Chapter 2

Theory

In this chapter the theoretical background for the numerical calculations performed in this
thesis are presented. To provide an as closed picture as possible the derivation of standard
techniques (e.g. the Born—-Oppenheimer approximation) is sketched out, while a closer look
is taken at the less widely used theories concerning dissipative effects. The presentation
follows the steps necessary for the theoretical analysis of a molecule, for which one wants
to know the dynamics of its intramolecular bonds. First, in Section 2.1, the quantum
chemical methods are described, which are used to calculate the geometries, the molecular
potentials and other static properties of the system (e.g. the dipole moment). In Section 2.2
the Cartesian reaction Hamiltonian, which is used to study the dynamics of the system, and
how to construct it from the ab initio data of the preceding section, is discussed. Section
2.3 describes the methods necessary for the description of quantum systems which are
either isolated, or able to exchange energy with a bath. In Section 2.4 possible numerical
implementation of this description are introduced. In the final Section 2.5 of this chapter
various methods proposed in literature for the control of molecular dynamics are presented.

2.1 Quantum Chemistry

This Section will only give a short sketch of the quantum chemical techniques used in
this work. A more detailed treatment of this topic is extensively covered in the literature
(69, 70, 71, 72].

To calculate the stationary properties of a molecule, especially its geometry, it is nec-
essary to solve the time independent Schrodinger equation for the molecular Hamiltonian
H,.:

~

H,oU = EV, (2.1)

which describes a many body system consisting of nuclei and electrons. An analytical
solution for this problem is only possible for very few simple systems, e.g. the harmonic
oscillator or the Hydrogen atom. To describe the molecules relevant for this work one
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has to apply several approximations before a solution of Eq. (2.1) is possible. The most
prominent among them is the Born—-Oppenheimer approximation, used to separate the
motion of the heavy nuclei from that of the light electrons. Even this separated problem
cannot be solved exactly, but has to be evaluated with numerical methods. In this section
a short sketch of the Born—Oppenheimer approximation will be presented. After this the
standard quantum chemical methods used in this work to calculate molecular properties
will be presented. The basis of most of the numerical solutions for the electronic system
is the Hartree—Fock self consistent field approach. This can be refined via perturbation
theory based on the work of Mgller and Plesset. Another approach to solve the electronic
problem of the molecule are density functional methods, which are reviewed in the final
part of this section.

2.1.1 The Born—Oppenheimer Approximation

The Born-Oppenheimer approximation [73] is used to separate the motion of the heavy
nuclei of a molecule from the much faster dynamics of the electrons. The complete molec-
ular Hamiltonian of a system consisting of Ny, atoms with nuclear charges 71, ..., Zn,,.,
Cartesian positions R, and momenta P, and N, electrons with positions and momenta
written as r, and p,, respectively, is generally given in the form

I:Imol = Tel + Velfel + Tnuc + Vnucfnuc + velfnuc- (22)

The single terms are the kinetic energy for the electrons, ’i‘el, and for the nuclei, ’i‘nuc, as

N Nel 2 Nnuc P2

p; S
T, = I and Ty = —
el Z 9 c ]2::1 2M]

j=1 M

where m, is the electron mass and M; is the mass of the jth nucleus. The interaction
between these partlcles via the Coulomb force results in the potentlal terms for the electron—
electron interaction Vel o1, the nucleus—nucleus interaction Vyye_nue and for the electron—
nucleus interaction Vi_ nuc, as
2 2
’ :1 677 Ve nue = 3 §|RZZ€R|andvelnuC:_Z|riZiieRﬁ|‘

The solution of the Schrédinger equation for this complex many body problem is then
simplified by the application of the Born—-Oppenheimer approximation, which assumes that
the electrons move in the electro-static field generated by a fixed geometry of the nuclei.
This is motivated by the fact, that due to the large mass difference between electrons and
nuclei the electrons will be able to respond instantaneously to any change in the nuclear
configuration. Therefore it is possible to represent the electronic Hamiltonian in a form,
which only depends parametrically on the nuclear coordinates R:

A

Hel(R) = Tel + vel—el + Vel—nuc (23)
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The solution of the stationary Schrédinger equation Eq. (2.1) with this electronic Hamil-
tonian is the objective of quantum chemistry programs. It results in electronic energies
FY(R) and wavefunctions |¢,(r,R)), which will depend prametrically on the nuclear ge-
ometry:

He [¢u(r,R)) = E (R) [¢u(r, R)) (2.4)

The solution of the electronic part of the Schrodinger equation for different nuclear
coordinates R results in the potential hypersurface V' (R) when the inter-nuclear repulsion
is added. This part of the potential is constant with respect to the electronic coordinates. A
further potential term, which results from the non-adiabatic coupling operator, describing
the interaction between the different electronic states [61] is neglected here, as this work
concentrates on the processes in a single adiabatic potential energy surface, which can be
written as:

Vo(R) = E'(R) + Ve e (2.5)

If the electronic states of the molecule are well separated from each other this approach
is justified. The elimination of the non-adiabatic electronic coupling is the core of the
Born-Oppenheimer approximation, which leads to a nuclear Schrédinger equation

Hoe [tn(R)) = (Tue + Va(R)) [ (R)) = 2" [ (R)) (2.6)

This describes the geometry of the nuclei in the average field generated by the fast moving
electrons. One has to note, that now there will be a different nuclear potential for each
electronic state. The dynamics of the nuclei is described reasonably well with the nuclear
potential V(R) within the Born-Oppenheimer approximation, as long as the potential
surfaces belonging to different states stay well separated.

2.1.2 The Hartree—Fock (HF) Method

While taking a look at the Born—-Oppenheimer approximation it was noted that the poten-
tial hypersurface and therefore the nuclear dynamics is mainly determined by the solution
of the electronic Schrodinger equation (2.4) for a fixed nuclear configuration. While this
problem is easier to solve than the complete molecular Hamiltonian, it is still not possible
to calculate the electronic orbitals and energies exactly for anything but the most simple
systems. To evaluate more complicated molecules, it is again necessary to resort to some
approximations. One of the oldest methods, which is also the basis of other, more refined
theories, is the Hartree—Fock self consistent field method (HF-SCF) [74]. This method gives
an approximate solution of the electronic Schrodinger equation (2.4) using the Hamiltonian
H,, as obtained from the Born—-Oppenheimer approximation.

The HF method is a non-relativistic approach, in which the single electrons are de-
scribed by single particle functions x,(x) consisting of a product of a spatial orbital ¢ (r),
depending on the position of the electron and a spin orbital «(w) or (w) depending only
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on the spin coordinate:
a(w)
) = r,w)=Y(r)- 2.7
i) =) =0+ 1) (2.7
The total electronic wavefunction of the N, electron molecular system can then be de-
scribed — at least within the HF approximation — as a single, anti-symmetric Slater deter-
minant:

xi(r)  xe(zi) - xalzw,)
b = | VT AT e 23)
X1 (xNel) X2 (xNe1) ' XNa (xNel)

The single particle functions x,(z) are then determined by minimizing the functional for
the energy expectation value:

<\I]el| Hel |\Ije1>
<\Ijel| \IJel>
To perform this minimization it is convenient to split the electronic Hamiltonian I:Iel

Eq. (2.3) into a sum of single electron operators ﬁ(ri), which affect only the ith electron
and the non-separable interaction potential Vg _¢ between all electrons:

Eel [\Pel] = (29)

el—Zh i)+ = Z (2.10)
ey |7"z - 7"]|
where
. A
h(r;) = ==+ Vera. (2.11)

e
In addition the orthonormality of the single particle functions (x,| Xm) = Omn is assumed.
After performing the variational optimization, one obtains the Hartree—Fock equations
for the single particle spin orbitals x,(z):

FXn(x) = 6an(x) (2'12)

with the Fock operator F. It consists of the single particle operator h and the so called
Coulomb- and exchange operators Jand K, respectively:

R el X X ) el X X
Fxi(z) = hu(e 22/ : J/| il 22/ : ]/| )i

*JXz( ) *KXz( )
— enila). (2.13)

This form can be interpreted as a single particle operator consisting of the basic operator
h for one electron with an additional effective Hartree—Fock potential term

VIF(z) = € Z (Ji(2) - Ki(x)), (2.14)
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which can be written in the simple form

(h+ V(@) xi(z) = enxila). (2.15)

The interpretation for the Coulomb part of this potential is straightforward, it just describes
the interaction of one electron with the charge of all other electrons located in all the other
single particle orbitals. The exchange part on the other hand has no classical counterpart
and is a purely quantum mechanical effect, caused by the anti-symmetric ansatz of the
wavefunction. The energy of the HF molecular orbital is then calculated via

1
Eup =3 ha+ 52 (Jy - Ky) (2.16)
i irj
with hy; = (xi|h|x;) and the Coulomb and correlation energies as derived from the corre-

Sponding Operators
/X] X] ( )XZ(J“) drldr (2 17)
= o |

and

K = / @@ PG @ (@) (2.18)

= 7“’|

To solve these equations an iterative method has to be employed, as the operator

generating the single particle functions x;(x) itself depends on these functions via the

Hartree—Fock potential V7 (x). Therefore it is necessary to start with an initial guess of

the y;(x), use them to calculate an approximate V¥ () and from this the Fock operator F,

recalculate the y;(z) with this operator and repeat this procedure until the single particle
functions converge to a stable solution.

Basis Sets

To further simplify the problem and reduce the numerical effort the standard quantum
chemistry programs represent the spatial part of the single particle functions ¢ (r) from
which the total molecular wavefunction is built as a linear combination of fixed basis
functions:

r) = zk:(]kg)k(r). (2.19)

This leads to a representation of the problem as a set of linear equations. Within this
approximation the electronic Schrodinger equation can now be solved via the determination
of the coefficients of these combinations.

Historically this linear combinations were built from atomic orbitals or from a linear
combination of Slater—type orbitals (STOs) in the form

op o TFTeTTY (0, ¢), (2.20)
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which are centered on each atom. This approach is named linear combination of atomic
orbitals (LCAO), and leads to an equation for the coefficients of the molecular orbitals
(Roothaan equation). The solution of these equations for larger molecules requires an
evaluation of three and four center integrals (i.e. integrals over basis functions centered on
up to four different atoms), which is very time consuming for STOs. In modern quantum
chemistry programs the atomic or Slater—type orbitals normally are not used. Instead a
collection of square integrable functions, usually easy to integrate Gaussians, are used. A
typical Cartesian Gaussian basis function is defined as

G = Na'ylshe=or’, (2.21)

where ¢, j and k£ are non-negative integers, « is a positive orbital exponent and x, y and z
are Cartesian coordinates centered on a nucleus. For ¢ + j + k£ = 0 this results in a s-type
Gaussian, for 14+ j+k = 1 in three p-type Gaussians, and so forth. The fact that the radial
component of these functions varies with e " and not with the correct exponential factor
e~ " is compensated by choosing a linear combination of these Gaussian functions for each
orbital. Different sets of these linear combinations, the so called contracted Gaussian type
functions (CGTF), are used to build up the atomic orbitals of the system. Sets of these
CGTF for the atoms are called the basis sets of the calculation. The bases used to evaluate
the electronic ground state energy of specific molecules in this work are introduced later
in Chapter 3.

Perturbation Theory

The Hartree—Fock approximation has one serious shortcoming — even with an infinite num-
ber of single particle functions in the so called HF-limit a single determinant is not able
to represent the electron density accurately. The main problem is that the electrons are
allowed to approach closer to each other than the true quantum mechanical description of
the correlated movement of the electrons would allow. To overcome this problem one nat-
urally has to move away from the HF description toward a model using not one but several
Slater determinants to describe the total molecular wavefunction. One possible approach
is described in the theory by Mgller and Plesset [75]. This approach includes the additional
determinants via a perturbation scheme using the original spin orbitals generated by the
HF method and is not variational itself.

The so called Mgller—Plesset (MP) perturbation theory starts by dividing the Hamilto-
nian into a main, unperturbed part, and an additional perturbation operator. In this case
the unperturbed operator is defined as the Hartree-Fock operator (the sum overall single
particle Fock operators):

HO = g"F = ZF i) =Y () + VT (@), (2.22)

i

while the perturbation operator is set to the difference between this operator and the exact
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electronic Hamiltonian:

~ A ~ ~

HY = Hy - HO = Vo= Y V(1)) (2.23)

As the Hartree—Fock potential already gives a quite good approximation of the true
electron—electron interaction (typically around 99%), the energy correction generated by
this perturbation operator is relatively small. The additional Slater determinants used
to describe the molecular orbitals are generated by replacing one or two of the occupied
single particle functions from the ground state HF determinant with unoccupied, so called
virtual, orbitals. These determinants are called singly or doubly excited, as they represent
molecular orbitals in a higher energy state.

