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Summary of results

Flows on curves can be discretized in two steps. First one can
investigate flows on discrete curves (i.e. polygons) then one can dis-
cretize time too. The discretization of flows on curves in CP' that
are linked to the KdV and (in its euclidian reduction) the mKdV
euqation give rise to the famous Volterra model and its discretiza-
tion as well as discrete KdV and mKdV equations, which in turn
gives them a geometric meaning.

The doubly discrete flows in CP! arise as Bécklund transforma-
tions of their smooth counterparts and introduce maps from Z? to
C with all elementary quadrilaterals having constant cross-ratio—
these are known as discrete conformal maps. If one extends this to
discrete space curves one gets discrete isothermic surfaces.

The Hashimoto or smokering flow and its discretization is dis-
cussed and a doubly discrete Hashimoto flow is derived. The smok-
ering flow is linked to both the isotropic Heisenberg magnet model
and the nonlinear Schrodinger equation which are known to be
gauge equivalent. This equivalence is here also shown for the dis-
crete and doubly discrete case, the first giving rise to the equivalence
of two famous discretizations of the nonlinear Schrodinger equation,
which was unknown.

Above discrete time evolution can be adopted to generate dis-
crete surfaces of constant mean curvature (cmc surfaces)—which
are in particular discrete isothermic surfaces—out of discrete closed
curves.

In an other approach discrete versions of rotational cmc surfaces
are derived from the standard billiard in an ellipse or hyperbola.

A discrete version of the Dorfmeister-Pedit-Wu-method for gen-
eratig cmc surfaces out of holomorphic data is presented and dis-
crete Smyth surfaces are derived.

Finally it is shown how discrete K-surfaces can be derived from
an analogue of a curvature line stripe.






Zusammenfassung der Ergebnisse

Flisse auf Kurven konnen in zwei Schritten diskretisiert werden:
Zunéchst kann man Fliisse auf diskreten Kurven (also Polygonen)
betrachten, dann kann man auch die Zeit diskretisieren. Die Diskre-
tisierung von Fliissen auf Kurven in CP!, die mit der KdV und (in
der euklidischen Reduktion) mKdV Gleichung zusammenhéngen,
fithrt sowohl zum beriihmten Volterra Modell und seiner Diskretisie-
rung, als auch zu diskreten KdV und mKdV Gleichungen, was
diesen geometrische Interpretationen gibt.

Die doppelt diskreten Fliisse in CP! entstehen als Bicklundtrans-
formationen ihrer glatten Analoga und erzeugen Abbildungen von
Z? nach C bei denen alle elementaren Vierecke konstantes Dop-
pelverhaltniss haben—solche Abbildungen wurden als diskrete kon-
forme Abbildungen untersucht. Erweitert man das auf Raumkurven
erhalt man diskrete Isothermflachen.

Der Hashimoto oder Rauchring Flul und seine Diskretisierung
werden untersucht und ein doppelt diskreter Hashimoto Flufl wird
hergeleitet. Der Hashimoto Flufl hangt sowohl mit der nichtlinearen
Schrodinger Gleichung als auch mit dem anisotropen Heisenberg-
Magneten zusammen. Die Eichaquivalenz der beiden Modelle ist
bekannt. Diese Aquivalenz wird hier fiir den diskreten und doppelt
diskreten Fall gezeigt, was insbesondere auch zu der Aquivalenz
zweier bekannter Diskretisierungen der nichtlinearen Schrodinger
Gleichung fiihrt, die nicht bekannt war.

Obige diskrete Zeitevolution fiir Kurven kann so angepasst wer-
den, dafl man aus geschlossenen diskreten Kurven diskrete Flachen
mit konstanter mittlerer Kriitmmung (cmc) erzeugen kann—sie sind
insbesondere isotherm. Bei einem anderen Zugang werden diskrete
Rotations-cmc-Flachen mit Hilfe des Standardbilliards in der Ellipse
oder Hyperbel erzeugt. Eine diskrete Version der Dorfmeister-Pedit-
Wu-Methode zur Erzeugung von cmc Flachen aus holomorphen
Daten wird vorgestellt und diskrete Smyth Flachen werden kon-
struiert. Schliellich wird gezeigt, wie man diskrete K-Flachen aus
einem Analogon eines Kriimmungslinienstreifens erzeugen kann.
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Introduction

The study of discrete geometry has become of great interest in the
last years. It turned out that special discrete geometric construc-
tions are directly linked to discrete integrable systems giving them
new interpretations as well as establishing new models. At the turn
of the century the study of discrete objects often preceded continu-
ous investigations (e.g. differential equations were viewed as limits
of difference equations etc.). These discrete objects seemed to be
lost for a while but due to the use of computers in our days they are
in focus again. Nevertheless already in the early fifties, mathemati-
cians in Vienna like W. Wunderlich and R. Sauer started to study
discrete analogs of smooth surfaces. These surfaces were discrete
in the sense that they tried to discretize the geometric properties
rather than to simply approximize smooth surfaces. In 1994 A.
Bobenko and U. Pinkall benefited from this approach when they
extended the definitions of Wunderlich [WunhT] for discrete sur-
faces of negative Gauflian curvature (K-surfaces) and showed that
they are equivalent to an integrable difference equation - the now
famous discrete Sine Gordon equation [BPY6HE]. Again A. Bobenko
and U. Pinkall found a discretization for isothermic surfaces and
surfaces of constant mean curvature (cmc) which lead in turn to
integrable discretizations of the corresponding smooth integrable
equations [BP96a, BP99].

All these discretizations have in common that the (discrete) sur-
faces show the typical behavior of their smooth counterparts - even
in very rough discretizations. They posess for example discrete ver-
sions of Backlund transformations, which are well known for the
continuous ones. Moreover the construction can be done explicitly

11




12 INTRODUCTION

without solving pde’s numerically. For example the construction of
cmc surfaces is very difficult and general methods need a splitting
in some loop group which can usually only be done approximatively
for visualization purpose [DPW94]. The discrete version however
can be solved exactly (see Chapter §). We will start here somewhat
simpler by investigating discrete curves and flows on them first. A
task that has turned out fruitfully already [DS99].

This work is portioned into 7 rather self-contained chapters.
They vary in size but all open different views on the interrelation-
ship between discrete curves and surfaces and integrable systems.

In the first chapter we will investigate flows on discrete curves in
CP'. It will turn out, that the discretization of the (in the contin-
uous case trivial) tangential flow is linked to the famous Volterra
model [F'TR6]. In fact the cross-ratio of four successive points of a
discrete curve plays the role of a discrete Schwarzian derivative and
will obey the Volterra model.

One can go one step further and discretize time too. The dou-
bly discrete tangential flow (which gives rise to the discrete time
Volterra model [Sur99]) is an evolution of the curve in the way that
two successive points and their time one images have fixed cross-
ratio. This of course gives rise to maps from Z? into CP'. Especially
in the case of real negative cross-ratio they can be viewed as dis-
cretization of conformal maps and have been studied in [BP96a,
HIMPIR)].

In the second Chapter we will modify this approach to curves
in R? getting a discrete and a doubly discrete version of the smoke
ring flow. In the continuous case this flow is equivalent to both the
nonlinear Schrodinger equation and the isotropic Heisenberg magnet
model. We devote the third Chapter to the equivalence of the two
in the discrete and doubly discrete case. Chapter @ is devoted to
the above mentioned discrete cmc surfaces. It is shown how one can
generate them from a discrete stripe. As examples discrete Wente
tori are build from discretizations of the elastic figure eight and
discrete trinoidal surfaces are derived.
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In Chapter f§ we will generate discrete surfaces from curves in
a slightly different way: It is known, that every rotational surface
allows isothermic parameterization. Since we know what discrete
isothermic surfaces are, we can derive the condition for a discrete
meridian curve, that its discrete rotation gives an isothermic sur-
face. Moreover one knows that the meridian curve for cmc surfaces
are obtained by tracing one focus of an ellipse when rolling it on an
straight line. A discrete analog of this is presented, linking these
discrete surfaces to another well-known integrable system: The Bil-
liard in an Ellipse.

In Chapter § we present a method to generate discrete cme sur-
faces from discrete conformal maps (discrete isothermic surfaces in
the plane). It is the discrete analog of the DPW recipe introduced
by Dorfmeister Pedit and Wu 1994 [DPW94]. To obtain discrete
cmc surfaces with umbilics, we have to generalize our definition of
discrete isothermic surfaces from the combinatorics of a square grid
to some more general graph: Since in each isolated umbilic more
than two curvature lines intersect, we need vertices with more than
four edges as link.

In the last chapter we shortly mention methods to get discrete K-
surfaces from both curvature and asymptotic lines. This is mainly
for completeness reasons although it is interesting to compare the
Hashimoto and cmc surfaces generated from a discrete elastic eight
with the K-surface generated by the same curve.




Chapter 1

Flows on Discrete curves in
complex projective space

1.1 Introduction

In this chapter we investigate flows on discrete curves in CP! and
C. We start with a short review of the continuous case, where the
KdV equation is derived as evolution equation of the Schwarzian
derivative p of a curve ¢ evolving with the flow ¢ = pc/. This becomes
the mKdV equation for the curvature s of the curve if one changes
to the euclidian picture.

In the discrete case however already the tangential flow is not
trivial and the cross-ratio ¢ of four neighboring points of the discrete
curve (which is a discretization of the Schwarzian derivative) will
evolve with the famous Volterra model

dr = Ge(qhr1 — Qu—1)-

The next higher flow will give a discrete KAV equation and again
one gets a discrete mKdV equation for the curvature if one restricts
oneself to arclength parameterized discrete curves.

In the last section it will be shown, that one gets the doubly dis-
crete Volterra model if one Backlund transforms the discrete curve
with the condition that any two neighboring points of the curve and
their transforms should have a fixed cross-ratio.

We start by giving some notations and facts about discrete curves.

14



1.2. DISCRETE CALCULUS 15
1.2 Discrete calculus

Let f and g be maps from Z into an associative algebra. We denote

o N M 7

successors and predecessors by subscript 747, "++7, 7-7, 7~ -7 etc.
So f_, f, fv will stand for f, 1, f,, fns1 for some n € Z. Define the
following operators

Df = 50— )
Mf o= e+ )
frg = %U%%*ﬂh)

The meaning of these operators is quite obvious: While D is a
discretization of the differentiation, M and - discretize the identity
and the product in a sense compatible with D (one should think of
D f,M f etc. to live on the “dual chain” Z + %)

DM = MD
Dfg = DfMg+MfDg
Df-g = (DMf)g+fDMy

We will use one more discrete operator: the inverse harmonic mean

of D

©_DfDJ

D" f = (%((D 7+ (D f+)‘1)> DMT

A discrete curve in R” is a map ¢ : Z — R". It will be called
regular or immersed, if || D¢|| and || D M ¢|| # 0. It is called arclength
parameterized if |2D c¢|| = 1. Some times we will use the shorthand
S :=2Dc. For an arclength parameterized curve c the curvature
is defined as follows:

Z(Dec_,Dec)

=t . 1.1
Kk = tan 5 (1.1)




e

16 CHAPTER 1. FLOWS ON CURVES IN PROJECTIVE SPACE

1.3 The smooth case

Before we turn to flows on discrete curves we give—without laying
claim to completeness—a short review of the continuous case. Let
¢ : R — CP! be a smooth immersed curve and 7 : R — C? be a lift
in homogenous coordinates normalized by the condition

det(y,7') = 1. (1.2)

In this case we have det(v,7"”) = 0, so v and +" are linear dependend
and we can define p by

V' =tpy. (1.3)

Lemma 1 —2p s the Schwarzian derivative of f:

A 3/ 2

&

Remark If ¢ is an euclidian curve and arclength parameterized one

has ]
S(y) = (51-@2 + 1K) (1.4)

72
where Kk = % is the curvature of c.

We will now investigate flows on v that preserve the normaliza-
tion ([[.2). Any Flow on 7 can be written as a linear combination
of v and +:

¥ =ay+ 6. (1.5)

Lemma 2 A flow on v written in above form preserves the normal-

ization ([1.3) iff
200+ 3" = 0. (1.6)

Proof Compute 0 = det(7,~") + det(vy, ). O
Thus prescribing 3 along v gives a unique flow of the desired

form. A trivial choice is of course § = const which results in the
tangential flow 4 = /.
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Lemma 3 If v evolves with a flow preserving the normalization

([Z.3) p evolves as follows:

/1!

p=—% +p'p+ Bp’ + 26'p. (1.7)

Proof Again straight forward calculation. ]
If we choose 8 = —2p p itself will evolve with the well known KdV
equation:

p=p" —6pp. (1.8)

1.3.1 Euclidian reduction

If ¢ does not hit oo, v obeying the normalization ([[.9) is given by

==

Lemma 4 If v now flows with ([I.3) ¢ flows with
b= of (19)

Proof The evolution equation ([[.5) for v gives

/!

le¢ c’\/—c’—&—%c <

GO = eyt
§—F 3¢ \/L
— 1 o
e = oz\/_—c,+6 .
Combining these two equations gives equation ([[.9) O
In the special case that c is arclength parameterized (i.e. || = 1)

we get with the choice 8 = —2p:

1
¢=8(c)d = (§/£2T + K'N) (1.10)
with T" and N being the tangent and the oriented normal of c.

Because of the following lemma we will call this low mKdV flow.
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Lemma 5 If ¢ is arclength parameterized and flows with ([1.1Q) the
curvature Kk of ¢ solves the mKdV equation

3
f=r"+ §m%’. (1.11)
Proof One has
" = ird
¢ = (w4 E) (1.12)
J o= (i/i/’/ + %i/ﬁQI-il — kK" — %/@4)0
and therefore ifs = & — ikS = i(K" + 3K%K). O

Generalized elastic curves

Figure 1.1: Two closed generalized elastic curves.

One can ask for curves, that evolve up to reparametrization (i.e.
tangential flow) by euclidian motion only under the mKdV flow. In
other words ax’ = ik = k" + 3k%x’ for some (real) constant a. One
can integrate this equation once getting

1
K'=b+ (a— §/€2)/€. (1.13)

Figure [[.1 shows two closed examples of such curves.
In the case b = 0 equation reduces to the caracerization of
elastic curves (R.14) which is discussed in the Chapter R[]

!Taking the norm there comes from the fact that we have no oriented normal in R3.
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1.4 Flows on discrete curves in complex projec-
tive space

Let ¢ : Z — CP! be a discrete curve in the complex projective
space. We assume c is immersed, i.e. c_,c and c, are pairwise
disjoined. By introducing homogenous coordinates, we can lift ¢ to
amap 7y : Z — C* with ¢ = vy 1. Obviously ~ is not uniquely
defined: For A : Z — C* \v is also valid lift. Therefore we demand
~ to satisfy the normalization

det(v,74) = 1. (1.14)

Note that this is always possible, since ¢ is immersed and after
choosing an initial vy, v is fixed.

