
5 Extended Example: Confined Types

This chapter, which is based on [Bokowski, Vitek 1999], presents a non-trivial example of
using CoffeeStrainer in the context of building secure software. We present a set of static
constraints that strengthen encapsulation in object-oriented programs and facilitate the im-
plementation of secure systems. We introduce two new concepts: confined types to impose
static scoping on dynamic object references and anonymous methods which do not reveal the
identity of the current instance (this). Confined types protect objects from use by untrusted
code, while anonymous methods allow reuse of standard classes.

In the next section, we set the stage by introducing the problem domain of writing secure
software in general, and sketching the idea behind confined types. An overview of existing
language-based security mechanisms is given in Section 5.2. These mechanisms are not suf-
ficient. Section 5.3 details a well-known security defect in the Java Development Kit which
is our motivating example. Anonymous methods are introduced in Section 5.4. While inde-
pendent from confined types, they are essential to allow a traditional programming style and
in particular code reuse. Confined types are presented in Section 5.5. Section 5.6 introduces
a complete programming example with confined types. In Section 5.7, the implementation
of confined types in terms of constraint methods is presented. Section 5.8 compares confined
types to related approaches. Section 5.9 discusses design choices, implications on generic-
ity, and benefits that confined types offer for other areas than security. Finally, Section 5.10
summarizes the benefits of confined types.

5.1 Introduction

Writing secure code is hard. The steady stream of security defects reported in production
code attests to the difficulty of the task. Software systems, such as the Java virtual machine,
that permit untrusted code to interact with authorized code make it more difficult to ensure
security than more traditional systems because trust boundaries become thinner and fuzzier.

In object-oriented programming it is difficult to control the spread and sharing of object
references. This pervasive aliasing makes it nearly impossible to know accurately who owns
a given object, that is to say, which other objects have references to it [Landi 1992]. The lack
of ownership information [Potter et al. 1998] imposes a defensive programming style: since
every method may have been called by an adversary, appropriate security checks that verify
the caller’s authority must be performed at method entry.

This creates a tension between security and program efficiency. Placing dynamic security
checks in the prologue of each method is not realistic for performance reasons. Instead, se-
curity conscientious environments offer dynamic security checks that can be called explicitly

81

5 Extended Example: Confined Types

by the programmer [Gong 1997, Tardo, Valente 1996]. These checks are interspersed in the
program logic and thus nothing short of full-fledged program verification can ensure that
no check has been omitted somewhere with the potential of compromising the security of
the entire system.

Reusability, namely inheritance, creates its own set of problems for security. Similar to
the inheritance anomaly known from concurrent programming [Matsuoka, Yonezawa 1993,
Löhr 1992, Briot et al. 1998], inheriting from classes that do not implement the same security
policy may create security anomalies. Of course, from the point of view of the library de-
signer, it is not possible to implement classes that are secure in all contexts. Even if one could
do that, the overall performance of the library would be unacceptable in secure contexts.

To a large extent the problem for implementing security is one of defining interfaces be-
tween protection domains. In Java, one virtual machine may manage objects of many dif-
ferent protection domains — code loaded from different sources — but imposes no clear
boundaries between these domains. So, from the security engineer’s viewpoint, there is no
well-identified place where to put security checks.

One solution to this dilemma is to separate objects that are internal to a protection domain
from external objects. Internal objects implement the behavior of the application without
concern to security, while external objects are the interface between protection domains and
must implement the security policy. Such a separation of concerns simplifies the life of the
application programmer as the core of the system can be written without security checks.
Moreover, it improves security as a smaller set of classes, the interface objects, become the
focal point for security analysis.

Current object-oriented languages do not provide the means to enforce such a distinction
between objects. While access modifiers can restrict how certain object types are manipu-
lated [Gosling et al. 1996] — by curtailing visibility of methods and fields — and also re-
strict the scope of types, object-oriented languages do not provide strong encapsulation
[Noble et al. 1998]. They typically cannot control the scope of object references. Thus ref-
erences to sensitive parts of an application may leak to other protection domains.

We propose confined types as an aid for writing secure code. Confined types are meant to
be used for preventing internal objects from escaping their protection domain, which we
choose to be a single Java package. Packages are well suited for this task as they group re-
lated classes and they already provide basic access control features. Confinement is defined
as follows: a type is said to be confined in a package if and only if all references to instances
of that type originate from objects of the package. Confined types differ from existing access
control features in that they prevent references to instances from leaving a domain rather
than restricting access on a class level. In effect, confined types enforce static scoping of dy-
namic object references. Confined types are declared by inheriting from an empty marker
interface, and anonymous methods are marked using a special Javadoc comment. Our anno-
tations do not affect program semantics, thus a valid program with confinement annotations
behaves identically to the same program with no annotations. Based on these annotations,
we enforce some restrictions. While certain programming tasks may be clumsier, we argue
that these restrictions are mild and that reasoning about security is much simpler.

82

5.2 Security in programming languages

5.2 Security in programming languages

Security is increasingly becoming a software issue as the mechanisms used to implement se-
curity policies are cheaper and more flexible in software than in hardware [Chase et al. 1993,
Lucco et al. 1995, Grimm, Bershad 1997].

In a computer system, principals are the entities whose actions must be controlled. Principals
invoke operations on objects1. The context within which a principal executes is called a
protection domain. Access to resources within the same protection domain is not checked,
while cross-domain operations must be authorized by a security policy.

Implementing security policies at the programming language level is reasonable. Language
semantics can help to reason about program behavior and thus to prove security properties.
Type systems and static analysis algorithms can reduce the run-time cost of security. Finally,
protection domains can be made extremely lightweight and allow fine-grained interactions.

Usually, safety at the programming language level relies on access control. Access control
mechanisms entail security checks before any potentially dangerous operations to verify that
the current program has the authority to perform that action. Schemes such as capabilities and
access control lists have been used to implement access control. A good example of the use of
access control lists is the Unix file system.

Static access control: Object-oriented languages provide two basic means for controlling
access to objects. The first is access modifiers such as the Java private, public,
and protected modifiers that restrict the visibility of attributes and classes. The
second is type abstraction; subtyping can be used to limit the operations that can
be invoked on an object [Riecke, Stone 1998]. In Java, type abstraction is not useful
since using the instanceof operator and reflection make it quite easy to retrieve the
type of an object, which is not the case in some other systems [Leroy, Rouaix 1998,
Riecke, Stone 1998].

Dynamic access control: Java provides dynamic access control mechanisms based on call
stack inspection. That is, a dynamic check verifies that the current method was invoked
(transitively) by a method with appropriate privileges [Gong 1997]. Another dynamic
scheme is to use objects as capabilities [Levy 1984], this can be done as proposed in
[Gong 1998] by interposing a restricted proxy object between the user and the target
(see also [Hagimont et al. 1996, Vitek, Bryce 1999, Wallach et al. 1997]).