An important property of this approximation is, that in first order it just reproduces
the result of the Hartree—Fock calculations. To achieve any refinement one has to calculate
the corrections in second and higher orders. The method is labeled according to the order
of the perturbation treatment used. The MP2 method mostly used in this work therefore
is the Mgller—Plesset perturbation theory in second order.

2.1.3 Density Functional Theory

The density functional theory (DFT) offers a completely different approach to the calcu-
lation of molecular potentials. In contrast to the perturbation methods this theory is not
based on the refinement of a result obtained via Hartree—Fock, but takes a different route
to calculate the molecular energies [72, 76].

The DFT methods derive these from a charge density p(r), which depends only on the
coordinates x, y and z. The proof that this much simpler quantity indeed provides enough
information to calculate the molecular energies was found by Hohenberg and Kohn and
presented in their famous paper from 1964, which started the whole field of DF'T methods
[77]. In it the first Hohenberg—Kohn theorem is proven, which states that “/... Jthe external
potential Vegy (r) (i.e. the complete molecular potential) is (to within a constant) a unique
functional of p(r); since, in turn Ve (1) fizes H we see that the full many particle ground
state is a unique functional of p(r)[...[]". Therefore, instead of using a Slater determinant
of spin orbitals, by virtue of this theorem it is possible to calculate the total energy via
the minimization of the charge density functional Eg [pe] which depends on the electron
density

palr) = X () (2.24)

This is stated in the second Hohenberg—Kohn theorem, which proves that the energy
obtained from a trial density p represents an upper bound to the true ground state energy,
as obtained from the exact ground state density py. The energy in the DFT approach is
not given as the expectation value of an operator, like in the HF approach (Eq. (2.16)),
but as a sum of energy functionals depending on the electron density:

Eprrlpl =T(p) + V(p) + U(p) + Exc(p), (2.25)
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where T'(p) describes the kinetic energy of the electrons, V(p) the interaction with the
nuclei, U(p) the Coulomb repulsion between the electrons and Ex(p) the effects generated
by the electron correlation which have no classical counterpart. This so called exchange-
correlation energy is treated as a sort of “junkyard”, as it is used to collect all parts of
the energy which cannot be handled exactly. According to the second Hohenberg—Kohn
theorem the total energy given by Eq. (2.25) obeys the relation:

Ey < Eprrlp] (2.26)

where Fj is the true ground state energy. The equality holds only, if the density inserted
into Eq. (2.25) is the exact ground state density.

Similar to the HF equations (2.13) the Kohn-Sham approach leads to a set of one-
electron equations, which have to be solved iteratively. The difference to Eq. (2.15) lies in
the form of the effective potential, which now is of course no longer given by V¥ but by
an effective DF'T potential defined by

VPFT (1) = /

r! ,
|rp(_ 2,| dr' + Vye(r), (2.27)

where the first term is equivalent to the Coulomb—term of the HF equations, while Vy¢
is the potential due to the non-classical exchange-correlation energy E'xc. This is simply
defined via the functional derivative of Ex:

op

XC =

. (2.28)

If the exact form of the exchange-correlation energy Exc were known, the solution of
the Kohn-Sham equation would generate the correct energy eigenvalue of the total Hamil-
tonian of the Schrodinger equation. So while the HF model started with the approximation
that the total wavefunction can be described by a single Slater determinant, and therefore
cannot result in an exact solution, the Kohn-Sham approach is in principle exact. Unfor-
tunately the correct form of Ex¢ is not known, so the art of DFT calculations is to find
good functional forms for this energy.

A commonly used used pair of functionals is Becke’s 1988 exchange functional (B88
or B) [78] and the Lee-Yang—Parr (LYP) [79] correlation functional, or the so called
Becke3LYP (B3LYP) hybrid functional, which combines the B88 and LYP functionals
via three parameters (indicated by the 3) with three additional functionals. The parame-
ters in these functionals are determined by fitting the results of the calculations for small
molecular test systems to well established experimental molecular data.

As a reference the properties of DFT and HF based methods are summarized in Table
2.1. In computer based calculations DFT methods, for which the numerical effort is of the
same order of magnitude as that of the bare HF calculation, will normally deliver results
much faster than advanced methods based on HF theory, which require the calculation of
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HF DFT
system definition o = |x1(21), x2(22) . .. xu(20)| | p(r) = X, [0 (r)|
variational condition | JE[¥q] = 22 =0 SE[p] = 52 =0
energy E=Y,hi+ 5>, ( —Ky) | E=T(p)+V(p) +Ulp) + Exc(p)
orbital equation (h + VHE (g ) xi(z) = €ixi(x) (fl + ch(m)) xi(z) = €ixi(x)

Table 2.1: Comparison of the main equations used for Hartree-Fock and density
functional theory. [80]

additional determinants and their correlation via perturbation or variational methods. The
drawbacks are that one cannot be certain that a given functional used for the exchange-
correlation energy will produce good results with any given molecule, so that it is normally
necessary to cross check the results with other data.

2.1.4 Quantum Chemistry of the H-Bond

The hydrogen bond examined in this work describes an attractive interaction between a
proton donor X — H and a proton acceptor Y on the same or a different molecule. (This
work will only examine intramolecular hydrogen bonds.) The resulting complex will have
the form

X-H---Y

where X and Y usually are electro-negative atoms like O, N or F. Depending on the relative
strength of the H---Y bond, this will result in a shortening of the distance between X
and Y and in a red-shift in the fundamental X-H stretching vibration, caused by the
lengthening of the X—H bond. In some some hydrogen bonds between carbon and benzene
complexes one can also observe an improper H-bond, which results in a blue shift of the
fundamental X-H stretching vibration, but this type of bond is less numerous than the
red-shifting ones [81].

As a general rule, the treatment of this type of hydrogen bonded systems with quantum
chemistry requires the use of large and flexible basis sets and the inclusion of electron
correlation is especially important [10, 82]. This is mainly due to the fact, that the H---Y
bond is relatively weak and describes a long—range interaction, therefore requiring a highly
accurate description. Of the quantum chemical methods presented in the last sections, the
pure HF method is unsuitable to deliver this accuracy, making it necessary to use at least
MP2 to treat the correlation effects in the hydrogen bond. Within the DFT method, the
B3LYP functional produces accurate results, in particular for the barrier heights [82]. For
both methods a large enough basis set has to be used. The exact requirements of the basis
are given in Section 3.2, where the ab initio calculations are presented.
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2.2 The Cartesian Reaction Surface Hamiltonian

As was demonstrated in the previous section a molecular Hamiltonian consists of a term T
describing the kinetic energy of the nuclei, and of a term V, which describes the potential
they are moving in. With the tools provided by quantum chemistry it is in principle
possible to calculate the Hamiltonian responsible for the dynamics of an arbitrary large
system. To do this one just has to generate the potential hypersurface given by Eq. (2.5)
for all relevant configurations of the molecule. However a system consisting of N nuclei
has 3N degrees of freedom (DOF), from which 3N — 6 represent internal movements in the
molecule (3N — 5 for linear molecules), while the remaining DOF describe the rotations
and translations of the molecule as a whole. If each DOF is represented on a grid of
only 10 points, which normally is far from sufficient, it becomes clear, that the complete
description of a simple three body system already requires 1000 data-points to describe
the three dimensional potential hypersurface. Any additional particle in the molecule adds
three more degrees of freedom, increasing this number a thousand-fold. If one in addition
bears in mind that a larger system also requires a bigger effort to calculate each single
point via the ab initio methods it becomes quite clear that a complete ab initio quantum
mechanical description with the computing power available today is at least unwieldy and
in most cases simply not possible.

Due to the problems mentioned above, it is necessary to develop approximate Hamil-
tonians which require less effort to calculate, but still describe the system reasonably well.
After giving some general properties of the potential energy surface, in the next sections
two possible simplifications are sketched together with their limitations, before the Carte-
sian Reaction Surface (CRS) approach, which is used in this work for the larger systems,
is described in more detail.

General Properties of the Potential

The potential energy hypersurface for the molecular dynamics is often calculated within
the Born—Oppenheimer approximation (Section 2.1.1) and given as an adiabatic potential
for each electronic state (Eq. (2.5)). This potential V(R) is a function of all 3N nuclear
coordinates. The gradient of this potential with respect to the nuclear coordinates gives
the force F},, acting on the atoms:

Frnot = —VRV(R) = {0V(R)/ORy,...,0V(R)/0Rsy}. (2.29)

If there is no force (Fino = 0) the molecular configuration is at a stationary point, i.e. in a
local extremum or saddle point. For further information about the potential the calculation
of the matrix of the second derivatives (the force constants or Hessian matrix) is necessary:

_ P*V(R)

Konn = OR,OR,

(m,n=1,...,3N). (2.30)
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After mass-weighting this matrix, it can be diagonalized at a stationary point, which results
in 3N eigenvalues:

e 6 of them are zero, these correspond to the overall translations and rotations of the
molecule

e Either all remaining 3N — 6 eigenvalues are positive, which means that the stationary
point is a local minimum.

e Otherwise M eigenvalues are negative, the rest positive, which means that the sta-
tionary point is a saddle point of order M.

The eigenvectors resulting from the diagonalization describe a coordinate system in which,
for small displacements, the movement of the nuclei is uncoupled, i.e. around a stationary
point the molecule can be modeled as a collection of 3N — 6 non-interacting harmonic
oscillators with frequencies given by the square root of the corresponding eigenvalues.

The harmonic normal modes given by the Hessian are valid for small displacements of
all molecular DOF, i.e. with this information one is able to construct a potential surface
in full dimensionality. This surface obviously is only a harmonic approximation to the
real potential around the stationary point. Additionally, the evaluation of the second
derivative matrix takes several orders of magnitude more effort in computer time than the
simple calculation of the potential V' (R) or the forces Fi,o. So even though this derivatives
give valuable information about the full dimensional potential surface, it is not feasible to
calculate this information for too many molecular geometries. Therefore it is necessary to
reduce the dimensionality of the molecular potential to a manageable size.

Fixed Molecular Geometries

The easiest way to do this reduction is to keep several of the internal molecular degrees of
freedom fixed. The potential hypersurface is then reduced to a number of dimensions equal
to the number of molecular coordinates allowed to vary. This results in potentials which
are quite easy to calculate if the number of non-fixed DOF is kept low enough. Another
possibility is to move away from the internal molecular coordinates and define some new
DOF describing, for instance, the movement of the center of mass of two subgroups within
a larger molecule, which are otherwise kept fixed. This general approach is widely used
to generate low dimensional potential surfaces of larger molecular systems, but it can run
into problems quite easily. The main concerns are:

1. The main dynamics of the system has to be located in very few molecular DOF
(i.e. the vibration of a single bond within a larger complex). Any large amplitude
motion involving several DOF in the molecular coordinate system cannot be accu-
rately represented without again producing too many dimensions for the potential.
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2. After moving the variable molecular DOF away from their equilibrium position all
the fixed DOF will in general no longer be in any kind of equilibrium as well. As
they are fixed they will have no chance to relax to their new minimum energy. This
leads to a potential surface energetically higher than the “real” one, so that energy
barriers can block configurations, which could otherwise be easily reached.

3. In general the internal coordinates of the system are not Cartesian, even a selection
of few DOF often leads to couplings between them located in the kinetic part of the
Hamiltonian (see below).

From these points the 2°¢ one is a feature which sometimes can even be desirable. This
happens when the dynamics of the DOF considered to be flexible is much faster than the
expected dynamics of the rest of the molecule. In this case it is not expected that any redis-
tribution of the energy to other DOF (so called Intramolecular Vibrational Redistribution
(IVR)) takes place, and the artificial barriers created by this approach are realistic in the
sense that the system has no time to reconfigure itself to find a path with lower energy.
However, as soon as the time scale of the dynamics gets longer than the time expected for
IVR this approach will fail to produce realistic results.

This method only requires the calculation of single point energies along the desired
flexible coordinates. No forces or second derivatives are needed. This allows one to produce
several hundreds of points without too much effort. To get a sufficiently dense distribution
of grid points, this allows the inclusion of around three dimensions. The potential generated
will contain no information at all about the remaining degrees of freedom.

Relaxed Molecular Surfaces

The relaxed surface approach is another possibility to include only few degrees of freedom
of a complex system. For this potential the selected DOF are varied, and for each point
the remaining DOF are relaxed to their minimum energy state. For this, the points 1 and
3 given for the fixed molecular geometries remain valid, while point 2 is turned around
— now all DOF except for the ones kept flexible are always at their minimum energy
configuration. Therefore this method will generate the lowest possible energy surface for
the chosen flexible DOF'. This approach is valid for slow dynamics in the large amplitude
DOF, giving all the other coordinates time to relax. For fast motions the fixed molecule
potential of the last section normally is more suited to describe the problem (see the note
to point 2 in the last section).

