Aus dem Forschungsinstitut für Molekulare Pharmakologie, Berlin

Eingereicht über den Fachbereich Chemie der Freien Universität Berlin

Internalisierung, Desensitisierung und polarisierte Oberflächenexpression des EndothelinB-Rezeptors

Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. an der Freien Universität Berlin

vorgelegt von

Gregor Boese

13. Mai 2002

Mit Genehmigung des Fachbereiches Chemie der Freien Universität Berlin.

Die vorliegende Arbeit wurde unter Anleitung von Herrn Prof. Dr. W. Rosenthal und Herrn Dr. A. Oksche in der Zeit von Oktober 1997 bis März 2001 am Forschungsinstitut für Molekulare Pharmakologie in Berlin angefertigt.

Erster Gutachter: Prof. Dr. W. Rosenthal

Zweiter Gutachter: Prof. Dr. F. Hucho

Zusammenfassung

Endotheline (ET1, ET2, ET3) sind Peptide von 21 Aminosäuren, die ihre Wirkung über zwei G-Protein-gekoppelte Rezeptoren entfalten: 1) Den v.a. auf vaskulären Muskelzellen exprimierten Endothelin-A (ET $_{\rm A}$)-Rezeptor und 2) den in Endothelzellen exprimierten Endothelin-B (ET $_{\rm B}$)-Rezeptor. Der ET $_{\rm A}$ -Rezeptor vermittelt eine lang-anhaltende Vasokonstriktion, der ET $_{\rm B}$ -Rezeptor eine kurzfristige Vasodilatation. Die Ursache für die unterschiedliche Dauer der durch die Endothelin-Rezeptorsubtypen vermittelten Gefäßreaktionen ist bislang unklar. Unterschiede der Internalisierung und des intrazellulären Transports könnten hier eine mögliche Ursache sein. Während für den ET $_{\rm A}$ -Rezeptor ein Recycling in glatten Muskelzellen beschrieben wurde, lagen für den ET $_{\rm B}$ -Rezeptor bisher keine Untersuchungen vor.

In der vorgelegten Arbeit wurde durch Verwendung von fluoreszierendem ET1 und Endothelin-Rezeptor/GFP-Fusionsproteinen gezeigt, daß der ET_B -Rezeptor tor nach Endothelin-1 (ET1) Bindung innerhalb weniger Minuten über einen Sucrose-sensitiven, d.h. Clathrin-vermittelten Weg internalisiert wird. Der Ligand verbleibt mit dem Rezeptor über mehrere Stunden in einem stabilen Komplex und wird in späte Endosomen/Lysosomen transportiert und schließlich abgebaut ("Downregulation"). Diese an transfizierten CHO-Zellen durchgeführten Analysen konnten auch an primär kultivierten Astrozyten bestätigt werden. Die Downregulation von Rezeptor und Ligand ist für G-Protein-gekoppelte Rezeptoren bislang einzigartig. Typischerweise dissoziiert der Ligand bei vielen anderen G-Protein-gekoppelten Rezeptoren in dem sauren Milieu der Endosomen. Ein spät endosomaler/lysosomaler Transport von aktivierten Rezeptoren war bislang nur für die Protease-aktivierten Rezeptoren eindeutig belegt, die eine konstitutive Aktivierung aufweisen. Für den ET_A-Rezeptor wurde hingegen an CHO-Zellen oder ET_B-defizienten primär kultivierten Astrozyten keine wesentliche Internalisierung von Rezeptor und Ligand in endosomale Kompartimente beobachtet. Damit konnten für ET_A- und ET_B-Rezeptoren unterschiedliche Internalisierungswege beschrieben werden, die auch zu Unterschieden der Oberflächenexpression beider Rezeptoren führen. Darüber hinaus zeigt die über Stunden nachweisbare Kolokalisation des ET_B-Rezeptors mit ET1, daß der ET_B-Rezeptor auch als

Clearance-Rezeptor fungiert.

Im zweiten Teil dieser Arbeit wurde eine mögliche polarisierte Oberflächenexpression des ET_B -Rezeptors an MDCK-Zellen untersucht. Für diese Zellen konnte gezeigt werden, daß der ET_B -Rezeptor gleichermaßen basolateral und apikal exprimiert wird. Ein potentielles tyrosinhaltiges basolaterales Sortiermotiv (GYXXF) ist für den Transport des Rezeptors ohne Bedeutung. Damit sind Epithelzellen sowohl von der apikalen als auch der basolateralen Seite für ET1 sensitiv. Dies trifft z.B. für Nierenepithelzellen zu, die den ET_B -Rezeptor exprimieren; da ET1 sowohl im Urin als auch Interstitium vorliegt ist eine Stimualtion der Zellen von beiden Seiten möglich. Weitere Arbeiten müssen nun klären, ob ET_B -Rezeptoren auch in Endothelzellen auf apikalen (luminal) und basalen (abluminal) Plasmamembranen vorliegen. Diese Fragestellung ist von Bedeutung, da ET1 von den Endothelzellen v.a. nach basolateral sezerniert wird. Das Vorliegen basolateraler ET_B -Rezeptoren würde damit auch eine autokrine / parakrine Stimulation der Endothelzellen bedeuten.

