Appendix A

Diffraction Patterns and Bragg Point Energies

To calculate the spot positions and the Bragg conditions for the diffraction pattern of an arbitrary fcc crystal surface, the geometric features of the surface orientation need to be translated from real space into reciprocal space. For this purpose one starts with the simple cubic lattice, which is self-preserved in the reciprocal space with a reciprocal lattice constant of $2\pi/a_0$. As the next step, this simple cubic lattice has to be projected along the surface orientation, e.g. along the (211) or the (311) direction for the purpose of this work. As a result of this projection, one gets columns of Bragg points along the direction of the surface normal labeled by Miller indices according to the base vectors of the lattice in real space (in the example shown below, this is perpendicular to the paper plane). If a surface is considered instead of a bulk crystal these columns of Bragg points transform into lattice rods whose positions are described by the reciprocal surface unit vectors. These reciprocal surface unit vectors are the transformed surface base vectors, which characterize the surface unit cell in real space. If a and b are the surface base vectors in real space and c denotes the surface normal, the reciprocal vectors A, B, and C are:

$$A = 2\pi \frac{b \times c}{a \cdot b \times c}, \quad B = 2\pi \frac{c \times a}{a \cdot b \times c}, \quad C = 2\pi \frac{a \times b}{a \cdot b \times c}.$$ \hspace{1cm} (A.1)

The two reciprocal surface base vectors A and B define the two-dimensional indexing of the spot positions, which are associated with a group of Bragg points on a respective lattice rod. Due to the selection rule for the structure factor of a fcc lattice [Kit83] (the materials studied in this work, Cu and Ag, and alkali halides are all of fcc structure) there is only intensity at those Bragg points where the respective Miller indices (hkl) are all even or all odd. For these relevant Bragg points one can calculate the related electron energy as follows:
Appendix A. Diffraction Patterns and Bragg Point Energies

\[
E = \frac{\hbar^2 |K|^2}{2em} \quad \text{with} \quad |K| = \frac{2\pi \sqrt{h^2 + k^2 + l^2}}{a_0} \cdot \frac{1}{2 \cos \theta}, \quad (A.2)
\]

where \(K = k_i - k_f \) is the scattering vector, \(a_0 \) is the lattice constant, and \(\theta \) is the angle between the incident wave vector \(k_i \) and the final wave vector \(k_f \). For the SPA-LEED geometry, where the angle \(\theta \) between the electron gun and the channeltron is 4°, this leads to the useful equation:

\[
E[\text{eV}] = 0.95 \cdot \left(\frac{2\pi}{a_0} \right)^2 (h^2 + k^2 + l^2) \left(\frac{1}{\lambda} \right)^2 \quad (A.3)
\]

The spot positions and the Bragg point energies are determined according to the procedure described above and listed for the surface orientations which are relevant for this work. The tables and schemes for these surface orientations are following. In the schemes the circles indicate positions of the simple cubic lattice in the reciprocal space in the selected orientation. The empty circles in the diffraction patterns indicate positions where no intensity occurs due to the selection rule for the structure factor.

![Diffraction Patterns](attachment:diffraction_patterns.png)

Figure A.1: Calculated diffraction pattern for a) a fcc(211) surface and b) a fcc(311) surface
Table A.1: Bragg point energies on selected lattice rods of the Cu(211) and the Ag(211) surface

<table>
<thead>
<tr>
<th>Index</th>
<th>00</th>
<th>1T</th>
<th>0</th>
<th>1</th>
<th>0T</th>
<th>01</th>
<th>1T</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>hkl</td>
<td>000</td>
<td>111</td>
<td>202</td>
<td>220</td>
<td>11</td>
<td>11</td>
<td>202</td>
<td>220</td>
<td>111</td>
</tr>
<tr>
<td>Energy [eV] for Cu(211)</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>23</td>
<td>23</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Ag(211)</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>hkl</td>
<td>422</td>
<td>313</td>
<td>331</td>
<td>624</td>
<td>642</td>
<td>513</td>
<td>311</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Cu(211)</td>
<td>70</td>
<td>55</td>
<td>55</td>
<td>162</td>
<td>162</td>
<td>101</td>
<td>32</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Ag(211)</td>
<td>54</td>
<td>43</td>
<td>43</td>
<td>126</td>
<td>126</td>
<td>79</td>
<td>25</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>hkl</td>
<td>844</td>
<td>735</td>
<td>955</td>
<td>753</td>
<td>1046</td>
<td>1064</td>
<td>935</td>
<td>733</td>
<td>953</td>
</tr>
<tr>
<td>Energy [eV] for Cu(211)</td>
<td>278</td>
<td>241</td>
<td>380</td>
<td>241</td>
<td>441</td>
<td>441</td>
<td>333</td>
<td>194</td>
<td>333</td>
</tr>
<tr>
<td>Energy [eV] for Ag(211)</td>
<td>217</td>
<td>187</td>
<td>296</td>
<td>187</td>
<td>343</td>
<td>343</td>
<td>260</td>
<td>151</td>
<td>260</td>
</tr>
</tbody>
</table>

Table A.2: Bragg point energies on selected lattice rods of the Cu(311) and Ag(311) facet/surface