This approach needs a optimization (i.e. a minimum search) of the molecular potential
for each point. While this does only need the forces and not the second derivatives, it still
takes much longer than only a single point calculation. Therefore the possible grid-size
for this method is smaller than for the fixed geometry. On the other hand, the movement
of the scaffold atoms gives some information about the DOF which are excluded from
the calculation, i.e. one sees if the scaffold remains fixed or if there are still some large

20



2.2. THE CARTESIAN REACTION SURFACE HAMILTONIAN

amplitude motions left. This would point to strong couplings, which have to be taken into
account for the calculations.

Minimum Energy Path Method

Another approach is the minimum energy path method, which is a standard technique from
quantum chemistry [67, 83]. Here two stable configurations of a molecule are connected
along a single reaction coordinate, following the valley of minimal energy between those
two. This path is generated by first localizing the stationary points on the potential
surface. The path then starts from the transition state separating the reactant and the
product and follows the path of steepest descent in mass-weighted Cartesian coordinates
toward the local energy minima which is separated by this point. This means following a
gradient vector with the the components

(2.31)

which at the transition state will coincide with the normal mode with the highest negative
eigenvalue.

In contrast to the approach with fixed molecular geometry here all molecular coordi-
nates are allowed to move and relax to a minimum energy configuration with regard to
the position on the reaction path, which is always one dimensional. This path cannot be
described by a single coordinate and may involve motions in all the available dimensions.
The one dimensional character of the path allows an easy description of the potential, as
only the energies along a one dimensional pathway on the multidimensional hypersurface
are required. The difficulty, however, is now to find an expression for the kinetic energy op-
erator. The reaction coordinate represents the collective, coupled motion of several atoms
in the molecule, and therefore it will introduce kinetic couplings between them, which are
quite difficult to treat. They have to be calculated via the transformation from x — ¢ of
the Laplacian from Cartesian into an arbitrary set of coordinates, as given by

1
A= 5"V,

g = det(guw)
with the metric tensor defined as
I = Z 0q" 0g”
oq" 0q”

[ —

i
For a curved reaction path, this transformation will introduce couplings between different
coordinates in the kinetic part of the Hamiltonian. As it is a large amplitude motion, it
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will also not be possible to use something like the normal mode transformation to uncouple
the equations.

The numerical effort for this method is moderate. While it requires an optimization
of the molecular geometry at each potential point, the potential is by definition only one
dimensional. Therefore one can generate it relatively easily. The main problem of this
approach are the kinetic couplings it introduces.

An additional point has to be mentioned. The reaction path approximation requires
exactly opposite assumptions about the system than those needed for the fixed coordi-
nates approach (and is in this similar to the relaxed molecular surface): While there it is
necessary that the dynamics of the system is fast enough, so that the frozen modes re-
main unimportant on the relevant time scale, for the reaction path method it is necessary
to make certain that the movement along the reaction path is slow enough to allow for
relaxation of all other degrees of freedom. Another reason to look for slow motions is,
that the kinetic (or adiabatic) couplings between the different coordinates depend on this
velocity and become more prominent for higher speeds. Therefore this description is not
well suited for the treatment of fast proton transfer reactions. Due to the low weight of
the proton, compared to the rest of the molecular scaffold, the reaction is taking place at
high velocities, and along a strongly curved reaction path. The proton has not enough
momentum to “force” its way along a straight path. As soon, as it hits a potential barrier,
it will change direction, rather than move aside the heavier, intervening particles. This
behaviour is typical for the heavy—light—heavy reaction the proton transfer represents.

Reaction Surface Method

An extension of the minimum energy path approach described above is the reaction surface
method [84]. In addition to the one dimensional reaction path harmonic motions orthogonal
to it are now accounted for as well. This leads to a description based on the coordinate s
(the length along the minimum energy path) and 3N — 7 coordinates forming a harmonic
“valley” around this path. So, if R* is a point on the reaction path and AR = R — R” is
a small displacement from it, one can do a local Taylor expansion of the potential around
R’ as

V(R) = V(R®)+VV(R)r-r: - AR
+ %AR-KS-AR, (2.32)

with K* the force constant matrix at R = R?®. To generate a set of normal modes orthogo-
nal to the reaction path, which will eliminate the linear term from Eq. (2.32), the matrix K
has to be diagonalized at every point of the path. As the normal modes corresponding to
the rotations and translations of the molecule will not emerge automatically if the Hessian
is diagonalized at an arbitrary point of the potential, as it would happen at a stationary
point, it is necessary to project out the overall motions of the molecule together with the
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movement along the reaction path. This projected force constant matrix K is given as
K'=1-P)-K:-(1-P) (2.33)

with the projection matrix P consisting of the unit vectors for the infinitesimal overall
rotations and translations and the unit vector along the reaction path. This projected
matrix now has 7 zero eigenvalues and normal modes oriented orthogonal to the reaction
path. So, if ¢; describes a displacement along the i*" normal mode, with an eigenvalue of
w2, then the potential energy surface can be written as

Vi(s,qu,...qsn—7) =V(s)+ 5 D wils)g. (2.34)

This means, that in addition to the energies of the reaction path, the force constants
along this one dimensional pathway on the multidimensional hypersurface are required.
The difficulty of finding an expression for the kinetic energy operator remains. While
the harmonic normal modes at a single point of the reaction path are by definition all
orthogonal to each other and can be represented by uncoupled kinetic terms, the reaction
coordinate s is a collective motion and will also introduce couplings between the harmonic
normal modes. This is due to the fact that now the normal mode coordinates will depend
on s (the reaction path coordinate), and that the kinetic energy operator for this system
will contain couplings between s and g¢(s) [67, 84]. An example for a reaction path in a
double minimum potential is shown in Fig. 2.2 as the curved, solid arrow.

For this approach it is not necessary to assume a slow motion along the reaction path
to allow for a complete relaxation of all other DOF around it, as the system is allowed
to deviate along the normal modes surrounding this path. But as the potential surface
around the true minimum energy path is only included in a harmonic approximation too
strong deviations from it will lead to motions on parts of the potential, which are not
approximated very well. To increase the accuracy, it would be necessary to include the
reaction valley with anharmonic corrections to the harmonic normal modes. This would
increase the numerical effort drastically and is limited to very small molecules

Both this reaction surface method, and the minimum energy path method in the previ-
ous section can only model large amplitude motions along a one—dimensional path on the
multidimensional PES of a larger molecule. If the system would allow different possible
pathways, and the dynamics requires the wavepacket to split, taking different, branching
directions, these methods are not suited to model it.

Another approach to the reaction surface can be made by not choosing the minimum
energy path as a reference, but just taking a set of internal molecular coordinates, calcu-
lating a potential surface for them and then adding the remaining DOF in the harmonic
approximation as explained above [68, 84, 85]. In more recent works, the reaction path
method has been used to estimate the tunneling splitting using semiclassical methods and
an “on the fly” calculation of the potential energy surface for different semicalssical path-
ways [86]. A recent application of the reaction surface method, which generates a potential
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Figure 2.1: In malonaldehyde the hydrogen H; can be localized at either of the two
oxygens. The transfer process is strongly influenced even by slight variations of the
distance zo between the oxygen atoms, caused for instance by a low frequency vibration
mode of the molecular scaffold.

energy surface in full dimensionality is presented in [87]. A more extensive overview over
the different approaches to the reaction path Hamiltonian can be found, e.g., in [88, 89].

The Cartesian Reaction Surface (CRS) Approach

To describe the dynamics of a proton coupled to the heavy atoms in a molecule one
needs some aspects of both approaches described above. The movement of the proton will
generally be on a much faster time scale than the dynamics of the much heavier molecular
scaffold. This allows the assumption that these heavy scaffold atoms will remain close
to their equilibrium positions during the transfer process. On the other hand, proton
transfer reactions are often strongly influenced by slight movement of the heavy fragments
involved in the transfer. For instance, the potential for the hydrogen in the classical
example of malonaldehyde shown in Fig. 2.1, changes drastically even for slight motions
of the oxygen atoms toward or away from each other. For such systems, a treatment
with the Cartesian Reaction Surface (CRS) Hamiltonian approach is well suited [90, 91].
This concept produces a model Hamiltonian which has no kinetic couplings, because all
the interactions are included in the potential energy operator. The starting point for
this model again is the potential with all 3N spatial dimensions. Among these, those
Cartesian coordinates are chosen, which will undergo arbitrarily large displacements during
the reaction. For a proton transfer reaction these are the three DOF of the hydrogen atom.
These N,. DOF are the active or reaction coordinates. The remaining 3N — N, DOF
are the spectator or substrate coordinates. During the reaction the substrate atoms are
considered to remain close to their equilibrium positions. This makes it possible to express

24



2.2. THE CARTESIAN REACTION SURFACE HAMILTONIAN

the potential for their movement with a Taylor expansion to second order. Hence the total
potential energy surface can be approximated as:

VR) ~ V(x,2"(x)) + (%) o )-(z — 70(x))
4 %(z _720(x)) - (%) o Z0(x),  (2.35)

where R is the 3NV dimensional coordinate vector, x is the N,. dimensional vector describ-
ing the reaction coordinates, Z contains the remaining 3N — N,. scaffold DOF and Z©
describes the scaffold geometry in equilibrium configuration. If the reactant and product
geometries for the scaffold are similar, it is sufficient to keep Z(¥)(x) fixed at x = %, for
the whole potential. The more general approach of flexible reference, which depend on
the reaction coordinates, is described in [90]. With this it is possible to treat molecular
systems, where the scaffold moves significantly during the proton transfer. Normally, the
harmonic approximation for the heavy atom modes of the scaffold would break down in
these cases, when their movement is only treated in reference to a single configuration.

In this work, only fixed reference CRS will be treated. This limitation to a single
reference is sufficient, if the whole dynamics of the molecule happens in the hydrogen
bond, while the scaffold remains nearly stationary. In Fig. 2.2 the straight arrow gives an
example for a Cartesian reaction path.

The three terms in Eq. (2.35) are:

1. V(x,Z(x)) is the potential energy along the Cartesian N,. dimensional reaction
path, calculated with the scaffold modes frozen in some reference geometry.

2. The second term describes the forces acting on the atoms of the molecular scaffold.
These are caused by the reaction coordinates being moved away from their equilib-
rium, f(x) = —(0V (x,Z)/0Z)z_z0)x)

3. The third term describes the changes in the Hessian matrix generated by the motion
along the reaction coordinate x, K(x) = —(9°V(x,Z)/0Z0Z)z_z0) ). This will
generate changes in the vibrational frequencies of the molecule and induce couplings
between the different normal modes.

The Hessian matrix K(x) for the system has to be diagonalized, to transform the
molecule to the normal mode picture. For the CRS method this is done only for the
molecular scaffold, so the resulting modes will exclude all DOF which are part of the
reaction coordinates x. Before the reduced force constant matrix is diagonalized, the
infinitesimal rotations and translations of the molecular scaffold have to be eliminated.
This is done for the stationary state of the molecule describing the reactant configuration,
i.e.x = xgand Z = Z(®). At this point the matrix K is defined as the 3(N —1) dimensional
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Figure 2.2: The upper panel shows a schematic view of a 2D potential surface de-
scribing a 1D movement along z coupled to a normal coordinate (). A minimum energy
reaction path would follow the solid arrow, which entails movement along both z and
Q, and therefore leads to a coupled kinetic energy operator. The CRS method would
follow the straight path along the dashed arrow and compensates for the higher energy
away from the true transition state by including the energy of a shifted normal mode
oscillator along ). The lower two panels show a top view of this potential (left), and
a plot of the potential energy along the two different rection pathways. AFEpg is the
reorganization energy, which is present in the system when follwing the CRS path, as
compared to the minimum energy path.
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force constant matrix for the molecular scaffold. The matrix U contains the 3(N — 1) — 6
normal modes of
(1-P)m ?K,m™%(1 - P),

i.e. the mass weighted Hessian, from which P has projected out the rotations and transla-
tions. This transformation defines the mass weighted normal modes q.
The Cartesian coordinates of the molecular scaffold are connected to these normal
modes via the relation
Z-7% =m™'”Uq (2.36)

The transformation matrix U is then used as the reference transformation for all other
configurations with x # x4 as well. The resulting second derivative matrix will therefore
only be diagonal at this stationary point, as it is dependent on x. When the system moves
away from this configuration there will be off-diagonal elements generating a coupling
between the normal modes of the stationary point. Taking all this into account and writing
the projected Hessian in the normal mode basis as K, the complete molecular Cartesian
Reaction Hamiltonian can be written as:

I:Imol = Z r]A:‘n + Vref(X)

n=1
Nsub . 1

+3° (b Jetna?)
k=1 2
Nsub F 1 Nsub F

_Z k(%) QZKI(;Z(X)QZ dk
k=1 I#k

Nyc R . Nsub

— Z Tn +Vref(x) + Z tlc

n=1 k=1
1

+5aK" (x)q - £ (x) q. (2.37)

Here V,e(x) = V(x,Z®) is the potential for the reaction modes, calculated for the fixed
reference geometry, Tn = P?/2M,, is the kinetic energy for these modes, Ny, = 3N —N,.—6
is the number of remaining substrate normal modes, t; = P?/2p is the kinetic energy of
the substrate, g describes the displacements along the substrate normal modes, w?(x) =
K$T(x) describes an approximate normal mode frequency (only approximate due to the
coupling terms) and ff(x) = —V,V(x,Z@)m~/2U is the force acting on the normal
mode (generated by transforming the Cartesian forces into the mass weighted normal
mode basis). The mass o describes the effective mass of a normal mode. Due to the
mass weighting of the coordinates, all modes will have an equal mass, depending on the
weighting factor used. While normally the atomic mass unit (amu) is used for this, in
this work the electron mass (m.) is employed, which is the atomic unit of mass. The
first two terms in Eq. (2.37) describe the complete system of reaction modes, resulting
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in a Hamiltonian ﬂsys = SN T, + Vref(x) for a molecular system with a fixed scaffold
geometry (see the previous Section, page 19). The other terms give the additional kinetic
energy of the normal modes and an additional CRS potential Vgs.