Definition 1 The cross-ratio of four points a,b,c,d € CP! is de-

fined by
det(a, b) det(c, d)

det (b, ¢) det(d, a)

Let us denote the cross-ratio of four neighboring points of v by ¢:

cr(a,b,c,d) =

q = CI'(’}/*,’}/,’)/++,’}/+). <115)

Up to a Mobius transformation (which is basically the free choice
of three initial points of ¢) 7 is determined completely by ¢ and ¢
does not depend on the choice of the initial 9. We can introduce
the associated family ~y(\) of v by the condition g(\) = Ag.

If v is normalized by equation ([[.14) we can set

u = det(v_,v+). (1.16)

Then
1

L e — 1.17
. (Y=, Y, Vo4 V+) = ¢ (1.17)

We shall now study flows on « that preserve condition ([[.14).
Since det(v,v; —v-) = 2 any flow on v can be written in the
following way:

W=ow+%(%—7)' (1.18)




20 CHAPTER 1. FLOWS ON CURVES IN PROJECTIVE SPACE

Lemma 6 A flow on the discrete curve v preserves the conformal
arclength iff
2Ma+D S =0. (1.19)

Proof To get this condition on a and [ we differentiate equa-

tion ([[.14):

0 = det(y,7+) + det(v,94)
= det(ay + 5. (74 — 7-),74) + det(v, apys + 2%(7++ —7))
= a— g + a4 + %
(1.20)

So the flow must satisfy equation ([[.19). O
A trivial solution to this is obvious: Choosing # = 0 induces a; =
—a. This flow corresponds to the freedom of the initial choice of 7
and has no effect on c¢. Note also that ([.I9) is a linear equation.
So one can always add any two flows solving it.

Lemma 7 If v : Z — CP! evolves with an arclength preserving
flow, u and the cross-ratio q evolve as follows:

0 = —2(au+2DM§) (1.21)
i = 29(¢—1)DB+q(Byrqr — B-q-). (1.22)

Proof One has

U = det(y-,v4) + det(v—,¥4)
— det(ay 4 (=) ) + det(ra07s + (i — )

2u_ 2uy
= ulay +a )+ 2614_ — 267; — 2ﬁu_ (wu_ —1) + 2€L—++(uu+ — 1)
g

which proves equation ([[.21]). Now one can use this to compute

¢ = —quuy + ui)
= 2¢(¢—1)D B+ q(Br+q+ — B-q-).



e

1.4. FLOWS ON DISCRETE CURVES IN COMPLEX PROJECTIVE SPACE21

]
If we choose =1 and a = 0. We get for the curve

§= 5 =71, (123

This is what we will call the conformal tangential flow. Then 1w =
1 i and ¢ will solve the famous Volterra model [E'T86, Sur99:

¢=q(q+ —g-) =49DMg. (1.24)

If we want this equation for the whole associated family of v we
must scale time by A:

A(A) = q(M)(gr(N) —q-(N))

One obtains the next higher flow of the Volterra hierarchy [Sur99]
when one chooses 3 = 2M g + 1. This implies

¢=q(q4(qs+ +q+ +9) —q-(¢+q +q-)). (1.25)

To make contact with the classical results we will now derive the
2 x 2-Lax representation of the Volterra model:

Define €1 = ((1)), ey = (_01) aEd e3 = (_l) Moreover gieﬁne
the matrix F = (uv,74). Then Fe; = uy, Fez = v, and Feg =
uy — v+ = 7— and one has }:1}"61 = uesg and f;l}"eg = uqe.

Thus
-~ ~ L~ 1 ¢
L::FJrl]::u(_l 0).

So if we define F,, = H?:_Ol uzﬁn and L := .7-:1.7: we get

L= < _11 g ) (1.26)

which is the Lax matrix of the Volterra model [Sur99]. If we differ-
entiate L we get

L=-F FF'\F+F'\FF'F=ML—- LM

)
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with the auxiliary matrix M = —F L,

]/\Z = — Huzﬁ:l (i(H ul)}N} + :Zl_lozuzﬁ‘+>

= ——log Hul 1-7:+
= (—q-1+ Qn)H (1.27)
~ /1 1 1 1
_F! ((a _ E)’H + 5(’Y++ =) 5 (Yot — 7+)>

2u4
1 1 1
— ot (- a+ je - e ga - )

_ ( —q1— 3 0 ) N ( 1+qr g ) |
0 —q1—3 -1 q

The first summand is constant and can therefore be omitted. For
the whole associated family we get now

AL(N) = M(N)L(\) — LINM_(\)

LM):<E1?> (1.28)
ey = (P )

This is up to the change A — A~2 and a gauge transformation
AZ0
with £ =

0 \1/2 ) the known form of the Volterra Lax-pair
[Sur99].

1.4.1 Euclidian reduction

If ¢ does not hit co we can write v = )\(f) with A, = ;—é to satisfy
our normalization. We then get for the general evolution of ¢:

Lemma 8 If v flows with ) c evolves with
¢ = ﬁs 5 = 5Dh (1.29)
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Proof Equation ([.18) gives

A+ e = ale+ %(A+c+ —A_c)
A= A+ L+ -2

Combining these two equations gives equation ([[.29). O
Now let us assume, that c is an arclength parameterized curve
in C. In this case we can write

S_S S_+S

9 —
S +S 1+(S.,9)

since

S_S S_S — S_+ S
<25_ +575—> = Re(2g—55)=1= <m5>

and the same for the scalar product with S. So for = 2 we get
the well known tangential flow for discrete curves [DS99, BS99]:

S +S
- 1+(S.,S)

&

Now let us rewrite g to get an interpretation for the choice 8 =
2Mgqg + 1:

S_S, 1 1

17 EAs)Ers) T FEEH) | () ()
= —3(i+rK)(i - rs)
= %(iD/iJr%/i-ﬁ;Jr%).

With this on hand the second Volterra flow becomes:

1 3
C=(§Mli'li+iDMli)DhC+§DhC (1.30)

which is up to an additional tangential flow part clearly a discretiza-

tion of ([L.10).

Lemma 9 The discrete tangential flow and the discrete mKdV flow
both preserve the discrete arclength parametrization.
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Proof We calculate <S, S > for a general flow:

(8.8) = Re(S(3, D"y, = #D"7)
= Re (lf:*i — H%_) = Re(f:(1 +iky) — B(1 —ir)).

So the condition for a flow of the form ¢ = D" ¢ to preserve the
discrete arclength is

ReD 8 = Im M(x0). (1.31)
for the tangential flow this clearly holds. In the case of the mKdV
flow it is an easy exercise to show equation ([[.31]). O

Discrete generalized elastic curves

Elastic curves will play some role in the next chapter. As in the
smooth case we will derive planar elastic curves here as special case
of curves that move up to a reparametrization by euclidian motion
only when evolved with the mKdV flow. In other words there must
exist a (real) constant a such that

¢—aD"c=¢é —aD"e,. (1.32)

Lemma 10 The curvature of a discrete curve, that evolves up to
some tangential flow by euclidian motion under the mKdV flow sat-
1sfies

= —Kk_+Db 1.33
T e " T (1.33)

for some constants a and b.
Proof Isert the flow in equation ([.3%). O

Figure [[.2 shows two closed discrete generalized elastic curves
and the thumb nail movie on the lower right shows a one parameter
family of them.

Remark In the case b = 0 this gives the equation for planar elastic

curves (R.31) from Chapter B
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Figure 1.2: Three closed generalized elastic curves.
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1.5 Discrete flows

As in the previous section let v be the lift of a immersed discrete
curve in CP' into C? satisfying the normalization ([L.19).

Lemma 11 Given an initial vy and a complex parameter u there is
an unique map v : Z — C? satisfying normalization ({1.19) and

M= Cr(ﬁy)’er)%Jr)%)' <134)
We will call v a Backlund transform of .

Proof Solving equation ([[.34) for 7, gives that 7, is a Md&bius
transform of 7. ]

Lemma 12 If 7 is a Bdcklund transform of v with parameter p

then
. S
q = qS_’
+ S, (1.35)

e P y
with s = cr(v_, 7, 7+,7)-

Proof Due to the properties of the cross-ratio (a useful table of

1 — no= CI‘(’}/ f;yf ~ f;yf) _ det(,}/::ﬁr) det(rer::y/)
P det (T, v4) det(3,7)
det(y-,7) det(ys+,74)

det (7, v4+) det(vs,7-)
1 det(y-,7) det(¥,7+)

e cr(V=y 7,7, V+) = det(~,7) det(y.,v-)
L ) det(y,7y) det(yy, i)
- 1 = CI'(’}/,’Y+,’Y+77++) — det(”er,’}/Jr) det(’}/++,7) .

Multiplying the first two and the second two equations proves the
second statement. If we set s = cr(y_,7,74,7) we see that £ =1

and therefore
= 9E -  a=O(E =1  0=9) 1)

S Sy
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which proves the first statement. ]
If ¢ is a periodic curve with period N, we can ask for ¢ to be periodic
too. Since the map sending ¢y to cy is a Mobius transformation it
has at least one but in general two fix-points. These special choices
of initial points give two Backlund transforms that can be viewed
as past and future in a discrete time evolution.

We will now show, that this Backlund transformation can serve
as a discretization of the tangential flow since the evolution on the
q’s are a discrete version of the Volterra model.

The discretization of the Volterra model first appeared in Tsu-
jimoto, e. al. 1993.We will refer to the version stated in [Sur99].
There it is given in the form

a=a— (1.36)

p

f=ha= G

(1.37)

with A being the discretization constant.

Theorem 13 Let g be a Backlund transform of q with parameter pu.
The map sending q to qy is the discrete time Volterra model ([1.3G)
with o = q, a = q, %:i and h = pu — 1.

S+

Proof With the settings from the theorem we have

~ Sy oqesy Py
=4+ =4+— =¢ = a—
S++ S++4 B

and on the other hand

1 1
—hg=(p—1g(——1) =
B —hq=(u )Q(S+ ) =1
and
g s !

B-—hg  hg_(1-1) 1-+
This proves the theorem. ]
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The continued Backlund transformations give rise to maps 7 :
Z? — CP! that can be viewed as discrete conformal maps—especially
in the case when p is real negative (which is quite far from the
tangential flow, that is approximated with p ~ 1) [BP96a, BP99,

On the other hand in case or real p the transformation is not
restricted to the plane: Four points with real cross-ratio allways lie
on a circle. Thus the map that sends 7 to 7, is well defined in any
dimension. Maps from Z? to R? with cross-ratio -1 for all elemen-
tary quadrilateralsf] serve as discreteization of isothermic surfaces
and have been investigated in [BP96a]. A method to construct dis-
crete cmc surfaces (which are in particular isothermic) from discrete
conformal maps is presented in Chapter B

If one does not restrict oneself to planar evolution the set of closed
Backlund transforms of a closed curve can be a whole circle: In
Chapter [ the case of a regular n-gon gives rise to discrete rotational
isothermic surfaces.

In the next chapter we will modify the discrete time evolution for
discrete (euclidian) space curves to get a discrete Hashimoto flow.

2More general one can demand cr = g#—see Chapter @



Chapter 2

Discrete Hashimoto surfaces and
a doubly discrete smoke ring flow

2.1 Introduction

Many of the surfaces that can be described by integrable equa-
tions have been discretized. Among them are surfaces of constant
negative Gaussian curvature, surfaces of constant mean curvature,
minimal surfaces, and affine spheres. This chapter continues the
program by adding Hashimoto surfaces to the list. These surfaces
are obtained by evolving a regular space curve v by the Hashimoto
or smoke ring flow
;}/ — ’-}// % ,}///.

As shown by Hashimoto [Has77] this evolution is directly linked to
the famous nonlinear Schrodinger equation (NLSE)

. 1
iU+ 0"+ §|x11|2x11 = 0.

In [AT76] and [AT.77] Ablowitz and Ladik gave a differential-differen-
ce and a difference-difference discretization of the NLSE. In Chap-
ter [ we will showf] that they correspond to a Hashimoto flow on
discrete curves (i. e. polygons) [BS99, DS9Y] and a doubly discrete
Hashimoto flow respectively. This discrete evolution is derived in
section from a discretization of the Backlund transformations
for regular space curves and Hashimoto surfaces.

!The equivalence for the differential-difference case appeared first in [[Sh87].

29
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In Section 22 a short review of the smooth Hashimoto flow and
its connection to the isotropic Heisenberg magnet model and the
nonlinear Schrodinger equation is given. It is shown that the solu-
tions to the auxiliary problems of these integrable equations serve as
frames for the Hashimoto surfaces and a Sym formula is derived. In
section 2.2.7 the dressing procedure or Backlund transformation is
discussed and applied on the vacuum. A geometric interpretation of
this transformation as a generalization of the Traktrix construction
for a curve is given.

In Section the same program is carried out for the Hashimoto
flow on discrete curves. Then in Section .4 special double Backlund
transformations (for discrete curves) are singled out to get a unique
evolution which serves as our doubly discrete Hashimoto flow.

Elastic curves (curves that evolve by rigid motion under the
Hashimoto flow) are discussed in all these cases. It turns out that
discrete elastic curves for the discrete and the doubly discrete Hashi-
moto flow coincide.

Through this chapter we use a quaternionic description. Quater-
nions are the algebra generated by 1, i, j, and € with the relations
2 =32 =# = —-1,ij = K,jt =i, and & = j. Real and imag-
inary part of a quaternion are defined in an obvious manner: If
g = a+ i+ + ot we set Re(q) = o and Im(q) = [i+ vj + ¢
Note that unlike in the complex case the imaginary part is not a
real number. We identify the 3-dimensional euclidian space with
the imaginary quaternions i. e. the span of i, j, and . Then for two
imaginary quaternions ¢, r the following formula holds:

qr = —{q,7) +qxr

with (-,-) and - x - denoting the usual scalar and cross products of
vectors in 3-space. A rotation of an imaginary quaternion around

the axis r,|r| = 1 with angle ¢ can be written as conjugation with

the unit length quaternion (cos% + sin %r)

Especially when dealing with the Lax representations of the var-
ious equations it will be convenient to identify the quaternions with
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complex 2 by 2 matrices:

o i 0\ . 0 i
12@03:(0—@) ]:wl:<z’0>
EZ—Z'OQZ(?_Ol).

2.2 The Hashimoto flow, the Heisenberg flow
and the nonlinear Schrodinger equation

Let v : R — R3 = Im H be an arclength parametrized regular curve
and F : R — H* be a parallel frame for it, i. e.

