Anhang A

A.1 Hat \(\rho_a \) Tensoreigenschaften?

Wenn \(\rho_a \) Tensoreigenschaften haben soll, muss das Transformationsergebnis unabhängig davon sein, ob das Koordinatensystem rotiert wird, oder der „\(\rho_a \)“-Tensor (siehe ausführlich Anhang A2). Im ersten Schritt soll der Impedanztensor rotiert werden, aus dem sich danach die scheinbaren spezifischen Widerstände berechnen. Der Einfachheit halber gehe ich von einem 2D-Impedanztensor aus, der um den Winkel \(\theta \) rotiert wird.

\[
Z' = \hat{R} Z \hat{R}^T \\
= \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
0 & Z_\perp \\
Z_\parallel & 0
\end{pmatrix}
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

(A.1)

Für die einzelnen rotierten Tensorelemente ergibt sich folgender Ausdruck:

\[
Z'_{xx} = \frac{1}{2}(Z_\perp + Z_\parallel) \sin(2\theta) \\
Z'_{xy} = \frac{1}{2}(Z_\perp - Z_\parallel) + \frac{1}{2}(Z_\perp + Z_\parallel) \cos(2\theta) \\
Z'_{yx} = -\frac{1}{2}(Z_\perp - Z_\parallel) + \frac{1}{2}(Z_\perp + Z_\parallel) \cos(2\theta) \\
Z'_{yy} = -\frac{1}{2}(Z_\perp + Z_\parallel) \sin(2\theta) .
\]

(A.2)

Aus diesen Tensorelementen wird unter Bildung des Betragsquadrates der scheinbare spezifische Widerstand berechnet. Da der Impedanztensor nun voll besetzt ist, erhalten wir auch vier „\(\rho_a \)“-Tensor -Elemente.

Gehen wir von einem „\(\rho_a \)“-Tensor aus, ergibt sich eine ähnliche Gleichung, wie wir sie für den Impedanztensor (siehe Gl.(A.1)) verwendet haben.

\[
\rho'_{\alpha} = \frac{\mu_0}{2\pi f} \begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
0 & |Z_\perp|^2 \\
|Z_\parallel|^2 & 0
\end{pmatrix}
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

(A.3)
Die einzelnen \(\rho_{\alpha} \)-Tensor "-Elemente besitzen folgende Form:

\[
\rho'_{\alpha,xx} = \frac{\mu_0}{2\pi} \left(\frac{1}{2} (|Z_\perp|^2 + |Z_\parallel|^2) \sin(2\theta) \right)
\]
\[
\rho'_{\alpha,xy} = \frac{\mu_0}{2\pi} \left(\frac{1}{2} (|Z_\perp|^2 - |Z_\parallel|^2) + \frac{1}{2} (|Z_\perp|^2 + |Z_\parallel|^2) \cos(2\theta) \right)
\]
\[
\rho'_{\alpha,yx} = \frac{\mu_0}{2\pi} \left(-\frac{1}{2} (|Z_\perp|^2 - |Z_\parallel|^2) + \frac{1}{2} (|Z_\perp|^2 + |Z_\parallel|^2) \cos(2\theta) \right)
\]
\[
\rho'_{\alpha,yy} = \frac{\mu_0}{2\pi} \left(-\frac{1}{2} (|Z_\perp|^2 + |Z_\parallel|^2) \sin(2\theta) \right)
\]

(A.4)

Handelt es sich bei \(\rho_\alpha \) um einen Tensor, dann müßte gelten:

\[
\frac{\mu_0}{2\pi} |Z_{ij}|^2 = \rho'_{\alpha,ij}
\]

(A.5)

mit \(i, j = x, y \). Bei \(\rho'_{\alpha,ij} \) handelt es sich um einen Summationsterm aus Betragsquadraten von \(Z_\parallel \) oder \(Z_\perp \). Es gilt jedoch die Dreiecksungleichung, wonach \(|a + b| \leq |a| + |b| \) ist. Somit ist \(\rho_\alpha \) im allgemeinen kein Tensor. Dies läßt sich auch für einen voll besetzten Impedanztensor zeigen, was aber aufgrund nicht verschwindender Hauptdiagonalelemente unübersichtlich wird.

A.2 Ist \(\gamma \) ein Tensor?

Eine Matrix ist genau dann ein Tensor, wenn die beiden folgenden Prozeduren zu dem gleichen Ergebnis führen:

- Das Aufstellen des Tensors in einem gegebenen Koordinatensystem und anschließende Transformation in ein zweites Koordinatensystem.
- Transformation der Tensorargumente in das zweite Koordinatensystem und anschließende Aufstellung des Tensors.