In a further simplification step it is often assumed, that the frequencies wy of the normal
modes are independent of the system coordinate. Additionally, if the off diagonal parts
of the force constant matrix K®* are small it is possible to neglect these couplings. So in
general, one can define normal mode displacements as qq = —ff (x)[K®(x)]~!. This leads
to a representation of the Hamiltonian in the form

R Niyc R R Nsub .
Hmol - Z Tn + Vref(X) + Z tk
n=1 k=1
1
+5 (@ — )K" (a — ao) = Er(x)
Niyc R R Nsub .
- Z Tn + Vref(X) + Z tk
n=1 k=1
1 Nsub

+3 3 |l (o= A" 60/l) | = Bl (2:38)

where the reorganization energy is

1
Er(x) = §q0Keﬁ(x)q0. (2.39)
With a diagonal matrix K®" and normal mode frequencies independent of x this simplifies

to
Nsub fr% (X)

Er(x) = ) 2=, (2.40)

2
1 2w;

This represents the energy which is required to compensate for the force exerted by the
active degrees of freedom on the reservoir oscillators. The lower panel of Fig. 2.2 shows
a graphic representation of this reorganization energy. Equation (2.38) represents a sys-
tem coupled to a set of shifted harmonic oscillators. The equilibrium positions of these
oscillators depend parametrically on the state of the system coordinate, which means that
all couplings in this Hamiltonian are located in the potential terms. The kinetic energy
can be represented by uncoupled kinetic energy operators in Cartesian coordinates for the
oscillations in the normal modes.

2.3 Quantum Dynamics

After generating a suitable Hamiltonian for the molecular system under investigation the
goal is to examine the dynamics of quantum mechanical nuclear wavepackets described by
this operator. This dynamics can be separated into two main categories: Closed systems, in
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which the energy is conserved and open systems, which can loose energy to the surrounding
environment [57, 61, 92]. While the first kind can, depending on the initial conditions, be
described by normal wavefunctions or a density matrix, the density matrix formalism
is required for an open system. If the description with wavefunctions is sufficient, the
dynamics can be calculated with the help of the time dependent Schrodinger equation

m% |W(t)) = H|U(t)) (2.41)
and the equivalent equation for the adjoint state vector
0 A

—zhat (T(t)] = (¥(t)|H (2.42)

where H = T + V is the Hamilton operator describing the total energy of the system.
Usually this operator will contain a time dependence in the potential term, V. =V (¢). In
the next section the time dependent Hamilton operator is discussed.

The Time Evolution Operator

To develop the formalism further, one has to take a closer look at the Schrodinger equation
(2.41) and its counterpart for the adjoint state (2.42).

For a time independent H one can solve the stationary Schrodinger equation for this
operator, resulting in a set of eigenstates |p,) with energies E,,:

I:I |90n> = En |90n> (243)

A system starting out in one of these eigenstates at ¢ = 0 will then evolve according to
Eq. (2.41), which results in the state

[on(t)) = =M B g,), (2.44)

which is obviously a solution of Eq. (2.41). In a more abstract form, this can be written as
R ) = e WM ) (2.45)

where the exponential operator function can be evaluated via the series expansion of the
exponential. In addition to that it is known, that all solutions of the Schrodinger equation
can be represented as a linear combination of the eigenstates given above:

- ZCn |©n) (2.46)

Taking this together with Eq. (2.45), it follows that a state vector evolving dynamically
under the influence of H can be written as

[(#)) = e @M 4 (0)). (2.47)
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As can be seen from this, the wavefunction at time ¢ is generated by applying an operator
to the initial wavefunction at time ¢ = 0. This operator is usually referred to as the time
evolution operator Ij(t, to), which is the operator evolving the state at time ¢, into the
state at time ¢. In the case of the time independent H shown above this is simply

U(t, ty) = e~ @/MH(i=to), (2.48)

as obtained from formally integrating the time dependent Schrédinger equation (2.41). So
a wavepacket evolving in time can formally be written as

[b(t)) = U(¢,0) |[1:(0)) . (2.49)
Substituting this into the Schrodinger equation leads to

i1 20(1,0) [6(0) = H(BU(,0) [4(0)) (2.50)

and in turn, as this holds for all states |1(0)) and all initial times ¢y, to the operator
equation

H(t)U(t, t,) (2.51)

gy
ZhaU(t, to)

with the initial condition

Ulto, to) = 1 (2.52)
(at time zero the operator should transform [¢(0)) into |¢/(0))). Repeating the same
formalism, but starting from the adjoint Schrodinger equation will result in the equivalent
equation for the adjoint operator

L 0 - . A
—zhEUT(t, to) = UT(t, to)H(t) (2.53)
So the time evolution of a quantum mechanical state |1)(¢)) can be calculated either
by solving the time dependent Schrodinger equation or by determining the necessary time
evolution operator via the formal integration of Eq. (2.51).
A time dependent Hamiltonian will lead to a formal solution for this operator in the
form

A ~

t N
U(t,tg) =1— | drH(r)U(7, 1), (2.54)
to
which takes into account the initial condition (2.52). This has to be solved iteratively by
inserting it into itself, as the solution for time ¢ requires the result from time ¢ — dt. With
the limit for small time steps

. 0

U(t+dt,t) =1 — —H(t)dt (2.55)

St |
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one obtains after iterating:

R 00 N
Ultt) =1+Y (%) / dr,
n=1 to

T

“drar.. [ dn B H(r ). H(n).  (2.56)

to to

It has to be noted that due to the fact that H is an operator, which does not commute with
itself at different times (i.e. [H(r,), H(r,_1)] # 0), the product in the integral cannot be
reordered. Therefore the time variables have to be fully ordered with ¢t < 7, < ... <1 <'t,.
Without this it would have been possible to write the sum as an exponential, so a common
convention is to call this expansion a fully time ordered exponential and write it in the

abbreviated notation o
~ ) ~
U(t, ty) = exp, {—— dr H(T)
h to
This equation is, of course, much more difficult to solve than a simple exponential
function, but the system formally will still just be propagated by the application of U(¢g, ;)
(Eq. (2.54)). The main difference is that due to the time dependence of H(t) it becomes
now important to specify the exact time interval which is spanned by the operator, as, due
to the time dependence of H it is no longer just the time difference which is important.

. (2.57)

2.3.1 General Ensemble Theory

If a system cannot be described with a single quantum mechanical wavefunction, e.g. a
thermal ensemble consisting of several particles, it is necessary to add a level of classical
statistics to the quantum description. This leads to the representation of the system
in the density matrix picture [57, 93, 94]. If there are n states present, each prepared
independently from each other to occur with a probability of W,, then the statistical
operator for this total state is given by

which is called the statistical operator. Note that this indeed is an operator, while the
object referred to as density matrix is in fact the representation of this operator in an
arbitrary basis set. So if the functions |p,) are elements of an orthonormal basis set then
the elements of this matrix are given by

Pab = (Pal P |on) - (2.59)

The expectation value of an operator for a mixture of pure states is then calculated by
taking the weighted average of the expectation values for each single state,

(0) =S W, (6] O o) = tr {Op}. (2.60)
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Wavefunction | Density Operator
pure state |U) =3 ¢ |di) p
mixed state - pP=>,
expectation value <0> = (U|O|¥) <O> = tr{Op}
equation of motion | ih 2 |¥) = H|T) ih2p = [H, ﬁ}

Table 2.2: Comparison of the wavefunction picture with the description via a density
operator.

Here the “tr” means taking the trace, i.e. summing over all diagonal elements of the matrix
representation of the operators in a orthonormal basis. The normalization condition for
the density operator is given by tr{p} = 1.

If the system is closed, i.e. its energy is conserved, then there will be no transfer of
probability between the states, i.e. the W,, in Eq. (2.58) are time independent. With this
information one can derive the Liouville—von Neumann equation, which describes the time
evolution of the statistical operator. Starting with Eq. (2.58) for the density operator of a
statistical mixture of states which varies according to Eq. (2.49) one gets

plt) = S W, U#)[6(0)n) ((0),] UT(2)

= Unp0)u'() (2.61)

Using Eq. (2.51), Eq. (2.53) and Eq. (2.61) the equation of motion for the density operator
is obtained as

~ A

00 (2) — T(1)p(0) U (H(t) = [H, p(#)] , (2.62)

-~
T"
>
—
~
N—
Il
anh
—
~
N—
(@
—~
>

A~

with the commutator [H, j(t)] = Hp(t) — p(t)H. Eq. (2.62) is the Liouville-von Neumann
equation.

2.3.2 The Interaction Picture

After having discussed the basic concepts necessary to describe the dynamics of quantum
systems it is time to take a closer look at the approximate determination of the time
evolution operator for the time dependent Hamiltonian. Up to now the evolution of the
quantum mechanical states was treated in the so called Schrodinger picture. Now a different
picture, the interaction picture, is presented [57, 61].

While in general an exact solution of the operator equation (2.51) is not possible, one
can obtain a good approximation using the methods of perturbation theory. It is assumed,
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that the total Hamiltonian of the system can be split into
H(t) =T+ Vo + V() (2.63)

where V( ) is considered as a small perturbation compared to the time independent part
Hy = T + Vy. In this case most of the time dependence of the state vector | (t)) will
be due to the action of Hy. Then it is possible to define a state vector in the interaction
picture as

o (t)) = O/t [y (1)) (2.64)
or, transformed to |1(t))
() = e~ OMF gy (1)) (2.65)

After substituting this into the Schrédinger equation (2.41) with a Hamiltonian defined by
Eq. (2.63) the terms containing Hy will cancel out and the result is an equation of motion
for the interaction state vector |i7(t)):

ih () = Vir(e) i (1) (2.66)

with A A
V,(t) = e(i/h)HOtV(t)e_(i/h)HOt (2.67)

as the perturbation transformed to the interaction picture. This shows that for V(£) = 0
the state vector in the interaction picture will remain constant. What in fact has happened
is that the rapidly varying factors caused by the action of H, are removed by applying the
operator )

Ul(t,t,) = et @/MHo(t=to) (2.68)

to all states in the Schrodinger picture. All operators are transformed by applying this
operator and its complex conjugate from the left and from the right:

O;(t) = Uj(t, o) O(t) Uo(t, 1) (2.69)

This transformation shifts most of the time dependence from the state vectors to the
operators, which is the key feature of this description.

After noting the fact, that for ¢ = o both Uy(t,t,) = 1 and U(t, ;) = 1 and therefore
at this time both pictures are the same (|1)(¢9)) = |1;(t))), and defining the time evolution
operator in the interaction picture as

[ ()) = Ui (t,0) [¢1(0)) , (2.70)

this can be inserted into Eq. (2.66). The same arguments given for the derivation of
Eq. (2.51) and Eq. (2.56) then lead to an expansion for this operator as a time ordered
exponential

U, (1, o) = exp., {—% /tt ar Vi) (2.71)
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Due to the fact that V/(¢) is considered to be a small perturbation of the full Hamiltonian
it is often possible to truncate the time ordered expansion at a much lower order than the
one given for the total Hamiltonian in Eq. (2.57).