FUF = =~ (2.1)
(FHF) A (2.2)

The second equation says that F~.F is a parallel section in the

normal bundle of 7. which justifies the name. Moreover let A =
F'F~1 be the logarithmic derivative of F. Equation (2.2) gives,
that A must lie in the j-€-plane and thus can be written as

U
A=t (2.3)

with U € span(1,i) = C.
Definition 2 We call ¥ the complex curvature of .
Now let us evolve v with the following flow:
Y=9"x9"=9" (2.4)
Here v denotes the derivative in time. This is an evolution in bi-
normal direction with velocity equal to the (real) curvature. It is
known as the Hashimoto or smoke ring flow. Hashimoto was the

first to show, that under this flow the complex curvature ¥ of ~
solves the nonlinear Schrodinger equation (NLSE) [Has77]

: 1
v+ U+ §|\Il\2\11 = 0. (2.5)
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or written for A:

A+ A" =243 (2.6)

Definition 3 The surfaces v(x,t) wiped out by the flow given in
equation ) are called Hashimoto surfaces.

—~

Equation (P.5) arises as the zero curvature condition L; — M, +
[L, M] = 0 of the system

Folw) = L(w)F(n) 27

with
(2.8)

2

—~ T2, \I/w . ~

M(p) = BRi+ %5 —2ul(p).
To make the connection to the description with the parallel frame
F we add torsion to the curve v by setting

A(p) = e 2710,

This gives rise to a family of curves (i) the so-called associated
family of v. Now one can gauge the corresponding parallel frame
F(p) with e#** and get

(" F(1))a = ((e"™)e " e Ap)e )™ F (1) = L(p)e"™"F (1)

with L(p) as in (2.7). So above ﬁ(,u) = e F(u) is for each ty a
frame for the curve y(z, ty).

Theorem 14 (Sym formula) Let V(x,t) be a solution of the NLSE
(equation ([2.9)). Then up to an euclidian motion the corresponding
Hashimoto surface y(x,t) can be obtained by

vz, t) = F ' Falaso (2.9)

where F is a solution to 2.7).
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Proof Obviously Flaeo(z, to) is a parallel frame for each v(z, ).
So ertmg Flz, )| a= _o =: F(x), one easily computes (F'Falrmo)e =
FUF = v, and (F 1.7:A|A 0)y = FIUEF. But 34 = Yer =
FLUeF. O

If one differentiates equation (2.4) with respect to x one gets the
so-called isotropic Heisenberg magnet model (IHM):

S=8%x8"=8x S, (2.10)

with S = «/. This equation arises as zero curvature condition U; —
Vi + [U, V] = 0 with matrices

U = AS
V() = —2)28 — )\S9'S (2.11)
In fact if G is a solution to
G, =UNG
G = VNG (2.12)

it can be viewed as a frame for the Hashimoto surface too and one
has a similar Sym formula:

Y(z,t) = G 'Galr=0 (2.13)
The system (R.17) is known to be gauge equivalent to (R.7) [FT86].

2.2.1 Elastic curves

The stationary solutions of the NLSE (i. e. the curves that evolve
by rigid motion under the Hashimoto flow) are known to be the
elastic curves [BS9Y]. They are the critical points of the functional

B = [ #

with k = || the curvature of 7. The fact that they evolve by rigid
motion under the Hashimoto flow can be used to give a characteri-
zation by their complex curvature ¥ only: When the curve evolves
by rigid motion ¥ may get a phase factor only. Thus ¥ = iU,
Inserted into equation (2.5) this gives

1
U = (c— 5\\11\2)\11. (2.14)
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2.2.2 Backlund transformations for smooth space curves
and Hashimoto surfaces

Now we want to describe the dressing procedure or Backlund trans-
formation for the IHM model and the Hashimoto surfaces. This is
a method to generate new solutions of our equations from a given
one in a purely algebraic way. Afterwards we give some geometric
interpretation for this transformation.

Algebraic description of the Backlund transformation

Theorem 15 Let G be a solution to equations ([2.13) with U and V/
as in (2.11) (i. e. U(1) solves the IHM model). Choose \g, sy € C.
Then G(\) := B(N)G()\) with B(\) = (14 Ap), p € H defined by the
conditions that Ay, \g are the zeroes of det(B()\)) and

G(N) (310) ~0 and G(XO)( 1_) —0  (215)

solves a system of the same type. In particular (7(1) = G.(1)G7(1)
solves again the Heisenberg magnet model ([2.10).

Proof We define U(\) = G,G' and V(\) = G,G~'. Equation
(2.15) ensures that U()) and V()) are smooth at Ay and Xg. Using
U\) = B.(\)BX(\) + B(A)U(A)B () this in turn implies that
U()) has the form U(X) = AS for some S.

Since the zeroes of det(B(\)) are fixed we know that r := Re(p)

and [ := |Im(p)| are constant. We write p = r + v,
One gets S = S 4+ v, and
2rl v xS 212 (v, S) 21°
r = ; — S. 2.16
TRy E 1 iR B e (2.16)

This can be used to show |S] = 1.

Again equation (R.15) ensures that V(\) = A?X + \Y for some
X and Y. But then the integrability condition U, — V, + [U,V]
gives up to a factor ¢ and possible constant real parts x and y that
X and Y are fixed to be X = 2 +¢S,S8 +dS and Y = y—|—2cS
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Figure 2.1: Two dressed straight lines and the corresponding Hashimoto surfaces

The additional term dS in X corresponds to the (trivial) tangential
flow which always can be added. The form V(\) = By(\)B~L(\) +
BA\)V(A)B71(\) gives ¢ = —1 and d = 0. Thus one ends up with
V(X)) = —2X25 — \S,S. O

So we get a four parameter family (Ao and sy give two real param-
eters each) of transformations for our curve « that are compatible
with the Hashimoto flow. They correspond to the four parameter
family of Backlund transformations of the NLSE.
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Ezxample Let us do this procedure in the easiest case: We choose
S =1 (or y(z,t) = xi) which gives

o ei()\:v—2)\2t) 0
6 = esplna =2 = (7 0))

: . b .
After choosing )y and sy and writing p = ( _ag - ) one gets with

equation (R.15)

Soefi()\ofo)\%t) — )\O(ei()\oxf%\gt)g _ Soefi()\ofo)\%t)a). (217)
These equations can be solved for a and b :
o _%0Jr%e—%()\o—Xo)m+4i(>\3—xg)t
1"119030672_1'(:07X0)x+4i()\%j(21)ti (218)
b = Fyeditor—didt YY)

—2i(An—X ((A2_22
1+SO§()6 22(}\0 )\0)CD+4Z()\O Ao)t

Using the Sym formula (R.13) one can immediately write the formula
for the resulting Hashimoto surface 7:

¥ =Im(p) +v= ( Im(a_); ’ —Im(s) — i ) |

The need for taking the imaginary part is due to the fact that we
did not normalize B(\) to det(B(\)) = 1.

If one wants to have the result in a plane arg b should be constant.
This can be achieved by choosing A € iR. Figure B.1] shows the
result for so = 0.5+ 17 and Ay =1 — ¢ and Ay = —t respectively.

Of course one can iterate the dressing procedure to get new
curves (or surfaces) and it is a natural question how many one can
get. This leads immediately to the Bianchi permutability theorem

Theorem 16 (Bianchi permutability) Let~ and 5 be two Bick-
lund transforms of v. Then there is a unique Hashimoto surface
that is Bdacklund transform of ¥ and 7.
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Proof Let G, G, and G be the solutions to () corresponding
to 7,7, and 7. One has G = BG and G = BG with B =1+ Ap

and B = [+ Ap. The ansatz BG = BG leads to the compatability
condition BB = BB or

I+ M) I+ Ap) = (I+ Ap)(I+ \p) (2.19)
which gives: B
S~ (AN (7L
p=0-nr-n" (2.20)
p=p=-pprp-p"

Thus B and B are completely determined. To show that they give

dressed solutions we note that since det Bdet B = det Bdet B the
zeroes of det B are the same as the ones of det B (and the ones of

det B coincide with those of det E) Therefore they do not depend

on z and ¢. Moreover at these points the kernel of BG coincides
with the one of G. Thus it does not depend on z or ¢ either. Now
theorem [I5 gives the desired result. ]

Geometry of the Backlund transformation

As before let v : I — R3* = ImH be an arclength parametrized
regular curve. Moreover let v : I — R?® = ImH, |v| = [ be a
solution to the following system:
5 = 1
=ty (2.21)
7
Then 7 is called a Traktrix of 7. The forthcoming definition in this
section is motivated by the following observation: If we set v = v+v

it is again an arclength parametrized curve and 7 is a Traktrix of &
too. One can generalize this in the following way:

Lemma 17 Let v : I — ImH be a vector field along v of constant
length | satisfying

/

v =2vb — b2

X < '>

l PR 20+ (2.22)

N

\,,
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with 0 < b < 1. Then v = v+ v is arclength parametrized.

Proof Obviously the above transformation coincides with the dress-
ing described in the last section with b = % in formula (2.16).
This proves the lemma. ]

So Im(p) from theorem [7 is nothing but the difference vector
between the original curve and the Backlund transform. Note that
in the case b = 1 one gets the above Traktrix construction, that is
for ¥ = v+ v holds 7’ || v. This motivates the following

Definition 4 The curvey = v+ %U with v as 1 lemma |17 is called
a twisted Traktrix of the curve v and v = v+ is called a Backlund
transform of .

Moreover equation (R.22) gives that v L v and therefore |v| =
const. Since v = 7 — v we see that the Backlund transform is in
constant distance to the original curve.

2.3 The Hashimoto flow, the Heisenberg flow,
and the nonlinear Schrodinger equation in
the discrete case

In this section we give a short review on the discretization (in space)
of the Hashimoto flow, the isotropic Heisenberg magnetic model,
and the nonlinear Schrodinger equation. For more details on this
topic see [FT8G, BS99, NS99] and Chapter .

We call a map v : Z — ImH a discrete regular curve if any
two successive points do not coincide. It will be called arclength
parametrized curve, if |y,41 — .| = 1 for all n € Z. We will use the

notation .S, := v,21 — v, The binormals of the discrete curve can

SnXSn,1
be defined as CAr

There is a natural discrete analog of a parallel frame:

Definition 5 A discrete parallel frame is a map F : Z — H* with
|\ Fi| = 1 satisfying

S, = F lF, (2.23)
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Im ((f_i1j~7:n+1)(‘7'—n_lj~7:n)) H Im (SnHSn) . (2-24)

n

Again we set F,.1 = A,F, and in complete analogy to the contin-
uous case eqn (R.24) gives the following form for A :

A—COS%—Sln—eXp ( ZTk>

with ¢, = £ (S, Sp+1) the folding angles and 7, the angles between
successive binormals. If we drop the condition that F should be of
unit length we can renormalize A, to be 1—tan 2 exp (i Y _j_, 7) € =:
1 —W¥,t with ¥,, € span(1,i) = C and |V, | = mn the discrete (real)
curvature.

Definition 6 We call U the complex curvaturd] of the discrete curve
.

Discretizations of the Hashimoto flow (R.4) (i. e. a Hashimoto
flow for a discrete arclength parametrized curve) and the isotropic
Heisenberg model (eqn (R.10)) are well known [FT86G] (see also
[BS9Y] for a good discussion of the topic). In particular a discrete
version of (R.4) is given by:

. Sk X Sk-1
=9 2.25
T 1+ <Sk, Sk_1> ( )

which implies for a discretization of (2.10)
g =2 Skt X Sk Sp X Sp-1 (2.26)

L+ (Skt1, %) 14 (Sk, Sk-1)

Let us state the zero curvature representation for this equation too:
Equation () is the compatibility condition of U, = V.1 Up—U,V;
with

Ui = I+ A\Sk
Vi = 1 9)2 Sk+Sk—1 2\ Sk X Sk—1 (2'27)
k 1+)2 14+(Sk,Sk— 1> 14+(Sk,Sk—1)
It would be more reasonable to define A = 1 — —E which implies &, = Ztan - but

notational simplicity makes the given definition more convement
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The solution to the auxiliary problem

Git1 = Ur(\)Gy

Gy = Vi(\Gy (2:28)

can be viewed as the frame to a discrete Hashimoto surface 7(t)
and one has the same Sym formula as in the continuous case:

Theorem 18 Given a solution G to the system ([2.28) the corre-
sponding discrete Hashimoto surface can be obtained up to an eu-
clidian motion by

(D) = (G T Gilaco (2.29)

Proof One has Gk a,\Gk|/\ 0= Zf:_ol S; = . for fixed time ¢ty and

, 0 %) Sk X Sk-1
—0) =2 :
( k 8)\Gk‘)\ 0) (a)\ (A)‘)\—O) 1+ <Sk,Sk—1>

[

To complete the analogy to the smooth case we give a discretiza-

tion of the NLSE that can be found in [AL76] (see also [FT8RE,
Surd7)):

— iUy = Uy — 20 + Uy 4 |02 (T 4+ U ). (2.30)

Theorem 19 Let v be a discrete arclength parametrized curve. If
v evolves with the discrete Hashimoto flow (12.23) then its complex
curvature ¥ evolves with the discrete nonlinear Schrodinger equa-

tion (2.30)

A proof of this theorem can be found in [[sh82] and Chapter B.
There is another famous discretization of the NLSE in literature
that is related to the dIHM [IKRT, E'T86]. Again in Chapter B it is
shown that it is in fact gauge equivalent to the above cited which
turns out to be more natural from a geometric point of view.
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2.3.1 Discrete elastic curves

As mentioned in Section B.2.]] the stationary solutions of the NLSE
(i. e. the curves that evolve by rigid motion under the Hashimoto
flow) are known to be the elastic curves. They have a natural
discretization using this property:

Definition 7 A discrete elastic curve is a curve v for which the
evolution of ~y, under the Hashimoto flow (12.23) is a rigid motion
which means that its tangents evolve under the discrete isotropic
Heisenberg model ([2.26) by rigid rotation.

In [BS9Y] Bobenko and Suris showed the equivalence of this defini-
tion to a variational description.

The fact that (R.26) has to be a rigid rotation means that the
left hand side must be S,, X p with a unit imaginary quaternion p.
We will now give a description of elastic curves by their complex
curvature function only:

Theorem 20 The complex curvature V,, of a discrete elastic curve
v, satisfies the following difference equation:

v
c——2
L4 |0, [?

for some real constant C.

=V, + U, (2.31)

Equation (2.31)) is a special case of a discrete-time Garnier system
(see [Sur94)).

Proof One can proof the theorem by direct calculations or us-
ing the equivalence of the dIHM model and the dNLSE stated in
theorem [[9. If the curve 7 evolves by rigid motion its complex cur-
vature may vary by a phase factor only: ¥(xz,t) = e*®W(x, ty) or
¥ = iAU. Plugging this in eqn (2.30) gives

AU =y — 20 + Uy 4 [T (W + Ty y)

which is equivalent to (R.31)) with C =2 — A
]
As an example Fig .7 shows two discretizations of the elastic
figure eight.




