
Chapter 1

An Introduction to Label

Placement

In everyday life, we permanently categorize and label things or people accord-
ing to the categories into which they in our opinion fall. If we do not know
somebody’s name, we may refer to him by his physical appearance, his hair
style, profession or possessions, the way he dresses, behaves, or talks. That is,
we label him as “tall”, “brunette”, “poor”, “extroverted”, “southern”, or with
several of these predicates. If we accumulate enough labels, we get a unique
description. We use labels to identify, describe or simply store something in our
memory. Labels never catch all information available on an object but rather
focus on features that distinguish it from others. Spoken in terms of computer
science, a label can be seen as a hash key that allows us to access additional
information about the labeled object in the dictionary, which is represented by
our brain.

We use labels to describe objects and to communicate our ideas to others,
hoping that the hash key works in their dictionaries as well as in ours. In
order to illustrate our ideas, we often resort to images, i.e. two-dimensional
mappings of reality. These tend to consist of rather simple, and thus abstract
graphical elements, which can have an abundance of meanings. Thus we must
annotate these objects with some kind of labels to clarify our intentions. Such
a labeling must fulfill two important requirements, namely (a) legibility, i.e. a
label must be of sufficient size and must neither overlap objects of the image
nor other labels, and (b) unambiguity, i.e. it must be clear which object a label
annotates. The second requirement is also valid for the use of labels in speech,
while the first results from the geometric limitations of the plane. From now
on we will refer to objects that are to be labeled as features.

Labeling is one of the key tasks in the process of information visualization.
In diagrams, maps, technical or graph drawings, features like points, lines, and
polygons must be labeled to convey information. The interest in algorithms
that automate this task has increased with the advance in type-setting tech-
nology and the amount of information to be visualized. Cartographers, graph



2 Chapter 1. An Introduction to Label Placement

drawers, and computational geometers have suggested solutions to the label-
ing problem such as expert systems, 0-1 integer programming, approximation
algorithms, and simulated annealing to name only a few. The ACM Compu-
tational Geometry Impact Task Force report [C+96] denotes label placement
as an important research area. To fully comprehend the interest in automated
labeling systems, one has to realize that manually labeling a map, for instance,
is estimated to take fifty percent of total map production time [Mor80].

1.1 Historic Development

Going back in history, cartography is probably the oldest field that combined
graphical with textual elements and was thus forced to deal with the labeling
problem. The first record of a scaled map was found in China and is estimated
to be about 2,300 years old [SZ97].

In cartography, the basis for automation was laid in the early sixties when
the prominent Swiss cartographer Eduard Imhof published a catalogue of rules
for label placement including good and bad examples [Imh62, Imh75]. In the
same year, but independently of Imhof, Georges Alinhac, “Artiste Cartographe
Principale” at the French Institut Géographique National, published the book
“Cartographie Théorique et Technique”, which includes a similar set of labeling
guidelines [Ali62]. These first formalizations of label placement have certainly
facilitated the step from craftsmanship to technology. Before, based on his taste
and long work experience, a cartographer could judge a map as being “well”
or “poorly” labeled, but since the publication of Imhof’s and Alinhac’s rules,
the deficiencies of a map labeling can be named in detail. Only then, after
a model was found and the objectives were made clear, could technicians and
researchers without expertise in cartography start to automate the process of
label placement. This was crucial for the field since the apparently most basic
problem of label placement, i.e. labeling points, turned out to be hard in terms
of computational complexity.

Ten years after Imhof and Alinhac declared the principles of label place-
ment, the Israeli cartographer Pinhas Yoeli wrote the first article dealing with
the automation of map labeling [Yoe72]. He suggested an interactive system
consisting of a human map editor, a geographical database, an output and
a “principle-of-placement” module as well as a placement and an operational
program. He devoted a lot of attention to the arrangement and the interplay
between the parts of his system, which must be due to the limitations in storage,
computation speed and the type-setting abilities of output devices at that time.
He did not give any details of his placement program, but suggested that after
each run of the program, the map editor would evaluate the results and decide
whether his “preliminary estimate as to the name carrying abilities of his map
was too optimistic”. In that case “there will be names for which the computer
could not find any place”. If the map editor cannot add these manually, he has
to revise decisions (concerning font size, place selection) and rerun the program
until a satisfactory solution is found.

