
Chapter 4

Point Labeling:

Label-Size Maximization

When placing labels on maps, maximizing the (weighted) number of features
that receive a label is certainly the aim that plays the greatest role in practice.
However, one might think of other, for instance technical applications where
holes must be drilled next to a given number of points on a piece of metal, and
the size of these holes is to be maximized. This is an example of the label-size
maximization problem that we consider in this chapter.

When comparing the complexity status of label-number and label-size max-
imization, it is difficult to decide which problem is harder. Label-size maximiza-
tion can be solved in polynomial time in some special cases: efficient algorithms
are known for two label candidates per feature [FW91] and, if the label candi-
dates overlap in a certain way, for any constant number of label candidates per
feature [PZC98, SvK99], and even for an infinite number of label candidates per
feature [KSY99]. On the other hand the problem of maximizing the number
of points with axis-parallel rectangular labels can be approximated arbitrarily
well (see Section 3.3.3) while maximizing the size of square labels cannot be
approximated better than by a factor of 1/2 [FW91].

The label-size maximization problems that have been considered so far are
the following: labeling points with circles, squares or other regular polygons
[FW91, DMM+97] and labeling axis-parallel line segments with axis-parallel
rectangles that have the same length as the segment they label and must touch
or contain the segment [PZC98, SvK99, KSY99]. In this chapter we will consider
labeling points with axis-parallel rectangles and with circles.

4.1 Rectangular Labels

Formann and Wagner proposed an approximation algorithm that maximizes the
size of uniform axis-parallel square labels. It is optimal in respect to both, its
approximation factor of 1/2 and its running time of O(n log n) [FW91, Wag94].

82 Chapter 4. Point Labeling: Label-Size Maximization

Here n refers to the number of points, each of which has four label candidates.
For the same problem, there is an algorithm that keeps the theoretical optimal-
ity of the approximation algorithm, but performs close to optimal in practice
[WW97].

It is obvious that the approximation result of Formann and Wagner also
holds for uniform rectangular labels; the coordinate system can always be scaled
such that these labels become squares. For rectangles of arbitrary width, how-
ever, or for rectangles of arbitrary height and width, no approximation al-
gorithms are known, not even heuristics have been suggested. However, the
label-size maximization problem can be reduced to the decision problem if the
number of conflict sizes can be bounded, i.e. the scaling factors for which label
candidates start to intersect. Then one can do a binary search on a sorted list
of these conflict sizes. For each step of the search, one would compute the cur-
rent candidate conflict graph and call an algorithm for the decision problem for
the current scaling factor. Any algorithm for the label-number maximization
problem could be employed; if it does not find a complete labeling, we return
false, and the binary search continues with a lower value, with a higher value
otherwise.

In practice, however, the number of available font sizes is usually a small
constant, hence a binary search on a list of conflict sizes is not necessary. One
can simply start with the smallest font, call label-number maximization, and
repeatedly increase the font size as long as the number of unlabeled points is
tolerably small.

In [DMM+97] Doddi et al. suggest such a bi-criteria algorithm that mediates
between the two fundamental optimization problems, namely label-size and
label-number maximization. Given an ε > 0, the algorithm labels at least a
(1 − ε) - fraction of the points with axis-parallel uniform square labels of size
at least nopt/(1 + ε), where nopt is the edge length of the squares in an optimal
solution of all points. The algorithm puts 1/ε equidistant markers on each label
edge and places the label such that one of the markers coincides with the point
to be labeled.

In the same paper, Doddi et al. give approximation algorithms that max-
imize the size of square labels of arbitrary orientation and of circular labels,
again under the restriction that all labels are uniform, i.e. of equal size. The
approximation factors of their algorithms are approximately 1

37 for squares and
1
30 for circles. In the next section we will improve the approximation factor of
their algorithm for circular labels by about 50%.

4.2 Circular Labels

This section is joint work with Tycho Strijk, Universiteit Utrecht.

