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Thanks!
In 1996, I was about to finish being an undergraduate. What should I become as
an adult? I could do real–world work and get rich, or I could be a mathematician
and have fun — only where, what, how? At the time, there were no university
posts for graduates, at least not in Berlin. In order to come to an end, I planned
not to take part in any courses anymore, but to “dedicate my full working power”1

to my Diplomarbeit2 in algebraic topology. Nice plan, but as I do not like big
decisions, I pushed my deadline further and further. Part of this strategy, I could
not avoid the lecture entitled Discrete structures and their topology, given by
a certain professor Günter Ziegler. This was my first contact with discrete
mathematics. In a discussion about the perspectives of graduates, this Günter
Ziegler mentioned that a graduate school could be an alternative to the usual
university positions. Then he presented a number of challenging mathematical
problems to me that could be the subject of a dissertation.

So there was my decision, and there was my deadline: Bettina Felsner,
the secretary of the graduate school Algorithmische diskrete Mathematik3,
wanted a copy of my Diplomarbeit by January 1997. Suddenly, I really had to
finish quickly. Marion and Volkmar Scholz supplied me with the necessary
copying power and I was admitted. I started my discrete career in a very stim-
ulating environment: the Berlin discrete community assembled in the graduate
school and at the TU–Berlin, and remainders of the topological family around my
former advisor professor Elmar Vogt helped me in many tea time discussions
and built up this great atmosphere. One cannot overestimate the contribution of
ice cream devouring Bettina Felsner in this context.

Günter Ziegler taught me how to research, how to give talks and much more.
His door was always open for me, even when he had a huge pile of work on his desk.
He introduced me to Dimitrios Dais, a very enthusiastic algebraic geometer,
who reported lots of known and unknown algebraic geometry to me, prevented
me from writing algebraic non–sense, and who co–authored Chapters III and IV.
Once written down, this thesis had to pass my referees Carsten Lange, Günter
Paul Leiterer, Mark de Longueville, Frank Lutz, Eva–Nuria Müller and
Carsten Schultz.

So much about my academic support. Personally, I was supported by my
two women: My mother Heide Haase did everything one can imagine that a
mother can do — and a little bit more. In particular, I want to mention her help
concerning my friends from Y–town4. My girlfriend Kerstin Theurer got me
down to earth from time to time. I completely rely on the backing and love she
gives to me.

Thank you all, .
1From: Richtlinien für Stipendiaten [GK, p. 2]
2Diploma thesis.
3Algorithmic discrete mathematics, DFG grant GRK 219/3.
4German Bundeswehr.
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CHAPTER I

Introduction

1. What, why, who?

This is a commercial. I want you to become friends with lattice polytopes.
A lattice polytope is the convex hull of finitely many points from a given grid or
lattice (usually Zd). The interaction between the combinatorial, geometric and
algebraic information encoded makes them rewarding objects of study: Many
algebraic or combinatorial results have a proof that uses lattice polytopes, and
methods from the whole mathematical landscape are used to deal with lattice
polytope problems.

Triangulations provide an important device in our tool box. In many circum-
stances it is useful to split a given lattice polytope into smaller pieces of simpler
structure. The easiest (but by far not easy) species to handle are the simplices:
the convex hull of affinely independent points. Usually there are several ways to
triangulate a lattice polytope, i.e., to subdivide it into simplices. So it is natural
to ask for ‘good’ triangulations for the specific problem. An example of a crite-
rion for a ‘good’ triangulation is unimodularity: a (full dimensional) simplex is
unimodular if, by integral affine combinations of its vertices one can reach the
whole lattice. The problem about unimodular triangulations is that they do not
always (only rarely ?) exist.

One of the many applications of lattice polytopes lies in the field of toric
geometry. The discrete geometric object “lattice polytope” has an algebro geo-
metric brother, a toric variety. It is amazing how discrete properties find their
algebraic counterparts, how seemingly combinatorial results have algebraic proofs
(and vice versa).

There are many other fields where lattice polytopes show up. Whether you
come from discrete optimization, algebraic geometry, commutative algebra or
geometry of numbers you have already seen them in action. On the other hand,
methods from combinatorics, algebra and analysis are assembled in order to tackle
lattice polytope problems. But let us get concrete.

For example, in discrete optimization and in geometry of numbers, lattice
polytopes arise as the convex hull of the lattice points in a given convex body B.
Fundamental problems in the area are the feasibility problem “B ∩ Zd = ∅?”,
and, more general, the counting problem “card(B ∩ Zd) = ?”. The answer in
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10 I. INTRODUCTION

dimension 2, Pick’s famous formula

Vol(P ) = card(P ∩ Z2) − card(∂P ∩ Z2)

2
− 1 , P ⊂ R2 a lattice polygon,

follows from the fact that polygons always admit unimodular triangulations. This
does no longer hold in dimensions ≥ 3. Even worse, both above problems prove
to be NP-hard when the dimension varies. Though, if the dimension is not
considered as part of the input, Lenstra [Len83] used the concept of lattice width
and an algorithmic version of the Flatness Theorem (cf. Chapter II) to provide a
polynomial time algorithm for the feasibility problem. (The best known flatness–
bound has an analytical proof [BLPS98].) Barvinok [Bar94] applied ‘weighted’
unimodular triangulations of cones to count lattice points in fixed dimension in
polynomial time.

A unimodular triangulation, if it exists, tells you a lot about the polytope.
E.g., the numbers of the simplices of the various dimensions completely deter-
mines (and is determined by) the Ehrhart polynomial, which counts lattice points
in dilations of the polytope.

card(k · P ∩ Zd) = Ehr(P, k) =
d∑

i=0

ai(P )ki for k ≥ 0.

Unfortunately, the typical lattice polytope does not admit such nice triangula-
tions. One can try to weaken the triangulation property by several dissection or
covering properties [BGT97, FZ99, Seb90]. But even a unimodular cover does
not always exist. The situation changes if the polytope of concern is enlarged.
In [KKMSD73], Knudsen and Mumford proved that each polytope can be mul-
tiplied by a factor to obtain a polytope with a unimodular triangulation. Bruns,
Gubeladze and Trung [BGT97] show that a unimodular cover exists for all large
enough factors.

In commutative algebra one associates a graded affine semigroup with a lat-
tice polytope. The above covering/triangulation properties translate to algebraic
properties of the semigroup ring and its Gröbner bases [BG99, BGH+99, BGT97,
Stu96].

Interestingly, the meanest examples with respect to these properties are the
(non–unimodular) empty lattice simplices, simplices that do not contain any lat-
tice points other than the vertices. They correspond to so called terminal singular-
ities in toric geometry. White’s Theorem which bounds the lattice width of empty
lattice tetrahedra by 1 is the key ingredient in the classification of 3–dimensional
terminal Abelian quotient singularities, i.e., of empty lattice tetrahedra [MS84].

This thesis takes you to three sites in the lattice polytope landscape with a
focus on the algebraic geometry borderline. We visit the family of empty lattice
simplices (Chapter II), which are flat by Khinchine’s Flatness Theorem. But
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they are not as flat as one could expect. We present examples in dimension
4, and some constructions how to obtain thick d–simplices from thick (d − 1)–
dimensional ones. These results together disprove Bárány’s pancake conjecture:
thick empty simplices may have huge volume. The results of this chapter have
appeared as [HZ00]. This is joint work with Günter Ziegler.

At our next stop (Chapter III), we look at those lattice polytopes whose toric
brothers are local complete intersections (l.c.i.). We will see that they are not
typical, in the sense that they do admit unimodular triangulations. So their
brothers have nice resolutions. This supports the conjecture that any l.c.i. (not
necessarily toric) admits such resolutions. This joint work with Dimitrios Dais
and Günter Ziegler will appear as [DHZ00] (cf. also [DHZ98a]).

The last two locations (Chapter IV) present incidences of the above counting
problem. This time there is no conjecture behind — well, there is one, far behind.
Related to the mirror symmetry conjecture from theoretical physics, Batyrev and
Dais [BD96] constructed certain invariants of varieties, the string theoretic Hodge
numbers. We open a small zoo of examples for which these invariants can actually
be computed. Therefore we have to evaluate Ehrhart polynomials and some other
data. This is joint work with Dimitrios Dais [DHa].

This will finish our little journey. It will hopefully convince you of the beauty
of the whole area and motivate you to explore the many unknown spots. But
before we can really start, we have to work ourselves through a jungle of defini-
tions and notation (the next three sections of this chapter.) I have tried to make
it short and painless. Have a nice trip. . .
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2. Notions from discrete and convex geometry

2.1. General notation. The convex hull and the affine hull of a set S ⊂ Rd

are denoted by conv(S) and aff(S), respectively. The dimension dim(S) of S is
the dimension of aff(S); the relative interior relint(S) is the interior with respect
to aff(S). A polyhedron Q is a finite intersection of closed halfspaces in Rd. The
subset F ⊆ Q that minimizes some linear functional on Q is a face of Q; we
write F ¹ Q, and F ≺ Q if we want to exclude equality (F is a proper face).
Zero–dimensional faces are called vertices, 1–dimensional bounded faces are edges,
unbounded ones rays and (dim Q − 1)–dimensional faces are facets. The faces
of a polyhedron form a partially ordered set (poset) with respect to inclusion.
Denote by fk(Q) the number of k–dimensional faces of Q.

In this thesis we will meet two types of polyhedra: a bounded polyhedron
is a polytope, and a polyhedron which forms an additive semigroup with 0 is a
(polyhedral) cone. For S ⊂ Rd, let pos(S) denote the set of all real, non–negative
linear combinations of elements of S. A set σ ⊂ Rd is a cone if and only if it equals
pos(S) for some finite S. If σ has the vertex 0 or, equivalently, σ ∩ (−σ) = {0},
we will say that σ is pointed. We can pass from polytopes to pointed cones. If
P ⊂ Rd−1 is a polytope, then σ(P ) := pos(P × {1}) ⊂ Rd is a pointed cone
which will be referred to as the cone spanned by P . If we introduce the empty
set ∅ as a (−1)–dimensional face of P , then there is an isomorphism between the
face posets of P and σ(P ) that shifts the dimension by 1.

Figure 1. P , σ(P ) and their face poset.

For an arbitrary cone σ, the set σ∨ = {x ∈ (Rd)∨ : 〈x, σ〉 ≥ 0} is a cone,
the dual cone of σ. There is an inclusion reversing bijection between the face
posets of σ and of σ∨. By abuse of notation, for τ ¹ σ, we write τ∨ for the
corresponding face of σ∨ under this bijection. If 0 is an interior point of P , then
the cone σ(P )∨ is spanned by the polytope P∨ = {x ∈ (Rd−1)∨ : 〈x, P 〉 ≥ −1},
the dual polytope of P . Abuse strikes again: F∨ will denote the dual face of F
(cf. Figure 2).

In the following we refer to Zd as the lattice; (Zd)∨ is the dual lattice of integral
linear forms. A cone σ is rational if it is generated by lattice points; a polytope is a
lattice polytope if all its vertices are lattice points. We will identify two polytopes
(cones) Q,Q′, if they are affinely (linearly) lattice equivalent, i.e., if they can
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Figure 2. P , P∨ and their face posets.

be related by an affine (linear) map aff(Q) → aff(Q′) that maps Zd ∩ aff(Q)
bijectively onto Zd′ ∩ aff(Q′) and which maps Q to Q′. Such a map is a lattice
equivalence.

Figure 3. Lattice equivalent polytopes.

A cone is simplicial if it is generated by an R–linearly independent set. A
simplicial cone is unimodular (or basic) if it is lattice equivalent to the cone
generated by the standard basis in Rdim σ. A polytope s is a simplex if σ(s) is
simplicial, and unimodular if σ(s) is, or equivalently, if s is lattice equivalent to
the standard simplex Md, the convex hull of 0 together with the standard unit
vectors ei (1 ≤ i ≤ d) in Rd. (Sometimes, Md will mean the equivalent polytope
conv{ei : 1 ≤ i ≤ d + 1} ⊂ Rd+1, but this will be clear from the context.)

The determinant (also normalized volume or index ) of a d–dimensional lat-
tice simplex s = conv{a0, . . . , ad} ⊂ Rd is det(s) := | det(a1 − a0, . . . , ad − a0)|.
The relation to the Euclidian volume reads Vol(s) = 1

d!
det(s). The norma-

lized volume of an arbitrary full–dimensional lattice polytope P is the integer(!)
(dim P )! · Vol(P ). In general, the determinant of a (possibly not full dimensional)



14 I. INTRODUCTION

simplex s = conv{0, a1, . . . , ak} ⊂ Rd is the gcd of all (k × k)–minors of the ma-
trix A with columns ai: This gcd is not changed if one applies an integral linear
transformation which differs from the identity only by one off–diagonal entry.
These matrices, together with the permutations, generate the group of linear lat-
tice equivalences. These can be used to transform A into the form

(
A′
0

)
, where A′

is a (k × k)–matrix with det(s) = det(A′).
A lattice polytope is empty (also called elementary or lattice point free) if

its vertices are the only lattice points it contains. Every unimodular simplex
is empty, but the converse is not true in dimensions d ≥ 3 (cf. the proof of
Proposition II.2.1). A lattice polytope, which contains the unique interior lattice
point 0 and whose dual has again integral vertices, is called reflexive.

2.2. Complexes and subdivisions. A polyhedral complex Σ is a finite col-
lection of polyhedra such that the faces of any member belong to Σ and such
that the intersection of any two members is a face of each of them. The support
supp(Σ) of such a Σ is the union of its members. A single polyhedron together
with all of its faces forms a polyhedral complex that we denote by the same sym-
bol as the single object. For an element σ ∈ Σ its star consists of all τ ∈ Σ with
σ ≺ τ and all their faces.

Figure 4. Not a complex.

A polyhedral complex that consists of rational pointed cones is a fan whereas
a polyhedral complex all of whose members are lattice polytopes will be called
a complex of lattice polytopes. A fan is simplicial (resp. unimodular) if all of its
members are. We can construct fans from polytopes: Let F be a face of the
polytope P . The normal cone of F is the set of all functionals that take their
minimum over P on (all of) F . These cones fit together to form the normal fan
N (P ) of P . If P contains 0 in its interior, then the elements of N (P ) are exactly
the cones generated by the faces of P∨. A polytope is simplicial if all its proper
faces are simplices and simple if its normalfan is simplicial. P is simplicial if and
only if P∨ is simple.

A polyhedral complex S is a subdivision of Σ if every polyhedron in S is
contained in a polyhedron of Σ and suppS = supp Σ. A complex of lattice
polytopes T that subdivides Σ into simplices is a (lattice) triangulation. A lattice
triangulation is unimodular if its members are.

Let S be a subdivision of Σ. An integral S–linear (convex) support function
is a continuous function ω : supp Σ −→ R, with ω(supp Σ ∩ Zd) ⊆ Z, which is
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Figure 5. P , N (P∨) and P∨, N (P ).

affine on each τ ∈ S (and convex on every polyhedron σ ∈ Σ). If the domains of
linearity of such a convex ω are exactly the maximal polyhedra of S, then ω is
said to be strictly convex . For a polyhedral complex Σ, equipped with an integral
S–linear strictly convex support function ω, we write S = Sω, and call S coherent
(as a subdivision of Σ). This property is transitive, i.e., a coherent subdivision
of a coherent subdivision is coherent. If supp(Σ) is a polyhedron itself, then Σ is
coherent if it is coherent as a refinement of the trivial subdivision of supp(Σ).

One way to coherently refine a coherent subdivision S = Sω of a polytope P
is by pulling a (lattice) point m ∈ P (cf. [Lee97]). The refinement pullm(S) is
defined as follows

• pullm(S) contains all Q ∈ S for which m /∈ Q, and

• if m ∈ Q ∈ S, then pullm(S) contains all the polytopes having the form
conv(F ∪ m), with F a facet of Q such that m /∈ F .
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pullm(Sω) = Sω′

(m, ω(m))

(m, ω′(m))

Figure 6. pullm(S) is coherent.



16 I. INTRODUCTION

By pulling successively all the lattice points within a given lattice polytope
P one obtains a triangulation into empty simplices. If S = Sω is coherent, then
pullm(S) is obtained by “pulling m from below”. This means that, defining
ω′(m) = ω(m) − ε for ε small enough, and ω′ = ω on the remaining lattice
points, and extending ω′ by the maximal convex function ω′′ whose values at the
lattice points are not greater than the given ones, we get pullm(S) = Sω′′ . Hence,
if S is coherent, then so is pullm(S).

2.3. Counting lattice points. Let P ⊂ Rd be a lattice d–polytope. Then
for k ∈ Z≥0, the number of lattice points in k · P is given by Ehr(P, k) ∈ Q[k],
the so–called Ehrhart polynomial :

card(k · P ∩ Zd) = Ehr(P, k) =
d∑

i=0

ai(P )ki for k ≥ 0.