Übertragen auf die propagation number bedeutet das für die eine Richtung, dass \(\gamma \) einer Rotation unterworfen werden muß, um die Größe in einem zweiten Koordinatensystem darzustellen. Die zweite Richtung besteht darin, den Admittanztensor, der in einem Nord-Ost-Koordinatensystem aufgezeichnet wurde, in das zweite Koordinatensystem zu rotieren und mit den rotierten Größen \(\gamma \) zu berechnen. Um unübersichtliche Termen mit den Additionstheoremen für trigonometrische Funktionen zu vermeiden, benutze ich eine Rotation des Koordinatensystems um 45°, wodurch Sinus und Kosinus den Wert \(\frac{1}{\sqrt{2}} \) annehmen. Grundsätzlich kann ein beliebiger Winkel angenommen werden.
Abbildung A.1: Überprüfung der Tensorerigenschaften: Einer Größe mit den Komponenten a, b und c soll ein Koordinatensystem (x,y,z) zugrunde liegen. Zu zeigen ist, dass $T(a', b', c') = T'(a, b, c)$.

Rotation des Admittanztensors und Berechnung von γ

\[
Y' = \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
Y_{xx} & Y_{xy} \\
Y_{yx} & Y_{yy}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\frac{1}{2}(Y_{xx} + Y_{xy} + Y_{yx} + Y_{yy}) \\
-\frac{1}{2}(Y_{xx} - Y_{xy} + Y_{yx} - Y_{yy})
\end{pmatrix}
- \begin{pmatrix}
\frac{1}{2}(Y_{xx} - Y_{xy} + Y_{yx} - Y_{yy}) \\
\frac{1}{2}(Y_{xx} - Y_{xy} + Y_{yx} + Y_{yy})
\end{pmatrix}
\]

\[
= \begin{pmatrix}
Y'_{xx} & Y'_{xy} \\
Y'_{yx} & Y'_{yy}
\end{pmatrix}
\]

Mit diesen rotierten Admittanztensorlementen sollen nun die Elemente von γ nach Gl.(5.40) berechnet werden. Exemplarisch führe ich an dieser Stelle das Ergebnis für $\gamma'_{x'x'}$ an:

\[
\gamma'_{x'x'} = \frac{1}{2}(2Y_{xx}Y_{yy} - Y_{xy}^2 - Y_{yx}^2 + Y_{xx}Y_{xy} + Y_{xx}Y_{yx} + Y_{xy}Y_{yy} - Y_{yx}Y_{yy}) \quad (A.6)
\]

Rotation von γ

\[
\gamma' = \begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
\gamma_{xx} & \gamma_{xy} \\
\gamma_{yx} & \gamma_{yy}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix}
\]
\[
\begin{pmatrix}
\frac{1}{2}(\gamma_{xx} + \gamma_{yy} + \gamma_{yx} + \gamma_{yy}) & -\frac{1}{2}(\gamma_{xx} - \gamma_{xy} + \gamma_{yx} - \gamma_{yy}) \\
-\frac{1}{2}(\gamma_{xx} + \gamma_{xy} - \gamma_{yx} - \gamma_{yy}) & \frac{1}{2}(\gamma_{xx} - \gamma_{xy} - \gamma_{yx} + \gamma_{yy})
\end{pmatrix}
\]

Ausgeschrieben nimmt \(\gamma'_{xx} \) folgende Form an:

\[
\gamma'_{xx} = \frac{1}{2}(2Y_{xx}Y_{yy} - Y_{xy}^2 - Y_{yx}^2 - Y_{xx}Y_{yx} + Y_{xx}Y_{yx} + Y_{xy}Y_{yy} - Y_{yx}Y_{yy}) \quad (A.7)
\]

Die beiden Ausdrücke für \(\gamma'_{xx} \) und \(\gamma'_{xx} \) sind gleich. Da man auch für die anderen Elemente gleiche Ergebnisse erhält, besitzt die propagation number \(\gamma \) Tensoreigenschaften.

