
4 CoffeeStrainer Virtues and Limitations

In this chapter, we explain CoffeeStrainer’s virtues and limitations and the design decisions
that led to them.

To illustrate the points we want to make, we contrast CoffeeStrainer with a hypo-
thetical, simple-minded system for checking constraints on Java programs, called Sim-
ConC (Simple Constraint Checker). In SimConC, a constraint is written as a function
boolean check(ASG a) that returns true iff the argument ASG a represents a program
that satisfies the constraint. The SimConC ASG consists of class and interface declarations
and method signatures which can be retrieved easily from byte-code files (class files). Con-
straints are specified in constraint implementation files separate from the source code of
the program they apply to. The constraint language is a special-purpose side-effect free
language that includes features for pattern matching and tree traversal. Each constraint is
applied to the ASG representing the whole program; the required traversal of the ASG has
to be provided by the constraint programmer.

Obviously, CoffeeStrainer looks favorable when compared with this system. However,
the comparison allows to explain the design choices for CoffeeStrainer in a more concrete
way. For a real comparison of CoffeeStrainer with other systems for checking programmer-
defined constraints, see Chapter 7.

In the three sections of this chapter, we explain CoffeeStrainer’s virtues and limitation in the
three aspects of comprehensiveness (Section 4.1), pragmatism (Section 4.2), and sophistication
(Section 4.3).

4.1 Comprehensiveness

We believe that it is important to apply a system for checking constraints to real-world exam-
ples using a real-world language to test its suitability. For this, it is important that the system
is fully implemented. Moreover, the system needs to provide access to the complete abstract
semantics graph of the program that should be checked (Section 4.1.1), and it should be
based on parsing source code (Section 4.1.2). Limitations with regard to comprehensiveness
are discussed in Section 4.1.3.

4.1.1 Complete abstract semantics graph

In SimConC, the ASG does not contain method bodies, as the designer of SimConC believes
that method bodies are not important for constraints. After all, the constraints are meant

69

4 CoffeeStrainer Virtues and Limitations

for users of a class, or for implementors of subclasses — people who are concerned with the
interfaces supported by a class, not by their implementation. He assumes that they would
not read the method bodies.

In contrast, CoffeeStrainer contains a complete compiler front-end for Java. Method bod-
ies are represented in the ASG, all statements and expressions that make up a method’s
implementation are accessible. Furthermore, the ASG contains semantic information about
methods called by a method call expression, types referred to by a variable declaration, etc.
Finally, it is possible to traverse the tree part of the ASG both from containing objects to
contained objects and vice versa.

It is easy to see that many of the constraints that have been described in Chapter 2 which can
be implemented using CoffeeStrainer could not be implemented with SimConC. For exam-
ple, the method definition constraint in class java.awt.Container (see Section 2.2.2) that
required overriding methods to call the overridden method as the first statement obviously
needs to look at method bodies. Furthermore, for implementing the constraint, it is impor-
tant to check that the method called by the first statement is indeed the overridden method.
Finally, the method usage constraint in class java.awt.Component (see Section 2.2.4) that
restricted accessing a certain method to specific packages needs to traverse the tree part of
the ASG from contained objects to containing objects to find out the containing package of
certain method call expressions.

4.1.2 Based on source code

The designer of SimConC decided to avoid writing a parser for Java source code. Instead,
SimConC reads byte-code files (class files), which are easy to parse but still contain most of
the information of Java source code, as demonstrated by the existence of decompilers for
Java [Proebsting, Watterson 1997]. (Taking into account that SimConC only provides class
and method signatures in its ASG, parsing could even be avoided altogether by using Java’s
reflection facilities.)

In contrast, CoffeeStrainer parses Java source code. The tool is made for programmers, who
think about Java in terms of source code, not byte-code instructions. Therefore, the constraint
methods refer to syntactic elements of the Java language rather than to specific patterns of
byte codes. Moreover, parsing source code makes it possible to include original source code
snippets and line numbers in the warning messages that are provided when constraints are
violated. Thus, checking constraints at compile-time is appropriate.

