
Chapter 3

Point Labeling:

Label-Number Maximization

Generally it is assumed that a point label can be seen as an axis-parallel rect-
angle; the bounding box of the text, see Figure 3.1. Many algorithms for point
labeling have been described in the automated cartography literature and in
computational geometry. For an extensive bibliography see [WS96].

Good point labeling has two basic requirements. A label should be placed
close to the point to which it belongs, and two labels should not overlap each
other. For high quality cartographic label placement, further requirements have
been formulated [Imh75, Yoe72]. Given the basic requirements, an algorithm
can try to either label as many points as possible, or find the largest possible
font such that all points can be labeled. In general, both of these problems are
NP-hard [FW91, MS91]. In this chapter, we focus on the former problem, i.e.
label-number maximization. As in Chapter 2, we are given a set of features
(here: points) and for each point a set of label candidates. A solution is a
function that maps every point to 0 or to a label from its set of candidates such
that no two labels intersect. The size of a solution is the number of points that
receive a label. An optimal solution is a solution of maximum size.

Although finding an optimal solution is NP-hard, approximation algorithms
have been suggested. For axis-parallel rectangular labels of arbitrary height
and width, Agarwal et al. propose an algorithm with an approximation ratio
of 1/O(log n) [AvKS98]. Their algorithm is based on divide-and-conquer. If
the label height (or width) is fixed, the same paper suggests a line-stabbing
algorithm that labels in O(n log n) time at least half the number of points
that are labeled in an optimal solution. For maximizing the size of uniform
rectangular labels, this approximation factor is optimal, but for maximizing
the number of fixed-height labels, Agarwal et al. also present a polynomial time
approximation scheme (PTAS).

Nearly all of the existing algorithms for point labeling limit the placement
of a label with respect to its point to a finite number of label positions. Most
algorithms described before allow four label candidates, namely those where a
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rectangular label touches its point in one of its four corners [FW91, WW97]. In
the automated cartography literature eight candidates per point is also quite
common, while the approximation algorithm of Agarwal et al. [AvKS98] al-
lows any constant number as does a heuristic proposed by Kakoulis and Tollis
[KT98]. Their algorithm is based on a heuristic for splitting connected compo-
nents into cliques and uses maximum-cardinality bipartite matching.

We call restrictions of the allowed label positions a labeling model. Models
that allow a finite number of positions per label are fixed-position models, those
that allow an infinite number are slider models.

Figure 3.1: Rectangular labels of cities of the U.S.A.

This chapter is structured as follows. Section 3.1 introduces six point-
labeling models; three fixed-position and three slider models. We analyze how
many more labels can be placed in one model than another, in theory.

In Section 3.2 we specialize the general concept of Chapter 2 to the context of
point labeling and give the details of three variants of an algorithm based on this
concept. Our algorithm has a runtime of O(k +n log n), where n is the number
of points and k the number of intersections among the label candidates. Other
than all approximation algorithms suggested so far, our algorithm does not
make any assumptions about label shapes and the position of a label relative to
its point. Due to this generality we could not expect to prove any approximation
factors. However, our algorithm works very well in practice. We compare it
experimentally to a number of other methods.

In Section 3.3 we drop the restriction that a label can only be placed at
a finite number of positions. Instead, we allow any position where an edge
of the label is incident to the point, see Figure 3.1. We show that it is NP-
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complete to decide whether a set of points can be labeled with unit squares
in the four-slider model. However, each of our three slider models allows a
simple factor-1

2 approximation algorithm that uses O(n) space and O(n log n)
time. We also give a polynomial-time approximation scheme for each of our
slider models. Similar results were already known for fixed-position models
[AvKS98]. In order to support the practical relevance of our approximation
algorithms for the three slider models, we do a thorough experimental analysis
on real-world data and randomly generated point sets.

3.1 Comparing Various Models

This section is joint work with Marc van Kreveld and Tycho Strijk, both Uni-
versiteit Utrecht [vKSW98, vKSW99].

In this section we introduce and then compare some common point-labeling
models. All of the algorithms we present in the following sections aim to label
as many points as possible according to the chosen model.

Figure 3.2: top-, two- and four-slider model

Definition 3.1 (point labeling, size of a labeling, optimum labeling)
Given a set P of n points in the plane, and for each point p ∈ P a set of label
candidates Lp, a point labeling is a subset P ′ ⊆ P and a function λ which
maps every point p ∈ P ′ to a label λ(p) ∈ Lp such that no two labels intersect.
The number of labeled points, i.e. the cardinality of P ′, is the size of the point
labeling. An optimal labeling is a point labeling which has maximum size
among all point labelings.

In this chapter, we restrict ourselves to axis-parallel rectangular label can-
didates. If we require additionally that a label must be placed such that one of
its edges contains the point to be labeled, we get the following labeling models.

Definition 3.2 (slider models) In the four-slider model, a point p must be
labeled such that any edge of the label contains p. In the two-slider model, either
the label’s top or bottom edge has to contain p. In the one-slider or top-slider
model, the bottom edge of a label must contain p.

For an illustration of slider models, see Figure 3.2. Note that in all of our
models we allow that a label contains other points which then of course cannot
be labeled. Our labels are closed, i.e., we disallow touching. One alternative
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would be “half-open” labels as in [WW97]. In that paper all edges of a label
which are not adjacent to its point are allowed to touch other labels or points.
This would make sure that if every label is scaled down by a small amount
with its point as scaling center, then all labels are disjoint. When labels do
not touch, a map user can more easily match a label and the point to which
it belongs. The algorithms could be adjusted to this additional requirement,
but intensive case study would be necessary to decide whether a label can be
placed when it touches other labels. The bounds of the following comparison
of models would still hold, but for the sake of simplicity we keep the number of
requirements to a minimum.

One alternative would be to consider labels open and thus allow touching
generally. In this case however, we were not able to keep the greedy algorithm’s
approximation guarantee of 50%, although the bounds of the comparison below
would hold.

We will compare the slider models introduced above to the following fixed-
position models.

Figure 3.3: one-, two- and four-position model

Definition 3.3 (fixed-position models) Labeling in the four-position model
requires that the a point p is labeled such that one of the label’s corners lies on
p. In the two-position model one of the label’s bottom corners must lie on p
and in the one-position model the lower left corner of the label must coincide
with p.

For an illustration of fixed-position models, see Figure 3.3. Our measure for
comparing the models above is based on optimal labelings of point sets. Some
point sets allow a labeling of the whole set in all models. Such point sets are
not very interesting for a comparison, so we are mainly interested in point sets
where the size of an optimal labeling differs from model to model. We define
the ratio of two models as follows.

Definition 3.4 (ratio of two models) Given unit square label candidates
and two label-placement models M1 and M2, the (asymptotic) (M1 : M2)-ratio
is

lim
n→∞

max
P, |P |=n

size(optimal M1-labeling for P )

size(optimal M2-labeling for P )
.

This measure does not take into account aesthetic criteria as listed by Imhof
[Imh75]. Since it is a purely quantitative measure and, moreover, only refers
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to square labels, it does not apply directly to many practical label placement
problems. However, it gives a fair indication of how many more points can be
labeled in one model than in another in general.

Figure 3.4: The ratio between the two- and
the one-position model can become arbi-
trarily large for labels of different size.
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Figure 3.5: 3/2 is a lower bound
on the ratio between the two- or
four-slider and any fixed-position
model

The reason why we only consider unit square labels in the definition above
and in the remainder of this section, is that otherwise some of the ratios between
two models would become arbitrarily bad, see Figure 3.4. All points depicted
there can be labeled in the two-position model, but only one point can be
labeled in the one-position model.

It is worth mentioning that the size of an optimal placement in a slider
model cannot be approximated arbitrarily well by a fixed-position model, no
matter at how many discrete positions a fixed-position label can be attached
to its point. Given such a model, consider all positions in which a unit square
label can be attached to its point. W.l.o.g. we may assume that the four corner
positions are among them. For each position, mark the place on the edge of
the label that the point touches. Choose some ε > 0 to be smaller than half
the minimum distance between two markers that both lie either on the top or
on the bottom edge of the label. Then there must be points ptop and pbot on
the top and the bottom label edge, respectively, that are further than ε away
from any marker. Let dtop and dbot be their respective distances to the label’s
left edge.

Now consider the six points marked by disks in Figure 3.5. The two leftmost
points have vertical distance ε from each other and horizontal distance 1 + 2ε
from the corresponding rightmost points. These four points can be labeled in
all models that allow any corner of a label to lie on the point to be labeled.
The other two points lie at a distance of ε + dtop and ε + dbot to the right of
the leftmost points. These two points can be labeled by labels ltop and lbot in
the two- or four-slider model such that ltop and lbot keep a distance of ε to the
labels of the left- and rightmost points. However these points cannot be labeled
properly in the given fixed-position model since moving ltop and lbot by up to ε
to the right or left does not make the points coincide with any of the markers
at the top or bottom edge of ltop and lbot. This is due to our choice of dtop and
dbot.
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36 Chapter 3. Point Labeling: Label-Number Maximization

In order to get larger point sets as required by Definition 3.4, we simple
copy the group of six points depicted in Figure 3.5 at regular intervals along
the x-axis. This yields a ratio of 3/2 between the two- (or four-) slider model
and any given fixed-position model.

The labeling models used in this section will be the six introduced in Defi-
nition 3.2 and 3.3. All of our comparisons of two such models M1 and M2 are
based on the following strategy. We want to bound the ratio Ψ by which more
labels can be placed in the model with more freedom, say M1. We assume an
optimal label placement in M1. Then we canonically relabel the labeled points
by moving every label into a position that is valid in the more restrictive model
M2. This might cause some labels to intersect. We determine the maximum
number δleft of M2-labels that intersect the leftmost M2-label l. Then we put
l into a set S of non-intersecting labels, remove l and all its conflicting labels
from the instance and repeat until no labels remain. At the end of the process,
S contains at least k1

opt/(δleft + 1) non-intersecting M2-labels, where k1
opt is the

size of the assumed optimal M1-placement. The size of S is a lower bound for
the size of an optimal M2-placement, thus δleft + 1 is an upper bound for the
(M1 : M2)-ratio. Lower bounds for the ratio Ψ are obtained by giving examples
of arbitrary size for which any M2-placement is worse by a certain factor than
some M1-placement.

Since we do not want to compare every two models in isolation, we define
three groups. They consist of pairs of models where points with labels in one
model can be canonically relabeled such that a certain fraction of points gets
labels in the other model.

Definition 3.5 (flipping) Given two different label placement models M1 and
M2, and an axis-parallel vector v of unit length, model M1 can be flipped into
model M2 by v if any label position in M1 that is not allowed in M2 can be
translated by v into a valid M2-label position.

Example 3.6 The two-slider model can be flipped into the top-slider model
by (0, 1). Analogously, the four-position model can be flipped by (0, 1) into the
two-position model, while the two-position model can be flipped by (1, 0) into
the one-position model.

