-
eral constraint methods.

During traversal of the ASG, the constraint methods of the generated constraint classes are
called according to the Visitor design pattern [Gamma et al. 1995]. Ignoring the default con-
straint methods (which return true) defined in coffeestrainer.InterfaceChecker,
there is only one interesting constraint method, checkField. It is a definition constraint
method because it begins with just “check”. As it is associated with the interface All-
FieldsArePrivate, it is invoked by CoffeeStrainer during the traversal of AllField-
sArePrivate itself and all subtypes of it, when an ASG node of type Field is encountered.

Consider the example class Student, whose source code and corresponding abstract se-
mantics graph are shown in Figure 3.3.

cof feestra iner.examples :  Package

Al lFieldsArePrivate :  Interface

name :  F ie ld

id :  Field

fields

interfaces

type

Object :  Class

java. lang :  Package

superclass

classes

...

Str ing :  Class

...

int  :  Pr imit iveType
type

superclass

Student :  Class

school  :  Package
classes

implementedInterfaces

package school;

import coffeestrainer.examples.*;

public class Student
  implements AllFieldsArePrivate {

  private int id;

  String name;

}

Figure 3.3: Student example

To the right of the source code, the ASG nodes and their types are shown. A node of type
Package is at the root of the ASG. The only child of that node is a node of type Class, repre-
senting the class Student. This node then has two children of type Field, for id and name,
respectively. Modifiers like private, protected, or public are stored as attributes of the

43



3 CoffeeStrainer Explained

Field nodes and are not depicted in the diagram. From the nodes of the ASG of package
school, there are four dotted arrows that represent information from name analysis. One
arrow is from node Student to the node representing the class java.lang.Object, since
Student inherits from Object. Another arrow is from node Student to the node repre-
senting AllFieldsArePrivate, because Student implements this interface. The third
arrow is from node name to the node representing the class java.lang.String, a refer-
ence to the declared type of name. Finally, the fourth arrow is from node id to a predefined
node representing the primitive type int. In the diagram, the ASG nodes for methods of
java.lang.Object and for fields, methods, and constructors of java.lang.String are
omitted.

The constraint defined in AllFieldsArePrivateapplies to our sample class Student be-
cause Student implements AllFieldsArePrivate. Since this interface is empty, as seen
from the perspective of a normal Java compiler, the subtype relationship can be declared
without making additional changes to Student, such as e.g. implementing additional meth-
ods. When using CoffeeStrainer, it is a general technique to use empty interfaces for defining
constraints, and then using these interfaces to mark classes for which the constraint should
be enforced. Such marker interfaces are useful in other contexts as well; for example, the
standard interface Serializable is such a marker interface that marks classes whose ob-
jects may be serialized and stored in a file or sent over the network.

The concrete steps taken by CoffeeStrainer for checking the example class Student are as
follows:

� The ASG for Student is built and then augmented with name and type analysis in-
formation. During name and type analysis, classes and interfaces that are referenced
by Student are parsed on demand.

� Eventually, the interface AllFieldsArePrivate is parsed, and the Javadoc com-
ment is detected. From the code contained in the @constraints tag, the
new constraint class constraints.coffeestrainer.examples.AllFields-
ArePrivate (depicted in Figure 3.2) is generated, compiled on the fly and loaded
dynamically.

� After all necessary files have been parsed, the actual checking is performed: For both
nodes id and name of type Field, the method checkField will be called by the
CoffeeStrainer framework, providing the ASG nodes representing id and name as an
argument, respectively.

� The method checkField contains a rationale for the constraint. This rationale is
passed to CoffeeStrainer by assigning it to the predefined string variable rationale.
This step is optional, but makes the messages that are output for violations of the con-
straint easier to understand for the programmer.

� Then, if a node is found for which checkField returns false, which is the case for
the node representingname, a field with package-local accessibility, a warning message
will be generated. This warning message consists of the rationale, the name of the
class which specified the constraint and information about the construct that violates
the constraint (file name, line number, and source code):
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$ java CoffeeStrainer.Main school.Student

AllFieldsArePrivate does not allow Field "name"
(because all fields must be private)
in file school/Student.java, line 5

3.1.3 The structure of CoffeeStrainer constraints

Generally, CoffeeStrainer constraint methods are executed at compile-time (or checking-
time) and support the implementation of static constraints. The implementation of dynamic
constraints is enabled by a special construct which allows to programmatically insert run-
time checks into the code (see Section 3.3).

Constraint methods can be classified along three dimensions, namely, the kind of program
element with which they are associated, whether they are definition constraint methods or
usage constraint methods, and the ASG node type to which they apply:

� The kind of program element with which a constraint method is associated may be a
class or interface, a method, or a field, leading to a type constraint, method constraint,
or field constraint. Technically, constraint methods are embedded inside Javadoc com-
ments that appear directly before the declaration of the program element - i.e., directly
before a class or interface, directly before a method, or directly before a field.

� Constraint methods whose names start with just “check” implement definition con-
straints, and constraint methods whose names start with “checkUseAt” implement
usage constraints.

� The ASG node type to which a constraint method applies is determined by the remain-
ing name of the constraint method. For instance, the constraint method checkField
is a definition constraint that applies to ASG nodes of type Field, and the constraint
method checkUseAtCast is a usage constraint method that applies to ASG nodes of
type Cast. Constraint methods have a single parameter whose type is the applicable
ASG node type. For example, the declaration of the constraint method checkField
is “public boolean checkField(Field f);”, and the declaration of the con-
straint method checkUseAtCast is “public boolean checkUseAtCast(Cast
c);”.

Based on these three dimensions, CoffeeStrainer invokes constraint methods during a single
traversal of the ASG that is to be checked, providing the currently visited ASG node as the
argument:

� Type definition constraint methods are invoked for all ASG nodes of applicable type
within the ASG of the type (class or interface) itself and the ASGs of all subtypes.
Method definition constraint methods are invoked for all the ASG nodes of applicable
type within the ASG of the method itself and the ASGs of all methods overriding that
method, or implementing that method if it is an abstract method. Finally, field defini-
tion constraint methods are invoked for all ASG nodes of applicable type within the
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ASG of the field’s definition2. For example, a type definition constraint method called
checkCast, which is associated with the interface java.lang.Comparable, is in-
voked for each ASG node of typeCastwhich appears in java.lang.Comparable it-
self or any of its subtypes. In contrast, if checkCastwere associated with the method
compareTo in the interface Comparable, it would be invoked for each ASG node of
type Cast which appears in compareTo itself or in any of the methods in subtypes of
Comparable that implement compareTo.