To sum up, the protection mechanisms that have been proposed so far are not perfect. On
the one hand, dynamic checks are error-prone as it is easy to forget one check and there is
no guarantee that all potentially dangerous operations that can be invoked by untrusted code
are protected by access checks. On the other hand, static protection mechanisms are weak
and were originally conceived for software engineering purposes rather than for security.
We now turn to an example to demonstrate the problem which we want to address.

1Here, the notion of object is more general than in object-oriented programming. In the security literature an
object may be a datum, a file, a hardware device, etc.

83

5 Extended Example: Confined Types

5.3 The class signing example

In Java, each class object (instance of class Class) stores a list of signers, which contains
references to objects of type java.security.Identity, representing the principals un-
der whose authority the class acts. This list is used by the security architecture to deter-
mine the access rights of the class at runtime. A serious security breach was found in the
JDK 1.1.1 implementation which allowed untrusted code to acquire extended access rights
[Secure Internet Programming Group 1997]. The breach was due to a reference to the inter-
nal list of signers leaking out of the implementation of the security package into an untrusted
applet.

The scenario is as follows. Assume a malicious applet loaded from the net. Without any
trusted signatures, its access rights are strongly limited. But the JDK does allow the applet
to get its own list of signers. Furthermore, it can find out about all the principals known
to the system by calling a method of java.security.IdentityScope. The method that
returned the list of signers of a class (implemented by a Java array object) accidentally re-
turned a reference to the system’s internal array. Since arrays are mutable data structures,
the applet can then proceed to update the array to include signatures of principals known
to the system and obtain access rights it should not have, thus opening the system to more
serious attacks.

We first present a program fragment which exhibits the security problem described above,
and then give a solution using confined types.

5.3.1 The security breach in detail

In Figure 5.1, the array signers is the system’s internal array that contains references to
instances of the class Identity (the principals). Modifying this array is definitely a dan-
gerous operation but there are no provisions in the implementation of the array class for
checking the authority of the caller in an update. The security breach is caused by the get-
Signers()method which returns a reference to the signers object.

package java.lang;

public class Class {
private Identity[] signers;
...
public Identity[] getSigners()
{
return signers;

}
}

Figure 5.1: Signatures without confined types

The attacker need only call getSigners() to be able to freely update the system’s signature
array. A simple fix is to return a shallow copy of the internal array. Figure 5.2 makes the copy

84

5.3 The class signing example

package java.lang;

public class Class {
private Identity[] signers;
...
public Identity[] getSigners()
{
Identity[] pub;
pub = new Identity[signers.length];
for(int i=0; i<signers.length; i++)

pub[i] = signers[i];
return pub;

}
}

Figure 5.2: An ad-hoc fix of the security problem

explicit. While this solves the particular problem, nothing guarantees that similar defects are
not present in other parts of the package.

What is interesting about this example is that none of the standard Java protection mecha-
nisms seem to help. Access modifiers and type abstraction are not relevant here. Restricting
the use of the Identity objects would do no good as the attack does not interact with
Identity objects, it only needs to acquire references to them and copy those references.
Information flow control [Volpano, Smith 1997] does not apply either, since we do want to
allow applets to read the signature information and to see identities known to the system.
Finally, inserting dynamic checks in the array update operation, which is the point where the
security policy is actually broken, is unrealistic as all array updates performed in the JVM
would incur the cost of a dynamic check.

We now give a solution that guarantees that none of the key data structures used in code
signing escape the scope of their defining package.

5.3.2 Class signing with confined types

To prevent software defects such as the one outlined above, we propose to ensure that ref-
erences to identity objects are confined to the java.security package. This is achieved
by renaming the Identity class as SecureIdentity and declaring it confined, using the
empty marker interface ConfinedType that contains appropriate static constraints. Intu-
itively, the meaning of confinement is that references to instances of a confined class, or to
instances of any of its subclasses, cannot be disclosed to, or accessed by, other packages.
That is to say, only the classes defined in package java.security may interact with Se-
cureIdentity objects. In order to preserve the functionality of the original interface, we
define a new class Identity which can be seen outside of the security package. This
class implements the public methods of SecureIdentity and has a private reference to a
SecureIdentity instance. Identity plays the role of a guard and encapsulates the real
identity object [Gong 1998, Hagimont et al. 1996]. The Identity class is purely for exter-
nal use, it is neither a subclass nor a superclass of SecureIdentity and thus cannot be

85

5 Extended Example: Confined Types

confused with a SecureIdentity object within the security package. Any attempt to
return a SecureIdentity object to an outside package will be caught at compile-time as a
violation of confinement. Figure 5.3 outlines our solution.

class SecureIdentity implements ConfinedType
{

...
// the original Identity implementation ...

}

public class Identity {

SecureIdentity target;

Identity(SecureIdentity t) {
target = t;

}

...
// public operations on identities;

}

public class Class {
private SecureIdentity[] signers;
...
public Identity[] getSigners() {
Identity[] pub;
pub = new Identity[signers.length];
for(int i=0; i<signers.length; i++)

pub[i] = new Identity(signers[i]);
return pub;

}
}

Figure 5.3: Signatures with confined types

The getSigners method is similar to Figure 5.1. The important difference is that the type
of the internal array signers is different from the type of the array that is being returned.
The confinement constraints extend to arrays, thus if a type A is confined, then the array
type A[] is confined as well. The getSigners method allocates an unconfined array to
which newly created objects of type Identity are copied. If getSigners tried to return
its internal array, a confinement breach error would be signaled.

This solution preserves the functionality of the original program, in fact outside code need
not be aware of the existence of confined types. But from a security engineering point of
view, attention is directed to the Identity class as it can be accessed by untrusted compo-
nents, and may thus (if deemed necessary) include dynamic security checks.

This example shows that confined types help in developing secure code as they draw a
strong demarcation line between internal representation objects and external interface ob-
jects. We now define confinement more precisely, starting with anonymous methods which

86

5.4 Anonymous methods

are essential for a usable notion of confinement since they allow confined types to inherit
methods defined in unconfined supertypes.

5.4 Anonymous methods

An anonymous method is a method that does not reveal the current instance’s identity to oth-
ers which means it does not introduce new aliases to the current instance, nor perform any
identity-dependent operations. Anonymous methods are needed for confined types; how-
ever, they have interesting properties in their own right and may be useful in other contexts
[Boyland 1999].

This section defines anonymous methods and presents static constraints that are required
to ensure that methods are anonymous. The actual constraint methods implementing these
constraints will be explained in Section 5.7.