When labeling points, labels are usually restricted to axis-parallel rectangles
which (a) have to touch the point they label, and (b) must not intersect any
other label. Condition (a) has often been further restricted in that one of a

82

Section 4.2. Circular Labels 83

label’s corners must coincide with the point to be labeled. In this section we
restrict ourselves to a different label shape, namely circles of uniform size, while
keeping conditions (a) and (b). We label a point by attaching a circle to it such
that the circle’s boundary contains the point. Our objective is to find the largest
real dopt, which still allows us to label all given points with non-overlapping
circles of diameter dopt. We consider our labels to be open circles, thus they
may touch other points or labels.

In considering a set of three points in general position, it is clear that ap-
proximating the maximum size of circular labels cannot be reduced to the same
problem for square labels. While the solution in the former case is bounded
(linearly in the diameter of the point set), it is unbounded in the latter.

We show that even deciding whether a set of points can be labeled with
unit circles is NP-hard, see Section 4.2.5. This settles an open question raised
in [DMM+97]. The same proof implies that there is a constant δ < 1 such
that it is NP-hard to label points with circles of diameter greater than δ · dopt.
Nevertheless, the maximization problem has already been approximated. Doddi
et al. suggested a simple algorithm that labels points with circles whose diameter
is at least 1/(4(2 +

√
3)) ≈ 1/14.93 times the optimum and takes O(n log n)

time [DMM+97]. However, a careful revision of their proof, see Section 4.2.1,
shows that the approximation factor of their algorithm is actually worse by a
factor of 2; i.e. the label diameter is guaranteed to be at least 1/(8(2 +

√
3)) ≈

1/29.86 times the optimum. In this paper, we present an algorithm with an
approximation factor of 1/19.59. While the analysis that yields this factor
becomes more involved, the algorithm remains simple.

Both algorithms first determine the smallest diameter D3 of any three-point
subset of the input points. This can be done in O(n log n) time [DLSS95]. D3 is
needed to compute the diameter of the labels, which in both cases is a constant
fraction of D3. The observation that no point set of more than two points
can be labeled with circles of diameter greater than 2(2 +

√
3)D3 yields the

respective approximation factors.

Like the algorithm of Doddi et al., when labeling a point our algorithm
only needs to know the location of the point’s closest neighbor in the set of
input points. However, while Doddi et al. maximize the distance between the
labels of a pair of closest neighbors, we minimize it in order to use space more
efficiently. This implies that they only need to know the direction of the closest
neighbor while we also need its distance. Another difference is that while they
label the points in arbitrary order, we exploit this order and process the points
in pairs of increasing distance. In order to build and access the data structure
that supplies us with this order we need no more than O(n log n) time in total.
Thus our algorithm runs in O(n log n) time. It requires linear storage.

This section is structured as follows. In Section 4.2.1, we sketch the algo-
rithm of Doddi et al.. In Section 4.2.2 we formalize our main ideas. Then, in
Section 4.2.3 we present our algorithm, analyze it in Section 4.2.4, and finally
present our NP-hardness proof in Section 4.2.5.

83

84 Chapter 4. Point Labeling: Label-Size Maximization

4.2.1 Previous Work

For a (finite) set S of points in the plane, Doddi et al. define the diameter
diam(S) the usual way as the maximum distance of any two points in S. They
define the k-diameter Dk(S) to be the minimum diameter over all k-element
subsets of S. Then they make the following two observations. In our description
we will abbreviate D3(S) by D3 where appropriate.

p

D

q

D
3

3

/ 2/ 4

Figure 4.1: Label placement according
to the algorithm of Doddi et al..

d3max

x x

D3

Figure 4.2: Optimal label placement
for three points.

1. The open circle centered at a point p ∈ S with radius D3/2 contains at
most one other point q ∈ S − {p}. Due to symmetry, an open circle of
the same diameter centered at q only contains p and q. This allows p and
q to be labeled with labels of diameter d′ = D3/4 as in Figure 4.1. Given
the distance of p and q to other points in S, it is obvious that labels of
other points cannot overlap those of p and q.

2. The maximum label diameter dopt(S) of any set S of more than two
points cannot exceed the maximum label diameter d3max of three points
at pairwise distance D3(S), see Figure 4.2. Doddi et al. compute d3max

to be (2 +
√

3)D3, but this is incorrect: we have d3max = 2x + D3, where
x = (d3max/2) · cos(π/6), see the shaded triangle with a right angle and a
30◦ angle in Figure 4.2. Thus we obtain d3max = 2(2 +

√
3)D3 ≈ 7.46 D3

as an upper bound for dopt.