4.1.3 Limitations

CoffeeStrainer has three limitations regarding comprehensiveness:

� Of class files (byte-code files), only the class declarations and method signatures are
parsed. Thus, the bodies of methods which only exist in byte-code form are not ac-
cessible for constraint checking. This limitation could be overcome in two ways: First,
one could make the method bodies accessible as is, i.e., as byte-code instructions. Al-
though this would be easy from an implementation point of view, it would mean that

70

4.2 Pragmatic choices

a constraint programmer has to understand the byte-code instruction language, and to
implement most of the constraints in a variant which is checked on source code and
another variant which is checked on byte-code. Therefore, we prefer the second way of
fully supporting byte-code files, namely, to use a decompiler for regenerating a source
code representation1. As has been shown [Proebsting, Watterson 1997], this is possible
for all byte-code files. Unfortunately, there is no freely available decompiler for Java.

� Sometimes, constraints need to be re-checked at load-time. For example, this is the case
if constraints specify security properties of the software and it cannot be guaranteed
at link-time that the software has indeed been checked by CoffeeStrainer. Currently,
CoffeeStrainer lacks a mechanism which could ensure this. Moreover, it is not just a
technical problem. For example, warning messages would have to be different because
they are addressed to the user of the software rather than to the programmer, because
in Java, class loading (the equivalent of what is normally linking) is performed just
before run-time by the user.

� The third limitation regards inner classes, which are probably not sufficiently sup-
ported. This is because inner classes are a relatively new feature of the language Java,
and examples for constraints regarding them are still lacking. For example, the con-
straints found in the Java standard classes do not address inner classes.

4.2 Pragmatic choices

When in doubt, we have taken design decisions that lead to a system that is more useable
for everyday programmers. Sections 4.2.1 to 4.2.7 discuss these design decisions, and Section
4.2.8 addresses the limitations of CoffeeStrainer resulting from them.

4.2.1 Integration with base-level code

In SimConC, constraints are defined in separate files, leading to a clear separation between
the constraints and the base-level program. The designer of SimConC believes that lead pro-
grammers are responsible for writing constraints, and that everyday programmers would
not touch the implementation of constraints — if a constraint is violated, it is the error mes-
sage rather than the constraint implementation which is interesting to a programmer who
caused the violation.

In contrast, CoffeeStrainer constraints are embedded within the source code of the program
elements they are associated with. The constraint code is extracted from Javadoc comments
instead of having separate files that specify constraints that should be applied to certain
parts of a program. Thus, the base program and the constraints that apply to it are closely

1Note that two different Java source code files could result in the same compiled byte codes - the compilation
process is not lossless. For example, the names of local variables might not be available at the byte code level.
Thus, checking constraint on source code which was re-generated by a decompiler is not perfect - under
certain circumstances, it might produce different results than would be obtained by checking the constraints
on the original source code.

71

4 CoffeeStrainer Virtues and Limitations

tied together. We consider the constraints to be part of the implementation — similar to static
types, which in principle could also be specified in separate files, but are so closely tied to
the program elements they apply to that it is best to see both at the same time. Integrating
constraints with the program elements with which they are associated allows a programmer
to find all constraints that apply to a class he writes by examining its supertypes and the
classes, interfaces, methods, and fields of other classes he is using. Most likely, he needs
to look at the documentation for these program elements anyway to understand the func-
tionality he is using or extending, so it is a natural place to let the constraints be part of the
documentation.

4.2.2 No change to base-level language

For SimConC, changing the base-level language is a non-issue since constraints are specified
in separate files.