In Java technical terms, an anonymous method is an instance method that may use this only
for accessing the fields of the current instance and for calling other anonymous methods
on itself. Thus, the anonymous method keeps its implicit this parameter secret by not
assigning this to a variable, nor providing this as a method argument, nor returning this
as the method’s return value. Additionally, is not allowed to perform reference comparisons
using this2.

class Example implements HasAnonymousMethods {

int count;
int /**@anon*/ ok(A arg) {

1 alsoOk(arg.foo());
2 return count ;

}
void /**@anon*/ alsoOk(int i) {

3 count = i + count ;
}
Example notOk(A arg) {

4 arg.bar(this);
5 arg.o = this;
6 notOk(arg);
7 if(this == arg) ...
8 return this;

}
}

Figure 5.4: Examples for anonymous methods

Figure 5.4 presents a valid class Example with two anonymous methods (ok, alsoOk) and
a non-anonymous method (notOk). Lines (1 - 3) show examples of anonymity-preserving
code, while (4 - 8) show examples that do not preserve anonymity. Line (4) reveals this to

2As a rule of thumb, the keyword this should not be used at all in anonymous methods, except to access fields
hidden by a parameter or local variable of the same name.

87

5 Extended Example: Confined Types

method bar. (5) stores this in a field of arg. Line (6) calls a non-anonymous method (don’t
mind the infinite recursion). Line (7) uses this for reference comparison. Finally, (8) returns
this.

Because the definition of anonymous methods is recursive, we require anonymous methods
to be declared as such explicitly, and check for each such declared method whether it con-
forms to the definition of anonymity. To declare a method anonymous, the tagging Javadoc
comment /**@anon*/ is used, and the containing class or interface must be a subtype of
HasAnonymousMethods. In addition to the constraint regarding the use of this, there is
another constraint regarding anonymity of overridden methods: anonymity is a property
that potential callers rely on, methods in subclasses that override an anonymous method
must therefore be anonymous as well.

We regard constructors as a special case of instance methods. Accordingly, constructors may
be declared anonymous as well, and the same constraints that apply to instance methods
apply to constructors. In Java, the first statement of each constructor is a call to another
constructor, which may be in the same class, or in the direct superclass of the current class.
Without an explicit call, the constructor of the superclass is called implicitly. An anonymous
constructor must thus ensure that explicit and implicit calls are made only to anonymous
constructors. The Object constructor, the only one that does not call another constructor,
is anonymous by definition, as are several other commonly used methods in Object: wait,
notify, notifyAll, and finalize. The method hashCode, which by default returns
the object’s address in the heap, reveals the object’s identity. It is possible, however, to im-
plement hashCodewithout using the object’s address, which would allow it to be declared
confined as well.

The following list summarizes the constraints that apply to anonymous methods and con-
structors:

A1 The reference this can only be used for accessing fields and calling anonymous meth-
ods of the current instance.

A2 Anonymity declarations must be preserved when overriding methods.

A3 The constructor called from an anonymous constructor must be anonymous as well.

Clearly some programming styles are restricted with anonymous methods. It is important to
assess how restrictive our proposal actually is and whether common programming idioms
would become too cumbersome to be practical or too inefficient. For instance, the visitor
pattern breaks anonymity to implement a double dispatching [Gamma et al. 1995]. We have
mentioned that the default implementation of hashCode must be changed3, which comes
at a price in runtime performance that remains to be evaluated. The use of the reference
equality operator is restricted as well, instead value comparison must be used. But changing
code from reference semantics to value semantics has deep implications [Lopez et al. 1994]
and is not as efficient4.

3An anonymous hashCode method is an advantage for persistence and for JVM implementers as objects can
be freely moved around the store and between main memory and secondary storage without affecting code
that relies on hash codes.

4The inefficiency could be somewhat mitigated by program analysis. The following code fragment does not
violate anonymity because reference equality implies value equality:
if (this == that) return true; else return equals(that);

88

5.5 Confined types

To obtain a better sense of the impact of anonymity declarations on programming style, we
analyzed java.util and java.awt, two representative packages of the Java development
kit (JDK 1.1) to find out how many existing methods meet the above mentioned criteria (A1,
A2, and A3). The data was collected by iterating a static analysis detecting anonymity vio-
lations. In each iteration, methods flagged by the analysis were declared as non-anon. The
process was repeated until the fixpoint was reached. The results, summarized in Figure 5.5,
are encouraging. Without changes to existing code, between 83% and 94% of the methods
are already anonymous. With some care a portion of those non-anon methods could be
re-written to become anonymous.

Package java.util java.awt

classes + interfaces 28 + 3 63 + 7
all methods 351 1246

anon methods 330 (94%) 1042 (83%)

Figure 5.5: Anonymous methods in existing code.

Anonymous methods are closely related to the concept of borrowed receiver presented by
Boyland in [Boyland 1999], where the goal is to to implement unique variables without de-
structive reads. His proposals also allows arguments to be borrowed. One important dif-
ference with anonymous methods is that Boyland allows the use of reference equality and
hashCode. The definition of anonymous methods could be adapted to allow this as well.
On the other hand, with the current definition, an object which has only anonymous meth-
ods can be moved in memory without affecting the semantics of the program. Section 5.5.3
explains our use of anonymous methods. We now turn to the definition of confined types.

5.5 Confined types

In this section, we describe the concept of confined types and the constraints that ensure
the required properties of confined types. The actual constraint methods that implement the
constraints listed in this section will be explained in Section 5.7.

A confined type is a type whose instances may not be referenced or accessed from outside
a certain protection domain. Confined types are introduced by annotating class or inter-
face definitions with the keyword confined. Instances of confined types are called confined
objects. In Java, packages are an obvious choice of protection domains as packages have al-
ready some protection mechanism built into the language in the form of access modifiers.
Instances of confined classes may thus only be referenced or accessed from within a sin-
gle package. Since confined objects cannot be referenced from outside their confined class’
package, we can unambiguously refer to a confined object’s confining package, meaning the
package in which the object’s class is defined and the package in which all the code that can
potentially manipulate the object is located. We can also refer to the package of a confined
type since all classes (or interfaces) that extend (implement) a confined class (interface) must
belong to the same package.

Figure 5.6 summarizes the relationships between an object obj in package outside and
the objects conf and unconf from package inside. A reference from obj to the confined

89

5 Extended Example: Confined Types

object is not allowed, but all other references, including from conf to objects outside of the
package are.

obj

conf : Conf inedType

unconf

outside

inside

Figure 5.6: References between objects in inside and outside packages.

It is important to understand that we are not trying to prevent information to leak through
covert channels [Lampson 1973], just stop references to confined objects from being trans-
ferred out of their confining package.

Overview of the problem

To be able to define constraints that ensure confinement, we must first analyze all possible
data flows with which object references may be transferred from one package to another.
Without loss of generality, we only consider data flows with which an object reference can
be transferred from a package inside to a package outside. The analysis has two parts:
In the first part, we assume that the control flow is in package inside, which actively hands
out the reference; in the second part, we assume the control flow to be in package outside,
which tries to retrieve a reference from package inside.

We start with reference transfers that originate from package inside. The possible targets
in package outside fall into three categories: fields, method and constructor parameters
(including the implicit parameter this), and parameters of catch clauses. Taking into ac-
count that object references can be stored in arrays, we distinguish six cases for transfers
from the inside:

r1 Package inside assigns a reference to one of its objects to a field in package outside

r2 Package inside calls a method or constructor defined in package outside passing a
reference to one of its objects as an argument,

r3 Package inside wraps an object reference into an array (or multiple nested arrays) and
uses points r1 or r2 for transferring the array reference,

r4 Calling a method or constructor defined in a class in package outside from a subclass
of that class in package inside (the implicit parameter this is transferred),

r5 Calling a method defined in a class in package outside from a superclass of that class
in package inside (the implicit parameter this is transferred),

90

5.5 Confined types

r6 Package inside throws an exception which is handled by a catch clause defined in
package outside (the exception object is transferred).

