
6 Implementation of CoffeeStrainer

This chapter contains information about the implementation of Coffeestrainer. Sec-
tion 6.1, which is derived from a technical report co-authored by André Spie-
gel [Bokowski, Spiegel 1998], presents the interface and implementation of BARAT, the Java
front-end on which CoffeeStrainer is based. The main part of the section describes the ASG
structure provided by BARAT. Section 6.2 explains how CoffeeStrainer is implemented on
top of BARAT and presents a prototypical graphical user interface (GUI) which has been built
for CoffeeStrainer. Finally, Section 6.3 discusses performance issues.

6.1 Barat – a front-end for Java

CoffeeStrainer has been implemented on top of BARAT, a compiler front-end for Java. BARAT

supports static analysis of Java programs. BARAT parses Java source code files and class files
and builds a complete abstract semantics graph (ASG) of the parsed Java program. The ASG
contains name analysis information and type analysis information. During name analysis,
sometimes called name resolution, each use of a name (e.g., a field name in a field access
expression, a class name in an extends clause, or a label name in a break statement) is
associated with the name’s declaration (e.g., the accessed field’s declaration, the declaration
of the superclass, or the labeled statement that the break statement refers to). During type
analysis, the static type of each expression is determined. For example, the static type of
a character literal is the primitive type char, the static type of a string concatenation ex-
pression is java.lang.String, and the static type of a field access is the accessed field’s
declared type. As usual, these static types are an approximation to the actual run-time type,
which might be a subtype of the static type.

The ASG built by BARAT is a passive data structure which cannot be changed. There are sim-
ilar systems which allow the ASG to be changed, and which therefore enable full compile-
time reflection, or even run-time reflection for Java [Welch, Stroud 1998, Tatsubori 1999].
BARAT parses source code (according to the syntax of Java 1.2 [Gosling et al. 1996]), or if
no source code is available, class files (byte-code). From class files, only class and interface
declarations with method signatures are accessible; the body of concrete methods is missing
for classes for which no source code is available. There is no explicit distinction between
the phases of loading, parsing, and analyzing Java source code. All actions that need to be
performed for building the ASG of a Java program are transparent to clients of BARAT and
are triggered on demand.

BARAT consists of the following packages:

111

6 Implementation of CoffeeStrainer

� The top-level package barat contains, among others, the class Barat which is the
main entry point for BARAT with methods like getClass or getInterface which
return an ASG node representing a parsed class or interface. (By invoking accessor
methods on such "initial" node objects, on-demand name analysis, type analysis or
loading of other source and class files is triggered, without the user noticing it.)

� The package barat.reflect contains the node types of the abstract semantics graph,
like Class, Interface, AbstractMethod, Field, Parameter, Block, Objec-
tAllocation, etc.

� The package barat.collections contains type-specific collection classes (lists and
iterators) for ASG node objects.

� The package barat.parser contains BARAT’s implementation classes.

The remainder of this section is organized as follows: In Section 6.1.1, the features of ASG
nodes in general will be described, and Section 6.1.2 presents the individual elements of
BARAT abstract semantics graphs. In Section 6.1.3, we will describe the main entry class of
BARAT which may be used for looking up class and package objects by name. Sections 6.1.4
and 6.1.5 present two techniques which help implementing analyses which do not fit well in
CoffeeStrainer’s model of mostly local constraints. Finally, Section 6.1.6 contains information
about the implementation of BARAT and lessons we have learned during its implementation.

6.1.1 ASG Nodes

The common supertype of all ASG node types is the interface Node (see Figure 6.1), which
is part of the top-level package barat. All other ASG node types are defined by interfaces
in package barat.reflect. They are classified into concrete interfaces, which have a con-
crete class as their implementation, and abstract interfaces, which are implemented as abstract
classes. For example, there is an abstract interface AMethod representing Java methods in
general, from which two concrete interfaces ConcreteMethod and AbstractMethod are
derived. Abstract interfaces, i.e. abstractions that help structuring the ASG node type hier-
archy, are marked with an uppercase prefix "A".

For accessor methods, we have used the following naming convention: Accessor meth-
ods for association, aggregation, or containment relationships between ASG node types
start with get, whereas accessor methods for attributes of other – mostly primitive – types
have no prefix. For example, a BinaryOperation object supports the method getLeft-
Operand for accessing the left operand, which is contained within the binary operation,
whereas the operation for retrieving the binary operation’s operator as a string is called op-
erator (without any prefix)1.

1This (somewhat arbitrary) naming convention has historical reasons and cannot be changed easily because
BARAT is already used by several other projects. We decided to refer to the actual implementation as opposed
to an idealized system which is only similar to the one which has been implemented.

112

6.1 Barat – a front-end for Java

public interface Node {

// container and containment aspect for this
public Object container();
public String aspect();

// helper methods for traversing the container chain
public Object containing(java.lang.Class ofClass);
public barat.reflect.Class containingClass();
public barat.reflect.AUserType containingUserType();
public barat.reflect.AMethod containingMethod();

// line number for a node:
public int line_number();

// access to tags (/**@special*/ comments):
public boolean hasTag(String t);
public Tag[] getTags();
public Tag getTag(String tagName);
public String getTagValue(String tagName);

// method that calls back a visitor object:
public void accept (Visitor v);

// defining attributes and retrieving attribute values:
public void addAttribute(Object key, AbstractAttribute a);
public Object attributeValue(Object key);

}

Figure 6.1: The interface Node

113

6 Implementation of CoffeeStrainer

Containment

The most important operations defined for all nodes are those involving the containment
relation, namely, the methods aspect, container, and the methods whose names start
with containing. These methods allow to find out, for a given ASG Node, what higher
level program element it is contained in. For example, return statements are contained in
methods, which are contained in classes. In BARAT, one can access the containing program
elements of a statement as follows:

barat.reflect.Return r = ...;
barat.reflect.AMethod m = r.containingMethod();
barat.reflect.Class c = m.containingClass();

The contains-relation is transitive, so that one could also write r.containingClass()
on the last line. The method container returns the immediate container of a Node, and
aspect describes what kind of constituent a Node is for that container — one can think of
aspect as the name of the instance variable of the parent container in which the Node is
stored. In our above example, method m would be immediately contained in class c, and
the containment aspect would be "concreteMethod" . As another example, consider an
assignment:

a = b

Both variable access expressions a and b are immediately contained within the assignment
expression; but the containment aspect for a is "lvalue", and the containment aspect for b
is "operand".

The methods containingClass, containingUserType, and containingMethod tra-
verse the containment hierarchy from inside to outside until an object of the requested type is
found — if none exists, null is returned. These methods are the most commonly needed op-
erations on the containment hierarchy, which is why they are provided explicitly. To search
for other kinds of containers, the operation containing(ofClass)may be used. For ex-
ample, to search for an enclosing if-statement, one can write:

barat.reflect.AStatement s = ...;
barat.reflect.If = (barat.reflect.If)s.containing(barat.reflect.If.class);

It turns out that in the presence of inner classes, these methods could sometimes produce
counter-intuitive results. For example, consider

Object method() {
if (x == 0) return new Object() {

public int hashCode() {
return 14;

}
};

return null;
}

114

6.1 Barat – a front-end for Java

Suppose you want to check whether the statement return 14; is nested within an if-
statement. Using containing(barat.reflect.If.class), if it was implemented as
described above, would yield the outer if-statement (in which the entire anonymous class
is contained), which is probably not the intended result. Therefore, the methods contain-
ingClass, containingUserType, containingMethod and containing stop when
they encounter a class or interface, except when the searched container is Compilatio-
nUnit or Package. In the example, the search for a containing if-statement thus stops at
the anonymous class, and returns null.

The compilation unit in which each node is contained can be accessed using

CompilationUnit cu = (CompilationUnit)
node.containing(CompilationUnit.class);

If the compilation unit is available as source code, cu.hasSource() returns true. By
calling line_number() on node, its line number in the compilation unit’s source file can
be obtained. The line number refers to the source file whose name is returned by calling
cu.filename(). If the line number is not available, line_number() returns -1.