Applying the formalism described above to the density matrix, as described in Section
2.3.1, one obtains the equations

pr(t) = Ul (t, o) p(t) Uo (t, to) (2.72)

and
pr(t) = Ur(t, o) pr(to) Ul (¢, to) (2.73)

with
plto) = pr(to) (2.74)

for the density matrix in interaction representation and

i (1) = [Vi(e), pn(1)] (2.75)

as the Liouville—von Neumann equation in the interaction picture.

2.3.3 Reduced Density Matrix Theory

If only a small part of the total system is of actual interest, the statistical operator provides
a convenient formalism for treating this problem [57, 61, 95]. The starting point for the
treatment of such a system is a Hamiltonian which can be separated in the form

H(x,Z) = Hy(x) + Hs_g(x, Z) + Hp(Z), (2.76)

where Hg describes the relevant system with coordinates x, Hjy the bath with coordinates
7 and Hg_p the interaction between the two parts. As long as the coupling between the
two parts of the system is non—zero, it is not possible to factorize the total wavefunction
into a system part ¢g(x) and another one for the bath yg(Z).

U(x,Z) # ¢s(x)xs(Z) (2.77)

To attain the goal of representing the dynamics of the relevant system without making
explicit use of the dynamics of the bath the total density operator psg is first written as
a density matrix using a complete orthonormal basis set for the system only and another
one, which represents the bath, i.e. there is one basis set used to represent

ds(x) = cn |&n) (2.78)

and one for

xB(Z) = CnlGa) (2.79)
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from expansion (2.77). Using this representation one then introduces the reduced density
matrix for the relevant system pg by taking the trace of the full operator psg over the
states representing the bath:

ps = (Cul PsB |Ca) = tre {psp} - (2.80)
Cn

With this partitioned Hamiltonian and the definition of the reduced density matrix one
can derive an expression for the time evolution in the reduced system:

2 pslt) =~ [, pit)s] — +trm { [Fs 5. o))} 2.81)
In this equation there is still a term containing the statistical operator for the complete
system, so it does not provide a closed solution for the reduced density operator ps. The
next task therefore is to (approximately) eliminate the explicit references to the bath and
relate the second term of Eq. (2.81) to the relevant system only.

The Mean Field Approximation

To continue without approximations, one can use the path integral formulation described
in [96, 97], but in this work the mean field approximation is used. The main assumptions
made for this are:

e The coupling between the system and the bath has been switched on at time ¢ = .
Up to this point the density operator for the total system is represented by a direct
product of operators from the system and the bath only:

psn(to) = ps(to) pn(to)- (2.82)

e The system-bath interaction Hamiltonian can be factorized into a system part X, (x)
and a bath part Q,(Z),

Hs = Y Xo(x)Qu(Z). (2.83)

As the only restriction on these operators is, that they are exclusively defined in their
respective system and bath coordinates, this form is general enough to cover all cases
of practical importance (e.g. the CRS Hamiltonian has this form).

e The bath is considered to be much larger than the relevant system, which means that
any effects of the interaction with the system will not change it significantly. This
leads to the assumption that the bath remains in thermal equilibrium at a constant
temperature, even after the interaction is switched on:

pu(t) = pu(to) = piyt = exp {—Hg/kpT} /trg {e*ﬂB/kBT} , (2.84)

irrespective of the energy diffusing into it from the system. This results in the irre-
versibility of the process taking place, as anything put into the bath cannot interact
back on the relevant system.
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Going to the interaction picture with the Hamiltonian I:IS—B, which describes the coupling
between the system and the bath as the perturbation of the total Hamiltonian will give an
equation of motion for the reduced density operator in the form

9 i) = —ars { [ o), da(0)]} (2:85)

Inserting the factorized form of the interaction Hamiltonian, performing the trace operation
and changing back to the Schrodinger picture results in the following equation of motion
of the reduced density operator:

9 ps(t) = — [H 3 (Quly Xo ﬁs<t>] - (2.86)

This is the Liouville-von Neumann equation for the relevant system, where the Hamiltonian
ﬂs has been replaced by ﬂs +>, (Qn)g Xn. The additional term represents the expectation
value of the system-bath coupling at the thermal equilibrium of the bath. So this first
order solution, also called mean field approximation, will only shift the energy levels of the
system, but generates no energy relaxation from the system into the bath. To calculate
this effect, the next order of the perturbation expansion has to be considered.

Equation of Motion in Second—Order Perturbation Theory

To generate the equations of motion for the reduced statistical operator in second order
perturbation theory with respect to the system—bath interaction, a method to restrict the
operators to the relevant system has to be introduced. For this one can introduce the two
projection operators P and Q defined as

Pé == ﬁBtI'B {6} s (287)
where normally the bath operator is set to the equilibrium operator pg = pg' and
Q=1-"7P. (2.88)

With this it is possible to split the Liouville-von Neumann equation Eq. (2.75) into two
coupled equations

0 . 0 .
tr {ngéB} - 2y

= —tra {[HL g, 505 + Qpln] ) (2:89)

and _
i

O HS . 706 + Qo) (2.90)

a ..
anéB ==
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These equations describe the relevant system pl and the irrelevant part of the density
operator Qpky.

The iterative solution of these equations generates a perturbation expansion with re-
spect to Hg_p. Neglecting the irrelevant part of the density operator Qply entirely will
recover the mean field expression (Eq. (2.86)) from the last section. The next order is
generated by neglecting Qply on the right-hand side of Eq. (2.90), which allows a formal
solution for this expression:

Qs (1) = Qi (t0) — 5 [ dr Q[H{ y(r), A5AA(r)] (291)

Inserting this into Eq. (2.89), one obtains the equation of motion for the reduced density
operator in second order with respect to Hg_g:

90 = iy {0 [0, 2400}

o [Laron { [0, 0 - P [ELo() AD]} . 292

Reservoir Correlation Functions

Looking at Eq. (2.92) under the assumption, that the system—bath coupling Hamiltonian
can be factorized as in Eq. (2.83), the first term again describes the mean field motion
((2.86))and can be written as

trs {48 [FIL 5 (0), 220)] } = S [(@u)g X s8] (299)

The second term contains the second order effects in the double commutator in the

integrand. After multiplying out the commutators, applying the projection operator and

inserting the factorized Hamiltonian, it can be shown, that the integrand in the second
term of Eq. (2.92) can be written as a sum of terms all containing functions of the type

Cmn(t) = <5Qm(t)AQn(0)>B = <Qm(t)Qn(0)>B o <Qm>B o <Qn>B7 (294)

which describe the fluctuations of the bath part of I:IS,B around its average value. The
Crun(t) defined in (2.94) are called reservoir correlation functions and describe the correla-
tions between the fluctuations of the different reservoir operators at different times. These
fluctuations will not change the quantum mechanical state of the bath — it will remain in
thermal equilibrium. The correlation of these fluctuations normally decays after a certain
correlation time 7.

Using the definitions of the correlation functions, the equation of motion for the reduced
density operator reads

S0 = 5 3@ [ 0]
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72 2 [ a7 (Conlt =) [X0,0), X1

— Gt —7) [ X0, p5(1)X0(7)]) (2.95)
or in the Schrodinger picture:
0 . 1|~ R
apS(t) = _ﬁ [HS + Xn: <Qn>B Xna pS(t)]
= S [ (Cun) [0, Us ()X (st~ U]
— ™) [Xo(8), Us(7)ps(t = ) Xu (1)UL (7)]) - (2.96)

This equation, which is called Quantum Master Equation (QME), shows, that the time
dependence of the reduced density operator is not only generated by its actual value, but
also by the history of its evolution. The length of this memory effect is determined by the
decay time of the reservoir correlation functions. A discussion of this and further properties
of the correlation functions can be found in the literature [61].

The Markow Approximation

Under the assumption that the environment has a time scale for the memory effects shorter
than the other relevant time scales for the system the so called Markow approximation of
the QME can be derived. This means that the density operator describing the system
will stay approximately constant during the time span in which the reservoir correlation
functions C,,, decay to zero. This allows one to replace the upper limit of the integral in
Eq. (2.96) with oo, because the integrand will be zero after a time interval shorter than
t — to. Hence it is possible to use in Eq. (2.96) as an approximation

ps(t — 1) ~ ps(t), (2.97)
and rewrite the QME in a more compact form. For this the operator

=2 /000 A7 Cn (1) X3 (—T) (2.98)

is introduced and the dissipative part of Eq. (2.96) is written as

0 1
v - ~ A 1
<8t pg> e = h2 mg [Xm, AmpS (t) pPs (t)Am:| . (299)

Carrying out the commutator allows the definition of an effective system Hamiltonian,
which contains the first order mean field terms of the QME and those parts of the com-
mutator, which are proportional to X,,A,,:

HY" =Hs + Y (Qu)g Xim — - > XA, (2.100)
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This leads to the final form of the QME in Markow approximation as

d . _ U (Freff ~ . Sreff §
&Ps(t) = 7 (Hs ps(t) — ps(t)Hsg )

1 ~ ~
=)D (Xmps ()AL, + Amps(t)XT,) (2.101)

Model Environments and Spectral Density

The exact calculation of the correlation functions C,,, is practically not possible for real
systems. To allow for a treatment of the system-bath interaction, models for the envi-
ronment have to be introduced. One possible way of including the bath is to describe its
degrees of freedom in low order, i.e. by linear coupling terms in the bath coordinates, which
results in a coupling Hamiltonian of the form

I:IS,B == X(S) Z Ccqc (2102)
¢

where the operator X depends on the system coordinates s and represents a simplified form
of the system part of the coupling. The ¢, are the coupling constants between the system
and the bath and the g, are the bath coordinates, which were labeled as Z in Eq. (2.83).
For a bath consisting of harmonic oscillators, which could describe, for instance, a solid
or an only slightly perturbed liquid, this approach allows the analytical description of the
bath [61].

As this analytical description is in general not possible, it is normally more convenient
to introduce the so called spectral density J(w), which models the ability of the bath to
exchange energy with the system at a certain frequency. This function allows the correlation
functions for a harmonic oscillator bath to be written as

C(w) = 27h°w? [1 4 n(w)] [T (w) — T (—w)] (2.103)

with
1

= T (2.104)

n(w)

the Bose—Einstein distribution assuring the correct thermal equilibrium conditions of the
correlation functions.

While these spectral densities in principle are generated from a sum of delta functions,
any macroscopic bath will effectively have a continuous spectrum, being able to absorb
energy at every frequency. These spectral functions can be either represented by simple
models, or generated via classical molecular dynamics simulations. In this approach the
correlation functions C,, (w) are calculated from the classical correlation functions (p,, (t) =
(dm ()9, (0)),, by relating the Fourier transform of (,,(t) to Cpp(w):

Cn(0) =2 (1 +exp {—,f—“’T}) " @) (2.105)
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as described in [61]. This also allows one to relate the vibrational population relaxation
time 77 of a quantum system to the correlation functions, as here the relation

1
T x ((w) (2.106)

holds, as described in [98] and later in Section 3.3.5.
One often used form of J(w) is given by

w2 T (w) = O(w)jowPe /e, (2.107)

where the unit—step function ©(w) guarantees that J = 0 for w < 0, and j, is some
normalization factor. For p = 1 and a cutoff frequency w. much higher than the relevant
system frequencies, this leads to the so called Ohmic form for the spectral density, which
is frequently used in modeling.

The Concept of Superoperators

To simplify the notation (e.g. of Eq. (2.96)), it is convenient to introduce the so called
Liouville space, which is a linear vector space consisting of linear operators from Hilbert
space. The super-operators are operators acting on the elements of this Liouville space
in the same way that operators of Hilbert space act on the state vectors. The Liouville
operator L is defined as acting on an operator as

1

£0 = [H,0], (2.108)
which allows the Liouville-von Neumann equation to be written as

0 . on

ap(t) = —iLp(t). (2.109)

Introducing the relaxation super-operator R(t,7), which is defined via the dissipative part
of the QME;, i.e. the integrand of Eq. (2.96) and the Liouville operator for the system
Hamiltonian Lg, the QME can be written in the simple form

%,ﬁs(t) — ilsps(t) — [ dr Rt ps(r). (2.110)

to

This just provides a convenient short notation, and will of course not simplify the
equations themselves.

2.4 Numerical Implementation

The exact analytical solution of any quantum mechanical problem — either stationary or
dynamical — beyond idealized cases like the harmonic oscillator or single hydrogen atoms,
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is normally not possible. To solve the Schrodinger equations for the wavefunction or
the Liouville-von Neumann equations for the density operator it is therefore necessary to
introduce suitable numerical methods, allowing the use of computers to tackle the problem.
The normal approach to do this is the representation of the problem in a suitable reduced
basis. So in a full basis set given by |#,) a quantum mechanical state |®) can be written
as an infinite vector of coefficients

@) =D calon) = | . (2.111)

and an operator can be represented by a matrix of infinite dimension
Opn = (0| O |6y n,m=1... 0. (2.112)

In a reduced basis set a suitable finite subset of a full basis is chosen to reduce this to vectors
and matrices of finite size. This reduces the operator equations to matrix equations and
large coupled systems of differential equations for the coefficients ¢,. These can be handled
with standard methods from linear algebra and the theory of differential equations.