� Type usage constraint methods are invoked for all ASG nodes of applicable type within
the whole program’s ASG in which the type (class or interface) or one of its subtypes
is used. Method usage constraint methods are invoked for all ASG nodes of applicable
type within the whole program’s ASG in which the method or one of its overriding
(implementing) methods is used. Finally, field usage constraint methods are invoked
for all ASG nodes of applicable type within the whole program’s ASG in which the
field is used. For example, a type usage constraint method called checkUseAtCast,
which is associated with the interface java.lang.Comparable, is invoked for each
ASG node of type Cast which uses Comparable or one of its subtypes as the casted
type, regardless of whether this ASG node appears in Comparable or any of its sub-
types. Because methods are not used by ASG nodes of type Cast, checkUseAtCast
cannot be associated with the method compareTo in the interface Comparable. If
another constraint method checkUseAtInstanceMethodCallwas associated with
compareTo, it would be invoked for every ASG node of type InstanceMethodCall
which represents a call to compareTo itself or to any of the methods in subtypes of
Comparable that implement compareTo.

Note that the scope of type constraint methods includes all subtypes of the type with which
the constraint method is associated, and method constraint methods apply to the method
with which they are associated and to all overriding methods. The reason for this is the
object-oriented principle of substitutability [Liskov, Wing 1994]: Given a type

�
and a sub-

type � of
�

, objects of type � must be substitutable for objects of type
�

, and consequently,
constraints that are checked on

�
must be checked on � as well.

This scheme makes checking constraints modular and well-suited for object-oriented pro-
grams: A type constraint (i.e., appearing directly before a class or interface definition) ap-
plies to the ASG of the class or interface itself and to all of its subtypes. For example, a
constraint method checkField that appears in the @constraints tag of a Javadoc com-
ment for a class A, applies to the ASG of A and to all ASGs of A’s subclasses. By defining
additional constraint methods for a subclass B of A, the constraints that applied to A can be
extended and refined for B and its subclasses. However, it is not possible to weaken con-
straints in subtypes; a constraint method that is placed in class A cannot be overridden in
class B. If a constraint method of the same name is defined both in class A and class B, A’s
constraint will apply to A and all subclasses of A (including B), and additionally, B’s constraint
will apply to B and all subclasses of B.

Inheritance of normal Java classes is not reflected on the constraint class level, which is why
overriding of constraint methods is not possible. Apart from the methodological argument

2In Java, there is no notion of overriding field definitions. If the base language allowed overriding of fields,
field definition constraint methods should be invoked for the field itself and all overriding fields.
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3.2 Implementing static constraints

that constraints should only be strengthened by subtypes, there is a technical reason for this
as well: The constraint methods defined for Java interfaces become methods of generated
constraint classes — remember that only classes can contain concrete methods. Thus, because
Java interfaces may have multiple superinterfaces, multiple implementation inheritance —
not available in Java — would be needed at the level of the generated constraint classes.

3.2 Implementing static constraints

As has been explained earlier, CoffeeStrainer performs a tree traversal on the ASG of ev-
ery compilation unit that is to be checked. In this section, we will describe the constraint
methods that will be invoked during this traversal in more detail. For this, it is sufficient
to explain which methods are called when visiting one particular node � of the ASG. The
order of traversing ASG nodes corresponds to the occurrence of program elements in the
source code for the compilation unit. However, the order should be irrelevant because it is
considered good style for constraint methods to be free of side-effects3.

In the following, we will make use of the following symbols, functions, and relations:
�

is
the set of all types, i.e., the set of all classes and interfaces. For �����	��

� � , we write ��������
 iff ���
is a supertype of �	
 , and ��������
 iff ��������
�����������
 . � is the set of all methods, and we write� ��� � 
 iff � � is overridden or implemented by � 
 , and � ��� � 
 iff � ��� � 
�� � ��� � 
 .
Finally,  is the set of all fields.

The five subsections explain the constraint methods called for type definition constraints,
method definition constraints, type usage constraints, method usage constraints, and field
usage constraints. We do not cover field definition constraints, because they would only
make sense in a language which supported overriding of fields in subclasses.

3.2.1 Implementing type definition constraints

Before explaining formally how type definition constraint methods are invoked by Cof-
feeStrainer, we motivate the scheme by means of a simple example. Figure 3.4 shows the
type definition constraint methods that will be called during the traversal of the example
ASG which was introduced in Figure 3.1 already. They are shown on the right of each ASG
node. For each invocation of a constraint method, this ASG node is provided as the argu-
ment. The expressions ccA, ccB, and ccO denote the singleton instances of the generated
constraint classes for A, B, and java.lang.Object, respectively. For example, the first
two invocations ccO.checkClass and ccA.checkClass refer to the constraint method
checkClass associated with the class java.lang.Object and the class A, respectively.
For both invocations, the method argument is the ASG node representing class A.

The order of calling constraint methods is determined by a pre-order traversal of the ASG
which corresponds to the order in which they occur in the source code.

3Note that CoffeeStrainer does not enforce that constraint methods be free of side-effects — doing so would
only be possible at the cost of making constraint methods less expressive. Like explained in Section 3.1.2,
they are copied verbatim from the @constraints tag of Javadoc comments.
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ccO.checkClass
ccA.checkClass
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ccB.checkClass
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ccB.checkObjectAl locat ion

Figure 3.4: Definition constraint methods called for the example ASG

48



3.2 Implementing static constraints

Note that all nodes in the ASG subtree for class A are checked by type definition constraint
methods associated with class A itself, and by type definition constraint methods associated
with class java.lang.Object, the supertype of A. Similarly, all nodes in the ASG subtree
for class B are checked by type definition constraints associated with class B and again, by
type definition constraint methods associated with class java.lang.Object, which also
is the supertype of class B.