2



Section 1.2. Theory. . . 3

�

�

���

���

���

���

���

�
	���� �
	���� ��	
��� ��	
��� ��	���� ��	���� �
	�	�� �
	�	�� �������

Figure 1.1: Number of publications over time in the label-placement literature.

Two articles by Boyle and a master’s thesis by Wilkie at the Department
of Electrical Engineering, University of Saskatchewan followed at the beginning
of the seventies [Boy73, Wil73, Boy74], but it was not until the eighties that a
larger number of researchers became interested in labeling problems, see Fig-
ure 1.1. The figure shows for each year the number of references contained
by the Map-Labeling Bibliography [WS96], an exhaustive list of literature about
(mostly automated) label placement. The Map-Labeling Bibliography was inte-
grated into the Collection of Computer Science Bibliographies [Ach95] in 1998.

Since the beginning of the eighties, there has been a steady flow of pub-
lications about the labeling problem in fields as diverse as artificial intelli-
gence, cartography, geography, geology, spatial data handling, database sys-
tems, data structures, image processing, graph drawing, and computational
geometry. Over the years, there were two diverging lines of research. Given the
complexity of the labeling problem, most publications were directed towards
developing and improving solutions for special cases. Another approach was
targeting at finding a general labeling framework.

1.2 Theory. . .

Theoreticians, mostly computational geometers, entered the field around 1990.
Nearly all work in terms of approximation algorithms and NP-hardness results
has been focussed on the point labeling problem. This may be due to the fact
that there are obvious models and objective functions for this problem. Never-
theless, there has been a rather controversial debate among cartographers over
the “right” point-labeling model [WB91, Mil94]. Usually labels are restricted
to axis-parallel rectangles, for example the bounding boxes of place names, but
squares in arbitrary positions and disks have also been considered [DMM+97].
These labels must (a) not intersect any other label, and (b) touch the point they

3



4 Chapter 1. An Introduction to Label Placement

label. While condition (a) guarantees legibility (given labels of sufficient size),
condition (b) is responsible for the unambiguity of a labeling. Condition (b)
has often been further restricted to the case where one of a label’s corners must
coincide with the point to be labeled. Some cartographers additionally allow
the four positions where the midpoint of a label edge coincides with the point.
This is how the basic labeling requirements mentioned above are modeled for
points.

However, even apparently simple special cases of the point labeling problem,
like deciding whether a set of points can be labeled with unit squares in one of
four positions, have turned out to be NP-hard [MS91, FW91, KR92]. Therefore
most theoreticians have studied approximation algorithms that maximize either
the label size [FW91, DMM+97], the number of points with labels [AvKS98,
vKSW99], or both criteria simultaneously [DMM+97]. Nevertheless, algorithms
that can solve problems of a few dozen to a few hundred points optimally have
also been studied in the past [Pre93, KMPS93, Sch95, VA99].

1.3 . . . and Practice

Practitioners on the other hand have proposed an abundance of models and
heuristics for labeling point, linear or area features on maps, and nodes or
edges in graph drawings. While most of these algorithms may work well in
practice, they lack guarantees on the quality of their results and often even
asymptotic bounds on their runtime.

If quality guarantees or time bounds cannot be given, it is important to
compare algorithms experimentally, both on real-world and synthetic data.
There are extensive experimental comparisons of point labeling algorithms
[CMS95, CFMS97, WW98]. However, we are not aware of similar work on
algorithms for labeling more complex features. The reason for this may be that
models for labeling one- or two-dimensional features tend to include aesthetic
criteria that are highly application dependent.

1.4 Quality

Only recently another, more fundamental, question has been treated; namely
how the quality of a label placement can be defined [vDvKSW99]. The basic
idea is to collect a set of rules similar to those proposed by Imhof, and to
quantify these rules subsequently. Such a quantification would have the task to
produce formulae with a small number of parameters that can be set according
to the application. The formulae should in turn be designed so that they are
easily computable. Given an automatic label-quality checker, it will be possible
to evaluate existing label-placement algorithms, locate their deficiencies, and
ultimately come up with better algorithms. Determining a set of evaluation
functions, upon which the label-placement community would generally agree,
would mean a significant progress of the field, a step from a technical to a

4



Section 1.5. Future Development 5

scientific level.