Combining these observations yields the approximation factor d′/dopt ≥
1/(8(2 +

√
3)) ≈ 1/29.86 of the algorithm of Doddi et al..

4.2.2 Preliminaries

We formalize the idea of the free space around a point as follows.

Definition 4.1 Let Cm,r be an open circle with radius r centered at m. We
say that two points are a pair of closest neighbors if each is a closest neighbor
of the other. Given two points p, q ∈ S, we denote the point-free zone of p and
q by Zfree(p, q) = (Cp,D3

∩ Cq,D3
) ∪ Cp,d ∪ Cq,d ⊆ R

2 where d = d(p, q) is the
Euclidean distance of p and q.

84

Section 4.2. Circular Labels 85

The definition is illustrated in Figure 4.3. We show that the point-free zone
of a pair of closest neighbors {p, q} does not contain any other point of S. This
will enable us to use part of the zone for labeling p and q.

Lemma 4.2 Zfree(p, q) ∩ S = {p, q} for any pair {p, q} of closest neighbors in
S.

Proof. Suppose Zfree(p, q) contains a point t ∈ S\{p, q}. Then t ∈ Cp,D3
∩Cq,D3

or t ∈ Cp,d ∪ Cq,d. In the first case the diameter of {p, q, t} would be less than
D3; a contradiction to the definition of D3. The second case would contradict
{p, q} being closest neighbors. rg

Note that Doddi et al. implicitly also used the concept of a point-free zone,
namely the union of the dashed circles Cp,D3/2 and Cq,D3/2 depicted in Fig-
ure 4.1. However, their zone is always contained in our point-free zone Zfree,
independently of d. This helps us to place larger labels. Let dalgo be the diam-
eter of the labels our algorithm is going to place.

p q
d

D3

Zfree

Figure 4.3: The point-free zone Zfree

of p and q.

p q
ddalgo

Zfree

Zlabel dalgo

dalgo

Figure 4.4: The label zone Zlabel

of p and q lies inside Zfree.

Definition 4.3 Given two points p, q ∈ S and a real number dalgo < D3. Then
we denote the label zone of p and q by

Zlabel(p, q; dalgo) = Zfree(p, q) 	 C0,dalgo
= Zfree(p, q) −

⋃

x ∈ R2−Zfree(p,q)

Cx,dalgo

where 	 is the Minkowski subtraction operator and 0 is the origin.

In other words, the label zone is the erosion of the point-free zone with a disk
of radius dalgo. The definition is illustrated in Figure 4.4.

Lemma 4.4 If we label a pair of closest neighbors {p, q} with circles of diam-
eter dalgo that are contained in the label zone Zlabel(p, q; dalgo), then these labels
cannot overlap the label of any other point t ∈ S − {p, q}.

85

86 Chapter 4. Point Labeling: Label-Size Maximization

Proof. Suppose the label of t overlaps that of p. Lemma 4.2 tells us that
t 6∈ Zfree(p, q). Then the definition of the label zone ensures that Ct,dalgo

does
not intersect Zlabel(p, q; dalgo). Observing that t’s label is contained in Ct,dalgo

and p’s label in Zlabel(p, q; dalgo) contradicts our assumption. rg

The question is, of course, how large we can choose dalgo so that the labels
of any pair of closest neighbors fit into their label zone—independently of their
distance. This question is dealt with in Section 4.2.4. Let us suppose for the
moment that dalgo can be expressed as a fraction of D3. The next section
answers two other important questions, namely how to place the labels, and in
which order.