A.3 Gesteine sedimentären Ursprungs

<table>
<thead>
<tr>
<th>Abfolge</th>
<th>Gruppe</th>
<th>Untergruppe</th>
<th>Formation</th>
<th>Schichten-glied</th>
<th>Lithologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezente Ablagerungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alluvium</td>
</tr>
<tr>
<td>Karoo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sandstein</td>
</tr>
<tr>
<td>Damara</td>
<td>Swakop</td>
<td>Khomas</td>
<td>Kuiseb</td>
<td>Quartz-Biotitschiefer mit Kordierit und Granat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tinkas</td>
<td>Marmor, Schiefer und Kalksilikate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Karibib</td>
<td>Dolomitischer und kalzitischer Marmor, Kalksilikate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Omusema</td>
<td>Ortho-Amphibolit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chuos</td>
<td>Schiefer</td>
</tr>
<tr>
<td>Nosib</td>
<td>Etusis</td>
<td></td>
<td></td>
<td></td>
<td>Quartzit, Konglomerat, grober Sandstein</td>
</tr>
<tr>
<td>Abbabis Metamorpher Komplex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quartzit, Kalksilikate, Mamore, Schiefer</td>
</tr>
</tbody>
</table>

Tabelle A.1: Stratigraphische Abfolge der Gesteine sedimentären Ursprungs in der Nähe von Karibib, Namibia, aus de Kock [1985]
A.4 Aufspaltung einer Leitfähigkeitsverteilung durch die PNA

Um die Vermutung zu überprüfen, dass die Propagation Number Analysis eine Leitfähigkeitsanomalie im gewählten Koordinatensystem richtig darstellt, wird folgender allgemeiner Ansatz verwendet:

Wir nehmen an, dass eine leitfähige Struktur im Untergrund durch einen Leitfähigkeitsensor beschrieben werden kann, dessen Hauptschinen um β gegenüber dem geographischen Koordinatensystem gedreht sind (siehe Abb. A.2). Sind \hat{x}_+ und \hat{x}_- die Einheitsvektoren in Richtung der Hauptschinen des Leitfähigkeitsensors und σ_+ die zugehörigen Leitfähigkeiten, so gilt

$$E_{\pm}(z) = A_{\pm} e^{-k_{\pm} z}, \text{ mit } k_{\pm}^2 = i \omega \mu_0 \sigma_{\pm}. \quad (A.8)$$

Da die PNA voraussetzt, dass $\frac{\partial}{\partial z} = \frac{\partial}{\partial y} = 0$, ergibt sich als räumliche Ableitung von E

$$\frac{\partial E_{\pm}}{\partial z} = -k_{\pm} E_{\pm}. \quad (A.9)$$

Berücksichtigt man nun den Winkel β zwischen den Hauptschinen des Leitfähigkeitsensors und dem Koordinatensystem, so läßt sich Gleichung (A.9) schreiben als

$$\frac{dE_{x}}{dz} = -(k_+ \cos^2 \beta + k_- \sin^2 \beta) E_x - (k_+ - k_-) \sin \beta \cos \beta E_y$$