So far the most common criteria taken into account for judging the quality of
a label placement were either the number of features labeled or the label size.
Again, only for labeling points more elaborate quality criteria have already
been proposed and implemented, usually with the help of genetic algorithms
[Djo94, VWS97, Pre98, Rum98, Rai98, Rai99, vDTdB99]. An exception to this
is a rule-based system that Anthony Cook proposed and implemented in Prolog
in collaboration with the British Ordnance Survey [Coo88]. He explicitely lists
Imhof’s rules and takes many of them into consideration.

1.5 Future Development

Since Yoeli opened the field of literature on automated label placement, the
speed of hardware and the quality of printers has increased dramatically while
the price for storage has dropped by the same order of magnitude. Furthermore,
data structures and algorithms even for complex geometric problems have be-
come widely available through libraries like Leda [NM90], Cgal [Ove96], or
the Stl [MS96].

Concerning the future of label placement, I think that we can expect devel-
opment into two somewhat contrary directions, namely high-quality and on-line
labeling.

Assuming that the performance of computers and the price of human labour
will further increase, so will the interest in high-quality labeling systems. So far,
the only commercially available product is Maplex. This system was initially
developed by a team of researchers under Christopher Jones at the University of
Glamorgan, Wales [JC89]. Later the development of Maplex was continued by
a company that was recently bought by one of the large producers of geographic
information systems.

The core functionality of geographic information systems, or GIS for short,
is to allow geographic data to be easily linked with other layers of information.
Since GIS became available on PCs, they have gained enormous popularity for
all kinds of administrative and planning tasks. One would think that labeling is
a prominent feature of such systems, but so far most GIS offer only very basic
placement routines. In practice, a GIS user is still forced to invest several hours
in order to eliminate manually all label-label and label-feature intersections
on a map—in spite of the large number of publications on automated label
placement.

Given the success and the increasing availability of the Internet, the other
important string of development can be expected to focus on rather simple,
but very fast on-line applications. On-line mapping and label placement will
certainly benefit from future extensions of the hypertext mark-up language
(HTML). Soon it will be possible to transmit and depict vector images in-
cluding text instead of bitmaps that tend to consume a lot of transmission time
and computer storage. Already the current browser generation is able to place

5



6 Chapter 1. An Introduction to Label Placement

text on top of graphics. This is one of the features of a much broader concept,
namely cascading style sheets [JT98]. However, so far there is no generally ac-
cepted standard for font metrics. Thus the length of a textual label can vary
from browser to browser, which makes it impossible to avoid intersections.

1.6 Overview

With this thesis, I would like to help narrowing the gap between theory and
practice in automated label placement by presenting research in both directions.
The thesis deals with the general label-placement problem, then investigates
how to label points with rectangles or circles, how to label polygonal lines like
rivers and finally how to design flexible geometric algorithms.

1.6.1 General Labeling, Compatible Representatives, and CSP

The general label-placement problem consists of labeling a set of features
(points, lines, regions) given a set of label candidates (rectangles, circles, el-
lipses, irregularly shaped labels) for each feature. Each feature and each of its
label candidates has a specified position in the plane. In general, a label place-
ment or labeling simply specifies a subset of the features and choses for each of
these features a label from its set of label candidates such that no two labels
intersect. In a complete labeling all features receive labels. Deciding whether
a complete labeling exists is NP-hard in general [MS91, FW91]. Therefore,
researchers have turned their attention mainly to develloping heuristics and ap-
proximation algorithms for two obvious optimization versions of the problem,
namely label-number maximization and label-size maximization.

The decision problem is a special case of the problem of compatible repre-
sentatives introduced by Knuth and Raghunathan [KR92]. Label candidates
are compatible representatives of their features if they do not intersect. In
other words, we restrict compatibility to the geometric meaning implied by our
context. Knuth and Raghunathan point out that “cartographers face an inter-
esting case of the problem of compatible representatives”. The authors suggest
that “it seems worthwhile to add the problem of compatible representatives to
the class of ‘combinatorial problems that deserve a name’, and to investigate
heuristics and additional special cases that prove to have efficient solutions.”
Knuth and Raghunathan prove that the Metafont-labeling problem, a special
case of the point-labeling problem, is NP-complete.