Lemma 3.7 For any two labeling models M1 and M2 where M1 can be flipped
into M2 the (M1 : M2)-ratio is 2.

Proof. Consider an optimal M1-labeling of an arbitrary instance of points. Let
M2 be a model into which M1 can be flipped by a vector v. Then the canonical
relabeling mentioned above means translating by v all M1-labels that are not
valid in M2.

We can assume that the vector by which we flip is (0, 1); the case (1, 0) is
symmetric. This means that an M2-label is either identical to the corresponding
M1-label or lies one unit above it. Let l1 be the M1-label corresponding to the
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Figure 3.6: If M1 can be flipped into M2 then the leftmost M2-label l2 (solid
edges) cannot intersect more than one M2-label b2. (The corresponding non-
intersecting M1-labels are shaded.)

leftmost M2-label l2. We show that l2 can intersect at most one M2-label whose
M1-counterpart is not in conflict with l1. As indicated above, this gives us an
upper bound of 2 for the (M1 : M2)-ratio Ψ.

Suppose that l2 is identical to the corresponding M1-label l1; the other case
is symmetric, see the left and right part of Figure 3.6, respectively. Let I2 be
the set of all M2-labels intersecting l2 and let I1 be the set of their mutually
non-intersecting M1-counterparts. Then all labels in I2 must contain the lower
right corner of l2; otherwise, either their M1-counterparts intersect l1, or l2 is
not leftmost. This however forces all labels in I1 to contain a point at unit
distance below that corner (marked by a cross in Figure 3.6) in order not to
intersect l1. Hence |I1| = |I2| ≤ 1 and Ψ ≤ 2.

In order to establish the lower bound of 2 for Ψ, just take the four corner
points of an axis-parallel square of edge length less than one. For all models
M1 that we are considering and that can be flipped into a model M2 (see
Example 3.6), exactly twice as many of these points can be labeled as in the
corresponding M2-model. An instance can consist of arbitrarily many of such
groups of four points, separated sufficiently. r

Definition 3.8 (sliding) Given two different label placement models M1 and
M2, and an axis-parallel vector v of unit length, model M1 can be slid into
model M2 along v if every label position in M1 can be translated by µv into a
valid M2-label position for some µ ∈ [0, 1]

Example 3.9 The four-slider model can be slid into both the two-slider and
the top-slider model along (0, 1). Along (1, 0) we can slide the two-slider into the
four-position model and the top-slider into both the two- and the one-position
model. Note that the four-slider model cannot be slid into the four-position
model.

Lemma 3.10 Let M1 and M2 be two (different) labeling models where M1 can
be slid into M2, and let Ψ be the (M1 : M2)-ratio. Then 2 ≤ Ψ ≤ 3.
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Proof. Again we consider an optimal M1-labeling of an arbitrary instance. We
assume that we can slide M1- into M2-label positions along (0, 1); the case (1, 0)
is symmetric. We canonically slide all M1-labels upwards until we arrive in an
M2-label position. We show that the leftmost M2-label l2 can then intersect at
most two other M2-labels. This yields the upper bound of 3 for Ψ.

l2 A2

A1

Figure 3.7: If M1 can be slid into M2 then the leftmost M2-label l2 cannot
intersect more than two M2-labels.

M2-labels intersecting l2 can only lie within area A2, a rectangle of width
two and height three that is placed such that its left edge is centered at the
left edge of l2, see Figure 3.7. This holds because l2 is chosen to be leftmost.
The corresponding M1-labels are restricted to area A1, a rectangle of width
two and height four obtained by extending A2 one unit downards. Every label
in A1 must contain one of the three grid points in the interior of A1 marked
by crosses in Figure 3.7. Thus A1 can contain only three non-intersecting M1-
labels including the M1-counterpart of l2. It follows that l2 cannot intersect
more than two M2-labels, and hence that Ψ ≤ 3.

pa

cb
q

Figure 3.8: If M1 can be slid into M2 then the M1-M2-ratio approaches 2.
Here we chose M1 to be the two-slider model (shaded labels) and M2 to be the
four-position model (solid edges).

For a lower bound that approaches 2 refer to Figure 3.8. There are two rows
of n points. Two neighboring points of one row have x-distance 1− 1

n−1 +ε and

y-distance δ, where 1
n−1 > δ > ε > 0. The upper row is a copy of the lower,

shifted by the vector (δ/2, δ).

Comparing the top-slider model to the one- or two-position model is easy;
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just consider one row. In order to compare the four- to the two-slider model,
the figure must be rotated by 90 degrees. So let us focus on comparing the
two-slider to the four-position model here.

It is obvious that all points can be labeled in the two-slider model. For the
four-position model we can argue as follows. Let p be a point of the upper row
excluding the last or first two points and let q be the right neighbor of p in the
upper row. If a four-position label is attached to p, then either it contains at
least one extra point (a, b and c, or q in Figure 3.8), or it makes labeling q
difficult. Either q is not labeled, or q’s label is in a lower position and hence q
will contain at least two extra points. Since p is the only point whose label can
intersect the upper positions of q without intersecting q itself, a failure to label
q can be uniquely charged to p. And if p and q are both labeled, we charge
the failure to label the two points in q’s label to p and q. In any case, we can
charge one point that cannot be labeled to each point that is labeled. For the
corresponding points p of the lower row, the same argument holds if we choose
q to be the left neighbor of p. r

Note that the proof above can be simplified for closed labels. We chose to
give a proof that carries over to the case of open labels.

The upper bounds for Ψ can be improved to 3 for the pairs of models
satisfying the following definition.

Definition 3.11 (corner-sliding) Given two different label placement models
M1 and M2, model M1 can be corner-slid into model M2 if every label position
in M1 can be shifted both to the left and to the right such that the point coincides
with a corner of the label, and these positions are valid in M2. Vertical corner-
sliding is defined with left and right replaced by top and bottom.

Example 3.12 The top-slider model can be corner-slid into the two-position
or the four-position model. We can corner-slide the two-slider model into the
four-position model. The four-slider model can be vertically corner-slid into
the two-slider model. Note that the four-slider model cannot be corner-slid
into the four-position model since sliding would be necessary in two directions.
The top-slider model cannot be corner-slid into the one-position model since
top-slider labels cannot be slid to the left to reach a position in the one-position
model.

Lemma 3.13 Let M1 and M2 be two (different) labeling models where M1 can
be corner-slid into M2. Then the (M1 : M2)-ratio is at most 2. The same holds
if M1 can be vertically corner-slid into M2.

Proof. Again we consider an optimal M1-labeling of an arbitrary instance. We
assume that we can corner-slide M1- into M2-label positions; the vertical corner-
sliding case is symmetric. We draw a set of vertical lines with unit spacing over
the M1-labeling such that no line contains a point of the instance, nor a vertical
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edge of a label. We count both the number of M1-labels that intersect the odd
lines and the number of M1-labels that intersect the even lines. Assume that the
even lines intersect the greater number of squares in the M1-labeling; the other
case is symmetric. Delete the squares and corresponding points intersecting the
odd lines. The remaining squares are now corner-slid into a M2-label position
such that each label intersects an even line, see Figure 3.9.

Figure 3.9: After removing M1-labels intersecting the odd lines (dashed), the
remaining M1-labels (shaded) are corner-slid to intersect an even line (solid).
This results in a valid M2-labeling.

Note that if a given M1-label intersects an even line, then the resulting
label in the M2-position intersects that same even line. Since the spacing be-
tween even lines is 2 and the lines are in non-degenerate position, two M2-labels
intersecting different even lines cannot intersect. Furthermore, two M2-labels
intersecting the same even line arose from two M1-labels intersecting that same
even line. Since corner-sliding is done horizontally, the M2-labels do not inter-
sect since the M1-labels did not intersect.

Since we never remove more than half the M1-labels, and the remaining
M1-labels are all corner-slid to non-intersecting M2-labels, the (M1 : M2)-ratio
is at most 2. r

Lemma 3.14 Let Ψ1S,1P be the ratio between the top-slider and the one-
position-model. Then 2 1

4 ≤ Ψ1S,1P ≤ 3

Figure 3.10: Sliding top-slider labels (shaded) to the right into one-position
labels (solid edges) can create 9-cycles in the resulting conflict graph of one-
position labels.

Proof. With Lemma 3.10 we get 2 ≤ Ψ1S,1P ≤ 3. The example in Figure 3.10
raises the lower bound to 2 1

4 . r
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Unfortunately we were not able to lower the upper bound of Ψ1S,1P although
we can show the following. In order to get from an optimal top-slider labeling
to a one-position labeling, we must shift all labels to the extreme right. Note
that this is not the same as the idea of a canonical relabeling. If we consider
the resulting conflict graph of the one-position labels, then this graph is planar,
has maximum degree ∆ = 4 and all odd cycles have length at least 9. Grötsch’s
Theorem says that a planar and triangle-free graph is three-colorable, but this
gives us only a more graph-theoretic proof of the upper bound of 3.

422 1
4
≤ Ψ1S,1P ≤ 3

2

2

2 ≤ Ψ4S,1S ≤ 3 2 ≤ Ψ4S,4P ≤ 4

2

2

2

2

2

1P

4P1S

4S

2S

2P

Figure 3.11: Ratios between some label placement models. From top to bottom:
the one-position, two-position, top-slider (left), four-position (right), two- and
four-slider model

Figure 3.11 summarizes our results. The reason for the upper bound 4
for the ratio Ψ4S,4P between the four-slider and the four-position model is the
following. First we convert the four-slider labeling to a two-slider labeling
as described in the proof of Lemma 3.13. After that we convert this two-
slider labeling to a four-position labeling in the same way. Since both these
conversions keep at least half the number of labels, we get Ψ4S,4P ≤ 4.
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3.2 Fixed-Position Models

In this section we specialize the general concept of Chapter 2 to the context
of point labeling. First, however, we review some of the previous approaches
to maximizing the number of labeled points. For an extensive bibliography on
label placement in general, refer to [WS96]. At the beginning of this chapter
we have already mentioned a number of approximation algorithms. Let us add
the most prominent heuristic methods.

In [CMS95] Christensen et al. compare simulated annealing to gradient de-
scent, to an incremental force-driven algorithm by Hirsch [Hir82], and to 0-1
integer programming suggested by Zoraster [Zor86, Zor90]. The conclusion of
their comparison is that simulated annealing is the method of choice for point
labeling, see the results in Figure 3.72, page 79. Zoraster later also applied
the simulated-annealing algorithm of Christensen et al. to labeling very dense
point sets and reported good results [Zor97]. Edmondson et al. showed that the
simulated annealing algorithm of Christensen et al. can also be used for general
label placement, i.e. for arbitrary feature and label shapes [ECMS97].