4.2.3 Algorithm

Our algorithm proceeds as described in Figure 4.5. The value of D3(S) is
computed with the algorithm of Datta et al.[DLSS95]. In contrast to Doddi et
al. who place the labels of two neighboring points as far apart from each other
as possible, we label p and q such that their labels are as close as possible. This
means that they will touch each other as in Figure 4.6 if d(p, q) ≤ 2dalgo. The
vectors ~p and ~q denote the coordinates of p and q in the plane. We place the
center ~mq of q’s label at ~mq = ~p/4 + 3~q/4 + ~a. The vector ~a is perpendicular
to pq and oriented so that it points to the left of (~p − ~q). The length of ~a is

‖~a‖ =
√

d2
algo/4− d2(p, q)/16. Correspondingly, the center of p’s label is placed

at ~mp = ~q/4 + 3~p/4 − ~a. We call the union of these two (open) labels the
label space of p and q. If there are unlabeled points left after executing the
while-loop, we label them arbitrarily.

label points with circles(S)

compute D3(S)
dalgo := 0.381 D3(S)
while |S| > 1

choose {p, q} ⊆ S with d(p, q) minimal
if d(p, q) ≥ 2dalgo then exit while-loop
label p and q as in Figure 4.6
S := S \ {p, q}

end
for all x ∈ S do label x arbitrarily end
return all label positions

Figure 4.5: Our algorithm.

dalgo

p q

mq

a

d(p, q)/4mp

Figure 4.6: Labeling a
pair of points.

Lemma 4.5 Given a set S of n points and a label diameter dalgo such that the
label space is contained by the label zone for any pair of points in S, then the
labels our algorithm places do not intersect.

86

Section 4.2. Circular Labels 87

Proof. The fact that no two labels overlap follows from the order in which
we process the points. It is clear that the first pair {p, q} is a pair of closest
neighbors. Due to Lemma 4.4, we know that we do not constrain the labeling
of any other point in S when we label such a pair within its label zone. In other
words, if we remove {p, q} from S, then we can ignore p and q as well as their
labels for solving the remaining problem. The next pair of points will be a pair
of closest neighbors in the reduced set S. Thus Lemma 4.4 applies to this pair
as well.

After we leave the while-loop, there may be unlabeled points left. For each
such point x there are two possibilities. Either its closest neighbor in the original
set is at least 2dalgo away. Or all points y with d(x, y) < 2dalgo have been labeled
before, since each had a closer neighbor z. In either case the labeling of x is not
constrained by any previous label placement. Hence we can label x arbitrarily.

rg

Lemma 4.6 The algorithm can be implemented such that it labels a set S of n
points in O(n log n) time with linear space.

Proof. Our algorithm labels S in three phases. In the first phase, we compute
D3 in O(n log n) time [DLSS95]. We need D3 to compute the diameter dalgo =
0.381 D3 of the labels we are going to place, see Section 4.2.4.

In the second phase, we set up a simple data structure that will answer a
limited closest pair query; limited in the sense that we only need to know pairs of
points closer than 2dalgo in the Euclidean metric. We call these pairs of relevant
neighbors. An axis-parallel rectangle of size 2dalgo × dalgo contains at most two
input points since it fits into a circle of diameter D3. Thus an axis-parallel
square of edge length 4dalgo centered at a point p ∈ S contains at most twelve
input points apart from p. The relevant neighbors of p are obviously among
these. This observation enables us to collect all pairs of relevant neighbors with
a sweep-line—or rather sweep-window—approach.

As usual we use two data structures: an event-point queue as horizontal
structure and a sweep-line status as vertical structure. Our sweep window is a
vertical strip of width 2dalgo and moves over the plane from left to right. Its
right border line r stops at each event point. We have two kinds of events: when
an input point p = (xp, yp) enters the window (r is at xp) and when p leaves
the window (r is at xp + 2dalgo). When p enters the window we want to report
efficiently all points in the window whose y-coordinate is less than 2dalgo from
yp. For this purpose the sweep-window status is implemented by a balanced
binary tree on the y-coordinates of the points in the window. For later on, we
insert each pair {p, q} that is reported during the sweep into a priority queue
according to its Euclidean distance d(p, q) if d(p, q) < 2dalgo. Our sweep takes
O(n log n) time and uses linear space.

In the third phase, we repeatedly extract the minimum {p, q} of the priority
queue, label p and q with circles of diameter dalgo as in Figure 4.6, and delete all
pairs containing either p or q from the queue. The remaining points are labeled

87

88 Chapter 4. Point Labeling: Label-Size Maximization

arbitrarily in constant time per point. Phase 3 can also be done in O(n log n)
steps.