In the artificial intelligence (AI) community, the problem of compatible rep-
resentatives has been addressed as the constraint satisfaction problem (CSP).
A CSP consists of a finite set V of variables (corresponding to our features), of
finite variable domains, i.e. sets Dv of at most d values (our label candidates) for
each variable v in V , and of relations R on subsets VR of V that exclude certain
combinations of values for VR. If we use symmetric binary relations that exclude
intersecting candidates for each pair of features, the label-placement decision
problem fits into this framework. The usual objective in the AI community

6



Section 1.6. Overview 7

is either to list all assignment tuples without conflicts [MF85], to minimize
the number of conflicts [FW92], or to find the maximum weighted subset of
constraints that still allows an assignment (Max-CSP) [SFV95]. Since graph
coloring and the decision version of the label-placement problem are NP-hard
special cases of CSPs, one cannot expect to solve general CSPs in polynomial
time. For this reason, the class of network-consistency algorithms has been
invented. These algorithms use local arguments to exclude values from the do-
main of a variable that cannot be part of a global solution. Network-consistency
algorithms can be seen as a preprocessing step to backtracking since they often
reduce the search space very effectively.

In Chapter 2, we introduce a new framework for the general label-placement
problem. We first extend classical CSP in order to be able to express the label-
number maximization problem within this new framework. Then we develop a
new form of local consistency, namely r-irreducibility. We present an algorithm,
EI-1, that achieves 2-irreducibility in O(d3e) time using O(de) space, where d is
the size of the variable domains and e the number of binary relations. We also
give a simple algorithm that finds near-optimal solutions for problems within
our framework by combining EI-1 with a heuristic. This algorithm, EI-1∗ has
proven to perform very well in practice, see Section 3.2, where we apply it to
the point-labeling problem.

The following chapters are devoted to special cases of the general label-
placement problem. In Chapters 3 to 5, we investigate the problems of labeling
point and line features. When labeling a set of points, two fundamental ques-
tions can be asked. First, how many points can be labeled and second, how
large can the labels be if all points must be labeled.

1.6.2 Point Labeling: Label-Number Maximization

In Chapter 3, we focus on label-number maximization given axis-parallel rect-
angular label candidates. First, we present two classes of models for labeling
points with axis-parallel rectangles, namely so-called fixed-position and slider
models. While the former restrict the number of candidates to a constant, the
latter allow an infinite number. We compare some of these models theoretically
by showing how many more points can be labeled in one model than in another.
This is joint work with Marc van Kreveld and Tycho Strijk, both at Universiteit
Utrecht [vKSW98, vKSW99].

Next, we exemplify our general framework at one of the fixed-position mod-
els. We do this such that it becomes clear how our concept can be applied to
other cases. The resulting algorithm is fast, simple and performs well even on
large real-world data sets. We study competing algorithms and do a thorough
empirical comparison. It turns out that our algorithm produces results com-
parable to simulated annealing but obtains them much faster. Our algorithm
outperforms a heuristic of Kakoulis and Tollis [KT98], not only in terms of
time, but also in terms of quality. Like our framework, both simulated anneal-
ing [ECMS97] and the heuristic of Kakoulis and Tollis can be applied to the

7



8 Chapter 1. An Introduction to Label Placement

general label-placement problem.

Since our framework is limited to fixed-position models, we also propose a
fast greedy algorithm that works for slider and fixed-position models. Then
we show that the slider models have polynomial-time approximation schemes.
Finally we compare the greedy algorithms for slider models experimentally to
those for fixed-position models. This part is also joint work with Marc van
Kreveld and Tycho Strijk [vKSW98, vKSW99].

1.6.3 Point Labeling: Label-Size Maximization

In Chapter 4, we look at the second aspect of point labeling, namely label-
size maximization. Instead of asking how many features can be labeled given
candidates of a fixed size, we now assume that all points must be labeled and
that their labels all have the same size. Under these circumstances it is natural
to search for algorithms that simultaneously maximize the size of all labels.
In the case of square label candidates, four per point, a theoretically optimal
algorithm is known [FW91, Wag94] and has been extended to perform very well
in practice [WW97]. We propose an algorithm for labeling points with uniform
circles. The algorithm guarantees to find a placement with circles of about
1/20 of the diameter of the labels in an optimum solution. This improves the
only known algorithm [DMM+97] by more than 50%. We also show that it is
NP-hard to approximate the problem beyond a certain constant factor. This is
joint work with Tycho Strijk.