We now explain the constraint methods called for type definition constraints when visiting
one ASG node � in a more formal way. Figures 3.5 and 3.6 show the signatures of all possible
type definition constraint methods4, starting with the ASG node types representing classes
and interfaces with their constituents, followed by ASG node types representing statements,
expressions, and other entities.

Let �"!#� � be the type (class or interface) in which � is contained. Of all definition constraint
methods — those starting with just “check” — only methods whose applicable ASG node
type is the type of � will be called with � as argument. The applicable type of a constraint
method is determined by the second part of its name, so if � is of type Field, potentially
applicable definition constraint methods are called checkField, and if � is of type Cast,
applicable definition constraint methods are called checkCast.

Let $ be the common name of the applicable definition constraint methods. Then, for every
type ���%�"! , a method $ will be called on the generated constraint class for � with � as the
argument.

For example, assume that the ASG node � is of type Cast, occurring in the type
�"! =java.lang.Integer. The set of types &'�(� �*) �(�+�,!.- for java.lang.Inte-
ger is {java.lang.Integer, java.lang.Number, java.io.Serializable, java.-
lang.Object}, and the common name $ of all applicable definition constraint methods is
checkCast. Thus, implementations of checkCast associated with java.lang.Inte-
ger, java.lang.Number, java.io.Serializable, and java.lang.Object, if exis-
tent, will be called for checking type definition constraints for the ASG node � .

We can now proceed to implement the example type definition constraint for
java.io.Serializable, which requires that non-serializable superclasses of serializable
classes have an accessible no-arg constructor (see Section 2.2.1 on page 24 for a detailed ex-
planation of this constraint):

/**
*@constraints
* public boolean checkClass(Class c) {
* rationale = "non-serializable superclass needs accessible no-arg constructor";
* if c.getSuperclass().isAssignableTo(thisInterface) return true;
* Constructor ctor =c.getSuperclass().getConstructor(new AType[]);
* return ctor!=null && ctor.isAccessibleFrom(c);
* }
*/

4Because the argument types of all these methods are different, they could all be called check without any
suffix, relying on overloading to distinguish between them. We chose not to use overloading for two reasons:
First, code making use of overloading is more difficult to read because one needs to consider argument types
and names to distinguish between methods, and second, this naming scheme fits better with the naming
scheme used for usage constraint methods, which are introduced in Section 3.2.3.
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public boolean checkClass(Class o);
public boolean checkInterface(Interface o);
public boolean checkAbstractMethod(AbstractMethod o);
public boolean checkConcreteMethod(ConcreteMethod o);
public boolean checkConstructor(Constructor o);
public boolean checkField(Field o);
public boolean checkBlock(Block o);
public boolean checkBreak(Break o);
public boolean checkCatch(Catch o);
public boolean checkContinue(Continue o);
public boolean checkDo(Do o);
public boolean checkEmptyStatement(EmptyStatement o);
public boolean checkExpressionStatement(ExpressionStatement o);
public boolean checkFinally(Finally o);
public boolean checkFor(For o);
public boolean checkIf(If o);
public boolean checkReturn(Return o);
public boolean checkSwitch(Switch o);
public boolean checkSynchronized(Synchronized o);
public boolean checkThrow(Throw o);
public boolean checkTry(Try o);
public boolean checkUserTypeDeclaration(UserTypeDeclaration o);
public boolean checkVariableDeclaration(VariableDeclaration o);
public boolean checkWhile(While o);
public boolean checkCaseBranch(CaseBranch o);
public boolean checkConstructorCall(ConstructorCall o);
public boolean checkDefaultBranch(DefaultBranch o);
public boolean checkForInitDeclaration(ForInitDeclaration o);
public boolean checkForInitExpression(ForInitExpression o);
public boolean checkLocalVariable(LocalVariable o);
public boolean checkParameter(Parameter o);

Figure 3.5: Names and signatures of definition constraint methods (Part I)
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public boolean checkAnonymousAllocation(AnonymousAllocation o);
public boolean checkArrayAccess(ArrayAccess o);
public boolean checkArrayAllocation(ArrayAllocation o);
public boolean checkArrayInitializer(ArrayInitializer o);
public boolean checkArrayLengthAccess(ArrayLengthAccess o);
public boolean checkAssignment(Assignment o);
public boolean checkBinaryOperation(BinaryOperation o);
public boolean checkCast(Cast o);
public boolean checkConditional(Conditional o);
public boolean checkInstanceFieldAccess(InstanceFieldAccess o);
public boolean checkInstanceof(Instanceof o);
public boolean checkInstanceMethodCall(InstanceMethodCall o);
public boolean checkLiteral(Literal o);
public boolean checkObjectAllocation(ObjectAllocation o);
public boolean checkParenExpression(ParenExpression o);
public boolean checkStaticFieldAccess(StaticFieldAccess o);
public boolean checkStaticMethodCall(StaticMethodCall o);
public boolean checkThis(This o);
public boolean checkSuper(Super o);
public boolean checkUnaryOperation(UnaryOperation o);
public boolean checkVariableAccess(VariableAccess o);

Figure 3.6: Names and signatures of definition constraint methods (Part II)

public interface Serializable {
}

The definition constraint method checkClass will be called for each ASG node represent-
ing a class that is a subtype of Serializable. Remember that the special variable this-
Interface references the ASG node representing the associated interface Serializable.
Only if the superclass of the checked class is not a subtype of Serializable, one needs to
check that this superclass contains an accessible constructor with no arguments. Therefore,
the constraint implementation returns true if the argument class’s superclass is assignable
to thisInterface, the ASG node for the interface Serializable. If this is not the case,
the superclass is searched for a constructor with no arguments. The method getConstruc-
tor, defined for ASG node objects representing classes, returns the ASG node object for the
constructor whose argument types are given as arguments of getConstructor, or null if
no such constructor exists. The result of the constraint method is true only if the constructor
exists and if it is accessible from the class c which is checked by the constraint method.

3.2.2 Implementing method definition constraints

In this section, we consider the constraint methods called for method definition constraints
when visiting one ASG node � .