We now list reference transfers that originate in package outside. The possible sources in
package inside fall into three categories: fields, method return values, and references to
newly instantiated objects using the operator new. Again, taking into account that object ref-
erences can be stored in arrays, we distinguish four cases for reference transfers originating
in package outside:

r7 Package outside reads a field of package inside containing a reference to an instance
of a class defined in package inside,

r8 Package outside calls a method of package inside that returns an object reference to
an instance of a class defined in package inside,

r9 Package outsideuses points r7 or r8 to obtain a reference to an array (or multiple nested
arrays), into which package inside has wrapped an object reference,

r10 Package outside instantiates an object of a class defined in package inside using the
new operator.

These points are illustrated in Figures 5.7 (package inside) and 5.8 (package outside).
Each line labeled r1 to r10 demonstrates a reference transfer.

We now introduce the constraints that prevent reference transfers. The presentation pro-
ceeds as follows: Section 5.5.1 gives constraints on class and interface declarations. Section
5.5.2 presents constraints that prevent widening. Section 5.5.3 discusses constraints that deal
with hidden widening. Based on the constraints introduced so far, Section 5.5.4 explains
why reference transfers originating in the inside package cannot occur. Finally, Section 5.5.5
presents the remaining constraints that address reference transfers originating in outside
packages.

The constraints can be checked statically and are implemented and enforced using Cof-
feeStrainer. The actual constraint methods are described in Section 5.7. It is important to note
that a main design goal for the constraints was that only the classes of the confining package
should have to be checked. Other packages may remain unchecked, with the exception of
anonymous methods, because the standard Java access control checks are sufficient to pro-
tect packages with confined types from other packages. We assume for this that packages
that have been checked can either be sealed and protected from extension by untrusted code
(using digital signatures and a class loader checking the signatures), or that the constraints
on confining packages are re-checked at load-time.

5.5.1 Confinement in declarations

The first two constraints restrict the declaration of classes and interfaces. The goal is to
ensure that confined types are only visible in their package and to guarantee that subtyping
preserves confinement.

91

5 Extended Example: Confined Types

package inside;

public class C extends outside.B {

void putReferences() {
C c = new C();

r1 outside.B.c1 = c;
r2 outside.B.storeReference(c);
r3 outside.B.c3s = new C[] fcg;
r4 calledByConfined();
r5 implementedInSubclass();
r6 throw new E();

}
void implementedInSubclass() {
}

r7 static C f = new C();
r8 static void C m()

{
return new C();

}
r9 static C[] fs = new C[]{new C()};
r10 public C() { }
}

public class E extends RuntimeException {
}

Figure 5.7: Transferring references, package inside

92

5.5 Confined types

package outside;

public class B {

r1 static inside.C c1;
r2 static void storeReference(inside.C c2) {

// store c2
}

r3 static inside.C[] c3s;
r4 void calledByConfined() {

// store this
}
static void getReferences() {

r7 inside.C c7 = inside.C.f;
r8 inside.C c8 = inside.C.m();
r9 inside.C[] c9s = inside.C.fs;
r10 inside.C c10 = new inside.C();

D d = new D();
try {

d.putReferences();
r6 } catch (inside.E ex) {

// store ex
}

}
}

class D extends inside.C {

r5 void implementedInSubclass() {
// store this

}
}

Figure 5.8: Transferring references, package outside

93

5 Extended Example: Confined Types

C1 A confined class or interface must not be declared public or protected, and must not
belong to the unnamed global package.

C2 Subtypes of a confined type must be confined in the same package as their confined
supertype.

C1 ensures that confined types have private or package-local access. Confined types can-
not belong to the unnamed global package, as this package is "open" to extensions. C2 guar-
antees that if a confined class (or interface) is extended (implemented) then the extending
class (interface) is also confined and belongs to the same package. Thus, the confinement
property extends transitively to all subtypes of a confined type.

5.5.2 Preventing widening

To prevent references to confined objects from escaping their package, reference widening
from a confined type to an unconfined supertype cannot be allowed. Clearly, the root of the
type hierarchy, java.lang.Object, is not confined. Thus, if a confined reference can be
widened and stored in a variable of type Object, then the confined object may leak out of
its package.

In Java, reference widening may occur in either of:

� an assignment, if the declared type of the left hand side of the assignment is a super-
type of the assigned expression’s static type,

� a method call, if the declared type of a parameter is a supertype of the corresponding
argument expression’s static type,

� a return statement, if the declared result type of the method is a supertype of the
result expression’s static type,

� a cast expression, if the type casted to is a supertype of the casted expression’s static
type.

Widening must be prevented if it entails losing the confinement property of an object refer-
ence. The following constraint enforces confinement.

C3 Widening of references from a confined type to an unconfined type in assignments,
method call arguments, return statements, and explicit casts is forbidden.

As noted in Section 3, Java arrays are a way to leak references as well. Consequently, the
constraint takes arrays into account as well. For a confined type A, we regard the array type
A[] to be a confined type as well, called a confined array type, so that they are a special case
of C3.

In general, confined objects may not be stored in unconfined collections (of which arrays are
just one example). Although this restricts common programming styles, the signed classes
example showed that it is exactly this kind of potential leakage which is easy to overlook.
Thus, we think it is worth the effort to provide special-purpose confined collections (or ar-
rays) rather than trading security for the reuse of collection classes. Section 5.9.1 discusses
the impact of confined types on genericity.

94

5.5 Confined types

5.5.3 Preventing hidden widening

In addition to the obvious widening of the previous section, implicit or hidden widening
occurs whenever a method inherited from an unconfined superclass is invoked on a confined
object. Upon entry in the inherited method the implicit parameter this which refers to
current instance is widened from the confined type to the unconfined supertype.

Clearly, hidden widenings should not be ruled out completely, as this would make it impos-
sible to derive confined classes from non-trivial unconfined classes. But allowing confined
classes to extend unconfined classes without restrictions is dangerous. The reference to the
current instance may leak out if a method in the superclass transfers it to any other object.
However, anonymous methods of Section 5.4 are safe since they do not leak this. We can
now give the constraints that ensure the safety of hidden widenings. We say that meth-
ods defined by a class are the new methods introduced in that class, all other methods are
inherited. Note that interfaces do not play a role here since they do not introduce code.

C4 Methods invoked on a confined object must either be defined in a confined class or be
anonymous methods.

C5 Constructors called from the constructors of a confined class must either be defined by
a confined class or be anonymous constructors.