We have ad(P ) = Vol(P ) and a0 = 1. The corresponding Ehrhart series

∑
k≥0

Ehr(P, k)tk =

∑dim P
j=0 ψj(P )tj

(1 − t)dim P+1
,

gives rise to the Ψ–polynomial Ψ(P, t) =
∑dim P

j=0 ψj(P )tj of P .

1 · P 2 · P0 · P

Figure 7. Ehr(P, k) = 5
2
k2 + 5

2
k + 1 , Ψ(P, t) = t2 + 3t + 1.

The coefficients are non–negative integers [Sta97]. They can be written as
Z–linear combinations of the first values of Ehr(P, k):

ψj(P ) =

j∑
i=0

(−1)i

(
dim P + 1

i

)
Ehr(P, j − i).(2.1)

Another polynomial, Ehr, counts lattice points in the interior of k · P .

card(k · relint(P ) ∩ Zd) = Ehr(P, k) for k ≥ 0,
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with interior Ehrhart series∑
k≥0

Ehr(P, k)tk =

∑dim P+1
j=1 ϕj(P )tj

(1 − t)dim P+1
,

giving rise to the Φ–polynomial. The following well known reciprocity law holds
[Ehr77, Sta97].

Ehr(P, k) = (−1)dim PEhr(P,−k).(2.2)

This implies:

2.1. Proposition. For any lattice polytope P , Φ(P, t) = tdim P+1Ψ(P, t−1) or,
in other “words”, φj(P ) = ψdim P−j+1(P ).

Proof. The statement is true for the standard simplex. This follows from
Ehr(Md, k) =

(
k+d

d

)
, Ehr(Md, k) =

(
k−1

d

)
and Ψ(Md, t) = 1, Φ(Md, t) = td+1. The

Ehrhart polynomials of these simplices form a basis of Q[k]: any (Ehrhart) poly-

nomial can be written (uniquely) in the form
∑dim P

i=0 λi

(
k+i

i

)
. Then, by (2.2), the

interior Ehrhart polynomial is
∑dim P

i=0 (−1)d+iλi

(
k−1

i

)
. Hence, Ψ =

∑
i λi(1− t)d−i

and Φ =
∑

i(−1)d+iλi(1 − t)d−iti+1.

If P is reflexive, then there are no lattice points between k · P and (k + 1) · P .

2.2. Lemma [Hib92]. The lattice polytope P (with 0 in its interior) is reflexive
if and only if for every k ∈ Z≥0

Ehr(P, k + 1) = Ehr(P, k) for k ≥ 0,(2.3)

or, equivalently,

ψj(P ) = ψd−j(P ).

Proof. Equation (2.3) is equivalent to the fact that there is no lattice point
m in the difference set relint((k + 1) · P ) r (k · P ). As

k · P = {y ∈ Rd : 〈vi,y〉 ≥ −k (vi vertex of P∨)},
the existence of such an m would imply that k < 〈vi,m〉 < k + 1 for some i,
contradicting the integrality of vi.

Conversely, assume that some vi 6∈ Zd. In this case, choose some lattice
vector n1 from the interior of the cone pos(Fi), which is generated by the facet
Fi = {y ∈ P : 〈vi,y〉 = −1}. If already 〈vi,n1〉 6∈ Z, we are done. Otherwise
take any n2 ∈ Zd with 〈vi,n2〉 6∈ Z (e.g., a suitable coordinate vector). Then
for large N ∈ Z≥0 the lattice point m = Nn1 + n2 lies in pos(Fi) and satisfies
〈vi,m〉 6∈ Z.
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3. Notions from algebraic and toric geometry

3.1. Properties of (local) rings. Let R denote a local Noetherian ring
with maximal ideal m. R is regular if the following equality of Krull dimensions
holds; dim(R) = dim(m/m2). R is normal if it is integrally closed. R is said
to be a complete intersection if there exists a regular local ring R′, such that
R ∼= R′/〈f1, . . . , fq〉 for a finite set {f1, . . . , fq} ⊂ R′ whose cardinality equals
q = dim(R′) − dim(R). R is called Cohen–Macaulay if depth(R) = dim(R), where
its depth is the maximum of the lengths of all regular sequences whose members

belong to m. Such an R is Gorenstein if Ext
dim(R)
R (R/m, R) ∼= R/m. The hierarchy

of the above types of R’s reads:

regular =⇒ complete intersection =⇒ Gorenstein =⇒ Cohen–Macaulay.

An arbitrary Noetherian ring R and its associated affine scheme Spec(R) are
called regular, Cohen–Macaulay, Gorenstein, or normal respectively, if all the
localizations Rm for all maximal ideals m of R are of this type. In particular,
if all Rm’s are complete intersections, then one says that R is a local complete
intersection (l.c.i.).

3.2. Complex varieties and desingularizations. Throughout the thesis
we consider only complex varieties (X,OX), i.e., integral separated schemes of
finite type over C, and work within the analytic category (cf. the GAGA corre-
spondence [Ser56]). The algebraic properties of 3.1 can be defined for the whole
X via its affine coverings, and pointwise via the stalks OX,x of the structure sheaf
at x ∈ X. By Sing(X) = {x ∈ X : OX,x non–regular} we denote the singular
and by Reg(X) = X r Sing(X) the regular locus of X. A partial desingulariza-

tion f : X̂ −→ X of X is a proper holomorphic morphism of complex varieties

with X̂ normal, such that there is a nowhere dense analytic set S ⊂ X, with

S ∩ Sing(X) 6= ∅, whose inverse image f−1(S) ⊂ X̂ is nowhere dense and such

that the restriction of f to X̂ r f−1(S) is biholomorphic. The map f : X̂ −→ X
is called a full desingularization of X (or full resolution of singularities of X) if

Sing(X) ⊆ S and Sing(X̂) = ∅.

3.3. Divisors. A Weil divisor KX of a normal complex variety X is canonical
if its sheaf OX(KX) of fractional ideals is isomorphic to the sheaf of the (regular in
codimension 1) Zariski differentials or, equivalently, if OReg(X)(KX) is isomorphic
to the sheaf Ωdim X

Reg(X) of the highest regular differential forms on Reg(X). As
it is known, X is Gorenstein if and only if KX is Cartier, i.e., if and only if
OX(KX) is invertible. A birational morphism f : X ′ −→ X between normal
Gorenstein complex varieties is called non–discrepant or simply crepant , if the (up
to rational equivalence uniquely determined) difference KX′ − f ∗(KX) vanishes.
Furthermore, f : X ′ → X is projective if X ′ admits an f–ample Cartier divisor.

Let X be a Q–Gorenstein variety, i.e., rKX is Cartier for some r ∈ Z≥1.
Then X has canonical singularities if for every resolution φ : Y → X with
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exceptional prime divisors {Ei} one has rKY − φ∗(r KX) =
∑

λiEi with non–
negative coefficients λi. If always all λi are stricly positive, then X has terminal
singularities (cf. [Rei87]).

3.4. Toric varieties. Let σ ⊂ Rd be a pointed rational cone and σ∨ its
dual. Then the semigroup σ∨ ∩ (Zd)∨ is finitely generated — a generating set is
called Hilbert basis. The semigroup ring C[σ∨ ∩ (Zd)∨] defines an affine complex
variety Uσ := Spec(C[σ∨ ∩ (Zd)∨]). A general toric variety XΣ associated with
a fan Σ is the identification space XΣ := (

⊔
σ∈Σ Uσ)/∼ over the equivalence

relation defined by “Uσ1 3 u1 ∼ u2 ∈ Uσ2 if and only if there is a face τ of both
σ1, σ2, and u1 = u2 within Uτ .” XΣ is always normal and Cohen–Macaulay, and
has at most rational singularities. Moreover, XΣ admits a canonical group action
which extends the multiplication of the algebraic torus U{0} ∼= (C∗)d. The notion
of equivariance will always be used with respect to this action. It partitions
XΣ into orbits that are in one–to–one correspondence with the cones of Σ. The
orbit that corresponds to σ ∈ Σ is a (d − dim σ)–dimensional algebraic torus
Tσ. Its closure Dσ is itself a toric variety. These are exactly the torus invariant
subvarieties of XΣ. Let σ be full–dimensional. Then the smallest orbit closure
Dσ in Uσ is a singular point unless σ is unimodular (cf. [Oda88, Thm. 1.10]).
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4. From the dictionary

In this section, we review some entries of the dictionary, that translates be-
tween convex and toric geometry. We refer to to the text books [Ewa96, Ful93,
KKMSD73, Oda88] for further reading.

4.1. Toric morphisms. Let Σ, Σ′ be fans in Rd respectively Rd′ . A map
of fans between Σ and Σ′ is a linear map φ : Rd → Rd′ with the property that
for every σ ∈ Σ there is some σ′ ∈ Σ′ such that φ(σ ∩ Zd) ⊆ σ′ ∩ Zd′ . Such a φ
induces an equivariant holomorphic map XΣ → XΣ′ (also denoted by φ), which
is proper if and only if φ−1(supp Σ′) = supp Σ. In particular, XΣ is compact if
and only if supp Σ = Rd. An example of a proper equivariant morphism is the
map φS induced by a subdivision S of a fan Σ.

4.2. Divisors and projective toric varieties. Invariant prime divisors of
XΣ are (d − 1)–dimensional invariant subvarieties. These are exactly the orbit
closures D% corresponding to the rays % of Σ. So the torus invariant Weil divisors
are formal Z–linear combinations of the D%. Such a divisor

∑
λ%D% is Cartier if

and only if for every maximal cone σ ∈ Σ there is an element `σ ∈ (Zd)∨ such
that λ% = 〈`σ,p(%)〉, for every one–dimensional subcone % of σ, where p(%) is the
primitive lattice vector that generates %.

If supp(Σ) is convex, we can consider Σ as a subdivision of supp(Σ). Then
the restrictions `σ|σ fit together to a (not necessarily convex) integral Σ–linear
support function ω`. The Cartier divisor on XΣ that is defined by ω` is ample if
and only if ω` is strictly convex on supp(Σ) in the sense of 2.2. Hence XΣ is quasi
projective if and only if Σ admits a strictly convex support function ω, and the
morphism φS induced by a subdivision S is projective if and only if S is coherent.

Figure 8. A ‘divisor’ and an ‘ample divisor’.

Let P be a lattice polytope with 0 in its interior. Then XN (P ) is projective,
as witnessed by the support function ω(x) = min{t ≥ 0 : x ∈ t · P∨}. The
polytope P even yields a projective embedding in the following way. The semi-
group algebra R = C[σ(P ) ∩ Zd+1] has a natural grading by the last coordinate.
The homogeneous components are Rk = C[σ(P ) ∩ (Zd × {k})]. So R is the
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quotient of a polynomial ring by a homogeneously generated ideal, and we have
XN (P )

∼= Proj(R). The dimension of Rk is just Ehr(P, k), and thus the degree
of this embedding is (dim P )! times the leading coefficient of Ehr(P, k), which is
the normalized volume of P .

P × {1}

2P × {2}

3P × {3}

Figure 9. The grading of C[σ(P ) ∩ Zd+1].
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CHAPTER II

Lattice width of empty simplices

1. Introduction

Geometric intuition may suggest that an empty lattice simplex must be “flat”
in at least one direction, and if it is not “very flat,” then its volume must be
bounded. The concepts of “flat” and “very flat” are made precise using the
notion of lattice width reviewed below. A “flat” simplex will be one whose lattice
width is bounded by a certain constant w(d) that depends only on the dimension,
and it will be called “not very flat” if its lattice width is greater than another
constant w(d− 1). Using these concepts, we discuss in this chapter the (partial)
validity of the geometric intuition.

Let K ⊆ Rd be any full–dimensional lattice polytope (or even a general full–
dimensional convex body). For a linear form ` ∈ (Rd)∨ define the width of K
with respect to ` as

width`(K) := max `(K) − min `(K).

s

`1

`2

s

Figure 1. width`1(K) = 6 width`2(K) = 3.

Given K, the assignment ` 7→ width`(K) defines a norm on (Rd)∨. The
(lattice) width of K is

width(K) := min{width`(K) : ` ∈ (Zd)∨ r {0}}.
If K is not full–dimensional, we have to exclude not only ` = 0, but all ` that
are constant on the affine hull aff(K).

width(K) = min{width`(K) : ` ∈ (Zd)∨, ` not constant on aff(K)}.

23
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This way the width becomes an invariant of lattice equivalence classes.
Another notion of width — more geometric and less number theoretic — is

obtained if one minimizes over ` ∈ Sd−1 ⊂ (Rd)∨ instead. This geometric width
is a lower bound for our lattice width. It is not invariant under lattice equivalence
and it will not be addressed any further.

By Khinchine’s Flatness Theorem [Khi48], the lattice width of a d–dimensio-
nal empty lattice simplex is bounded by a constant which only depends on d. For
each d the best bound is encoded in the maximal width function:

w : Z≥0 −→ Z≥0

d 7−→ max{width(s) : s is a d–dimensional empty lattice simplex}.
Here are the main facts that are known about this function:

• w(2) = 1 (trivial),

• w(3) = 1 (This is White’s Theorem [Whi64, MS84, Sca85, Seb98].),

• w(4) ≥ 4 (We will see that the simplex spanned by (6, 14, 17, 65)t together
with the four unit vectors in R4 is the smallest example of width 4; it seems
to be the only one, up to lattice equivalence. In particular, we believe that
w(4) = 4.),

• w(d) ≤ Md log d for some M (Banaszczyk, Litvak, Pajor & Szarek [BLPS98]),

• w(d) ≥ d − 2 for all d ≥ 1, and w(d) ≥ d − 1 for even d. (This was proved
by Sebő and Bárány [Seb98], who gave explicit examples, cf. Proposition 1.1
below).

1.1. Proposition [Seb98]. The d–dimensional simplex

Sd(k) := conv{a1, . . . , ad+1} ⊂ Rd+1,

where ai = kei + ei+1 (indices are considered modulo d + 1) is empty if k < d,
and its width is k respectively k − 1 according to whether d is even or odd.

Proof. (Sebő and Bárány [Seb98])
Emptiness : Suppose m ∈ Sd(k) ∩ Zd and let λ1, . . . , λd+1 be its barycentric
coordinates, i.e., mi+1 = kλi+1 +λi. If some λi > 0, λi+1 = 0, then λi = mi+1 ∈ Z
must be 1, so that m = ai is a vertex. Otherwise all λi > 0 and thus all mi > 0.
Hence

∑
mi ≥ d + 1, but as element of Sd(k) we should have

∑
mi = k + 1.

Width: The simplex Sd(k) is not full–dimensional. Its affine hull is given by
V = aff(Sd(k)) = {x ∈ Rd+1 :

∑
xi = k + 1}. A functional is constant on V if

and only if all its coordinates are equal. So consider some ` which is not constant
on V . Let i be any index such that li is maximal and j any index such that lj is
minimal. Then li > lj because of our assumption.

`(ai) − `(aj) = kli + li+1 − klj − lj+1

≥ kli + lj − klj − li = (k − 1)(li − lj) ≥ k − 1.
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Equality can only hold if li − lj = 1 and for every maximal li, li+1 is minimal and
vice versa, i.e., if ±` = (l, l + 1, l, l + 1, . . . , l, l + 1) for some l. But this can only
happen if d + 1 is even.

Imre Bárány (personal communication 1997) related the volume of an empty
lattice simplex to its width. He conjectured that the only way an empty simplex
can have arbitrarily high volume is that it is flat like a pancake. More precisely,
he claimed that in every fixed dimension the volume of empty lattice simplices of
width ≥ 2 is bounded, or equivalently, there are only finitely many equivalence
classes of such simplices. We will see that this is false in dimensions d ≥ 4. Even
the weaker conjecture that there are only finitely many different empty lattice
simplices of width larger than w(d − 1) is not true for d ≥ 4. However, we offer
a new guess for a finiteness result in Conjecture 2.7.
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2. Adding one dimension

The examples in Section 3 of empty 4–simplices of width greater than 1 to-
gether with the following proposition show that Bárány’s pancake conjecture does
not hold in dimension d ≥ 5.

2.1. Proposition. Let d ≥ 3. Every empty (d−1)–dimensional lattice simplex
s ⊂ Rd is a facet of infinitely many pairwise non–equivalent empty d–dimensional
lattice simplices s̃ ⊂ Rd that have at least the same width, width(s̃) ≥ width(s).

2.2. Corollary. The maximal width function is monotone: w(d) ≥ w(d − 1).
¤

2.3. Corollary. For all d ≥ 3, there are infinitely many equivalence classes
of d–dimensional empty lattice simplices of width ≥ w(d − 1). ¤

Proof of Proposition 2.1. Generalize Reeve’s construction [Ree57] of ar-
bitrarily large empty tetrahedra: R(r) = conv{0, e1, e2, e1 + e2 + re3} ⊂ R3.
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Figure 2. Reeve’s tetrahedron R(4).