Let � !/�0� be the method in which � is contained. As explained in the previous section,
the name of potentially applicable definition constraint methods is “check” followed by the
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name of the ASG node type of � . For example, if the ASG node type of � is Assignment,
the applicable definition constraint methods are called checkAssignment.

From the list of possible definition constraint methods, shown in Figures 3.5 and 3.6, only a
few are irrelevant for method definition constraints, namely, checkClass, checkInter-
face, checkConstructor, and checkField. All other definition constraint methods can
appear in method definition constraints, as the applicable ASG node type may be part of a
method’s ASG.

Let $ be the common name of the applicable definition constraint methods. Then, for every
method � � � ! , a constraint method $ will be called. In other words, definition constraints
that are associated with a method, i.e., that appear in Javadoc comments just before a method
definition, apply to the method with which they are associated and to all overriding meth-
ods.

The constraint classes generated for methods with associated constraints are similar to the
constraint classes generated for classes and interfaces. Instead of thisClass or thisIn-
terface, they have a field thisMethod which can be used in the constraint methods to
refer to the method with which they are associated. They are realized as static inner classes
of the constraint class generated for their containing class or interface. This enables the
constraint programmer to reuse helper methods across constraints associated with different
methods in the same class or interface. For the following example of a method definition
constraint, we will show the generated constraint class.

We can now proceed to implement the method definition constraint of Section 2.2.2. The
constraint required that methods overriding addImpl of java.awt.Container should
call super.addImpl. For brevity, we assume that a restrictive interpretation of the rule
was intended, which requires that the first statement of the method be the call to super.
The ASG structure required by this constraint is exemplified in Figure 3.7. It shows a part
of the ASG of class Container (only one method ASG node is shown) and the ASG of
an example subclass called Holder in package user. The implementation of addImpl in
Holder includes the call to the overridden method as its first statement. The source code
is indented in a non-standard way to make it easy to associate the ASG nodes on the right
with the source code part on the left.

A ConcreteMethod node contains a node of type Block, whereas a node of type Ab-
stractMethod does not. The pseudo-variable super is represented by a node of type
Super.

The desired constraint can be written as follows:

public abstract class Container {
/**
*@constraints
* static boolean callsMethod(AStatement s, AMethod m) {
* if(!(s instanceof ExpressionStatement)) return false;
* AExpression e=((ExpressionStatement)s).getExpression();
* if(!(e instanceof InstanceMethodCall)) return false;
* AMethod called=(InstanceMethodCall)e).getCalledMethod();
* return called == m;
* }
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awt :  Package

Container :  Class

addImpl :  ConcreteMethod
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package java.awt;

public class Container {

  public void addImpl(Component c) {

    ...
  }
  ...
}
package user;
import java.awt.*;

public class Holder extends Container {

  public void addImpl(
                       Component c) {

    super.addImpl(

                    c);

    ...
  }
}

Figure 3.7: The ASG of class Container and a subclass

53



3 CoffeeStrainer Explained

* public boolean checkConcreteMethod(ConcreteMethod m) {
* if(m==thisMethod) return true;
* rationale = "when overriding addImpl, " +
* "super.addImpl() must be a top-level statement";
* StatementList sl = m.getBody().getStatements();
* return sl.size()!=0 && callsMethod(sl.get(0),
* m.getOverriddenMethod());
* }
*/
public void addImpl(Component c) {
...

}
}

The method definition constraint method checkConcreteMethod is called for addImpl
in class Container and for all methods that override it in subclasses. When it is called on
an overriding method (i.e., m!=thisMethod), the constraint method checks that the first
statement is a call to the overridden method.

The generated constraint class is shown in Figure 3.8. Constraint classes generated for meth-
ods are static inner classes of the constraint classes generated for their containing class or
interface. The names of constraint classes generated for methods are “Method_n”, where
n is the index of the method in its class. In our example, the constraint class generated for
addImpl is called Container.Method_12 because addImpl has index 12 of all methods
in java.awt.Container (constructors are counted as methods as well).

3.2.3 Implementing type usage constraints

Types (classes and interfaces) can be used in two ways: either by explicitly naming the type,
as for example in field declarations, instanceof expressions, and object allocations, etc.,
or in the form of values of the type, i.e., if an expression has the type as its static type. In the
former case, the ASG node in which the type name occurs is the main point of interest. In
the latter case, it is not the expression itself, but the parent node of the expression which is
the main point of interest.

In this section, we again use a simple example before explaining formally how type usage
constraint methods are invoked by CoffeeStrainer. Figure 3.9 shows the usage constraint
methods that will be called during the traversal of the example ASG which was introduced
in Figure 3.1. They are shown on the right of the ASG node which is provided as the argu-
ment of the constraint method invocation. The expressions ccA, ccB, and ccO denote the
singleton instances of the generated constraint classes for A, B, and java.lang.Object,
respectively. For example, the second and third invocations ccO.checkUseAtField and
ccB.checkUseAtField refer to the constraint method checkUseAtField associated
with the class java.lang.Object and the class B, respectively. For both invocations, the
method argument is the ASG node representing the field f of class A. Note that the third
invocation (ccB.checkUseAtField) calls a usage constraint method associated with class
B even though the field f which is provided as the argument appears in the ASG part for
class A.
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package constraints.java.awt;

import barat.reflect.*;

public class Container extends coffeestrainer.ClassChecker {

... // code generated for constraint class Container

public static class Method_12
extends coffeestrainer.MethodChecker {

public static Container_method_12 thisMethod = null;
public Container_method_12() {

if(thisMethod!=null)
throw new RuntimeException("singleton only!");

thisMethod = this;
}
static boolean callsMethod(AStatement s, AMethod m) {

if(!(s instanceof ExpressionStatement)) return false;
AExpression e=((ExpressionStatement)s).getExpression();
if(!(e instanceof InstanceMethodCall)) return false;
AMethod called=(InstanceMethodCall)e).getCalledMethod();
return called == m;

}
public boolean checkConcreteMethod(ConcreteMethod m) {

if(m==thisMethod) return true;
rationale = "when overriding addImpl, " +

"super.addImpl() must be a top-level statement";
StatementList sl = m.getBody().getStatements();
return sl.size()!=0 && callsMethod(sl.get(0),

m.getOverriddenMethod());
}

}
}

Figure 3.8: Constraint class generated for a method constraint
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Figure 3.9: Usage constraint methods called for the example ASG
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The last six usage constraint method calls in Figure 3.9 concern three different uses of A (and
therefore, because A’s superclass is Object, also of Object): first, as the declared type of
field g; second, as the static type of the field initializer expression (which happens to be an
object allocation expression), and third, as the class referred to by name in the object alloca-
tion expression. The methods checkUseAtField and checkUseAtFieldInitializer
take theField object as their argument, and the methodcheckUseAtObjectAllocation
takes the ObjectAllocation object as its argument.