E 42 CHAPTER 2. DISCRETE HASHIMOTO SURFACES

o OO

Figure 2.2: Two discretizations of the elastic figure eight.

2.3.2 Backlund transformations for discrete space curves
and Hashimoto surfaces

Algebraic description
In complete analogy to Section we state

Theorem 21 Let Gy be a solution to equations ([2.28) with Uy and
Vi as in (2.27) (i. e. U(1) — I solves the dIHM model). Choose
Ao, So € C. Then Gk(/\) = Bk(/\)Gk(/\) with Bk()\) = (]H—)\pk),pk €
H defined by the conditions that Ay, \g are the zeroes of det(By(\))
and

N (310) ~0 and é,ﬂ@( 1_) —0 (2.32)

solves a system of the same type. In particular
U(1) — 1= G,(1)G™'(1) — T
solves again the discrete Heisenberg magnet model ([2.24).

Proof Analogous to the smooth case. ]
Ezample Let us dress the (this time discrete) straight line again:
We set S,, =1 and get

Go(N) = (I+ N)"exp(—2:25t)

(14 et 0
0 (1 —ixe?w!
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: e : a b
After choosing \g and sy and writing again p = ( b oo ) we get
. 22 22
with the shorthands p = (1 +4\)"e 272" and g = (1 — i\)" e T3’

p = —Ao(pa+ soqb)
qg = Ao(pb— soqa)

which can be solved for ¢ and b :

=)

I

|
<lrs| Oy!HI
Qlks
pl
< »
vt
<
S

hSAS

(2.33)

S
[
élal
EE
£

NS
w
(=)
|
(e}
ST

Again we can write the formula for the curve 7 :

- Im(a,) 4+ in b,

Figure shows two solutions with sy = 0.54+¢ and \g = 0.4—0.42
and \g = —0.47 respectively. The second one is again planar. Note
the strong similarity to the smooth examples in Figure B.1].

Of course one has again a permutability theorem:

Theorem 22 (Bianchi permutability) Let ¥ and 5 be two Bick-
lund transforms of . Then there is a unique discrete Hashimoto
surface 7 that is Bdcklund transform of v and 7.

Proof Literally the same as for theorem [L6. ]

Geometry of the discrete Backlund transformation

In this section we want to derive the discrete Backlund transforma-
tions by mimicing the twisted Traktrix construction from Lemma [[7:

Let v : Z — ImH be an discrete arclength parametrized curve.
To any initial vector v, of length [ there is a S'-family of vectors
vp41 of length [ satisfying |v, + vy, — (Y41 + vpy1)| = 1. This is
basically folding the parallelogram spanned by v, and S, along the

\

A

=\
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Figure 2.3: Two discrete dressed straight lines and the corresponding Hashimoto
surfaces
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Figure 2.4: The Hashimoto surface from a discrete elastic eight.

diagonal S,, — v,,. To single out one of these new vectors let us fix
the angle 0; between the planes spanned by v,, and .S,, and v,,.1 and
Sy (see Fig. R.5). This furnishes a unique evolution of an initial v
along v. The polygon 7, = v, + v, is again a discrete arclength
parametrized curve which we will call a Bdacklund transform of ~.
There are two cases in which the elementary quadrilaterals (7,
Yn+1s Yntls Jn) are planar. One is the parallelogram case. The other
can be viewed as a discrete version of the Traktrix construction.

Definition 8 Lety be a discrete arclength parametrized curve. Given
01 and vy, |vg| =1 there is a unique discrete arclength parametrized
CUTve Yy = Yn+v, with |v,| = 1 and Z(span(v,, S,), span(v,1,.5,)) =
1.

~ is called a Backlund transform of v and 7 = v + %U is called a
discrete twisted Traktrix. for v (and 7).

Remark Note that in case of 6 = 7 the cr(v,7,%4,7v:) = (2. So this
Backlund transformation is a special case of the ones from Chapter [l
then.

Of course we will show, that this notion of Backlund transformation
coincides with the one from the last section. Let us investigate
this Backlund transformation in greater detail. For now we do not
restrict our selves to arclength parametrized curves. We state the
following
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Figure 2.5: An elementary quadrilateral of the discrete Backlund transformation

Lemma 23 The map M sending v, to v,.1 in above Bdcklund
transformation is a Mobius transformation.

Proof Let us look at an elementary quadrilateral: For notational

simplicity let us write S = Vi1 —Yns S = Fnst — Vs S| = s, v =0y,

and vy = v,41. If we denote the angles Z(S,v) and Z(vy,S) with

g and ¢, we get

g ket =1
e —k

with & = tan % tan %2 and ¢; and &y as in Fig. @ Note that [, s, k,
01, and d9 are coupled by

(2.34)

51 62 [ sin 52
k=tan —tan — - = . 2.
WY s T sin 01 (2:35)

To get an equation for v, from this we need to have all vectors in

one plane. So set o = cos & -+ sin %5 Then conjugation with o is
P 5 . jug

2
a rotation around S with angle §;. If we replace ¢4 by %'_1 (%)71

and €' by —%v;ll equation () becomes quaternionic but stays
valid (one can think of it as a complex equation with different “i”).
Equation (2.34) now reads

vy S Sovo ST —k

ls %0@0—15—1 —1

We can write this in homogenous coordinates: H? carries a nat-
ural right H-modul structure, so one can identify a point in HP?
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with a quaternionic line in H? by p = (r,s) <= p = rs'. In this
picture our equation gets

%U+S \ = 70 —kSo v
1 \ B —So 1)
Bringing /s and S on the right hand side gives us finally the matrix
1 !
_( x0 50
M:: ( % S ) : (2.36)

Since we know that this map sends a sphere of radius [ onto itself, we
can project this sphere stereographically to get a complex matrix.

The matrix
21 =21
r=(7 )

projects 1S? onto C. Its inverse is given by

_ 1 2l;
1 _— —
Fr=1 < 2t ) '

o~ e

One easily computes

_ 1 [ v+iRe(Si) 2[Im(Si)j
— PMP == 2.
Me =FPM 1 < _1Tm(S)) v—iRe(si) ) 237
§1. 1
with v = zs% This completes our proof. O
tanTi—l
Remark '

—  Using equation (R.35) one can compute

) 1 — k2 ) 1 — k2
V:stan—l——I—il — [tan =

—————+il. (238
2 tan? & + k2 2 tan? 2 + k2 (2.38)

So the real part of v is invariant under the change s « [,
01 < 09. Therefore instead of thinking of S as an transform of
S with parameter v one could view v, a transform of v with
parameter v 4 i(s — [).
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One can gauge Mc to get rid of the off-diagonal 2/ factors

1
= ) w0 5)
0 V2 V2l

Then we can write in abuse of notation
M=vI-S (2.39)

Here vI is no quaternion if v is complex. The eigenvalues of
M and M clearly coincide and M obviously coincides with

the Lax matrix Uy of the dIHM model in equation (2.27) up to

a factor % with A = —%.

As prommised the next lemma shows that the geometric Backlund
transformation discussed in this section coincides with the one from
the algebraic description.

Lemma 24 Let S,v € ImH be nonzero vectors , |v| =1, S and vy
be the evolved vectors in the sense of our Bdcklund transformation
with parameter v (Imv =1). then

AL+ S)(AI+ Rev +v) = (Al 4+ Rev + v )(AI+S)  (2.40)
holds for all \.
Proof Comparing the orders in A on both sides in equation (2.40)

gives two equations

S+Rev+v = Rev+uv,+S (2.41)

~

S(Rev+v) = (Rev+wvy)S. (2.42)
The first holds trivially from construction the second gives

Rev = (038 — Sv)(S — S) 7.

Q

This can be checked by elementary calculations using equation (R.3§)
for the real part of v.

Like in the continuous case we can deduce that Im(p,) = v, =
Yn — vn Which gives us the constant distance between the original
curve v, and its Backlund transform 7,.

[
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2.4 The doubly discrete Hashimoto flow

From now on let v : Z — Im H be periodic or have at least periodic
tangents S, = Y41 —"Y, With period N (we will see later that rapidly
decreasing boundary conditions are valid also). As before let 7 be a
Bécklund transform of v with initial point ¥y = v+ v, |vo| = I. As
we have seen the map sending v,, to v,,1 is a Mobius transformation
and therefore the map sending vy to vy is one too. As such it has
in general two but at least one fix point. Thus starting with one
of them as initial point the Bécklund transform 7 is periodic too
(or has periodic tangents S). Clearly this can be iterated to get a
discrete evolution of our discrete curve ~.

Lemma 25 Let v be a discrete curve with peritodic tangents S of
pertod N. Then the tangents S of a dressed curve v with the param-
eters Ao and sy are again periodic if and only if the vector (1, sg) is
an eigenvector of the monodromy matriz G (X) at X = Xg.

Proof We use the notation from Theorem 1. Since v, — v, =
v, = Im(p,) and since B(\) = I+ Ap is completely determined by
Ao and v we have, that By(A) = By(\). On the other hand on can
determine B(A) by A and sy. Since Gy(\) = I condition says
that (810) and Gn()\o)(slo) must lie in ker By(Ag). O

A Lax representation for this evolution is given by equation (2.42)
which is basically the Bianchi permutability of the Backlund trans-
formation.

In the following we will show that for the special choice [ = 1 and
01 ~ 7 the resulting evolution can be viewed as a discrete smoke
ring flow. More precisely one has to apply the transformation twice:
once with d; and once with —¢;. In Chapter B we will show, that
under this evolution the complex curvature of the discrete curve
solves the doubly discrete NLSE introduced by Ablowitz and Ladik
[AT.77], which of course is an other good argument.

Proposition 26 A Mobius transformation that sends a disc into
its inner has a fix point in it.
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Figure 2.6: An elementary quadrilateral if [ =1 and 0; ~ §

Now we show the following

Lemma 27 If Z(—S_,v) < e, € sufficiently small, there ezists a 6y
such that Z(—S,vy) < e.

ke'—1

Proof With notations as in Fig 2.6 we know e = = and
q € [p—€, ¢+ € giving us
NN o o (K*=1)sin(¢ +e¢)
2 =2iIme'? =2
PO = Sr e Z(k2+1)—2kcos(¢:|:e)
which proofs the claim since k goes to 1 if 41 tends to 3. ]

Knowing this one can see that an initial vy with Z(—Sy_1,v9) < €
is mapped to a vy with Z(—=Sn_1,vy) < €. Above Proposition gives
that there must be a fix point py with Z(—Sy_1,p0) < €.

Figure 2.7: An oval curve under the Hashimoto flow and the discrete evolution
of its discrete pendant.
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But if p, =~ —95,_1 we get v, = v,_1 and 7, — V,_1 is close to
be orthogonal to span(S,,_2,S5,_1). So it is a discrete version of an
evolution in binormal direction —plus a shift. To get rid of this shift,
one has to do the transformation twice but with opposite sign for
d1. Figure 2.7 shows some stages of the smooth Hashimoto flow for
an oval curve and the discrete evolution of its discrete counterpart.
In general the double Backlund transformation can be viewed as a
discrete version of a linear combination of Hashimoto and tangential
flow—this is emphasized by the fact that the curves that evolve
under such a linear combination by rigid motion only coincide in
the smooth and discrete case:

2.4.1 discrete Elastic Curves

As a spin off of the last section one can easily show, that the elas-
tic curves defined in Section as curves that evolve under the
Hashimoto flow by rigid motion only do the same for the doubly
discrete Hashimoto flow. Again we will use the evolution of the
complex curvature of the discrete curve. We mentioned before that
in the doubly discrete case the complex curvature evolves with the
doubly discrete NLSE given by Ablowitz and Ladik [AL77, Hof99h].

We start by quoting a special case of their result which can be
summarized in the following form (see also [Sur97))

Theorem 28 (Ablowitz and Ladik) given

Lo=( 4 )

and V() with the following pu—dependency:

Vn(,u) = M72v—2n + ,uilv—ln + Vbn + Ml‘/ln + ,MQ‘/Zn

~

Then the zero curvature condition V41 () Ly (1) = L (1) Vi (1t) gives
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the following equations:

(Z]vn - Qn)/Z = O4Qpt+1 — QpGn + 50%_— @+§n—1
+(a+QnAn+1 - a—f—an-An)
T Gorr + o g )+ [T )A (243)
An—l—l - An = anan—l — qn+19y,
Apa(1+ |Qn‘2) = Ap(1+ |an‘2)

with constants a, ag and a_.

In the case of periodic or rapidly decreasing boundary conditions
the natural conditions A, — 0, and A,, — 1 for n — 400 give
formulas for A,, and A,,:

n—1
An = @nqp 1 + Z(qﬂj—l — qjq;1)
J=Jo
7 Lt 1l
b=l
J=Jo 9
with jo = 0 in the periodic case and j; = —oo in case of rapidly

decreasing boundary conditions.

Theorem 29 The discrete elastic curves evolve by rigid motion un-
der the doubly discrete Hashimoto flow.

Proof Evolving by rigid motion means for the complex curvature
of a discrete curve, that it must stay constant up to a possible global
phase, i. e. @Dn = 62’9\11 Due to Theorem @ the evolution equation
for 1, reads

= a Wy — oW, + 5Q\Tfn —a, U, + (a Wy Ay i
—a, U, A) + (—a VY, +a U, )(1+]|P,[HA

Using e‘i‘)Jn = e, gives A, = 1, A, = e*¥, ¥, _;, and finally

2 (sinf + Re(e”ay)) T -
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= (ewcmr + ewoz_) U, 1+ (€i9a+ + ewoz_> U, _1.
So the complex curvature of curves that move by rigid motion solve

v

Tgp = e e T (2.44)

with some real parameters C and p which clearly holds for discrete
elastic curves. [
Remark The additional parameter p in eqn (B.44) is due to the
fact that the Ablowitz Ladik system is the general double Backlund
transformation and not only the one with parameters v and —7.
This is compensated by the extra torsion y and the resulting curve
is in the associated family of an elastic curve. These curves are
called elastic rods [BS99].

2.4.2 Backlund transformations for the doubly discrete
Hashimoto surfaces

Since the doubly discrete Hashimoto surfaces are build from Back-
lund transformations themselves the Bianchi permutability theo-
rem (Theorem P2) ensures that the Backlund transformations for
discrete curves give rise to Backlund transformations for the dou-
bly discrete Hashimoto surfaces too. Thus every thing said in sec-
tion holds in the doubly discrete case too.

Conclusion

We presented an integrable doubly discrete Hashimoto or Heisen-
berg flow, that arises from the Backlund transformation of the (sin-
glely) discrete flow and showed how the equivalence of the discrete
and doubly discrete Heisenberg magnet model with the discrete and
doubly discrete nonlinear Schrédinger equation can be understood
from the geometric point of view. The fact that the stationary so-
lutions of the ANLSE and the ddNLSE coincide stresses the strong
similarity of the both and the power of the concept of integrable
discrete geometry.
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Let us end by giving some more figures of examples of the doubly
discrete Hashimoto flow.