1.6.4 Line Labeling

While an abundance of solutions for point labeling and some acceptable ap-
proaches to area labeling have been suggested, mostly using the medial axis
[AF84] or methods for computing the largest enclosed rectangle of given aspect
ratio [vR89, AIK89, CK89, DMR97], there seems to be a gap in the literature
concerning efficient geometric algorithms for labeling linear features such as
rivers or streets. In Chapter 5 we turn our attention to line labeling. There the
emphasis does not lie on maximizing label number or size, but on the question
where to place the label in the vicinity of the object to be labeled. In other
words, we are confronted with a modeling rather than an optimization problem.
We first list the requirements of high-quality line labeling and divide them into
two categories, hard and soft constraints.

In Section 5.3, we propose an efficient algorithm that produces a candidate
strip along the input polyline. The strip has the same height as the given
label, consists of rectangular and annular segments, and guarantees the hard
constraints, such as a lower bound on a label’s distance to the polyline and on
the label’s curvature.

In Section 5.4, we present algorithms for several evaluation functions whose
task is to produce one or several good label placements within the candidate
strip. These functions optimize soft constraints, such as the number of inflec-

8



Section 1.6. Overview 9

tions. Again, we perform a thorough experimental analysis by applying our
algorithm to synthetic as well as real-world data, see Section 5.5.

Although several line-labeling algorithms have been proposed in the liter-
ature [Coo88, DF92, BL95, AH95, ECMS97, Kra97, Bar97, PZC98, SvK99],
our algorithm is the first where at the same time curved labels are allowed
and bounds on the runtime given. Chapter 5 is joint work with Lars Knip-
ping, Freie Universität Berlin, Marc van Kreveld, Tycho Strijk, both at Utrecht
Universiteit, and Pankaj K. Agarwal, Duke University [WKvK+99].

1.6.5 Designing Geometric Algorithms

In order to support the claim of the practical relevance of our concepts, we
implemented most of the algorithms we propose. The experience we have gained
from implementing led to a generic design concept for geometric algorithms,
which we present in Chapter 6 in the form of a tutorial. Our concept greatly
increases the flexibility of an implementation without sacrificing its ease-of-use.
The gain in flexibility can reduce implementation effort by facilitating code
reuse. Reusability in turn helps to achieve correctness since more users mean
more testing. The loss in terms of efficiency is small.

Our concept is based on the generic programming paradigm that has evolved
over the last few years. Generic programming is about making programs more
flexible by making them more general [BS98]. Abstracting from concrete in-
or output data representation is an example of generic programming. This
paradigm has been so successful that a model—the Standard Template Library
(STL) [MS96]—was created and added to C++, currently one of the most popu-
lar programming languages. The STL is a library of generic components, i.e. of
algorithms, data containers, and iterators mediating between the former two.
Iterators help to decouple algorithms from the type of data container they oper-
ate on. While iterators have been known before, the real novelty of the STL was
the introduction of a requirements-based taxonomy of iterators, which gives a
guideline for full decoupling, and an implementation of this taxonomy using the
C++ template mechanism. By becoming part of the C++ standard, the STL has
attracted considerable attention and has itself set a standard for good design.

After the introduction of the STL further concepts such as data accessors
have been suggested in the C++ literature to help programmers make their im-
plementations even more generic [Küh96, Wei97]. Data accessors are a means
to further decouple an implementation from the representation of in- and out-
put data [KW97]. So far, these extensions have been applied predominantly to
graph problems [NW96]. Exceptions such as [Wei98, Ket98] deal with the rep-
resentation of geometric objects, not with the design of geometric algorithms,
our main interest here. In order to show the relevance of STL-style generic
programming including later extensions as data accessors for geometric algo-
rithms, we investigate a simple rectangle-intersection algorithm that follows
the well-known sweep-line paradigm. Using this example we give a step-by step
guide from an inflexible, naive interface to a truly flexible interface that sup-

9



10 Chapter 1. An Introduction to Label Placement

ports code reuse. These steps reflect our own change of perspective during the
implementation of our label-placement algorithms. We base our presentation
on C++. While the ingredients of our concept have already been known, to
our knowledge this is the first time that they are applied so rigorously to a
geometric problem, that they are made accessible in the form of a tutorial and
that they are accompanied by a thorough experimental analysis on random and
real world data. Chapter 6 is joint work with Vikas Kapoor, Freie Universität
Berlin, and Dietmar Kühl, Claas Solutions GmbH.

During the implementation phase of our algorithms, we developed a tool
for the automatic generation and maintenance of makefiles that we found very
helpful for administering inter-file dependencies in software projects [SW98].
This was joint work with Sven Schönherr, Freie Universität Berlin.

10


