
Chapter 5

Line Labeling

This chapter is joint work with Lars Knipping, Freie Universität Berlin, Marc
van Kreveld, Tycho Strijk, both Universiteit Utrecht, and Pankaj K. Agarwal,
Duke University [WKvK+99].

The interest in algorithms that automatically place labels on maps, graphs,
or diagrams has increased with the advance in type-setting technology and
the amount of information to be visualized. However, though manually la-
beling a map is estimated to take fifty percent of total map production time
[Mor80], most geographic information systems (GIS) offer only very basic label-
placement features. In practice, a GIS user is still forced to invest several hours
in order to eliminate manually all label-label and label-feature intersections on
a map.

In this chapter, we suggest an algorithm that labels one of the three classes
of map objects, namely polygonal chains, such as rivers or streets. Our method
is simple and efficient. At the same time, it produces results of high aesthetical
quality. It is the first that fulfills both of the following two requirements: it
allows curved labels and runs in O(n2) time, where n is the number of points
of the polyline.

In order to formalize what good line labeling means, we studied Imhof’s rules
for positioning names on maps [Imh62, Imh75]. His well-established catalogue
of label placement rules also provides a set of guidelines that refers to labeling
linear objects. (For a general evaluation of quality for label-placement methods,
see [vDvKSW99].) Imhof’s rules can be put into two categories, namely hard
and soft constraints. Hard constraints represent minimum requirements for
decent labeling:

(H1) A label must be placed at least at some distance ε from the polyline.

(H2) The curvature of the curve along which the label is placed is bounded
from above by the curvature of a circle with radius r.

(H3) The label must neither intersect itself nor the polyline.

98 Chapter 5. Line Labeling

Soft constraints on the other hand help to express preferences between ac-
ceptable label positions. They formalize aesthetic criteria and help to improve
the visual association between line and label. A label should

(S1) be close to the polyline,

(S2) have few inflection points,

(S3) be placed as straight as possible, and

(S4) be placed as horizontally as possible.

We propose an algorithm that produces a candidate strip along the input
polyline. This strip has the same height as the given label, consists of rectangu-
lar and annular segments, and fulfills the hard constraints. In order to optimize
soft constraints, we use one or a combination of several evaluation functions.

The candidate strip can be regarded as a simplification of the input polyline.
The algorithm for computing the strip is similar to the Douglas-Peucker line-
simplification algorithm [DP73] in that it refines the initial solution recursively.
However, in contrast to a simplified line, the strip is never allowed to intersect
the given polyline. The strip-generating algorithm has a runtime of O(n2),
where n is the number of points on the polyline. The algorithm requires linear
storage.

Given a strip and the length of a label, we propose three evaluation functions
for selecting good label candidates within the strip. These functions optimize
the first three soft constraints. Their implementation is described in detail in
[Kni98]. We can compute in linear time a placement of the label within the
strip so that the curvature or the number of inflections of the label is minimized.
Since it is desirable to keep the label as close to the polyline as possible (while
keeping a minimum distance) we also investigated the directed label-polyline
Hausdorff distance. This distance is given by the distance of two points; a) the
point p on the label that is furthest away from the polyline and b) the point
p′ on the polyline that is closest to p. Under certain conditions we can find a
label position that minimizes this distance in O(n log n) time [Kni98]. Here we
give a simple algorithm that finds a near-optimal label placement according to
this criterion in O(nk + k log k) time, where k is the ratio of the length of the
strip and the maximum allowed discrepancy to the exact minimum Hausdorff
distance.

If a whole map is to be labeled, we can also generate a set of near-optimal la-
bel candidates for each polyline, and use them as input to general map-labeling
algorithms as [ECMS97, KT98, WW98]. Some of these algorithms accept a
priority for each candidate; in our case we could use the result of the evaluation
function.