The running time of the three phases sums up to a total of O(n log n). The
necessary data structures require linear space. rg

4.2.4 Analysis

Given a pair {p, q} of closest neighbors in S, our objective now is to compute
the maximum radius r of their labels so that the label space is still contained in
the label zone Zlabel(p, q; 2r) of p and q. Since this radius will only depend on
the distance d of p and q, we want to find the minimum rmin of r(d), set dalgo to
a value slightly less than 2rmin and run our algorithm. Lemma 4.5 guarantees
that no two labels will intersect then.

Since we place the labels of p and q symmetrically, it is enough to analyze
the placement of q’s label. We consider two cases depending on the distance of
p and q.

In case d ≤ D3/2, the point-free zone Zfree(p, q) is the intersection of Cp,D3

and Cq,D3
. The corresponding label zone Zlabel(p, q; 2r) is the intersection of

Cp,D3−2r and Cq,D3−2r. As described in the previous section, the label has its
center point mq on a line h, normal to the line connecting p and q. This normal
line has distance d/4 to q. The distance of mq to the line pq is

√

r2 − d2/16
using Pythagoras’ rule.

The radius of q’s label is maximized when the label touches the boundary of
the label zone, i.e. the circle Cp,D3−2r. We use the property that the touching
point of two circles always lies on the line through their centers, see Figure 4.7.

p q

mq

r

1
4
d

r

Zfree

Zlabel

`

Figure 4.7: Point-free zone Zfree and label zone Zlabel of p and q for d ≤ D3/2.

88

Section 4.2. Circular Labels 89

This observation yields the equality

d(p, mq) + r = D3 − 2r. (4.1)

We use that d(p, mq) =
√

(3
4d)2 + (r2 − d2/16) =

√

d2/2 + r2. The resulting

equation
√

d2/2 + r2 = D3 − 3r

is quadratic and has two solutions. The solution valid for our problem is

r =
3D3 −

√

D2
3 + 4d2

8
. (4.2)

We will use the notation d̂ = d/D3 and r̂ = r/D3 to obtain less complicated
formulas and to express the fact that the formulas can also be obtained as
follows: first scale the point set by a factor 1/D3, then determine the optimum
label size, and after that scale by a factor D3 to the original size. As a result
Equation (4.2) is simplified to

r̂ =
3−

√

1 + 4d̂2

8
. (4.3)

r̂

d̂

f

g

d∗0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

r̂

0

0.05

0.1

0.15

0.2

0.25

0.3

r̂

0.05

0.1

0.15

0.2

0.25

0.3

rmin

dmin

Figure 4.8: The graph of r(d) is determined by the functions f and g. For
d < d∗ ≈ 0.53 D3, the value of r is determined by f , otherwise by g. The
minimum rmin ≈ 0.19 D3 of r(d) is reached at dmin ≈ 0.56 D3.

Graph f in Figure 4.8 depicts Equation (4.3) as a function of d̂.

The case d > D3/2 is more difficult. In this case, the point-free zone
Zfree(p, q) is the union of three areas, namely Cp,D3

∩ Cq,D3
, Cp,d, and Cq,d,

see Figure 4.9.

Accordingly, the boundary of Zlabel(p, q; 2r) consists of arc segments that
are part of the circles Cp,D3−2r, Cq,D3−2r, Cp,d−2r, Cq,d−2r and four circles with

89

90 Chapter 4. Point Labeling: Label-Size Maximization

p q

mq

2r

r

m×

Zfree

Zlabel

`

Figure 4.9: The point-free zone Zfree and the label zone Zlabel of p and q for the
case d > D3/2. The bold dotted label touches the circle centered at m×.

radius 2r centered at the intersections of Cp,D3
with Cq,d and at the intersections

of Cq,D3
with Cp,d. One of these last four circles is Cm×,2r whose center m× lies

at an intersection of Cp,D3
and Cq,d, see Figure 4.9.

It turns out that a label with maximum radius inside the label zone always
touches either Cp,D3−2r or Cm×,2r. This depends on the value of d. There is a

real d∗ =

√
1+

√
33

2
√

6
·D3 ≈ 0.53 D3 such that for d ≤ d∗ the label touches Cp,D3−2r

and for d ≥ d∗ it touches Cm×,2r.