Suppose that s = conv{a0, . . . , ad−1} ⊂ Rd−1 is an empty simplex with
a0 = 0. Every point x in the cone σ = pos s has a unique representation of the
form x =

∑d−1
i=1 λiai with λi ≥ 0; define the height of x in σ as ht(x) :=

∑d−1
i=1 λi.

Let ad ∈ relint(σ) ∩ Zd be an integer point in the interior of σ with minimal
height, that is, such that λi > 0 for all i and such that ht(ad) > 1 is minimal.
Then conv{a0, . . . , ad} ⊆ Rd−1, a bipyramid over the facet conv{a1, . . . , ad−1}
of s, is empty (use d − 1 > 1).

The d–dimensional simplex s̃(h) = conv{
(
a0

0

)
, . . . ,

(
ad−1

0

)
,
(
ad

h

)
} ⊆ Rd derived

from it “by lifting ad to a new dimension” will satisfy our conditions if h is large
enough. To see this, let m ∈ s̃(h)∩Zd. The projection of m to Rd−1 is an integral
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point which lies in the bipyramid, so it must be one of the points a0, . . . , ad. But
the only points of s̃(h) with such a projection are the vertices.

Any functional ` ∈ (Zd)∨ has the same values on the first d vertices of
s̃(h) as its restriction `′ to Rd−1 takes on the vertices of s. Hence, we have
width`(s̃) ≥ width`′(s). This shows that width`(s̃)(h) ≥ width(s), unless `′ is zero.
In this last case ` has to be an integer multiple of the d–th coordinate function,
which takes the values 0 and h on the vertices of s̃(h). This establishes that
width(s̃)(h) ≥ min{h, width(s)}.
For a sharper analysis of the situation we introduce the following concept.

2.4. Definition. A lattice simplex without interior lattice points and with at
least one empty facet is called almost empty. Let w(d) be the maximal width
function for almost empty simplices.

The following Proposition in particular shows that w(d) ≤ w(d + 1) is finite.

2.5. Proposition. For any (d − 1)–dimensional almost empty simplex there
are infinitely many pairwise non–equivalent d–dimensional empty simplices of at
least the same width.

As a special case of Proposition 2.5, we get the following infinite family of
4–dimensional empty lattice simplices of width 2 > w(3), which disproves the
pancake conjecture in dimension 4. For this, write

s[m] := conv
{
e1, e2, . . . , ed,m

}
,

to denote the convex hull of the standard unit vectors together with one additional
vector m ∈ Zd. We always assume that

∑d
i=1 mi =: D + 1 > 1. (D is the

determinant of s[m].)

2.6. Proposition. For every determinant D ≥ 8, the 4–simplex s[(2, 2, 3, D−
6)t], which is the convex hull of the columns of

1 0 0 0 2
0 1 0 0 2
0 0 1 0 3
0 0 0 1 D − 6

 ,

has width 2. It is empty if and only if gcd(D, 6) = 1. ¤

Proof of Proposition 2.5. Suppose that s = conv{a0, . . . , ad−1} ⊆ Rd−1

with a0 = 0 is an almost empty simplex with empty facet conv{a1, . . . , ad−1}.
Choose ad as in the previous proof. Then s′ := conv{a1, . . . , ad−1, ad} is an
empty (d− 1)–simplex by construction, and conv{a0, a1, . . . , ad−1, ad} = s∪ s′ is
a bipyramid with apexes a0 = 0 and ad, such that all the integer points in s∪ s′,
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except for the point ad, are contained in the facets of s that contain the apex
a0 = 0. Now we “lift a0 to the next dimension” to obtain

s̃(h) := conv

{(
a0

h

)
,

(
a1

0

)
, . . . ,

(
ad

0

)}
.

(
a0

0

)
ãd−1

ã0

s

ã1

ãd
s′

Figure 3. Lift a0 to the next dimension.

The following two claims establish that

(1) the simplex s̃(h) has width width(s̃(h)) ≥ width(s) if h is large enough, and

(2) it is empty for infinitely many h.

Claim (1) There is a constant H = H(s, ad) so that width(s̃(h)) ≥ width(s)
for every h > H.

For ` ∈ (Rd)∨ let `′ denote its restriction to Rd−1 and let ld be the remaining
component. Then width`(s̃(h)) ≥ width`′(s

′). Now s′ is a full–dimensional lattice
simplex in Rd−1. Hence the set {`′ ∈ (Rd−1)∨ : width`′(s

′) ≤ width(s)} is
bounded. In particular, there is some M such that max |`′(s′)| ≤ M for every
`′ from this set. From now on, we will only consider functionals ` that satisfy
width`′(s

′) < width(s) — otherwise the claim is clear anyway.
If ld = 0 (and ` 6= 0), then width`(s̃(h)) = width`′(s ∪ s′) ≥ width(s). But if

ld 6= 0 and h > H := M + width(s), then

|`(
(
a0

h

)
−

(
ai

0

)
)| = |ldh − `′(ai)| ≥ h − max |`′(s′)| > width(s).

This implies that width`(s̃(h)) ≥ width(s).
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Claim (2) Let D = det[a1, . . . , ad−1]. If gcd(D, h) = 1, then s̃(h) is empty.

Let once more ht ∈ (Rd−1)∨ be the linear form on Rd−1 that takes the value
1 on a1, . . . , ad−1 (and 0 on a0 = 0).

Let m̃ ∈ s̃(h) be an integer point. Its projection m ∈ s ∪ s′ to Rd−1 has
integral coordinates. If m = ad, then m̃ =

(
ad

0

)
is a vertex of s̃(h). Otherwise

decompose

m̃ =

(
m

md

)
=

md

h

(
0

h

)
+

(
1 − md

h

) (
x

0

)
,

for some x ∈ s′. This yields m =
(
1 − md

h

)
x. If m = 0, then m̃ =

(
a0

h

)
is a

vertex of s̃(h). Otherwise md < h, and m lies in a facet of s (and thus of s ∪ s′)
that contains the vertex a0 = 0, while some multiple of m = (1 − md

h
)x, namely

x, lies in s′. Thus the geometry of the bipyramid s ∪ s′ implies that x ∈ s ∩ s′,
and thus ht(x) = 1. Hence

ht(m) = 1 − md

h
.

On the other hand, by Cramer’s rule, there are unique coefficients λi ∈ Z, such
that m has the representation D · m =

∑d−1
i=1 λiai. This implies

D · ht(m) ∈ Z.

Conclude that

D
md

h
= D − D · ht(m) ∈ Z.

Hence, if gcd(D, h) = 1, then md = 0, and thus m̃ ∈ s′ ∩ Zd−1 is one of the
vertices of s̃(h).

Conversely, if s does have interior lattice points, then s̃(h) is an empty simplex for
only finitely many values of h. To see this, consider the intersections of s̃(h) with
the hyperplanes {x̃ ∈ Rd : xd = k} for integers k. The projection Z(h) of their
union to Rd−1 is a “forbidden zone” for integer points: if it contains an integer
point, then s̃(h) is not empty. Figure 4 illustrates this for dimension d = 2 + 1
and for the heights 4 and 8.

ad

a1

ad−1

a0

ad

a1

ad−1

a0

Figure 4. Z(4) and Z(8).
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You can see that Z(h) contains an inner parallel body of s that grows with
h and which completely fills the interior of s for h → ∞. So any fixed interior
point of s lies in Z(h) if h is large enough.

As promised, we conclude this section with a new modified finiteness conjec-
ture. Given some huge wide empty simplex s̃ ⊂ Rd, we can always suppose that
the smallest facet s lies in Rd−1. Then our simplex is of the form s̃ = s̃(h) for
some huge h = det(s̃)/ det(s). One is tempted to believe that h is large enough
to (1): exclude interior lattice points from the projection of s̃ to Rd−1, and (2):
assure that any functional that realizes the width must live in Rd−1.

2.7. Conjecture. For every d ≥ 2, there are only finitely many equivalence
classes of empty d–simplices whose width is greater than w(d − 1), the greatest
width that can be achieved in dimension d − 1 by almost empty simplices.

This includes the conjecture that the maximal width of the bipyramids in-
volved cannot be greater than w.
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3. Computer search in dimension 4

As already mentioned, 3–dimensional empty simplices always have width 1.
The first examples of width 2 simplices in dimensions 4 and 5 were given by
Uwe Wessels [Wes89]. In this section we describe the search for wide empty
4–simplices. The strategy is the following:

1. enumerate all equivalence classes of (possibly) empty simplices,
2. check whether or not the simplex is in fact empty, and
3. if so, calculate the width.

This relies on the two known results 3.1 and 3.3.

3.1. Theorem [Wes89]. Every empty 4–simplex has at least two unimodular
facets. In particular, every such simplex is equivalent to a simplex of the form
s[m]. ¤

(The analogous statement is false in higher dimensions. For example, the
simplex in R5 given by the columns of

0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 1 4
0 0 0 0 6 0
0 0 0 0 0 9

 ,

is empty, without any unimodular facet [Wes89, p. 21].)
We can further restrict our search for empty simplices, as follows.

3.2. Lemma. The simplex s[m] is lattice equivalent to s[m+Dε], where ε ∈ Zd

is any vector with vanishing coordinate sum. In particular, s[m] is equivalent to
some s[m′] with ‖m′‖∞ ≤ D. Furthermore, any orientation preserving lattice
equivalence which fixes the vertices ei, is of this type. ¤

Given a determinant D, enumerate sorted 4–tuples m with
∑

mi = D + 1 in
the range given by Lemma 3.2. Then test emptiness by the following criterion,
which is (up to the range restriction k ≤ D/2) due to Herb Scarf.

3.3. Theorem [Sca85]. The lattice simplex s[m] = conv{e1, . . . , ed,m} of de-

terminant D :=
∑d

i=1 mi − 1 > 0 is empty if and only if

d∑
i=1

⌈
kmi

D

⌉
> k + 1(3.1)

holds for all integers k in the range 1 ≤ k ≤ D/2.
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Proof. Observe that
d∑

i=1

⌈
kmi

D

⌉
≥ k + 1

always holds, since
∑d

i=1

⌈
kmi

D

⌉
≥

∑d
i=1

kmi

D
= k

D

∑d
i=1 mi = kD+1

D
> k.

Also it is readily checked that
∑d

i=1 xi ≥ 1 together with the inequalities∑d
i=1 xi − 1

D
mj ≤ xj <

∑d
i=1 xi − 1

D
mj + 1(3.2)

describes the set s r {e1, . . . , ed}: the weak inequalities describe s and the strict
ones cut off the vertices ei.

If there is a lattice point x in s r {e1, . . . , ed}, set k = k(x) :=
∑d

i=1 xi − 1.
Then by (3.2) x must have the coordinates

xj =

⌈
kmj

D

⌉
.(3.3)

Thus x violates (3.1), but it need not satisfy k ≤ D/2. However, if k > D/2, then
we get other lattice points x′ := m+n(x−m) with k′ := k(x′) = D + n(k − D).

e1

m

ed

x

Choose n = d k
D−k

e. Then

0 = D + (
k

D − k
+ 1)(k − D) < k′ ≤ D +

k

D − k
(k − D) = D − k < D/2.

Thus from k′ ≥ 0 deduce that x′ is another lattice point in s[m], which is not a

vertex because of k′ > 0, but whose k′ =
∑d

i=1 x′
i − 1 is smaller than D/2, and

which violates the condition (3.1). This finishes the only if part of the proof.
On the other hand, if for some k

d∑
i=1

⌈
kmi

D

⌉
= k + 1,
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then the vector x given by (3.3) satisfies (3.2), and thus provides a lattice point
in s[m] which is not a vertex.

In principle, the width of a lattice simplex can be found by solving an integer
program, as demonstrated by the following lemma.

3.4. Lemma. Let W be an upper bound for the width of the simplex s[m]. Then
width(s[m]) is the optimal value of the following minimization problem:

minimize w subject to

w0 ≤ li ≤ w0 + w for 1 ≤ i ≤ d,

w0 ≤
∑d

i=1 limi ≤ w0 + w,∑d
i=1 liW

i−1 ≥ 1,

(3.4)

with integer variables w, w0, and li. (The values of the li–variables in an optimal
solution yield a linear functional that realizes the width.)

Proof. The width is defined to be the minimal solution to the first con-
straints, excluding the zero solution (` = 0, w = w0 = 0). This solution is cut off
by the last constraint. We have to see that some ` 6= 0 that realizes the width
of s[m] satisfies this last constraint. By replacing the li by their negatives, we can
assure the left hand side of this constraint to be non–negative. If it were zero, the
first non–zero li would have to be a multiple of W and some other lj would have
the opposite sign, with the effect that |`(ei) − `(ej)| = |li − lj| > |li| ≥ W .

An integer programming formulation as in Lemma 3.4 also shows that the width
of a general lattice simplex can be computed in polynomial time if the dimen-
sion is fixed. (A different IP formulation was provided by Sebő [Seb98, § 5].)
Somewhat surprisingly, our computational tests using CPLEX∗ showed that the
integer programs of Lemma 3.4 can indeed be solved fast and stably, provided
that W is not too large. We used this for an enumeration of 4–dimensional empty
lattice simplices up to determinant D = 350, and also for tests in dimension 5.

However, for larger determinants a less sophisticated criterion proved to be
faster. Namely, a simplex s[m] has lattice width greater than w if and only if
there is no solution to

0 ≤ l′i ≤ w for 1 ≤ i ≤ d,∑d
i=1 l′imi (mod D) ≤ w,

(l′1, . . . , l′d) 6= (0, . . . , 0).

This is easily derived from the system (3.4) using the substitutions l′i := li − w0.
Thus, to test e.g. whether a 4–dimensional simplex has width greater than 2,

∗CPLEX Linear Optimizer 4.0.8 with Mixed Integer & Barrier Solvers; c©CPLEX Opti-
mization, Inc., 1989-1995
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one simply has to see whether there is one of the 34 − 1 = 80 different 4–tuples
(l′1, . . . , l′4) ∈ {0, 1, 2}4 r {0} that satisfies the modular inequality

d∑
i=1

l′imi (mod D) ≤ 2.

This method yields a complete list of empty 4–simplices s[m] that have a given
determinant and width ≥ 3. In order to exclude multiple representatives of
the same equivalence class, we have to develop an equivalence test. A lattice
equivalence that maps s[m] to some s[m′] can either map m to m′ (then it is
a transformation as in Lemma 3.2 followed by a permutation of coordinates) or
it maps m to some ei. In the latter case, we can — again, up to coordinate
permutations — apply the following Lemma 3.5, to get a transformation that
fixes the ei.

3.5. Lemma. The facet conv{e1, e2, e3,m} of s[m] is unimodular if and only
if gcd(D,m4) = 1. In that case let p, q ∈ Z such that pm4 − qD = 1. Then the
affine map given by

x 7−→


1 + qm1 qm1 qm1 (q − p)m1

qm2 1 + qm2 qm2 (q − p)m2

qm3 qm2 1 + qm3 (q − p)m3

km4 − q km4 − q km4 − q p − q + k(m4 − D)

x −


qm1

qm2

qm3

km4 − q


(with k = q − p − 1) is lattice preserving and maps

e1 7−→ e1

e2 7−→ e2

e3 7−→ e3

e4 7−→ (−pm1,−pm2,−pm3, p + (p − q + 1)D)t

m 7−→ e4.

¤

The coordinate transformations can be ruled out by sorting the mi and the
Lemma 3.2 transformations by comparison of the moduli mi (mod D). The
following theorem records our computational results, based on generation and
test of all equivalence classes of empty lattice simplices of determinant D ≤ 1000.
It provides evidence for w(4) = 4 as well as for Conjecture 2.7.
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3.6. Theorem. Among the 4–dimensional empty lattice simplices of determi-
nant D ≤ 1000,

• there are no simplices of width 5 or larger,

• there is a unique equivalence class of simplices of width 4 which is represented
by the simplex s[(6, 14, 17, 65)t], whose determinant is D = 101,

• all simplices of width 3 have determinant D ≤ 179, where the (unique) smallest
example, of determinant D = 41, is represented by s[(−10, 4, 23, 25)t], and the
(unique) example of determinant D = 179 is represented by s[(20, 36, 53, 71)t].

This result has been found independently by Fermigier and Kantor, and it was
confirmed by Wahidi [Wah99].

If it were true that every empty 4–simplex of width 3 has determinant ≤ 179,
it would follow that w(3) ≤ 2, the latter can be shown directly:

3.7. Proposition. The lattice width of any almost empty tetrahedron is at
most 2, i.e.,

w(3) = 2.

Proof. The almost empty tetrahedron s[(2, 2, 3)t] underlying Proposition 2.6
shows that w(3) ≥ 2.