Tags

There are four methods to access tags in Javadoc comments, specially formatted comments
in the source file with which types, methods, and fields may be marked, as in the following
example:

/**
*@log-uses
*@layer System
*/

class TagExample {

/**@pre o!=null*/
public void print(Object o) {
// ...

}
}

Here, the parser stores the tags "@log-uses" and "@layer" for class TagExample, and the
tag "@pre" for method doit. Whether a tag is defined for a program element can be queried
using hasTag, which expects as its argument a tag name (without the “@”). The value of
a tag, i.e. the string following the tag name up to the next tag definition or the end of the
comment, can be retrieved using getTagValue. The methods getTag and getTags return
an object (or an array of objects) of class Tag, which is just a pair of String values, the tag
name and the tag value. These can be retrieved using the methods getName and getValue
of class Tag.

The interpretation of tags is left open, except for the tags defined in the Java language speci-
fication [Gosling et al. 1996], namely, @see for referring to related program elements, @au-
thor and @version for annotating classes and interfaces, @param for describing method

115

6 Implementation of CoffeeStrainer

parameters, @return for describing the return value of a method, and @exception for
describing exceptions that might be thrown by a method.

Visitors and attributes

The remaining methods, accept, addAttribute, and attributeValue, support
traversals and analyses of abstract semantics graphs according to two complementing
paradigms: the method accept is the hook for traversals using the Visitor design pattern
[Gamma et al. 1995], while addAttribute and attributeValue support the definition
of on-demand traversals similar to attribute grammars [Knuth 1968, Hedin 1999]. Both ways
of traversing the ASG will be explained in detail in Sections 6.1.4 and 6.1.5.

6.1.2 Elements of the abstract semantics graph

In this section, we will go through the main categories of ASG node types in detail:
type nodes, nodes representing other declarative program elements, expression nodes,
and statement nodes. For each type, we list all supertypes using the notation “super-
type > type > subtype” instead of only naming the direct supertype in order to make
the context of each type more explicit.

Types

The abstract supertype for all ASG nodes representing Java types is the interface AType
(remember that the prefix A means that this interface is abstract - it is implemented as an
abstract class):

AType
boolean isAssignableTo(AType);
boolean isPassableTo(AType);
boolean isCastableTo(AType);

The methods isAssignableTo, isPassableTo and isCastableTo allow to check
whether an actual value of a given type may, according to the rules of the Java language,
be assigned, passed or casted to a formal of another type. The first two of these are almost
the same and allow only conversions from subtypes to supertypes and from primitive types
to wider primitive types (e.g., from float to double). The exception for assignments is
that an int value might be assigned to a formal of type byte, short, or char. Casts al-
low more conversions; they allow downcasts from a supertype to a subtype and narrowings
from a primitive type to a narrower primitive type.

AType has two subtypes: PrimitiveType and AReferenceType.

AType > PrimitiveType
boolean isBoolean();
boolean isByte();

116

6.1 Barat – a front-end for Java

boolean isChar();
boolean isDouble();
boolean isFloat();
boolean isInt();
boolean isLong();
boolean isShort();
String getName();
Array getCorrespondingArray();

There is a distinct PrimitiveType object for each primitive type in Java; one may check
what actual type a PrimitiveType object represents by calling isBoolean, isByte, etc.
There is also a method getName which returns the Java name of that type. Note that primi-
tive types – as all types in BARAT – are represented as singletons, i.e. there is always only a
single object that represents type int or double in the system, and one may compare these
types for equality using ==. Therefore, AType provides a method getCorrespondingAr-
ray which returns a unique array node with the current type as its element type.

AType > AReferenceType
boolean isSubtypeOf(AReferenceType possibleSupertype)
AMethod getInstanceMethod(String name, AType[] argTypes)
AMethod getStaticMethod (String name, AType[] argTypes)

Java reference types, modeled by AReferenceType, may be subtypes of other reference
types, and one can check this by calling isSubtypeOf. Following the rules of the Java lan-
guage, this method returns true if, transitively, the argument type is a superclass or super-
interface of this type. The methods getInstanceMethod and getStaticMethod allow
to find a method of a type given the method’s name and the types of its arguments.These
methods also search any supertypes (transitively) for an applicable method, and follow the
"most-specific" rule to match parameter types.

There are three subtypes of AReferenceType: Array, NullType, and AUserType, the
latter being the abstract supertype of classes and interfaces (these are sometimes also called
user-defined types in Java, hence their name). The method getElementType of Array
returns the ASG node representing the array’s element type.

AType > AReferenceType > Array
AType getElementType();

It has proven practical to keep arrays and user-defined types separate, i.e. Array and
AUserType are not in any inheritance relation. Note that one array is the subtype of an-
other array if and only if their element types are subtypes of another.

AType > AReferenceType > NullType

Class NullType does not provide any methods over those inherited from AReference-
Type. The NullType is the type of the literal null in Java — it is not, as one might think,
the "type" returned by a void method. (void methods have no return type at all in BARAT,
i.e. invoking getReturnType on them yields null.) The singleton NullType object is-
SubtypeOf (and therefore, isAssignableTo etc.) any other AReferenceType object.

117

6 Implementation of CoffeeStrainer

AType > AReferenceType > AUserType
String name();
String qualifiedName();
boolean isAbstract();
boolean isFinal();
boolean isPublic();
boolean isProtected();
boolean isPrivate();
FieldList getFields();
AbstractMethodList getAbstractMethods();
BlockList getStaticInitializers();
ClassList getNestedClasses();
InterfaceList getNestedInterfaces();

The class AUserType provides the following methods: name and qualifiedName return
the type’s simple or fully qualified name, respectively. The methods isAbstract, isFi-
nal, isPublic, isProtected, and isPrivate return true if the class or interface has
the corresponding modifier. The method getFields returns a list of fields contained in
the user-defined type2. Likewise, getAbstractMethods returns the list of abstract meth-
ods defined for the type (concrete methods can only occur in classes, not in interfaces),
getStaticInitializers returns a list of Block nodes, and getNestedClasses and
getNestedInterfaces return a list of the contained inner classes or interfaces, respec-
tively.

AType > AReferenceType > AUserType > Interface
InterfaceList getExtendedInterfaces();
boolean isSubinterfaceOf(Interface possibleSuperinterface);

Class Interface provides two additional methods specific to Java interfaces: getEx-
tendedInterfaces returns the list of superinterfaces, which may be the empty list, and
the helper method isSubinterfaceOf determines if two interfaces are in a subtype rela-
tionship.

AType > AReferenceType > AUserType > Class
InterfaceList getImplementedInterfaces();
Class getSuperclass()
ConcreteMethodList getConcreteMethods();
ConsructorList getConstructors();
BlockList getInstanceInitializers();
boolean isSubclassOf(Class);
boolean isImplementationOf(Interface);

The class Class (which is different from the standard Java class java.lang.Class) con-
tains methods for accessing the list of implemented interfaces, the direct superclass, the list
of concrete methods of a class, and a list of blocks which are instance initialization blocks.

2BARAT makes use of a primitive kind of parameterized collection classes. For each ASG node type, there is
a corresponding List class together with an Iterator class for iterating over the list, providing type-safe
access to collections.

118

6.1 Barat – a front-end for Java

There are also two helper methods, isSubclassOf, which transitively follows the extends-
relation between classes, and isImplementationOf, which transitively operates on the
graph of superinterfaces implemented by this class. Note that unlike these helper methods,
the methods for accessing the superclass, the implemented interfaces and (for class In-
terface) extended interfaces are not transitive, they only refer to direct superclasses and
superinterfaces.

Other declarative program elements

The class Package provides two methods, getClasses and getInterfaces, which re-
turn the list of all classes or interfaces of a package, respectively. It should be noted that
calling these methods necessarily causes all source-code and byte-code files in the package
directory to be loaded at once.

Package
ClassList getClasses();
InterfaceList getInterfaces();

The class Field supports the following methods: The field’s name can be retrieved using
name. The methods isPublic, isProtected, isPrivate, isStatic, isFinal, and
isTransient return true if the field has the corresponding modifier. Fields declared in
interfaces are public, static, and final even if these modifiers do not occur explicitly.
The method getType returns the field’s declared type. Finally, getInitializer returns
an initializing expression or null if the field has no initializer.