The values of r for which the label touches Cq,D3−2r have already been
computed, see Equation (4.3). The values, for which the label touches Cm×,2r,
are computed similarly as follows. The line connecting the center points mq

and m× intersects the touching point of the two circles. This gives rise to the
equation

d(mq, m×) = 3r, (4.4)

see Figure 4.9. If we put the origin of our coordinate system at q and let the
negative x-axis contain p, then we get

m× =

(

1− 2 d̂2

2 d̂
D3, −

√

4− d̂−2

2
D3

)

, mq =



−1

4
d̂ ·D3, −

√

r̂2 − d̂2

16
·D3



.

The equation d(mq, m×) = 3r has the following solution for our problem:

r̂ =

√

8− d̂−2 + 8 d̂2 −
√

1−16 d̂2+48 d̂4

d̂2

8
√

2
. (4.5)

90

Section 4.2. Circular Labels 91

Graph g in Figure 4.8 depicts Equation (4.5) as a function of d̂. The graph of
r(d) equals f(d) for d < d∗ and g(d) otherwise. The minimum rmin of r(d) is
reached at the minimum of g since f decreases monotonically for d ≤ d∗ and g
has a negative derivative at d = d∗. A numeric computation shows that g has
its minimum value when d ≈ 0.56085 D3. The corresponding minimum value
of g and thus of r(d) is rmin ≈ 0.190526 D3.

Theorem 4.7 Our algorithm labels a finite point set S with circles of diameter
dalgo = 0.381 D3(S). The approximation factor γ is 0.381/(2(2 +

√
3)) ≈

1/19.59.

Proof. When we label the points with circles of diameter 2rmin, we know that
the label space of any pair of closest neighbors will be contained in its label zone.
Then Lemma 4.5 ensures that for a label diameter dalgo = 0.381 D3 < 2rmin, our
algorithm will label all points with non-overlapping labels. The approximation
factor is the ratio of the upper bound 2(2 +

√
3)D3 (see Figure 4.2) and the

diameter dalgo of the labels we place. rg

It is clear that any set of congruent equilateral triangles will force our al-
gorithm to produce a labeling with circles of diameter γ · dopt if the triangles
are spaced appropriately. However, there are also examples with a smaller op-
timum labeling where the algorithm performs better. The triangular lattice
formed by the centers of a densest disk packing, for example, has an optimal
labeling with circles of diameter dopt = D3. Here our algorithm yields a ratio
of dalgo/dopt = 0.381.

4.2.5 NP-Hardness

In this section we show that deciding whether a set of points can be labeled
with unit circles is NP-hard. This answers an open question raised by Doddi
et al. [DMM+97]. Our proof also implies that there is a constant δ < 1 such
that it is NP-hard to label points with circles of diameter greater than δ · dopt.
Consequently no polynomial-time approximation scheme exists. The proof is
by reduction from planar 3-SAT. For a Boolean formula of planar 3-SAT type
the variable-clause graph is planar. In this graph, the nodes are the variables
and clauses of the formula, and there is an edge between a variable node and a
clause node if the variable occurs in the clause. The planarity of the variable-
clause graph helps to simplify the proof. The same idea is used in Knuth
and Raghunathan’s proof of the NP-hardness of the Metafont-labeling problem
[KR92].

In the Metafont-labeling problem and other label-placement problems stud-
ied previously,[FPT81, FW91, MS91] every label can only be placed in a con-
stant number of positions. In our case, there are infinitely many ways to label
a point with a circle. This relaxation could potentially make circle labeling
polynomially solvable (even given P 6= NP) and thus simpler than the discrete
label-placement problems studied before, just as real-valued linear program-
ming is simpler than zero-one linear programming. Of course the previous

91

92 Chapter 4. Point Labeling: Label-Size Maximization

NP-hardness proofs can be modified to allow a certain continuum of feasible
label position in the vicinity of the original discrete positions. In [MS91] this
was achieved by adding dummy points that do not receive any label; [IL97] uses
a similar strategy.

In our reduction, we do not use dummy points, but restrict the infinite
number of potential label positions of all points to at most three by using
immobilizing clusters. These are special gadgets that consist of three points
that must be labeled in a unique way. This approach is also different from
the other two NP-hardness proofs for label-placement problems with an infinite
number of label positions per point [IL97, vKSW99]. We take advantage of the
special geometry of circles.