<table>
<thead>
<tr>
<th>Index</th>
<th>00</th>
<th>10</th>
<th>11</th>
<th>01</th>
<th>00</th>
<th>10</th>
<th>11</th>
<th>01</th>
<th>0T</th>
</tr>
</thead>
<tbody>
<tr>
<td>hkl</td>
<td>000</td>
<td>111</td>
<td>200</td>
<td>11</td>
<td>220</td>
<td>111</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Cu(311)</td>
<td>0</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>23</td>
<td>9</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Ag(311)</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>18</td>
<td>7</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hkl</td>
<td>311</td>
<td>402</td>
<td>511</td>
<td>420</td>
<td>531</td>
<td>422</td>
<td>513</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Cu(311)</td>
<td>32</td>
<td>58</td>
<td>58</td>
<td>101</td>
<td>70</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Ag(311)</td>
<td>25</td>
<td>45</td>
<td>61</td>
<td>45</td>
<td>79</td>
<td>54</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hkl</td>
<td>622</td>
<td>713</td>
<td>822</td>
<td>731</td>
<td>842</td>
<td>733</td>
<td>824</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Cu(311)</td>
<td>128</td>
<td>171</td>
<td>209</td>
<td>171</td>
<td>244</td>
<td>151</td>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy [eV] for Ag(311)</td>
<td>100</td>
<td>134</td>
<td>164</td>
<td>134</td>
<td>191</td>
<td>118</td>
<td>191</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A. Diffraction Patterns and Bragg Point Energies

Figure A.2: Calculated diffraction pattern for a) a fcc(221) surface and b) a fcc(111) surface

<table>
<thead>
<tr>
<th>Index</th>
<th>00</th>
<th>T0</th>
<th>T1</th>
<th>0T</th>
<th>01</th>
<th>0T</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>hkl</td>
<td>00</td>
<td>200</td>
<td>TTT</td>
<td>020</td>
<td>311</td>
<td>131</td>
<td>020</td>
<td>111</td>
</tr>
<tr>
<td>Energy [eV]</td>
<td>0</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>32</td>
<td>12</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>hkl</td>
<td>442</td>
<td>642</td>
<td>331</td>
<td>462</td>
<td>753</td>
<td>573</td>
<td>422</td>
<td>553</td>
</tr>
<tr>
<td>Energy [eV]</td>
<td>104</td>
<td>162</td>
<td>55</td>
<td>162</td>
<td>241</td>
<td>241</td>
<td>70</td>
<td>171</td>
</tr>
<tr>
<td>hkl</td>
<td>884</td>
<td>1084</td>
<td>773</td>
<td>8104</td>
<td>1195</td>
<td>915</td>
<td>864</td>
<td>995</td>
</tr>
<tr>
<td>Energy [eV]</td>
<td>418</td>
<td>522</td>
<td>241</td>
<td>522</td>
<td>658</td>
<td>658</td>
<td>336</td>
<td>542</td>
</tr>
</tbody>
</table>

Table A.3: Bragg point energies on selected lattice rods of the Cu(221) surface

<table>
<thead>
<tr>
<th>Index</th>
<th>00</th>
<th>10</th>
<th>01</th>
<th>T0</th>
<th>T1</th>
<th>0T</th>
<th>1T</th>
</tr>
</thead>
<tbody>
<tr>
<td>hkl</td>
<td>00</td>
<td>022</td>
<td>002</td>
<td>202</td>
<td>200</td>
<td>220</td>
<td>020</td>
</tr>
<tr>
<td>Energy [eV] for Cu(111)</td>
<td>0</td>
<td>23</td>
<td>12</td>
<td>23</td>
<td>12</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>Energy [eV] for Ag(111)</td>
<td>0</td>
<td>18</td>
<td>9</td>
<td>18</td>
<td>9</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>hkl</td>
<td>222</td>
<td>244</td>
<td>224</td>
<td>424</td>
<td>422</td>
<td>442</td>
<td>242</td>
</tr>
<tr>
<td>Energy [eV] for Cu(111)</td>
<td>35</td>
<td>104</td>
<td>70</td>
<td>104</td>
<td>70</td>
<td>104</td>
<td>70</td>
</tr>
<tr>
<td>Energy [eV] for Ag(111)</td>
<td>27</td>
<td>81</td>
<td>54</td>
<td>81</td>
<td>54</td>
<td>81</td>
<td>54</td>
</tr>
<tr>
<td>hkl</td>
<td>333</td>
<td>355</td>
<td>335</td>
<td>535</td>
<td>533</td>
<td>553</td>
<td>353</td>
</tr>
<tr>
<td>Energy [eV] for Cu(111)</td>
<td>78</td>
<td>171</td>
<td>125</td>
<td>171</td>
<td>125</td>
<td>171</td>
<td>125</td>
</tr>
<tr>
<td>Energy [eV] for Ag(111)</td>
<td>61</td>
<td>134</td>
<td>98</td>
<td>134</td>
<td>98</td>
<td>134</td>
<td>98</td>
</tr>
</tbody>
</table>

Table A.4: Bragg point energies on selected lattice rods of the Cu(111) and Ag(111) facet
Figure A.3: Calculated diffraction pattern for a fcc(532) surface

Table A.5: Bragg point energies on selected lattice rods of the Cu(532) surface
Appendix A. Diffraction Patterns and Bragg Point Energies

Figure A.4: Calculated diffraction pattern for a fcc(531) surface

Table A.6: Bragg point energies on selected lattice rods of the Cu(531) facet