Field
String name();
boolean isPublic();
boolean isProtected();
boolean isPrivate();
boolean isStatic();
boolean isFinal();
boolean isTransient();
AType getType();
AExpression getInitializer();

Methods come in two flavors: AbstractMethod objects and ConcreteMethod objects,
their supertype being AMethod. The difference between these kinds of methods is that
ConcreteMethod objects have a body (a Block of statements) while AbstractMethod
objects do not. This difference is the reason why both are modeled separately in BARAT,
whereas, for example, we do not model static methods and instance methods separately
because both have the same kinds of constituents. The class AMethod provides a method
name for retrieving the method’s name. The method’s modifiers are available through is-
Public, isProtected, isPrivate, isStatic, isFinal, and isSynchronized. Thus,
to distinguish a static method from an instance method, one needs to check the method’s
static modifier. Furthermore, AMethod allows to retrieve the method’s result type with

119

6 Implementation of CoffeeStrainer

getResultType, which returns null if the method is declared void. The method get-
Parameters returns a list of ASG nodes representing parameters, and the helper method
getOverriddenMethod returns the method which is overridden by the current method
and null if there is no overridden method.

AMethod
String name();
boolean isPublic();
boolean isProtected();
boolean isPrivate();
boolean isStatic();
boolean isFinal();
boolean isSynchronized();
AType getResultType();
ParameterList getParameters();
AMethod getOverridenMethod();

The class AbstractMethod does not provide any additional methods. The method get-
Body of class ConcreteMethod returns the method body as a Block (containing a list of
statements).

AMethod > AbstractMethod

AMethod > ConcreteMethod
Block getBody();

Constructor objects are derived from AMethod, adding two methods: a method get-
Body (as in ConcreteMethod) and a method getConstructorCall which returns the
constructor invocation within this constructor. In Java, any constructor first makes a call
to some other constructor (by default, this is the call super()). This is modeled as an ob-
ject of type ConstructorCall, which BARAT initializes to (the equivalent of) super()
if no explicit call is found in the source code. There is one exception, the constructor of
java.lang.Object, for which getConstructorCall returns null.

AMethod > Constructor
Block getBody();
ConstructorCall getConstructorCall();

ConstructorCall
AExpressionList getArguments();
Constructor getCalledConstructor();

Note also that getCalledConstructor in ConstructorCall returns the real Con-
structor object being called (the arguments of the constructor call can be retrieved with
getArguments, which returns a list of AExpression objects). This is a first example of
how BARAT resolves inter-class references automatically so that simply by calling the acces-
sor function getCalledConstructor, you can retrieve the Constructor object that is
actually called.

120

6.1 Barat – a front-end for Java

By convention, each Java class always has at least a single default constructor that does
nothing but call super(). Such a constructor, if no other constructor is found in the source
code of a class, is always automatically generated by BARAT and inserted into the class.

Formal parameters of methods and constructors are represented by nodes of type Parame-
ter. Its superclass, AVariable, provides methods for accessing variable names and modi-
fiers, and the method getType which returns the variable’s declared type.

AVariable
String name();
boolean isFinal();
AType getType();

AVariable > Parameter

The second subclass of AVariable, called LocalVariable, is the type of ASG nodes rep-
resenting local variables. Local variables have an additional modifier which can be accessed
using isTransient, and they may have an initializing expression that is returned by ge-
tInitializer. If there is no initializer for a local variable, getInitializer returns
null. Local variables can only be declared within blocks, which will be explained in a fol-
lowing subsection on ASG nodes representing statements.

AVariable > LocalVariable
boolean isTransient();
AExpression getInitializer();

Expressions

All possible kinds of Java expressions are modeled by the abstract class AExpression. The
static type of any expression is returned by its method getType.

AExpression
AType getType();

The class Literal, which represents literal values, supports one additional method, con-
stantValue, which returns the literal’s value as a Java object. Literals can be String
objects, the value null, or values of primitive types, in which case the wrapper classes
java.lang.Float, java.lang.Boolean, etc. are used when returning the constant-
Value.

AExpression > Literal
Object constantValue();

The class This stands for the keyword this. Its method getThisClass returns the Class
in which the keyword this is used. In the presence of inner classes, the keyword thismay
be qualified by a name of one of the outer classes. The method getThisClass returns the

121

6 Implementation of CoffeeStrainer

Class which the qualified this expression refers to. The keyword super, which is very
similar to this and may be qualified as well, is modeled by a subclass Super of This. Note
that the method getThisClass in the case of super does return the same class as if the
keyword had been this — the reason for this is that for regenerating the source code in the
case of a qualified super, the name of the outer class is needed, which cannot be recovered
in general if one only knows its superclass.

AExpression > This
Class getThisClass();

This > Super

All binary operations except assignments are modeled by the class BinaryOperation.
This includes arithmetic expressions as well as comparison expressions. The method op-
erator returns the binary operation’s operator, and getLeftOperand and getRight-
Operand return the binary expression’s subexpressions.

AExpression > BinaryOperation
String operator;
AExpression getLeftOperand();
AExpression getRightOperand();

The ternary conditional operator ’?:’ is modeled by expressions of type Conditional. The
method getCondition returns the first subexpression, getIfTrue returns the expression
that will be evaluated if the first subexpression is true, and getIfFalse returns the ex-
pression that will be evaluated if the first subexpression is false.

AExpression > Conditional
AExpression getCondition();
AExpression getIfTrue();
AExpression getIfFalse();

There is an abstract class ALValue whose subclasses may be used as l-values in an assign-
ment. However, such expressions can of course occur in other contexts as well.

AExpression > ALValue

The class VariableAccess represents accesses to either local variables or parameters. The
accessed variable is returned by the method getVariable.

AExpression > ALValue > VariableAccess
AVariable getVariable();

Accesses to array elements are modeled as ArrayAccess objects. Mostly, these are based
on field or variable accesses. Consider

122

6.1 Barat – a front-end for Java

int[] a = new int[4];
a[3] = 17;

Here, a[3] is an ArrayAccess where the array is a VariableAccess referring to a, and
the index is a Literal object with constantValue equal to 3. Multi-dimensional arrays
are modeled likewise:

int[][] b = new int[3][4];
b[2][3] = 12;

Here the left hand side of the assignment is an ArrayAccess, where the index is the Literal
3 and the array is an ArrayAccess, in which the array is a VariableAccess and the
index is the Literal 2. The subexpression of an ArrayAccess that represents the accessed
array is returned by the method getArray, and the method getExpression returns the
subexpression representing the array index. The former subexpression has an array type,
and the latter subexpression is of type int.

AExpression > ALValue > ArrayAccess
AExpression getArray();
AExpression getExpression();

Accesses to object fields are represented by the abstract class AFieldAccess, which has a
method getFieldwhich returns the ASG node for the accessed field. The two concrete sub-
classes of AFieldAccess are StaticFieldAccess and InstanceFieldAccess. The
class InstanceFieldAccess has an additional method getInstance which returns the
subexpression which represents the object instance whose field is accessed.

To find out whether an access to a variable or field is a read or write access, you need to
find out whether it occurs on the left hand side of an assignment (in which case it is a write
access) or elsewhere (in which case it is a read). See the paragraph on containment at the
beginning of Section 6.1.1 for an example.

AExpression > ALValue > AFieldAccess
Field getField();

AExpression > ALValue > AFieldAccess > StaticFieldAccess

AExpression > ALValue > AFieldAccess > InstanceFieldAccess
AExpression getInstance();

There are a number of expressions in Java which operate on a single operand expression,
such as unary operations, instanceof expressions, casts, etc. These are modeled by the
abstract class AOperandExpression which allows to retrieve the operand subexpression
using the method getOperand.

AExpression > AOperandExpression
AExpression getOperand();

123

6 Implementation of CoffeeStrainer

The class UnaryOperation represents unary operations. The operator of an unary opera-
tion can be retrieved with the method getOperator. The distinction between prefix and
postfix unary expressions is made by means of the method isPostfix.