Summary

Endohelins (ET1, ET2, ET3) are peptides consisting of 21 amino acids, which evolve their properties over G-protein coupled receptors: 1) particularly Endothelin-A (ET_A)-receptor expressed on vascular smooth muscle cells and 2) Endothelin-B (ET_B)-receptor on endothelial cells. ET_A-receptor mediate a long lasting vasoconstriction, while ET_B-receptor exhibit only a short vascular relaxation. The reason for these differences on vascular reactions among endothelin- receptor subtypes is not known at this time. Differences in internalisation and intracellular transport could be a possible reason. While ET_A-receptor recycling in smooth muscle cells could be described, no analysis exist for the ET_B-receptor. In this work, fluorescent ET1 and Endothelin-receptor/GFP-fusion protein was used to show, that after binding of ET1, ET_R-receptor is internalised in a sucrosesensitive, meaning clathrin-mediated pathway. The ligand remain associated in a stable complex with the receptor and is transported in late endosomes/lysosoms for degradation ("down-regulation"). These analyses on CHO-cells could also be validated on cultivated primary astrocytes. At this time the down-regulation of receptor and ligand is unique for G-protein coupled receptors. Typically in many cases ligand dissociates from G-protein coupled receptors in the acidic environment of endosomes. Only protease activated receptor, clearly show a constitutive transport in late endosoms/lysosoms. Whereas no internalisation could be observed for ET_A-receptor, neither in CHO-cells nor in primary cultivated astrocytes. For this reason different internalisation pathways for ET_A- and ET_B-receptor could be described leading to different surface expression. Furthermore colocalisation of ET_B-receptor with ET1, detectable for hours, document the clearance function of ET_B-receptor. In the second part of this work, a possible polarised surface expression of the ET_B-receptor was analysed with MDCK-cells. For these cells it could be shown, that ET_B-receptor is expressed in equal measure on apical and basolateral membrane. A potential basolateral sorting motive including tyrosin (GYXXF) has no effect on receptor transport. It can be concluded that epithelial cells are sensitive for ET1 also from basolateral side. This applies for

epithelial kidney cells expressing ET_B -receptor; because ET1 exist as well in urine as in interstitium, thus stimulation is possible from both sides. Further work should be done to clarify if ET_B -receptor also exist in endothelial cells on apikal (luminal) and basal (abluminal) plasmamembrane. This question is important, because ET1 is released from endothelial cells mainly on basolateral side. The existence of ET_B -receptor on this side, would signify an autocrine/paracrine stimulation of endothelial cells.

Inhaltsverzeichnis

1	Einl	eitung	11
	1.1	G-Protein-gekoppelte Rezeptoren	11
	1.2	Die Endotheline und ihre Rezeptoren	12
	1.3	Physiologische und pathophysiologische Bedeutung des Endothelins	15
	1.4	Signalkaskaden der Endothelin-Rezeptoren	16
	1.5	Endothelin-induzierte Vasokonstriktion	18
	1.6	Rezeptor-vermittelte Endozytose	19
	1.7	Transportprozesse in polarisierten Zellen	22
	1.8	Visualisierung von intrazellulären Transportprozessen	23
	1.9	Fragestellung	25
2	Mat	erial und Methoden	26
	2.1	Material	26
		2.1.1 Chemikalien und Reagenzien	26
		2.1.2 Geräte und Rechner	28
		2.1.3 Bakterienstämme und Zellinien	30
		2.1.4 Desoxyribonukleotide	31
		2.1.5 Medien und Agarplatten für <i>E. coli</i>	32
	2.2	Methoden	33
		2.2.1 Methoden zur Aufreinigung von DNS	33
		2.2.2 Amplifizierung von DNS durch Polymerase Kettenreaktion	
		(PCR)	34
		2.2.3 Spezifische Spaltung von DNS durch Verdau mit Restrikti-	
		onsendonukleasen	35
		2.2.4 DNS-Sequenzierung nach der Dideoxymethode	35