The thumb nail movie in the upper right side and Figure £.§
show a periodic smoke ring flow . The curve is a double eight that
is in the family of generalized elastic curves from Chapter [[. This
one parameter allows to kill the translational part of the evolution.

Figure 2.8: A discrete double eight that gives a Hashimoto torus. The green line
is the trace of one vertex.
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Figure 2.9: The doubly discrete Hashimoto flow on a equal sided triangle with
subdivided edges.



Chapter 3

On the equivalence of the
discrete nonlinear Schrodinger
equation and the discrete
isotropic Heisenberg magnet.

3.1 Introduction

The equivalence of the discrete isotropic Heisenberg magnet (IHM)
model and the discrete nonlinear Schrodinger equation (NLSE) given
by Ablowitz and Ladik is shown. This is used to derive the equiva-
lence of two important discretizations of the NLSE found in litera-
ture. Moreover a doubly discrete IHM is presented that is equivalent
to Ablowitz’ and Ladiks doubly discrete NLSE.

The gauge equivalence of the continuous isotropic Heisenberg
magnet model and the nonlinear Schrodinger equation is well known
[E'T86]. On the other hand there are several discretizations of the
nonlinear Schrodinger equation in literature (e. g. . [AL76, IKRT,
DJIMK2h, ONCvdL84]). In particular there are two famous ver-
sions with continuous time. One introduced by Ablowitz and Ladik
[AT76] (from now on called dNLSE,;) and one given by Izgerin
and Korepin [IK&T] (from now on referred to as ANLSEf) (see also
[E'T86]). The second can be obtained from the discrete (or lattice)
isotropic Heisenberg magnet model (dIHM) with slight modification
via a gauge transformation [ETR6].

26
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In this chapter the gauge equivalence of the dIHM model and
the dNLSE 4 is shown. In fact this is in complete analogy to the
continuous casef]. The equivalence of the two discretizations of the
nonlinear Schrodinger equation is derived from this.

In addition in Section B.3 a doubly discrete (with discrete time)
version of the THM model is given that links in the same way with
the doubly discrete NLSE introduced by Ablowitz and Ladik in
[AT77]. Tt first appeared in a somewhat implicit form in [[D.IM82a,
QNCvdL84).

In Chapter P we explained the geometric background of the inter-
play between IHM model and NLSE (see also [BS99, DS99]). From
the geometric point of view the dNLSE 47 seems to be the more
natural choice.

As before we will identify R? with su(2) that is the span of i,j,
and € where

o 0 . 0 ¢
122032(0_2,) ]220'12(2,0)
Ez—idgz((l)_(f).

3.2 Equivalence of the discrete Heisenberg mag-
netic model and the nonlinear Schrodinger
equation

The dIHM model and the dNLSE 4 are well known [AL76, FT86,
BS99, Surd7]. In this section it is shown that—as in the smooth
case—both models are gauge equivalent. We start by giving the
discretizations.

The dNLSE 4, has the form:

— iU = Uy — 20 + Uy 4 [P (Tpgr + Uy, (3.1)

Tt seem to have first appeared in [[sh82] with no explicit reference to the THM.
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It has the following zero curvature representation (see [AT76, Sur97])
Ly = My Ly — Ly M, (3.2)
with ]Alk and ]\/4\k of the form

L = _
G = (g )
2 . . . 0, . _1 .
= pre— o+ oWy Wy — p W
M = — — —
k('u) ( AR M_li\l’k —,u_2z' +1— WV
were ~ denotes complex conjugation. Aiming to the forthcoming

) and get

(3.3)

theorem we gauge this Lax pair with ( VH

0 \//g—l
min = (5, 7) (55

WU Wy — a0y
M = — — —
k<'u) ( — W1+, —iW VL ) +

! ( _ﬁlk—l \P]il > ( i(lﬁo— ! —Z'(H_OQ -1 ) '
(3.4)

We now turn our attention for a moment to the discrete isotropic
Heisenberg magnet model. It is given by the following evolution

equation

g =9 Shk41 X Sk

_ 9 Sk; X Sk;—l

1+ (Sk+1,Sk) 1+ (Sk, Sk-1)
with the S being unit vectors in R3. Its zero curvature representa-
tion is given by

(3.5)

Uy = ViU — UrVi (3.6)
with U and V), of the form
U. = T+ M\S;
3.7)
1 Si+Si SpxSk_1 (
Vk - BRESY <2)\2 1+2€Sk;§k—11> + 2)\%)

if one identifies the R? with su(2) in the usual way. Now we are
prepared to state
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Theorem 30 The discrete nonlinear Schrodinger equation ANLSE 5,
(5.1) and the discrete isotropic Heisenberg magnet model dIHM

) are gauge equivalent.

Proof We use the notation introduced above. Let F be a solution
to the linear problem

Fenr = Li()Fs,  Fr = Mp(1)Fp = (Mp(1) + FrcF, V) Fie (38)

with a constant vector c. Since ]\/Zkﬂ(l)Lk.(l) — Lk(l)]\/ik(l) =
M1 (1) Li(1) — Lip(1)My(1) = Lj(1) the zero curvature condition
stays valid and the system is solvable. The additional term Fj.cF, !
will give rise to an additional rotation around c in the dIHM model.
The importance of this possibility will be clarified in the next sec-
tion. Moreover define

Note that this implies that
Sk xS
15k X Sl _ g, (3.10)

1+ (Sk, Sk+1)
In other words: |V = tan(%) with ¢r = Z(Sk, Sk+1). We will
show, that the S}, solve the dIHM model (if ¢ = 0). To do so we use
F~1 as a gauge field:

Ly () = Fih L) Fu = 7 ( g p! ) 7

1Hid _ _14i) —1 _ _1-i)
one gets = = NiEY and one can

1—id V122

If one writes u =
conclude that

1 o T4+ 1
ka (A):fkl

L =
V14 A2 V14 A2
This clearly coincides with Ug(\) up to the irrelevant normalization
factor \/ﬁ On the other hand one gets for the gauge transform

of Mj,(11)
MT () = FMy () Fr — F ' F = F (M (p) — My(1) — FreF; ) Fi

(I + ASy). (3.11)

(9
_ flek_1<1>fkfk1< Y —i(u—2—1>>fk_c
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But with above substitution for i one gets

i(p? —1) 0 AR
( 0 —i(p2-1) ) : 1+ A2 (3.12)

and since F; ' Ly_1(1)Fy = F; ! Li-1(1) Fr—1 we get

FlLy () Fe =1+ F 2 (Im(Ty_1)j — Re(Vy_1)€) Fry
=1+ F, ' (Im(V;_1)j — Re(Vy_1)E) Fi

Remember that S, = F,;li]:k and Sp_1 = f,;_lli]:k_l. Using equa-
tion (B.10) and the fact that i and Im(W;_1)j — Re(Wy_1)t anti-
commute we concludell

. Sk X Sk—1
Fi'Lpa (D) Fe =1 . 3.13
w Li—1(1)F; +1+<Sk,Sk—1> ( )
Combining this and equation (B.12) one obtains for the gauge trans-
form of M,
M) = -2 (1 (2t ) s

=2 Sk X Sk_ 2 (SkxSk-1)9,

— 112 ()‘H + )‘1+£€Sk,§k_11> +A (Sk + 141-6(5;5;—1;)) —C
9\ 2 Sk X Sk_ 2 SptSk—

- 1+>\2H o 1+)\2 (Al-i-écsk,g’klﬁ + >\ 1+?Sk7§k11>) - ¢

= %H—FV;@(A) —c.

(3.14)
Since the first term is a multiple of the identity and independent
of k it cancels in the zero curvature condition and therefore can be
dropped. This gives the desired result if ¢ = 0. ]

3.2.1 Equivalence of the two discrete nonlinear Schro-
dinger equations

There has been another discretization of the nonlinear Schrodinger
equation in the literature [IKR8T, FT86G]. It can be derived from a

2to fix the sign of the second term one needs to look at the sign of the scalar product

<]—"I;1 (In(Wj—1)j — Re(Wh1)b) Fi, g St >
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slightly modified dTHM model by a gauge transformation. Since
we showed that the ANLSE,; introduced by Ablowitz and Ladik is
gauge equivalent to the dIHM it is a corollary of the last theorem
that the two discretizations of the NLSE are in fact equivalent.

The method of getting the variables of this other discretization
is basically a stereographic projection of the variables Sy from the
dIHM [F'TR6]: One defines

2(Sk +1) — |Sk +1il%

VISk + it 4+ [2(Sk +1) — | Sk + i
(3.15)

Xk = X(Sk) = V2(-1)F

or

S = (1= xl)i+1Im (ﬁ(—l)’fxm/l — %)J
—Re (ﬁ(—l)k)(k\/l — @) £

If one modifies the evolution (B.5) by adding a rotation around i
Skt X Sk 2 Sk X Sk-1
1+ (Se1, Sk) 1+ (Sky Sk—1)

Writing this in terms of the new variables y; gives rise to the fol-
lowing evolution equation (ANLSE;x):

(3.16)

Sy =2

— 48, x 1. (3.17)

. Prrv1 Prg—1
—ixy = 4xp + 0 + = 3.18
Qrir1 Qri—1 (3.18)
where
2 2
Pn,m = - (Xn -+ Xm\/l - %\/1 - % - Xn‘Xm‘z_
1 2 N
~ 1 (X + XXm) 27
T2
and

| 2

Qun = 1= 3(Dal? + Pl + (0 + Tom) /1 = 24

2
1= P Pl ).
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This evolution clearly possesses a zero curvature condition U, =
ViU — Ui Vi with

Ve(A) = Vi(A) — 20 (3.19)
since one can view Sy as a function of y; via equation (B.16).

Theorem 31 The dNLSErk (13.18)and the ANLSE 4y, (5.1) are gauge
equivalent.

Proof This is already covered by the proof of theorem BO0. []
Since the S are given by S = F,;li]:k the xj are functions of the
U, and vice versa, but these maps are nonlocal.

3.3 A doubly discrete IHM model and the dou-
bly discrete NLSE

In the following we will construct a discrete time evolution for the
variables S that—applied twice—can be viewed as a doubly dis-
crete IHM model. In fact it will turn out that this system is equiva-

lent to the doubly discrete NLSE introduced by Ablowitz and Ladik
[AT.77]. We start by defining the zero curvature representation.

Uk()\) =T+ \S;
(3.20)
Vk(/\) =1+ /\(7“]1 + Uk)

with r € R. The v; (as well as the S;) are vectors in R? (again
written as complex 2 by 2 matrix). The zero curvature condition
LiVi = Vi1 Ly should hold for all A giving vy, + Sy = Sy + vgs1 and
T(gk — Sk) = Vp1Sk — Siup. (Here and in the forthcoming we use ~
to denote the time shift.) One can solve this for vy, or Sy getting

Ukil = (Sk — UV — r)vk(Sk — Vg — 7“)71

Sk; = (Sk; — UV — T)Sk(Sk — U — 7“)_1. <3.21)

This can be interpreted in the following way: Since S, Vi1, —gk,
and —v;, sum up to zero they can be viewed as a quadrilateral in R3.
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But equation (B.21]) says that vy, and S are rotationsf] of v, and
Si around S; — v. So the resulting quadrilateral is a parallelogram
that is folded along one diagonal. See Chapter B to get a more
elaborate investigation of the underlying geometry.

Equation (B.21)) is still a transformationf] and no evolution since
one has to fix an initial vy. But in the case of periodic S} one can
find in general two fix points of the transport of vy once around the
period and thus single out certain solutions. If on the other hand
one has rapidly decreasing boundary conditions one can extract
solutions by the condition that §k — x5, for £k — o0 and £k —
—o00. But instead of going into this we will show, that doing this
transformation twice is equivalent to Ablowitz’ and Ladiks system.

Let us recall their results.

Theorem 32 (Ablowitz and Ladik 77) Given the matrices

w-(4 1) (5,2

and Vi(u) with the following u—dependency:
%(u) — M—ZV}C(—Q) + Vk:(O) + MZV}C(Q)

with Vk(ﬂ) being upper and Vk(2) being lower triangular. Then the
zero curvature condition Vi1 (p)Lr(p) = Li(p)Vi(p) gives the fol-
lowing equations:

(U — 0 /i = ay Uy — oWy + agWy, — a, Uy
—|—(Od+\Ifk;.Ak+1 — a+@kzk)
—|—(—@_‘Ifk+1 + &_\Ifk_l)(l + |\Tfk|2)Ak

A — Ay = U0, — 0T,

At (1 W42 = Ag(1+ |02
(3.22)

3 Any rotation of a vector v in R3 = su(2) can be written as conjugation with a matrix o
of the form o = cos(%)ﬂ + sin(%)a where ¢ is the rotation angle and a the rotation axis with
la] = 1.

4In fact it is the Bécklund transformation for the dIHM model!
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with constants a, ag and a_.

In the case of periodic or rapidly decreasing boundary conditions
the natural conditions A, — 0, and A, — 1 for k — +oo give
formulas for Ay and Ay:

k—1
Ap =00y + Y (U0, — B0 )
J=Jo
k—1
1+ 0,2
AL = J
=i
J=Jo
with jo = 0 in the periodic case and jo = —oo in case of rapidly

decreasing boundary conditions.

Note that this is not the most general version of their result. One
can make ¥ and U independent variables which results in slightly
more complicated equations but the given reduction to the NLSE
case is sufficient for our purpose.

Theorem 33 The system obtained by applying the above transfor-
mation twice 1s equivalent to the doubly discrete Ablowitz Ladik sys-
tem in Theorem [32.

Proof The method is more or less the same as in the singly discrete
case although this time we start from the other side:
Start with a solution S). of the ddIHM model. Choose F}. such

that
fk_lifk = S

(FriiFrr), (FFD)] 1 [Sken, Skl

This is always possible since the first equation leaves a gauge free-
dom of rotating around i. Moreover define Lj(1) = Fj1F, " and
normalize F}, in such a way that L;(1) takes the form

(3.23)

Li(1) =T+ Ay
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equations (B.23) ensure that A;, € span(j, €) and thus can be written
A, = Re(U)8 — Im(Wy)j for some complex V. Equipped with this
we can gauge a normalized version of My (\) with F and get

M]g: = \/ﬁka_le()\)fk_l = Lk(l)\}%
T w0 (3.24)
a —ﬁkj 1 0 /JJ_l

if we write pu = % as before. On the other hand we get for

an—again renormalized—N(\)

ng: = #ﬁka(A)fgl = (% + /L).%kfk_l + (i — u)fk(r + vk)}"k_l
= Vo 4+ uVit
- (3.25)
But the zero curvature condition Lg(p) N7 (1) = N,ﬁl(u)Lk(u) yields

that V;* must be lower and V;~ upper triangular. Thus (N7 N7)(y)
has the p-dependency as required in Theorem B2. ]



Chapter 4

Discrete cmc surfaces from
discrete curves

4.1 Introduction

As we have mentioned in Chapter [, maps from Z? to R? with all
elementary quadrilaterals having cross-ratio —1 can serve as dis-
cretizations of isothermic surfaces. In particular they possess the
defining property of their smooth counterparts: They have a dual
surface.