AExpression > AOperandExpression > UnaryOperation
String operator();
boolean isPostfix();

Cast expressions, modeled by class Cast, have an operand and a type to which the cast
expression casts. The ASG node for the cast type can be retrieved using the method get-
CastType.

AExpression > AOperandExpression > Cast
AType getCastType();

The instanceof expression in Java has an operand and tests whether the operand’s run-
time type is assignable to a certain reference type which can be retrieved by method ge-
tReferenceType. This is not an AUserType because one can also cast to array types in
Java.

AExpression > AOperandExpression > Instanceof
AReferenceType > getReferenceType()

Parenthesized expressions could be replaced by their operand without changing the seman-
tics of a parsed program. However, in BARAT, these expressions are kept in the ASG as
operand expressions of type ParenExpression because regenerating the source code is
easier if parenthesized expressions are not optimized away.

AExpression > AOperandExpression > ParenExpression

Assignments are modeled as operand expressions which also have an l-value. Thus, the
class Assignment has a method getLValuewhich returns the assignment’s l-value.

AExpression > AOperandExpression > Assignment
AExpression > getLValue();

There is a common abstract superclass AArgumentsExpression for expressions that con-
tain a list of argument subexpressions, which can be retrieved with the method getArgu-
ments.

AExpression > AArgumentsExpression
AExpressionList > getArguments();

124

6.1 Barat – a front-end for Java

Method calls are the first example of argument expressions. There are two kinds of method
calls in Java: calls to static methods and calls to instance methods. The difference between
them is that calls to instance methods contain an instance to which the call is actually di-
rected, while calls to static methods don’t have an instance — which is why the two are
modeled as separate types, unlike static methods and instance methods (see previous sec-
tion).

As we have already seen for constructors, BARAT automatically resolves method calls,
though only based on the static types of expressions (for InstanceMethodCall objects,
it is not generally possible to resolve polymorphism statically, and BARAT makes no attempt
to do so). The following examples may be helpful to understand Barat’s modeling of method
calls:

public class Target {
public static void methodA() { ... };
// ConcreteMethod, isStatic()==true

public void methodB() { ... };
// ConcreteMethod, isStatic()==false

public methodC() {
Target.methodA();

Target t = new Target();
t.methodB();

methodB();
}

}

The three method calls in methodC are resolved as follows: The call Target.methodA() is
a StaticMethodCallwhose called method is Target.methodA. The call t.methodB()
is an InstanceMethodCall whose instance is the expression t and whose called
method is Target.methodB. Finally, the call methodB() is an InstanceMethodCall
whose called method is the same as before, and whose instance is the (implicit) expres-
sion this, represented by an ASG node of type This. The method getThisClass, when
called on this ASG node, returns the ASG node of type Class representing the class Target.

AExpression > AArgumentsExpression > AMethodCall
AMethod getCalledMethod();

AExpression > AArgumentsExpression > AMethodCall > StaticMethodCall

AExpression > AArgumentsExpression > AMethodCall > InstanceMethodCall
AExpression getInstance();

There are three different kinds of object allocations (new expressions) in Java, and hence,
in BARAT: ObjectAllocation, ArrayAllocation, and AnonymousAllocation. An
ObjectAllocation is an expression such as

125

6 Implementation of CoffeeStrainer

new Integer (4)

The attribute calledConstructor in the ObjectAllocation object refers to the con-
structor used for the new object; to find out its class, you therefore write

barat.reflect.ObjectAllocation o = ...;
barat.reflect.Class c = o.getCalledConstructor().containingClass();

An ArrayAllocation is an expression of the form

new Integer[4][]

As the example suggests, such an allocation may have an arbitrary number of dimensions,
starting with a sequence of "definite dimensions", i.e. dimensions for which a length expres-
sion is provided ([4] in the example), followed by an arbitrary number of "free dimensions",
for which there is no length expression ([]). In BARAT, the definite dimensions are modeled
as a list of argument subexpressions, while the number of free dimensions can be retrieved
using the method freeDimensions. To get the total number of dimensions of a given array
allocation, you could thus write:

barat.reflect.ArrayAllocation a = ...;
int dimensions = a.getArguments().size() + a.freeDimensions();

The third kind of allocation in Java and BARAT is called AnonymousAllocation. Here, an
object of a given type is allocated, but the type of the object is anonymously extended by
code provided as part of the allocation expression. For example:

Object o = new Object() {
public int hashCode() {
return 14;

}
};

Here, an anonymous (implicitly declared) class inheriting from Object that overrides
hashCode is instantiated. In BARAT, this allocation is modeled as a node of type Anony-
mousAllocation, which is a subtype of ObjectAllocation. Thus, everything that has
been said about ObjectAllocation above also applies here, with the additional property
that the anonymous extension code is accessible through the accessor method getAnony-
mousClass of the AnonymousAllocation object.

AExpression > AArgumentsExpression > ObjectAllocation
Constructor > getCalledConstructor();

AExpression > AArgumentsExpression > ObjectAllocation > AnonymousAllocation
Class getAnonymousClass();

126

6.1 Barat – a front-end for Java

AExpression > AArgumentsExpression > ArrayAllocation
int freeDimensions();
ArrayInitializer getInitializer();

An ArrayAllocationmay have an array initializer that can be retrieved using getIni-
tializer. If there is no array initializer, this method returns null. An aray initializer
may also occur as the initializer of field or local variable declarations. It is modeled by the
class ArrayInitializer, where the arguments of the AArgumentsExpression super-
class are the array initializer’s element expressions. In the case of multidimensional arrays,
these in turn can be ArrayInitializer.

AExpression > AArgumentsExpression > ArrayInitializer

Statements

Java statements are modeled as subtypes of barat.reflect.AStatement, which does
not support any methods.

AStatement

The empty statement is modeled by class EmptyStatement. Empty state-
ments, written “;”, may occur, for example, just after the while statement in
“while(i++<=100) { out.println(i); };” because of the extra semicolon.

AStatement > EmptyStatement

A VariableDeclaration is a statement that declares a variable. However, the actual
variable is modeled as a LocalVariable contained within the VariableDeclaration,
returned by the method getVariable, making the distinction between the statement and
the declaration explicit. A VariableAccess (see "Expressions") always refers to that Lo-
calVariable, not to the VariableDeclaration.

Also note that short-hand variable declarations such as "int a, b;" are canonicalized by
BARAT; in this case the declaration would be modeled as two consecutive VariableDec-
laration statements.

AStatement > VariableDeclaration
LocalVariable getVariable();

Some statements may have a preceding label. These statements are modeled by the ab-
stract class ATargetStatement which has a method label that returns the statement’s
label. Subclasses of ATargetStatement are Block, If, Switch, Try, Synchronized,
and ALoopingStatement, the abstract superclass for loop statements.

AStatement > ATargetStatement
String label();

127

6 Implementation of CoffeeStrainer

A block essentially is a list of statements. Only statements within a block (and in the initializ-
ing statement of a For) may be VariableDeclaration statements. The list of statements
is returned by getStatements.

AStatement > ATargetStatement > Block
AStatementList getStatements();

Java, like C, allows expressions to be statements, modeled by class ExpressionStatement
with a method getExpression that returns the contained AExpression. For example,
there is no explicit assignment statement, because assignments are themselves expressions
and therefore may occur nested within a complex expression. Thus, a top-level assignment
is modeled as an ExpressionStatementwith the expression being an Assignment (see
Section "Expressions").

AStatement > ExpressionStatement
AExpression getExpression();

Return statements are modeled by class Return with a method getExpression that re-
turns the returned AExpression. If the return statement does not have an expression — in
the case of void methods — the method getExpression returns null.

AStatement > Return
AExpression getExpression();

Throw statements, modeled by class Throw with a method getExpression always
have a valid containing expression, the static type of which must be assignable to
java.lang.Throwable.

AStatement > Throw
AExpression getExpression();

The synchronized statement is modeled by class Synchronizedwith a method getEx-
pression that returns the expression which determines the object on which the synchro-
nization is performed. The block of statements that are executed under synchronization can
be retrieved by calling getBlock.