In his list of guidelines for good line labeling, Imhof also recommends to
label a polyline at regular intervals, especially between junctions with other
polylines of the same width and color. River names e.g. tend to change below

98

Section 5.1. Previous Work 99

the mouths of large tributaries. This problem can be handled by extending
our algorithms as follows. We compute our strip and generate a set of the, say
ten best label candidates for each river segment that is limited by tributaries
of equal type. Then we can view each river segment as a separate feature,
and again use a general map-labeling algorithm to label as many segments as
possible. Prioritizing each label candidate with its distance to the closer end
of the river segment would give candidates in the middle of a segment a higher
priority and thus tend to increase label-label distances along the polyline.

This chapter is structured as follows. In the next section we briefly review
previous work on line labeling. In Section 5.2 we explain how to compute a
buffer around the input polyline that protects the strip from getting too close
to the polyline and from sharp bends at convex vertices. In Section 5.3 we
give the algorithm that computes the strip and in Section 5.4 we show how
this strip can be used to find good label candidates for the polyline. Finally,
in Section 6.3 we describe our experiments. Our implementation of the strip
generator for x-monotonous polylines and the three evaluation functions can be
tested on-line1.

5.1 Previous Work

In the label-placement literature the problem of automated line labeling has
been treated before. In [Coo88, DF92, BL95, AH95, ECMS97, Kra97] only
rectangular labels are allowed; curved labels are not considered. In [Fre88] a
set of label-placement rules similar to those of Imhof [Imh75] is listed, followed
by a rough description of an algorithm. An analysis of Figure 8 in [Fre88] shows
that river names are broken into shorter pieces that are then placed parallel to
segments of the river. Each piece ends before it would run into the river or end
too far from the current river segment.

In [Bar97] curved labels are taken into account. First, the input polyline
is split into sections depending on its length and junctions (forks) with other
polylines. For details of this step, see [BL95]. Then the polyline is treated with
an adaptation of an operator from morphological mathematics, closure, that is
a mixture of an erosion and a dilation. This operator yields a baseline for label
candidates where the polyline does not bend too abruptly. It is not clear how
this is done algorithmically; no asymptotic runtime bounds are given. Finally,
simulated annealing is used in order to find a good global label placement, i.e.
a placement that maximizes the number of features that receive a label and at
the same time takes into account the cartographic quality of each label position.

In [PZC98, SvK99] a more theoretical problem is analyzed; an instance of
axis-parallel line segments is labeled with rectangular labels of common height.
While the length of each label equals that of the corresponding line segment,
the label height is to be maximized.

While the restriction to rectangular labels is acceptable for technical maps

1http://www.math-inf.uni-greifswald.de/map-labeling/lines

99

100 Chapter 5. Line Labeling

or road maps (where roads must be labeled with road numbers), we feel that
curved labels are a necessity for high-quality line labeling. The method we
suggest is the first that fulfills both of the following two requirements: it allows
curved labels and its runtime is in O(n2). The runtime thus only depends on
the number of points of the polyline, and not on other parameters such as the
resolution of the output device. Note that the time bound holds even if the
approximate Hausdorff distance is used to select good label candidates within
the strip as long as we choose the parameter k linear in n.

5.2 A Buffer Around the Input Polyline

In order to reduce the search space for good label candidates, we generate a strip
along the input polyline that is (a) likely to contain good label positions and (b)
easy to compute. Generating our strip consists of two major tasks. First, we
compute a buffer around the polyline that our strip must not intersect. Second,
we generate an initial strip and refine it recursively. Each refinement step brings
the strip closer to the polyline, but also introduces additional inflections.

The input to our algorithm consists of a polyline P = (p1, . . . , pn) with
points pi = (xi, yi), a minimum label-polyline distance ε, a maximum curvature
1/r, and a label height h. It makes sense to choose r � ε but the algorithm does
not depend on this. We assume that P is x-monotonous, i.e. x1 < . . . < xn.
Non-monotonous polylines can be split up into monotonous pieces of maximum
length in linear time by a simple greedy algorithm. That algorithm goes sequen-
tially through the edges of the polyline. Whenever adding the current edge to
the current piece would make that piece non-monotonous, a new piece is started
with the current edge.