The condition that this dual surface can—when properly scaled—
be placed in constant distance, can be used to define discrete sur-
faces of constant mean curvature (cmc surfaces) [BP99, HJHP99].

We also mentioned in Chapter [ that in general one can not
evolve a unique discrete isothermic surface out of a closed discrete
curve, since the fix point set of the holonomy matrix may have more
than two elements. In the case of discrete cmc surfaces however, we
can adopt the method to produce a unique surface from a curve that
allows this (not every discrete curve can serve as a curvature line
of a discrete cmc surface; more precisely one needs a stripe formed
by the curve and its dual). To derive this construction is the aim
of this chapter.

66
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4.2 Discrete isothermic and cmc surfaces

We start as usual with recalling some definitions. They can be found
e.g. in [BPYY]:

Definition 9 A discrete isothermic surface in R? is a map F :
7?2 — R3 for which all elementary quadrilaterals

[fn,ma fn—l—l,m?fn—kl,m—!—l)fn,m—i—l]

have cross-ratio _6_22 A dual surface F* of F s given by the equa-
tions

* _ f* — A fn+1,m*-7:n,m

n+1,m a2 | Fot1,m—Fnml|? (4 1)
f‘* _ f‘* — i f’rL,'rrL-l—l_FrLﬂn :

n,m m+1 67271 |~7:n,7n+1_fn,'rn|2

with A € R\ {0}. The dual surface is isothermic again.

In a narrow version of this definition one demands ﬁ" = 1. We will
do this in the following for notational simplicity although everything
can be done for the wide definition too.

Definition 10 A discrete isothermic surface is a discrete cmce sur-
face with mean curvature H # 0, if there is a properly scaled and
placed dual surface in constant distance

||an7m nm” = 77 (42)

Let us compute A. Figure f.1] shows the two types of quadrilaterals
that occur between the cmc surface and its dual.

Lemma 34 With the notations from Figure [{.1 we have

2h? = 12413

A = h?—r? (4.3)

Proof The proof is simple elementary geometry. ]
Note that r1 and ry are constant along the surface due to the con-
stance of h and A and that the role of r; and 7y in the figure can
change depending on the sign of A. Note also that the cross-ratios
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X I S
H}—n+1,m*-7:n,m” ||]:n,m+1*-7:n,m”

”-,'rn+1,m - fn,m” an,erl - Fn,m”

Figure 4.1: The quadrilaterals that occur between the cmc surface and its dual

of above quadrilaterals are :I:%. We continue by stating a lemma

Lemma 35 (Hexahedron lemma) Given a quadrilateral [y, x2,
x3, 4] in the complex plane and X\ € C then for each initial point z
there is a unique quadrilateral [z1, 2o, 23, z4] such that

CI‘(Zl,ZQ,Zg,Zzl) - CI'(CI:'1,.T2,.T3,.’1?4) = U
cr(z1, 20, o, 1) = cr(z3, 24, Ty, T3) = HA (4.4)
CI'(ZQ,Zg,ZE:;,ZUQ) — CI‘(Z4,Zl,l'1,$4) — )\

holds.

Remark In case of real y and A one can generalize this to points
in R3: Since four points with real cross-ratio always lie on a circle,
the five points [z, z9, x3, 4] and z; define a sphere that can be
interpreted as Riemann spheref].

4.3 CMC evolution of discrete curves

Let v be an immersed discrete space curve. It is a strong condi-
tion, that ~ possesses a “dual” curve in constant distance: Given
e and ¥ ||vk+1 — Y|l = 1 must hold. Thus the next point is al-
ways on a sphere of radius r; around the dual point of the previous
(Figure 1.2). We will call such a configuration a stripe.

!The ambiguity of orientation does not matter here
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Vk+1

Figure 4.2: For a stripe the next point must lie in constant distance to the dual
one of the previous.

Ezample

1. If v is planar and arclength parametrized—say in the j-€-plane,
choosing the dual curve as v* =~ 4 hi gives a valid stripe.

2. If v is a regular n-gon around 0 choosing v* = rv with r €
R\ {0} will give a stripe too.

Now we want to evolve such a stripe into a cmc surface:

Theorem 36 Let v, 0 and v, o form a stripe with some h and ry.

1. Choosing o1 on the sphere of radius ro = \/2h* — r? around

Yoo and use it as starting point for a Backlundtransform vy,
of Yno with p = —1 gives a new stripe v, 1, v, with the same
h and ry and || yn1 — v 0ll = r2 holds for all n.

2. Iterating this gives raise to a discrete cmc surface.

3. The map sending Vpk+1 — Vi 10 Ynt1h+1 — Vpy1x 05 @ Mobius
transformation of the sphere of radius ro. It can be represented
by the complex 2 X 2-matrix

— L4y (HS= 1)1 41, Re(iS™1)  —2r9 ) 1) (1STHE) s
Mz( L (HS )1+ 3(5 ) —2ra((HST1e)1,4) (‘S. B, > (4.5)
2 (HS 01455710 [ +(HS )12 Re(iS™)

with H = ~v* — ~.

Proof 1. follows directly from the Hexahedron lemma, since given
Yn,1 there are unique points v, 1, ¥n+1,1, and 7, 4 ; with the necessary
cross-ratios.
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2. is trivial. Thee proof of 3. is similar to the proof of Theorem 3.
To avoid repetitions we will leave it to the reader to do the details
here. ]

Now we can state

Theorem 37 Let 7,0 and 7,, form a closed stripe. Then the
holonomy matric H = [[ M, has in general two fix points that
give rise to an unique evolution of the curve into a cmc surface.

4.4 Examples

4.4.1 Delaunay surfaces

As a first example we can look at the evolution of the above regular
n-gon. It gives Delaunay surfaces i.e. rotational symmetric cmc sur-
faces. This is one of the three methods to construct them presented
in this work so we refer to Chapter f and f for figures of them.

4.4.2 Wente tori

As second example let us take a discrete elastic figure eight. Since
this is a planar arclength parametrized curve we can make it a
stripe by taking the dual as in the first example of the last section.
The surface we get is clearly a discretization of a Wente type cmc
surface. One needs to adjust the cross-ratio p however to get it
a torus. Figure .3 shows a closed one with fourfold symmetry.f
Compare these figures with Figure [7.2 and B.4.

4.4.3 Trinoidal surfaces

The third example comes form the following observation: if for a
closed stripe vo,7;, gk, and 7} lie on a straight line, one can fold
the stripe along this line. This holds e.g. for a regular 2n-gon (see
Figure f.4.3). Moreover it holds for the whole one-parameter family

2the closedness is a numeric result but the existence of discrete cmc tori has been shown e.g.
in [Haad).
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Figure 4.3: A discrete Wente torus

Figure 4.4: A folded regular 6-gon

of non-regular 6-gons, that preserve a two-fold symmetry. So let us
fold this family by an angle ¢ = 7 — %” Evolving this gives a cmc
cylinder but due to the fact that the two arcs of our initial stripe
are planar we can paste N copies of the surface rotated by k%r
k=0,...,N — 1 together. This gives a surface with the topology
of a sphere with N punctures.

Of course if N > 2 this surface is no longer a map from Z? to
R3 but from a graph build from quadrilaterals and two points with
2N outgoing edges. Since the edges are equivalents of curvature
lines one should think of these points as points where more than
2 curvature lines are intersecting. This makes it natural to define
these points as discrete umbilics (see also Section b.6 where discrete
versions of Smyth surfaces are introduced).
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It is a natural question whether one can archive embedded ends
for these surfaces, i.e. ends of Delaunay type.

Definition 11 The polynom

P() = 1/4te(H ()2 — det(H (1)) (4.6)

15 called spectral curve of the discrete curve =y

Lemma 38 The spectral curve is invariant under the evolution.

Proof Clear, since the holonomy matrix H evolves by conjugation.

]

Therefore a candidate for Delaunay type ends must have the

same spectral curve than the circle. Figure .5 shows a surface with
N = 3 and the spectral curve of the circle. Variables:
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Figure 4.5: A Trinoid
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Figure 4.6: A discrete cmc surface with the topology of a tubed hexagonal grid.



Chapter 5

Discrete Rotational CMC
Surfaces and the Elliptic Billiard.

5.1 Introduction

It is a well known fact, that the meridian curve of rotational con-
stant mean curvature (cmc) surfaces (which determines the surface
completely) can be obtained as the trace of one focal point of an
ellipse or hyperbola when rolling it on a straight line. In this chap-
ter it will be shown, that discrete rotational cmc surfaces can be
obtained in a similar way. In fact the meridian polygons are closely
related to the elliptic (or Hyperbolic) standard billiard: The discrete
analouge of the ellipse or hyperbola will be the trace of a billiard in
a continuous one.

In the continuous case it is well known that the rotational K and
cmc surfaces are closely related and it turns out that this holds for
the discrete case too: In fact they both come from the same discrete
difference equation. N. Kutz showed in [Kuf96] that rotational K-
surfaces are equivalent to the standard billiard in an ellipse. The
aim of this chapter is to show, that the billiard in turn gives discrete
rotational cme surfaces.

First we will give a very short review of the discrete surfaces we
have to deal with:

I6)
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5.2 Discrete rotational surfaces

Its a well known fact, that every (continuous) rotational surface al-
lows isothermic parametrisation. We introduced the discrete analog
of isothermic surfaces in Chapter . We will recall this definition
here:

Definition 12 A discrete isothermic surface in R® is a map F :
7?2 — R3 for which the elementary quadrilaterals

[Fn,m; Fn—l—l,m; Fn—i—l,m—i—la Fn,m—i—l]
have crossratioll = —1.8

A dual surface F* of F' is given by the equations:

Fm n_an
( ;;—s—Ln_F;ln) - )\|(Fm:11;L—Fm;z|)2
(P = Fi) = —Apmisihns) .0
m,n+1 mmn/ T | Frnp1—Fmn|?

with A € R\{0}. The dual surface is itself isothermic again.
In general one can obtain discrete rotational surfaces by rotating

a polygon P, € R? around an axis (e.g. the x-axis): Choose ¢ €
(0,7) and define F : Z* — R3 by

F(n,m) = F,m = ((Pn)1,co8(ng)(Pp)2,sin(ng)(Pn)2).  (5.2)
The condition for this surface to be isothermic isB:
P, — Poii]|? = 4|er|sin? %(Pn)g(P,Hl)g. (5.3)

This is equivalent to the condition that the cross-ratio of P,, P11
and their complex conjugates is constant. It can be interpreted as
an arclength parametrisation in the hyperbolic plane.

! As mentioned in Chapter ] The crossratio of four complex numbers a, b, ¢ anf d is given by

cr = EZ::)) ((2:;13 . Tt is invariant under Mo6bius transformations (fractional linear transformations

of the complex plane). The cross-ratio is real iff the four points lie on a circle. Therefore it is
possible to demand a real cross-ratio for points in space: They have to lie on a circle and this
defines a plane.

2We use the narrow definition here.

3Choose c¢r = —1 for the narrow definition of discrete isothermic
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5.3 Unrolling polygons and discrete rotational
surfaces

Let Q : Z — R? be a polygon, p € R? a fixed point. Think of this
as being a set of triangles A(Q,,, @11, p). Now take these triangles
and place them with the edges [Q,, @n+1] on a straight line e.g. the
x-axis. The result is a sequence of points F,. This new polygon P
is the discrete trace of p when unrolling the polygon () along the

z-axis (Fig. b.1)).

Figure 5.1: Unrolling a polygon

We can rotate this polygon P around the x-axis to obtain a
discrete rotational surface: Choose ¢ € (0,7) and define F : Z? —
R3 by

F(n,m) = Fym = ((Pn)1,cos(ng)(Pp)2,sin(ng)(Py)2)  (5.4)

The condition (5.3) for F' to be isothermic reads in therms of Q)

as follows:

1 1+ n— Bn
Loy cos(ay, — Bn) )
c 1 + cos(ay, + ()

where ay, = Z(Qn-1,Qn, D) » Bn = £, Qn, Qns1) and ¢ = |cr| sin® &.
Or equivalently:

(@)

(5.

tan % tan Pn _ const. (5.6)
5.4 The Standard Billiard in an Ellipse or Hy-
perbola

Let E be a given ellipse. Choose a starting point )y on E and a
starting direction in )y pointing to the inner of £. Shooting a ball
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in that direction will give a new point ()1 where it hits the ellipse
againf]. The new direction in (), now is given by the usual reflection
law: incoming angle = outgoing angle. This leads to a sequence
Qo, Q1,Qa, . .. (see fig. upper left). If one thinks of these points
as the vertices of a polygon, it is again a well known fact, that the
edges are tangential to either a confocal hyperbola or a confocal
ellipse, depending whether the first shot goes between the two foci
or not [KIe26]. In an hyperbola the situation is similar with the one
difference, that one has to change the branch if the shooting line
doesn’t hit the first branch twice (Fig. p.2).

'
[N

'
N

'
w

Figure 5.2: Billiard in an Hyperbola

5.5 Discrete Rotational CMC Surfaces

Now we have to recall the notion of a discrete surface of constant
mean curvature first defined in [BP99]. We will give it in the fol-
lowing way:

Definition 13 An isothermic surface F' is a cmc surface with mean
curvature H # 0 if there is a properly scaled and placed dual surface
F* of F in constant distance

1
F,,,—F°¢ ||l =— €R.
|Fvm = Frll = 57

namely the point where the ball hits again the ellipse after moving on a straight line.

4
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Figure 5.3: Billiard in an ellipse the meridian curve and the resulting discrete
cme surface

Examples for discrete cmce surfaces and a general construction mech-
anism can be found in [Hof99al.

Now we will see, that the polygon given by unrolling an elliptic
or hyperbolic billiard trace is the meridian of a discrete rotational
cmce surface. For shortness we will restrict ourselves to the elliptic
case. First we show, that it generates an isothermic surface:

Theorem 39 The polygon obtained by playing the standard billiard
in an ellipse together with one focus satisfies condition ).

Proof Let us denote the two foci of the ellipse by p and p. We
will use the fact, that the edges [@Q,, Q,.1] of the standard billiard
in the ellipse are tangential to a confocal ellipse or hyperbola. We
give the calculations for the case of the confocal quadric being an
ellipse. The other case can be treated completely analogous.