		2.2.5	Horizontale Gelelektrophorese	36
		2.2.6	Eluierung von DNS Fragmenten aus Agarose-Gelen mit	
			dem Gene Clean II Kit	37
		2.2.7	Ligation von DNS Fragmenten	37
		2.2.8	Herstellung kompetenter Zellen und Transformation	38
		2.2.9	Zellkultur	38
		2.2.10	[125]-Endothelin-1 Bindung und Verdrängung an Gesamt- membranen	40
		2.2.11	Internalisierungsexperimente	41
			Inhibition der Clathrin-abhängigen Internalisierung	42
			Kolokalisation von Fluo-ET1 mit DiI-LDL oder TRITC-	
		,,,	Transferrin	42
		2.2.14	Konfokale- bzw. Epifluoreszenz-Mikroskopie	43
			Biotinilierung von Oberflächenproteinen	43
			Inositolphosphat Assay	44
			cAMP-Radioimmunoassay (RIA)	45
3	Erg	ebnisse		46
	3.1 Pharmakologische Eigenschaften der Endothelin-Reze		nakologische Eigenschaften der Endothelin-Rezeptoren, im	
		Vergle	ich mit ihren GFP-Fusionsprotein	47
	3.2	Intern	alisierung und intrazellulärer Transport	48
		3.2.1	Visualisierung der Endozytose von Endothelin-Rezeptoren	48
		3.2.2	Wiedererscheinen des $\mathrm{ET}_{\mathrm{B}} ext{-Rezeptors}$ an der Zelloberflä-	
			che nach erfolgter Internalisierung	52
		3.2.3	Kolokalisation mit Fluorochrom-markiertem Low-Density-	
			Lipoprotein (LDL)	54
		3.2.4	Sucrose inhibiert die Clathrin-abhängige Endozytose des	
			ET _B -Rezeptors	57
	-		urelle Motive für die Oberflächenexpression des ET_{B} -Rezeptors	3
		in pola	arisierten MDCK-Zellen	57
		3.3.1	Verteilung der $\mathrm{ET}_{\mathrm{B}}\mathrm{GFP}$ Konstrukte in MDCK-Zellen	59
		3.3.2	Radioaktiver Ligand-Bindungs-Assay an MDCK-Zellen $$	59
		3.3.3	Biotinylierungs-Assay zur Messung der apikalen und baso-	
			lateralen Membranoberflächen	61

		3.3.4	Signal transduktion des $\mathrm{ET}_B\text{-Rezeptors}$ an polaren MDCK-Zellen	62
4	Disk	kussion	Zenen	65
	4.1	Subtyp	o spezifische Desensitisierung der Endothelin-Rezeptoren	66
	4.2	Differe	enzierte Internalisierung der Endothelin-Rezeptor Subtypen	67
	4.3	Strukt	urelle Motive für die Oberflächenexpression in polarisierten	
		MDCF	K-Zellen	70
	4.4	Zusam	menfassung und Ausblick	72
Lit	terat	urverze	ichnis	73
ΚI	onier	ung		86
Le	bens	lauf		87
Da	anksa	gung		88

Abkürzungen

AC	Adenylatzyklase
ATP	Adenosintriphosphat
BSARin	nderserumalbumin("bovine serum albumin")
	Cyclo(D-Asp-Pro-D-Val-Leu-D-Trp)
CHX	Cycloheximid
	.Impulse pro Minute ("counts per minute")
	Cyanin
DAG	Diacylglycerol
DiI	adecyl-3,3,3',3'-tetramethylindocarbocyanin
	Dulbecco's modified Eagle Medium
dpm	Zerfälle pro Minute ("decay per minute")
ECE	Endothelin-Converting-Enzym
EDTA	Ethylendiamintetraacetat
EGFP Enhance	ced green fluorescent protein; (hier = GFP)
ET	Endothelin
eNOS	Endotheliale NO-Synthase
FCS	Fötales Kälberserum ("fetal calf serum")
Fluos	voxyfluorescein-M-hydroxysuccinimide-ester
GFP Grünes Fluor	reszenzprotein ("Green fluorescent protein")
	reszenzprotein ("Green fluorescent protein")
GPCR	
GPCR	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G-Protein-gekoppelter RezeptorInositoltrisphosphatDissoziationskonstante
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G-Protein-gekoppelter RezeptorInositoltrisphosphatDissoziationskonstanteLow-Density-Lipoprotein
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G-Protein-gekoppelter RezeptorInositoltrisphosphatDissoziationskonstanteLow-Density-LipoproteinLaser-Scanning-Mikroskop
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
GPCR IP ₃ K _D LDL LSM PGI ₂ PBS PIP ₂	
GPCR IP ₃ K _D LDL LSM PGI ₂ PBS PIP ₂ PKC	
GPCR IP ₃ K _D LDL LSM PGI ₂ PBS PIP ₂ PKC PLA	
GPCR IP3 KD LDL LSM PGI2 PBS PIP2 PKC PLA PLC	
GPCR IP3 KD LDL LSM PGI2 PBS PIP2 PKC PLA PLC RT	
GPCR IP3 KD LDL LSM PGI2 PBS PIP2 PKC PLA PLC RT SDS Natri	
GPCR IP3 KD LDL LSM PGI2 PBS PIP2 PKC PLA PLC RT SDS Natri TM	
GPCR IP3 KD LDL LSM PGI2 PBS PIP2 PKC PLA PLC RT SDS Natri TM TRITC	