For ease of presentation we direct P from p1 to pn and only label the upper
(i.e. left) side of the polyline. We use r-disk (r-arc) as shorthand for a disk
(arc) of radius r. We say that pi is at a right turn of P if pi+1 lies to the right
of the directed line through pi−1 and pi, see p3 or p4 in Figure 5.1.

We define the ε-r-buffer B(P) in two steps. First let the ε-buffer be the
union of all ε-disks whose center lies on P , see the light-shaded area in Fig-
ure 5.1. Second we add certain pieces of r-disks Di placed at right turns pi of
P . Their task is to bound the curvature of our strip. The center mi of Di

is placed on the angular bisector bi of the adjacent edges of P such that Di

touches and contains the ε-disk centered at pi, see Figure 5.2. Let Di be the
part of Di that is left of the ε-buffer and touches the ε-disk, see the dark-shaded
areas in Figure 5.1. Then B(P) is the union of the ε-buffer and the Di for each
right turn pi.

To simplify the calculation of the strip, we also place r-disks D1 and Dn

at the endpoints p1 and pn of P , respectively. Let bn be the normal to the
edge pn−1pn in pn. Then the center of Dn lies on bn such that Dn touches and
contains the ε-disk centered at pn, see Dn in Figure 5.2. The placement of D1

is analogous.

100

Section 5.2. A Buffer Around the Input Polyline 101

r
2ε

B(P)

P

p3

D4

D1

D7

D10

D11

p1

p4

D1

D4

D7

D11

Figure 5.1: The boundary of the ε-r-buffer B(P) (bold dashed line) of the input
polyline P (bold solid line).

In order to compute the boundary of the ε-r-buffer we first compute that of
the ε-buffer. This is simple since the x-monotonicity of P guarantees that the
ε-buffer does not have any holes.

For computing the candidate strip it is important that we have access to
the elements of the outer face of the ε-r-buffer in the order in which they occur.
We compute the ε-r-buffer in two phases.

In the first phase, for each right turn pi we follow the boundary of the ε-
buffer from ti to the right until we intersect the boundary of Di for the first
time. This intersection point is denoted by ri, see Figure 5.2. The arc from ti to
ri, oriented clockwise, is the right arc Ri, one of the two parts of the boundary
of Di we are interested in. The left arcs Li that go counterclockwise from ti to
li can be computed analogously. A special case arises if ti lies in the interior
of the ε-buffer. Then Ri or Li is empty, and we have to follow P from pi in
both directions until we arrive at a point or edge that corresponds to an arc or
line segment on the upper part of the ε-buffer. From there, we can continue as
usual.

Di

Ri
Li

mi

ti

pi−1

pi+1

pi

bi

li

ri

P

Rn
tn

pn

mn

bn

rn

Dn

Figure 5.2: Placing r-disks Di at right turns pi of the input polyline P .

101

102 Chapter 5. Line Labeling

Clearly, this procedure has a worst-case runtime of O(n2). The worst case
occurs if there are a linear number of right turns pi where we have to walk
over a linear number of segments of the ε-buffer until we hit li or ri, i.e. if r
is large compared to the length of the edges of P . However, in practice one
can expect to walk only over a constant number of segments of the ε-buffer;
then the running time is Θ(n), see Section 6.3. The worst-case running time
can be improved using more sophisticated data structures, but we omit this
improvement here as it makes the algorithm more complicated.

In the second phase, we incrementally extend the ε-buffer to the ε-r-buffer
using the left and right arcs we just computed. We maintain Bcurr, the outer
face of the union of the ε-buffer and the areas Di we have processed so far.
Initially let Bcurr be the boundary of the ε-buffer and let the interior of Bcurr

the interior of the ε-buffer. Let the r-arc Ai be the union of Li and Ri. Note
that Ai is the part of the boundary of Di that is a potential part of the outer face
of the ε-r-buffer. For each right turn pi we check whether Ai lies completely
in the interior of Bcurr. If this is not the case we extend Bcurr by using the
appropriate parts of Ai.