Another major difference to all other label-placement problems we know of
is the fact that it is not clear whether circle labeling is in NP. We do not know
whether there is always a polynomial encoding of a solution, even if the input
points have rational coordinates.

Theorem 4.8 It is NP-hard to decide whether a set of points can be labeled
with unit circles.

Proof. We encode the variables and clauses of a Boolean formula φ of planar 3-
SAT type by a set of points such that all points can be labeled if and only if φ is
satisfiable, i.e. if there is a variable assignment such that all clauses evaluate to
true. Since Lichtenstein showed that planar 3-SAT is NP-hard [Lic82], it follows
that circle labeling is NP-hard as well. Note that the variables and clauses of
a planar 3-SAT formula can be embedded in the plane as in Figure 4.10 where
all variables lie on a horizontal line and all clauses are represented by non-
intersecting three-legged combs [Lic82].

1v 2v 3v 4v 6v 7v 8v

Figure 4.10: Embedding of a planar 3-SAT formula.

The main observation leading to our proof is the following. Given three
equidistant points on a line, there are exactly two ways to label these points
optimally, see Figure 4.11. Since all labels have diameter 1 here, some basic

geometry shows that this distance must be (1 −
√

2
√

3− 3)/2 ≈ 0.159. This
observation gives us a means to encode the Boolean values of a variable in the
planar 3-SAT formula φ that we want to reduce to a set of points.

The gadgets of our reduction are the clusters for variables and three-legged
combs for clauses. In order to be able to connect a variable v to all clauses in
which it occurs, we model v not by one but by several variable clusters on a

92

Section 4.2. Circular Labels 93

horizontal line h as in Figure 3.58. Note that the cluster-to-cluster distance of

1 +
√

2
√

3− 3 (from midpoint to midpoint) is chosen such that every second
cluster must be labeled the same way. The value of v is represented by the label
positions of the leftmost cluster on h (according to Figure 4.11). We call this
cluster and every second cluster to its right odd. Accordingly, all other clusters
are even. Then the label positions of all odd clusters encode the value of v and
all even clusters that of ¬v. This differentiation is important for connecting
v to the clauses in which it occurs. Each connection depends on whether v is
negated in that clause or not.

Figure 4.11: A variable clus-
ter and the label placements
encoding true and false.

h

Figure 4.12: Rows of variable clusters model
a variable; the label positions of the leftmost
cluster determine the variable’s Boolean value.

The central idea for modeling the clauses is that we restrict the possible
label positions of all points (except one) to a maximum of two. To achieve
this, we use immobilizing clusters that can only be labeled in one specific way.
They consist of three points at pairwise distance 1/(4 + 2

√
3), see Figure 4.2.

In order to distinguish these auxiliary points from the others, we use the term
active points for all clause points with at least two possible label positions.

B

a
A

b s

l
x

y
z

t

p

q

r

Figure 4.13: Clause with pressure from two variables. The current label posi-
tions are marked by shaded labels, alternatives are indicated by solid or dashed
circles, and immobile labels are dotted.

We model the clauses by point sets that resemble large combs, see Fig-
ure 4.13. Such a comb consists of a horizontal part and three legs. The hori-
zontal part is formed by active points like b in Figure 4.13 and by immobilizing

93

94 Chapter 4. Point Labeling: Label-Size Maximization

clusters above and below b that restrict the label of b to two possible positions.
All points of type b lie on a horizontal.

The legs consist of points like a in Figures 4.13 and 4.14. These points lie on
a vertical line and are also forced into one of two possible positions. Where the
legs are joined to the horizontal part of a comb, lack of space does not allow us
to use the immobilizing clusters as elsewhere. Instead, we simply attach points
like x, y, and z in Figure 4.13 to cluster labels in the vicinity such that the
labels of x, y, and z are also immobile and at the same time restrict the label
positions of active points (like l, r, s, t, and q) as desired.

Both the horizontal part and the legs of a comb can be extended as far as
needed to reach the three variables belonging to the clause. This is done by
repeating—at a distance of

√
3—patterns of seven points like those contained

in the boxes A and B in Figure 4.13.