Suppose that there is an almost empty tetrahedron s of width ≥ 3. We first
bring it into normal form: Up to a unimodular transformation, s has vertices
0, e1, e2, (x, y, z′)t with z′ ≥ 1 and 0 ≤ x, y < z′. If z′ ≤ x + y − 2, then (1, 1, 1)t

would be an interior point. Hence z′ ≥ x+y−1 and s is equivalent to s[(x, y, z)t]
with z = z′ − x − y + 1 ≥ 0.

Let us suppose 0 ≤ x ≤ y ≤ z. Because of width(s) ≥ 3 we know that x ≥ 3,
y − x ≥ 2, z − y ≥ 2 and |z − x − y| ≥ 2. From these inequalities we want to
deduce that there is an interior lattice point. Therefore, observe that the lattice
point given by (3.3) is interior if and only if both inequalities in (3.2) are strict.
In other words, we have to produce some k such that⌈

kx

D

⌉
+

⌈
ky

D

⌉
+

⌈
ky

D

⌉
= k + 1,

and none of the three fractions is integral. There are two cases.

• z − x − y ≤ −2: (1, 1, 1)t is an interior point (k = 2).
• z−x− y ≥ 2: Abbreviate p := by/xc. Then there is an integer q such that

(1, p, q)t is an interior point (k = p + q).

We still have to prove the second claim. It is equivalent to(
(p + q)x

D
< 1 ⇐=

)
(p + q)y

D
< p and

(p + q)z

D
< q.
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So we are looking for an integer q such that

pz

D − z
< q <

p(D − y)

y
.(3.5)

Once more, we have several cases:

• y ≥ 2x (p ≥ 2),
• y = 2x − 1, z − x − y > 2,
• y = 2x − 1, z − x − y = 2 and
• y < 2x − 1.

It is convenient to consider the most special case first. If y = 2x−1, z−x−y = 2,
then (3.5) becomes

3x + 1

3x − 2
< q <

4x

2x − 1
,

which is satisfied by q = 2.
In the other cases we will assure the existence of some q that satisfies (3.5)

by showing that

p(D − y)

y
− pz

D − z
> 1,

or, equivalently,

z · p(x − 1) > (x + y − 1) ·
(
y − p(x − 1)

)
.

• y ≥ 2x: p ≥ 2

y ≤ (p + 1)x − 1 (p = by/xc)
≤ (p + 1)x + p − 3 (p ≥ 2)

= (p + 1)(x − 1) + 2(p − 1)

≤ (p + 1)(x − 1) + (x − 1)(p − 1) (x ≥ 3)

= 2p(x − 1).

So z > x + y − 1 and p(x − 1) ≥ y − p(x − 1).
• y = 2x − 1, z − x − y > 2: p = 1 and z ≥ 3x + 2.

z · 1(x − 1) ≥ (3x + 2)(x − 1)

> (3x + 2)(x − 1) − (x − 2)

= y − 1(x − 1).

• y < 2x − 1:
x − 1 ≥ y − (x − 1) and z > x + y − 1.
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All empty 4–simplices of width ≥ 3 and determinant ≤ 1000. There are
179 equivalence classes of empty 4–simplices whose width exceeds 2 and whose
determinant is not larger than 1000. The following table lists exactly one 4–tuple
m for each of them, such that s[m] represents this class. (Cf. [Wah99, p. 49f].)

det m
41 -10 4 23 25
43 3 5 11 25

5 7 9 23
44 4 9 15 17

5 9 12 19
47 3 7 12 26
48 4 7 9 29
49 4 9 15 22

9 11 13 17
50 4 11 17 19
51 3 5 13 31

5 7 9 31
52 5 8 11 29
53 3 10 18 23

5 12 14 23
6 8 11 29
6 11 14 23
7 13 16 18
8 13 15 18

54 4 11 19 21
55 3 7 16 30

3 8 14 31
56 8 13 17 19
57 3 5 13 37
58 3 11 20 25

6 9 13 31
7 11 16 25

det m
59 7 9 20 24

7 10 12 31
7 10 19 24
8 10 15 27
8 12 17 23
8 15 17 20
9 12 16 23
9 14 17 20

11 13 15 21
11 13 16 20

60 11 13 16 21
61 -9 3 27 41

3 5 13 41
4 7 18 33
5 7 18 32
6 8 11 37
6 9 13 34
7 9 13 33

62 7 10 13 33
7 13 16 27
8 15 19 21

63 5 13 22 24
8 10 13 33

64 4 13 23 25
10 13 17 25

65 3 5 22 36
6 14 17 29

11 14 18 23
12 14 17 23

det m
67 3 5 17 43

3 5 23 37
4 10 17 37
7 15 17 29

10 12 19 27
13 15 17 23

68 5 12 21 31
10 15 21 23

69 3 14 22 31
10 14 19 27

71 5 12 26 29
5 13 22 32
7 11 16 38
7 16 18 31
8 11 15 38
8 15 18 31
9 15 22 26

11 16 21 24
11 17 20 24

73 3 8 14 49
4 10 17 43
6 8 11 49

13 15 21 25
13 16 20 25

74 4 15 27 29
10 17 23 25
12 15 19 29
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det m
75 7 9 13 47

7 17 19 33
14 16 19 27
14 17 19 26

76 8 11 17 41
9 11 26 31

77 3 5 13 57
8 18 23 29
8 21 23 26

12 17 23 26
15 17 20 26

79 3 11 20 46
4 14 25 37
7 16 27 30
9 12 16 43
9 14 16 41
9 14 20 37
9 16 21 34

10 16 23 31
12 16 21 31
13 16 20 31
13 17 22 28
14 16 23 27

81 6 14 25 37
82 7 13 30 33
83 6 14 17 47

7 11 16 50
8 11 15 50
8 23 25 28
9 11 14 50

11 19 26 28
11 21 24 28
12 21 23 28
13 20 23 28
16 19 21 28

det m
84 8 13 19 45
85 3 5 32 46

4 7 18 57
6 8 11 61
8 19 22 37

87 5 13 22 48
17 19 22 30

89 4 7 18 61
10 13 19 48
11 18 26 35

91 3 5 23 61
3 11 20 58

94 7 16 29 43
95 5 18 32 41

11 24 29 32
12 23 29 32
13 21 30 32
15 23 26 32
17 21 26 32

97 3 5 23 67
3 8 14 73
3 13 28 54
6 8 11 73
9 15 22 52

11 14 20 53
101 6 14 17 65

9 21 34 38
13 23 32 34
16 21 31 34

det m
103 7 19 32 46

8 11 26 59
9 15 22 58

10 16 23 55
10 23 26 45
11 13 21 59
13 21 32 38

107 3 5 43 57
8 18 33 49

10 12 19 67
15 23 34 36
17 23 30 38
17 25 27 39
20 23 27 38
21 23 28 36

109 10 22 29 49
13 22 32 43
16 22 29 43
20 22 29 39

113 15 25 36 38
20 25 31 38

119 15 27 38 40
19 24 37 40

121 19 26 34 43
125 11 26 42 47
127 3 5 53 67
137 7 26 46 59
139 16 28 41 55
149 17 30 44 59

23 32 42 53
169 19 34 50 67
179 20 36 53 71

In fact, all these simplices have exactly width 3, with the exception of the
bold simplex s[(6, 14, 17, 65)t], which has width 4.



CHAPTER III

Crepant resolutions of toric l.c.i.–singularities

1. Introduction

1.1. Motivation. In the past two decades crepant birational morphisms
were mainly used in algebraic geometry to reduce the canonical singularities
of algebraic d–folds, d ≥ 3, to Q–factorial terminal singularities, and to treat
minimal models in high dimensions. From the late eighties onwards, crepant full

desingularizations Ŷ → Y of projective varieties Y with trivial dualizing sheaf
and mild singularities (like quotient or toroidal singularities) play also a crucial
role in producing Calabi–Yau manifolds , which serve as internal target spaces for
non–linear super–symmetric sigma models in the framework of physical string–
theory. This explains the recent mathematical interest in both local and global
versions of the existence problem of smooth birational models of such Y ’s.

Locally, the high–dimensional McKay correspondence (cf. [IR94, Rei]) for the
underlying spaces Cd/G, G ⊂ SL(d,C), of Gorenstein quotient singularities was
proved by Batyrev [Bat99, Theorem 8.4]. It states that the following two quan-
tities are equal:

• the ranks of the non–trivial (=even) cohomology groups H2k(X̂,C) of the

overlying spaces X̂ of crepant, full desingularizations X̂ → X = Cd/G on the
one hand,

• the number of conjugacy classes of G having the weight (also called “age”) k
on the other.

Moreover, a one–to–one correspondence of McKay–type is also true for torus–

equivariant, crepant, full desingularizations X̂ → X = Uσ of the underlying
spaces of Gorenstein toric singularities [BD96, §4]. Again, the non–trivial (even)

cohomology groups of the X̂’s have the “expected” dimensions, which in this case
are determined by the Ehrhart polynomials of the corresponding lattice polytopes
(cf. Chapter IV). Thus in both situations the ranks of the cohomology groups of

X̂’s turn out to be independent of the particular choice of a crepant resolution.
Also in both situations, a crepant resolution always exists if d ≤ 3, but not in
general: for d ≥ 4 there are, for instance, lots of terminal Gorenstein singularities
in both classes, such as the toric quotient singularities Uσ(s) for empty simplices
s (cf. Chapter II).

39
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We believe that a purely algebraic, sufficient condition for the existence of
projective, crepant, full resolutions in all dimensions is to require from our singu-
larities to be, in addition, local complete intersections (l.c.i.’s). In the toric cat-
egory, this conjecture was verified for Abelian quotient singularities in [DHZ98b]
via a Theorem by Kei–ichi Watanabe [Wat80]. (For non–Abelian groups acting on
Cd, it remains open.) Furthermore, Dais, Henk and Ziegler [DHZ98b, cf. §8(iii)]
asked for geometric analogues of the joins and dilations occuring in their reduc-
tion theorem also for toric non–quotient l.c.i.–singularities. As we shall see below,
such a characterization (in a somewhat different context) is indeed possible by
making use of another beautiful classification theorem due to Haruhisa Nakajima
[Nak86], which generalizes Watanabe’s results to the entire class of toric l.c.i.’s.
Based on this classification we prove the following:

1.1. Theorem. The underlying spaces of all toric l.c.i.–singularities admit to-
rus–equivariant, projective, crepant, full resolutions (i.e., smooth minimal mod-
els) in all dimensions.

Families of Gorenstein non–l.c.i. toric singularities that have such special full
resolutions seem to be very rare. This problem is discussed in [DHH98, DHb] for
certain families of Abelian quotient non–l.c.i. singularities.

1.2. Crepant resolutions via triangulations. The divisor KΣ = −
∑

D%

on XΣ is canonical. The affine piece Uσ is Gorenstein if and only if the canonical
divisor is Cartier, i.e., there is an integral linear functional `σ that takes the
value −1 on all primitive ray generating lattice vectors p(%) (cf. I.4.2). Deduce:

1.2. Proposition. XΣ is Gorenstein if and only if every cone in Σ is equivalent
to a cone spanned by some lattice polytope.

Recall that a subdivision S of a fan Σ induces a proper birational morphism
φS : XS → XΣ. In this situation, the affine pieces Uσ that cover the overlying
space XS are smooth if and only if the σ are unimodular:

1.3. Proposition. The morphism φS : XS → XΣ is a full desingularization if
and only if S is a unimodular triangulation.

Also, φS is projective if and only if S is a coherent subdivision of Σ. Pro-
jective full desingularizations always exist for any XΣ (see [KKMSD73, §I.2]).
Nevertheless, we ask in this section about conditions under which such φS are, in
addition, crepant. This is a local question that only makes sense if both XΣ and
XS are (Q–)Gorenstein. So, locally, suppose that the cone σ = σ(P ) ⊂ Rd+1 is
spanned by a lattice polytope P ⊂ Rd. Then the canonical divisor KUσ (with
O(KUσ) trivial) is defined by the linear functional x 7→ −xd+1. The pull back
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φ∗KUσ as a Cartier divisor on XS is defined by the pull back of the local equation:
by the same functional. As a Weil divisor, it is φ∗KUσ = −

∑
p(%)d+1D%, where

the sum ranges over all rays % of S. On the other hand, the canonical divisor of
XS is KXS = −

∑
D%. Thus φS is crepant if and only if p(%)d+1 = 1 for every

ray % ∈ S.

Figure 1. A ‘crepant’ and a ‘non–crepant’ subdivision.

This establishes the following criterion.

1.4. Proposition. Let σ be spanned by the lattice polytope P and let S be a
subdivision of σ. The morphism φS : XS → Uσ(P ) is crepant if and only if S is
induced by a subdivision of P into lattice polytopes.
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2. Proof of the Main Theorem

2.1. Nakajima’s classification. The question about the geometric descrip-
tion of the polytopes which span the cones defining affine toric l.c.i.–varieties was
completely answered by Nakajima [Nak86]. The original definition reads as fol-
lows:

2.1. Definition. Associate to a sequence g = (g1, . . . ,gr) of nonzero forms
in (Zd)∨ (d > r), satisfying gij = 0 for j > i, the following sequence of polytopes:

P (1) = {(1, 0, . . . , 0)} ⊂ Rd,

P (i+1) = conv
(
P (i) ∪ {(x′, 〈gi,x〉, 0, . . . , 0) ∈ Rd : x = (x′, 0, 0, . . . , 0) ∈ P (i)}

)
.

Call g admissible if 〈gi,x〉 ≥ 0 for all x ∈ P (i). For g admissible we call
Pg := P (r+1) the Nakajima polytope or lci polytope associated to g.

2.2. Theorem [Nak86]. An affine toric variety Uσ is a local complete intersec-
tion if and only if σ is lattice equivalent to a cone spanned by some Nakajima
polytope. ¤

For our purposes a recursive definition is more suitable (cf. Figure 2.)

2.3. Lemma. A lattice polytope P ⊆ Rd is a Nakajima polytope if and only if
it is a lattice point P = {e1} ⊂ Zd or

P = {x = (x′, xd) ∈ F ×R : 0 ≤ xd ≤ 〈g,x′〉},(2.1)

where the facet F ⊆ Rd−1 is a Nakajima polytope, and g ∈ (Zd−1)∨ is a functional
with non–negative values on F ∩ Zd−1.

P

F

Figure 2. How to construct a Nakajima polytope.
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Proof. Let g be an admissible sequence. Then the corresponding Nakajima
polytope Pg has the following description by inequalities:

Pg = {x ∈ Rd : x1 = 1 and 0 ≤ xi+1 ≤ 〈gi,x〉 for 1 ≤ i ≤ d − 1},(2.2)

so that Pg can be reconstructed from the facet F = Pg′ and g = gr, where g′

is the truncated sequence (g1, . . . ,gr−1). Conversely, given the situation (2.1),
F is some Pg′ . Then we can append g to g′ and obtain an admissible sequence
for P .

2.2. The chimney lemma. Propositions 1.3 and 1.4 and Theorem 2.2 re-
duce the proof of Theorem 1.1 to the existence of coherent unimodular tri-
angulations for all Nakajima polytopes of any dimension. We do not loose
in generality if we henceforth assume that the considered Nakajima polytope
P ⊂ Rd is full–dimensional. (Otherwise, σ = σ̃ ⊕ {0} leads to the splitting
Sing(UP ) = Sing(Xσ̃) × (C∗)d−dim P , which does not cause any difficulties for
the desingularization problem.)

Proceed by induction on the dimension of P . Zero– and one–dimensional
polytopes always admit unique such triangulations. For the induction step pro-
ceed as follows: According to Lemma 2.3, you may assume that for a given Pg the
facet F (as in (2.1)) is already endowed with a coherent unimodular triangulation
TF . This triangulation induces a coherent subdivision

SP = {(s ×R) ∩ Pg : s ∈ TF}

of Pg into “chimneys” over the simplices of TF . The second step is to refine SP

coherently by pulling lattice points until we obtain a triangulation TP into empty
simplices (cf. Figure 3.)

Figure 3. Refining the chimney subdivision.

Any such triangulation is automatically unimodular:

2.4. Lemma. Let π : Rd −→ Rd−1 be the deletion of the last coordinate. Let
s ⊂ Rd be an empty lattice simplex whose projection s′ = π(s) is unimodular.
Then s itself is unimodular.
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Proof. We can assume that s is full–dimensional. After a lattice equivalence
of Rd−1 we can suppose that s′ =Md−1 is the standard (d − 1)–simplex. After a
translation in the last coordinate, s contains the origin. Now we can shift the lines
π−1(ei) independently such that we finally obtain a simplex with non–negative
last coordinate that contains Md−1 ×{0}. The fact that s is empty implies that
the additional vertex has last coordinate 1.