Recently, Kakoulis and Tollis suggested another approach to label-number
maximization [KT98] that is independent of the shape of the label candidates.
The authors compute the candidate conflict graph Gcand. Gcand has a node for
each candidate and an edge for each pair of intersecting candidates. In the next
step they compute the connected components of Gcand. Then Kakoulis and
Tollis use a heuristic similar to the greedy algorithm for maximum independent
set to split these components into cliques. Finally they construct a bipartite
“matching graph” whose nodes are the cliques of the previous step and the
features of the instance. In this graph, a feature and a clique are joined by an
edge if the clique contains a candidate of the feature. A maximum-cardinality
matching yields the labeling. Given Gcand, the runtime of their algorithm de-
pends on how the clique check and the matching algorithm are implemented.
Practical matching algorithms take O(k

√
n) time; however, our implementation

of their heuristic has an asymptotic runtime of O(kn), where k refers to the
number of edges in the candidate conflict graph. The authors do not give any
time bounds.

The algorithm for label-number maximization we present here unites the
following advantages. Our algorithmic approach

• does not depend on the shape of labels,

• can be applied to point, line, or area labeling (even simultaneously) if a
finite set of label candidates has been precomputed for each feature,

• is easy to implement,

• runs fast (i.e. in O(n + k) time given the candidate conflict graph), and

• returns good results in practice—at least for labeling points with rectan-
gular labels.

To our knowledge, none of the algorithms described so far shares all of these
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characteristics.

The input to our algorithm is the candidate conflict graph of the label
candidates. The algorithm is divided into two phases similar to the first two
phases of the algorithm for label size maximization described in [WW97]. In
phase I, we apply a set of rules to all features in order to label as many of
them as possible and to reduce the number of label candidates of the others.
These rules do not destroy a possible optimal placement. Then, in phase II, we
heuristically reduce the number of label candidates of each feature to at most
one. Given the candidate conflict graph, our algorithm takes O(k+n) time and
O(n) space.

In Section 3.2.1 we give the details of three variants of the algorithm based
on this concept. In Section 3.2.2 we describe the set-up and in Section 3.2.3 the
results of our experiments. We compare our algorithm to five other methods,
namely simulated annealing, a greedy algorithm (see Section 3.3.2), two variants
of the matching heuristic of Kakoulis and Tollis, and a hybrid algorithm that
combines our rules with their clique matching.

Part of the examples on which we do the comparison are benchmarks that
were already used in [WW97]. We added examples for placing rectangular
labels of varying size, both randomly generated and from real world data. Our
samples come from a variety of sources; they include the location of some 19,400
ground-water drill holes in Munich, 373 German railway stations, and 357 shops.
The latter are marked on a tourist map of Berlin that is labeled on-line by our
algorithm. The algorithm is also used by the city authorities of Munich to label
drill-hole maps. All example generators, real world data and algorithms are
available on the World Wide Web1.

3.2.1 Algorithm

As an application of the ideas of the previous chapter, we describe three closely
related variants of a label-placement algorithm. Although these algorithms
do not make any assumptions about the features to be labeled or the label
candidates, our description is based on the context of point labeling. This
simplifies presentation and experimental evaluation. We used four rectangular,
axis-parallel label candidates per point, namely those where one of the label’s
corners is identical to the point. Our objective is to label as many points as
possible.

Each of our algorithms consists of two phases. In phase I, we try to remove
as many label candidates as possible without destroying an optimal placement.
Then, in phase II, we heuristically pick a candidate, remove it, and fall back
on the methods of phase I to further reduce the number of label candidates.
We repeat this process until each point has at most one label candidate left,
and none of these intersects any of the other remaining candidates. These
candidates form our solution.

1http://www.math-inf.uni-greifswald.de/map-labeling/general
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44 Chapter 3. Point Labeling: Label-Number Maximization

While the heuristic in phase II is identical for all algorithms, the way they
choose candidates for removal in phase I differs.

Rules applies a set of rules exhaustively to all points. Each rule tries to find a
candidate that can be put into the solution and then removes all candidates of
the same site or those that intersect the chosen candidate.

EI-1∗ establishes edge-irreducibility as described in Section 2.4.

EI+L3 establishes edge-irreducibility and additionally applies rule L3 that is
described below.

Phase I of Algorithm Rules

This algorithm was joint work with Frank Wagner and Vikas Kapoor, both at
Freie Universität Berlin.

In the first phase of algorithm Rules, we apply all of the following rules
to each of the points. Let pi be the label candidate of point p in position i.
For each of the rules we supply a sketch of a typical situation in the context
of point labeling. We shaded the candidates that are chosen to label their
point, and we used dashed edges to mark candidates that are eliminated after
a rule’s application. We say that two label candidates (of distinct features) are
in conflict if they intersect. The conflict partners of a candidate c are all those
candidates that are in conflict with c. Finally let the conflict number of c be
the number of conflict partners of c.

ip

p

Figure 3.12: Rule L1

p

q

q
pl

k

p

j

i

q

Figure 3.13: Rule L2

p

i
p

Figure 3.14: Rule L3

(L1) If p has a candidate pi without any conflicts, declare pi to be part of the
solution, and eliminate all other candidates of p, see Figure 3.12.

(L2) If p has a candidate pi that is only in conflict with some qk, and q has a
candidate qj (j 6= k) that is only overlapped by pl (l 6= i), then add pi

and qj to the solution and eliminate all other candidates of p and q, see
Figure 3.13.

(L3) If p has only one candidate pi left, and the candidates overlapping pi

form a clique, then declare pi to be part of the solution and eliminate all
candidates that overlap pi, see Figure 3.14.
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We want to make sure that the rules are applied exhaustively. Therefore,
after eliminating a candidate pi, we check whether the rules can be applied in
the neighborhood of pi, i.e. to p or to the points of the conflict partners of pi.

Similar to the rules A1 to A3 in Section 2.4 the rules L1 to L3 have the
property that if there is a solution of size t (i.e. t points can be labeled) before
applying any of the rules, then this is also the case after the rule’s application.
This is easy to show, see [WW98]. Note that L1 and L2 are special cases of A1
and A2.

Phase II

If we have not managed to reduce the number of candidates to at most one per
point in the first phase, then we must do so in phase II. Since phase II is heuristi-
cal, we are no longer able to guarantee optimality. The heuristic RemoveLocal-
TroubleMakerMaxCandNumber described in Section 2.5 is conceptually simple
and makes the algorithm work well in practice, see Section 3.2.2. The intuition
is to start eliminating “troublemakers” where we still have a choice. Speaking
more algorithmically, we go through all points p that have the maximum num-
ber of candidates, and delete the candidate with the maximum number m of
conflicts among the candidates of p if m 6= 0. This process is repeated until
each point has at most one candidate left and these candidates have no more
conflicts. These candidates then form the solution.

As in phase I, after eliminating a candidate, we check whether our rules (i.e.
L1 to L3 for Rules, A1 to A3 for EI-1∗, and A1 to A3 plus L3 for EI+L3) can
be applied in its neighborhood.

Analysis

Other than in Chapter 2 we assume here that the number of candidates per
point is a small constant, typically four or eight for point labeling. Let n be the
number of points, and k the number of pairs of intersecting candidates in the
instance, i.e. the number of edges in the candidate conflict graph. Then EI-1∗

runs in O(k) time according to Lemma 2.14. In order to bound the running
time of Rules and EI+L3, we must analyze the time complexity of rule L3.
Rules L1 and L2 are special cases of A1 and A2; thus they can also be checked
in constant time per application, see Lemma 2.10.

We use a stack to make sure that our rules are applied exhaustively. After
we have applied a rule successfully and eliminated a candidate, we put all points
in its neighborhood on the stack and apply the rules to these points. A point
is only put on the stack if one of its candidates was deleted or lost a conflict
partner.

For rule L3, we have to check whether a candidate is intersected by a clique.
In general, this takes time quadratic in the number of conflict partners. Falling
back on geometry, however, can help to cut this down. In the case of axis-
parallel rectangles, a clique can be detected in linear time by testing whether
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the intersection of all conflicting rectangles is not empty. A simple charging
argument then yields O(k2) total time for checking L3.

Note that for L3 other than for the heuristic RemoveLocalTroubleMaker-
MaxCandNumber it is not enough to have access to the conflict number of a
candidate c; we actually need access to each conflict partner of c. For imple-
menting rules A1 to A3 one only needs to know whether c is in conflict with
candidates of points other than a query point. Of course the candidate conflict
graph gives access to all this information.

However, checking L3 can be done in constant time if we apply L3 only to
candidates with less than a constant number of conflicts. This makes sense since
it is not very likely that the neighborhood of a candidate with many conflicts
is a clique. In this case, phase I can be done in O(n + k) time.

In phase II, we can afford to simply go through all points sequentially and
check whether they have the current maximum number of candidates. If so,
we go through the candidates of the current point and determine the one with
the maximum number of conflicts. The amount of time needed to delete this
candidate and apply our rules has already been taken into account in phase I.
Thus phase II needs only O(dn) extra time.

Putting things together, Rules and EI+L3 take O(n + k2) time if rule L3
can be checked in linear time, and O(n + k) time if we allow only constant
effort for checking L3. In our experiments, we have not bounded this effort,
yet this part of the algorithms showed a linear-time behavior. Finally, for axis-
parallel rectangular labels, the candidate conflict graph can be determined in
O(k + n log n) time and takes O(k) space.

Thus our algorithms can be implemented to label n points in O(k +n log n)
total time, given a constant number of axis-parallel rectangular label candidates
per point and constant effort for checking L3. The algorithms require O(n)
storage apart from the candidate conflict graph.

A Hybrid Algorithm

This algorithm was joint work with Tycho Strijk, Universiteit Utrecht.

Since the decisions our algorithms make in phase II are only based on local
properties of the candidate conflict graph, these decisions can be made very
efficiently. Using more global information is time-costly, but might also improve
the quality of the results. Therefore we thought that it would be interesting
to combine our set of rules with the global aspect of the matching heuristic of
Kakoulis and Tollis [KT98]. The resulting hybrid algorithm proceeds as follows.

As before, we compute the candidate conflict graph. In phase I, we apply
our set of rules L1 to L3 exhaustively. In the new phase II, however, we use the
heuristic proposed by Kakoulis and Tollis to break up the connected components
of the candidate conflict graph into cliques. Recall that in every connected
component, they determine the candidate with the highest degree, eliminate
it, and repeat this process recursively until each component is a clique. The
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choice of the candidate that is to be eliminated has the following exception.
If the candidate belongs to a feature that has “few” candidates left, then the
candidate with the second highest degree in the current connected component
is eliminated, and so on.

Like in the old phase II, after each deletion, we apply our rules in the
neighborhood of the eliminated candidate in order to propagate the effect of
our heuristical decision.

As soon as all connected components are cliques, we use a maximum-
cardinality bipartite-matching algorithm to match as many cliques with features
as possible.

The new phase II can be implemented by an extended breadth-first search
(BFS). First, we compute all connected components of the candidate conflict
graph by common BFS. At the same time, we store the candidate with the
highest, second-highest and the lowest degree for each component. To decide
whether a component C is a clique, we simply check whether the vertex with
minimum degree in C matches the number of vertices in C minus one. If this
is not the case, we delete the vertex v1 with the highest degree. There is one
exception. Let a vertex be important if it corresponds to a candidate that is
the last candidate of a feature. If v1 is important and the vertex v2 with the
second highest degree in C is not important, then we delete v2 instead of v1.