For CoffeeStrainer, it is important to consider how to integrate constraints into base-level
code without having to change the base-level language. Fortunately, there is a simple so-
lution: The constraint code is embedded in Javadoc comments just before the associated
program elements, leaving syntax and semantics of Java programs unchanged. Thus, it is
still possible to use whatever compiler, integrated development environment, or other tools
the programmer prefers. Even integrated development evironments which are not file-based
but store source code in their own repository retain Javadoc comments, and therefore also
retain CoffeeStrainer constraints.

4.2.3 Java as the constraint language

Constraints essentially are expressions of type boolean operating on ASG nodes. The de-
signer of SimConC decided to define a special purpose constraint language. This language,
which includes constructs for pattern matching and traversing trees makes it easy to pro-
gram traversals of the ASG. Furthermore, it includes additional boolean operators like “for-
all”.

In contrast, CoffeeStrainer avoids the language design trap [Hoare 1987] as much as possi-
ble by using a framework-like structure. Constraints in CoffeeStrainer are Java expressions
of type boolean; syntax and semantics of constraint methods are just the same as in the
Java language. The only “language design” embodied in CoffeeStrainer is its framework
structure with the prescribed names for constraint methods and conventions like the vari-
able rationale. Although adopting a special-purpose language could allow constraints to
be specified in a more concise way, we do not consider inventing a new language a realistic
option because using CoffeeStrainer should require as little effort as possible from program-
mers who already know Java. The requirement to learn a new language would turn away
many potential users.

An important advantage of using Java as the constraint language as opposed to a special-
purpose language is that the strong static typing of Java applies to the constraint implemen-
tations. Defining and implementing a static type system for a special-purpose language is
complex and non-trivial, so that in practice special-purpose languages very often lack a static
type system.

72

4.2 Pragmatic choices

As shown in the next section, the use of the Visitor design pattern leads to an acceptable
structure for constraints using only features of Java that are currently available. Thus, in
principle, we consider the issue of language design orthogonal to the issue of providing a
convenient way of traversing and accessing the ASG of a program. Advanced language fea-
tures like pattern matching certainly make sense not only for a constraint language, but for
programming languages like Java in general and should therefore be an issue of program-
ming language research in general.

The constraint classes generated by CoffeeStrainer are not hidden from the constraint pro-
grammer. Instead, the generated classes form a structure parallel to the original classes,
making it possible to refer to meta-level classes by name and reusing constraint methods
of other generated constraint classes. Additionally, this allows to write constraint classes
that are not generated from source code, which is interesting for two reasons: First, con-
straints can be specified for classes whose source code is not available (these constraints are
then checked on the source code of classes that use or extend them), and second, generated
constraint classes can be distributed without giving away the source code of the class from
which they are generated.

4.2.4 Predefined tree traversal

In SimConC, it is the constraint programmer’s task to write code for traversing the ASG.

In CoffeeStrainer, the traversal of the ASG is implicit — constraint methods are visitor meth-
ods that are called during the traversal that is performed once by CoffeeStrainer. Usually,
constraint methods do not contain code for traversing the ASG; instead, they query certain
properties of a very local part of the ASG. This makes CoffeeStrainer a good fit for constraints
that can be expressed by a conjunction of locally-applicable constraint methods. In fact, most
programmer-defined constraints are of this type; Chapter 2 presents evidence for this.

4.2.5 Separate checking of compilation units

In SimConC, the ASG of a whole program needs to be provided for the methods that imple-
ment constraints, enabling constraints based on whole program analysis.

In contrast, CoffeeStrainer — like compilers for Java — operates on one compilation unit at a
time, loading other files only if needed for the analysis or checking of the current compilation
unit. This corresponds to the Java philosophy of separating the different compilation units
for as long as possible — until load-time. Thus, CoffeeStrainer does not support global anal-
yses very well. For non-iterative analyses, tags and attributes help structuring the traversal
so that each program element needs only traversed once. Iterative analyses that compute a
fix point, although possible due to CoffeeStrainer’s openness, are not a good match for Cof-
feeStrainer. However, constraints that would require whole-program analysis are not very
common.