Proof of Theorem 1.1. By construction, all simplices of TP are empty
because P ∩ Zd coincides with the set of vertices of TP (we pulled them all.)
Since their projections under π are the unimodular simplices of TF , they have
themselves to be unimodular by the Chimney Lemma 2.4.
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3. Applications

3.1. Computing Betti numbers. This paragraph is, in a sense, a sneak
preview of Chapter IV. We are interested in the rational cohomology groups of
the crepant resolutions XT as constructed in the previous section. They do in
fact not depend on the particular choice of a triangulation, in odd dimensions
they are trivial and the ranks in even dimensions are determined by the ψ–vectors
of the faces of P (cf. Proposition IV.1.5.) The even cohomology ranks of the fiber
over the distinguished point Dσ(P ) ∈ Uσ(P ) are just the entries of the ψ–vector of
P (cf. the remark after the proof of Proposition IV.1.5.)

From the description (2.2) of Pg by inequalities, one deduces for its dilations:

k · Pg = {x ∈ Rd : x1 = k and 0 ≤ xi+1 ≤ 〈gi,x〉 for 1 ≤ i ≤ d − 1}.

Thus, the Ehrhart polynomial and the ψ–vector (by (I.2.1)) of Pg are given by

Ehr(Pg, k) =

ng1,1∑
ν1=0

ng2,1+ν1g2,2∑
ν2=0

· · ·
ngd,1+

∑
νigd−1,i∑

νd=0

1 , respectively

ψj(Pg) =

j∑
i=0

(−1)i

(
dim Pg + 1

i

) (j−i)g1,1∑
ν1=0

(j−i)g2,1+ν1g2,2∑
ν2=0

· · ·
(j−i)gd,1+

∑
νigd−1,i∑

νd=0

1 .

For instance, the Ehrhart polynomial of the d–dimensional Nakajima polytope
Pg for d ≤ 3 equals

Ehr(Pg, k) = g1,1k + 1, for d = 1,

Ehr(Pg, k) = ( 1
2
g2,2g

2
1,1 + g2,1g1,1) k2 + (g1,1 + 1

2
g2,2g1,1 + g2,1)k + 1, for d = 2,

Ehr(Pg, k) = (g3,1g2,1g1,1 + 1
2
g3,2g2,1g

2
1,1 + 1

2
g3,3g

2
2,1g1,1 + 1

6
g3,3g

2
2,2g

3
1,1

+ 1
2
g3,3g2,2g2,1g

2
1,1 + 1

2
g3,1g2,2g

2
1,1 + 1

3
g3,2g2,2g

3
1,1) k3

+ (g2,1g1,1 + 1
2
g3,3g

2
2,1 + 1

2
g3,1g2,2g1,1 + 1

4
g3,3g

2
2,2g

2
1,1 + g3,1g2,1

+ 1
2
g2,2g

2
1,1 + 1

2
g3,2g

2
1,1 + 1

2
g3,2g2,2g

2
1,1 + 1

4
g3,3g2,2g

2
1,1

+ 1
2
g3,3g2,1g1,1 + g3,1g1,1 + 1

2
g3,2g2,1g1,1 + 1

2
g3,3g2,2g2,1g1,1) k2

+ ( 1
2
g3,2g1,1 + g2,1 + g1,1 + 1

2
g3,3g2,1 + 1

2
g2,2g1,1 + g3,1 + 1

12
g3,3g

2
2,2g1,1

+ 1
6
g3,2g2,2g1,1 + 1

4
g3,3g2,2g1,1) k + 1, for d = 3.

This is not a satisfactory formula (It is not nice in the sense of [BP98, § 1].)
Nevertheless, in some concrete examples it is possible to compute the desired
data (cf. § 3.3).

3.2. Nakajima polytopes are Koszul. A graded C–algebra R =
⊕

i≥0 Ri

is a Koszul algebra if the R–module C ∼= R/m (for m a maximal homogeneous
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ideal) has a linear free resolution, i.e., if there exists an exact sequence

· · · −→ Rni+1
ϕi+1−→ Rni

ϕi−→ · · · ϕ2−→ Rn1
ϕ1−→ Rn0 −→ R/m −→ 0

of graded free R–modules all of whose matrices (determined by the ϕi’s) have
entries which are forms of degree 1. Every Koszul algebra is generated by its
component of degree 1 and is defined by relations of degree 2.

Recall the grading of the algebra R = C[σ(P )∩Zd+1] associated with a lattice
polytope P ⊂ Rd by Ri = C[σ(P ) ∩ (Zd+1 × {i})] (cf. I.4.2.) Call P Koszul if R
is Koszul. Bruns, Gubeladze and Trung [BGT97] gave a sufficient condition for
the Koszulness of P . In order to formulate it, we need the notion of a non–face of
a lattice triangulation T of P . A subset F ⊂ P ∩Zd−1 is a face (of T ) if conv(F )
is; otherwise F is said to be a non–face.

3.1. Proposition [BGT97, 2.1.3.]. If the lattice polytope P has a coherent uni-
modular triangulation whose minimal non–faces (with respect to inclusion) consist
of 2 points, then P is Koszul. ¤

This property is satisfied for all triangulations obtained from a chimney sub-
division as constructed in the previous section.

3.2. Corollary. Nakajima polytopes are Koszul.

Proof. Once more we proceed by induction. Let P = Pg ⊂ Rd be a Naka-
jima polytope and F = P ∩ Rd−1 × {0} the Nakajima facet, both triangulated
(by TP respectively TF ) as in Section 2. Let π : Rd → Rd−1 denote the projection.
By construction π maps faces of TP to faces of TF . Choose a non–face n ⊆ P ∩Zd

of TP . We have to consider two cases:

1. The projection π(n) is a face of TF .
2. It is not.

In the first case we stay within the chimney over π(n) ∈ TF . Thus, we may
assume that π(P ) = π(n). For all interior points x of π(P ) the linear ordering
of the maximal simplices of TP by their intersections with the line π−1(x) is the
same, say, s1, . . . , sr. Assign to each lattice point m ∈ P ∩ Zd two numbers
(m,M): M(m) = max{i : m ∈ si} and m(m) = min{i : m ∈ si}, as illustrated
in Figure 4 for a 2–dimensional Nakajima polytope.

Two vertices m,m′ belong to the same maximal simplex si of TP if and only
if m(m),m(m′) ≤ i ≤ M(m),M(m′). Such an index i can be found if and only
if m(m) ≤ M(m′) and m(m′) ≤ M(m). Furthermore, if m ∈ si ∩ sj, then also
m ∈ sk for all k between i and j.

Let n↑ ∈ n be a vertex with maximal m and n↓ ∈ n a vertex with minimal M .
Since n is a non–face, we have m(n↑) > M(n↓). Hence n↑ and n↓ do not belong
to a common maximal simplex, and {n↓,n↑} ⊆ n is therefore a non–face of TP .
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(1, 2)

(2, 5)

(1, 1)

(5, 5)

(3, 4)

(1, 3)

(4, 5)

3

1

4

5

2

Figure 4. The linear ordering in a chimney.

In the second case, by induction π(n) contains a non–face of TF of cardinal-
ity 2. Any two vertices in n with this projection form a cardinality 2 non–face
of TP .

3.3. Examples. In this paragraph we apply our results to two classes of ex-
amples which are extreme in the sense that they achieve the lowest respectively
highest possible numbers of faces of a Nakajima polytope. Moreover, we give the
concrete binomial equations for the underlying spaces Uσ(P ) of the corresponding
l.c.i.–singularities, and present closed formulae for the ψ–vectors.
Dilations of the standard simplex. Our first class of examples is the family of
dilated standard simplices k· Md−1. These polytopes have the Nakajima descrip-
tion Pg by the admissible sequence g = (ke1, e2, . . . , ed−1), and, being simplices,
they achieve for all i the minimal number of i–faces any (d − 1)–polytope can
have. The cone spanned by this Pg is σ =

{
x ∈ Rd : 0 ≤ xd ≤ . . . ≤ x2 ≤ kx1

}
,

and its dual cone equals

σ∨ = pos (ed, ed−1 − ed, . . . , e2 − e3, ke1 − e2) .

The semigroup σ∨ ∩ Zd has the Hilbert basis H = {f1, . . . , fd,g}, with elements
f1 = ke1 − e2, fi = ei − ei+1 for i = 2, . . . , d−1, fd = ed and g = e1. We see that
there is only one additive dependency (kg) − (

∑
fi) = 0. Introducing variables

ui and ti to correspond to the evaluation of the torus characters at fi and g,
respectively, this means that Uσ = {(t, u1, . . . , ud) ∈ Cd+1 : tk −

∏
ui = 0} is a

(d; k)–hypersurface (cf. [DHZ98b, 5.11]).
After computing the Erhart polynomial Ehr(k· Md−1, n) =

(
nk+d−1

d−1

)
, we ob-

tain by (I.2.1)

ψj(k· Md−1) =

j∑
i=0

(−1)i

(
d

i

)(
k(j − i) + d − 1

d − 1

)
.

Among the triangulations of k· Md−1 constructed by the inductive procedure of
the previous section there is a coherent unimodular triangulation which is directly
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induced by an infinite hyperplane arrangement. The families of hyperplanes

Hi,j(k) = {x ∈ Rd−1 : xi − xj = k} (i, j ∈ Z) and

Hi(k) = {x ∈ Rd−1 : xi = k} (i ∈ Z)

form an arrangement H that triangulates the entire ambient space Rd−1 cohe-
rently and unimodularly. Since the facets of k· Md−1 span hyperplanes of H, it
is enough to consider the restriction T of this H–triangulation to k· Md−1. The
advantage of this new triangulation is the uniform nature of its vertex stars.
Choose a triangulation–vertex, which is not a vertex of k· Md−1, and translate it
to the origin. Then the cones generated by the simplices that contain the given
vertex determine a fan defining an exceptional prime divisor of φT : XT → Uσ. In
particular, the compactly supported exceptional prime divisors of φT correspond
to the vertices lying in the interior of k· Md−1, and the star of each of them is
nothing but the H–triangulation of a polytope which is lattice equivalent to the
lattice zonotope

W (d−1) = conv
(
[−1, 0]d−1 ∪ [0, 1]d−1

)
.

This shows that each compactly supported exceptional prime divisor of φT comes
from the crepant full H–desingularization of a projective toric Fano variety, name-
ly XN ((W (d−1))∨). The lattice points in (W (d−1))∨ are the origin together with the
d(d − 1) points ±ei and ei − ej, for i 6= j. The corresponding points in the
cone σ((W (d−1))∨) form a Hilbert basis, because (W (d−1))∨ admits a unimodular
cover (even a triangulation). Hence the target space of the embedding described

in § I.4.2 is Pd(d−1). The degree of this embedding is
(
2(d−1)

d−1

)
, the normalized

volume of (W (d−1))∨: The intersection of (W (d−1))∨ with the cube [−1, 0]d− ×
[0, 1]d+ (d−+d+ = d−1) is the product of a d− and a d+–dimensional unimodular
simplex that has the normalized volume

(
d−1
d−

)
. Coordinate permutations yield(

d−1
d−

)
such intersections. Adding up, we obtain

∑
d−

(
d−1
d−

)(
d−1
d−

)
=

(
2(d−1)

d−1

)
.

Products of intervals. Our second class of examples is the family of hyper–
intervals [0, a] = [0, a1]×· · ·× [0, ad] for integers ai > 0. These polytopes have the
Nakajima description Pg by the admissible sequence g = (a1e1, . . . , ade1) and for
all i achieve the maximal number of i–faces any d–dimensional Nakajima polytope
can have. The cone spanned by this Pg is σ =

{
x ∈ Rd+1 : 0 ≤ xi ≤ aixd+1

}
,

σ∨ = pos (e1, . . . , ed, a1ed+1 − e1, . . . , aded+1 − ed) ,

and σ∨ ∩ Zd+1 is generated by H = {f1, . . . , fd,g1, . . . ,gd,h} with fi = ei

and gi = aied+1 − ei for i = 1, . . . , d, and h = ed+1. The d linear relations
(fi + gi) − (aih) = 0 form a basis for the lattice of integral linear dependences of
H. Introducing one variable ui for each fi, vi for gi and t for h, these give rise to
the equations uivi − tai = 0.
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Using the multiplicative behavior of the Ehrhart polynomial for products of
polytopes, one obtains the following formula for the ψ–vector:

ψj([0, a]) =

j∑
i=0

(−1)j

(
d + 1

j

) d∏
ν=1

(
(j − i)aν + 1

)
.

Note that this example also admits the H–triangulation discussed before.
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CHAPTER IV

Stringy Hodge numbers of hypersurfaces in toric varieties

1. Introduction

1.1. Hypersurfaces. The objects of study in this chapter are compacti-
fied generic hypersurfaces in projective toric varieties. To define these, we start
with a lattice polytope P ⊂ Rd. Every lattice point m ∈ Zd can be identified
with a Laurent monomial tm = tm1

1 . . . tmd
d , which is a regular function on the

d–dimensional algebraic torus T = (C∗)d. Consider the Ehr(P, 1)–dimensional
vector space L(P ) of C–linear combinations f =

∑
m∈P∩Zd λmtm. The zero locus

Zf ↪→ T of such an f is a hypersurface in the torus. The projective toric variety
XP := XN (P ) contains T as an open and dense subset. The closure Zf in the
compactification XP of T is a compactified hypersurface. The data f , Zf and
Zf are called generic (or, more precisely P–regular) if for every face F ¹ P the
intersection Zf ∩ TF with the (dim F )–dimensional torus corresponding to F is
either empty or a smooth hypersurface of TF . The name is justified by the fact
that the set of Laurent polynomials f , for which Zf is generic, is open and dense
in L(P ) with respect to Zariski topology.

In the sequel we only write Z ↪→ XP and mean that the respective statement
holds for every generic hypersurface. For a comprehensive treatment of these
objects consult Batyrev [Bat94].

1.2. Hodge numbers. Let X be a compact smooth complex variety. Then
there is a pure Hodge decomposition of its cohomology.

Hk(X,Q) ⊗C =
⊕

p+q=k

Hp,q(X),

such that Hp,q(X) = Hq,p(X) (complex conjugation in C). The dimensions

hp,q(X) := dimCHp,q(X,C)

are called the (usual) Hodge numbers of X (cf. [GH94]). They are symmetric,
hp,q = hq,p, they satisfy Serre duality hp,q = hdim X−p,dim X−q, and they vanish un-
less 0 ≤ p, q ≤ dim X. For a general complex variety X Deligne [Del71, Del74]
constructed a so–called mixed Hodge structure, giving rise to Hodge–Deligne num-
bers hp,q(Hk(X,Q)), that agree with the usual ones in the smooth compact case:
hp,q(Hk(X,Q)) = δk,p+qh

p,q(X). The same theory can be built on cohomology
with compact support H∗

c(X,Q), which is the right theory for our computations.

51
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1.1. Definition (Danilov and Khovanskǐı [DK87]). Define the E–polynomial of
a complex variety X by

ep,q(X) :=

2 dimCX∑
k=0

(−1)khp,q(Hk
c (X,Q)) ,

E(X; u, v) :=

dimCX∑
p,q=0

ep,q(X)upvq .

Observe that in the smooth compact case ep,q(X) = (−1)p+qhp,q(X), so the
Hodge numbers can be read off from the E–polynomial. This polynomial has the
following nice properties.

1.2. Theorem [DK87].

• E({point}; u, v) = 1 .

• E(X1 t X2; u, v) = E(X1; u, v) + E(X2; u, v)
for disjoint locally closed subvarieties X1, X2 ⊂ X.

• E(X1 × X2; u, v) = E(X1; u, v) · E(X2; u, v). ¤

So E–polynomials should be easy to compute for nicely stratified varieties.

1.3. Corollary [DK87]. Let φ : X̂ −→ X be a locally trivial fibering (in
Zariski topology) with fiber F . Then

E(X̂; u, v) = E(X; u, v) E(F ; u, v).

Proof. We use induction on the cardinality n of a trivializing open cover
X =

⋃n
i=1 Xi. For n = 1 the assertion is included in Theorem 1.2. For n > 1 de-

compose X = (X ′ r Xn) t (X ′ ∩ Xn) t (Xn r X ′) with X ′ =
⋃n−1

i=1 Xi and apply
the induction hypothesis to the restrictions of φ.

Theorem 1.2 enables us to calculate the first important E–polynomials.

1.4. Example. The projective line P1 is a smooth compact variety. As a
real manifold it is a 2–sphere. The only non–trivial cohomology groups are
H0(P1;Q) = H2(P1;Q) = Q. This already determines its Hodge numbers. They
have to be h0,0(P1) = h1,1(P1) = 1 and h0,1(P1) = h1,0(P1) = 0. So

E(P1; u, v) = uv + 1 ,
E(C = P1 r {∞}; u, v) = uv ,
E(C∗ = P1 r {0,∞}; u, v) = uv − 1 ,
E((C∗)d; u, v) = (uv − 1)d .