The boundary of the ε-buffer consists of a linear number of line and arc
segments to which we add O(n) arcs of type Ai. One can prove that each of
these arcs can contribute at most three pieces to the outer face of B(P). Our
implementation does not depend on this result, but it shows that the outer face
of B(P) has linear complexity. Due to the incremental construction this is also
an upper bound for the size of Bcurr.

Given these observations it is easy to devise an O(n2)-algorithm that com-
putes the boundary of the outer face of B(P). We store Bcurr in a doubly
connected list. Since the length of this list is linear we can afford to scan the
whole list when we search for intersections with the current arc Ai. If we con-
sider carefully whether we enter or leave the interior of the area delimited by
Bcurr, we can update Bcurr in linear time for each right turn. We omit details
here.

In our implementation of the second phase we use a similar trick as in the
first phase to avoid a quadratic runtime in many cases. We exploit the fact that
an arc Ai usually spans only a constant number of elements of Bcurr.

5.3 A Candidate Strip

Once we have the outer face of the ε-r-buffer, we compute the baseline of
the label candidate strip and refine it recursively. We refer to the line and
arc segments that delimit the buffer on the upper side between l1 and rn as
baseline objects. We have access to these objects in the order in which they
appear on the boundary of the buffer’s outer face. We start with an arc A that
touches the first and last object Oi and Ok, respectively. We bend A towards
the buffer until it hits a third object Oj . There, we split A into two pieces,
its children. We connect the children of A with a piece of Oj that initially has

102

Section 5.3. A Candidate Strip 103

length zero. Then we recursively bend the children further towards the buffer,
see Figure 5.4. While we bend, the portion of Oj that connects the children of
A is growing. Note that there are two phases: in the first, the radius of the arcs
increases while it decreases in the second. The recursion ends where Oi and Ok

are adjacent on the buffer (since there is no Oj then) and in the second phase
where the curvature of an arc would exceed 1/(r + h), h the label height. For
the pseudo-code of this algorithm, refer to Figure 5.3.

Refine(B, i, k, state, G)

if k = i + 1 then return
~bik := oriented bisector of Oi and Ok: R→ R

2

for j := i + 1 to k − 1 do
Aj := touching arc(Oi, Oj , Ok, state)
if Aj 6= ∅

then choose βj such that~bik(βj) = center(Aj)
else βj :=∞

end
end
if min{βi+1, . . . , βk−1} =∞ then

if state = 1
then Refine(B, i, k, 2, G)
else return

end
choose j such that βj minimal
replace Oi—Ok in G by Aj

Refine(B, i, j, state, G)
Refine(B, j, k, state, G)

Figure 5.3: pseudo-code for the baseline refinement algorithm

For each level of the recursion, the sequence of arcs we obtain in this way
forms a continuous curve L. If we direct L from left to right, it becomes obvious
that the radius of all arcs that turn right (i.e. towards the buffer) is at least r
and the radius of arcs that turn left is at least r+h. By using L as the baseline
of our strip of height h we ensure that all arcs that form the upper boundary
and the baseline of the strip have at least radius r. Thus the strip fulfills the
curvature constraint H2. Since the baseline of the strip cannot intersect the
ε-buffer it is clear that the strip also fulfills the distance constraint H1. The
non-self-intersection constraint H3 can easily be kept by ending the recursion
where the distance between Oi and Ok is less than 2h.

If the number of inflections is to be kept small, the recursion can also be
stopped whenever the directed distance of a strip segment to the polyline is
below a given threshold. However this is difficult to check without the Voronoi
diagram of the points and (open) edges of P .