4.2.6 Efficiency

Efficiency is a problem for SimConC, because the traversal needed for each constraint would
be hard-coded into the constraint implementation, leading, in the worst case, to one com-

73

4 CoffeeStrainer Virtues and Limitations

plete traversal of the ASG for each constraint. Usually, a single traversal would be suffi-
cient; this traversal could be shared by all constraint implementations would be sufficient. A
special-purpose language could help if it allowed factoring out the traversal code from each
constraint.

In CoffeeStrainer, constraint implementations usually do not contain traversal code. The
traversal is performed only once by CoffeeStrainer, and visitor methods are called during
that traversal. Experience shows that constraint implementations usually check local prop-
erties only, so that the constraint programmer does not have to write traversal code, avoiding
duplicate traversals.

Note that the single traversal of the ASGs of compilation units together with separate check-
ing naturally leads to a performance that is similar to a compiler’s — see Section 6.3 for a
performance comparison of CoffeeStrainer and Sun’s Java compiler JAVAC. We believe that
it is acceptable for software developers to use tools whose running time is comparable to
that of a compiler. Thus, we did not try to exploit obvious optimization opportunities. For
example, one such opportunity which has not been realized yet is the observation that not
all parts of a program’s ASG need to be visited to check the constraints.

4.2.7 Openness

The special-purpose constraint language of SimConC is a declarative language in which only
side-effect-free computations can be expressed.

Rather than restricting constraints to be side-effect-free boolean expressions, CoffeeStrainer
allows arbitrary Java code in constraint methods, although this makes it possible to write
constraints that make use of imperative code instead of (declaratively) returning a value.
This decision makes CoffeeStrainer an open, flexible system, enabling uses that its designer
did not foresee. However, in the normal case constraints should be specified as declaratively
as possible, making as little use of imperative features as possible.

4.2.8 Limitations

Besides the obvious limitations due to the use of Java, a non-declarative language, for speci-
fying constraints, the predefined ASG traversal of CoffeeStrainer together with the separate
checking of compilation units makes CoffeeStrainer not particularly well-suited to global
analyses. However, this is not a strict limitation — see Section 6.1.4 on the Visitor design
pattern and Section 6.1.5 on lazily-evaluated attributes for techniques which help imple-
menting global analyses in a modular and efficient way. It should also be noted that the
examples of constraints we have found in the Java standard classes do not require global
analyses.

4.3 Elegance

In this section, we describe CoffeeStrainer virtues which are not apparent at first sight. Sec-
tion 4.3.1 discusses in which ways CoffeeStrainer constraints can be considered modular and

74

4.3 Elegance

how this enables extension, refinement, and reuse of constraints. In Section 4.3.2, we explain
why special support for usage constraints is helpful, using a non-trivial example. Section
4.3.3 shows what can be accomplished by combining static and dynamic constraints, and
finally, Section 4.3.4 discusses limitations with regard to modularity, usage constraints, and
the combination of dynamic and static constraints.

4.3.1 Modularity

SimConC’s constraints are monolithic entities. From the perspective of a programmer whose
program is to be checked against a number of constraints, it is difficult to find those con-
straints that apply to his particular code, because each constraint is applied globally. From
the perspective of a constraint designer, there is no easy way to reuse existing constraints, or
to extend and refine constraints incrementally.

In contrast, CoffeeStrainer constraints are modular and have an internal structure that helps
extending and refining them in subtypes. The scope of a CoffeeStrainer constraint is deter-
mined by the program element associated with the constraint and the names of the imple-
mented check methods, and not by its implementation.

It is possible to reuse constraint methods for implementing new constraints. The easiest way
of reusing constraint code is by subtyping: Constraints that are associated with a type apply
to all subtypes of that type as well. The most flexibility can be gained by using empty inter-
faces that have associated constraints, in which case constraints are composable by multiply
extending from a number of interfaces.

