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Zusammenfassung

Diese Arbeit befaßt sich mit der theoretischen Analyse, numerischen Behandlung und
Störungstheorie für verallgemeinerte kontinuierliche und diskrete algebraische Lyapunov-
Gleichungen. Die Stabilität von singulären Systemen und dazugehörige Eigenwertprob-
leme werden auch untersucht. Spektralcharakteristiken werden vorgestellt, die die Lage
der endlichen Eigenwerte des Matrixbüschels bezüglich der imaginären Achse und des Ein-
heitskreises charakterisieren. Diese Charakteristiken lassen sich zur Schätzung des asymp-
totischen Verhaltens der Lösungen von singulären Systemen verwenden.

Bei der Lösung von verallgemeinerten Lyapunov-Gleichungen treten einige Schwierigkei-
ten insbesondere dann auf, wenn eine der Koeffizientenmatrizen singulär ist. In diesem Fall
werden verallgemeinerte Lyapunov-Gleichungen mit der speziellen rechten Seite untersucht.
Für solche Gleichungen lassen sich die klassischen Stabilitätssätze von Lyapunov nur für
Büschel des Indexes höchstens zwei im zeitkontinuierlichen Fall und des Indexes höchstens
eins im zeitdiskreten Fall verallgemeinern.

Weiterhin werden projizierte verallgemeinerte kontinuierliche und diskrete Lyapunov-
Gleichungen betrachtet, die durch gewisse Projektion der rechten Seite und der Lösung auf
die rechten und linken invarianten Unterräume zu den endlichen Eigenwerten des Matrixbü-
schels enstehen. Für diese Gleichungen werden notwendige und hinreichende Bedingungen
der eindeutigen Lösbarkeit vorgestellt, die vom Index des Matrixbüschels unabhängig sind.
Es wird gezeigt, dass die projizierten Lyapunov-Gleichungen verwendet werden können um
die asymptotische Stabilität der singulären Systeme sowie Steuerbarkeits- und Beobacht-
barkeitseigenschaften der Deskriptorsysteme zu charakterisieren. Außerdem sind diese
Gleichungen nützlich, die Trägheitssätze für Matrizen auf Matrixbüschel zu erweitern.
Schließlich wird gezeigt, dass die Gramschen Matrizen der Steuerbarkeit und Beobacht-
barkeit für Deskriptorsysteme als die Lösungen der projizierten Lyapunov-Gleichungen
bestimmt werden können.

Die numerische Lösung von verallgemeinerten Lyapunov-Gleichungen wird betrachtet.
Die Erweiterungen des Bartels-Stewart-Verfahrens und des Hammarling-Verfahrens auf
projizierte Lyapunov-Gleichungen werden vorgestellt. Diese Verfahren basieren auf die
Berechnung der GUPTRI-Form des Matrixbüschels.

Die Störungstheorie für verallgemeinerte Lyapunov-Gleichungen wird entwickelt. Es
werden die auf Spektralnorm basierenden Konditionszahlen für projizierte verallgemeinerte
Lyapunov-Gleichungen eingeführt, die zu Störungsabschätzungen der Lösungen dieser Gle-
ichungen verwendet werden können. Darüber hinaus wird gezeigt, dass diese Konditions-
zahlen mit den erwähnten Spektralcharakteristiken für die asymptotische Stabilität von
singulären Systemen übereinstimmen und sich durch die Lösung von projizierten Lyapunov-
Gleichungen mit der Einheitsmatrix in der rechten Seite effizient berechnen lassen.