¤
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A Calabi–Yau variety X is a normal compact variety with at most Gorenstein
canonical singularities, KX = 0 and H1(X,OX) = . . . = Hdim X−1(X,OX) = 0.
The mirror duality conjecture in theoretical physics suggests that every smooth
d–dimensional Calabi–Yau variety X should have a family of “mirror partners”
X◦, whose Hodge numbers satisfy

hp,q(X) = hdim X−p,q(X◦).(1.1)

Among the many references concerning the mathematical aspects of mirror
symmetry we recommend [CK99, Mor97].

In many known mirror constructions, mirror partners have singularities. In
this case the mirror symmetry identity (1.1) is expected to hold for crepant reso-
lutions instead — if such exist. One could try to replace smooth crepant desingu-
larizations by maximal crepant partial desingularizations. Although these always
exist, they are not unique and their cohomology groups and Hodge numbers are
not determined by the underlying spaces. The way out is to consider new Hodge
numbers hp,q

Str instead. They should satisfy three properties:

• hp,q
Str(X) = hp,q(X) for smooth X,

• hp,q(X̂) = hp,q
Str(X) for a crepant desingularization X̂ −→ X,

• hp,q
Str(X) = hd−p,q

Str (X◦).

Consider an affine Gorenstein toric variety Uσ(P ) that admits an invariant crepant
desingularization φ : XT → UP induced by a unimodular triangulation T of P .
We should have hp,q

Str(Uσ(P )) = hp,q(XT ). So let us calculate the E–polynomial
of XT .

1.5. Proposition (Batyrev and Dais [BD96]). Let φ : XT → Uσ(P ) be an in-
variant crepant desingularization. Then

E(XT ; u, v) =
∑
F¹P

E(TF ; u, v)Ψ(F ; uv).(1.2)

Cf. I.2.3 for the Ψ–polynomial of a lattice polytope.

Proof. The stratification Uσ(P ) =
⊔

F¹P TF into tori induces a stratification

of XT =
⊔

F¹P φ−1(TF ). The stratum φ−1(TF ) is itself stratified by tori Ts of
dimension d − dim s corresponding to simplices s ∈ T with relint s ⊆ relint F .
(Denote by fk(Trelint F ) the number of such k–simplices.) Then

E(φ−1(TF ); u, v) =
dim F∑
k=0

fk(Trelint F )(uv − 1)d−k.
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On the other hand we can count lattice points in dilations of F by inclusion/ex-
clusion

Ψ(F ; uv) = (1 − uv)dim F+1
∑
n≥0

Ehr(F, n)(uv)n

= (1 − uv)dim F+1
∑
n≥0

dim F∑
k=0

(−1)dim F−kfk(Trelint F )

(
n + k

k

)
(uv)n

= (1 − uv)dim F+1

dim F∑
k=0

(−1)dim F−kfk(Trelint F )
1

(1 − uv)k+1

=
dim F∑
k=0

fk(Trelint F )(uv − 1)dim F−k.

Both expressions differ by a factor (uv − 1)d−dim F = E(TF ; u, v). Hence,

E(φ−1(TF ); u, v) = E(TF ; u, v)Ψ(F ; uv),

E(XT ; u, v) =
∑
F¹P

E(TF ; u, v)Ψ(F ; uv).

The restriction φ : φ−1(TF ) → TF is TF invariant. In general, given a group G
and a G–equivariant map φ : X ³ G onto G, the group operation (g, x) 7→ gx is
an isomorphism G × φ−1(1G) → X. Thus φ−1(TF ) ∼= φ−1(point ∈ TF ) × TF , and
we recover Ψ(F ; uv) as the E–polynomial of any fiber φ−1(point).

The right hand side of (1.2) can also be computed if Uσ(P ) does not admit
any crepant desingularization. This motivates the following definition.

1.6. Definition [BD96]. Let X =
⊔

Xi be a stratified variety with Gorenstein
singularities such that (X,Xi) is locally isomorphic to (Cd×Uσ(Pi),C

d×0). Then
the polynomial

EStr(X; u, v) =
∑

ep,q
Str(X)upvq :=

∑
E(Xi; u, v)Ψ(Pi; uv)

is the string theoretic E–polynomial and the numbers hp,q
Str(X) := (−1)p+qep,q

Str(X)
are the string theoretic Hodge numbers.

Though up to now these are mere formally defined numbers, they have many
properties which one could expect from cohomology dimensions. They are non–
negative and symmetric, they satisfy Serre duality and also our three conditions.
It is expected that there is some string theoretic cohomology theory that produces
these numbers [BB96, Remark 4.4]. Also, there already is a more or less concrete
candidate, conjectured by Borisov [Bor, 9.23].
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Stringy Hodge numbers are preserved by (maximal) crepant partial desingu-
larizations.

1.7. Theorem [BD96, Theorem 6.12]. Let X̂ → X be a maximal crepant par-
tial desingularization of a variety X with (at most) toroidal Gorenstein singular-

ities. Then hp,q
Str(X̂) = hp,q

Str(X). ¤

If P is reflexive, then any generic hypersurface Z ↪→ XP is Calabi–Yau [Bat94,
Theorem 4.1.9]. Good candidates for mirror partners are the generic hypersur-

faces Z
∨

↪→ XP∨ .

1.8. Theorem [BB96, Theorem 4.15]. Any pair of compactified generic hyper-

surfaces Z ↪→ XP and Z
∨

↪→ XP∨ satisfies the (stringy) mirror symmetry identity

hp,q
Str(Z) = hd−p−1,q

Str (Z
∨
). ¤

1.3. Danilov–Khovanskǐı formulae. In this paragraph we will outline the
principal ideas of Danilov and Khovanskǐı [DK87], who gave formulae for the usual
Hodge numbers of a generic hypersurface in a smooth projective toric variety in
terms of the corresponding lattice polytope.

As our toric varieties XP are stratified by tori — one (dimF )–dimensional
torus for the (d − dim F )–dimensional normal cone corresponding to each face
F ¹ P — we have:

1.9. Proposition. Let P ⊂ Rd be a d–dimensional lattice polytope and XP

the associated projective toric variety. Then

E(XP ; u, v) =
∑
F¹P

(uv − 1)dim F , and thus

ep,q(XP ) = δp,q(−1)p

d∑
k=p

(−1)kfk(P )

(
k

p

)
.

For large p, q this result carries over to generic hypersurfaces Z ↪→ XP by the
following Lefschetz–type theorem.

1.10. Theorem [DK87]. Let P ⊂ Rd be a d–dimensional lattice polytope and
Z ↪→ XP a compactified generic hypersurface in the associated projective toric
variety. If p + q > d − 1, then ep,q(Z) = ep+1,q+1(XP ). ¤

For the rest of the section we assume N (P ) to be unimodular. Then both Z
and XP are smooth so that Poincaré duality holds:
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ep,q(Z) = ed−p−1,d−q−1(Z).

This yields the ep,q(Z) for p + q < d − 1. The only remaining ep,q’s are the
ones on the diagonal p + q = d − 1 in the Hodge diamond Figure 1.

e d−
p,d−

p(X
N

(P
) )

e p+
1,p+

1(X
N

(P
) )?

?

p

q

0
0 d − 1

d − 1

Figure 1. The ep,q–diamond.

In order to evaluate these, it is sufficient to know the sums
∑

q ep,q(Z) over
the columns, which for each p have at most two non–zero summands.

1.11. Proposition [DK87]. Let P ⊂ Rd be a d–dimensional lattice polytope
and let f ∈ L(P ) be a P–regular Laurent polynomial. Then

(−1)d−1
∑

q

ep,q(Zf ↪→ (C∗)d) = (−1)p

(
d

p + 1

)
+ ψp+1(P ).

¤

The left–hand side equals the Euler characteristic of a certain sheaf on Z that
Danilov and Khovanskǐı compute “in a fairly standard way.” [DK87, p. 290]

1.12. Corollary [DK87]. Let P ⊂ Rd be a d–dimensional lattice polytope and
Z ↪→ XP a compactified generic hypersurface in the associated projective toric
variety. Then∑

q

ep,q(Z) = (−1)p
∑
F¹P

(−1)dim F+1

(
dim F

p + 1

)
+

∑
F¹P

(−1)dim F+1ψp+1(F ).

¤

Observe that the first summand is just the contribution ep+1,p+1(XP ).
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The following theorem reduces the computation of Hodge numbers to a purely
combinatorial task. It is the main tool for the calculation of string theoretic Hodge
numbers in the next section.

1.13. Theorem [DK87, § 5.5]. Let P be a d–polytope with unimodular normal
fan, and let Z ↪→ XP be any generic compactified hypersurface. Then the Hodge
numbers hp,q(Z) vanish unless p = q or p + q = d − 1.
For 2p > d − 1,

hp,p(Z) = (−1)p

d∑
k=p+1

(−1)k+1

(
k

p + 1

)
fk(P ),

hp,d−p−1(Z) =
∑
F¹P

(−1)dim F+1ψp+1(F ).

For 2p = d − 1,

hp,p(Z) = (−1)p

d∑
k=p+1

(−1)k+1

(
k

p + 1

)
fk(P ) +

∑
F¹P

(−1)dim F+1ψp+1(F ).

For 2p < d − 1 the Hodge numbers may be obtained by duality:

hp,q(Z) = hd−p−1,d−q−1(Z).

¤
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2. Symmetric Fano polytopes

In this section we apply Theorem 1.13 in order to explicitly compute stringy
Hodge numbers hp,q

Str(Z ↪→ XP ) for a whole family of reflexive polytopes P . At the
same time we will show that the corresponding projective toric varieties admit
projective crepant resolutions, that induce crepant resolutions of the generic Z’s.

2.1. The classification. The polytopes for which we want to carry out the
calculation are the pseudo–symmetric Fano polytopes. They constitute the only
substantial, infinite class of reflexive polytopes for which a classification is avail-
able [Ewa96, Ewa88]. Before we do this, we have to fight our way through some
terminology.

A polytope P is centrally symmetric if P = −P , pseudo–symmetric if it has
two facets F, F ′ satisfying F = −F ′, Fano if it is reflexive and all its proper faces
are unimodular simplices. Let 1 =

∑
ei denote the all–one–vector. For even

d ≥ 2 call

• DPd = conv(± Md,±1) the del Pezzo polytope and

• preDPd = conv(± Md,1) the pre del Pezzo polytope.

Let P ⊆ Rd and P ′ ⊆ Rd′ be full–dimensional polytopes with 0 in their interior.
We define

P ⊕ P ′ = conv(P × {0} ∪ {0} × P ′) ⊆ Rd+d′ ,

and say that P ⊕ P ′ splits into P and P ′. In the sequel we will identify P with

Rd

P ′

P

Rd′

Figure 2. P ⊕ P ′.

P ×{0} and also P ′ with {0}×P ′. The polar operation is the Cartesian product:

(P ⊕ P ′)∨ = P∨ × P ′∨.

If P and P ′ are Fano polytopes, then so is P ⊕ P ′. One example for this con-
struction is the d–dimensional crosspolytope

¤d := [−1, 1] ⊕ . . . ⊕ [−1, 1] (d components),
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with its dual, the d–dimensional ±1–cube, ¤d := [−1, 1]d.
Fight won; we can formulate:

2.1. Theorem [Ewa96, Ewa88]. Let P ⊆ Rd be a Fano polytope.

• If P is centrally symmetric, then it is equivalent to

¤d0 ⊕ DPd1 ⊕ . . . ⊕ DPdr .

• If P is pseudo–symmetric, then there is some centrally symmetric Fano poly-
tope P ′, such that P is equivalent to
P ′ ⊕ preDPd1 ⊕ . . . ⊕ preDPdr . ¤

We will achieve two things. We give give formulae for the hp,q
Str of a generic

hypersurface within XP , when P is a pseudo–symmetric Fano polytope, and
we show that there is a crepant desingularization for them. Then our formulae
compute the usual Hodge numbers of these smooth varieties.

Our strategy for the first goal is to compute instead hd−p−1,q
Str (Z

∨
) of the mir-

ror (Z∨ ↪→ XP∨), because N (P∨), whose cones are spanned by the faces of P , is
unimodular so that we can apply Theorem 1.13. The input that we need are the
ψ–vectors of all faces of P∨. So we have to analyze the components ((pre)DPd)∨

and [−1, 1] = [−1, 1]∨, i.e., identify their faces and compute the Ehrhart polyno-
mials on the one hand and investigate the behavior of the input data with respect
to Cartesian products on the other.

By the results of § III.1.2, the existence of crepant desingularizations boils
down to the existence of a unimodular triangulation of N (P ) that is induced by
triangulations of the polytopes that span the σ ∈ N (P ), namely the faces of P∨.
So, with both tasks we are left with questions about P∨.

2.2. The components. The triangulation part is an application of the up
to now inappropriately unpublished Lemma 2.3, due to Francisco Santos (per-
sonal communication (1997)). The counting part is based on a nice geometric
inclusion/exclusion argument.
Triangulations. The interval [−1, 1] admits the obvious coherent unimodular
triangulation, whose unique minimal non–face is the non–edge {−1, 1}. The fact
that the polars of the (pre) del Pezzo’s also admit such triangulations is embed-
ded into a more general context. Once more we use the refinement of a given
subdivision by pulling lattice points (cf. § I.2.2).

2.2. Definition. Let P be a lattice polytope and let 〈yi,x〉 ≥ ci be the
facet defining inequalities with primitive integral yi. Then P has facet width
maxi widthyi

(P ). (Compare Section II.1 for the concept of width with respect to
a given functional.)

In particular, P has facet width 1 if for every facet P lies between the hyper-
plane spanned by this facet and the next parallel lattice hyperplane.
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2.3. Proposition (Paco’s Lemma). If the lattice polytope P has facet width 1,
then every pulling triangulation of P is unimodular.

Proof. By decreasing induction on the dimension one sees that every face
of P has facet width 1. The restriction of a pulling triangulation to any face is a
pulling triangulation itself and thus unimodular (by another induction). Hence,
every maximal simplex in the triangulation of P is the join of a unimodular
simplex in some facet with the first lattice point that was pulled.

2.4. Proposition. Let {v1, . . . ,vr} ⊂ Zd be a collection of vectors that span
Rd and form a totally unimodular matrix, i.e., such that all (d × d)–minors are
either 0, 1 or −1. Then for any choice of integers ci the polyhedron

P = {x ∈ Rd : 〈vi,x〉 ≥ ci}

admits a coherent unimodular triangulation.

Proof. The hyperplanes Hi(k) = {x ∈ Rd : 〈vi,x〉 = k} for integers k form
an arrangement that subdivides P (and all of Rd) coherently into polytopes.
The vertices of these polytopes are lattice points by the determinant condition.
Moreover, these polytopes have facet width 1.

The vertices of the (pre) del Pezzo’s satisfy the condition of Proposition 2.4.
The polar polytope is then obtained by choosing all c′is to be −1. There is
no further pulling necessary, because the hyperplane subdivision is already a
triangulation. The minimal non–faces of such arrangement triangulations are
easily controlled.

2.5. Proposition. If the triangulation T of the polytope P is induced by a
hyperplane arrangement, its minimal non–faces consist of 1 or 2 points. If the
triangulation is unimodular, then all possible lattice points are used so that all
minimal non–faces consist of 2 points.

Proof. A subset F ⊂ P ∩ Zd spans a face of T if and only if every element
of F is a vertex of T and all of F lies in the same halfspace with respect to each
of the hyperplanes. So F is a non–face if and only if it contains a non–vertex
or there is a hyperplane with respect to which two elements of F lie in different
halfspaces.

2.6. Corollary. The polars of the (pre) del Pezzo’s admit coherent unimod-
ular triangulations whose minimal non–faces consist of 2 points.
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Ehrhart polynomials. As a warmup treat the interval [−1, 1]. The Ehrhart
polynomial is Ehr([−1, 1], k) = 2k + 1. Hence ψ0([−1, 1]) = ψ1([−1, 1]) = 1. Fit
as we are now, we can endure some more notation. Denote by(

n

k1, . . . , kr

)
=

n!

k1! · · · kr!
, (k1 + . . . + kr = n),

the multinomial coefficient: the number of ordered partitions of an n–set into r
sets of the respective sizes ki. In this notation, our familiar binomial coefficient(

n
k

)
is also denoted by

(
n

k,n−k

)
— so far the notational break.