\

7 \

£
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If we look at the triangles made from p, Q,, and p we see that the
angle at Q,, is i, — B,. For the edges I, = [p—Q,| and [, = [p— Q)|
one has [, + [, = const. Set ¢ = |p — p| Now we have :

=10 —l—lNi — 2.1, cos(ay, — Bn). (5.7)
This gives:
(ot 4 Lug1)? — 12— 12 + 21,1, cos(a, — B,)

2ln+1’l\;ﬁ-1

1+ cos(api1 — Bnt1) =

(5.8)
Denote the point obtained by mirroring p at the straight line though
Qn-1 and @, by p, then |p — p,| = ¢ is constant too since the
intersection point of [Q,_1,@,] and [p,p,] is a point of the inner

ellipseﬂ. Since ‘Qn _ﬁ‘ = ‘Qn - ﬁn‘ and l(ﬁm@nap) = a+ [ one
has:

A =12+ 12— 2,1, cos(ay + 5,) (5.9)
And therefore:
(ln—|—1 + Zz+1)2 _ ly% - 2;21 + ZZnE;L COS(Oén + ﬁn)

2ln—|—1ln+1

Combining equations (pb.§) and (p.10) one gets:

1 + cos(apt1 — Bni1) _ (L + 1) — 12 — 12 + 21,1, cos(cv, — 5,)
1+ cos(an+1 + Bnt1) (l +1,)2 = 12 — 2 + 2,1, cos(an + 5,)
1 + cos(ay, — ()
= A1
1 + cos(a, + Bn) (5.11)

showing the invariance of ; Feos(am ) -

Discrete rotational cmc surfaces can be constructed by the gen-

1 + cos(api1 + Bni1) =
(5.10)

eral method presented in Chapter [§. Here we present an alternative
method based on above continuous construction. Will show that
above isothermic surfaces are even cmc—completing the analogy to
the smooth construction scheme. Here is the corresponding discrete

®One can see this from the fact that the normal of an ellipse in a point @ cuts the inner
angle Z(p, @, p) into half.
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Figure 5.4:

Theorem 40 The discrete rotational surface obtained by rotating
the unrolled trace of a ball in an elliptic (or hyperbolic) billiard (see
theorem [39) is a discrete rotational cme surface.

Proof To proof this, one has to find a dual surface in constant
distance. If we trace both foci when evolving the ellipse, we get
a second polygon P. Now mirror it along the axis (Fig. @) We
already saw in the proof of Theorem that the distance |P, —
ﬁn\ = ¢ is constant. From the reflection law one gets, that |P, —
Po,1| = |Pys1 — P,| = c and therefore is constant. So [P,, Ps1] and
[}Sn, ]3%1] are parallel and

[Py = Poa|* = 2 )
|Pn - Pn+1|2
This in turn leads to
A
P, — Pl = =———5—
|Pn - Pn—&—l‘

with \ = €72, 0
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Figure 5.5: A meridian and its dual



Chapter 6

Discrete cmc Surfaces and
Discrete Holomorphic Maps

6.1 Introduction

to construct all cme surfaces in R? by some holomorphic data. Ez-
plicit construction, however, is still difficult with this recipe, since
one has to do some splitting in loop groups, which in general can
only be done numerically and this means approximately. There-
fore the results are mainly of theoretical interest. In this chapter
I will present a discrete version—for discrete surfaces [BP99]—of
this recipe. In spite of its continuous counterpart it is rather useful
for the construction of (discrete) cmc surfaces, since it is exactly
solvable in the sense that the corresponding splitting can be done
explicitly. Moreover it will lead to a natural extension of the defini-
tion of discrete cmc surfaces allowing them to have umbilics. How-
ever, the construction is still difficult, since the problem is more
or less reduced to the construction of discrete holomorphic maps,
i.e. maps F : Z? — C with all quadrilaterals having cross-ratio
—1. This definition is due to Bobenko and Pinkall [BP96a] again.
Of course the standard grid gives such a map. It will lead to the
standard cylinder as the resulting cmc surface. A discrete version
of the exponential map can again be found in [BP96a]. But for at
least two more classical classes of cmc surfaces (rotational ones and

83

\
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the Smyth surfaces also known as n-legged Mr Bubbles) we will give
the generating discrete holomorphic maps.

In the rest of this chapter we will identify R? with the imaginary
quaternions in a slightly different way than before due to the conven-
tions in above cited papers. We set Im H = span(—ioy, —ioy, —ios) =
su(2) where

01 0 —i 1 0
1=\10) 2=\ 0 ) 7\0o -1 )

6.2 The DPW method

The method that Dorfmeister, Pedit, and Wu introduced in [DPW94]
works in a more general framework, but for our purpose the follow-
ing short overview shall suffice.

A main ingredient of the recipe is the interpretation of the moving
frame as a map into some loop group that allows an Iwasawa-type
decomposition. Therefore we introduce the following loop groups:

ASL(2,C), = {g: S' — SL(2,C)| g(=\) = o39(\)3},

and the splitting of A SL(2,C), into maps analytic inside and out-
side the unit circle:

A*SL(2,C),, A-SL(2,C),

and
A, SL(2,C), ¢ ASL(2,C),.

The subscript * denotes that the members are normalized to have
value I at co. Moreover let Asl(2,C), be the algebra corresponding
to ASL(2,C),. The following Lemmas are given without proof. For
a detailed discussion of this subject see e.g. [AS96] and [SGRAH)].

Lemma 41 One has: A, SL(2,C),-AT SL(2,C), is open and dense
in ASL(2,C),.



6.2. THE DPW METHOD

Lemma 42 The decomposition
ASL(2,C), 2 ASU(2,C), - AT SL(2,C),
is defined for all elements of A SL(2,C),.

Now we can formulate the DPW recipe [DPW94]:

1. Start with this initial condition:

= (z) O

85

1(90 f(z)>dz,)\681 (6.1)

where f and g are meromorphic functions with no poles at 0.
Up to a constant factor fg is the Hopfdifferential () of the im-
mersion. This implies that one gets curvatureline parametriza-

tioniff g = % and an umbilic at p if fg|, = 0.

2. Now solve the following differential equation:

dg- =ng-,g9-(0,A) =1 (6.2)

3. Iwasawa decompose:

g- =Yg ', U e ASU(2,C),, g, € ATSL(2,C), (6.3)

(with normalization g, (A = 0) = diag(a,a™')). The claim is

that ¥ is a frame of a cmc surface f.

4. Use the Symformula to get the surface:

1 9 ; |
_ (g Ly g \11) A= el
/ 2H< oy ¥ oY) c

In the following sections we will develop a discrete analogue of this
method that allows us to construct discrete cme surfaces in a sim-
ilar way. The discrete surfaces studied there are parametrized by
conformal curvature lines, which implies that the Hopfdifferential is
normalized to () = 1. This reduces the initial choice to g = % This
is no real restriction since every cmc surface without umbilics can
be parametrized in this way, and we will see in Section that

we can extend the construction even to surfaces with umbilics.

N \\
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6.3 Discrete cmc surfaces

Discrete cmc surfaces have been defined by A. Bobenko and U.
Pinkall [BP99]. We have defined them in Chapter f. So we will
only fix the notation here:

Definition 14 e A discrete isothermic surface in R? is a map
F : 7% — R3 for which the elementary quadrilaterals
[FTL,TTH FnJrl,ma Fn+1,m+17 Fn,erl]

have cross-ratiof]l —1.

A dual surface F* of F' is given by the equations:

Foiin — Fonn)
* _ [ _ )\( m+1,n m,n
( m+1,n m,n) ‘Fm—i—l,n . Fm,n|2

Fopnat — Frun)
* _ F* — ( m,n+1 m,n
( m,n+1 m n) |Fm,n—|—1 . me 29

A € R\{0}. The dualsurface is isothermic again.

(6.4)

e A discrete isothermic surface F is a discrete cmc surface with
mean curvature H # 0 if there is a properly scaled and placed
dual surface F* of F at constant distance

1
— c R.

an_F* =
B~ Fill =

e A discrete isothermic map into the plane is called a discrete
holomorphic map.

The discrete cmc surfaces can be described by a discrete moving
frame: Let

1
Anm Abn,m + b,
Ln,m — l_)n,m )\ _ (6-5)
- )\ N E/I'L m an,m
'The cross-ratio of four complex numbers a,b, ¢, and d is given by cr = %. In a

QXp

more general version of this definition the cross-ratio is of the form $=. It is invariant under
Mobiustransformations(fractional linear transformations of the complex plane). The cross-ratio
is real iff the four points lie on a circle. Therefore it is possible to demand a real cross-ratio for

points in space: they have to lie on a circle and this defines a plane.
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dn,m /\en,m + /\el
My = fam A i (6.6)
- )\ - Cnm dn,m
satisfy the compatibilitycondition
Ln,mMn—H,m - Mn,an,m—H V(n, m) S Z2- (67)

This gives in particular det L, ,,, and det M, ,,, are A-independent
and therefore:

argb = const
arge = const,
1
A:]a\2+|b\2+W = const,
2 2 L
B=|d|"+l|e|"+— = const.
€]

Ly, and M, , are the discrete Lax pair of the frame ¥, ,, of a
discrete cme surface (again see [BP9Y)]).

\I}nJrl,m = Ln,m\I]n,m

q/n,m—i—l - Mn,m\Ijmm- (68)

Our goal is a discrete version of the DPWmethod and we will see
that a normalization of ¥, ,, to be in SU(2) is not convenient here.
Note that rescaling the frame with a real function of A will give us
an additional multiple of the identity part in the Sym formula, and
that det L and det M are real for A\ € S'. Therefore we have to take
the imaginary part:

o ' |
Fypm = —Im (\I’;}”a_y\y”’m T %\11_103\IJ>, A=e (6.9)

Im denotes the imaginary part of the quaternions.
6.4 Splitting in the discrete case

Since the Iwasava decomposition of the solution g_ of (.2) into the
frame ¥ € ASU(2,C), and g;' € AT SL(2,C), is a central point of
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the DPW method, we will now formulate something similar for the
discrete frame. The splitting can be read as a decomposition of ¥
into parts ¢g* and ¢~ regular at 0 and oco. At the first glance the
situation in our case is a little more complicated: if we normalize
our discrete V¥, ,, to be in ASU(2,C),, 0 and oo are not the critical
points but the zeros of det ¥,, ,,. Since

det Ly = Ap+ X+ 55

det M, = B, + M+ (6.10)

the zeros of det W,, ,,, are at £\, :tﬁ, and £\, :trln for some
Ao, and Aq,. For notational simplicity we will omit the m and
n dependence of Ay and A;. The following results stay valid in
the more general case, but the formulation would be much more
complicated.

We have already seen that one can rescale a frame by an ar-
bitrary function that does not vanish on the unit circle. In the
continous case the moving frames are typically normalized to be in
ASU(2,C),. In the discrete case, however, we will not rescale, since
the fact of a missing normalization helps us to stay in the set of fi-
nite Laurent polynomials, as we will see later. One loses the group
structure in this case, but looking projectively at the set brings this
structure back.

Due to this and the special position of the zeros of det L,, ;,, and
det M, ,,, (and therefore the moving frame ¥, ,,) we define the fol-
lowing:

Definition 15 For fized A\, A1 define the set G, C Agl(2,C) by the
following conditions: The members C(\) € G,

1. are Laurent polynomial in \: C(\) =>_"__\'C,

vV=—m

2. are twisted, that is: C(—\) = g3C(\)os

3. and have det(C(\)) = (1 — 22)/(1 — 2)7(1 — AZA2)F(1 — A2N2)!
for some 1,7, k,l € N.
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This set is closed under multiplication but not under inversion, so
define the group PG, of classes of elements that are pointwise pro-
jective equivalent with elements of G, on S*.

It is obvious, that the frame ¥, ,, of a discrete cmc surface is in
PG,. Now we will split elements of G, into a product of matrices
corresponding to factors of its determinant:

Theorem 43 Let C € G, and let (1 — i‘—;) with e € {0,1},i €
{—1,1} be a factor in above sense of det(C(\)). Then there exist

~

matrices X,C € Gy with C = CX, X()\) Y20 T and det(C) =
det(C)/(1 — 3%).

Proof Look at
iy a b
cy=( ).
Since det(C') vanishes at A!, we have ad — bc = 0. Moreover, a =
b =c = d = 0 is impossible, otherwise a, b, c, and d would have a

common factor (1 — AA—;)

Now we make the following ansatz for a matrix X:

a b\ =
o_(cd)X&

One has to consider three cases:

o= 0
0" 1

1. If b=d =0 we set

2. If a =c=0 we set
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3. If ab or cd is # 0 we choose f so that:

- 1 —L
X — )\g A
— 75 1

This has a unique solution f = )\Eg (or f = )\6%).

2

Note that in all cases det X = (1 — %) If we set

1 ~
X'ti=—=X
det X
and C' = CX !, we have C' = CX with det(C) = det(C)/(1 — %),
C is again in G, since (1 — e/<\—2‘2)) is a common factor of all of its
coefficients and since X (co) = I one has X (o0) =1 too. O

Remark We could have formulated this theorem also with splitting
to the left.

Of course one can iterate this splitting until one has factorized C
into a product of finitely many matrices of the above form:

Corollary 44 Let C € PG, with det(C()\)) = z?(\)(1— (’\7%)2)@'(1—
(A)2)i(1 — (AZN2F(1 — (A2N)2) for some i, j, k1 € N,z : C — C.
Then there exist matrices X, € Gy, v € {1,i+j+ k+1+ 1}, with

CA) = =ML XN
detXl()\) =1
det X,(\) = (1— ), ve{2it+j+hk+1+1}

and one can prescribe the order of the different types of determinants
of the X,,.

Proof Simply take the common polynomial divisor to the front
and iterate Theorem H43. []

Now we are able to split C' € G, into two parts C* and C~ with

det C~ = (1—(3)2)/(1— (3)2), det O+ = (1— (D3N)2)F(1— (AN)2)

and C~(o0) = 1. Essentially this will be our discrete version of the
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Iwasawa decomposition. Since V¥, ,, € PG, (with appropriate A
and A1) we can decompose it in this way

_ o+ o
Vym =G, G nym,

with G ,,(0) = 1. G, ,, will play the role of g_, so let us have a
closer look at it: one has W,, ,, = My, ,, - - - My 0Ly o - - - Lop. Decom-
posing Ly, = L, L. . gives:

Wt Aonm
A I S (6.11)
bn,m, 7;\0 +1
Afnm
Xobnm + (Mobnm) Qn,m
fn,m = Ao ki +( il ) = —Aoz a17 —1 (6'13)
n,m bn, mAy" + Xob,, 1,

— Mt M- -
and of course the same for M, ,,, = M, M,

dn,m

Rt Acnm
M), = _ A dum (6.14)
1 gmm
M, = ( @0 ) (6.15)
) A 1
In,m
A A -1 d
g = o E0Com) a4
dp.m en, mA, +)‘0€n,m

From this we see that W is the product of matrices of the form

(6.19) and (p.15). Note that in generalf]
Uom # My - My oLy o Loy
, since one has to commute minus and plus parts.