$$\frac{dE_{y}}{dz} = -(k_+ - k_-) \sin \beta \cos \beta E_x - (k_+ \sin^2 \beta + k_- \cos^2 \beta) E_y \quad (A.10)$$
Diese Gleichung ist von der Form
\[
\frac{dE_x}{dz} = b_{xx} E_x + b_{xy} E_y , \quad \frac{dE_y}{dz} = b_{yx} E_x + b_{yy} E_y ,
\] (A.11)
wie sie für die PNA vorausgesetzt wird. Ähnliche Überlegungen für einen geschichteten Halbraum würden diese Bedingung nicht erfüllen.
Im weiteren soll gezeigt werden, dass der für die PNA verwendete Algorithmus im Fall eines homogenen, horizontal anisotropen Halbraums für einen beliebig registrierten Admittanztensor die Elemente des wahren Leitfähigkeitsensors erzeugt. Die beiden senkrecht aufeinander stehenden elektrischen Feldkomponenten ergeben sich allgemein aus
\[
E_1 = i \omega \mu_0 (\sigma_{xx} E_x + \sigma_{xy} E_y) \\
E_2 = i \omega \mu_0 (\sigma_{yx} E_x + \sigma_{yy} E_y)
\] (A.12)
mit \(\sigma_{xy} = \sigma_{yx} \) sowie \(E_1 \) und \(E_2 \) als Funktion der Tiefe \(z \). Der Lösungsansatz entspricht dem einer ebenen Welle
\[
E_1(z) = A_1 e^{-kz} \quad E_2(z) = A_2 e^{-kz}
\] (A.13)
mit der komplexen Wellenzahl \(k = \sqrt{i \omega \mu_0 \sigma} \). \(\sigma \) ist hierbei als Eigenwert zu bestimmen. Einsetzen von Gl. (A.13) in Gl. (A.12) ergibt
\[
\sigma A_1 = \sigma_{xx} A_1 + \sigma_{xy} A_2 \\
\sigma A_2 = \sigma_{yx} A_1 + \sigma_{yy} A_2.
\] (A.14)
Damit eine Lösung dieses homogenen Systems existiert, muss gelten:
\[
\begin{vmatrix}
\sigma_{xx} - \sigma & \sigma_{xy} \\
\sigma_{yx} & \sigma_{yy} - \sigma
\end{vmatrix} = 0
\]
\[
\Leftrightarrow (\sigma_{xx} - \sigma)(\sigma_{yy} - \sigma) - \sigma_{xy}^2 = 0
\] (A.15)
\[
\Rightarrow \sigma = \sigma_\pm = \frac{1}{2}(\sigma_{xx} + \sigma_{yy} \pm \sqrt{((\sigma_{xx} - \sigma_{yy})^2 + 4\sigma_{xy}^2)})
\] (A.16)
Mit Hilfe des Satzes von Vieta ergibt sich
\[
\sigma_+ + \sigma_- = \sigma_{xx} + \sigma_{yy} \quad , \quad \sigma_+ \cdot \sigma_- = \sigma_{xx} \sigma_{yy} - \sigma_{xy}^2
\] (A.17)
Für alle Lösungen und durch Umformen von Gl. (A.14) gilt
\[
\frac{A_2^+}{A_1^\pm} = \frac{\sigma_\pm - \sigma_{xx}}{\sigma_{xy}} = \frac{\sigma_{yy}}{\sigma_\pm - \sigma_{yy}}
\] (A.18)
Aus Abbildung A.2 wird deutlich, dass
\[
\tan \beta = \frac{\sigma_+ - \sigma_{xx}}{\sigma_{xx}} = \frac{\sigma_{xy}}{\sigma_+ - \sigma_{yy}} . \tag{A.19}
\]
Der Admittanztensor \(Y \) ist definiert als
\[
\begin{align*}
B_x &= Y_{xx} E_x + Y_{xy} E_y \\
B_y &= Y_{yx} E_x + Y_{yy} E_y .
\end{align*}
\tag{A.20}
\]
Zur Berechnung von \(Y \) sind zwei Polarisations erforderlich, das bedeutet
a) \(A_j^+ \neq 0 \) und \(A_j^- = 0 \)
b) \(A_j^+ \neq 0 \) und \(A_j^- = 0 \) mit \(j = x, y \).
Weiterhin gilt nach dem Ampere’schen Gesetz der Maxwell Gleichungen für das magnatische Feld
\[
\begin{align*}
B_x^\pm &= \frac{1}{i\omega} \frac{dE_y^\pm}{dz} = \frac{k^\pm}{i\omega} E_y \\
B_y^\pm &= -\frac{1}{i\omega} \frac{dE_x^\pm}{dz} = \frac{k^\pm}{i\omega} E_x = \sqrt{\frac{\mu_0 \sigma^\pm}{i\omega}} E_x .
\end{align*}
\tag{A.21}
\]
Mit diesen Gleichungen und mit
\[
Y := \frac{\sqrt{i\omega \mu_0}}{i\omega} \tilde{\gamma} = \sqrt{\frac{\mu_0}{i\omega}} \tilde{\gamma} ,
\tag{A.22}
\]
lauten die Bestimmungsgleichungen für \(\tilde{Y}_{xx} \) und \(\tilde{Y}_{xy} \)
\[
\begin{align*}
-\sqrt{\sigma_+} A_j^+ &= \tilde{Y}_{xx} A_j^+ + \tilde{Y}_{xy} A_j^- \\
-\sqrt{\sigma_-} A_j^- &= \tilde{Y}_{xx} A_j^- + \tilde{Y}_{xy} A_j^+ .
\end{align*}
\tag{A.23}
\]
Unter Berücksichtigung von Gl. (A.18) ist das folgende Gleichungssystem zu lösen.
\[
\begin{align*}
-\sqrt{\sigma_+} &= \frac{\sigma_{xy}}{\sigma_+ - \sigma_{xx}} \tilde{Y}_{xx} + \tilde{Y}_{xy} \\
-\sqrt{\sigma_-} &= \frac{\sigma_{xy}}{\sigma_- - \sigma_{xx}} \tilde{Y}_{xx} + \tilde{Y}_{xy} .
\end{align*}
\tag{A.24}
\]
Als Systemdeterminante erhält man
\[
\frac{\sigma_{xy}}{\sigma_+ - \sigma_{xx}} - \frac{\sigma_{xy}}{\sigma_- - \sigma_{xx}} = \frac{\sigma_+ - \sigma_-}{\sigma_{xy}} .
\tag{A.25}
\]
da nach Gl. (A.18) für \(j = x, y \) gilt
\[
(\sigma_+ - \sigma_{jj})(\sigma_- - \sigma_{jj}) = -\sigma_{xy}^2 .
\tag{A.26}
\]
Dadurch berechnen sich \(\tilde{Y}_{xx} \) und \(\tilde{Y}_{yx} \) zu

\[
\tilde{Y}_{xx} = -\frac{\sigma_{xy}}{\sqrt{\sigma_+ + \sqrt{\sigma_-}}} \quad \text{und} \quad \tilde{Y}_{yx} = -\frac{\sigma_{xy} + \sqrt{\sigma_-}}{\sqrt{\sigma_+ + \sqrt{\sigma_-}}} \quad \text{(A.27)}
\]