It is possible to add two interesting refinement levels. In both, an arc of

103

104 Chapter 5. Line Labeling

r
2ε

h

P

outer face of B(P)

Figure 5.4: refining the candidate strip: first level (solid), second level (dashed),
third level (densely dotted), and forth level (dotted)

the baseline does not necessarily touch three objects on the boundary of the
buffer’s outer face. For a strip with more rectangular segments one could add a
refinement level between level 2 and 3 of the leftmost strip segment in Figure 5.4.
Note that the radii of the annular strip segments there increase up to level 2
and then decrease again. Rectangular segments in an additional refinement
level can thus be viewed as annular segments with infinite radius. On the other
hand, to make the strip follow P as closely as possible, a final refinement level
could be added where all annular strip segments are delimited by two arcs with
radius r and r + h. The baseline of this strip is part of the curve on which a
disk of radius r + h is rolled around the buffer if the disk must always touch
the buffer but not intersect its interior.

In order to determine the third object on an arc, we test each object between
the left- and rightmost object in constant time. Thus we need linear time for
each level of the recursion. As with the Douglas-Peucker line-simplification
algorithm, the number of recursion levels depends on the distribution of the
input data and can vary from Ω(log n) to O(n). Given the outer face of the
ε-r-buffer the strip can hence be computed in O(n2) time, while the average
case can be expected to be in O(n log n).

104

Section 5.4. Finding Good Label Positions 105

5.4 Finding Good Label Positions

In order to satisfy the soft constraints, we evaluate label candidates within the
strip according to curvature, number of inflections, or directed label-polyline
Hausdorff distance. (We define the curvature of a label as the sum over curva-
ture times length of each label segment. The curvature of a rectangular segment
is 0; that of an annular segment with arcs of radius r1 and r2 = r1 + h is 1/r1.)
For all three evaluation functions, the basic idea is the same. We discretize
the space of label candidates such that the discrete space has linear size and
contains minima. Then we search the discrete space for a minimum.

For curvature and number of inflections it is easy to see that there is a
minimizing label candidate that starts or ends with one of the rectangular or
annular segments of the strip. In order to find a minimum, we push a label of
the given length through the strip and stop whenever a new segment starts (or
ends). To compute the measure of the current candidate, we only have to do
a constant number of updates given the value at the previous position. This is
how we can find a placement minimizing curvature or number of inflections in
linear time.

For Hausdorff distance, the discretization is more difficult. We only take
into account the baseline of the strip. In order to compute efficiently the dis-
tance between the baseline of a label candidate and the polyline P , we need
to know the closest object (point or edge) of P for every point on the whole
baseline. Intersecting the baseline with the Voronoi diagram of the objects of P
would yield this information and lead to an O(n log n) algorithm under certain
conditions [Kni98].

However, computing the Voronoi diagram for a set of points and line seg-
ments is not a trivial task in practice. Therefore we implemented a simpler
algorithm that finds a near-optimal label placement as follows. Given an inte-
ger k, we split the baseline into k pieces of equal length. Let γ be the length
of such a piece. We approximate the distance between each piece and P by the
distance of the piece’s midpoint from P . This can be done by brute force in
O(nk) time with O(k) storage. Then we proceed as above: we push the label
through the strip, stop at each midpoint and evaluate the current label position.
Its Hausdorff distance to P is within γ from the maximum over the distances
of all baseline pieces covered by the label. For fast access to this approximate
maximum, we keep the appropriate distances in a priority queue. During the
execution of the algorithm, we must insert the distance of each piece at most
once into the queue. The same holds for deletions. Each such operation costs
O(log k) time, hence we can compute an optimal placement among all those
starting at a midpoint of a baseline piece in O(nk + k log k) time with O(k)
storage. The triangle inequality guarantees that this placement is at most γ
further away from P than a placement minimizing the exact directed Hausdorff
distance. A detailed description of the implementation of the above evaluation
functions can be found in [Kni98] (in German).

105

106 Chapter 5. Line Labeling

5.5 Experimental Results

In order to analyze our line-labeling algorithm, we applied it to synthetic and
to real-world data. The latter is taken from the CIA-map data collection2,
see Figures 5.5 and 5.6. In both figures, labels were placed according to the
approximated minimum Hausdorff distance.