Ly, and M, ,, have a very special form, so one can reconstruct
them from their minus parts:

?See Section [5.6.2.
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Lemma 45 Let L, ,, be of the form (6.13). Then there erists a

matrix .
an,m )\bn,m + )\bnm
Lym =\ buw ’

Qp,m

with det Ly, = (1 — (A2A)?)(1 — (
S1gn.

|2

)?) and Ly, is unique up to

Proof We make the same ansatz as in the proof of Theorem E3:
Look at

<8 8) = LN (L) Lz,

1
= bum A = _ A '
o A o Bn,m an’m )\fn,m 1

This gives two equations:

D3 1
n,m — , 6.17
o, fn,m * bn,mfn,m ( )
! bnm _nm
Qpm = _fn,TZQ — — f —. (618)
X bn,m
From this one gets
1 n,m 2
b = £ | Al (6.19)
| A2 4 Ungl
0 N
So by, and with it a,, ,, are defined up to sign. []

Now we will focus again on the minus part G, ,,,. It is the solution
of the following difference equation:
Gn,m—H - Mn,mGn,m

with L, and M, of the form (6.12). This is a discrete analogue
of (6.2). The integrability condition

Ly My = My, L (6.21)

n+1,m n,m—n,m+1
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for (6.20) leads to the equations

fn,m + In+1m = Gnm + fn ma-1 (622)
Aggn—i—l,m _ )\2 fn m—+1 (623)
fam In.m

One can interpret this in the following way: Equation (6.22) says
that f,,, and g, ., are edges of a map z : Z*> — C and (f.23) means
that the elementary quadrilaterals of this map have a cross-ratio of
A3/X%. In the interesting case that \g € R and \; = i)\ the map =z
is a discrete holomorphic mapfl.

Having L~, M~ satisfying (6.21]), one can solve (6.20) for a given
initial value G, and one can split the solution G, ,, in the following
way: since G, = M, -~ M, (L, - Ly, we can write

Grm =My My oLoo- - Lig(Lio) ' Loo = Gy Loy.

But é;m is again in PG, and therefore we can factor out an Zioz

— _ 0O (THN1T AT
Gn,m — Gn,m(Ll,O) Ll,OLO,O — Gn,le,OLO,O-

We can continue with this procedure until we have

—

_ . + As— _ T ¥
Gn,m - \Ijn,mMn,m T Mn,OLn,O T Ll,OLO,O'

Notice that besides Loo: all the L, ,, and M, are not the minus

parts of the an and Mnm Of course we Could have changed the

order to get the L; 4 and ]\4Z j for arbitrary ¢ < mn,j < m, but from
the construction it is clear that

LijMiv1j = MijLij.

Now we can formulate the discrete DPW method.

30ne gets the more general definition of discrete holomorphic if A2/A? is real negative, Ao
is m-dependent and \; is n-dependent.
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6.5 The discrete DPW method

Theorem 46 Any discrete cmc immersion F : 72 — R3 can be
obtained by the following method, which is called the discrete DPW

method:

1. Choose Ny, \1 € C with |\g| # 1 and f\—g =—1. Let 2:Z*> - C
be a discrete holomorphic map and set

1
LT_L,m()\) - < A2

)‘fn,m

B 1
Mn,m = )\%
/\gn,m

with 9nm = Znm+1 — Zn,m

2. Solve

-

n+lm —

n,m+1

wz’thGaO:<(1) ?)

3. Split Gy = Wit .

|
S
2

Sfnm
)
1

(6.24)

4. Use the Sym formula (6.9) to get a discrete cmc surface F,

out of W, .

Proof

From the previous calculations it is clear that this method gives
a discrete cmc surface. On the other hand, given a discrete cmc
immersion one can calculate its moving frame ¥ and its minus part

in the sense of corollary @4 by

ot A
\Dn;m - \Iln,mMn,m T

Mn,OLn,O T LO,O'
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Again, by altering the order of the L™ and M~ one gets all of the
L;; and M, >, and from construction it is clear that they satisfy

(6.21) and therefore have the edges of a discrete holomorphic map
as coefficients. O]

6.6 Examples

Now let us give some special cases as examples. We will derive the
holomorphic maps that lead to Delaunaytubes as well as the ones
that give Smyth surfaces.

In the following we will take A\ = i)\g for simplicity.

6.6.1 Cylinder and two-legged Mr Bubbles

The simplest discrete holomorphic map one can think of is the iden-
tity mapf]
z:7? - C, Znm = AXo(n +im)

This gives:
_ 1 Sk
Ln,m — < Ao i\ ) (625)
A)
_ 1 8k
Mn,m - ( —Z'& 1)\ ) (626)
AN

in the special case A = 1, (6.17) and (6.19) are very easy and give
b=1and a = i(\ — /\io) (for L,,,,) and e = 1 and d = i(A\g — %O)
(for M,, ). One easily calculates

LF =<fﬁi?)
’ 'L)\ )\—0

M+ :(_Aio A)
: \ 2

Since the plus and the minus parts commute, it is obvious that L, ,,
and M, ,, are constant. As one would expect, the resulting discrete
surface is a cylinder.

4f [Xo| # [M1] set zpnm = A(Xon + iA1m)
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If A # 1, however, the situation is not that simple and the
resulting surface is a two-legged Mr Bubble. These surfaces are
discrete versions of Smyth surfaces (i.e. surfaces with rotational

symmetric metric). Figure b.1 shows a discrete cylinder and three
Mr Bubbles for different values of A.

Note that in the continuous case f = const produces these sur-
faces instead of f(z) = z. Nevertheless we use the edges of the
discrete holomorphic map in L, ,, and M, and one should think
of them as being derivatives.

6.6.2 Delaunay tubes

A famous class of cmc surfaces is the rotational symmetric ones.
We constructed them already in Chapter @l and [ as cmc evolution
of a circle and by generating the meridian curve from a Billiard
in an ellipse or hyperbola. The edges of our discrete cmc surfaces
are discrete equivalents of curvature lines (again see [BP99]). Since
the meridians of surfaces of revolution are curvature lines too, the
rotational symmetry implies that the frame W, ,, is constant in n
(or m) direction. in terms of L, ,, this means:

GI,O 7;0 = Ln—l,O T L070

Ly—10--- L({OL&O
Ln-10--LgoLooLgoLog
Ln-10--LgoLioLi Loy
Ly10-- L({OLjOLioLf,OL;OL&O
= Ly 10 L({OL{OL;OL;OL;OL&O
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Figure 6.1: A cylinder and two-legged Mr Bubbles with A = 1.5, 2, and 3.
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Or in other terms: start with Ly, and solve L,y oLy 1, = Ly oLt o-
For the entries f, ¢ of L, , this gives the following recursion:

fro = Ags—fm
S, — ;’0 (6.27)
Surt = om0
AoJn+1,05n
with Sy = —ﬁ and

Choosing an initial fpo one can compute for any goo the g, and
fn1 by evolving the cross-ratio condition (.23). Now we can solve
the condition

Moo = M

in order to get goo. There are two possible solutionsf] (depending
on the orientation of the first quadrilateral):

goo = £/ f0 =220 + fR0 M

Having this initial goo gom evolves the same way as f,,o:

9o,

g, PN

gom+1 = 1m—g
| Ty — % (6.28)

T o= go,m

R pp— L —

)‘%907m+1Tm
with Ty = —1/goop. Now we have initial conditions for the discrete

holomorphic map. Figure shows a typical solution. Note the

5 This solution looks more complicated if \g # i\;
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1

Figure 6.2: The first quadrants of a discrete holomorphic map that generates a
rotational cmce surface and of a discrete tanh.

similarity to the discrete tanh(z) functionf] given by

pn + tam

tanh,, ,, = tanh( 5

) (6.29)

with o = 2T and p = 2arcsinh(sin(%)). In fact the above definition
can be extended to a two-parameter family of discrete holomorphic

maps containing both of them.

Figure b.3 finally shows some of the discrete rotational surfaces
we can get in this way: one Nodoid, one Undoloid, and one surface
of the associatedfamily of the Undoloid (this is no longer rotational
of course).

Figure 6.3: A discrete Nodoid, an Undoloid, and a member of the associated
family of the Undoloid

6This is simply a Mébius transform of the discrete exp(z).
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6.6.3 n-legged Mr Bubbles and a discrete z“

Now we want to discretize Mr Bubbles with more than two legs.
These surfaces have an umbilic. In order to get discrete cmc surfaces
with umbilics we have to look at the continuous case again. In
an isolated umbilic more than two curvature lines intersect. Since
the edges of our discretization correspond to curvature lines, we
have to change the connectivity of our lattice. Up to now we have
formulated all results for maps from Z2, but the generalization to
quad-graphswith even numbers of edges per vertex (Chapter 1) is
obvious.

Figure 6.5: Some three-legged Mr Bubbles

Usually the meromorphic potential for the Smyth surfaces is
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145 277

Figure 6.6: Four- and five-legged Mr Bubbles

given in the following way:

170 1
n_X(zo‘ O)dz (6.30)

In this gauge the Hopf differential is not normalized to 1. Therefore
we change the coordinates. Let w = ¢(z). Then we have dw =
¢ (z)dz and with it:

1 0 1
=3 | ‘15 dw. (6.31)

The requirement for the Hopf differential to be 1 reads for ¢ as
/ fed . . 9 _af2 .
¢'(z) = zz which gives ¢(z) = —=5z 2 and for our meromorphic

a+2
potential

sl 0 GEam

If we choose e.g. o =1 we get f(w) = (%w)% for our holomorphic

function. As mentioned before the continuous map is an analogue
of the derivative of the discrete one. Therefore we would have to

look for a discrete z3. It can be described in the following way: the
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constraint below is compatible with the “cross-ratio equal to —1”
evolution.
AZpm =N Dg Z|pm +m DZ Z|nm (6.33)

where D" is the discrete harmonic derivative from Chapter [II:

DZ Z‘n,m — 2(Zn+l,m _ Zn,m)(zn’m — Zn*l,m)

Zn+lm — An—1.m

With the obvious initial conditions
=0 =1 =3¢
200=Y, ZzZ10=1, Zp1=1

one gets a discrete version of 2 in the first quadrant[]. See [Boh96,
ABYY] for a detailed investigation of this map. Since the solution for
m =0 (or n = 0) depends on n (m) only, the solutions for different
sectors are compatible. Figure b.4 shows the complete solution for
0=

Scaling this discrete holomorphic map leads to a one-parameter
family of discrete cmc surfaces with an umbilic at the image of 0.
Figures 6.5 and show some of them and the thumb anil movie
on the upper left shows a part of the one-parameter family of three-

legged Mr. Bubbles.

"In fact these discrete maps give discrete holomorphic maps in the sense of O. Schramm
[Sch97] too: one simply has to take the sublattice not including zero.



Chapter 7

Discrete K-surfaces from discrete
curves

7.1 Introduction

Discrete surfaces of constant negative Gaussian curvature (discrete
K-surfaces) were first investigated by Wunderlich and Sauer [Wun51].
Bobenko and Pinkall [BP96H, BP99] extended their work and made
the connection to discrete integrable systems (the Hirota equation).
In this chapter we want to complete our picture of the connection
between discrete curves and surfaces by generating these discrete
surfaces from discrete curves.

7.2 Discrete K-surfaces from curvature lines

As usual we start by recalling the definitions:

Definition 16 A map F : Z?> — R3 is called a discrete K-surface
if the following conditions hold:

1. All edges connecting to one vertex lie in a plane

2. All edges have the same length.]

Lthis can be weakend to The length of edges [Frt1,m — Fn,m| depends on m only and the
length of edges [Fy . m+1 — Fn,m] depends on n only.

103
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The first condition clearly is a discrete version of asymptotic line
parametrization the second one says that the parameter net is a
(discrete) Chebychev net [BP9Y].

Since the edges of the discrete map play the role of asymptotic
lines, the diagonals of the quadrilaterals should model the curvature
lines of the surface. We will see now, that with some extra data one
can recover the K-surface from such a curvature line.

Lemma 47 Let v be a discrete curve with edges S, = Vni1 — Vn
and a vertex mormal field N such that |S,| < 2, Z(N,,S,) =
Z(Nyy1,5,), and N1 X N, LS. Then given an angle 9, each
edge can be extended to a triangle (Y, Ynt1,Vn) such that |y, —v| =
FnYns1| = 1 and Z(Ny,N,) = —Z(Nps1, Ny) = 8 with N,
(Yn+1 = Fn) X (Y0 = Tn)

Proof Elementary geometry. ]

Theorem 48 Let v be a discrete curve with edges S,
Yo and a vertexr normal field N such that |S,| < 2, Z( ) =
Z(Nps1,S), and N1 X N, LS.

Then ~v can be viewed as a curvature line of a discrete k-surface

H

and the stripe (v, N) serves as Cauchy data.

Proof After choosing an angle § apply above lemma. The se-
quence . .., vn, Yn, - - - serves as Cauchy path (zig-zag) for a discrete
K-surface. The edges S,, of v are diagonals in elementary quadrilat-
erals of the K-surface. Since the edges of these quadrilaterals should
be viewed as asymptotic directions v can be viewed as a curvature
line. []
Ezample In particular plane elastic curves (with edge length 2) can
serve as curvature lines for discrete K-surfaces if one assigns normals
perpendicular to the plane as stripe normals.

Figure shows a K-surface generated from an discrete elastic
figure eight.
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7.3 Discrete K-surfaces from asymptotic lines

The maybe more natural approach is however to evolve discrete K-
surfaces out of their asymptotic lines. for this one must start with
a arclength parametrized discrete curve with constant torsion (we
have defined in Chapter B what that means).

Lemma 49 Let v be an arclength parametrized discrete curve with
constant torsion. Choose a point 7y in the osculating plane of 7o
(the plane spanned by v_1,v0, and 1 ). Then the Bdacklund transfro-
mation in the sense of Definition [§ with angle 61 equal to the torsion
of v will yield a curve v with vy in the osculating plane of v for all
k.

Iterating this procedure gives rise to a discrete K-surface.

Proof Since the osculating planes of two neighbouring points have
constant angle 91, it is quite clear that when starting in the osculat-
ing plane the Backlund transformation will preserve this. Moreover
is the distance of v and 7 1 so both conditions for discrete K-surfaces
from Definition [I§ are fullfilled when iterating the Backlund trans-
formation. []
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Figure 7.1: An elastic Euler loop and two Kiihn surfaces generated from it.
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Figure 7.2: A compact K-surface and the elastic figure eight it is generated from.
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