Constraint C4 ensures that methods called on a confined reference are either defined in a
confined class or anonymous. In the case of overridden methods, i.e., if a method defined
in a superclass is overridden in a confined subclass, it is safe to execute the method as it
preserves confinement. Similar to methods, constructors of unconfined superclasses that
are called by the constructors of a confined class need to be anonymous. This applies to
instance field initializers and instance initialization blocks as well, as these might also leak
out a reference to the object.

We should emphasize that these constraints need only be checked within the defining pack-
age of the confined type as it is not possible to invoke methods of confined types of another
package. Also, note that methods and constructors defined by confined classes need not be
anonymous.

The role of anonymous methods is to allow code reuse by easing the restrictions that would
otherwise be imposed on inheritance. Without them, it would be unsafe to invoke any in-
herited method of a confined object. Thus anonymous methods are used only in ordinary
classes.

5.5.4 Preventing transfer from the inside

In the list of possible reference transfers from the inside package to an outside package, items
r1 to r6 involve transfers that originate in the inside package.

Based on the constraints introduced so far, items r1 and r2 – assigning to a field in an outside
package, and passing parameters to a method in an outside package – are not allowed for
confined types. Since neither a confined type itself nor one of its subtypes is accessible from

95

5 Extended Example: Confined Types

the outside package (due to constraints C1 and C2), the type of the field or parameter can
only be an unconfined supertype of the confined type. But then, transferring the reference
would require reference widening which is ruled out by constraint C3.

Similarly, item r3 – wrapping references to confined objects in an array and transferring the
array reference by assigning it to a field or passing it as a parameter – is not possible, because
arrays of confined types are confined as well.

Reference transfers according to item r4 – calling a method in an unconfined supertype – are
not ruled out completely; rather, constraints C4 and C5 require the called methods (resp.
constructors) to be anonymous, as discussed in Section 4. Thus, it is possible to transfer
references, but only to code that neither discloses the reference to a non-anonymous method
nor depends on the reference.

Item r5 – transferring this to a subclass by calling a method which is implemented in the
subclass – cannot transfer a confined reference to an outside package, because constraints
C1 and C2 make sure that all subclasses of a confined type must reside in the same package
as the confined type.

With Java exceptions, there is another opportunity for transferring references: If an excep-
tion of a certain type is thrown, it may be caught with a catch clause whose formal param-
eter is of a supertype of the actual exception that was thrown. As we don’t see important
uses where exception objects should be confined to a package, we just disallow subtypes of
java.lang.Throwable to be confined types, thus disallowing reference transfers accord-
ing to item r6. We require that:

C6 Subtypes of java.lang.Throwablemay not be confined.

5.5.5 Preventing transfer from the outside

Reference transfers from package inside to package outside (r7 – r10) which involve
transfers that originate in package outside have not yet been addressed. The new con-
straints are:

C7 The declared type of public and protected fields may not be confined.

C8 The return type of public and protected methods may not be confined.

If a field’s declared type is a confined type, it should not be accessible from outside the
package, i.e., no field whose declared type is confined may be public or protected (C7),
preventing object reference transfer according to item r7. The reason for this constraint is
that although the confined type itself is not accessible from outside the package, a public or
protected field of that type may exist in package inside, which allows package-external
access to references stored in the field. Although the confined type itself is not accessible
in outside packages, such references can still be used through unconfined supertypes of the
confined type.

By similar reasoning, methods which return confined type should not be accessible from
outside the package, i.e., no method returning a confined type should be public or pro-
tected (C8). Thus, item r8 is prevented as well. Again, note that confined array types

96

5.6 Example: public-key cryptography

are a special case of the general constraint, so fields of confined array types and methods
returning confined arrays must have private or package-local access, preventing r9. Instan-
tiating a confined class from outside (item r10) cannot occur because confined classes are not
accessible from outside.

The constraints that have been specified in this and the previous section can be implemented
using static constraint methods. The actual implementation will be explained in Section 5.7.

5.6 Example: public-key cryptography

This section gives an example of how confined types can be used in practice to build secure
software. Using this example, it can be seen what implications follow from the constraints
specified in the previous two sections.

The domain chosen for the example, public-key cryptography, is one of the essential tools for
security in distributed systems. The basic idea of public-key cryptography is to employ an
asymmetric scheme where a pair of keys – one private, the other public – is used to encrypt
and decrypt information in a way that a message encrypted by the private key can only be
decrypted using the public key and vice versa. Two important uses are, first, encryption
of messages by a sender who uses the public key of the recipient, making sure that only
the recipient can decode the message using his private key, and second, signing a message
by a sender who uses his own private key, allowing recipients to verify the signature by
successful decryption using the sender’s public key. The security of this scheme hinges on
the property that the private key practically cannot be derived from the public key, and that
the private key is never disclosed.

Therefore, implementations of public key cryptography must be secure. In this section,
we present an example implementation of the RSA algorithm [Rivest et al. 1978] which is
reusable in different contexts without endangering security. Another goal is to ensure that
the random number objects used in the generation of public-private key pairs should not be
accessible outside of the implementation of the RSA algorithm because the generated keys
could be guessed from the random number generator object’s state. Finally, and most im-
portantly, we would like to offer the guarantee to clients of the RSA package that the objects
that represent their private keys remain confined to their application, and that under no
circumstance other untrusted code be granted access to a private key.

The solution we present in this section uses confined types to achieve the desired security
properties. It is noteworthy that the result is achieved with little effort on the part of the
client (the users) of the RSA library. We structure the code in two packages:

� Package rsa: a reusable public-key cryptographic library.

� Package secure: one particular user of the rsa package.

The classes that we want to protect are ConfinedRandom, the random numbers used to
generate keys, and PrivKey, the actual private keys. The first class belongs to the rsa
implementation and the second is owned by the client of the library, the secure package.
Thus ConfinedRandom is confined in package rsa, while PrivKey is confined in secure.

97

5 Extended Example: Confined Types

Public keys are implemented by the Key class and do not have to be confined as we assume
that clients may want to pass them around to other packages. Of course, there could be
another client package (even simultaneously on the same JVM) which confines its public
key class.

The package rsa, Figure 5.10, provides a class Key that encapsulates RSA encryp-
tion. Class KeyFactory generates a key pair (pub, priv) such that a message en-
crypted with the public key can be decrypted using the private key and vice versa, i.e.,
pub.crypt(priv.crypt (m)) returns m. The implementation of KeyFactory relies on
class ConfinedRandom for generating the keys.

The package secure, Figure 5.11, introduces classes PrivKeyFactory and PrivKey to,
respectively, generate and represent private keys. A class Main is given to demonstrate how
keys are used. There are several other classes in the implementation, which we will detail
in the following paragraphs. Figure 5.9 illustrates the relationships between the two pack-
ages. Full arrows indicate subtyping relations, and dashed arrows indicate implementation
dependencies. Confined types are marked using gray boxes.

rsa

secure

Key PubKeyWr i te r

KeyWr i te r

Pr ivKeyWr i terPr ivKey

Main

Conf inedRandom

KeyFactory

Pr ivKeyFactory

Figure 5.9: Inheritance and usage relationships between package rsa and package secure.