Each leg is connected to the encoding of a variable v. Let g be the vertical
on which all points of the leg lie. It is perpendicular to the line h that contains
all points encoding v. The lines g and h intersect in the midpoint d of one of the
variable clusters on h, see Figure 4.14. The distance of

√
3 between the lowest

leg point a and d is chosen to assure that the label of a can only intersect the
label of d among the points modeling v. Note that the labels of a and d only
intersect if the label of a is placed right below a and that of d right above d.

If variable v is negated in the clause under consideration, we join the leg
to an odd cluster of v. Thus the cluster with d is labeled the same way as
the leftmost cluster of v, see Figure 4.14. Now if v is set to true, d is labeled
upwards. Then a and all other points on line g must also be labeled upwards.
To put it graphically, pressure is transmitted upwards. If v is set to false, d can
be labeled downwards, and no pressure is transmitted.

a

g

d
h

Figure 4.14: We connect the leg of a clause to a variable above the midpoint d
of a variable cluster. If the variable is negated in the clause, then we join the
leg to an odd cluster (as in this case), otherwise to an even cluster.

94

Section 4.2. Circular Labels 95

On the other hand, if v is not negated in the clause under consideration,
then we join the clause’s leg to an even cluster of v, which is labeled the opposite
way as the leftmost cluster. Then pressure is transmitted if and only if v is set
to false.

If all literals of a clause evaluate to false, then pressure is transmitted
through all three legs into the clause. In this case there is a point (like p)
that cannot be labeled, see Figure 4.13. In case there is at least one leg with-
out pressure, it is obvious that all points belonging to a clause can be labeled.
Hence the question whether φ can be satisfied is equivalent to asking whether
all points in the set resulting from the encoding of φ can be labeled with unit
circles.

To show that we can in fact connect a variable to several different clauses
(below and above), we use a grid of width

√
3 and move all active points to grid

points—except points of type l, r, and p, see Figure 4.13. In order to accommo-
date also the midpoints of the variable clusters on the grid (see Figure 4.14), we
slightly increase the distance of neighboring variable clusters to that of immo-

bilizing clusters, i.e. from 1 +
√

2
√

3− 3 ≈ 1.68 to
√

3 ≈ 1.73. Then the label
positions in every second cluster are still combinatorically equivalent, although
labels can slightly wiggle now. Given such a grid embedding of our instance, it
is clear that we can connect all variables to clauses according to φ.

We still have to ensure that the reduction is polynomial: if φ consists of m
clauses and n ≤ 3m variables, the instance has O(m2) points. Their position
can be computed in polynomial time if we round the grid-cell size and the
distance between the three points of the immobilizing clusters to slightly greater
rational numbers. The resulting instance is combinatorically equivalent to the
one described before. rg

Our gadget proof of the NP-hardness of circle labeling also shows that we
cannot expect to approximate this problem arbitrarily well. Formann and Wag-
ner used a similar argument to show that maximizing the size of axis-parallel
square labels cannot be approximated beyond a factor of 1/2 [FW91]. In the
formulation of their problem they only allow a constant number of label posi-
tions per point (namely four), which makes it easier to determine a good bound
for the approximability.

Corollary 4.9 There is a constant δ < 1 such that it is NP-hard to label points
with uniform circles of diameter greater than δ · dopt.

Proof. The proof of Theorem 4.8 still holds if the diameter of all labels is
slightly reduced to a δ < 1. The reason for this is that though labels have
a certain degree of freedom now, every new label position is combinatorically
equivalent to exactly one former position. δ must be chosen close enough to
1 to prevent a label from being moved continuously from one old position to
another.

If there was a polynomial-time algorithm that could label the point set of
the reduction with labels of size δ, we could solve planar 3-SAT in polynomial

95

96 Chapter 4. Point Labeling: Label-Size Maximization

time and would thus have P = NP. rg

The bottleneck that determines the minimum value of δ seems to be the
encoding of a variable, see Figure 4.12. When the labels (and thus δ) are scaled
down gradually, there is a point when two neighboring clusters can have iden-
tical instead of alternating label positions, see Figure 4.11. Then the variable’s
Boolean value is no longer well defined, and the proof collapses.

96