Note that usage constraint methods apply to every use of a certain type in a program that
is checked by CoffeeStrainer: While checking class A, one usage constraint method of B
is called because B is used once in class A, and two usage constraint methods of Object
are called because Object is used twice in A (directly, as A’s superclass, and indirectly, as
B’s superclass because B is used in the field declaration). Similarly, three usage constraint
methods defined in class A are called while checking class B, because class B uses A in three
different ways, and four usage constraint methods defined for Object are called, because
class B uses Object (directly or indirectly) in four different ways.

We now explain the constraint methods called for type usage constraints when visiting one
ASG node � in a more formal way. Figure 3.10 shows the signatures of all possible type
usage constraint methods in alphabetical order.

First, we consider the case that � names other (class or interface) types. In this case, the
common name $ of the potentially applicable usage constraint methods is “checkUseAt”
followed by the name of the ASG node type of � . For example, if the ASG node type of �
is ObjectAllocation, the name is checkUseAtObjectAllocation. Furthermore, let� !21 � be the set of types which are named explicitly by � . Usually, this set is either empty
or it contains a single element, because most Java program elements explicitly reference at
most one user-defined type. Then, the method $ with � as the argument will be called for
the constraint classes generated from all �3� � for which there is a ��4�� � ! for which �
�5��4 ,
i.e., $ will be called for all constraint classes generated for types in

� ! and those generated
for their supertypes.

Second, we consider the case that � uses a type by having an expression node as a child. Let6
be the set of pairs 78�	9'��:�9<; describing child expression nodes of � where ��� � is the expres-

sion’s static type and :=9 is a String which differentiates between multiple children expression
nodes5. Then, for each 78�	9'��:�9<;�� 6 , the common name $ of the potentially applicable usage
constraint methods is “checkUseAt” followed by the name of the ASG node type of � and
the String :>9 . For example, if the ASG node type of � is Assignment, which has two child
expression nodes, the names of the potentially applicable type usage constraint methods are
checkUseAtAssignmentLValue and checkUseAtAssignmentOperand. This method
$ will be called with � as the argument for the constraint classes generated from all �*� �
for which �?�@�	9 . In other words, for each expression child node of � whose static type
is ��9 , usage constraint methods will be called whenever they are defined in �<9 or one of its
supertypes.

Note that the list of possible usage constraint methods shown in Figure 3.10 contains one ex-
ception to the naming scheme described in the previous paragraph: The methodcheckUse-

5For example, ASG nodes of type Assignment have two children expression nodes: the l-value and the right-
hand side of the assignment. In this case, the differentiating strings would be “LValue” and “Operand”. If
there is only one child expression node, the differentiating string is defined to be the empty string.
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public boolean checkUseAtArrayAllocation(ArrayAllocation where);
public boolean checkUseAtAssignmentLValue(Assignment where);
public boolean checkUseAtAssignmentOperand(Assignment where);
public boolean checkUseAtBinaryOperation(BinaryOperation where);
public boolean checkUseAtCast(Cast where);
public boolean checkUseAtCastOperand(Cast where);
public boolean checkUseAtCatch(Catch where);
public boolean checkUseAtConditionalIfTrue(Conditional where);
public boolean checkUseAtConditionalIfFalse(Conditional where);
public boolean checkUseAtField(Field where);
public boolean checkUseAtFieldInitializer(Field where);
public boolean checkUseAtInstanceFieldAccess(InstanceFieldAccess where);
public boolean checkUseAtInstanceMethodCall(InstanceMethodCall where);
public boolean checkUseAtInstanceof(Instanceof where);
public boolean checkUseAtLocalVariable(LocalVariable where);
public boolean checkUseAtLocalVariableInitializer(LocalVariable where);
public boolean checkUseAtMethodCallParameter(int index, AMethodCall where);
public boolean checkUseAtMethodParameter(int index, AMethod where);
public boolean checkUseAtMethodResult(AMethod where);
public boolean checkUseAtObjectAllocation(ObjectAllocation where);
public boolean checkUseAtReturn(Return where);
public boolean checkUseAtStaticFieldAccess(StaticFieldAccess where);
public boolean checkUseAtStaticMethodCall(StaticMethodCall where);
public boolean checkUseAtSuper(Super where);
public boolean checkUseAtSynchronized(Synchronized where);
public boolean checkUseAtThis(This where);
public boolean checkUseAtThrow(Throw where);
public boolean checkUseAtThrows(AMethod where);
public boolean checkUseAtVariableAccess(VariableAccess where);

Figure 3.10: Names and signatures of usage constraint methods
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AtMethodCallParameter has an int parameter that distinguishes between the differ-
ent child nodes of a MethodCall node, instead of several methods with different names
checkUseAtMethodCallParameter1, checkUseAtMethodCallParameter2, ... that
encode the parameter index in the methods’ names. For usage constraint methods one
could not choose a single name checkUseAt because the parameter type does not dis-
tinguish between, e.g., checkUseAssignmentLValue and checkUseAtAssignment-
Operand. Thus, as already mentioned, overloading is not used for definition constraint
methods either in order to keep a single consistent naming scheme.

We can now proceed to implement the example type usage constraint described in Section
2.2.3, which requires that synchronization for Writer objects should be performed on the
object in the field lock of class Writer instead of on a Writer object itself using syn-
chronizedmethods or explicit synchronized blocks. As a first step, it is easy to disallow
synchronized methods in subclasses of Writer by writing the following definition con-
straint method:

/**
*@constraints
* public boolean checkConcreteMethod(ConcreteMethod m) {
* rationale = "use field ’lock’ instead of synchronized methods";
* return !m.isSynchronized();
* }
*/

public class Writer {
}

The class definition constraint method checkConcreteMethod will be called for all con-
crete methods of Writer and subtypes of Writer. It returns true only if the method is not
synchronized. Note that in Java, the synchronizedproperty of methods is not inherited
by overriding methods.