Dor
dogne

Figure 5.5: A piece of the Dordogne (109 points). Above with candidate strip
and label placement (shaded grey), below with lettering

Figure 5.6: A piece of the Guadalquivir (130 points)

The synthetic data belongs to three different example classes. For all three
classes we use random numbers ∆xi and ∆yi that we draw from a normal
distribution with mean 0 and standard deviation 1. In order to get an x-
monotonous polyline we choose the x-coordinates as follows: x1 = 0 and xi =
xi−1 + |∆xi|. Then we scale all xi by xn such that 0 = x1 < x2 < . . . < xn = 1.
The choice of the y-coordinates depends on the example class.

For RandomWalk we set y1 = 0 and yi = yi−1 + ∆yi/100, i.e. we use the
same scheme as for the abscissae except we do not take the absolute value of
the random number and we scale it with a constant factor.

For NoiseLine and NoiseSine we use the x-axis and sine as base functions
and add some noise: yi = f(xi) + ∆yi/100, where f(x) = 0 for NoiseLine and
f(x) = sin(11πx) for NoiseSine.

Figures 5.7 to 5.9 depict instances of each of the three example classes.
In each figure, the strip of the last refinement level (not counting the second
additional refinement level mentioned in Section 5.3) is depicted three times for
the same input polyline. The grey regions in the three strips indicate an optimal

2ftp://gatekeeper.dec.com/pub/graphics/data/cia-wdb/db.tar.Z

106

Section 5.5. Experimental Results 107

Synthetic Example Classes

Figure 5.7: RandomWalk with 400 points

Figure 5.8: NoiseLine with 200 points.

Figure 5.9: NoiseSine with 200 points

107

108 Chapter 5. Line Labeling

label placement within the strip minimizing curvature, number of inflections,
and approximative Hausdorff distance (top to bottom). The parameters for the
strip computation were minimum label-polyline distance ε = 0.005, curvature
bound r = 0.01, and label height h = 0.02. More examples can be found in
[Kni98] or generated on our Web page.

We generated 50 examples with 100, 200, . . ., 1000 points and measured the
frequency of some basic operations and the runtime of our C++ implementa-
tion, see Figures 5.10 to 5.17. The two additional refinement levels mentioned
in Section 5.3 were included in all experiments. In all figures, the x-axis gives
the number n of points of the polyline. The points on our graphs give the
results averaged over all 50 examples; the extent of the vertical bars indicates
the minimum and maximum value among these 50 examples.

Runtime. In Figure 5.10 to 5.12 we depict the running times of the ε-
buffer, ε-r-buffer and strip generation for our three example classes. Here the
parameters were r = 8/n, ε = 2/n, and h = 10/n. The y-axis gives the average
CPU time (in seconds) on a Sun Ultra-Sparc 250. We used the SunPRO-CC
compiler with optimizer flags -fast -O3. Note that the three curves in each
figure are additive; i.e. the topmost curve corresponds to the total runtime.
RandomWalk takes twice as long as the other two example classes, which behave
very similarly—as in all following graphs.

In Figure 5.13 we give the runtimes for placing labels within the pre-
computed strip according to curvature and approximated Hausdorff distance.
We used a label length of 50/n, and for minimizing the Hausdorff distance we
set the approximation parameter γ to 1/(2n). We omitted the curves for num-
ber of inflections since they were identical to those of curvature; we also omitted
those for NoiseSine, which were very similar to those of NoiseLine. Other than
in the description in Section 5.4 we used lists instead of priority queues for the
approximated Hausdorff distance, hence the quadratic runtime behaviour.

Operation counters. In Figure 5.14 to 5.17 we measured the frequency
of some basic operations in order to further analyze our implementation on the
three example classes. Figures 5.14 and 5.15 refer to the buffer computation,
Figures 5.16 and 5.17 to the strip generation.

In Figure 5.14 we show how many segments of the ε-buffer we visit when
computing the extend of the r-arcs Ai. Figure 5.15 shows how many segments
of the current outer face of the buffer are visited in Bcurr when computing the
outer face of the ε-r-buffer. Both figures show graphs with approximately linear
growth as suggested in Section 5.2.