In Java, it is a common technique to use empty interfaces for marking classes with cer-
tain properties2. This technique works for CoffeeStrainer constraints as well: Both exam-
ples of type constraints, AllFieldsArePrivate of Section 3.1.2, and IdentityCompar-
isonDisallowed of Section 4.3.2 were empty interfaces that can be used to mark classes
for which the constraints associated with the empty interface should be checked.

In this way, it is possible to form composed constraint sets by defining empty interfaces that
extend several other empty interfaces containing constraints. For example, assume the exis-
tence of the following empty interfaces containing constraints: AllFieldsArePrivate (all
declared fields should be declared private, see Section 3.1.2), ProvidesAccessorMethods
(for each field, there should be accessor methods without additional side-effects), and Cre-
ationWithFactoryMethods (objects should be created using factory methods, not using
constructors directly). Using these empty interfaces, it is now possible to define

public interface MyCodingConventions
extends AllFieldsArePrivate,

ProvidesAccessorMethods,
CreationWithFactoryMethods

{
}

2Examples of such empty interfaces in the Java standard classes include java.io.Serializable, used for
marking classes whose objects may be stored in and retrieved from streams, and java.lang.Cloneable,
used for marking classes whose objects may be cloned using the method java.lang.Object.clone().

75

4 CoffeeStrainer Virtues and Limitations

Using the empty interface MyCodingConventions, it is now possible to mark all classes
that should adhere to the coding conventions and have the conjunction of all constraints
from the three previously unrelated constraints checked on all such classes. It can easily
be seen how this enables the creation of reusable constraint libraries which can be used by
programmers who do not want to implement constraints themselves.

4.3.2 Usage constraints

Many examples of constraints that we have found are based on the usage of a type, a method,
or a field. In SimConC, these can be implemented only by traversing the full ASG for each
constraint to find all places in the program where the program element in question is used.

It is instructive to compare this with a situation where only definition constraint methods
were available in CoffeeStrainer. It would be awkward to express usage constraints then,
because the only scope that includes all possible uses of a type etc. would be the whole ASG.
Therefore, expressing usage constraints with definition constraint methods would require
all such constraints to be associated with java.lang.Object, the root of the inheritance
hierarchy.

While usages of methods or fields are only method calls or field accesses, the situation is
more complicated for classes and interfaces. There are two ways in which a class or interface
can be used in a Java program: First, the name of the class or interface can be referenced
directly in, e.g., declarations, object allocations, or cast expressions, etc. Second, the class or
interface can be the static type of a certain expression. In CoffeeStrainer, usage constraint
methods that correspond to the latter kind of using types are not covered by a single usage
constraint method checkUseAtExpression. Rather, each use of a type by means of the
static type of an expression can be constrained from the viewpoint of its context, as, e.g.,
in checkUseAtAssignmentLValue — check an expression of a certain type which is the
l-value of an assignment. Differentiating between the respective contexts of expressions is
important, as the alternative of having just checkUseAtExpressionwould mean that the
distinction between different contexts would have to be inside virtually all usage constraint
methods.

The advantage of having support for usage constraints, and of providing the context for
usages of types in expressions can best be demonstrated by means of a non-trivial example:

In object-oriented languages, objects have an identity which does not change over the ob-
ject’s lifetime, whereas the objects’ states may change. Accordingly, one can distinguish
between object identity (checking whether two object references refer to the same object using
“==”) and object equality (checking whether the objects referred to by o1 and o2 are equal us-
ing o1.equals(o2)), the latter of which is usually implemented differently for each class,
usually based on the current object’s state in comparison with the other object’s state.

Often, if object equality for objects of some class is defined (by implementing equals()),
object identity should not be used by clients of this class. However, inexperienced program-
mers sometimes are not aware of the difference between object identity and object equality,
and use object identity even for objects of classes that should only be compared using object
equality. One example of such a class is java.lang.String. It is possible that two object

76

4.3 Elegance

references refer to two different string objects that therefore are not identical; but these two
objects may be equal because they contain the same character sequence.