Energy Eigenfunctions

One of the most convenient representations is to use the solutions of the stationary Schro-
dinger equation (2.1) as a basis set. In this basis obviously the matrix representing the
Hamilton operator is diagonal with the eigenenergies as the diagonal elements. So as long
as there is no perturbation introduced, the time dependent Schrodinger equation can be

written as
(4] E1 0 C1
0 Co 0 E2 Co
h— = 2.113
i | S . (2113)
Cn E, Cn

which leads to a set of uncoupled differential equations for the coefficients.

The additional convenient feature of this approach is that the dimension of the problem
in principle is irrelevant. As long as the eigenfunctions are known the system can be reduced
to this discretization on the 1D energy grid. The limiting factors for this representation
are the fact that in higher dimensions the discrete energy levels move much closer together,
requiring more and more basis functions to span a given energy interval, and of course,
the fact that the eigenfunctions of the system have to be determined beforehand by other
means, which quickly increases the effort when going to high dimensional systems.
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2.4.1 The Fourier—Grid Method

A widely used and straightforward method to calculate the eigenfunctions of the stationary
Schrodinger equation is the “Fourier-Grid Method” introduced by Marston and Balint—
Kurti [99]. It is based on the representation of the wavefunction in the basis of the position
operator X in normal space and the momentum operator p in momentum space. It relies on
the fact that in the total Hamiltonian H = T+ V the potential energy part Vis diagonal in
the basis of the position operator, while the kinetic energy part Tis diagonal in the basis of
the momentum operator. As the position and the momentum picture can be transformed
into each other by the Fourier transformation it is easy to derive a closed expression for
the matrix elements of the total Hamiltonian in this representation. As the position and
momentum operator have a continuous basis, it is then necessary to introduce a reduced
basis set in the form of a discrete grid in one of the representations. (This derivation for
a grid in position space is described in Appendix A.2.)

After having obtained this Hamilton matrix the eigenenergies and eigenfunctions for
the system on the chosen grid can be obtained via a simple diagonalization of this matrix.

The big advantage of this straightforward method is the fact, that it calculates the
eigenfunctions on a grid in position or momentum space, which later can be used for the
numerical implementation of the quantum dynamics. Using the same basis set for both the
stationary and the dynamical calculations eliminates any additional errors, which would
be caused by transforming the results from one finite, reduced basis to another.

On the other hand the method has its limitations in the size of the systems which can
be treated. The size of the grid representation of the Hamilton matrix which has to be
diagonalized for a system with N grid points is M = N x N. For one or two dimensional
systems this represents no big problem for todays computer systems, but when going to
higher dimensions the same remarks as made in Section 2.2 about the number of grid
points in the potential apply: Anything above three dimensions quickly becomes close to
impossible to solve due to the fact that numerical matrix diagonalization requires on the
order of M? operations. Another technical limitation of the computer is the amount of
memory needed to keep the full matrix available.

As an alternative to this method the Discrete Variable Representation (DVR) methods
have to be mentioned [100]. In these the system is represented not on a regular grid
but in a set of basis functions specially tailored to the problem, which normally reduces
the number of grid points significantly. Often one still uses a — now irregular — grid in
position space for this, reducing the number of points in regions which the wavefunction
cannot reach, but in principle any basis set can be used for this. The representation in
the eigenstates of the stationary Hamiltonian mentioned above is a special case of this
approach. Another, completely different approach to get the eigenfunctions of a system is
to use the methods from quantum dynamics discussed later in this Section and to do a so
called “propagation in imaginary time”, which relaxes the system to the lowest eigenstate.
Together with projection methods then higher states can be constructed as well, but this
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approach requires very high numerical accuracy and is limited by the finite accuracy of
the computer. As the propagation with, e.g. the split operator (Section 2.4.3), scales with
Nlog(N) even quite large systems can be handled with this approach. Further information
about these methods can be found in the literature [101].

2.4.2 The Redfield Equation

The Redfield equation is obtained from a representation of the QME (Eq. (2.110)) in
the basis of the eigenfunctions of the part of the system Hamiltonian H,, which contains
the full potential generated by the system itself (e g. the molecular potential for a system
describing a molecule). The total Hamiltonian is Hs = H, —|—V which includes the operator
\Y% containing all parts of the system potential caused by external influences, e.g. an electric
field interacting with the system.
In this basis the QME can be written for the density matrix in the form

0 ) 0

apmn = WmnPmn — ﬁ Xk: (Vnkpkm - pnk‘/km) - %: Rmn,klpkla (2114)
where wy,,, = (E,, — Ey,)/h are the transition frequencies between the different energy levels
and V,,, are the matrix elements of the operator V. The dissipation is described by the
relaxation tensor Ry ,,. This tensor is calculated via the so called damping matrix

Cut ) = 9 5 51 1) () 2.115)
or, using the spectral density (Eq. (2.103)) instead of the correlation function in the oper-
ator A;, via

Citmn(Wmn) = 3 (k[ X; |1) (m] X [n) [1 + n(w)] [T (W) = T (-w)]. (2.116)
ij
The imaginary parts of these terms will be neglected in the further calculations, as they

do not affect the relaxation rates [61]. With this simplification, the relaxation tensor then
is

Ritmn = Okm D Lijin(Wni) 4 0im Y Chjijm (Wimy)
i i

_ka,ln (wnl) - Fnl,km(wmk))- (2117)

This tetradic matrix, describing the relaxation within a set of energy eigenstates, is fre-
quently referred to as the Redfield tensor in literature [39, 58, 59].

The application of this tensor to the density matrix results in energy dissipation for
the system. The elements of a density matrix p,,, can be separated into two groups: The
populations (with m = n) and the coherences between them (m # n). The effect of R un
on the dynamics of the p,,, can be split into three main groups:
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1. Population transfer (k =1, m = n):
These matrix elements are given by

Rkk,mm — 26km Z ij,jm(wmj) — 2ka,km(wmk) (2118)
J

or, using the transition rate from energy level & to level m as kxm = 20k o (Wimk ),
by

Ricteynm = 20km Y kij — K- (2.119)

J

The first term corresponds to the transitions from eigenstate |¢y) into all other states
|@;) of the system. The second term describes the transitions from all other states
back into |pg). The forward and backward rates between the levels are connected
via the principle of detailed balance:

K, = eem/kB Ty (2.120)
which ensures that the system will move toward thermal equilibrium.

2. Coherence dephasing (k # [, k =m, [ = n):
These matrix elements are given by

Rirpr = Y (Trjjr(wrs) + Cirri(@in)) — Trra(0) = Tupg(0). (2.121)
;

These terms lead to a decay of the off-diagonal elements of the density matrix, which
describe the coherences (i.e. the phase relations of the different states) of the sys-
tem. The loss of these coherences, also called dephasing, will lead to a system with
independently populated states, as described by the density operator in Eq. (2.58).

3. All the elements of Ry ., not belonging to (1) or (2):
The interpretation of the remaining elements of the Redfield tensor is not so sim-
ple. There are several processes, which are described by them: Coherences can be
moved from one pair of states to another (pg — pmn via Rgymn), populations can be
transformed into coherences (pgr — Pmn Via Rikmn) and coherences can move back
to populations (pg; — Pmm Via Riimm). These effects cause a mixing between all
elements of the density matrix.

One has to note, that the elements of the Redfield tensor Ry, will become time-
dependent when the system it describes includes a time-dependent component like an
external field.
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The Secular Approximation

In the secular approximation the terms of the Redfield tensor mentioned under (3) in the
last section, which mix the elements of the density matrix, is neglected. The conditions
necessary to apply this approximation can be seen from the dissipative term of Eq. (2.114)
in the interaction picture:

8 W(Wmn —w —
(E%n) = =D Ry gae” 00 g (1), (2.122)
diss kl

The right-hand side of this term oscillates with the frequency w;,,, — wy;. This means that
the integration of the equations of motion with a time step At larger than 1/(w,, — wk)
results in these contributions canceling out due to destructive interference. The validity of
this approximation has been shown, e.g., in [102, 103]

The contributions to Ry, which are given for cases (1) and (2) in the previous sections
can never be neglected under this approximation, as for them |wg; — wyn| = 0 always holds.
For those elements of the Redfield tensor listed under (3) the condition 1/(wy,, —wk) < At
will often be true, as long as the system has no degenerate transition frequencies (e.g. in a
harmonic oscillator). So the secular approximation of neglecting all parts of the dissipative
part of the QME for which |wg; — wyn| # 0 holds, is especially suited for very anharmonic
systems. In this type of system the condition |wg; — wyn| = 0 is normally only fulfilled
accidentally.

2.4.3 The Split Operator

The solution of the time dependent Schriodinger equation (2.41) for a time independent
operator is given by Eq. (2.45). While in most of the problems treated in this work the
Hamiltonian is time dependent, for the numerical solution of the problem the differential
equations are integrated by taking sufficiently small discrete time steps, during which the
Hamiltonian can be considered as constant. So for a small time step At the time evolution
operator can be written as

U(t, t + At) = ¢ (/WHAL (2.123)

This propagation is easily done when the Hamiltonian is represented in a basis for which
it is diagonal. Unfortunately this is only the case for the basis given by the eigenfunctions
of the total Hamiltonian, so for a propagation in a grid representation of the wavefunction
as the one generated for the “Fourier-Grid Method” (Section 2.4.1 and Appendix A.2) one
has to use an additional approximation.

In the split operator approach introduced by Feit and Fleck [104] and Kosloff [105], the
exponential term for the total Hamiltonian H=T+Vis split into a product in the form

6—(i/h)flAt _ 6—(i/2h)TAte—(i/h)VAte—(i/Qh)’i‘At + (’)(At3). (2.124)
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The error which is introduced due to the fact that T and V are non-commuting operators
([T, V] # 0) scales with the cube of the time step length. From Section 2.4.1 it is known,
that the potential energy operator is diagonal in a grid representation of the position space,
while the kinetic energy operator has a diagonal representation in momentum space. So
to propagate a wavefunction |U)_ represented on a position grid by a single time step At
one has to:

1. Apply a Fourier transform to bring |¥)_ into the momentum representation |U),.

2. Apply the — now diagonal — operator e~(i/20)TA,

. Apply an inverse Fourier transform to bring the result back to position space.

3
4. Apply the operator e~ (/WVAL,

5. Apply another Fourier transform to bring the result back to momentum space.

6. Apply the second half of the kinetic energy operator e~ (" 2h)TAL

7. Do a final inverse Fourier transform to bring the result back to position space.

If the wavefunction is not required in the position representation the inverse Fourier trans-
form at the and can be left out, which also removes the necessity for the first transformation,
as the function already is in momentum space. So except for the first and last time step
each propagation step requires the application of three diagonal operators (in principle a
simple multiplication for each grid point), one Fourier transform and one inverse Fourier
transform. For a Hamiltonian with a time dependent potential term, the potential V()
and the resulting operator e~/ MVAL has to be reevaluated after each time step as well.
The time limiting steps here are the Fourier transforms. The most efficient algorithm is
the Fast Fourier Transform (FFT) (described in Appendix A.1), which has a numerical
effort of Nlog, N for N grid points. Further discussions of this method can be found in
the literature [106, 107].

While the scaling of this propagation method is quite efficient and allows large grids,
one still has to remember that the grid size itself has an exponential scaling behavior with
respect to the degrees of freedom of the system, so going beyond three dimensions with a
wavefunction set up on a full grid presents quite a challenge. In the next section the multi
configuration time dependent Hartree approach will be presented, which uses a further
approximation to avoid using a full grid and allow the treatment of higher dimensional
problems.