The graphs in Figure 5.16 count the number of tests we do to find the
third object Oj between two objects Oi and Ok on the outer face of the ε-r-
buffer. The growth rate here seems to be between linear and quadratic. Finally
Figure 5.17 gives the number of recursion levels, which grows very slowly.

108

Section 5.5. Experimental Results 109

Graphs for Runtime and Operation Counters

�

��� �

��� �

��� �

��� �

��� �

��� �

��� 	

���

� ��� ����� � ��� 	����
����

� � ������� � �

� � � � � � � � � �

� ��� ��� � ������� � �

�
�

�
� � � � � � �

� � � !#"�� $�� � %�� &�$ '

'
'

'
'

'
'

'
'

'
'

Figure 5.10: Strip generation time
for RandomWalk

(
(�) (�*
(�) +
(�) + *
(�) ,
(�) ,�*
(�) -
(�) -�*
(�) .
(�) .�*
(�) *

+ (�(-�(�(* (�(/�(�(0�(�(

1 2 3�4�5�6 7 8

8 8 8 8 8 8 8 8 8 8

9 1�: ;�< 2 3�4�5�6 7 =

=
=

=
=

=
=

=
=

=
=> ? 7 @ A#B�6 C�6 7 D�? @ E�C F

F
F

F
F

F
F

F
F

F
F

Figure 5.11: Strip generation time
for NoiseLine

G
G�H G�I
G�H J
G�H J I
G�H K
G�H K�I
G�H L
G�H L�I
G�H M
G�H M�I
G�H I

J G�G L�G�G I G�G N�G�G O�G�G

P Q R�S�T�U V W

W W W W W W W W W W

X P�Y Z�[Q R�S�T�U V \

\
\

\
\

\
\

\
\

\
\] ^ V _ `#a�U b�U V c�^ _ d�b e

e
e

e
e

e
e

e
e

e
e

Figure 5.12: Strip generation time
for NoiseSine

f

g

h f

h g

i f

i�g

j�f

h f�f j�f�f g f�f k�f�f l�f�f

mon�p�q r�s�t uvr�w q x n�y�z {�|�}~s�w q { ��w y�{ �

� � � � �
�

�
�

�
�

z p�t � n x p�t {�|�}~s�w q { ��w y�{ �

� � � � � � � � � �

m~n�p�q r�s�t u�r�w q x n�y�z {�|��on�y�r�s�����n�� � �

� � � �
�

�
�

�

�

�z p�t � n x p�t {�|��on�y�r�s�����n�� � �

� � � � � � � � � �

Figure 5.13: Running times for la-
bel placement

�

� ���

� �����

� � ���

� �����

��� ���

�������

��� ���

� ��� ����� � ��� ����� �����

�~��� � � ��� ��� �

�
�

�
�

�
�

�
�

�
��~��� � � ��� ��� �

�
�

�
�

�
�

�
�

�
�

�o���� ���¡�¢���£ ¤ ¥

¥
¥

¥
¥

¥
¥

¥
¥

¥ ¥

Figure 5.14: Number of Opera-
tions for computing r-arcs

¦

§ ¦�¦�¦

¨ ¦�¦�¦

©�¦�¦�¦

ª ¦�¦�¦

« ¦�¦�¦

¬�¦�¦�¦

­ ¦�¦�¦

§ ¦�¦ ©�¦�¦ « ¦�¦ ­ ¦�¦ ®�¦�¦

¯~°�± ² ³ ´�± µ�³ ¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶¯~°�± ² ³ ·�± µ�³ ¸

