Strukturelle antioxidative Funktionen von Tyrosin und Tryptophan in Membranproteinen und Peptidhormonen

Dissertation

von

Dipl.-Biochem. Bernd Moosmann

Februar 2002

Eingereicht am Fachbereich Chemie der Freien Universität Berlin

Die vorliegende Dissertation wurde in der Zeit von März 1999 bis Februar 2002 in der

Arbeitsgruppe von PD Dr. Christian Behl - Neurodegeneration - am Max-Planck-Institut

für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer) in München angefertigt.

Hiermit erkläre ich, daß ich die Arbeiten selbständig durchgeführt und keine anderen als die

angegebenen Quellen und Hilfsmittel verwendet habe.

München, im Februar 2002

Bernd Moosmann

Datum der Disputation: 19. Juli 2002

Erstbetreuer: Herr PD Dr. C. Behl

Zweitbetreuer: Herr Prof. Dr. F. Hucho

2

Inhalt

1 Einführung	6
1.1 Zielsetzung	12
	10
2 Material und Methoden	13
2.1 Chemikalien	13
2.2 Chemische Synthesen	13
2.2.1 Peptide	13
2.2.2 Aminoacyllipide	14
2.3 Zellkultur	18
2.3.1 Klonale Zellinien	18
2.3.2 Primäre Zellkultur	19
2.3.3 Organotypische Schnittkultur	20
2.4 Zellvitalitäts- und Zellüberlebensbestimmungen	20
2.4.1 Mikroskopische Methoden und Färbemethoden	20
2.4.2 Metabolische Tests	21
2.5 Oxidationsmessungen	21
2.5.1 Zelluläre Peroxidbestimmung	21
2.5.2 Hirnmembranperoxidation	21
2.5.3 Lipidvesikeloxidation	22
2.5.4 Linolsäureoxidation	23
2.5.5 LDL-Oxidation	23
2.5.6 Proteinoxidation	23
2.5.7 Oxidation von speziellen Indikatormolekülen	24
2.6 ESR-Spektroskopie	25
2.7 Massenspektroskopie	26
2.8 Chemische Rerechnungen	26

3 Ergebnisse	27
3.1 Intramembranäres Tyrosin und Tryptophan wirken als	
cytoprotektive Strukturen	27
3.1.1 Tyrosin- und tryptophanhaltige Peptide aus den Transmembranbereichen	
integraler Membranproteine schützen Zellen vor oxidativem Streß	27
3.1.2 Langkettig acylierte, lipophile Tyrosin- und Tryptophanderivate sind	
cytoprotektive Antioxidantien, nicht jedoch Derivate anderer Aminosäuren	29
3.1.3 Die cytoprotektiven Wirkungen lipophiler Tyrosin- und Tryptophanderivate	
lassen sich mit ihren direkten biochemischen Antioxidanseigenschaften erklären	36
3.2 Sekretorische Peptidhomone sind biochemische Antioxidantien	41
3.2.1 LHRH, Enkephalin, Angiotensin und Oxytocin verhindern die Oxidation	
von globulären Proteinen, LDL und neuronalen Membranen	41
3.2.2 Die antioxidativen Eigenschaften der Peptidhormone beruhen auf ihrem	
Gehalt an Tyrosin und Tryptophan	44
3.2.3 Peptidhormone wirken als Spinquencher und reagieren direkt mit freien	
Radikalen	45
4 Diskussion und Perspektive	52
4.1 Membranproteine als atypische Antioxidantien und cytoprotektive	
Strukturen	52
4.2 Peptide als Antioxidantien des extrazellulären Raums	59
4.3 Tyrosin- und tryptophanhaltige Peptide und Lipide als antioxidativ	
wirkende Pharmaka für den Einsatz bei mit oxidativem Streß	
verbundenen Erkrankungen	62
4.4 War molekularer Sauerstoff in der Biosphäre die Ursache für das	
Aufkommen von Tyrosin und Tryptophan als codierten Aminosäuren?	65

5 Referenzen	68
6 Abkürzungsverzeichnis	82
7 Danksagung	84
8 Publikationen des Autors	85
Anhang:	
Zusammenfassung	87
Summary	89