AStatement > ATargetStatement > Synchronized
AExpression getExpression();
Block getBlock();

The if statement is modeled by class If. The method getExpression returns the con-
dition expression, and the two methods getThenBranch and getElseBranch return the
statements that are to be executed if the condition expression evaluates to true or false,
respectively. Very often, the type of the statement that is returned will be Block. If an if
statement has no else branch, getElseBranch returns null.

128

6.1 Barat – a front-end for Java

AStatement > If
AExpression getExpression();
AStatement getThenBranch();
AStatement getElseBranch();

The switch statement selects one or more branches depending on the value of the contained
expression which is returned by getExpression. The list of branches (ASwitchBranch
will be explained below) is returned by method getBranches.

AStatement > Switch
AExpression getExpression();
ASwitchBranchList getBranches();

The do, while, and for statements are subtypes of the abstract supertype ALoop-
ingStatement. By calling getExpression, the continuation condition can be retrieved,
and the method getBody returns the statement (often a Block) that is the loop’s body. Ob-
jects of type For support two additional methods: getForInit, returning the initialization
part of the for loop, and getUpdateExpressions, returning the list comma-separated
expressions that are evaluated after each execution of the loop body.

AStatement > AStatementWithExpression > ALoopingStatement
AExpression getExpression();
Block getBody();

AStatement > AStatementWithExpression > ALoopingStatement > Do

AStatement > AStatementWithExpression > ALoopingStatement > While

AStatement > AStatementWithExpression > ALoopingStatement > For
AForInit getForInit();
AExpression getUpdateExpression();

Both continue and break are statements that may refer to a (sometimes labeled) target
statement. Because targets of continue statements may only be looping statements, the
method getTarget of Continue returns an object of type ALoopingStatement. The
method getTarget of class Break returns an object of type ATargetStatement.

AStatement > Continue
ALoopingStatement getTarget();

AStatement > Break
ATargetStatement getTarget();

The try statement consists of three parts: A Block of statements, returned by method
getBlock, which is mandatory, a list of catch clauses which may be empty, returned by
method getCatchClauses, and an optional finally clause, returned by method get-
FinallyClause. There must be at least one catch clause or a finally clause.

129

6 Implementation of CoffeeStrainer

AStatement > ATargetStatement > Try
Block getBlock();
CatchList getCatchClauses();
Finally getFinallyClause();

A UserTypeDeclaration is a declaration of an inner class or interface that occurs inside
a method. Java permits this wherever a statement is allowed. The method getUserType
returns the inner class or interface. An inner class or interface declaration that does not occur
inside a method is modeled as a nested class or nested interface of the enclosing AUserType,
see the section on "Other declarative program elements".

AStatement > UserTypeDeclaration
AUserType getUserType();

The abstract class AForInit represents the initialization part of a for loop. It has two
subclasses: The class ForInitDeclaration represents the case that the for loop contains
a list of variable declarations the scope of which is the for loop. This variable declaration
list can be retrieved by method getDeclarations. The second subclass of AForInit
is ForInitExpression, containing a comma-separated list of expressions that are to be
evaluated just before entering the for loop.

AForInit

AForInit > ForInitDeclaration
VariableDeclarationList getDeclarations();

AForInit ForInitExpression
AExpressionList getExpressions();

Branches of switch statements are modeled as objects of the abstract class ASwitch-
Branch, supporting a method getStatements which returns the list of statements of the
branch. In Java, execution of switch branches “falls through” if a switch branch does not
end with a break statement. ASwitchBranch class has two concrete subclasses: Case-
Branch and DefaultBranch. The class CaseBranch has one additional method, get-
ConstantExpression, which returns the constant expression the value of which is com-
pared to the switch expression at runtime.

ASwitchBranch
AStatementList getStatements();

ASwitchBranch > CaseBranch
AExpression getConstantExpression();

ASwitchBranch > DefaultBranch

130

6.1 Barat – a front-end for Java

A catch clause, which appears as part of the try statement, is modeled by class Catch
which has two methods: getParameter returns an object of type Parameter that rep-
resents the exception parameter of the catch clause, and getBlock returns the block of
statements of the catch clause.

Catch
Parameter getParameter();
Block getBlock();

Finally, the class Finally represents a finally clause of a try statement. Its method
getBlock returns the block of statements of the finally clause.

Finally
Block getBlock();

6.1.3 Retrieving ASG root objects

The single point of access to the entire BARAT system is the class barat.Barat, shown in
Figure 6.2. One can retrieve the root object of a BARAT ASG for a given Java class simply by
calling the method getClass:

barat.reflect.Class c = barat.Barat.getClass("java.lang.System");

The method getClass expects the fully qualified name of the class that should be parsed.
The entire parsing process and internal analysis is handled by BARAT transparently and on
demand. At any time, one may call methods of ASG node objects to access other parts of the
ASG, or other ASGs of other classes or interfaces that are referred to.

One may either use the method getClass or getInterface to retrieve ASG nodes for
a Java class or interface, respectively. If it is not clear whether a given name refers to a
class or an interface, the method getUserType may be used, which returns an object of
AUserType, the common abstract supertype of interfaces and classes. There are also some
convenience methods that allow to access frequently needed Java types: Object, String,
and the interfaces Throwable and Cloneable.

Just like the tools of the JDK, BARAT uses the CLASSPATH environment variable to search
for the classes or interfaces you request from it. If the search fails, BARAT throws a Runtime-
Exception. To use an alternate classpath for analysis, use the method setClassPath.

Usually, if the source code for a given class is found, BARAT constructs the abstract semantics
graph based on that source code. However, if only a byte code file exists, BARAT parses that,
although it doesn’t decompile any of the actual instructions in it. Only field and method
signatures will therefore be visible for analysis; method bodies of concrete methods are non-
existent (null).

The method registerAttributeAdderwill be explained in Section 6.1.5.

131

6 Implementation of CoffeeStrainer

package barat;

import barat.reflect.*;
import barat.reflect.Class; import barat.reflect.Package;

public class Barat {
// runtime flag:
public static boolean debugLoading = false;

// initialization:
public static void setClassPath(java.lang.String);

// accessing ASG roots:
public static AUserType getUserType(java.lang.String);
public static Class getClass(java.lang.String);
public static Interface getInterface(java.lang.String);

// accessing prominent types:
public static Class getObjectClass();
public static Class getStringClass();
public static Interface getThrowableInterface();
public static Interface getCloneableInterface();

// registering an attribute adder:
public static void registerAttributeAdder(Visitor adder);

// main:
public static void main(java.lang.String[]);

}

Figure 6.2: Interface of class barat.Barat

132

6.1 Barat – a front-end for Java

6.1.4 Visitors

Traversing a BARAT ASG can be quite complicated if you must write the entire code for such
a traversal yourself. BARAT therefore provides a framework based on the Visitor design
pattern [Gamma et al. 1995] that allows you to formulate common analysis algorithms in
a much easier way. This framework is independent of CoffeeStrainer’s built-in visitor-like
traversal and may be used for implementing global analyses that do not fit well in the single
traversal model of CoffeeStrainer.

The Visitor design pattern lets programmers traverse hierarchical structures of objects such
that the code which does the traversal is separated from the actions to be performed at each
visited object. The pattern is illustrated in Figure 6.3.

a : A

b : B

v : Visitor

a.accept(v);

v.visitA(a);

b.accept(v);

v.visitB(b);

1

2

3

4

Figure 6.3: Example for visitor pattern

Each of the objects to be visited (having types A or B in the example) implements a method
void accept (Visitor v). To visit an object, the visitor calls this method with itself as
the argument. The implementation of accept is simply to make a callback to the visitor,
calling a method specific for the type being visited. Thus, for class A, accept would be
implemented as follows:

class A {
...
void accept (Visitor v) {
v.visitA (this);

}
}

The consequence is that the code for visiting A objects and B objects is bundled in the class
Visitor, rather than scattered all over the program. We will also see how this pattern
allows us to abstract from traversal algorithms in a convenient way.