The polar polytopes of the (pre) del Pezzos have the following description by
inequalities:

(DPd)∨ = {x ∈ [−1, +1]d :
∑

xi ∈ [−1, +1]} respectively

(preDPd)∨ = {x ∈ [−1, +1]d−1 × (−∞, 1] :
∑

xi ∈ [−1, +1]}.
They are lattice equivalent to

{x ∈ [−1, +1]d+1 :
∑

xi = 0} respectively

{x ∈ [−1, +1]d × (−∞, 1] :
∑

xi = 0}.
(2.1)

The (pre) del Pezzos are simplicial, such that the ((pre)DPd)∨ are simple
polytopes (d is assumed to be even). This means that every (d − k)–face of the
latter is the intersection of k facets. Consider first the faces of (DPd)∨. The facet
defining inequalities in (2.1) are either of the form xi ≤ 1 or xi ≥ −1. A face F
satisfies some of these inequalities with equality, say for i ∈ I+ ⊆ {1, . . . , d + 1}
the first one and for i ∈ I− the second one:

F = {x ∈ [−1, +1]d+1 :
∑

xi = 0, xi = 1(i ∈ I+), xi = −1(i ∈ I−)}.

We say that such a face is of type (d; s = card(I−), t = card(I+)). It has dimension
d′ = d − s − t and it is lattice equivalent to

F (d; s, t) = {x ∈ [−1, +1]d
′+1 :

∑
xi = s − t}.

If s, t ≤ d/2, then there are
(

d+1
d′+1,s,t

)
such faces (otherwise F (d; s, t) is empty).

In the face poset of (preDPd)∨ there are other faces showing up. The facet
defining inequalities are the same as in the case of (DPd)∨, but the inequality
xd+1 ≥ −1 is missing. So, if d + 1 ∈ I+, the considered face is of type (d; s, t)
and there are

(
d

d′+1,s,t−1

)
such faces, provided s, t ≤ d/2. But if the (d + 1)–st

coordinate is not fixed, we get a new kind of faces. They are equivalent to

F ′(d; s, t) = {x ∈ [−1, +1]d
′ × (−∞, 1] :

∑
xi = s − t}.

If s ≤ d/2, then there are
(

d
d′,s,t

)
faces of that kind.
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2.7. Proposition. The Ehrhart polynomials of F (d; s, t) respectively F ′(d; s, t)
are the following.

Ehr(F (d; s, t), k) =

d/2−t∑
r=0

(−1)r

(
d′ + 1

r

)(
(d − 2t − 2r + 1)k + d′ − r

d′

)
,

Ehr(F ′(d; s, t), k) =

d/2−t∑
r=0

(−1)r

(
d′

r

)(
(d − 2t − 2r + 1)k + d′ − r

d′

)
.

Proof. The polytope F (d; s, t)+1 is a subset of the dilated standard simplex
(d − 2t + 1)· Md′ , as illustrated in Figure 3 for F (4; 1, 0) + 1 ⊂ 5· M3.

Figure 3. F (d; s, t) + 1 inscribed in (d − 2t + 1) Md′ , and what juts out.

We want to count the integral points in kF (d; s, t)+k1. The Ehrhart polyno-
mial is determined by its values for large k. So suppose from now on k > d/2− t.
If we denote by Mj the set of those points of k · (d − 2t + 1)· Md′ whose j–th
coordinate exceeds 2k + 1:

Mj = {x ∈ Zd′+1
≥0 :

∑
xi = k · (d − 2t + 1), xj ≥ 2k + 1},

then the points we seek are the same as the integral points in

Zd′+1 ∩ k · (d − 2t + 1)· Md′ r
d′+1⋃
j=1

Mj.

Thus we have to count lattice points in Mj1...jr = Mj1 ∩ . . . ∩ Mjr . Up to a
translation by −(2k + 1)

∑
eji

this is just a simplex (cf. Figure 4.):

Mj1...jr − (2k + 1)
∑

eji
=

{(
k · (d − 2t − 2r + 1) − r

)
· Md′ if r ≤ d/2 − t,

∅ if r > d/2 − t.

Hence, Mj1...jr contains Ehr
(
Md′ , k · (d−2t−2r +1)− r

)
=

(
d′−r+k(d−2t−2r+1)

d′
)

lattice points (provided r ≤ d/2− t), and the formula follows by inclusion/exclu-
sion. The argument for F ′(d; s, t) is analogous.
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Figure 4. Intersecting prominent parts.

In order to deduce the Ehrhart series we have to compute the following kind of
sums:

∑
k≥0

(
pk + q

n

)
τ k =

n∑
i=0

[
n i
p q

]
τ i

(1 − τ)n+1
.

The coefficients [
n i
p q

]
:=

i∑
j=0

(−1)j

(
n + 1

j

)(
pi − pj + q

n

)
are non–central Eulerian numbers [Cha82]. We obtain:

2.8. Proposition.

ψk(F (d; s, t)) =

d/2−t∑
r=0

(−1)r

(
d′ + 1

r

)[
d′ k

d − 2t − 2r + 1 d′ − r

]
,

ψk(F
′(d; s, t)) =

d/2−t∑
r=0

(−1)r

(
d′

r

)[
d′ k

d − 2t − 2r + 1 d′ − r

]
.

¤

2.3. Cartesian products. In Section 2.2 we finished the difficult part. It
remains to multiply the components and to see what happens.

Triangulations. It is easy to define the product of two subdivisions. Unfortu-
nately, the product of two triangulations is not a triangulation. It is a subdivision
into products of simplices. Nevertheless:
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2.9. Proposition. Let P and P ′ be lattice polytopes. If both admit a (coherent)
unimodular triangulation (whose minimal non–faces consist of 2 points), then so
does P × P ′.

Proof. Any triangulation that refines the obvious (coherent) subdivision
of P × P ′ into products of unimodular simplices is unimodular, because any
triangulation of Md1 × Md2 is. See e.g. [Stu96, p.72, Ex.(9)] or [Lee97, p. 282].
By the way, this product is a Nakajima polytope and it has facet width 1.

In order to preserve the non–face property, we have to be (a little) more
careful. Order the lattice points p1, . . . , pr in P and p′1, . . . , p′s in P ′. Then pull
the lattice points (pi, p

′
j) in P × P ′ lexicographically.

Consider a non–face F . If one of its projections to P or P ′ is a non–face, we can
lift a non–edge to F . Otherwise, F is a non–face in the staircase triangulation
of a product of simplices (cf. [Lee97, p. 282]), i.e., there must be two points
(p, p′), (q, q′) ∈ F that are not comparable in lexicographic order.

The Propositions 2.5 and 2.9 generalize a result of Bruns, Gubeladze and
Trung [BGT97, Theorem 2.3.10]. Together they imply:

2.10. Corollary. Let P ⊂ Rd be a pseudo–symmetric Fano polytope. Then
its polar P∨ admits a coherent unimodular triangulation whose minimal non–faces
consist of 2 points. In particular, P∨ is Koszul. ¤

Retranslated into algebraic geometry this reads

2.11. Theorem. The toric Fano varieties XP associated with pseudo–sym-
metric Fano polytopes P admit projective crepant resolutions. ¤

Ehrhart polynomials. The faces of P ×P ′ are the sets of the form F ×F ′ for
faces F, F ′ of P, P ′. Clearly

Ehr((F × F ′), n) = Ehr(F, n) · Ehr(F ′, n).

In order to calculate the ψ–vector of a general face

F = ¤d ×F (d1; s1, t1)×· · ·×F (dp; sp, tp)×F ′(d′
1; s

′
1, t

′
1)×· · ·×F ′(d′

q; s
′
q, t

′
q),
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one uses (I.2.1):

ψj(F ) =

j∑
i=0

(−1)i

(
dim F + 1

i

)
(2(j − i) + 1)d

·
p∏

ν=1

Ehr(F (dν ; sν , tν), j − i)

·
q∏

µ=1

Ehr(F ′(d′
µ; s′µ, t

′
µ), j − i).

This will get a little bit (too) complicated — especially if we plug it into 1.13.
But it yields the complete answer. We spare you one full page of bird tracks. Let
us rather look at specific examples instead.

2.4. Examples. Now that we have the ψ–vectors at hand, we would like
to actually compute stringy Hodge numbers. Consider the del Pezzos, and let

Z
∨

↪→ X(DPd)∨ be a generic hypersurface. Then for p ≥ d/2,

hp,p(Z) = hd−p−1,d−p−1(Z) = (−1)p+1

d∑
k=p+1

2d−k

(
d + 1

k + 1

)(
k

p + 1

)
,

and

hp,d−p−1(Z) = hd−p−1,p(Z)

=

d/2∑
s,t=0

d/2−t∑
r=0

(−1)d′−r+1

(
d + 1

d′ − r + 1, s, t, r

) [
d′ p + 1

d − 2t − 2r + 1 d′ − r

]
,

where we set once more d′ = d − s − t. Now we can apply mirror symmetry to
obtain the stringy Hodge diamonds for a generic Z ↪→ XDPd . They are depicted
according to the pattern of Figure 1 for the first interesting values of d:

d = 4:

1 1
6 46
46 6

1 1

d = 6:

1 1
8 386

29 4187
4187 29

386 8
1 1
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d = 8:

1 1
10 3130

46 138070
130 743290

743290 130
138070 46

3130 10
1 1
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3. Pyramids over Fano polytopes

In the previous section we were able to compute stringy Hodge numbers by the
shortcut via Theorem 1.13, because we treated a simple/simplicial pair (P, P∨).
In this section we want to do the computation for a pyramid over the crosspoly-
tope ¤d. Given a d–polytope P ⊂ Rd, define the pyramid over P (reflexive
version) to be the (d + 1)–dimensional polytope

pyr P = conv
(
(P × {−1}) ∪ (0 × {1})

)
⊂ Rd+1.

P

0

Figure 5. pyr P .

Unless P is a simplex, this is neither a simple nor a simplicial polytope. So
we cannot use Theorem 1.13.

Luckily, other people prepared the soil for us. In order to prove the stringy
mirror duality for complete intersections in toric Fano varieties, Batyrev and
Borisov [BB96] developed the following formula for the stringy E–polynomial of
the generic hypersurfaces Z ↪→ XP associated with a reflexive polytope P ⊂ Rd.

(3.1) (−1)d+1uv EStr(Z; u, v)

=
∑

(m,n)∈Λ(σ,σ∨)

(u

v

)ht(m)( 1

uv

)ht(n)

(v − u)d(m)(1 − uv)d(n)B(Pm,n; u, v).

Before we continue, we have to explain what the symbols mean. Recall the
cones σ = σ(P ) and σ∨ = σ(P∨) used in order to projectively embed XP and
XP∨ (§ I.4.2). The sum ranges over Λ(σ, σ∨) — those pairs of lattice points
(m,n) ∈ σ × σ∨ for which 〈m,n〉 = 0. This is an infinite sum; it will become
clear in a moment that the expression is indeed a polynomial.

By ht(m) := md+1 and ht(n) := nd+1 we denote the degrees of m and n
in the respective graded semigroup(algebra)s. We write d(m) and d(n) for the
dimensions dim τm and dim τn of the faces τm ¹ σ and τm ¹ σ∨ that contain m
respectively n in their relative interior.

Pm,n is the part of the face poset of σ∨ that consists of all the faces of σ∨

that contain n and lie in the kernel of m. The B–polynomial B(P; u, v) is a
polynomial that depends on an Eulerian poset P; this is the subject of § 3.1.

Before we take a closer look on Eulerian posets and B–polynomials, let us first
reformulate Equation (3.1). The summand that corresponds to (m,n) ∈ Λ(σ, σ∨)
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only depends on the cones τm spanned by Fm ¹ P respectively τn spanned by
Fn ¹ P∨ on the one hand and on the heights m := ht(m) and n := ht(n) on
the other. In particular, the poset Pm,n is an interval in the face poset of σ∨;
[τn, τ∨

m] := {τ ¹ σ∨ : τn ¹ τ ¹ τ∨
m}. There are Ehr(Fm,m) lattice points with

height m in the relative interior of σm and Ehr(Fn, n) lattice points with height
n in the relative interior of σn.

(−1)d+1uv EStr(Z; u, v)

=
∑

τm¹σ

(v − u)dim τm
∑
m≥0

Ehr(Fm,m)
(u

v

)m

·
∑

τn≺τ∨
m

B([τn, τ∨
m]; u, v)

· (1 − uv)dim τn
∑
n≥0

Ehr(Fn, n)

(
1

uv

)n

.

(3.2)

The remaining infinite sums are inner Ehrhart series (cf. § I.2.3) so that we obtain

(−1)d+1uv EStr(Z; u, v)

=
∑

Fm¹P

dim Fm+1∑
j=1

ϕj(Fm)ujvdim Fm−j+1

·
∑

Fn¹F∨
m

B([Fn, F∨
m]; u, v)

· (−1)dim Fn+1

dim Fn+1∑
j=1

ϕj(Fn)(uv)dim Fn−j+1.

(3.3)

This is in fact a polynomial.

3.1. Eulerian posets. Let P be a finite poset with unique minimal ele-
ment 0̂ and unique maximal element 1̂. An interval is a subposet of the form
[p, p′] = {q ∈ P : p ≤ q ≤ p′}. We will use the shorthand [p, p] to denote the
one point poset. Define recursively the Möbius function µ on such posets by
µ[p, p] = 1 and

∑
q∈[p,p′] µ[p, q] = 0 for p < p′. Call P graded if every maximal

chain has the same length rk(P). If P is graded then so is every interval. De-
fine the rank function rk(p) to be the length of a maximal chain in [0̂, p]. A
graded poset P is Eulerian [Sta97, § 3.14] if for any pair p ≤ p′ in P we have
µ[p, p′] = (−1)rk(p′)−rk(p).

The face poset of a pointed polyhedral cone σ is an example of an Eulerian
poset with minimum {0}, maximum σ, and rank function rk(τ) = dim τ .
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3.1. Definition. Let P be an Eulerian poset of rank r. Define recursively
polynomials G(P; t) by

G(P; t) = 1 if r = 0,

deg G(P; t) < r/2 and
∑
p∈P

(t − 1)rk(p)G([p, 1̂]; t) ≡ 0 mod tdr/2e if r ≥ 1.

Use these polynomials to define the polynomial B(P; u, v) by

B(P; u, v) = 1 if r = 0,∑
p∈P

B([0̂, p]; u, v)ur−rk(p)G([p, 1̂],
v

u
) = G(P; uv) if r ≥ 1.

One way of producing new posets from old ones is to take the Cartesian
product with the component–wise partial order. If P and P ′ are Eulerian, then
so is P ×P ′. In the case of face posets, the product operation corresponds to the
join of cones.

A map H that associates to every (isomorphism class of an) Eulerian poset
P an element H(P) of a fixed ring (e.g. Z[t1 . . . tr]) is multiplicative if

H(P × P ′) = H(P)H(P ′)

for every pair of Eulerian posets. Observe that H[p, p] = 1 in an integral domain,
unless H vanishes on all Eulerian posets.

3.2. Lemma. Given H,H1, H2, with multiplicative H, such that

H1[p, p] = 1, H2[p, p] = 1, and
∑
p∈P

H1[0̂, p]H2[p, 1̂] = H(P).

Then H1 is multiplicative if and only if H2 is.

Proof. Use induction on the pairs (rk(P), rk(P ′)). Suppose that H1 is mul-
tiplicative, and use that intervals in product posets can be decomposed into
products [(p, q), (p′, q′)] = [p, p′] × [q, q′].

0 = H(P × P ′) − H(P)H(P ′)

=
∑

(p,p′)∈P×P ′
H1([0̂, p] × [0̂, p′])H2([p, 1̂] × [p′, 1̂]) − H1[0̂, p] H1[0̂, p

′] H2[p, 1̂] H2[p
′, 1̂]

= H1([0̂, 0̂] × [0̂, 0̂])H2(P × P ′) − H1[0̂, 0̂] H1[0̂, 0̂] H2(P)H2(P ′)

= H2(P × P ′) − H2(P)H2(P ′).

The converse is shown the same way.

3.3. Corollary. The B–polynomial is multiplicative.
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Proof. The proof of Lemma 3.2 applies to G in the following way. The
polynomials H = 0 and H1(P) = (t − 1)rk(P) are multiplicative. The second

equality holds only up to terms of degree ≥ d rk(P)+rk(P ′)
2

e for the first summand

and ≥ d rk(P)
2

e + d rk(P ′)
2

e for the second. Altogether this is a congruence modulo

terms of degree ≥ d rk(P)+rk(P ′)
2

e, which is sufficient as it dominates the degree
of both G(P × P ′; t) and of G(P; t)G(P ′; t). Another application of Lemma 3.2
yields the multiplicativity of B.