Now let v be the vertex we deleted. We apply our rules in the neighborhood
of v and then the extended BFS recursively to all vertices that were adjacent
to v just before its deletion. In each level of the recursion at least one vertex
is deleted, and each edge is considered at most twice by BFS. Thus, if each
of the n features has a constant number of candidates, we have at most O(n)
recursion levels and each takes at most O(k) time. This results in O(nk) time
for the new phase II compared to O(n + k) for the previous version.

Computing a maximum-cardinality bipartite matching takes O(k
√

n) in
practice.

3.2.2 Experiments

We compare our algorithms Rules, EI-1∗, and EI+L3 to the following five
other methods that we all implemented in C++.

Anneal is a simulated-annealing algorithm based on the experiments by Chris-
tensen et al.. We follow their suggestions for the initial configuration, the
objective function, a method for generating configuration changes, and the an-
nealing schedule [CMS95]. In order to save time, we allowed only 30 instead
of the proposed 50 temperature stages in the annealing schedule. This did not
seem to influence the quality of the results.

Greedy picks repeatedly the leftmost label (i.e. the label whose right edge
is leftmost), and discards all candidates that intersect the chosen label. This
simple algorithm has an approximation factor of 1/(H + 1), where H is the
ratio of the greatest and the smallest label height [vKSW98]. Greedy can be
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implemented to run in O(n log n) time by using a priority-search tree and a heap,
see Remark 3.18 in Section 3.3.2 (page 71). However, our O(n2)-implementation
is simply based on lists and uses brute force to find the next leftmost label
candidate.

Match refers to the “pure” matching heuristic of Kakoulis and Tollis [KT98].
Our implementation uses the recursive extended BFS of Section 3.2.1 and the
maximum-cardinality bipartite-matching algorithm supplied by Leda [NM90].
It runs in O(kn) time. We did not apply any of our rules and did not do any
pre- or post-processing.

Match+L1 is a variant of their algorithm, also proposed in [KT98]. Here
rule L1 is applied exhaustively before the heuristic that reduces all connected
components to cliques. This does not change the asymptotic runtime behavior.

Hybrid refers to the algorithm sketched in Section 3.2.1. It combines the
heuristic by Kakoulis and Tollis that reduces connected components to cliques
with our rules L1 to L3. Our implementation uses Leda’s matching algorithm
and requires O(kn) time.

We run our algorithm and those described above on the following instance
classes. Figures 3.31 to 3.38 depict an example of each of these classes. The first
figure in each caption refers to the number of points in the depicted instance.
In some figures, an additional number in parenthesis is given, namely the size
of the solution of our algorithm Rules applied on the depicted instance. Where
Rules found a complete labeling no extra number is given.

RandomRect. We choose n points uniformly distributed in a square of size
25n× 25n. To determine the label size for each point, we choose the length of
both edges independently under normal distribution, take its absolute value and
add 1 to avoid non-positive values. Finally we multiply both label dimensions
by 10.

DenseRect. Here we try to place as many rectangles as possible on an area of
size α1

√
n× α1

√
n. α1 is a factor chosen such that the number of successfully

placed rectangles is approximately n, the number of points asked for. We do
this by randomly selecting the label size as above and then trying to place the
label 50 times. If we don’t manage, we select a new label size and repeat the
procedure. If none of 20 different sized labels could be placed, we assume that
the area is well covered, and stop. For each rectangle we placed successfully, we
return its height and width and a corner picked at random. It is clear that all
points obtained this way can be labeled by a rectangle of the given size without
overlap.

RandomMap and DenseMap try to imitate a real map using the same point
placement methods as RandomRect and DenseRect, but more realistic label
sizes. We assume a distribution of 1:5:25 of cities, towns and villages. After
randomly choosing one of these three classes according to the assumed distri-
bution, we set the label height to 12, 10 or 8 points accordingly. The length
of the label text then follows the distribution of the German Railway station
names (see below). We assume a typewriter font and set the label length to the
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number of characters times the font size times 2/3. The multiplicative factor
reflects the ratio of character width to height.

VariableDensity. This example class is used in the experimental paper by
Christensen et al. [CMS95]. There the points are distributed uniformly on a
rectangle of size 792 × 612. All labels are of equal size, namely 30 × 7. We
included this benchmark for reasons of comparability.

HardGrid. In principle we use the same method as for DenseRect and Dense-
Map, that is, trying to place as many labels as possible into a given area. In
order to do so, we use a grid of bα2

√
nc × dα2

√
ne cells with edge lengths n.

Again, α2 is a factor chosen such that the number of successfully placed squares
is approximately n. In a random order, we try to place a square of edge length
n into each of the cells. This is done by randomly choosing a point within the
cell and putting the lower left corner of the square on it. If it overlaps any of
the squares placed before, we repeat at most 10 times before we turn to the
next cell.

RegularGrid. We use a grid of b√nc × d√ne squares. For each cell, we
randomly choose a corner and place a point with a small constant offset near
the chosen corner. Then we know that we can label all points with square labels
of the size of a grid cell minus the offset.

MunichDrillholes. The municipal authorities of Munich provided us with
the coordinates of roughly 19,400 ground-water drill holes within a 10 by 10
kilometer square centered approximately on the city center. From these points,
we randomly pick a center point and then extract a given number of points
closest to the center point according to the L∞–norm. Thus we get a rectangular
section of the map. Its size depends on the number of points asked for. The
drill-hole labels are abbreviations of fixed length. By scaling the x-coordinates,
we make the labels into squares and subsequently apply an exact solver for
label-size maximization. This gives us an instance with a maximum number of
conflicts which can just be labeled completely.

In addition to these example classes, we tested the algorithms on the point
sets depicted in Figures 3.39 and 3.40, see page 58.

3.2.3 Results

We used examples of 250, 500, . . ., 3000 points. For each of the example classes
and each of the example sizes, we generated 30 files. Then we labeled the points
in each file with axis-parallel rectangular labels. We used four label candidates
per point, namely those where one of the label’s corners is identical to the point.
We allowed labels to touch each other but not to obstruct points.

Quality

The graphs in Figures 3.15 to 3.22 (see pages 53 and 54) show the performance
of the eight algorithms. The average example size is shown on the x-axis,
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the average percentage of labeled points is depicted on the y-axis. Note that
we varied the scale on the y-axis from graph to graph in order to show more
details. The worst and the best performance of the algorithms are indicated by
the lower and upper endpoints of the vertical bars. To improve legibility, we
give two graphs for each example class; on the left the results of Rules, EI-1∗,
EI+L3, Anneal, and Hybrid are depicted, while those of Greedy and the two
variants of Match are shown in the graph on the right side of each figure.

The example classes are divided into two groups; those that have a complete
labeling and those that have not. For the former group, the percentage of
labeled points expresses directly the performance ratio of an algorithm. For
examples of the latter group, which consists of RandomRect, RandomMap and
VariableDensity, there is only a very weak upper bound for the size of an optimal
solution, namely the number of labels needed to fill the area of the bounding
box of the instance completely. Thus for VariableDensity at most 2539 points
can possibly be labeled. Experiments we performed with an exact solver on
examples of up to 200 points showed that on an average about 85% of the
points in an instance of RandomRect and usually less than 80% in the case
of RandomMap can be labeled. Other than VariableDensity, these classes are
designed to keep their properties with increasing point number. This is reflected
by the fact that the algorithms’ performance was nearly constant on these
examples. We used the same set of rules as in phase I of our algorithm to speed
up the exact solver.

In terms of performance the algorithms can be divided into two groups. The
first group consists of simulated annealing, our rule-based algorithms and the
new hybrid algorithm; the second group is represented by the greedy method
and the two variants of the matching heuristic. The first group outperforms the
second group clearly in all but one example class. On RegularGrid data, the
second group and Hybrid achieve 100%, followed very closely by the remaining
algorithms; note the scale in Figure 3.20. For all example classes (except Regu-
larGrid and MunichDrillholes, where all algorithms performed extremely well),
there is a 5- to 10-percent gap between the results of the two groups.

For all examples that have a complete labeling, Rules, EI+L3, EI-1∗, and
Hybrid label between 95 and 100% of the points. Experiments on small ex-
amples hint that the same holds for larger RandomRect and RandomMap ex-
amples. For some of the example classes, simulated annealing outperforms our
algorithms by one to two percent. However, in order to achieve similarly good
results, simulated annealing needs much longer (see below), in spite of the fact
that it uses the same fast O(n log n) algorithm for detecting rectangle intersec-
tions (based on an interval tree). It is not surprising that EI+L3 is better than
Rules in most cases; recall that the rules L1 and L2 are special cases of A1 and
A2. However, we were astonished to see that Hybrid and Rules yield practically
identical results in spite of their different approaches. Only for HardGrid and
RegularGrid Hybrid was better than Rules—by merely one percent. The sim-
ilarity of their results suggests that it is the rules which do most of the work.
Rules and EI-1∗ also yield very similar results; for DenseRect, DenseMap, and
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RegularGrid EI-1∗ is slightly better, Rules on the other example classes. The
graph for VariableDensity suggests that EI-1∗ becomes worse than Rules when
the density of the candidate conflict graph increases.

In the second group, the greedy algorithm performed well given that it
makes its decisions only based on local information. Surprisingly, its results
were practically always better than that of the “pure” Kakoulis-Tollis heuristic
that relies on a global matching step. Adding rule L1 as a pre-processing step
improved the result of the matching heuristic by up to three percent. This
variant performed better than the greedy algorithm in most example classes,
but was still clearly worse than simulated annealing and our algorithms except
on the rather degenerate RegularGrid data.

Time

In Figures 3.23 to 3.30 (see pages 55 and 56) we present the running times of our
implementations in CPU seconds on a Sun UltraSparc. We used the SUN-Pro
compiler with optimizer flag -fast.

Again, to improve legibility, we give two graphs for each example class;
on the left the results of the faster algorithms Rules, EI+L3, Hybrid, and the
two variants of Match are depicted, while those of Anneal and Greedy are
shown in the graph on the right of each figure. Since EI-1∗ is only slightly
faster than EI+L3, and a difference was only perceivable for RandomMap and
VariableDensity, we dropped the graphs for EI-1∗.

Given heaps and priority search trees, the greedy algorithm would defini-
tively run faster. Our implementation of simulated annealing seems to be slower
by a factor of 2 to 3 than that of Christiansen et al. [CMS95]. This difference in
running time may be due to the machines on which the times were measured.

On large examples, Rules is faster by a factor of 2 to 10 as compared to
the matching heuristic, and by a factor of 30 to 100 with respect to simulated
annealing. Applying rule L1 as a pre-processing step speeds up the matching
algorithm up to a factor of a third.