In BARAT, all possible elements of the abstract semantics graphs (i.e. all Node objects) im-
plement a method accept in the way described above. Consequently, there is an interface
barat.Visitorwhich declares all the appropriate visit methods:

133

6 Implementation of CoffeeStrainer

package barat;

public interface Visitor {
public void visitArrayAccess(ArrayAccess o);
public void visitArrayAllocation(ArrayAllocation o);
public void visitAssignment(Assignment o);
public void visitBinaryOperation(BinaryOperation o);
...

}

One implementation of Visitor provided by BARAT is the DescendingVisitor. In this
class, all visiting methods are implemented so that the constituents of a given class are tra-
versed in a depth-first order. For example, the implementation of visitClass in class
DescendingVisitor looks roughly like this:

public void visitClass (Class o) {
for(ConstructorIterator i = o.getConstructors().iterator();

i.hasNext();) {
i.next().accept(this);

}
for(FieldIterator i = o.getFields().iterator();

i.hasNext();) {
i.next().accept(this);

}
for(ConcreteMethodIterator i = o.getConcreteMethods().iterator();

i.hasNext();) {
i.next().accept(this);

}
}

The nice property of the DescendingVisitor is that it is guaranteed to traverse all syn-
tactic elements of a given class. The intended use is to have the constraint program-
mer subclass DescendingVisitor, overriding only those methods where something
meaningful should be done. For example, to find out how often a given class refers to
java.lang.System.out, write:

public class MyVisitor extends barat.DescendingVisitor {
public int result = 0;
public void visitStaticFieldAccess(StaticFieldAccess o) {
Field f = o.getField();
if(f.qualifiedName().equals("java.lang.System.out"))

result++;
super.visitStaticFieldAccess (o);

}
}

Note how the superclass method is called on the last line of visitStaticFieldAccess:
this is to make sure the traversal remains a complete one (the sub-nodes of the static field
access will be traversed by this call). As static field accesses cannot be nested in Java (i.e., the

134

6.1 Barat – a front-end for Java

ASG node type StaticFieldAccesshas no children), this would not strictly be necessary
here, but it is always a good idea to follow this convention. Note how this corresponds to a
pre-order traversal; a post-order traversal would call super.visitStaticFieldAccess
from the first statement as opposed to this example, where it is called from the last statement.

To use the above visitor on a class, write:

barat.reflect.Class c = barat.Barat.getClass("example.MyClass");
MyVisitor v = new MyVisitor();
c.accept (v);
System.out.println ("Result: " + v.result);

Another useful class implementing the visitor interface is DefaultVisitor, which imple-
ments all visit methods by an empty method. This is useful for cases in which only some of
the ASG node types need to be considered. Subclassing DefaultVisitor and overriding
only some methods yields a visitor class that acts like a switch statement that switches over
the visited object’s actual type, as in:

ALoopingStatement s = ...;
s.accept(new DefaultVisitor() {

public void visitDo(Do d) {
// code that deals with Do

}
public void visitFor(For f) {

// code that deals with For
}
public void visitWhile(While w) {

// code that deals with While
}

});

In this example, an anonymous inner class is used as a visitor. The visitor object does not
traverse the tree, it is used only once to distinguish between certain possible actual types
of a node object representing a looping statement. Using DefaultVisitor avoids using a
nested if and explicit downcasts, and is more efficient when the number of cases is large,
as can be seen when comparing it to the more conventional code below:

ALoopingStatement s = ...;
if(s instanceof Do) {

Do d = (Do)s;
// code that deals with Do

} else if(s instanceof For) {
For f = (For)s;
// code that deals with For

} else if(s instanceof While) {
While w = (While)s;
// code that deals with While

}

135

6 Implementation of CoffeeStrainer

A variant of DefaultVisitor, called AbstractingVisitor, provides even more flex-
ibility. AbstractingVisitor defines additional visit methods for abstract interfaces
(such as AMethodCall,AFieldAccess,AExpression). In AbstractingVisitor, each
visitmethod for a type T has a default implementation that calls the visit method(s) for
T’s supertype(s). (If there is more than one supertype, one or more of ANamed, ATyped, or
AHasModifierare involved, abstract interfaces of named objects, typed objects, and objects
with modifiers.) In the following example, abstract interface types may be separate cases as
well:

AExpression e = ...;
e.accept(new AbstractingVisitor() {

public void visitInstanceMethodCall(InstanceMethodCall o) {
System.out.print("instance ");
super.visitInstanceMethodCall(o);

}
public void visitStaticMethodCall(StaticMethodCall o) {

System.out.print("static ");
super.visitStaticMethodCall(o);

}
public void visitAMethodCall(Cast o) {

System.out.println("method call");
}
public void visitAExpression(AExpression o) {

System.out.println("not a call expression");
}

});

It is instructive to compare this example to a hypothetical switch statement that selects cases
based on actual node types. Calling visit methods of super is similar to a fall-through (omit-
ting break) in a case branch. However, note that both visitInstanceMethodCall and
visitStaticMethodCall "fall through" to a common case visitAMethodCall, which
would not be possible in a switch statement. Note also that unlike in switch statements
with fall-through, the order of "cases" does not matter in our example. Visit methods for
more abstract types are like default branches in switch statements, but with Abstract-
ingVisitor there may be several levels of defaults.

Another useful visitor provided by BARAT is the OutputVisitor. It is similar to the De-
scendingVisitor in that it traverses an entire user type in natural order, however it also
prints that type’s source code to an arbitrary file (effectively re-generating the source code).
By subclassing OutputVisitor and overriding certain methods of it, all sorts of source
code modifications and transformations could be implemented.

It must be noted, though, that the OutputVisitor re-generates a classes’ source code based
on the information in the BARAT ASG. This newly generated source code is guaranteed to
be semantically equivalent to the original source code except minor changes with respect to
formatting and some other issues, such as the order of declarations inside a class. Also, all
ordinary (i.e., non-formal) comments in the original code are lost.

136

6.1 Barat – a front-end for Java

6.1.5 Attributes

For some purposes that involve a non-standard traversal of the ASG, visitors may not be
adequate. By means of an example, we will explain user-defined node attributes, an alterna-
tive way of structuring traversals of the ASG which can be used if the built-in traversal of
CoffeeStrainer is not sufficient. Note that for all example constraints in this thesis, neither
visitors nor attributes were needed for their implementation. They are, however, used in the
implementation of BARAT itself.

In BARAT, the attribute concept allows to store user-defined data for each ASG node, and
to cache data that is calculated automatically on-demand. Rather than storing user-defined
data directly, so-called attribute objects that return user-defined data objects can be stored
for each node object. Attribute objects are instances of classes that implement the interface
AbstractAttribute:

public interface AbstractAttribute {
public Object objectValue();

}

Objects of type AbstractAttribute can be stored in a node object n by calling
n.addAttribute(k, a), where k is a key object and a is an attribute. By calling, on
the same node object, the method attributeValue(k), providing the key object k, the
result of calling objectValue on the stored attribute object will be returned.

Two implementations of AbstractAttributeare already provided: The first, called Con-
stantAttribute, can be used for storing a constant value as an attribute. For storing an
object o in node n under key k, use:

n.addAttribute(k, new ConstantAttribute(o));

The stored value o can be retrieved using:

n.attributeValue(k);

The second implementation, CachedAttribute, can be used for on-demand calcu-
lated attributes whose values will be cached once they have been calculated. Cached
attributes are usually added to newly created ASG nodes by registering a Vis-
itor (usually, a subclass of DefaultVisitor or AbstractingVisitor) using
Barat.registerAttributeAdder.

Assume that you want to compute, for a number of classes, the set of interfaces implemented
by each class. It is relatively straightforward to write a recursive algorithm for computing
the set of interfaces for one class. However, if the result of this calculation is to be used
several times, e.g. for computing the set of interfaces that are implemented by subclasses of
the current class, it is desirable to maintain a cache of already computed sets.