2.4.4 Introduction to the Multi Configurational Time Dependent
Hartree Method

The multi configurational time dependent Hartree method (MCTDH) method [108] is based
on the time dependent Hartree (TDH) approximation [46, 109], which is used to avoid the
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exponential scaling problem of a numerically exact propagation. In the TDH approach the
wavefunction for a system with f degrees of freedom is written as

f
U(xy,...,x5,t) = a(t) ngpn(xn,t), (2.125)

where a(t) is a complex coefficient and the ¢, are the single particle functions (SPFs) —
one dimensional wavefunctions for each degree of freedom. The whole product is called
a Hartree product. The single particle functions in Eq. (2.125) each contain an arbitrary
phase factor, which can be fixed with the constraint

{on| n) = 0. (2.126)

This also fixes the norm of the ¢,,, which initially are normalized to one:

lon ()] = 1. (2.127)

With these conditions one can derive the TDH equations of motion for the coefficient
a(t) and the single particle functions ¢, (t) as:

iha = (H)a, (2.128)
with <I:I> = (@1... 7| H|py ... ;) for the coefficient and
ihg, = (H™ - (H)) ¢, (2.129)
with the mean field operator H®™ defined as

H™ = (01 Pno1@ny1 .- @5l H @1 On—1Pnt1 - Pr) - (2.130)

This means that each SPF is propagated by an effective Hamiltonian depending on the
mean field of all other degrees of freedom. As each SPF is only one dimensional the
effort to propagate the total wavefunction is greatly reduced. The price for this is, that the
correlations between the different degrees of freedom are no longer treated correctly, leading
to inaccuracies for longer propagation times or strongly coupled systems. The obvious way
to improve the accuracy of the method is to represent the total wavefunction not with
a single Hartree product, but to take a linear combination of several configurations into
account. This then leads to the MCTDH method, where several SPFs per degree of freedom
can be used, to allow a better representation of the couplings between the coordinates.
The starting point for the MCTDH approximation is the representation of the wave-
function ¥ for f degrees of freedom as a linear combination of Hartree products [108]:

ni nyg f
V(g qpt) =3 2 Ay, () TT 8 (g, 1), (2.131)

j1:1 jfil k=1
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with the nuclear coordinates qi,...,qs, the MCTDH expansion coefficients Aj, _; () and

the n, single particle functions <p§-:) for each degree of freedom. For n; = ... =ny =1 the
MCTDH wavefunction reduces to the TDH case of a single Hartree product, giving the
TDH approximation as a special case of the MCTDH approach. For increasing numbers of
SPF's the propagation will become more accurate as the MCTDH wavefunction approaches
the numerically exact one. At the same time, of course, the computational effort increases
strongly with increasing values of n,.

As with the TDH wavefunction the definition of the MCTDH wavefunction is not
unique, since the SPFs may be linearly transformed while still representing the same func-
tion. To fix this, two constraints are imposed on the SPFs — they have to be orthonormal
att =20

(£§2(0)| ™ (0)) = 35 (2.132)
and they have to obey

i

(@7 0] " (1) = — (70

(%)

i o 1)), (2.133)
where §(%) is a Hermitian, but otherwise arbitrary constraint operator acting only on the
k' degree of freedom. To simplify the further notation the index .J and configuration ®;
are introduced as ;
AJ = Ajl---jf and (I)J == H (,055), (2134)
k=1
the projection operators on the space spanned by the SPFs of the '™ degree of freedom
are introduced as

PO =3 |0l (1], (2.135)
j=1
and the single hole function for the index k, = [ is introduced as
K 1 K—1 K+1
\Ijl( ) = Z T Z Z e ZAjl---jn—ll]'nJrl---]'fgo_g'l) Tt 905',6—1)905}@4-1) Tt 905'?:)' (2'136)
J1 Jr—1 Jrt1 Jf

The functions (2.136) define the Hartree product from which the SPFs for the coordinate
G, are missing.
The single hole functions define the mean field operators

(B =

gl

H|v") (2.137)

and the density matrices

v, (2.138)

<f1>(';) is an operator acting only on the (k)™ degree of freedom, and p{*) is related to

the reduced density matrix, as it describes a single degree of freedom, while the remaining
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ones are removed by integrating. From the equation for the total MCTDH wavefunction
(2.131) and the constraints put upon the SPFs within it, one can derive the equations of
motion for the coefficients

. . [ ng .
L rk=11[=1

and for the SPFs themselves

A

inp® = gW1, oW 4 (1= ) {(p(m)l <ﬂ>(“) _ g(”)lnﬂ} o). (2.140)
In these equations the SPFs are written as a vector, o) = (<p§”’, cee w%’?)T, 1, denotes
the n,, Xn, unit matrix and the index J;° denotes a composite index with the k' entry set to
[. A detailed description of the derivation of the MCTDH method and its implementation
for time dependent Hamiltonians is given in a recent extensive review [53, 108].

The choice of ¢(® is still arbitrary and can be used to change the final form of the
equation of motion, normally it is simply set to ¢(®) = 0.

The reduction of the numerical effort can be estimated by an example: An f dimensional
problem, represented on a grid with N points in each dimension requires N/ grid points for
storage, and the handling of (N/) x (N/) matrices for the numerical solution. In the ideal
TDH limit (decomposition into f 1d problems), this reduces to the solution of f problems
with N grid points. Going to MCTDH with n SPFs per degree of freedom, one has to
solve f - n 1d problems and handle an coefficient matrix of dimension n/. As in general
n < N it is obvious, that the computational effort can be reduced by several orders of
magnitude. At the same time, one can adjust the number of SPFs n to the desired quality
of the calculation, moving from computationally cheap TDH to the more accurate MCTDH
representation.

The CRS Hamiltonian and MCTDH

The MCTDH algorithm works by splitting a N-dimensional problem into a large number
of low dimensional ones (preferably one dimensional). Then an approximation for the
couplings between these degrees of freedom is used, which will function most effectively
for problems with only weak coupling between these different DOF. If one takes a look at
the CRS Hamiltonian defined in Section 2.2 by Eq. (2.37), one sees that this description
of the system is quite suited for the treatment within the MCTDH approach. If the
system is located in stationary reactant configuration, the total Hamiltonian will contain
no couplings between the different DOF at all. Due to its construction, the kinetic terms
are purely Cartesian and will introduce no interaction between the modes at all. The only
terms coupling the different DOF are given by the force fi(x) acting on the k"™ normal
mode and the coefficient Kj;(x), describing the interaction between the modes & and I.
Both contributions are zero if the reaction coordinate is in its equilibrium position (x = 0).
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Within the CRS approximation, neither of these two coupling terms should get very large
(if it does, it would mean that most likely the harmonic approximation used for this part
of the potential is no longer valid, and this DOF should be moved into the set of reaction
coordinates).

This therefore gives ideal conditions for the MCTDH method, delivering a potential
which is already neatly separated into its normal modes as one dimensional DOF, with
weak coupling between them. The only part of the potential which might not be suited
to be treated within the MCTDH approach is the set of reaction coordinates, which by
definition undergo large amplitude motions and can be strongly coupled to each other. So
the normal approach will be to treat these coordinates exactly, as one low dimensional
problem, coupled weakly within the MCTDH approach to all the other DOF described by
the normal modes. As described in [53, 108], the multidimensional problem for the reaction
surface can be handled by mode combinations, i.e. not decomposing the problem completely

into 1d modes, but leaving some DOF coupled and represent them with multidimensional
SPFs.

2.5 Control of Quantum Dynamics with Laser Pulses

In the field of quantum dynamics, it is one of the main goals to manipulate molecular
systems directly [34, 110, 111]. Therefore a deeper theoretical understanding of methods
to control the dynamics of quantum systems is necessary. The control methods are centered
around the problem of finding a suitable external field, which drives the molecular system
from an initial state into a desired final state. In this section the different approaches to
find a form of this field appropriate for the control of a quantum mechanical system are
presented shortly. Such fields are finally used to study the dynamics of protons in different
molecules in Chapter 3.

2.5.1 Coupling to the Field

To allow the control of the molecular dynamics it is necessary to couple the molecular
potential used to describe the system (e.g. by the CRS Hamiltonian, Eq. (2.37)) to an
external electrical field, which interacts with the dipole moment of the molecule. For the
usual applications in the area covered by this thesis (i.e. femtosecond spectroscopy, control
of dynamics within molecules), this field is generated by a short laser pulse. Due to the
high photon density effects of photon statistics can be neglected and the interaction can be
treated in the so called “semiclassical dipole approximation”. Within this approximation
the additional interaction part of the potential is written as

Hioa(x, ) = i(x) - £(x, 1), (2.141)
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where /i(x) is the dipole moment operator of the molecule and £(¢) is the electric field part
of the laser pulse. This electric field is described by

ei(klewlt) + efi(klewlt)
2 Y

E(x,t) =D& si(t)- (2.142)

where the index [ numbers a sequence of laser pulses. For the I pulse, E} is a vector
describing the polarization and the maximum amplitude of the electric field, s,(t) is a
shape function, which describes the slowly varying envelope of the pulse, w; is the frequency
and k; the wave vector of the radiation. The position dependence of the electrical field
can be eliminated, if the size of the relevant system (e.g. a small molecule or a limited
subsection of a larger one) is much smaller than the wavelength of the laser used. If this
condition is fulfilled, the space—variable electric field can be replaced with a field constant
over the extent of the molecule. As the shortest typical wavelength used normally are in
the UV range, i.e. around 200 nm and the size of small molecule of the type studied in
this work (i.e. system exhibiting proton dynamics and consisting of around 20 atoms) is
on the order of 1 nm or smaller, the conditions for this approximation are taken as fulfilled
for all systems in the following. An additional assumption necessary for the treatment of
a system in condensed phase is, that the applied field does not interact significantly with
the bath and does not interfere with the system bath coupling.

This leads to a coupling of the molecule to the laser pulse in the simplified, position
independent form

E(t) =& - si(t) - cos(wit). (2.143)

The goal of the theoretical control calculations is now, to find a set of shape functions
s1(t) for the sequence of laser pulses with suitable frequencies w;, which drive the system
from an initial state ®; into predefined target state ®;. This target state then describes a
desired effect on the molecule, which one wants to observe experimentally, i.e. the breaking
of a specific bond, the excitation of a specific spectroscopic state, or — treated in this work
— the dynamics of a specific proton between a donor and acceptor location in a molecule.

Several ways to generate these pulses are described in the following sections.

2.5.2 Analytical Laser Pulses

The conceptually easiest approach to the problem is to generate the pulses via trial and
error by hand. To do this it is necessary to calculate the vibrational eigenstates of the po-
tential beforehand, as the transition frequencies between them will determine the necessary
laser frequencies used for the control. For instance, if the goal is to drive an isomerization
reaction described by a double minimum potential, as sketched in Fig. 2.3, one possible re-
action path would be the pump—dump scheme developed by Paramonov and coworkers[112]
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delocalized state

Figure 2.3: Schematic view of a pump—dump type reaction path in a double minimum
potential, which could describe, e.g., a proton transfer reaction.

and Tannor and Rice [110, 113]. In this approach two short laser pulses of the form

E(t) =< Eisin®(r(t—t;)/m)cos(wit) t; <t<t;+7 , (2.144)
0 t>t+T7

where E is the amplitude, 7; the duration, w; the frequency and ¢; the starting time of the
i*" pulse. The goal is to use the first pulse to transfer the population from the ground state
of the system in the left well to a delocalized eigenstate above the barrier. The second
pulse then depopulates this state into an eigenstate localized on the product side of the
molecule. The state selectivity is reached by tuning the laser frequencies to the respective
transition frequencies between the reactant and the delocalized state, and the delocalized
and the product state. Before a suitable laser pulse can be constructed in this approach, it
is necessary to fix a reaction path for the total transfer, which can only be done intuitively.
For the greatest efficiency of the population transfer between the two states |m) and |n),
one has to select pairs which have large values for the dipole matrix element (m|j|m)
coupling the two.

This approach of course is not limited to two pulse pump—dump schemes in the ground
state, but can be extended to reaction paths involving high frequency transitions to some
excited states or pathways requiring more than two pulses. The main drawback remains, as
mentioned above, that the complete reaction path has to be guessed and fixed in advance,
so the resulting laser pulse will normally either reproduce this exact dynamics or fail to
achieve its goal altogether. This is in contrast to the genetic algorithms and optimal control
methods presented later, where it is possible that the calculations find reaction paths not
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thought of beforehand. The optimization of the pulses requires some experience as well, as
the optimal laser frequency normally is slightly different from the exact transition frequency
between initial and target energy level. This is caused by the interaction of the electric field
with the diagonal elements of the Hamiltonian. More precisely, for the states |m) and |n)
the dipole matrix element (m| /i |n) causes an interaction between the two levels, while the
elements (m/|fi|m) and (n| i |n) will result in a shift of the energy of these levels. Due to
the fact that (m| @ |m) # (n| ft|n) this will result in a shift of the energy difference between
these states. So for reaction paths containing more than two pulses the handcrafting of a
good laser field can get quite tedious.