EI+L3 (and thus EI-1∗) is slower by a factor of 2 as compared to Rules.
This is due to the fact that we did not implement REVISE as in Lemma 2.10
but with the brute-force algorithm sketched at the beginning of Section 2.4.

The fact that some of the algorithms are faster on larger than on smaller
point sets of VariableDensity, see Figure 3.30 on page 56, is due to the fact
that with the increase in density, many label candidates contain points and are
therefore eliminated during preprocessing, see also Figure 3.56 on page 60.

Phase I

Since the difference between the three variants of our algorithms (Rules, EI-1∗,
and EI+L3) does not show very clearly, we also investigated how efficient they
were in phase I, i.e. before applying the heuristic RemoveLocalTroubleMaker-
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MinCandNumber. Note that EI-1∗ is identical to EI-1 before phase II.

The graphs in Figures 3.41 to 3.48 (see page 59) show how many percent
of the given points are already labeled at the end of phase I. The graphs in
Figures 3.49 to 3.56 (see page 60) show how many percent of the label can-
didates are removed in phase I. The x-axis in these figures shows the initial
number of candidates, which is four times the number of points. Recall that we
eliminate all candidates that contain points before phase I. These removals are
also counted here.

It is not surprising that EI+L3, whose rules are a superset of those of Rules
and EI-1, is always better than both Rules and EI-1. However, it is interesting
to see that in most of the graphs EI-1 dominates Rules. EI-1 is more effective in
labeling points (in all classes except RandomMap and VariableDensity) and in
removing candidates (in all but VariableDensity). In our opinion these graphs
support the hypothesis that EI-1 represents a considerable progress compared
to Rules in attacking label-placement-type problems. It opens the road for
other efficient algorithms that achieve higher degrees of irreducibility and will
yield even better results since the need for heuristical decisions will decrease
with the gain in terms of irreducibility.

On the example class VariableDensity EI-1 is better for small examples,
while Rules does better on the larger and thus denser point sets. This seems to
be where rule L3 that is used by Rules but not by EI-1 becomes effective. At
the same time, this does not influence the runtime behavior of Rules noticeably,
see Figure 3.30, page 56.
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Quality of Results I
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Figure 3.15: RandomMap

"�#

"�$

$�%

$�&

$�'

$�#

$�$

( %

( &

% )�%�% * %�%�% * )�%�% &�%�%�% &�)�%�% +�%�%�%

, , ,
, , , , , , , , ,

-
-
-
-
- - - - - - - -

.
.
.
.
. . . . . . . .

/
/
/
/ / / / / / / / /

/
/
/
/ / / / / / / / /

0 0 0
0 0 0 0 0 0 0�0 0

1 1 1
1 1 1 1 1 1 1�1 1

1
1 1

1 1 1 1 1 1 1 1 1

2
2 2

2 2 2 2 2 2 2 2 2

3�4

3�5

3�6

3�7

3�8

8�4

8�5

8�6

4 9�4�4 : 4�4�4 : 9�4�4 5�4�4�4 5�9�4�4 ;�4�4�4

<
< <

< < < < < < < < <

=
=
=
= =�= = = = = = =

>
>
>
> >�> > > > > > >

? ? ?
? ? ? ? ? ? ? ?�?

? ? ?
? ? ? ? ? ? ? ?�?

Figure 3.16: RandomRect
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Figure 3.17: DenseMap
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Quality of Results II
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Figure 3.22: VariableDensity
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Running Time II
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Figure 3.27: HardGrid
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Figure 3.30: VariableDensity
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Example Classes

Figure 3.31: RandomMap 250 (193) points Figure 3.32: RandomRect 250 (212) points

Figure 3.33: DenseMap 253 (249) points Figure 3.34: DenseRect 261 (258) points

Figure 3.35: HardGrid 253 (252) points Figure 3.36: RegularGrid 240 points

Figure 3.37: MunichDrillholes 250 points Figure 3.38: VariableDensity 250 points
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58 Chapter 3. Point Labeling: Label-Number Maximization

Two Real-World Examples

Antik und Trödel NehringModellbahnen Brause
An− und Verkauf SchürerElla’s Kinder Paradies

Fundgrube

Schmuck Seestr. 42

Juwelier Stern

Gelegenheits−Shop

Antik & KunstKinderkiste

Gebrauchtwaren Randjelovic

Antik Leonhard
Antiquitäten − Trödel Grothe

Platten Unrest
Modelleisenbahnen Peter
Antiquariat Toewe

Gebrauchtwaren aller Art
Buffalo Records

BIKE Market

Elegant aus 2. Hand

JuFu’s Trödelkiste

Trödelschatulle

Antiquitäten Zintl
Antiques Sophienstraße

Humana Second Hand
LP COVERAntiquitäten An− und Verkauf

Buch− und Kunstantiquariat Haucke

Manu’s Trödelladen

Humana Second Hand

Antiquariat Güntheroth Schmökerkabinett

Antiquariat ZeisigAntiquariat Kunze

An− und Verkauf Winkler

Second Hand Dolle

Antiquitäten ARBES

Antiquitäten Lauterbach

Marien−Antiquariat

Dralon

Trödelsprotte Technikcenter Antiquariat Doering
Trödel Rode

Antiques Dockal

Figure 3.39: left: 357 tourist shops in Berlin, right: 45 of 63 labeled.
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Figure 3.40: 373 German railway stations, 270 labeled.
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Phase I: Number of points labeled
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Figure 3.41: RandomMap
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Figure 3.42: RandomRect
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Figure 3.43: DenseMap
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Phase I: Number of removed label candidates
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3.3 Slider Models

This section is joint work with Marc van Kreveld and Tycho Strijk, both Uni-
versiteit Utrecht [vKSW98, vKSW99].

In this section we drop the restriction that a label can only be placed at a
finite number of positions. Instead, we allow any position on the edges of the
rectangle to coincide with the point, see Figure 3.1. Such a model is called a
slider model. We will study how many more labels can be placed with slider
models than with fixed-position models, and to what extent slider models re-
quire more difficult algorithms. We generally assume that labels have equal
height but not necessarily the same width. This is a natural assumption if
labels contain text or numbers of a fixed font size. We consider the rectangle
that represents a label to be closed, which implies that labels are not allowed
to touch.

Slider models have been used in two previous papers. Hirsch’s paper [Hir82]
defines repelling forces for overlapping labels and computes translation vectors
for them. After translation, this process is repeated and hopefully, a labeling
with few overlaps appears after a number of iterations. This is completely
different from our approach, which is combinatorial. The paper by Doddi et
al. [DMM+97] contains a number of labeling problems and algorithms, each
using a different labeling model. One of the problems is solved in a slider
model, where each label is allowed to rotate around the point to be labeled.
The labels must be equal-size squares (or other regular polygons); the objective
is to maximize the label size.

Point labeling has long been known to be NP-complete for fixed-position
models [FW91, FPT81, KR92, MS91]. However, this does not imply that label
placement is also hard for slider models. In Section 3.3.1 we show that this is
the case; we prove that it is NP-complete to decide whether a set of points can
be labeled in the four-slider model.

In Section 3.3.2, we show that the slider models allow a simple factor- 1
2

approximation algorithm that uses O(n) space and O(n log n) time. This was
already known for the fixed-position models [AvKS98]. Our algorithm is greedy
in that it always places the label whose right edge is leftmost among the right
edges of all possible label placements. The algorithm uses a kind of generalized
sweep-line in order to select the next label. We remark that our algorithm
can be adapted to labels of varying height, but then the approximation factor
depends on the ratio of maximum and minimum label height.

In Section 3.3.3, we give a polynomial time approximation scheme for each
of our slider models, showing that for any constant ε > 0, there is a polynomial
time algorithm that labels a fraction of at least 1 − ε of the optimal number
of labels that can be placed. Again, this result was already known for fixed-
position but not for slider models.

In order to support the practical relevance of the greedy algorithm, we do
a thorough experimental analysis in Section 3.3.4. We have implemented our
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62 Chapter 3. Point Labeling: Label-Number Maximization

greedy algorithm for the six models. We test it on three data sets from different
application areas. One contains 1000 city names of the USA, another contains
a data posting with 236 measurements, and the third contains 75 sequence
numbers in a scatter plot near a regression line. We give tables showing how
many points are labeled in each model for a range of font sizes. It appears that
the greedy algorithm produces about 10–15% more labels for a slider model
than in the corresponding fixed-position model. This improvement is significant,
because more labels are placed in dense areas. We also compare our algorithm
to a simulated annealing algorithm proposed by Christensen et al. [CMS95] on
a sequence of randomly generated point sets.

3.3.1 NP-Hardness

The complexity of labeling points with axis-parallel rectangular labels from a
finite set of label candidates is well established in the literature [FW91, FPT81,
IL97, KR92, MS91]. Slider models are a generalization of those fixed-position
models that force a label to touch the point to be labeled. However, this
observation does not yield the NP-hardness of the slider models, since it is not
clear how an instance for a fixed-position model can be reduced to an instance
of a slider model. Recall for example that the NP-completeness of 0-1-integer
programs does not apply to their relaxation. Therefore we show that placing
unit square labels in the 4-slider model is NP-complete.

Theorem 3.15 It is NP-complete to decide whether a set of points can be
labeled with axis-parallel unit squares in the 4-slider model.

Proof. The problem is in NP for the following reason. We can guess (i.e.
compute non-deterministically) a permutation of the points and an integer be-
tween 1 and 4 for each point. This number indicates which edge of a label
will be attached to the point. Then we go through the points according to
the permutation and check for each point whether we can label it such that its
label touches it on the chosen edge—given the labels we have already placed.
If the new point can be labeled, we move its label into a canonical position:
Depending on whether the pre-computed edge is horizontal or vertical, we slide
the label along this edge as far left or down as possible. If all points can be
labeled this way, we accept. Otherwise we discard the subset. The reason why
we can reject in this case is the following. If all points could be labeled, we
could push all labels in their canonical positions and name a permutations of
the points, such that the procedure outlined above would produce the same
canonical label placement.

The proof of the NP-hardness is by reduction from planar 3-SAT. Licht-
enstein showed that this restriction of 3-SAT is NP-hard [Lic82]. Our proof
follows Knuth and Raghunathan’s proof of the NP-hardness of the Metafont-
labeling problem [KR92]. We encode the variables and clauses of a Boolean
formula φ of planar 3-SAT type by a set of points such that all points can only
be labeled if φ is satisfiable, i.e. if there is a variable assignment such that all
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Section 3.3. Slider Models 63

clauses evaluate to true. The advantage of a planar 3-SAT formula is that the
variables can always be arranged on a straight line such that they are connected
by non-intersecting three-legged clauses, see [KR92, Figure 5].

Figure 3.57: Label placements
encoding true and false.

Figure 3.58: Zig-zagging cluster patterns model
a variable; the labels its Boolean value.