To implement this constraint, we can define an empty interface IdentityCompar-
isonDisallowedwhich captures the constraint that objects whose classes implement this
interface may not be compared using object identity. We do allow, however, comparing ob-
ject references against the object reference null.

/**
*@constraints
* protected boolean isNull(AExpression e) {
* if(e instanceof Literal) {
* Literal l = (Literal)e;
* if(l.constantValue() == null) return true;
* }
* return false;
* }
* public boolean checkUseAtBinaryOperation(
* BinaryOperation bo){
* rationale = "objects of this type may not be compared using == or !=";
* return isNull(bo.getLeftOperand())
* || isNull(bo.getRightOperand());
* }
*/

public interface IdentityComparisonDisallowed {
}

In this example, we are concerned with the correct use of a type. For this purpose, we
have implemented the usage constraint method checkUseAtBinaryOperation, which is
called whenever an object reference of type IdentityComparisonDisallowed is used
in the context of a comparison (i.e., in a BinaryOperation where the operator is “==”
or “!=”; other binary operations are not defined for object types). Note that this usage
constraint method is called whenever IdentityComparisonDisallowed or one of its
subtypes is used in a reference comparison, and thus may apply globally if every class that
is checked by CoffeeStrainer uses NoIdentity or one of its subtypes.

The implementation of checkUseAtBinaryOperation reflects the constraint that using
an object whose class implements IdentityComparisonDisallowed is allowed only if
the left operand or the right operand of the comparison is the base-level literal null. The
helper method isNull(e) (line 1) returns true if the expression e is the literal null.

Note that it would be not as easy to implement this constraint if the context of a certain usage
of a type would not be reflected, i.e., if, in our example, it was not possible to just implement
checkUseAtBinaryOperation but instead needed to implement checkUseAtExpres-
sion, requiring to examine the context of the expression and applying the check only if the
constraint was a BinaryOperation.

4.3.3 Combining static and dynamic constraints

This section describes how checking dynamic constraints enables the constraint programmer
to make a conservative constraint more accurate. This will be demonstrated by means of a

77

4 CoffeeStrainer Virtues and Limitations

non-trivial example in which we would like to make sure that values of a certain object type
may never be the object reference null, i.e., that the application using values of such a type
need not check for null.

Because object types in Java are reference types (as opposed to value types like int, float,
etc.), the value null is a valid value for all fields, variables, parameters, and method results
of reference types. Sometimes, the value null is not used for certain types (as, for example,
the “Null Object” design pattern [Woolf 1998] suggests), in which case it might be useful to
define a constraint makes no sense for a certain type, it is useful to . In an empty interface
NullValueInvalidwith which enumeration classes can be marked, we can define a con-
straint that specifies that only non-null values should be used for initializing or assigning to
fields and variables, for binding to parameters, and for returning from methods. Note that
the following are only static constraints:

/**
*@constraints
* protected boolean isNull(AExpression e) {
* return e==null;
* }
* protected boolean isNullLiteral(AExpression e) {
* return (e instanceof Literal)
* && ((Literal)e).constantValue()==null;
* }
* protected boolean isNonNull(AExpression e) {
* return !isNull(e) && !isNullLiteral(e);
* }
* public boolean checkUseAtField(Field f) {
* rationale = "field needs non-null initializer";
* return isNonNull(f.getInitializer());
* }
* public boolean checkUseAtLocalVariable(LocalVariable v){
* rationale = "variable needs non-null initializer";
* return isNonNull(v.getInitializer());
* }
* public boolean checkUseAtReturn(Return r) {
* rationale = "method may not return null";
* return isNonNull(r.getExpression());
* }
* public boolean checkUseAtAssignment(Assignment a) {
* rationale = "assignment may not assign null";
* return isNonNull(a.getOperand());
* }
* public boolean checkUseAtMethodCallParameter(
* int index, AMethodCall mc) {
* rationale = "method call argument may not be null";
* return isNonNull(mc.getArguments().get(index));
* }
* public boolean checkUseAtCast(Cast c) {
* rationale = "downcast is not allowed";
* return false;
* }
* public boolean checkUseAtConditionalIfTrue(