In class Key, the fields mod and exp are public. Although this allows to access sensitive in-
formation from the outside, an object reference is required to read the fields’ values. The idea
is to subclass Key in another package and to make this subclass confined. Accordingly, the
method crypt is declared anon as otherwise this method could not be called on a confined
object (C4).

Often confined types require only a trivial implementation, as can be seen in class Confine-
dRandom. This is an example of making an unconfined class confined in another package
by subclassing. The class ConfinedRandom is used in class KeyFactory for the field ran-
domGenerator. This field is declared private so that only the class KeyFactory has to
be checked by the programmer for potential leakage of a reference to the random generator
object or leakage of its internal state.

The class KeyFactorydoes not set the internal values of Key objects directly. Rather, it uses

98

5.6 Example: public-key cryptography

package rsa;

import java.math.BigDecimal;
import java.util.Random;

public class Key implements HasAnonymousMethods {
public BigDecimal mod;
public BigDecimal exp;

/**@anon*/ public String crypt(String msg) {
/* return (msgˆˆexp)%mod */

}
}

private class ConfinedRandom extends Random implements ConfinedType { }

public interface KeyWriter extends HasAnonymousMethods {
/**@anon*/ public void setValues(BigDecimal m, BigDecimal e);

}

public class KeyFactory implements HasAnonymousMethods {
private ConfinedRandom randomGenerator =
new ConfinedRandom(System.currentTimeMillis());

/**@anon*/ public void genKeyPair(KeyWriter pub, KeyWriter priv) {
// set internal values of both key objects,
// using random generator...

}
}

public class PubKeyWriter implements KeyWriter {
private Key key;

public PubKeyWriter(Key k) { key = k; }

/**@anon*/ public void setValues(BigDecimal m, BigDecimal e) {
key.mod = m;
key.exp = e;

}
}

Figure 5.10: Package containing RSA algorithm

99

5 Extended Example: Confined Types

package secure;

import rsa.*;
import java.math.BigDecimal;

class PrivKey extends Key implements ConfinedType { }

private class PrivKeyWriter implements KeyWriter {
private PrivKey key;
PrivKeyWriter(PrivKey k) { key = k; }
/**@anon*/ public void setValues(BigDecimal m, BigDecimal e) {
key.mod = m; key.exp = e;

}
}

class PrivKeyFactory extends KeyFactory implements ConfinedType { }

public class Main {
private static PrivKey privateKey = new PrivKey();
public static Key publicKey = new Key();

public static void main(String[] args) {
PrivKeyFactory keyFactory = new PrivKeyFactory();
keyFactory.genKeyPair(new PubKeyWriter(publicKey),

new PrivKeyWriter(privateKey));
// use keys for encryption
// and decryption...

}
}

Figure 5.11: Confining a type in a different package

100

5.7 Implementing confined types

the interface KeyWriter which normally would not appear in a design without confined
types. The reason for this is that both Key and KeyFactory will be subclassed and made
confined in another package. If KeyFactory referenced Key directly, the confined subclass
of Key could not be used with KeyFactory or a subclass of it because at some place a
reference widening to the original type Key would be needed, which is forbidden by C3.
Class PubKeyWriter trivially implements the interface KeyWriter.

Note also that PrivateKey does not define any new methods or fields. However, a new
implementation of KeyWriter is needed for accessing the internal values of the confined
type PrivKey. Due to constraint C3, which prevents widening from PrivKey to Key, the
previously defined class PubKeyWriter cannot be used. The similarity of the new imple-
mentation PrivKeyWriter to PubKeyWriter suggests that genericity would help here;
this is discussed in Section 5.9.1.

Similar to PrivKey, a confined subclass SecKeyFactory is derived from KeyFactory.
The interesting point here is that the superclass has access, and uses, a confined class (namely
ConfinedRandom), but our restrictions guarantee that these values can not be leaked to the
subclass.

In class Main, a private and a public key object is created. Note that private or package-
local access for field privateKey is required by C7, while publicKey can be public. In
main, then, a SecFactory object is created and genKeyPair is invoked on it, providing
two instances of PubKeyWriter and PrivKeyWriter, respectively.

5.7 Implementing confined types

Implementing the constraints defined for confined types (Section 5.5) and anonymous meth-
ods (5.4) is straightforward. In this section, we present and explain the constraint methods
that make up the complete implementation of confined types and anonymous methods. Two
empty marker interfaces containing constraint methods are needed: ConfinedType, which
marks confined types, and HasAnonymousMethods, the interface that marks classes con-
taining anonymous methods. We will start by explaining the constraint methods of Con-
finedType.

The constraint methods of ConfinedType, all of them interface constraints, are shown in
three figures. Figure 5.12 contains constraint methods implementing C1, C2, and C6, Fig-
ure 5.13 contains constraints methods which deal with widening (C3), and the remaining
constraint methods implementing C4, C5, C7, and C8 are shown in Figure 5.14.

For convenience, a helper method isConfined is defined that returns true if its argument
is a confined type. The definition constraint methods checkClass and checkInterface
which are called for all confined types delegate the required checks to a common helper
method checkUserType. This method implements two of the constraints for confined
types (C1 and C6). Each assignment of a string value to the variable rationale can be
read as a comment for the check that follows the assignment. The constraint C2, which re-
quires that subtypes of confined types be confined as well, is not reflected in a constraint
method because the type constraint methods in ConfinedType already apply to all sub-
types of confined types.

101

5 Extended Example: Confined Types

package confined;

/**
*@constraints
* public static boolean isConfined(AType t) {
* return ((AReferenceType)t).isSubtypeOf(this);
* }
* private boolean checkUserType(AUserType ut) {
* rationale = "subtypes of java.lang.Throwable may not be confined (C6)";
* if(ut.isSubtypeOf(barat.Barat.getThrowableInterface())) return false;
* rationale = "a confined type must not be declared public or protected (C1)";
* if(ut.isPublic() || ut.isProtected()) return false;
* rationale = "confined types cannot be in the unnamed global package (C1)";
* return ut.qualifiedName().indexOf(’.’)==-1;
* }
* public boolean checkClass(Class c) {
* return checkUserType(c);
* }
* public boolean checkInterface(Interface c) {
* return checkUserType(c);
* }
* // no need to check C2 because constraints already apply to
* // all subtypes of interface "ConfinedType"
*

Figure 5.12: Implementation of ConfinedType (Part I – implementing C1, C2, C6)