Adding a usage constraint method, one can do even better, and disallow synchronized
statements that operate on objects of type Writer:

/**
*@constraints
* public boolean checkConcreteMethod(ConcreteMethod m) {
* rationale = "use field ’lock’ instead of synchronized methods";
* return !m.isSynchronized();
* }
* public boolean checkUseAtSynchronized(Synchronized s) {
* rationale = "synchronize on field ’lock’ instead of on Writer objects";
* return false;
* }
*/

public class Writer {
}

The class usage constraint method checkUseAtSynchronized will be called for all ASG
nodes of type Synchronized which synchronize on an object of type Writer. Such uses
of Writer objects are not allowed; thus, the constraint method returns false.
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3.2.4 Implementing method usage constraints

In this section, we consider the constraint methods called for method usage constraints when
visiting one ASG node � .

Unlike for definition constraints, there are not many possible method usage constraint meth-
ods because there is only one way methods can be used — calling them. Thus, there are only
two possible method usage constraint methods, shown in Figure 3.11, for constraining calls
of instance method calls and static method calls, respectively.

Thus, method usage constraint methods will be called for � only if the ASG node type of �
is InstanceMethodCallor StaticMethodCall. In the first case, the possibly applicable
constraint methods are called checkUseAtInstanceMethodCall, and in the second case
the possibly applicable constraint methods are called checkUseAtStaticMethodCall.
Again, we define $ to be the name of the applicable constraint methods.

Let �BA �C� be the method which is called by � . Then, for every constraint class generated
from a method � � �2A , a constraint method $ will be called with � as its argument.

public boolean checkUseAtInstanceMethodCall(InstanceMethodCall where);
public boolean checkUseAtStaticMethodCall(StaticMethodCall where);

Figure 3.11: Names and signatures of method usage constraint methods

Using method usage constraint methods, we can implement the constraint described in
Section 2.2.4, which requires that the methods addNotify and removeNotify in class
java.awt.Component should only be called from classes in the package java.awt.peer
that forms the platform-dependent implementation of the AWT classes:

package java.awt;

/**
*@constraints
* private static Package peerPackage = Barat.getPackage("java.awt.peer");
* static boolean callIsAllowed(AMethodCall mc) {
* return mc.containing(Package.class) == peerPackage;
* }
*/

public class Component {

...

/**
*@constraints
* public boolean checkUseAtInstanceMethodCall(InstanceMethodCall c) {
* rationale = "this method should not be called by application code";
* return callIsAllowed(c);
* }
*/
public void addNotify() {
...
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}
/**
*@constraints
* public boolean checkUseAtInstanceMethodCall(InstanceMethodCall c) {
* rationale = "this method should not be called by application code";
* return callIsAllowed(c);
* }
*/
public void removeNotify() {
...

}
}

The method usage constraint methods for addNotify and removeNotify will be called
for every ASG node of type InstanceMethodCall which represents a call to the respec-
tive method or one of its overriding methods. They return true only if the call is allowed,
a decision that is based on the context of the checked ASG nodes: Only ASG nodes that are
part of the package java.awt.peermay perform the calls. Note the helper method cal-
lIsAllowed, which is placed in the constraint class generated for java.awt.Container
and thus is accessible from both method constraints. The implementation of callIsAl-
lowed uses the expression mc.containing(Package.class) to retrieve the ASG node
of type Packagewhich contains the method call mc.

3.2.5 Implementing field usage constraints

In this section, we consider the constraint methods called for field usage constraints when
visiting one ASG node � .

Unlike field definition constraints, field usage constraints have a non-trivial scope, i.e. all
ASG nodes that access a particular field. Accordingly, there are two possible field usage
constraint methods, shown in Figure 3.12, for constraining accesses to instance fields and
static fields, respectively.

Thus, field usage constraint methods will be called for � only if the ASG node type of � is
InstanceFieldAccess or StaticFieldAccess. In the first case, the possibly applica-
ble constraint methods are called checkUseAtInstanceFieldAccess, and in the second
case the possibly applicable constraint methods are called checkUseAtStaticFieldAc-
cess. We define $ to be the name of the applicable constraint methods.

Let D A �2 be the field which is accessed by � . Then, the constraint method $ of a constraint
class generated for D A will be called with � as its argument.

public boolean checkUseAtInstanceFieldAccess(InstanceFieldAccess where);
public boolean checkUseAtStaticFieldAccess(StaticFieldAccess where);

Figure 3.12: Names and signatures of field usage constraint methods

Using field usage constraints, we can implement the example constraint from Section 2.2.5,
which is associated with the field services in class java.beans.beancontext.Bean-
ContextSupport. The constraint requires that “all accesses to the protectedtransient

61



3 CoffeeStrainer Explained

HashMap services field should be synchronized on that object.” For simplicity, we check
a sufficient condition for this constraint. We require that all usages of this field are contained
in synchronizedmethods of the class java.beans.beancontext.BeanContextSup-
port or one of its subtypes:

package java.beans.beancontext;

public class BeanContextSupport {

/**
*@constraints
* public boolean checkUseAtInstanceFieldAccess(InstanceFieldAccess o) {
* rationale = "accesses to services should be in synchronized methods";
* AMethod m = o.containingMethod();
* return m!=null
* && m.containingClass().isAssignableTo(thisClass)
* && m.isSynchronized();
* }
*/
protected transient java.util.HashMap services;

...
}

The method checkUseAtInstanceFieldAccess will be called for all ASG nodes repre-
senting field accesses to services, regardless of the class they are contained in. The check
m!=null is required because field accesses could have no containing method, for example,
when they are part of the initializer expression of another field.

3.3 Implementing dynamic constraints

So far, only static constraints have been explained. This section explains how constraints
can be implemented which cannot be checked at compile-time at all, or which can only be
checked partly at compile-time.