The main observation leading to our proof is the following. Given a cluster
of four points (the corner points of a square with edges slightly longer than 1/2
and rotated by a small angle against the axes), there are two fundamentally
different ways to label these points, see Figure 3.57. Under the condition that
all points have to be labeled, the points can only be labeled as on the left side
(which allows some sliding) or on the right side (where the labels are nearly
fixed) of Figure 3.57. Note that is impossible that some points are labeled as
on the left and others as on the right side. This gives us a means to encode
the Boolean values of a variable in the planar 3-SAT formula φ that we want
to reduce to a set of points.

The building blocks (or “gadgets”) of our reduction are the clusters for
variables, three-legged “combs” for clauses, and adapters connecting variables
to clauses. In order to be able to connect a variable to all clauses in which
it occurs, we model it not by one but by several four-point clusters in a zig-
zag pattern as shown in Figure 3.58. Then still all points have to be labeled
according to one of the two schemes mentioned above.

x
y

Figure 3.59: Clause with pressure
from two variables.

x y

Figure 3.60: Clause with pressure
from three variables.

We model the clauses by point sets which resemble large combs with three
legs, see Figure 3.59. The fourth column of points from the right and the left
can be repeated as often as needed to reach the three variables belonging to
the clause. The legs can be extended by duplicating the bottom-most row of
points. Each leg is connected to a variable by an adapter. An adapter consists
of three points a, b, and c. There are two types of adapters, see Figure 3.61
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64 Chapter 3. Point Labeling: Label-Number Maximization

and 3.62. Which type is chosen depends on whether the variable is negated in
the clause. If the variable is set to a value which negates the corresponding
literal in the clause, the lowest point b in the adapter must be labeled upwards,
i.e. the label sticks into the pipe leading to the clause in question. This forces
all other points above b to have their label above them as well. Graphically
speaking, pressure is transmitted. This is indicated by arrows in Figure 3.59
to 3.62. When the pressure arrives in the top row of points in the representation
of a clause, it is transmitted further horizontally, see the labels of the points x
and y in Figure 3.59 and 3.60. Note that a variable assignment which fulfills
the corresponding literal does not force anything; no pressure is exerted.

If all literals of a clause evaluate to false, then the points of type b in the
adapters of the corresponding variables are labeled upwards and pressure is
transmitted through all three vertical pipes into the clause. In this case there
is a point which cannot be labeled, see Figure 3.60. If, however, there is at
least one vertical pipe without pressure, all points belonging to a clause can be
labeled, see Figure 3.59.
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Figure 3.61: Adapters for unnegated lit-
erals exert pressure when a variable is
set to false.

ca

b b

ca

Figure 3.62: Adapters for negated
literals exert pressure when a vari-
able is set to true.

Hence the question whether φ is satisfiable is equivalent to asking whether
all points can be labeled in the 4-slider instance to which φ is reduced. It
is easy to see that the reduction is polynomial: if φ consists of m clauses,
the instance has O(m2) points. Their position can certainly be computed in
polynomial time. r
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3.3.2 A Greedy Approximation Algorithm

In this section we describe algorithms for point feature labeling in the slider
models. They apply to labels of fixed height but arbitrary width. We describe
an O(n log n) time algorithm for the slider models that approximates an optimal
solution in the following sense. If the maximum number of labels that can
be placed is kopt, then our algorithm places at least kopt/2 labels: a factor- 1

2
approximation algorithm. In most data sets, however, we expect to come much
closer to the optimum.

For the fixed position models, a simple O(n log n) time, factor- 1
2 approxima-

tion algorithm was described recently by Agarwal et al. [AvKS98]. We obtain
the same result for the slider models. We’ll only describe the most general four-
slider algorithm; it is an extension of the top-slider and two-slider algorithms.
It is based on a greedy strategy. For convenience we’ll first describe the algo-
rithm with labels allowed to touch, unlike in the previous sections where labels
were considered to be closed. Later we show that simple adaptations can be
made to obtain non-touching labels.

Given a set of points with labels that have already been placed, and a set
of points that don’t have a label yet, define the leftmost label to be the label
whose right edge is leftmost among all label candidates of unlabeled points and
that does not intersect previously placed labels.

Lemma 3.16 Given labels of fixed height and any of the slider models, the
greedy strategy of repeatedly choosing the leftmost label finds a labeling of at
least half the number of points labeled in an optimal solution.

Proof. Given a set P of points and a sliding model M , let Lopt be an optimum
M -labeling. Let Lleft be the set of labels computed by the greedy strategy.
The set Lleft is maximal in the sense that no label can be added to it without
intersecting another label in Lleft. So any label in Lopt must either be in Lleft

as well, or intersect some label in Lleft, whose right edge is at least as much to
the left. Charge each label in Lopt \ Lleft to a label in Lleft that lies as least
as much to the left and intersects it. For any label in Lopt ∩ Lleft, charge it to
itself.

We claim that any label in Lleft is charged at most twice, from which the
lemma follows. For labels in Lopt ∩ Lleft the claim is obviously true. For any
other label l ∈ Lleft, observe that a label of Lopt that charges l must intersect
the closed right edge of l. Since all labels have unit height, and the labels
in Lopt don’t intersect each other, there can only be two labels of Lopt that
intersect the closed right edge, and hence, charge l. r

A brute-force algorithm for this simple strategy would need O(n3) steps. In
order to achieve an O(n log n) time bound, we must use some common geometric
data structures.

Let {p1, . . . , pn} be the set of points that has to be labeled. The label of
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pi is denoted li, and the reference point of a label is its lower left vertex. The
possible positions of the reference point of a point pi are represented by four
line segments. Two are horizontal, h2i−1 and h2i, and two are vertical, v2i−1

and v2i. Their position is exactly the position of the edges of the label li if it
were placed left and below pi. The width of li is denoted wi, and the height
is 1. We can always scale the y-coordinates to this situation.

If a label li has been placed, then no reference point position inside li is
possible. The same holds for reference points inside the rectangle l′i precisely
one unit below li (since any label extends one unit above its reference point).
The open rectangle that exactly covers li and l′i and their mutual bounding
edge is the extended rectangle l̃i. Since labels are placed from left to right, no
reference point positions in nor to the left of l̃i will still be accepted by the
algorithm. Suppose a subset of the points has already received labels by the
algorithm.

Figure 3.63: Frontier of the placed labels (dark grey) and their lowered copies
(light grey).

Hright Hint
Vint,right

Figure 3.64: The sets Hright, Hint, and Vint,right. The dashed lines in the middle
picture separate the segments of Hint that are in different red-black trees Ti.

The right envelope of all extended rectangles l̃ for all labels l outlines all
reference point positions that are impossible, or cannot occur any more, see the
bold line in Figure 3.63. We call this right envelope the frontier and denote it
by F .
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To determine the next leftmost label, we only have to consider the frontier
F and the segments h2i−1, h2i, v2i−1, and v2i of the points pi to the right of
F that don’t have a label yet. Given a horizontal segment h and the frontier
F , there are three possibilities: (i) h lies completely left of F . Then h can be
discarded; a point on it cannot be a reference point for a label that doesn’t
overlap another label. (ii) h lies completely right of F . Then the leftmost point
on h is a candidate for the next leftmost label. (iii) h intersects F . Then a point
just right of the intersection point is the candidate. For a vertical segment v, a
similar situation occurs. If v lies left of F , it can be discarded; if v lies right of
F , any point on v can be chosen; and if v and F intersect, then any point on v
right of F can be chosen as a candidate.

Let H be the set of all horizontal segments that represent reference points
of the labels. Similarly, let V be the set of the corresponding vertical segments.
Let Hright ⊆ H be the subset of all horizontal segments that lie completely right
of F , see Figure 3.64. Let Hint ⊆ H be the subset of all horizontal segments
that intersect F . Let Hleft ⊆ H be the subset of all horizontal segments that lie
completely left of F (these cannot give a valid label any more). Let Vint,right ⊆ V
be the subset of all vertical segments that contain at least some point right of
F .

To maintain the frontier and the candidates for the best reference point
efficiently, we need some data structures. Some of the data structures are used
to find the next leftmost label; other data structures are only used to update
the former ones efficiently. The data structures are red-black trees T , heaps
H, and priority search trees P [McC85]. These are also described in standard
textbooks on algorithms [CLR90] and computational geometry [dBvKOS97].

Finding the Leftmost Label

We use three data structures to find the leftmost label position among the ones
represented by Hint, Hright, and Vint,right. They are:

1. For each segment in Hright we store the x-coordinate of its right endpoint.
This corresponds to the right edge of a label whose reference point is the
left endpoint of the segment. These values are stored in a heap Hright,
where the root stores the minimum.

2. The subset Hint is stored as follows. For each vertical segment fi of F , we
maintain a red-black tree Ti with the segments in Hint that intersect fi (see
the middle picture of Figure 3.64). These are stored in the leaves sorted on
y-coordinate. With each leaf we also store the width of the corresponding
label. We augment each red-black tree by storing at each internal node the
minimum width label in the subtree of that node [CLR90]. We use a heap
Hint to have fast access to the segment in Hint that allows the leftmost
label placement. Hint stores for each Ti the sum of the x-coordinate of
fi and the minimum width of the segments in Ti. Thus the root of Hint

corresponds to the leftmost label among the labels represented by Hint.
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3. For the vertical segments in V , we don’t maintain the set Vint,right but
some set V ′ for which Vint,right ⊆ V ′ ⊆ V . The set V ′ may contain vertical
segments that lie completely left of the frontier; these are removed later.
The x-coordinate of each segment of V ′ is stored in a heap HV . After
extracting the minimum from HV , we test whether it is in Vint,right, as
described later in 3a. If not, we discard it and extract the next minimum
from the heap, until we find one in Vint,right.

We query the three heaps described above. Among their answers, one cor-
responds to the leftmost label. This is the label we place.

Update assistance structures

After the leftmost label has been determined, we must update the frontier F
and several of the data structures described above. This is not so easy. We’ll
use some more data structures that help to do the updating after the frontier
has changed. Let fnew be the right edge of the extended rectangle l̃ of the newly
placed label l. The new frontier F is the right envelope of the old frontier and
fnew, see Figure 3.65.

fnew

T1

T2

T3
T4
T5

T6

T7
T8

T1

T2

T9

T10

T11

T7
T8

Figure 3.65: When the fat horizontal segment s from Hint is chosen, the frontier
becomes the right envelope of fnew and the old frontier. The new label is dark
grey. The grey range (light and dark) is the one with which queries in the
priority search trees are done.

1a. To determine which segments move from Hright to Hint or Hleft when the
frontier changes, we use a priority search tree Pleft on the left endpoints
of segments in Hright. After placing a label, we query Pleft with the region
left of fnew (grey in Figure 3.65) to locate the left endpoints of all segments
that are no longer in Hright. We delete these endpoints from Pleft, and we
delete the corresponding segments from the heap Hright. For each deleted
segment we test whether its right endpoint is right of the frontier. If so,
that segment is in Hint, and we insert it in the data structures for Hint.
If not, the segment is in Hleft and can be discarded.
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2a. To determine which segments move from Hint to Hleft when the frontier
changes, we use a priority search tree Pright on the right endpoints of
segments in Hint. After placing a label, we query Pright with the region left
of fnew (grey in Figure 3.65) to locate all right endpoints of segments that
have moved from Hint to Hleft. Then we delete the entries corresponding
to these segments from the trees Ti, from the heap Hint and from Pright

itself.