2.5.3 Genetic Algorithms

To avoid the hand optimization of a pulse sequence, it is possible to delegate this opti-
mization work to a computer. This requires a parameter measuring the quality of the laser
pulse, which in the simplest case would be the total population in the desired quantum
mechanical target state, generated in dependence on all the possible parameters of the
electric field. In the case of the sin? pulses introduced in the previous section this would
lead to a set of four parameters per pulse (namely the amplitude, the initial time, the du-
ration, and the frequency). So a sequence of two pulses with a quite restrictive analytical
form will already lead to a “quality—hypersurface” in eight dimensions, which has to be
searched for a set of optimal parameters. Without previous knowledge of the shape of this
surface, calculus based methods relying on the determination of its gradient can become
quite unreliable. Schemes which follow the path of steepest ascent (hill-climbing) to find a
maximum quality value only find the local maxima closest to the starting value. They also
rely on the existence of well defined derivatives to generate the gradient. To avoid these
requirements and limitations, the possibilities for using genetic algorithms for the opti-
mization was tested in this work. This has been motivated by the fact, that recently in the
group of Gerber [37] a genetic algorithm was successfully used to control an experimental
setup. There the algorithm controlled, via a pulse shaper, the form of a femto-second laser
pulse, and was able to optimize different branching ratios in a photo-chemical reaction.
The experimental setup for this is sketched in Fig. 2.4.

Genetic algorithms are searching tools, based on the principle of random mutation
and natural selection within a population of parameters describing the laser pulse. They
differ in several ways from the more traditional optimization methods, like the gradient
based methods mentioned above. The most prominent feature is, that they do require no
auxiliary knowledge, like gradients, of the quality function. Another important feature
is, that they do not optimize the function from a single point, but work by improving the
overall quality of a population of points. In contrast to the calculus based methods a genetic
algorithm will not use any deterministic method to generate a new set of parameters, but
random mutations of the old parameters. This leads to a search algorithm, which is
completely “blind” with respect to the shape of the quality hypersurface, and relies on
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Figure 2.4: Schematic setup of a genetic algorithm in an experiment. Femtosecond
laser pulses are modified by a computer controlled pulse shaper. These pulses then
induce fragmentations in a molecular beam, which are recorded with a mass spectrom-
eter. This signal is used to define the fitness of a shaped pulse and as a feedback to
the algorithm.

random transitions to generate new search points. On the other hand the natural selection
rules imposed on the total population of parameters assures, that there will be a general
increase in the total “fitness” of the parameter population. A closer look at this approach
is given in Appendix B and [114].

The genetic algorithms can be applied in two ways:

e One can define reaction paths for the dynamics by specifying only small parameter
ranges, and then use the genetic algorithms only to optimize the parameters within
these bounds. This still requires accurate knowledge of the system and an intuitive
definition of the reaction path, but shifts the tedious work of finding the optimal set
of parameters to the computer. With this approach it will also not be possible, to
find new reaction pathways.

e The other approach is to allow the laser parameters to vary over the total range
allowable for a physically sensible pulse. This leads to a much larger size of the
parameter space, which requires a much greater effort in the search. The advantage
here is, that it is not necessary to define any reaction path beforehand, and therefore
in principle no prior knowledge of the system (like the transition frequencies) is
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necessary. Allowing such a broad range of parameters can also generate pulses,
which drive the system along a reaction pathway not considered beforehand.

The main drawback of the genetic algorithms is, that due to the randomness of the pro-
cedure it is possible to repeatedly sample the same region, which can add considerable
computational overhead. Of course it is the same randomness, which prevents the algo-
rithm from getting stuck on some local maximum of the quality surface, so this is a trade-off
one has to live with.

2.5.4 Local Tracking Control

Contrary to the genetic algorithms presented in the previous section, the method of lo-
cal control presented in this section and the optimal control method in the next try to
calculate the field necessary for the transfer from the current to the desired state of the
system analytically. The concept behind local control is conceptually simple, therefore it
is presented first. In principle this approach can be based on the optimal control scheme,
as shown by Fujimura in [115, 116]. The approach used here was first developed by Rabitz
et al. [6, 117, 118, 119]. It requires the a priori knowledge of a reaction path the system
should follow from its initial state to the desired final configuration. This path is specified
as a time dependent path of a desired observable expectation value <f)>t = yq(t). For this
path a control field E(t) is sought, which will exactly create the demanded dynamics of
the chosen observable. If the reaction path for the observable is chosen reasonably, this
can be achieved without resorting to an iterative scheme, by just using the actual position
of the wavepacket at each time (therefore the term local — only the information from the
current location of the wave packet is needed) to determine the necessary field for the next
small time interval.

The Control Equations

The time evolution of an isolated molecular system interacting with an electrical field £(¢)
is given by the Schrodinger equation (2.41), with the Hamiltonian given by

(1) = H — j(x) - £(2) (2.145)

in the semi-classical dipole approximation (cf. Section 2.5.1). The physical observables y/(t)
measured in a laboratory are given by the expectation values of a Hermitian operator at
time ¢:
y(t) = (0), = (b(®)| O (1)) (2.146)
From this it is possible to construct the inverse control solution for the electrical field
E(t) by taking the time derivative of y(¢) and representing the time development of <f)>
with the Heisenberg equation of motion:

d(0 - . C
MO} Lo m) - Lo, )£+ (22) 2147
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As written, this would have to be solved for the three components of £(¢), resulting in
three operators for the x, y and z direction, but more commonly, the field is taken as being
linearly polarized along a chosen direction, and only one solution for the scalar field F(t)
in this direction is sought. To generate the inverse control solution, this equation has to
be solved for E(t), while the term d<f)> /dt is replaced with the time derivative of the
desired trajectory dyg/dt. Of course the relation is not invertible, when the commutator
[O, /l(x)] is zero. To allow for this, one can continue to differentiate to higher orders, until

a non—zero commutator for the i time derivative of the operator O appears. The higher
order equations of motion then are given recursively as

d+1 (O o . ).
O o) o]0+ (%)

dti+! th oh ot
with X
. 114 - 1 ra 00,
011 = i [Oi,Ho] ) [Oiau(x)] -E(t) + ot (2.149)

If a suitable order with non—zero commutator [Ok, ﬂ(x)] is found at order £, the equa-
tion is solved for the field to obtain

g(t) _ —ihdk;;gidl(t) —+ <A[(A)k, I:I()]> + 1h <88—(2k> . (2150)
<[0k, ﬂ(X)]>

From the equation follows, that the control field at time ¢ depends on the wavefunction
(t) of the system, via the expectation values of the commutators. This dependence gives
a feedback from the system, and results in a control field, which not only determines the
dynamics of the system, but also depends itself on it. The resulting nonlinear differential
equations have to be solved numerically.

In a first step, at the initial time ¢, the control field E(t,) is generated via Eq. (2.150).
Using this field, the system is propagated for a small time interval At to generate the
new wavefunction ¢ (¢;), which then is used to calculate the new control field E(t;). This
procedure continues until a preset final time £y is reached.

Error Control

The implementation above assumes, that the electric field generated by the algorithm
will drive the field along the desired path without deviations, i.e. the error function
e(t) = yalt) — <O>t is zero throughout the control period. This will normally only be
possible in idealized cases, when the wavepacket stays perfectly localized and the field can
instantaneously take any desired value. In reality, the desired path y,(t) and the real path
described by the expectation value <O>t will be different. This problem can be dealt with,
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by adding a term to Eq. (2.150), which will asymptotically damp the error:

_ 1 L A" ya(t) A s 0.\ & die(t)
g(t)_<[()k,ﬂ(x)]> —ih +<[Ok,Ho]>+m< = >+ij g ] (2.151)

j=0
This is equivalent to the condition

k df e(t
> 5

=0

(2.152)

with p; = 1. In this formalism the term containing the derivatives of e(t) will damp the
error in all differential orders exponentially to zero. The parameter p; defines the speed of
the decay, and can be freely chosen — high values for p; will result in a faster decay of the
error, but also generally in higher fields [118].

Using this approach, it is also possible to try to control multiple objectives at the same
time. In a system of N different objectives, one defines N desired tracks, e,(t), [ =1,...N
as the deviation from the I*® track and a set of relative weights W;, which give the relative
importance of the ['" observable. With this one can define a cost function

ki d 61

Sl it

+ WeE(t) (2.153)

which sums up all the deviations of the observables from their desired paths (the term
WeE2(t) is added to the functional to penalize high fields). The optimal field then minimizes
this cost function at all times.

The advantages of this method are:

e it is conceptually simple,
e it is easy to implement, for equations of low order
e and, because no optimization or searching is required, it is very fast to calculate.

The most important difference to the feedback control driven by genetic algorithms pre-
sented in Section 2.5.3 is, that now some information about the actual state of the system
is used. While the genetic optimization is completely blind concerning the reaction path
and only sees the final state of the system, here the algorithm tries to predict the optimal
field needed to get to this result from the current state of the wavefunction.

On the other hand, there are also some drawbacks:

e it is necessary to fix an a priori reaction path, which the system has to follow all the
time; in addition, this reaction path has to be “reasonable”, i.e. a pathway which can
be followed without having to apply an unreasonably strong field,
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e as the calculation of the control field relies on the expectation values of some oper-
ators, the method will work best for tightly localized wavepackets; it starts to break
down for systems resulting in widely spread or split wavepackets, where the expec-
tation value of the operator is no longer close to the point of maximum probability
density of the wavepacket.

Especially the last limitation can be difficult to correct for, as most systems of interest
are quite anharmonic, or contain barriers, which easily lead to spreading or splitting of
wavepackets.

2.5.5 Optimal Control

The method of optimal control uses a variational scheme on an appropriate functional to
generate a laser field which drives the quantum system from a known initial state ¢;(0) = ¥;
at time ¢ = 0 into a desired final state ¢;(T)) = ¥, at time t = 7. The main difference
to the other methods is, that with optimal control it is not necessary to define any sort of
reaction path for the system. The algorithm just requires the initial and final state, and
then searches for the optimal reaction path itself.

The method, developed mainly by Rabitz and coworkers [64, 65], Fujimura et al.
[115, 120] and Yan [36], is based on the analytic maximization of the so called “objec-
tive functional”, which is generated from the total overlap of the initial wavefunction,
propagated with the calculated field to the final time, with the final state. It is assumed,
that the system can be described by the Schrodinger equation in semi-classical dipole
approximation (cf. Section 2.5.4). A basic functional to be maximized is

T W5, £0) = U ) — o [ d. (2.154)

The second term on the right hand side is added to minimize the the effect of high total
energy of the laser pulse, i.e. to avoid generating theoretical pulses, which would ionize a
molecule in real life. The parameter « is introduced as a penalty factor, which determines
how much a high energy field will be noticed by the algorithm. This factor « is made time
dependent (o = a(t) = :E—g)), allowing to shape the resulting laser pulses according to the
shape function s(¢). When this function goes to zero the penalty factor approaches infinity
and therefore the allowed laser field goes to zero [66].

To ensure, that the Schrédinger equation is fulfilled by ¢;(¢) at all times, an additional
term, which can be interpreted as a Lagrange type of constraint (see, e.g. [66]), is added
to the functional, resulting in

J(U, Uy E(1) =
(6s(T)| )] — a/UT D dt —

m{<¢i(T)| \sz>/0T (d)f(t)|% [H, - ju(x) - £(0)] + % 6:(t)) dt}. (2.155)
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The variation of this functional then gives a system of coupled equations for the control
field [66]:

£t = —2 3 (6,01 6500 0r(0)] 10s) (2.156)
OG0 = [Ho—at)-E0] o 6(0) =W, (2.157)
nSos(t) = [Ho— i -£0)] 650 os(T) = ¥ (2.158)

This set describes the forward propagation in time of ¥; and the backward propagation
in time of W, with a field calculated from, and therefore coupled to, these wavefunction
dynamics. It can be solved with a self consistent field method by choosing an initial
field, doing the forward and backward propagations, calculate the new field and repeat the
process until the field converges to a fixed value.

The big advantage of this method is, as already mentioned above, that it does only
require the desired initial and final states, and no further assumptions for the reaction path
have to be made. This allows the algorithm to find unexpected transition, of which no
one thought before, as will be shown in Section 3.1.1. The main difference of this concept
to the local control presented in Section 2.5.4 is, that no a priory reaction path has to
be specified. Instead a global cost function is minimized, which contains no information
about the actual path traveled on the potential hypersurface. In contrast to the genetic
algorithms, which also need no information about the reaction path, now some analytical
constraints resulting from this cost functional restrict the dynamics of the system.

This method requires significant computer resources, as it is not only iterative but also
needs a forward and backward time propagation for each step. The necessary backward
time propagation is also a problem in dissipative systems, where the system dynamics is not
time reversible, due to the coupling to the bath. Methods for the solution of the optimal
control problem resulting from the dissipative Liouville-von Neumann equation (2.110),
are developed by the groups of Wilson [121], Rabitz [122] and May [123]. It should also be
noted that this approach will only converge to a local maximum of the functional, which
is closest in parameter—space to the initial condition. There is no random element, like the
random mutations of the genetic algorithms, which could allow this analytical method to
escape from one of these local maxima to a possibly better global one.
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