Using attributes, we can write a concise solution to this problem:

137

6 Implementation of CoffeeStrainer

final Object implementing = new Object(); // used as key
Barat.registerAttributeAdder(new DefaultVisitor() {

public void visitClass(final Class c) {
c.addAttribute(implementing, new CachedAttribute() {

protected Object calculate() {
Set result = new HashSet();
for(InterfaceIterator i=

c.getImplementedInterfaces(); i.hasNext();) {
result.addAll((Set)i.next()

.attributeValue(implementing));
}
if(c!=Barat.getObjectClass())
result.addAll((Set)c.getSuperclass()

.attributeValue(implementing));
return result;

}
});

}
public void visitInterface(final Interface c) {
c.addAttribute(implementing, new CachedAttribute() {

protected Object calculate() {
Set result = new HashSet();
for(InterfaceIterator i=

c.getExtendedInterfaces(); i.hasNext();) {
result.addAll((Set)i.next()

.attributeValue(implementing));
}
return result;

}
});

}
});

By registering an attribute adder visitor, visit methods will be called for every newly cre-
ated ASG node object. As these node objects are not yet properly inserted into the ASG,
the only method that can safely be called on them is addAttribute. The added attribute’s
code, however, can invoke arbitrary methods on the node, because it will be called only
if the attribute’s value is to be computed, which can only happen after proper initialization.
Note that by creating anonymous attribute classes that inherit from CachedAttribute, the
attribute’s code will be called only once per ASG node object.

To get the value of an attribute as defined in this example, you can use the following code:

AUserType ut = ...;
Set s = (Set)ut.attributeValue(implementing);

Note that calls of attributeValue(implementing) occur during calculation of the at-
tributes’ values due to their recursive definition. Of course, there should be no cycles in
recursive definitions of attribute calculations. From our experience, cycles normally do not
occur; however, if they do, the class CachedAttributewill detect this at runtime.

138

6.1 Barat – a front-end for Java

6.1.6 Implementation of Barat

BARAT’s public interface consists of the three packages barat, barat.reflect, and
barat.collections. The fourth package, barat.parser, contains the implementa-
tion that is normally hidden from users of BARAT: There is an explicit distinction between
interface and implementation parts of ASG node types. For each ASG node type, there
is a public interface in barat.reflect and a class implementing the interface in pack-
age barat.parser. The names of implementation classes are derived from the names
of the implemented interfaces and end with "Impl". Implementation details are not ex-
posed by BARAT’S public interface: The interfaces in barat.reflect contain read-only
accessor methods with parameter and return types that reference only other interfaces in
barat.reflect.

The package barat.parser also contains the actual parser, which is generated by JAVACC
(version 0.7.1) from a grammar file that consists of two parts: a BNF-based grammar that
defines a scanner for transforming the input file into a sequence of tokens, and a LL(k) gram-
mar augmented with tree-building Java code that specifies Java’s syntax based on the tokens.
Class files are parsed using JAVACLASS [Dahm 1999], a class library for reading, manipulat-
ing and writing Java byte code.

A first version of BARAT was designed using a conventional architecture for parsers: After
building an explicit abstract syntax tree, name and type analysis were performed by several
passes, each of which was defined as a traversal of the abstract syntax tree. Experiences with
this first version showed two main drawbacks of the chosen architecture:

It turned out that name and type analysis for Java is a non-trivial problem that cannot eas-
ily be divided into a small number of passes (we ended up with six passes: registering
names, resolving type names, establishing inheritance links, building lists of all methods
per class/interface, resolving remaining names, and type analysis). Moreover, each of the
required passes had to produce complex intermediate results which were then used as input
to other passes. This lead to a situation where debugging and testing became extremely dif-
ficult: Often, a bug in one of the passes manifested itself in a later pass, when the incorrect
intermediate result was being used.

During name and type analysis for Java source files, other source files need to be parsed
and partly analyzed on demand. Because it is difficult to predict in advance how much
analysis is needed for these other source files, we had to maintain information about each
source file’s parsing and analysis status, and we needed a complex recursive algorithm that
triggered parsing and different analysis passes based on that information. Because the algo-
rithm at certain points made conservative decisions about which files needed to be parsed,
the number of files that were parsed starting from a certain file was much greater than what
would have been needed for name and type analysis of the first file. Worse still, because
BARAT is used as the basis for other analyses, it is not possible to tell to what extent name
and type analysis is needed for other source files. Because client code should not be con-
cerned with problems of how much name and type analysis has been performed already
on needed source files, we decided to parse all source files that are transitively referenced
from the starting source file, and to perform full name and type analysis on all those files.
This lead to enormous startup times (five to ten minutes) for BARAT, before any user-defined
static analysis could proceed.

139

6 Implementation of CoffeeStrainer

Due to the performance and stability problems we encountered with the first version, we de-
cided to redesign BARAT, supporting on-demand parsing, on-demand name analysis, and
on-demand type analysis. Central to the new architecture of BARAT are lazily-evaluated
attributes of ASG node objects similar to attributes as known from attribute grammars
[Knuth 1968, Hedin 1999]. We also chose to use parameterized types - at least internally -
to gain more type safety when building the ASG, and to support type-safe attribute objects.

In attribute grammars, attributes can be defined for each terminal or nonterminal of a gram-
mar, where an attribute’s value may depend on values of other attributes of possibly differ-
ent terminals or nonterminals. As parsers are usually used for transforming a sentence of an
input grammar into a sentence of an output grammar, in the ideal case, a complete parser
could be generated from an attribute grammar, specifying the output of the parser as the
value of a distinguished top-level attribute. There are systems for automatically generating
efficient parsers based on attribute grammars, which usually avoid generating an explicit
abstract syntax tree with explicit attributes at the nodes of the tree - both attribute values
and parts of the abstract syntax tree are stored only if they will be needed to calculate the
value of other attributes.

Because BARAT should support arbitrary static analyses on Java source code, there is no
"main" or "top-level" attribute as in an attribute grammar. Thus, an explicit abstract syntax
tree is still built, and attributes are used as a means for structuring name and type analysis
in a declarative way.

Attributes have been described already in Section 6.1.5. In the implementation part of
BARAT, we use type-parameterized classes for attributes that allow to access an attribute’s
value without downcasts. Attributes in package barat.parser are instances of subclasses
of the generic abstract class Attribute<A>, defined in package barat.parser, with
two methods: the abstract method calculate must be implemented in subclasses of At-
tribute<A> to return a value of type A, and the public final method value should
be called to retrieve the value of an attribute. The implementation of value always per-
forms caching: it calls calculate only if there is no cached value yet. For compatibility
with the attribute classes defined in package barat, Attribute<A> implements the in-
terface barat.AbstractAttribute by returning the attribute’s value as a value of type
java.lang.Object. However, as this way of accessing the attribute’s value does not retain
type information and thus would require downcasts, the generic method value returning
an object of type A is used instead within package barat.parser.

There are two subclasses of Attribute<A>: Constant<A> is used for constant val-
ues that need to be wrapped in an attribute, and CastingAttribute<A,B> is neces-
sary for some cases where a typecast on the level of attributes is needed. CastingAt-
tribute<A,B> inherits from Attribute and expects in its constructor an attribute of
type Attribute<A>. Its calculate method calls value on this attribute, yielding a value of
type A, and then casts this value to type B and returns it.

As attribute objects should be invisible for users of BARAT, the accessor methods defined
in interfaces in package barat.reflect return values rather than attribute objects, i.e., on
calling an accessor method, the underlying attribute’s value method will be called. For
example, in interface StaticFieldAccess, an accessor method getField is defined that
returns the ASG node object for the accessed field’s declaration. Clearly, this involves name

140

6.1 Barat – a front-end for Java

analysis, and thus, the implementation of getField in class StaticFieldAccessImpl
returns the result of calling value on the corresponding attribute.

Rather than being separate objects, the desired lazy evaluation and caching of attribute val-
ues could be achieved by implementing the caching scheme in each of the accessor methods
explicitly. We chose the first alternative for two reasons: First, it factors out common code
that manages caching, so that for example provisions for detecting cyclic dependencies be-
tween attributes are handled in one class rather than in each accessor method. Second, it
allows to separate the calculation code for attributes from the classes that have attributes.
Similar to the visitor pattern, this allows attribute calculation code to be collected in separate
classes; for example, all attribute calculations that implement name analysis are contained
in a single class barat.parser.NameAnalysis.