102

5.7 Implementing confined types

* public boolean checkUseAtAssignmentOperand(Assignment a) {
* rationale = "illegal assignment widening from confined to unconfined (C3)";
* return isConfined(a.getLvalue().type());
* }
* public boolean checkUseAtFieldInitializer(Field f) {
* rationale = "illegal initializer widening from confined to unconfined (C3)";
* return isConfined(f.getType());
* }
* public boolean checkUseAtLocalVariableInitializer(LocalVariable v)
* {
* rationale = "illegal initializer widening from confined to unconfined (C3)";
* return isConfined(v.getType());
* }
* public boolean checkUseAtConditionalIfTrue(Conditional c) {
* rationale = "illegal widening in conditional from confined to unconfined (C3)";
* return isConfined(c.type());
* }
* public boolean checkUseAtConditionalIfFalse(Conditional c) {
* rationale = "illegal widening in conditional from confined to unconfined (C3)";
* return isConfined(c.type());
* }
* public boolean checkUseAtMethodCallParameter(int i, AMethodCall mc) {
* rationale = "illegal argument widening from confined to unconfined (C3)";
* return isConfined(mc.getCalledMethod().getParameters()
* .get(index).getType());
* }
* public boolean checkUseAtCastOperand(Cast c) {
* rationale = "illegal cast from confined to unconfined type (C3)";
* return isConfined(c.type());
* }

Figure 5.13: Implementation of ConfinedType (Part II – implementing C3)

103

5 Extended Example: Confined Types

The usage constraint methods needed to implement C3 are shown in Figure 5.13. Essentially,
each of them checks, whenever a confined type is used in a Java construct that may involve
widening, that the potentially widened type is a confined type as well.

*
* public boolean checkUseAtInstanceMethodCall(InstanceMethodCall mc) {
* AMethod calledMethod = mc.getCalledMethod();
* rationale = "methods invoked on a confined object must either be "
* + "defined in a confined type or be anonymous methods (C4)";
* return isConfined(calledMethod.containingUserType())
* || HasAnonymousMethods.isAnonymous(calledMethod);
* }
* public boolean checkConstructor(Constructor c) {
* rationale = "constructors called from the constructors of a confined class"
* + "must either be anonymous or defined in a confined class (C5)";
* return isConfined(c.constructorCall().calledConstructor()
* .containingUserType())
* || HasAnonymousMethods.isAnonymous(c.constructorCall()
* .calledConstructor());
* }
* public boolean checkUseAtField(Field f) {
* rationale = "public and protected fields may not be of confined type (C7)";
* return !(f.isProtected() || f.isPublic());
* }
* public boolean checkUseAtResult(AMethod m) {
* rationale = "public and protected methods may not return confined type (C8)";
* return !(m.isProtected() || m.isPublic());
* }
*/

public interface ConfinedType { }

Figure 5.14: Implementation of ConfinedType (Part III - implementing C4, C5, C7, C8)

The first constraint method in Figure 5.14, the usage constraint method checkUseAtIn-
stanceMethodCall, makes sure that methods called on confined objects are either defined
in a confined type, or anonymous (C4). The method isAnonymous is defined as part of the
constraint code for the interface HasAnonymousMethodsand will be explained below. Sim-
ilarly, the definition constraint method checkConstructor checks that constructors called
from the constructors of confined types are either defined in confined superclasses, or anony-
mous (C5). Finally, the remaining two usage constraint methods check that methods with
confined return types and fields of confined types are neither declared public nor protected
(C7 and C8).

Figure 5.15 shows the constraint methods needed for anonymous methods. The implemen-
tation of the constraints for anonymous methods makes use of tags. The helper method
isAnonymous(m) returns true if the method m has been tagged with the Javadoc comment
/**@anon*/ and it is contained in a subtype of the empty interface HasAnonymousMeth-
ods. This latter check is important because there are constraints that need to be checked
for methods tagged with /**@anon*/ and the corresponding constraint methods must be
attached to a certain class or interface, in this case to the interface HasAnonymousMeth-

104

5.7 Implementing confined types

ods itself. Based on isAnonymous, it is straightforward to express the constraints A1–A3
for anonymous methods into the four interface definition constraint methods checkThis,
checkConcreteMethod, checkAbstractMethod, and checkConstructor.

package confined;
/**
*@constraints
* public static boolean isAnonymous(AMethod m) {
* return m.containingUserType().isSubtypeOf(thisInterface)
* && m.hasTag("anon");
* }
*
* public boolean checkThis(This t) {
* // non-anon methods need not be checked:
* if(!isAnonymous(t.containingMethod())) return true;
* rationale = "’this’ may be used only for field access or calls of anon methods (A1)";
* Node n = (Node)t.container();
* if((n instanceof InstanceMethodCall) && t.aspect().equals("instance")) {
* return isAnonymous(((InstanceMethodCall)n).getCalledMethod());
* } else {
* return n instanceof InstanceFieldAccess;
* }
* }
*
* private boolean checkMethod(AMethod m) {
* AMethod overridden = m.getOverriddenMethod();
* if(overridden==null) return true;
* rationale = "overriding must maintain anonymity (A2)";
* return !isAnonymous(overridden) || isAnonymous(m);
* }
* public boolean checkAbstractMethod(AbstractMethod m) {
* return checkMethod(m);
* }
* public boolean checkConcreteMethod(ConcreteMethod m) {
* return checkMethod(m);
* }
*
* public boolean checkConstructor(Constructor c) {
* rationale = "called constructor must be anonymous as well (A3)";
* Constructor calledCtor = c.getConstructorCall().getCalledConstructor();
* return calledCtor.containingClass()==Barat.getObjectClass()
* || isAnonymous(calledCtor);
* }
*/

public interface HasAnonymousMethods {
}

Figure 5.15: Implementation of constraints for anonymous methods

105

5 Extended Example: Confined Types

5.8 Related approaches

In this section, we discuss work related to the concept of confined types. While the examples
for using CoffeeStrainer in the previous chapters have been fairly simple, confined types are
an elaborate concept that in itself deserves to be put into the context of related research.

The original impetus for the work presented in this chapter comes from difficulties of imple-
menting secure and reliable systems in Java. Some of these difficulties can be attributed to
aliasing [Vitek et al. 1997, Vitek, Bryce 1999]. Confined types follow up on work on flexible
alias protection [Noble et al. 1998] which tries to control aliasing at the level of individual
objects. Related work is divided between literature on alias control and security; we review
both topics in the following two subsections.

5.8.1 Alias control

Reference semantics permeate object-oriented programming languages, it is thus not sur-
prising that the issue of controlling aliasing has been the focus of numerous papers in the
recent years.

In [Noble et al. 1998], flexible alias protection is proposed to control potential aliasing amongst
components of an aggregate object (or owner). Aliasing mode declarations specify constraints
on sharing of references. The mode rep protects representation objects from exposure. In
essence, rep objects belong to a single owner object and the model guarantees that all paths
that lead to a representation object go through that object’s owner. The mode arg marks
argument objects which do not belong to the current owner, these objects may be aliased
from the outside. Argument objects can have different roles, and the model guarantees that
an owner cannot introduce aliasing between roles. In [Clarke et al. 1998], Clarke, Potter,
and Noble formalize representation containment by means of ownership types. Both papers
have been presented in the context of a simple programming language without inheritance
or subtyping. There is no obvious way to maintain containment in the presence of either.
Confined types were designed to support both concepts.