When the frontier changes, we must also reorganize the red-black trees
andHint as a whole. Recall that we use a red-black tree Ti for each vertical
segment of F . At most three new vertical segments can arise when the
frontier changes, but many more vertical segments may cease to exist. We
use the trees of the destroyed vertical segments of F to assemble the at
most three new red-black trees. This is done by the operations Split and
Concatenate, which are standard for red-black trees. In Figure 3.65
the trees T3, T4, T5, and T6 are reorganized to the new trees T9, T10, and
T11. The heap Hint is updated by removing the value of each destroyed
tree, and by inserting the value of each new tree.

3a. Due to the lazy deletion of segments from HV , we don’t need any addi-
tional data structures to update the heap on the vertical segments. How-
ever, we need to decide whether an extracted minimum from the heap
really is in Vint,right. We use an augmented red-black tree TV for this test.
The leaves of this tree store the vertical segments of the frontier sorted
from bottom to top. Each leaf also stores the x-coordinate of its segment.
Each internal node is augmented with a value that represents the mini-
mum x-coordinate in its subtree. For any query y-interval, a search in TV

reports the minimum x-coordinate of the frontier in this y-interval.

Algorithm

While there are still segments in any of the heaps Hint, Hright, or HV , do the
following steps:

1. Let v be the vertical segment that corresponds to the minimum of HV .
Search with v in the augmented red-black tree TV to see if v has some
point right of F . If not, remove v from HV and repeat this step.

2. Determine the smallest among the minima of the three heaps Hint, Hright,
and HV . Remove this minimum from its heap. Let li be the label position
of point pi corresponding to this minimum. Choose li as the next label
to be placed.

3. Determine fnew, the right edge of the extended rectangle l̃i. Update the
frontier F with fnew. Update the augmented red-black tree TV (from 3a.)
with fnew.

Search with the region horizontally left of fnew (grey in Figure 3.65) in
the priority search trees Pleft and Pright (from 1a and 2a) and update the
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structures Hright (from 1), Pleft(from 1a), Hint and the Ti’s (from 2), and
Pright (from 2a) as explained in the description of these structures.

4. Remove all other reference segments corresponding to pi from the data
structures, in which they occur.

Analysis

The basic structures used by the algorithm are heaps, red-black trees, aug-
mented red-black trees, and priority search trees. All of these structures require
O(n) space for a set of size n. Also, these structures can be updated in O(log n)
time per insertion or deletion, or extract-min for heaps. Red-black trees allow
Split and Concatenate in O(log n) time. The queries on the red-black trees
take O(log n) time, and the queries on the priority search trees take O(k+log n)
time, where k is the number of points found in the query range.

The algorithm’s runtime of O(n log n) follows from the following observa-
tions. Any vertical segment fnew creates one vertical edge in the frontier F , and
shortens at most two of them. It follows that throughout the whole algorithm,
at most 3n− 2 different vertical edges appear in F . Therefore, at most 3n− 2
vertical edges can be destroyed in the whole algorithm (although many can be
destroyed when one vertical segment fnew is added to the frontier). This bounds
the total number of red-black trees Ti (from 2) that can appear, the total num-
ber of Split operations, and the total number of Concatenate operations by
O(n). Since Split and Concatenate operations take O(log n) time each, at
most O(n log n) time is spent on splitting and concatenating. The augmented
red-black tree TV (from 3a) can also be maintained in O(n log n) time for the
same reasons.

For each new label placed, one query is done on each of the two priority
search trees Pleft and Pright. Such a query takes O(k + log n) time, where k
is the number of points in the range. These points are always deleted from
the priority search tree, so the algorithm cannot spend time on reporting these
points again later in the algorithm. The priority search trees are initialized
with one point for each horizontal segment, and we never add more points to
them. So in total, at most O(n log n) time is spent for initializing, querying and
updating the priority search trees.

Closed labels

So far we have only discussed the placement of labels that were allowed to touch
at the boundaries, that is, the disjoint placement of open rectangles. How can
the ideas be adapted to incorporate closed rectangles as labels? Firstly, we let
the frontier represent a closed region where reference points of labels cannot lie
any more. But the real problem is that we cannot choose and place the leftmost
label, because this is not well-defined in the slider model with closed rectangles.
The solution is to make a distinction between a placement of a rectangle at
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some position with x-coordinate x̄ and a placement at some position with x-
coordinate arbitrarily close to x̄, but still strictly to the right of it. Such a
distinction can be made by using a symbolic value ε > 0 that is arbitrarily close
to 0. In case of ties in x-coordinates of labels in the heap, one of them may
have been moved symbolically to the right, which resolves the tie. If neither or
both labels have been moved symbolically, there is a real tie and we can choose
either label as the leftmost. When the algorithm finishes and a set of labels has
been selected, then the actual positions of these label can be computed.

We conclude:

Theorem 3.17 Given n points in the plane, and for each point a rectangular
label with fixed height and some given width, then for each of the fixed-position
and slider models, there is an O(n log n) time and linear space algorithm which
places at least half the optimal number of labels.

Remark 3.18 For fixed position models, the algorithm can be implemented
using only one priority search tree and one heap. We initialize the priority
search tree with the reference points of all label positions. In the heap, we store
the sum of x-coordinate and label width for each reference point. When the
label corresponding to the heap’s minimum is chosen, we query in the priority
search tree with the appropriate range to find the reference points that are no
longer valid. We remove the entries of these reference points from heap and
priority search tree, and repeat by selecting the minimum from the heap.

3.3.3 A Polynomial Time Approximation Scheme

In this section we present schemes for approximating the number of points we
can label with unit height labels in all slider models. First we will only consider
the top-slider model and then show how these results can be generalized to
polynomial time approximation schemes for the two- and four-slider model.

Top-slider model

Given a constant ε ∈ (0, 1) we show that there is an algorithm that finds a
top-slider labeling of at least (1 − ε) · k1S

opt points, where k1S
opt is the number

of labeled points in an optimal top-slider solution. The algorithm has running
time O(n4/ε2

).

We use line stabbing to split the problem into smaller units as suggested
in [AvKS98]. We stab the unit height labels with horizontal lines of spacing
strictly greater than 1 such that each label is stabbed by exactly one line. This
can be done in O(n log n) time [AvKS98] and gives us a partition of the set of
input points P into disjoint sets P1, . . . , Pm, where Pi contains all points whose
label intersects the i-th line, and m is the number of stabbing lines.

If we want to obtain an approximation ratio better than 1/2, we cannot
afford to discard every second subset Pi of input points. Instead, we have to
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look at groups of t consecutive subsets. For 1 ≤ i ≤ t + 1, let

P i = P −
bm−i

t+1
c

⋃

j=0

Pi+j·(t+1)

be the set of points that we get from P if we discard every (t + 1)-st subset
starting with Pi. This makes sure that if we compute the optimal solution for
t consecutive lines, then we get an approximation for P i since solutions for its
blocks of t lines do not interfere with each other. The pigeon hole principle
guarantees that one of the t + 1 sets of type P i has an optimal solution of size
at least t

t+1 · k1S
opt. In [AvKS98] this approach was taken, where the optimal

solution for the t-lines problem was solved by dynamic programming. In the
case of sliding labels one cannot take this approach because the number of
candidate label positions in the discretization is superpolynomial. We will still
arrive at a polynomial time approximation scheme for the original problem by
approximating the t-lines subproblem.

Suppose we find a k
k+t−1 -approximation for the t-line problem, then we can

approximate the original problem by a factor of γ = k
k+t−1 · t

t+1 , which depends
on the two parameters t and k. Setting k = (t+1)(t−1) and t = d2/εe−2 then
yields γ = t/(t + 2) ≥ 1 − ε, the desired approximation factor. If the instance
needs less than d2/εe − 2 stabbing lines, the solution of the problem becomes
easier. In this case we set k = (m− 1)(d1/εe − 1) and approximate the m-line
problem directly with a factor of γ = k

k+m−1 ≥ 1− ε. The running time would

then slightly improve to nk+1. So we can assume t ≤ m from now on.

It remains to show how we can approximate an optimal solution for t lines
by a factor of k

k+t−1 . The idea is simple and uses the geometrical flavor of the
problem. We call a labeling of a set of points canonical if all points are labeled
and, going through the points from left to right, all labels have been pushed as
far left as possible, that is, until they nearly hit another label or have arrived
in their leftmost position. (Recall that labels are not allowed to touch each
other. As in Section 3.3.2 we treat the distinction between an x-coordinate
and a position slightly more to the right symbolically.) Now we just look at all
canonical label placements of k points. For each such placement we consider
the vertical line that goes through the right edge of its rightmost label. We
search for the canonical labeling of k points with the leftmost such line `left, see
Figure 3.66. (We have not visibly drawn the infinitesimally small spaces between
the labels.) We call this placement leftmost and compare it to the leftmost k
labels of the optimum. Let `opt be the vertical line that goes through the k-th
leftmost right label edge of the optimal solution, see Figure 3.67. Then we
know that `left is at least as far to the left as `opt. We would like to repeat this
process with all sets of k points to the right of `left. We must label them under
the restriction that their labels can only be placed to the right of `left. If we do
so, by how much do we get worse than the optimal solution?

By definition `opt touches one label of the optimal solution and intersects
up to t− 1 labels on the other t− 1 lines. Since `left is not to the right of `opt,
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`left

Figure 3.66: Leftmost label placement for a subset of k = 4 labels and t = 2
lines.

`opt

Figure 3.67: An optimal solution for the same points as in the figure above.

the constraint that our leftmost labeling exerts on the next group of k labels
is no stronger than the constraint defined by the labels of the optimal solution
touching or intersecting `opt, see the gray zones in Figure 3.66 and 3.67. Thus
we have placed our first k labels in at most as much ‘space’ as the first k + t−1
labels of the optimal solution. This makes sure that the next line like `left,
defined by the next (restricted) leftmost labeling of k points, will again be at
most as far to the right as the vertical line through the (2k + t− 1)-st leftmost
right label edge of the optimal solution. By repeating this process until all
points are used up, we get a k/(k + t − 1)-approximation for the number of
labeled points in an optimal solution since we always fit k labels in at most as
much space as k + t− 1 labels of the optimal solution. This shows that for the
appropriate choice of t and k, we obtain a (1− ε)-approximation for the whole
problem.