A dynamic constraint is a constraint which can only be checked at run-time, i.e., which de-
pends on run-time information such as the values of variables, or the actual control flow
within the program. Unlike static constraints, which are boolean expressions that are evalu-
ated once for each ASG node they apply to, dynamic constraints are boolean expressions that
should be evaluated repeatedly in the course of running a program. However, like static con-
straints, dynamic constraints in CoffeeStrainer are associated with ASG nodes: For all ASG
nodes which represent an entity that may be executed or evaluated at run-time, one may
think of a dynamic constraint that is checked just before or just after executing or evaluating
the run-time entity.

One can think of dynamic constraints as assertions [Floyd 1967, Floyd 1971] that can be in-
serted into certain parts of a program automatically. For example, method postconditions
[Meyer 1992, Meyer 1997] are dynamic constraints that should be checked just after calculat-
ing the method’s return value and just before returning control to the methods’s caller. As

62



3.3 Implementing dynamic constraints

another example, one may wish to check just before executing certain field access expres-
sions that the current instance has the necessary run-time privileges to access that field.

Interestingly, only one additional primitive method is needed to support dynamic con-
straints. This method, which always returns true, may be called from within constraint
methods and is called atRuntime. It has three arguments: an ASG node object n and two
character strings pre and post. The method atRuntime(n, pre, post), when called
on an ASG node n representing an executable entity (i.e., a method, a statement, or an expres-
sion), adds, as a side-effect, the dynamic check contained in pre just before each execution
of n at run-time and the dynamic check contained in post just after each execution of n at
run-time. The Strings pre and post are parsed as boolean expressions and type-checked in
the context of n. They have access to all run-time entities accessible from that context, such
as local variables, parameters, the current instance (this), etc.

For example, consider the following usage constraint method, which is a made-up example
not taken from the Java standard classes. In Section 3.3.1, we will explain how method
preconditions, which are the majority of dynamic constraint that have been found, can be
implemented with CoffeeStrainer in a general way.

/**
*@constraints
* public boolean checkUseAtInstanceMethodCall(InstanceMethodCall c) {
* rationale = "caller needs valid certificate";
* return atRuntime(c, "Certificates.hasValidCertificate(this)", null);
* }
*/

public class SecureObject {
}

This constraint method is called by CoffeeStrainer for every instance method that is called
on an object of type SecureObject. There are two cases which can be distinguished:

� The dynamic constraint expression cannot be parsed: This might be the case if no
current instance (this) is accessible in the context of the ASG node c6. In this case,
atRuntime returns false and CoffeeStrainer statically reports a violation of the us-
age constraint method, notifying the user about the parsing problem.

� The dynamic constraint is enabled and parsing of the constraint expression succeeds:
In this case, atRuntime returns true, i.e., there is no constraint violation which is
reported statically. The checking of the constraint expression is inserted just before
each method call on a method of SecureObject.

The constraint expression is inserted as follows: Assume that a method of SecureObject
is called as in the following source code snippet:

6It is good style not to rely on this feature. The example constraint could be improved by adding a static check
that ensures that the context of c includes a current instance (this) as follows:
return c.containingMethod()!=null
&& !c.containingMethod.isStatic()
&& atRuntime(...);
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SecureObject secureObject = new SecureObject();
secureObject.someMethod();

Then, the resulting code after inserting the dynamic constraint expression looks like this (the
inserted code is set in bold face):

(1) SecureObject secureObject = new SecureObject();
(2) if(!Certificates.hasValidCertificate(this))
(3) throw new DynamicConstraintViolation(
(4) "SecureObject",
(5) "SecureObjectUser.java, line 3",
(6) "caller needs valid certificate");
(7) secureObject.someMethod();

The inserted code checks the constraint (line 2) and causes an exception to be thrown if the
constraint expression is false (line 3). The exception object is provided with information
about the type which defined the constraint (line 4), file name and line number information
(line 5) and the rationale for the constraint (line 6). Then, processing proceeds normally. If
there had been a third argument to the call of atRuntime, an additional constraint check
would have been inserted after the method call.

Note that the example constraint is interesting because unlike pre- and postconditions, it is
checked in the caller’s context instead of the callee’s.

Often, dynamic constraints are to be checked either before the execution of a method, state-
ment or expression, or after the execution, but not both before and after the execution
at the same time. Therefore, CoffeeStrainer provides two convenience method preRun-
time(n, pre) and postRuntime(n, post) which call atRuntime(n, pre, null)
and atRuntime(n, null, post), respectively.

The dynamic constraint that is checked after each evaluation of an expression can refer to
the evaluated expression’s value using the special variable $value. It is a parse error if a
dynamic constraint refers to $value if the node to which it applies does not represent an
expression. Consider the following constraint method, which is a refinement of the example
given above:

/**
*@constraints
* public boolean checkUseAtInstanceMethodCall(InstanceMethodCall c) {
* rationale = "caller needs valid certificate for callee";
* return postRuntime(c.getInstance(),
* "Certificates.hasValidCertificate(this, $value)");
* }
*/

public class SecureObject {
}

The example is modified in three aspects: First, it uses the convenience method postRun-
time rather than atRuntime. Second, the ASG node for which postRuntime inserts a
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runtime check is not the method call c itself, but it is the ASG node c.getInstance()
which represents the instance expression that yields the object on which the method call is
peformed. Thus, it is possible to refer to that expression’s value in the dynamic constraint as
$value. Note that the expression “c.getInstance()” is evaluated at constraint check-
ing time and not at run-time. Third, the constraint string now calls a hypothetical method
hasValidCertificate(caller, callee) that checks whether the object referred to by
caller has a valid certificate which allows it to call methods on the object referred to by
callee. The parameter callee in this case is bound to the value of the instance expres-
sion, which can be referred to as $value. Again, assume that a method on an object of class
SecureClass is called from the following code snippet:

SecureObject secureObject = new SecureObject();
secureObject.someMethod();

The resulting code after inserting the runtime check then looks as follows (inserted code set
in bold face):

(1) SecureObject secureObject = new SecureObject();
(2) SecureObject $value = secureObject;
(3) if(!Certificates.hasValidCertificate(this, $value))
(4) throw new DynamicConstraintViolation(
(5) "SecureObject",
(6) "SecureObjectUser.java, line 3",
(7) "caller needs valid certificate for callee");
(8) $value.someMethod();

The inserted code assigns the value of the instance expression to $value (line 2), checks the
constraint (line 3) and causes an exception to be thrown if the constraint expression is false
(line 4). The exception object is provided with information about the type which defined the
constraint (line 5), file name and line number information (line 6) and the rationale for the
constraint (line 7). Then, the method call is performed on $value (line 8), and process-
ing proceeds normally. To avoid name clashes, the actual implementation of CoffeeStrainer
changes the name of $value to a unique variable name for every insertion of constraint
checking code.