Now the B–polynomial of a boolean algebra Br (the face poset of an r–dimensional
simplicial cone) is easy to compute. As Br1+r2 = Br1 × Br2 , it is sufficient to
consider the two element poset B1. One gets G(B1; t) = 1 and B(B1; u, v) = 1−u
and by multiplicativity:

3.4. Lemma. B(Br; u, v) = (1 − u)r.

3.2. Pyramids. The face poset of the pyramid pyr P over a d–polytope
is isomorphic to the product of the face poset of P with B1: The pair (F, 0̂)
corresponds to the face F × {−1} and the pair (F, 1̂) corresponds to the face
ed+1 · (F × {−1}) := conv(ed+1 ∪ (F × {−1}). If 〈y,x〉 ≥ −1 is a facet defining
inequality for P , then 2〈y,x〉 − xd+1 ≥ −1 defines the corresponding apex–
containing facet of pyrP . The only non–apex–containing facet P × {−1} of
pyr P is defined by xd+1 ≥ −1. This shows that (pyrP )∨ = pyr (2P∨) and pyr P
is in fact a reflexive polytope if P is.

0

2P∨

Figure 6. (pyr P )∨.

The apex–containing faces ed+1 · (F ×{−1}) of pyr P are lattice equivalent to
conv(F ∪0) ⊂ Rd. To see this, let 〈y,x〉 ≥ −1 be a facet defining inequality that
holds with equality on F . The lattice equivalence (x, xd+1) 7→ (x, xd+1 − 2〈y,x〉)
maps 0 7→ 0 and F × {−1} 7→ F × {0}. Similarly one can see that the
apex–containing faces ed+1 · (2F × {−1}) of pyr (2P∨) are lattice equivalent to
conv(2F ∪ 0) ⊂ Rd.

If P admits a unimodular triangulation then so does pyrP . The subdivision of
the normal fan N

(
(pyr P )∨

)
induced by this triangulation is the join (in the sense

of [Ewa96, III, 1.12-14]) of the fan Σ whose cones are spanned by the simplices
in the faces of P × {−1} with the fan Σ′ =

{
%,−%, {0}

}
.
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ΣΣ

Σ0

Σ′

Figure 7. N
(
(pyr P )∨

)
= Σ · Σ′.

In this decomposition, Σ has the fan Σ0 spanned by the simplices in the faces
of P × {0} as a projection fan (in the sense of [Ewa96, VI, 6.5]). Hence we see
that the crepant resolution XΣ·Σ′ of X(pyr P )∨ is a fiber bundle over the crepant
resolution XΣ0 of XP∨ with fiber P1 = XΣ′ .

The hypersurfaces we are looking at do not have such a fiber bundle structure.
We have to get down to earth to evaluate (3.3) for them. Denote by % the ray
spanned by ed+1 (in both Rd+1 and in (Rd+1)∨), by σ the cone spanned by
P × {−1}, and by pyr σ the cone spanned by pyr P . In order to evaluate (3.3)
we distinguish 9 cases.

1. τm ≺ σ, % ≺ τn.
2. τm ≺ σ, τn = %.
3. τm ≺ σ, % 6≺ τn 6= {0}.
4. τm ≺ σ, τn = {0}.
5. τm = σ, τn = %.
6. τm = σ, τn = {0}.
7. % ≺ τm 6= pyr σ, % 6≺ τn 6= {0}.
8. % ≺ τm 6= pyr σ, τn = {0}.
9. τm = pyr σ, τn = {0}.

The big sum decomposes into 9 sums; we will group them in the following way:
1,3,7 and 2,4,8 and 5,6,9. This makes sense because in each group the summation
runs over sets of pairs (τm, τn) that allow a canonical bijection. A pair (τm, τn)
in Case 3 corresponds to the pair (τm, % · τn) in Case 1 and to the pair (% · τm, τn)
in Case 7 (and vice versa). Similarly one obtains pairs in Cases 2 and 8 from a
pair in Case 4 respectively the pairs in Cases 5 and 9 from the pair in Case 6.
The sum in the Cases 1,3,7. In these three cases we sum over pairs (τm, τn),
where τm ≺ σ and % 6≺ τn 6= {0}. Then τm is equivalent to the cone spanned
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by some face Fm ≺ P , and τn is equivalent to the cone spanned by some face
∅ 6= Fn ¹ F∨

m ¹ P∨, where duality takes place in Rd.
In Case 1 we then have to evaluate the summand for the pair (Fm, ed+1 ·Fn),

in Case 3 for (Fm, Fn), and in Case 7 for (ed+1 · Fm, Fn). Each summand is a
product of three factors. We investigate how they are affected when ed+1 is joined
to Fm respectively to Fn.

•
∑dim Fm+1

j=1 ϕj(Fm)ujvdim Fm−j+1:

The cone % · τm is spanned by (a polytope that is lattice equivalent to) 0 · Fm.

There are Ehr(0 · Fm, k) =
∑k−1

j=1 Ehr(Fm, j) lattice points interior to the
dilations of this polytope. This affects the ϕ–vector as follows.

∑
k≥1

k−1∑
j=1

Ehr(F, j)tk =
∑
j≥1

Ehr(F, j)
∑

k≥j+1

tk

=
∑
j≥1

Ehr(F, j)
tj+1

1 − t

=
t

1 − t

∑
j≥1

Ehr(F, j)tj.

Hence we get a factor u:

dim Fm+2∑
j=1

ϕj(ed+1 · Fm)ujvdim Fm−j+2 = u

dim Fm∑
j=1

ϕj(Fm)ujvdim Fm−j+1.

• B([τn, τ∨
m]; u, v):

% is a face of τm if and only if % on the dual side is not a face of τ∨
m. Joining %

to τm corresponds under the above identification of face posets to descending
from the pair (F∨

m, 1̂) to (F∨
m, 0̂). In a similar way, joining % to τn corresponds

to ascending from (Fn, 0̂) to (Fn, 1̂). We have the following isomorphisms.

[τn, τ∨
m] ∼= B1 × [τn, (% · τm)∨] ∼= B1 × [% · τn, τ∨

m] ∼= B1 × [Fn, F∨
m],

where F∨
m is once more the face of P∨ dual to Fm. This yields the identities

B([τn, τ∨
m]; u, v) = (1 − u)B([τn, (% · τm)∨]; u, v)

= (1 − u)B([% · τn, τ∨
m]; u, v)

= (1 − u)B([Fn, F∨
m]; u, v).

• (−1)dim Fn+1
∑dim Fn+1

j=1 ϕj(Fn)(uv)dim Fn−j+1:
For the moment we cannot say anything about this factor but that the sign
changes if the dimension of τn rises by 1.
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Altogether the contribution of the Cases 1,3,7 is∑
Fm≺P

∑
∅6=Fn¹F∨

m

dim Fm+1∑
j=1

ϕj(Fm)ujvdim Fm−j+1(−1)dim Fn+1B([Fn, F∨
m]; u, v)

(
−

dim Fn+2∑
j=1

ϕj(0 · (2Fn))(uv)dim Fn+2−j

+ (1 − u)
dim Fn+1∑

j=1

ϕj(Fn)(uv)dim Fn−j+1

+ u
dim Fn∑

j=1

ϕj(Fn)(uv)dim Fn−j+1

)

=
∑

Fm≺P

∑
∅6=Fn¹F∨

m

dim Fm+1∑
j=1

ϕj(Fm)ujvdim Fm−j+1(−1)dim Fn+1B([Fn, F∨
m]; u, v)

·
dim Fn+1∑

j=0

(
ϕj(Fn) − ϕj+1(0 · (2Fn))

)
(uv)dim Fn−j+1.

The sum in the Cases 2,4,8. In these three cases we only sum over τm ≺ σ
respectively Fm ≺ P , and take τn = {0} respectively Fn = ∅.

In Case 2 we then have to evaluate the summand for the pair (Fm, {ed+1}),
in Case 4 for (Fm, ∅), and in Case 8 for (0 · Fm, ∅).

•
∑dim Fm+1

j=1 ϕj(Fm)ujvdim Fm−j+1:
As before joining τm with % gives a factor u.

• B([τn, τ∨
m]; u, v):

B([Fn, F∨
m]; u, v) in Cases 2 and 8, (1 − u)B([Fn, F∨

m]; u, v) in Case 4.

• (−1)dim Fn+1
∑dim Fn+1

j=1 ϕj(Fn)(uv)dim Fn−j+1:
Easy: 1 in Cases 4 and 8, −1 in Case 2.

So this contribution is no contribution.

∑
Fm≺P

dim Fm+1∑
j=1

ϕj(Fm)ujvdim Fm−j+1B([∅, F∨
m]; u, v)

(
−1 + (1 − u) + u

)
= 0.

The sum in the Cases 5,6,9. These three cases contain one pair each;
(P, ed+1) in Case 5, (P, ∅) in Case 6, and (pyrP, ∅) in Case 9.

•
∑dim Fm+1

j=1 ϕj(Fm)ujvdim Fm−j+1:
This time we have to count in pyrP . The intersection of k pyr P with the
hyperplane {xd+1 = j} for j ∈ [−k + 1, k − 1] is equivalent to k−j

2
P . Thus,

if k − j = 2i is even, then there are Ehr(P, i) interior lattice points, and, if
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k − j = 2i − 1 is odd, then there are Ehr(P, i) of them (recall that there are
no lattice points between iP and (i + 1)P ).

Ehr(pyr P, k) =
k∑

i=1

Ehr(P, i) +
k−1∑
i=1

Ehr(P, i).

We can once more exchange the summation.

∑
k≥1

(
k∑

i=1

Ehr(P, i) +
k−1∑
i=1

Ehr(P, i)

)
tk =

∑
i≥1

Ehr(P, i)

(
tj

1 − t
+

tj+1

1 − t

)
=

1 + t

1 − t

∑
i≥1

Ehr(P, i)ti.

Thus we get a factor of v + u in Case 9.

• B([τn, τ∨
m]; u, v):

Easy: 1 in Cases 5 and 9, 1 − u in Case 6.

• (−1)dim Fn+1
∑dim Fn+1

j=1 ϕj(Fn)(uv)dim Fn−j+1:
Once more 1 in Cases 6 and 9, −1 in Case 5.

So there is a contribution

d+1∑
j=1

ϕj(P )ujvd+1−j
(
−1 + (1 − u) + (u + v)

)
=

d+1∑
j=1

ϕj(P )ujvd+2−j.

Let us summarize what we have got.

3.5. Theorem. Let P ⊂ Rd be a reflexive d–polytope. The stringy E–poly-
nomial EStr(Z; u, v) of a generic hypersurface Z ↪→ Xpyr P equals the following
expression.

(−1)d

uv

(
d+1∑
j=1

ϕj(P )ujvd+2−j

+
∑

Fm≺P

∑
∅6=Fn¹F∨

m

dim Fm+1∑
j=1

ϕj(Fm)ujvdim Fm−j+1(−1)dim Fn+1B([Fn, F∨
m]; u, v)

·
dim Fn+1∑

j=0

(
ϕj(Fn) − ϕj+1(0 · 2Fn)

)
(uv)dim Fn−j+1

)
.
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3.6. Corollary. Let P ⊂ Rd be a d–dimensional Fano polytope. The stringy
Hodge numbers hp,q

Str(Z ↪→ Xpyr P ) of a generic hypersurface vanish unless p = q
or p + q = d. In the latter cases they are given by

hp,p
Str(Z) = (−1)d+1

∑
∅6=F¹P∨

(−1)dim F
(
ψp+1(2F ) − ψp+1(0 · 2F )

)
,

hp,d−p
Str (Z) = ϕp+1(P ),

if 2p 6= d. If 2p = d then one has

hp,p
Str(Z) = ϕp+1(P ) + (−1)d+1

∑
∅6=F¹P∨

(−1)dim F
(
ψp+1(2F ) − ψp+1(0 · 2F )

)
.

Proof. If P is Fano, then all its proper faces are unimodular, with the effect
that ϕj(Fm) = δj,dim Fm+1 and all intervals [Fn, F∨

m] with Fn 6= ∅ are boolean, with
the effect that B([Fn, F∨

m]; u, v) = (1 − u)d−dim Fm−dim Fn−1. Exchange the summa-
tion to obtain

(−1)d

uv

(
d+1∑
j=1

ϕj(P )ujvd+2−j

+
∑

∅6=Fn¹P∨
(−1)dim Fn+1

dim Fn+1∑
j=0

(
ϕj(2Fn) − ϕj+1(0 · 2Fn)

)
(uv)dim Fn−j+1

·
∑

Fm¹F∨
n

udim Fm+1(1 − u)d−dim Fm−dim Fn−1

)
.

The summands of the last sum only depend on dim Fm. Because Fn 6= ∅, F∨
n is

a simplex, which has
(

d−dim Fn

d′+1

)
d′–faces. So this last sum evaluates to

d−dim Fn−1∑
d′=−1

(
d − dim Fn

d′ + 1

)
ud′+1(1 − u)d−dim Fn−d′−1 = 1.

It remains to extract the coefficients of (uv)p and of upvd−p. Use the fact that
ϕdim Fn−p(2Fn) = ψp+1(2Fn) and ϕdim Fn−p+1(0 · 2Fn) = ψp+1(0 · 2Fn).

If P = ¤d is the crosspolytope, then two faces of P∨ of the same dimension
are equivalent. Furthermore they are reflexive themselves so that we can compute
the expression ψp+1(2F ) − ψp+1(0 · 2F ) as follows.

Ehr(0 · 2F, k) =
2k∑

j=0

Ehr(F, j).
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It is slightly more subtle to exchange the summation.

Ψ(0 · 2F ; t) =
∑
k≥0

2k∑
j=0

Ehr(F, j)tk =
∑
j≥0

Ehr(F, j)
∑

k≥d j
2
e

tk

=
1

1 − t

(∑
i≥0

Ehr(F, 2i)ti +
∑
i≥1

Ehr(F, 2i − 1)ti

)

=
1

1 − t

(
Ψ(2F ; t) +

∑
i≥1

Ehr(F, 2i)ti

)

=
1

1 − t

(
Ψ(2F ; t) + Φ(2F ; t)

)
,

where we used Ehr(F, 2i − 1) = Ehr(F, 2i). It follows that

ψp+1(2F ) − ψp+1(0 · 2F ) = −ϕp+1(2F ).

3.7. Corollary. Let Z ↪→ X
pyr ¤d be a generic hypersurface. Then

hp,p
Str(Z) =

d∑
d′=p

(−1)d−d′
(

d

d′

)
2d−d′ϕp+1(2¤d′),

hp,d−p
Str (Z) =

(
d

p

)
,

if 2p 6= d. If 2p = d, then

hp,p
Str(Z) =

(
d

p

)
+

d∑
d′=p

(−1)d−d′
(

d

d′

)
2d−d′ϕp+1(2¤d′).

Proof. After the above considerations, all we have to do is to convince our-
selves that

ϕp+1( ¤d) =

(
d

p

)
.
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The crosspolytope has an obvious unimodular triangulation with
(

d
d′
)
2d′ simplices

of dimension d′ in its interior. Hence

Φ( ¤d; t) = (1 − t)d+1
∑
k≥1

(
d∑

d′=0

(
d

d′

)
2d′

(
k − 1

d′

))
tk

= (1 − t)d+1

d∑
d′=0

(
d

d′

)
2d′

∑
k≥1

(
k − 1

d′

)
tk

= (1 − t)d+1

d∑
d′=0

(
d

d′

)
2d′ td

′+1

(1 − t)d′+1

= t

d∑
d′=0

(
d

d′

)
(2t)d′(1 − t)d−d′ = t(t + 1)d.

If we plug in

ϕp(2¤d′) =

j−1∑
i=0

(−1)i

(
d′ + 1

i

)(
4(j − i) − 1

)d′
,

we get the following Hodge diamonds in small dimensions:

d = 3:
1 1

20
1 1

d = 4:

1 1
115 3
3 115

1 1

d = 5:

1 1
612 4

2508
4 612

1 1
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d = 6:

1 1
3109 5

34154 10
10 34154

5 3109
1 1

This is the end of our tour. I hope you had fun and this little commercial
convinced you to come back one of these days . . .
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Birkhäuser. In print.

79



80 BIBLIOGRAPHY

[DHH98] Dimitrios I. Dais, Utz-Uwe Haus, and Martin Henk. On crepant resolutions of
2–parameter series of Gorenstein cyclic quotient singularities. Results in Math.,
33:208–265, 1998.

[DHZ98a] Dimitrios I. Dais, Christian Haase, and Günter M. Ziegler. All toric l.c.i.-
singularities admit projective crepant resolutions (long version). Technical Report
614/1998, TU–Berlin, 1998.

[DHZ98b] Dimitrios I. Dais, Martin Henk, and Günter M. Ziegler. All abelian quotient c.i.–
singularities admit projective crepant resolutions in all dimensions. Advances in
Math., 139:192–239, 1998.

[DHZ00] Dimitrios I. Dais, Christian Haase, and Günter M. Ziegler. All toric l.c.i.-
singularities admit projective crepant resolutions. Tohôku Math. J., to appear
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