¸
¸

¸
¸

¸
¸

¸
¸

¸
¸

¹oº�µ�»�°�¼�½�º�¾ ¿ À

À

À
À

À
À

À
À À

À À

Figure 5.15: Number of Opera-
tions for placing r-arcs

Á

Â Á�Á�Á

Ã Á�Á�Á

Ä�Á�Á�Á

Å Á�Á�Á

Æ Á�Á�Á

Ç�Á�Á�Á

È Á�Á�Á

Â Á�Á Ä�Á�Á Æ Á�Á È Á�Á É�Á�Á

Ê~Ë�Ì Í Î Ï�Ì Ð�Î Ñ

Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ

Ê~Ë�Ì Í Î Ò�Ì Ð�Î Ó

Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó

ÔoÕ�Ð�Ö�Ë�×�Ø�Õ�Ù Ú Û

Û Û Û Û
Û

Û
Û

Û
Û

Û

Figure 5.16: Number of Opera-
tions for Strip Placement

Ü

Ý

Þ Ü

Þ Ý

ß Ü

ß�Ý

à�Ü

à�Ý

Þ Ü�Ü à�Ü�Ü Ý Ü�Ü á�Ü�Ü â�Ü�Ü

ã~ä�å æ ç è�å é�ç ê

ê ê ê ê ê ê ê ê ê ê

ã~ä�å æ ç ë�å é�ç ì

ì
ì ì ì ì ì ì ì ì ì

íoî�é�ï�ä�ð�ñ�î�ò ó ô

ô
ô

ô
ô ô ô ô ô

ô
ô

Figure 5.17: Number of refine-
ment levels

109

110 Chapter 5. Line Labeling

5.6 Discussion and Extensions

We have presented a new and conceptually simple method for high-quality line
labeling. It is the first that fulfills both of the following two requirements: it
allows curved labels and its worst-case runtime is in O(n2). We introduced
a concept of gradual refinement that is similar to the idea of the Douglas-
Peucker line-simplification algorithm. This concept allows to introduce addi-
tional application-dependent criteria and to stop the refinement when these
criteria are met.

An experimental evaluation of our algorithm shows that it usually runs
in sub-quadratic time and generally yields good results in practice. However,
since we reduce the search space for good label candidates to a one-dimensional
strip, it is clear that we cannot hope to find an optimal label placement in every
case. As the following example indicates, a more flexible strategy in the buffer
construction might help to overcome problems caused by the reduction of the
search space.

In Figure 5.18 we depicted all r-arcs at right turns of the input polyline
P . The parameter r was chosen large compared to the average segment length
of P . As a result, some of the arcs that contribute to the ε-r-buffer are quite
distant from the input polyline P . They were caused by right turns incident
to two very steep but short edges of P . It would be desirable to remove these
arcs. However, we must ensure that the resulting strip does not violate the
curvature constraint H2. This can be done as follows. After the first phase of
the ε-r-buffer computation we compute the directed Hausdorff distance of each
r-arc Ai to the ε-buffer between li and ri. In order of descending distance we
check for each Ai whether the corresponding ε-arc lies completely in the area
Dj of another r-arc Aj . If this is the case, we remove Ai. Then we proceed to
the second phase of the buffer computation as usual. Note that the resulting
outer face of the buffer still consists exclusively of r-arcs and line segments.
Thus the strip will still keep H2.

Figure 5.18: Disturbing effects of the definition of the ε-r-buffer. (The upper
part of its outer face is marked by bold grey arcs; the input polyline below
consists of bold black line segments.)

An alternative approach is as follows. We observed that our placement of
the r-disks is good if the the adjacent edges of the polyline are long enough.
Then the directed Hausdorff distance between the arc Ai and the ε-buffer is
minimized. However, in general the placement of the r-disks is too inflexible.
It could certainly be improved if we tried to minimize the aformentioned dis-
tance during the placement. Then the placement of the r-disks would take into

110

Section 5.6. Discussion and Extensions 111

account not only the adjacent edges of the polyline but all of the polyline (or
the ε-buffer) between li and ri.

Finally we would like to acknowledge a simple and elegant idea of Mike
Lonergan, University of Glamorgan, Pontypridd. He suggested to put the ε-
buffer around the label (and thus simply thicken the strip by 2ε) instead of
the polyline. Unfortunately, this does not solve the problem of placing the
r-circles.

111

112 Chapter 5. Line Labeling

112