Das Gleichungssystem für die beiden anderen Tensorelemente \(\tilde{Y}_{21} \) und \(\tilde{Y}_{yy} \) lautet

\[
\sqrt{\sigma_+} = \tilde{Y}_{yx} + \frac{\sigma_{xy}}{\sigma_+ - \sigma_{yy}} \tilde{Y}_{yy}
\]
\[
\sqrt{\sigma_-} = \tilde{Y}_{yx} + \frac{\sigma_{xy}}{\sigma_+ - \sigma_{yy}} \tilde{Y}_{yy} \quad \text{(A.28)}
\]

mit den Lösungen

\[
\tilde{Y}_{yx} = \frac{\sigma_{xx} + \sqrt{\sigma_+ \sigma_-}}{\sqrt{\sigma_+ + \sqrt{\sigma_-}}} \quad \text{und} \quad \tilde{Y}_{yy} = \frac{\sigma_{xy}}{\sqrt{\sigma_+ + \sqrt{\sigma_-}}} \quad \text{(A.29)}
\]

Der Admittanztensor ergibt sich daraufhin zu

\[
\mathcal{Y} = \sqrt{\frac{\mu_0}{i\omega}} \begin{pmatrix} -\sigma_{xy} & -(\sigma_{yy} + \sqrt{\sigma_+ \sigma_-}) \\ \sigma_{xx} + \sqrt{\sigma_+ \sigma_-} & \sigma_{xy} \end{pmatrix} \quad \text{(A.30)}
\]

Mit der Substitution \(S_j = \sigma_{jj} + \sqrt{\sigma_+ \sigma_-} \) und Gl. (A.17) läßt sich die Gleichung (A.30) vereinfachen.

\[
\mathcal{Y} = \sqrt{\frac{\mu_0}{i\omega(S_x + S_y)}} \begin{pmatrix} -\sigma_{xy} & -S_y \\ S_x & \sigma_{yy} \end{pmatrix} \quad \text{(A.31)}
\]

Dieser Ausdruck für den Admittanztensor \(\mathcal{Y} \) wird zur Berechnung der Ausbreitungskonstante \(\gamma \) (vergleiche Gl. (5.40)) verwendet. Die einzelnen Tensorelemente von \(\gamma \) nehmen dann folgende Form an.

\[
\gamma_{xx} = -i\omega \mu_0 \sigma_{xx}
\]
\[
\gamma_{xy} = -i\omega \mu_0 \sigma_{xy}
\]
\[
\gamma_{yx} = -i\omega \mu_0 \sigma_{yx}
\]
\[
\gamma_{yy} = -i\omega \mu_0 \sigma_{yy} \quad \text{(A.32)}
\]

Somit ist gezeigt, dass bei einer beliebigen Anisotropie die Elemente des \(\gamma \)-Tensors die Elemente des Leitfähigkeitstensors wiedergeben.

A.5 Übertragungsfunktionen

Im folgenden sind die magnetotellurischen Übertragungsfunktionen in Form von \(\rho_\alpha \)- und Phasenkurven über der Periode abgebildet. Sie wurden nach geographisch Nord gedreht. Die Graphen für die Stationen 061-073 enthalten zusätzlich die Anpassung durch das in Abschnitt 7.3 beschriebene Inversionsmodell. Die magnetischen Übertragungsfunktionen sind in Form von Induktionspfeilen dargestellt. Die Ordinatenachse entspricht geographisch Nord.
ÜBERTRAGUNGSFUNKTIONEN

061 Real → Imag

071 Real → Imag

062 Real → Imag

072 Real → Imag

063 Real → Imag

073 Real → Imag

064 Real → Imag

074 Real → Imag

065 Real → Imag

075 Real → Imag

066 Real → Imag

076 Real → Imag

067 Real → Imag

077 Real → Imag

068 Real → Imag

078 Real → Imag

069 Real → Imag

079 Real → Imag

070 Real → Imag

080 Real → Imag

Period [s]

Real

Imag