3.3.1 Implementing Eiffel-style preconditions using tags

In Java, classes, interfaces, methods, and fields can be annotated with Javadoc comments.
CoffeeStrainer parses these comments and not only generates constraint classes from @con-
straint tags, it also makes all tags in Javadoc comments accessible on the level of ASG
node objects. Tags are needed because at the level of methods and fields, there is no mech-
anism intrinsic to Java with which one can attach additional information like one can at-
tach empty marker interfaces to classes or interfaces. Whether a method, field, local vari-
able, or parameter has been tagged with a tag @tagname can be queried using the method
hasTag("tagname"), and the contents of a certain tag may be retrieved by calling get-
TagValue("tagname"), which returns a String.

65



3 CoffeeStrainer Explained

In this section, we use tags for annotating methods with preconditions which are interpreted
by CoffeeStrainer constraints. Preconditions (together with postconditions, class invariants,
loop variants and loop invariants) have been introduced with the programming language
Eiffel [Meyer 1992], which supports programming by contract: For each method, the program-
mer specifies a precondition and a postcondition, which are constraints on the value of pa-
rameters, on result values, and on the state of the object that is called. Each method call,
then, is subject to the following contract: the caller is required to only issue calls for which
the precondition is satisfied at method entry, upon which the callee in turn ensures that the
postcondition is satisfied at method exit. Preconditions and postconditions are dynamic con-
straints that have been proven very useful for producing correct and robust object-oriented
programs [Meyer, Nerson 1993]. They are essentially dynamic constraints, i.e. boolean ex-
pressions that are checked at run-time whenever a method is called or when it returns.

We do not address method postconditions. In Eiffel, method postconditions may re-
fer to values computed at method entry using the old construct. Supporting old re-
quires splitting the constraint expression into parts which are evaluated at method en-
try which then can be used to compute the overall result at method exit. A number
of techniques for adding method pre- and postconditions to Java have been proposed
[Kramer 1998][Duncan, Hoelzle 1998][Fischer, Meemken 1998]. Although all of these pro-
posals could be added to CoffeeStrainer from the perspective of the implementor of Cof-
feeStrainer, we believe that it is worth investigating whether there is a set of primitives
which would allow a constraint programmer not only to implement method postconditions,
but also to implement other kinds of advanced dynamic constraints. Thus, rather than in-
cluding ad-hoc primitives just for supporting the implementation of method postconditions,
we have chosen to leave this as an issue of further research.

In Chapter 2, method preconditions were classified as method usage constraints, because it
is the usage (call) of a method which possibly causes constraint violations. From an imple-
mentation point of view, it is easier to implement preconditions as dynamic method defi-
nition constraints because then the constraint expression may refer directly to the variables
accessible at method entry, i.e. to arguments and to the current object’s fields. Consider
the following example, where the Object parameter of method push is required not to be
null:

/**
*@constraints
* public void checkConcreteMethod(ConcreteMethod m) {
* return preRuntime(m.getBody(), "o!=null");
* }
*/

public void push(Object o) {
// code for push...

}

This example shows that method preconditions can be mapped to dynamic method defini-
tion constraints in a straightforward way, but that there is considerable syntactic overhead
involved. This overhead can be reduced significantly using tags. The idea is to introduce
a tag “@pre” which contains the precondition as a boolean expression. An empty marker
interface, ProgrammingByContract, shown in Figure 3.13, contains a method definition
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constraint which interprets “@pre” tags for all methods in subtypes of ProgrammingBy-
Contract. Note how the constraint implementation makes use of the non-strictness of the
disjunction operator “||” in Java: If there is no @pre tag, preRuntime will not be evaluated
and thus no dynamic check will be inserted.

For example, the precondition for push can now be written as follows:

/**@pre o!=null*/ public void push(Object o) {
// code for push...

}

/**
*@constraints
* public void checkConcreteMethod(ConcreteMethod m) {
* return !m.hasTag("pre")
* || preRuntime(m.getBody(),
* m.getTag("pre"));
* }
*/

public interface ProgrammingByContract {
}

Figure 3.13: Simple implementation of preconditions

The simple implementation of Figure 3.13 does not take inheritance into account. Since pre-
conditions may be weakened in subclasses, checking preconditions in the presence of inher-
itance requires checking the disjunction of all preconditions specified in the called method
and all the methods it overrides. Figure 3.14 shows an updated version of Programming-
ByContract.

The helper method getPrecondition(m) returns, as a string, the disjunction of all pre-
conditions specified in m and all methods that m overrides. Because the empty string is no
valid boolean expression, the run-time check is only inserted if getPrecondition returned
a non-empty string.

Note that programmers who want to use preconditions do not need to understand (or re-
produce) the implementation presented in this section. Rather, they may enable checking of
preconditions by marking their classes with the pre-defined empty marker interface Pro-
grammingByContract.
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/**
*@constraints
* private String getPrecondition(AMethod m) {
* StringBuffer result = new StringBuffer();
* if(m.getOverriddenMethod()!=null) {
* String inheritedPre = getPrecondition(m.getOverriddenMethod());
* if(!inheritedPre.equals(""))
* result.append("(" + inheritedPre + ")");
* }
* if(m.hasTag("pre") {
* if(!result.toString().equals(""))

result.append(" || ");
* result.append("("+m.getTag("pre")+")");
* return result.toString();
* }
* public void checkConcreteMethod(ConcreteMethod m) {
* String precondition = getPrecondition(m);
* return precondition.equals("")
* || preRuntime(m.getBody(), precondition);
* }
*/

public interface ProgrammingByContract {
}

Figure 3.14: Complete implementation of preconditions
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