Let n′ be the number of points whose labels intersect a fixed set of t consec-
utive lines. What is the time we need to compute the first leftmost placement
of k out of these n′ points? We enumerate all

(

n′

k

)

choices of these k points.
For each choice we have to find its canonical labeling—if there is any. Observe
that labeling a point p1 can constrain the labeling of a point p2 to its left only
by not at all allowing to label it. Since we are only interested in subsets of k
points that can be labeled completely, it is enough to go through the points
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in lexicographical order and try to place each of them leftmost. We can find a
label’s leftmost position by going through the list of its predecessors once, so
finding a canonical labeling can certainly be done in O(k2) steps. This means
that it takes us O((n′)k) steps to compute the first leftmost labeling. Thus we

need Tt−line(n
′) =

∑dn′/ke
j=0 O((n′ − jk)k) = O((n′)k+1) time for an approximate

solution of the t-line problem. In order to get the total running time Ttotal,
we must sum up Tt−line over all possible groups of t consecutive lines. In every
group there are at most n points and m, the number of stabbing lines, is at most
n as well. Hence Ttotal(n) = O(nk+2). Using k = (t + 1)(t− 1) and t = 2/ε− 2
as above yields Ttotal(n) = O(n4/ε2

).

Two and four sliders

The scheme for the top-slider model immediately translates into a polynomial
time approximation scheme for the two-slider model. For each point of the
input set, we simply place a copy at unit distance below it. (To avoid trouble
with an original point at the same place, we can move all copies upwards by
an infinitesimal amount.) Then only one point of every such pair is labeled in
a top-slider solution. Optimal top-slider solutions for this instance correspond
one-to-one to optimal two-slider solutions for the original instance. The running
time increases only by a constant factor.

In order to use the ideas given above for the four-slider model, we have to
do a little more work. Since labels can now move up and down, the use of
stabbing lines is not appropriate any more. Instead, we partition the set of
input points into m strips of unit height. A strip contains all points between
its two bounding horizontal lines and all points that lie on the upper boundary.
Similar to our approach above, we will approximate the solution of t consecutive
strips. This time, however, we have to drop the points of two strips between two
blocks to guarantee that solutions of one block do not interfere with solutions
of an adjacent block. The pigeon hole principle makes sure that one of the
t + 2 different sets we get by gluing blocks together has at least cardinality
n · t

t+2 . Suppose we have a k
k+t -approximation for the t-strip problem, then

we could approximate an optimal solution of the whole instance by a factor of
γ = k

k+t · t
t+2 . Setting k = t(t + 2) and t = d3/εe − 3 would then result in

γ = t/(t + 3) ≥ 1− ε, the desired approximation factor.

The additional difficulty in designing an approximation for the t-strip prob-
lem is that we do not know on which of its four sides a label in the optimal
solution is attached to its point. We can handle this by considering all four
possibilities for each of the k points we have chosen. Now we define a canonical
labeling as follows. If a label is to be attached to its point on the top or bottom
edge, we again push it as far left as possible. If however its point is going to lie
on the right or left edge, we push the label as far down as possible. The idea
with considering a special order of the points does not work in this setting, so
we try to label the k points in every of the k! possible orders, and for every
order we check each of the 4k possible kinds of placement: left, right, bottom,
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or top. In this way we can again find a leftmost labeling and a line `left. The
constraint that the leftmost labeling exerts on the next group of k labels is at
most as strong as the corresponding constraint of the assumed optimal solution.
As above, the constraint of the optimal solution is defined by `opt and the labels
of the optimal placement intersected by `opt. Apart from the label whose right
edge defines `opt, at most t labels can intersect `opt without intersecting each
other since their points have to lie within a vertical strip of height strictly less
than t (the bottom borderline is excluded). Hence we have a k

k+t -approximation
for the t-strip problem.

In the approximation algorithm for the four-slider model, we need
(

n′

k

)

k!4kk2

steps to compute the first leftmost labeling. This still yields an overall running
time of O(n4/ε2

).

Theorem 3.19 For each of the slider models and for any constant ε > 0, there
is a polynomial time algorithm which labels at least (1− ε) times the maximum
number of input points that can be labeled.

3.3.4 Implementation and Experimental Results

The greedy algorithm of Section 3.3.2 has been implemented for the fixed-
position and slider models and tested on three real world data sets from different
application areas and on a large sequence of randomly generated point sets. In
this section we compare experimentally how many labels are placed in each of
the six models.

The algorithms were implemented by Tycho Strijk, Universiteit Utrecht,
in C++. For the data structures he made use of the LEDA library [NM90].
He simplified the implementation described in Section 3.3.2 in three respects.
Firstly, the red-black trees Tk can be expected to contain only a few horizontal
segments at any moment. So he used simple lists for them. Secondly, LEDA
does not have an implementation for priority search trees; he used orthogonal
range trees instead. Thirdly, the augmented red-black tree HV does not profit
much from the augmentation in practice. When searching for the minimum
x-coordinate of the frontier F in a y-interval, he simply scans all leaves of the
red-black tree in that interval. One can expect to visit only a few leaves, since
the y-interval is only twice the unit height.

The first of the three data sets contains 1000 cities of the USA that must be
labeled with their name. We used several different font sizes, and determined
the bounding boxes of the label text. The tables of Figure 3.68 show the results.
The codes 1P, 2P, and 4P are shorthand for the 1-, 2-, and 4-position models.
The codes 1S, 2S, and 4S are shorthand for the corresponding slider models.
The values in the second table show the results in percentages with respect to
the 4-position labeling.

The second data set contains the 236 points of a data posting. The labels are
measurement values and come from a book on geostatistics [IS89]. Figure 3.69
shows the labeled data set and the number of labels placed in each model.
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Number of labels placed
model

font 1P 2P 4P 1S 2S 4S
5 851 950 971 990 993 999
6 777 910 952 967 982 986
7 705 852 901 932 964 972
8 686 845 896 918 952 958
9 607 758 817 836 890 902

10 554 704 769 787 853 872
11 520 657 721 735 805 831
12 500 637 709 719 796 813
13 448 570 638 649 716 734
14 433 557 624 637 695 712
15 382 494 550 556 627 645

Percentage w.r.t. 4-position model
model

font 1P 2P 4P 1S 2S 4S
5 87 97 100 101 102 102
6 81 95 100 101 103 103
7 78 94 100 103 106 107
8 76 94 100 102 106 106
9 74 92 100 102 108 110

10 72 91 100 102 110 113
11 72 91 100 101 111 115
12 70 89 100 101 112 114
13 70 89 100 101 112 115
14 69 89 100 102 111 114
15 69 89 100 101 114 117

Figure 3.68: One thousand cities on a large map.

The third data set contains 75 points of a regression analysis. Here the
points are clustered near a regression line, and the labels are simply identifica-
tion numbers. Figure 3.70 shows the labeling.

The bottom tables of Figures 3.69 and 3.70 show that the 4-slider model
sometimes places 10–15% more labels than the 4-position model. This improve-
ment is significant, since it is always caused by a better labeling of the areas
that are difficult to label. We also created artificial, pseudo-random data sets
where all areas are hard to label. These sets were constructed by first placing
all points on a grid and after that they were moved randomly a slight distance
away from the grid point. Here we indeed found higher improvements: up to
92%.

Efficiency was not the main motivation for these experiments. Still it ap-
peared that the label placement was computed in a few seconds for all data
sets we tried, up to 2500 points. A plot shown on a computer screen seldom
contains more than 1000 labeled points.

Christensen, Marks and Shieber compared different algorithms using ran-
dom point sets [CMS95]. Their standard data sets were generated as follows.
Inside a grid of size 792 by 612 units, n points were randomly placed and
had to be labeled with labels of 30 by 7 units. We considered examples with
n = 100, 250, 500, 750, 1000, and 1500 points. For each example size, we gener-
ated 25 files. We ran the greedy algorithm for each of our six models on all of
the generated files. The average percentages of placed labels over the 25 trials
are shown in Figure 3.71. Clearly the labeling model has a big influence on the
results.

In Figure 3.72 we extend the comparison of Christensen et al. by the results
of our algorithm for the four-position and the four-slider model. Our four-
position algorithm is always better than gradient descent, and the denser the
map the better it gets in relation to gradient descent. For 1500 points it is
almost as good as simulated annealing. The four-slider algorithm yields almost
equal results as simulated annealing for less than 750 points and is always better
beyond 750 points. The running time of our algorithm is generally only a few
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Number of labels placed
model

font 1P 2P 4P 1S 2S 4S
5 229 236 236 236 236 236
6 216 235 235 236 236 236
7 197 219 230 236 236 236
8 197 219 230 236 236 236
9 185 205 218 235 236 236

10 175 193 207 223 231 230
11 174 189 200 213 221 224
12 174 189 200 213 221 224
13 169 180 188 203 212 212
14 169 180 188 203 212 212
15 157 170 176 192 200 203

Percentage w.r.t. 4-position model
model

font 1P 2P 4P 1S 2S 4S
5 97 100 100 100 100 100
6 91 100 100 100 100 100
7 85 95 100 102 102 102
8 85 95 100 102 102 102
9 84 94 100 107 108 108

10 84 93 100 107 111 111
11 87 94 100 106 110 112
12 87 94 100 106 110 112
13 89 95 100 107 112 112
14 89 95 100 107 112 112
15 89 96 100 109 113 115

Figure 3.69: Labeling of the data posting in 9pt font using the 4-slider model
(scaled to fit), and tables with the performance.
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Number of labels placed
model

font 1P 2P 4P 1S 2S 4S
5 75 75 75 75 75 75
6 75 75 75 75 75 75
7 70 74 74 75 75 75
8 70 74 74 75 75 75
9 60 69 70 73 74 74

10 58 65 68 72 72 72
11 55 61 66 66 70 70
12 55 61 66 66 70 70
13 51 58 64 63 68 71
14 51 58 64 63 68 71
15 50 56 61 62 67 68

Percentage w.r.t. 4-position model
model

font 1P 2P 4P 1S 2S 4S
5 100 100 100 100 100 100
6 100 100 100 100 100 100
7 94 100 100 101 101 101
8 94 100 100 101 101 101
9 85 98 100 104 105 105

10 85 95 100 105 105 105
11 83 92 100 100 106 106
12 83 92 100 100 106 106
13 79 90 100 98 106 110
14 79 90 100 98 106 110
15 81 91 100 101 109 111

Figure 3.70: Labeling of the scatter plot in 11pt font using the 4-slider model
(scaled to fit), and tables with the performance.
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seconds; even the four-slider algorithm needed just 12 seconds for the largest
data sets with 1500 points on a SUN Ultra Sparc. Simulated annealing takes
several minutes to label these point sets on the same machine.

Percentage of labels placed
number of points

model 100 250 500 750 1000 1500
1P 92.60 84.30 73.16 64.56 57.96 48.58
2P 99.56 97.39 90.24 82.22 74.73 62.75
4P 99.84 99.07 95.45 90.47 83.99 71.74
1S 99.72 98.42 93.80 87.80 81.92 71.04
2S 99.92 99.55 97.83 94.85 90.71 80.75
4S 99.96 99.58 98.02 95.37 91.68 82.68

Figure 3.71: Random data sets (results are averaged over twenty-five trials).
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Figure 3.72: Comparison of the four-position and four-slider algorithm to other
labeling algorithms.
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