We now sketch the steps that are performed when a user of BARAT calls the top-level method
barat.Barat.getClass(qn). The parameter qn, of type String, is the fully qualified
name of the class that will be returned by the call.

1. The implementation in class Barat delegates the call to class barat.parser.Name-
Analysis, converting the passed string to an object of class barat.QualifiedName,
which allows iterating over a qualified name’s components and easy access to the base
and qualifier parts of a qualified name.

2. The called method in class NameAnalysis iterates over the qualified name, maintain-
ing a prefix qualified name (initially empty), a current simple name, and the remaining
qualified name. For each prefix, it retrieves an object representing the package with the
prefix name. (In the case of the empty prefix, this is the global, unnamed package.) It
then tries to find a class or interface with the current simple name in that package. If it
finds such a class or interface, the remaining qualified name must denote an inner class
of this class or interface. Otherwise, if no class or interface is found, the next iteration
is performed by appending the current simple name to the prefix and fetching the first
simple name of the remaining qualified name.

3. To retrieve an object representing a package, an internally maintained table is searched.
If such an object does not yet exist, it is created and inserted into the internal table.
Thus, for each qualified name, there is a single unique package object that allows to
compare package objects by identity comparison (using ’==’ rather than equals)

4. To search for a class or interface within a package, the list of classes and interfaces of
that package that are already loaded is searched. If no class or interface is found, the
class path is searched for a Java source file or a Java class file in a directory with the
package’s name. Whether Java source files or class files are considered first can be de-
termined by the property barat.preferByteCode, which is false by default, but
may be set to true by either setting barat.Barat.preferByteCode to true or by
the command line switch "-Dbarat.preferByteCode". There is a second property
called barat.debugLoadingwhich, when set to true (the default is false), causes
messages to be printed to System.outwhenever a Java source file or class file is read.

5. Parsing of Java source files is performed by barat.parser.BaratParser, a parser
class generated by JAVACC [Metamata 1999a] (version 0.7.1), based on the Java 1.1

141

6 Implementation of CoffeeStrainer

grammar distributed with JAVACC with slight modifications for 1.23. The grammar
input file contains code for creating the abstract syntax tree for a given compilation
unit. Since the abstract syntax tree generated by the parser should be fully typed
and be based on names that correspond to the Java language specification rather
than generated names like f0, f1, ... , we did not use parse tree generator tools
[Metamata 1999b, Wang et al. 1999].

6. Parsing of class files is performed using JAVACLASS [Dahm 1999], a package for read-
ing and writing byte-code files.

For implementing BARAT, we have used type-parameterized versions of the JDK 1.2 collec-
tion classes. In BARAT, these come in two flavors: In package barat.collections, we
have placed source-level instantiations of such classes, in order to keep things simple for
normal users of BARAT. The package barat.parser, which contains the implementation
part of BARAT, makes use of a version of the collection classes modified to work with GJ
[Bracha et al. 1998], an extension of Java that supports parameterized types.

Most of the classes in barat.reflect and barat.parser have been generated from a
UML class diagram using a custom-built code generator.

6.2 From Barat to CoffeeStrainer

CoffeeStrainer is just a small layer on top of BARAT. Before building the ASG with BARAT,
CoffeeStrainer parses Javadoc comments in a separate step and generates constraint classes.
These classes are then loaded dynamically using Java reflection, and a CoffeeStrainer visitor
traverses the ASG, calling constraint methods from constraint classes as appropriate. For
every node in the ASG, first, applicable definition constraints associated with the containing
method are called. Next, definition constraints are called which are associated with overrid-
den methods. After that, definition constraints associated with the containing class and with
its supertypes are called. Calling of usage constraint methods proceeds in a similar way.

Before every call of a constraint method, the variable rationale is initialized to the empty
string. If a constraint method returns false, a message is printed which lists the ASG
node causing the constraint violation, its line number and file name, together with the string
which may have been assigned to rationale.

In addition to the command-line interface of CoffeeStrainer which has been described so
far, we have developed a prototype of a graphical user interface for CoffeeStrainer which
could be integrated into an integrated software development environment system (IDE).
IDEs usually have a notion of the current project, or the working set of packages and classes
in the system. To simulate this, our prototype expects, at startup, a list of package names.
All classes and interfaces in these packages are then parsed and checked by CoffeeStrainer.
In Figure 6.4, a screendump of the prototype is shown which lists all constraint violations in
the upper part of the window. The lower part of the window contains a class browser, with a
tree view of packages, classes, and method signatures on the left hand side and a source code

3The only change in the language between versions 1.1 and 1.2 is the additional keyword strictfp for decla-
rations of floating point variables which differentiates between two different floating point semantics.

142

6.3 Performance Evaluation

Figure 6.4: Screendump of graphical user interface

view of the currently selected class or method on the right hand side. When the user clicks
on one of the constraint violation entries in the upper part of the window, the class browser
part updates to show the part of the program which caused the constraint violation. In our
example, eight violations are listed in the upper part of the window. The user has clicked on
the constraint violation entry:

CoffeeStrainer.examples.NoIdentity:
objects of this type may not be compared using == or !=

This is a violation of the constraint given in CoffeeStrainer.examples.NoIdentity
which disallows object reference identity operations (see Section 4.3.2). In the lower part
of the window, the class browser displays the part of the program which caused the viola-
tion: On the left hand side, method main of class DaysOfWeek is selected, and on the right
hand side, the object reference identity operation is highlighted in red in the source code of
method main (“correct == incorrect”). In an integrated development environment,
the user could then change the source code of main appropriately, which would cause the
constraint violation entry to be removed from the list of currently found violations. This
latter functionality is not part of the GUI prototype of CoffeeStrainer.

6.3 Performance Evaluation

Checking constraints with CoffeeStrainer usually involves a single traversal of the abstract
syntax tree of the checked program. Because CoffeeStrainer is an open framework, no up-
per bound of the complexity of checking a program can be given. For example, a constraint
method could be written that searches the whole ASG instead of just checking a local prop-
erty of a certain ASG node, resulting in quadratic complexity instead of linear complexity.
However, experience showed that most of the constraints do not depend on the size of the

143

6 Implementation of CoffeeStrainer

ASG, so that in the normal case, checking constraints has complexity
�������

where
�

is the size
of the ASG. Thus, it can be expected that checking constraints with CoffeeStrainer is dom-
inated by parsing the program and performing name and type analysis, which certainly
cannot be less than

�������
because it at least builds a tree of size

�
. Consequently, the time for

checking constraints should be comparable to the time for compiling the program.

Performance measurements on example inputs confirm these considerations: When com-
pared to running the standard java compiler, Sun Microsystem’s JAVAC, on various in-
put files, the running time of CoffeeStrainer is between 1.4 and 2.6 times larger than for
JAVAC. See Figure 6.5 for measurements taken on a PC (266 MHz Pentium, 64 MB RAM)
running Linux and Sun’s JDK 1.1.7. Thus, the time needed for checking constraints with
CoffeeStrainer is similar to the time needed for compiling the same program (taking into
account that so far almost no effort has been spent on optimizing Barat, the Java front-end
on which CoffeeStrainer is built). The example inputs were the following packages: cof-
feestrainer.examples, containing examples of CoffeeStrainer constraints, pos2, con-
taining a simple point-of-sale application for which CoffeeStrainer constraints enforce a lay-
ered architecture, de.fub.bytecode.util and de.fub.bytecode.classfile, con-
taining a library for reading and writing byte-code files [Dahm 1999], and javaparser,
containing a Java parser generated by JAVACC [Metamata 1999a]. For the last three exam-
ples, no constraints were defined, so that only the time for a full traversal (calling empty
constraint methods) was measured.

input LOC javac [s] CoffeeStrainer [s] factor
coffeestrainer.examples 274 1.6 2.3 1.4

pos2 843 3.1 8.5 2.7
de.fub.bytecode.util 1419 5.1 11.0 2.2

de.fub.bytecode.classfile 6489 11.0 16.2 1.5
javaparser 5950 5.8 15.0 2.6

Figure 6.5: Comparing the performance of CoffeeStrainer and Sun’s JAVAC

144