78

4.3 Elegance

* Conditional c) {
* rationale = "hiding null in conditional expression" +
* " is not allowed";
* return isNonNull(c.getIfTrue());
* }
* public boolean checkUseAtConditionalIfFalse(
* Conditional c) {
* rationale = "hiding null in conditional expression" +
* " is not allowed";
* return isNonNull(c.getIfFalse());
* }
*/

public interface NullValueInvalid {
}

Note that although the example might seem long, it is complete and deals with Java and not a
toy language. We have defined three helper methods: isNull returns true if the argument
expression does not exist (i.e., is null). The method isNullLiteral returns true if its
argument is a Literal object representing the constant null. The method isNonNull
returns true if its argument expression e exists, and is not the base-level literal null.

The remaining usage constraint methods check that such expressions are never used for
initializing fields or variables, for returning from a method, as the right hand side of an
assignment, or passed as argument of a method call, respectively. As a result, code that
deals with classes that implement NullValueInvalidnever has to check for null values.

Unfortunately, programming with NullValueInvalid is difficult, because downcasts are
not allowed (see checkUseAtCast). This makes it impossible to store and later retrieve
such objects from the standard Java collection classes, because retrieving objects from collec-
tions usually involves a downcast.

We will now change the implementation of checkUseAtCast to a dynamic constraint that
makes the check less conservative and more accurate, solving the problem that one would
like to allow storing NullValueInvalid objects in collections:

* public boolean checkUseAtCast(Cast c) {
* rationale = "downcast of null value is not allowed";
* return postRuntime(c.getExpression(), "$value!=null");
* }

After changing the usage constraint method checkUseAtCast, usages of casts for types de-
rived from NullValueInvalidwill no longer be statically flagged as constraint violations
by CoffeeStrainer. Rather, after each evaluation of an expression of type NullValueIn-
valid that is about to be casted, a run-time check will be inserted which makes sure that
the value for the cast is not the value null. Note that in Java, it is legal to downcast the
value null. Thus, the dynamic check really is needed to ensure that in the presence of casts,
variables of type NullValueInvalid can never contain the value null.

79

4 CoffeeStrainer Virtues and Limitations

4.3.4 Limitations

Again, we are aware of a number of limitations due to the design decisions on which Cof-
feeStrainer is based:

� Although empty marker interfaces are an elegant technique for reusing constraint im-
plementations, this works only on the level of classes and interfaces. CoffeeStrainer
does not support similar techniques on the level of methods and fields. However, it is
possible to factor out common code from method and field constraints as a program-
ming discipline due to CoffeeStrainer’s openness.

� The context information provided for usage constraints that deal with expressions
may not be sufficient for all purposes. The example constraint in Section 4.3.2,
associated with the empty marker interface IdentityComparisonDisallowed,
made good use of the one-level context information provided by CoffeeStrainer by
implementing the usage constraint method checkUseAtBinaryOperation. In
some cases, more than one level of context information might be useful. For
example, one might want to implement a hypothetical usage constraint method
“checkUseAtBinaryOperationInIf” to disallow object reference comparisons
only in if statements. However, we did not find enough examples of such constraints
which would justify the additional complexity of providing more than one level of
context information.

� The side-effects caused by using atRuntime for implementing dynamic con-
straints needs special attention: For example, it is important to understand that
given two strings x and y containing run-time checks, there is a difference
between the CoffeeStrainer constraint “atRuntime(x) || atRuntime(y)” and
“atRuntime(x + " || " + y)”. Because atRuntime always returns true, the
check contained in y will not be inserted in the first case because the boolean operator
“||” is non-strict in Java.

80