Hogg’s Islands [Hogg 1991] and Almeida’s Balloons [Almeida 1997] have similar aims. An
Island or Balloon is an owner object that protects its internal representation from aliasing.
The main difference to [Noble et al. 1998] is that both proposals strive for full encapsulation,
that is, all objects reachable from an owner are protected from aliasing. This is equivalent
to declaring everything inside an Island or Balloon as rep. This is restrictive as it prevents
many common programming styles: it is not possible to mix protected and unprotected
objects as done with flexible alias protection and confined types. Hogg’s proposal extends
Smalltalk-80 with sharing annotations but it has neither been implemented nor formally
validated. Almeida did implement an abstract interpretation algorithm for deciding whether
a class meets his balloon invariants. But his approach is not modular, it requires whole-
program analysis. The constraints present in this paper can be checked modularly, one class
at a time.

The Sandwich types of Genius, Trapp, and Zimmermann [Genius et al. 1998] are a compro-
mise between flexible alias protection and balloons. The objects protected from aliasing are
computed by inspection of the type graph of the whole program. The criterion for protec-
tion is when a type is only reachable from another (owner) type. The prototypical example

106

5.9 Discussion

is the class LIST_CELL which only appears in the implementation of LIST. The drawback
of sandwich types is that they require global program analysis, and do not deal with inheri-
tance and subtyping.

Finally, Kent and Maung [Kent, Maung 1995] proposed an informal extension of the Eiffel
programming language with ownership annotations that are tracked and monitored at run-
time. In contrast, the constraints for confined types are checked at compile-time, which has
two main advantages: there is no run-time overhead, and security violations are detected
earlier.

5.8.2 Security

Confined types depart from the work on information flow control [Volpano, Smith 1997,
Heintze, Riecke 1998, Myers 1999]. We are not trying to protect the information content of
objects, as shown by the class signing example of Section 3, rather we control the flow of
language level objects, namely object references. Further, confined types are as much about
integrity as secrecy.

A paper of Leroy and Rouaix [Leroy, Rouaix 1998] has similar goals as the work presented
in this paper. The authors formalize the security properties of applets written in a strongly
typed programming language. Further, they propose a technique based on type abstraction
to guarantee that certain locations in the store will not be written by untrusted components.
Leroy and Rouaix did not deal with subtyping or inheritance as they chose a simple func-
tional language (an idealization of CAML). In contrast, our work extends theirs to object-
oriented languages. Moreover, confined types have been implemented for a real program-
ming language.

Another recurrent theme is the use of objects as capabilities or guards [Hagimont et al. 1996,
Hawblitzel et al. 1997, Gong 1998]. Different variants of this scheme boil down to the facade
pattern [Gamma et al. 1995] in which a facade object protects access to one or more targets.
The facade implements the security policy for access to the targets. The proposals typically
do not provide any strong security guarantees, as some reference to one of the targets may
still be leaked to an adversary. Confined types strengthen this approach. If target objects are
confined, then no reference can be revealed to outside code.

5.9 Discussion

In this section, we discuss relations between confined types and areas that are not related to
security. We see some implications of confined types on genericity (Section 5.9.1), and appli-
cations for confined types in the areas of software engineering (Section 5.9.2) and program
optimization (Section 5.9.3).

5.9.1 Confined types and genericity

As has already been noted in Sections 5.5.2 and 5.6, confined types could profit from param-
eterized types. Because parameterized types reduce the need for reference widening (e.g.,

107

5 Extended Example: Confined Types

when storing objects in collections), much more reuse would be possible if confined types
were combined with parameterized types. Interestingly, we found that confined types may
influence the ongoing discussion about how to incorporate genericity in Java because they
do not fit equally well with all proposals that have been put forward so far. There are two
observations:

The first observation concerns the translation scheme used to translate generic types to nor-
mal classes and interfaces so that they can be executed on unmodified Java virtual ma-
chines. With a homogeneous translation scheme [Odersky, Wadler 1997, Bracha et al. 1998],
different instantiations of a parameterized type are translated to a single class or inter-
face. Because parameterized types instantiated with a confined type then cannot be dis-
tinguished at runtime from those instantiated with unconfined types, references to con-
fined objects could leak out by confusing them with references to unconfined objects.
Thus, confined types fit better with proposals that have a heterogeneous translation scheme
[Myers et al. 1997, Bokowski, Dahm 1998], in which different instantiations of parameter-
ized types are translated to different classes or interfaces.

When looking at the example presented in Section 5.6, another observation for the dis-
cussion about genericity can be made: In the example, the two classes Key and KeyFac-
tory had to be decoupled by the intermediate interface KeyWriter. Although this inter-
face would not be needed in a conventional design, the decoupling was required for sub-
classing both Key and KeyFactory in package secure. This suggests that virtual types
[Thorup, Torgersen 1999] might be a better fit for confined types, as they allow subclassing
of a whole family of classes in such a way that use relationships between classes in the orig-
inal family become use relationships between classes in the derived family.

5.9.2 Strong encapsulation

Confined types may be useful from a software engineering point of view as well. Confined
types can be viewed as the representational components of a framework which cannot be
accessed from the outside, resulting in a strong encapsulation of these components. The
external interface of the framework would then consist of unconfined types that usually do
not contain functional code but make up a facade [Gamma et al. 1995] through which the
framework must be used. Based on this architecture, for example, a package designer may
decide to change the interface of a confined type, knowing that the effects of that change are
limited to the single package and will not break client code.

Note that unlike techniques like guards and capabilities (see Section 5.8.2), in which every
possible access path to otherwise unprotected objects needs to be controlled, confined types
take the opposite approach. First, any direct access to confined types is disallowed, and then
facades may be used to grant access for certain uses.

5.9.3 Optimization

Confined types can help program optimization. As the scope of a confined type is limited to
a package, aggressive optimizations can be applied within the package. For instance, when
performing static analysis of the package’s code, it is known that it contains all uses of that

108

5.10 Conclusion

package’s confined types. It may thus be possible to remove methods that are not called in
the package, as they are dead code, and even modify the structure of confined objects or of
the class hierarchy [Tip et al. 1998].

Restricting widening improves the precision of concrete type inference and thus helps gen-
erating better code for confined types.

Finally, Genius, Trapp, and Zimmermann have shown that aliasing restrictions can be used
to improve locality of memory access and have obtained significant speed up on small scale
programs [Genius et al. 1998].

5.10 Conclusion

Software security is a difficult problem. This chapter has introduced two new language
mechanisms, confined types and anonymous methods, that can be used for controlling the
dissemination of object references. This control eases the task of writing secure code, as the
interface between components is clearer.

Confinement and anonymity are enforced by a set of syntactic constraints which can be
verified statically. Thus, our proposal incurs no run-time overhead and all confinement vi-
olations are caught before running the program. The verification procedure is modular as
classes are analyzed individually. Furthermore, as all CoffeeStrainer constraints, our exten-
sion is transparent, i.e. annotated classes can also be compiled by standard Java compilers.

109

5 Extended Example: Confined Types

110