Die Anwendung der projizierten verallgemeinerten Lyapunov-Gleichungen in der Mo-
dellreduktion von Deskriptorsystemen wird ebenso betrachtet. Für Deskriptorsysteme wer-
den die Hankel-Singulärwerte eingeführt und Verallgemeinerungen der Balanced Trunca-
tion Verfahren dargestellt.
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Notation

R the field of the real numbers
R
− = (−∞, 0 ) the negative real semi-axis

i =
√
−1 the imaginary unit

<e(z) the real part of z ∈ C
C the field of the complex numbers
C
− = { z ∈ C : <e(z) < 0 } the open left half-plane

F
n,m the space of real (F = R) or complex (F = C) matrices

of size n×m
A = [akj]

n,m
k,j=1 a matrix A ∈ Fn,m with elements akj in position (k, j)

A∗ the transpose (A∗ = AT ) of real A or the complex
conjugate transpose (A∗ = AH) of complex A

A−1 the inverse of A
A−∗ = (A−1)∗ the inverse, complex conjugate and transpose of A
diag(A1, . . . , Ak) a block diagonal matrix with Aj ∈ Fnj ,nj , j = 1, . . . , k

I = In =

 1 0
. . .

0 1

 the identity matrix of order n

Nn =


0 1

. . . . . .
. . . 1

0

 a nilpotent matrix of order n in Jordan form

A⊗B =

 a11B · · · a1mB
...

...
an1B · · · anmB

 the Kronecker product of matrices A ∈ Fn,m
and B ∈ Fn,m

vec(A) = (a11, . . . , an1, a12, . . . , anm)T the vector formed by stacking the columns of A ∈ Fn,m

Πn2 the vec-permutation matrix of size n2 × n2 such that
vec(AT ) = Πn2vec(A)

det(A) the determinant of A ∈ Fn,n
rank(A) the rank of A ∈ Fn,m

trace(A) =
n∑
j=1

ajj the trace of A ∈ Fn,n

KerA = {x ∈ Fm : Ax = 0 } the right null space (or kernel) of A ∈ Fn,m
ImA = { y ∈ Fn : y = Ax, x ∈ Fm } the range (or image) of A ∈ Fn,m
Sp(A) = {λ ∈ C : det(A− λI) = 0 } the set of eigenvalues or the spectrum of A ∈ Fn,n
λj(A), λj(E,A) eigenvalues of the matrix A and the pencil λE − A
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σ1(A) ≥ . . . ≥ σk(A) ≥ 0 singular values of A ∈ Fn,m, k = min(n,m)
σmin(A) = σk(A) the smallest singular value of A ∈ Fn,m
σmax(A) = σ1(A) the largest singular value of A ∈ Fn,m

〈x, y〉 = y∗x =
n∑
j=1

xj ȳj the inner product in Fn

‖x‖ = 〈x, x〉1/2 =

(
n∑
j=1

|xj|2
)1/2

the Euclidean vector norm of x ∈ Fn

〈A,B〉 = trace(B∗A) the inner product in Fn,m

‖A‖F = 〈A,A〉1/2 =

(
m∑
j=1

n∑
k=1

|akj|2
)1/2

the Frobenius matrix norm of A ∈ Fn,m

‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖

= σmax(A) the spectral matrix norm of A ∈ Fn,m
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Chapter 1

Introduction

We study the generalized continuous-time algebraic Lyapunov equation (GCALE)

E∗XA+ A∗XE = −G (1.1)

and the generalized discrete-time algebraic Lyapunov equation (GDALE)

A∗XA− E∗XE = −G, (1.2)

where E, A, G are given matrices and X is an unknown matrix. They are named after
the Russian mathematician Alexander Mikhailovitch Lyapunov, who in his doctoral dis-
sertation ”The general problem of the stability of motion” in 1892, see [111], presented
the stability theory for linear and nonlinear systems. He has shown that the asymptotic
behavior of solutions of linear differential equations is closely related to continuous-time
Lyapunov matrix equations.

Lyapunov equations arise not only in the stability analysis of differential and difference
equations but also in many other applications such as system and control theory [51, 99,
117, 119, 146, 176], eigenvalue problems [62, 100, 113, 116] and partial differential equations
[142].

For E = I, equations (1.1) and (1.2) are the standard continuous-time and discrete-time
Lyapunov equations. In the last century the theory and numerous numerical algorithms
were developed for such equations, see [9, 20, 51, 53, 72, 81, 100, 101, 126, 127] and the
references therein. The case of nonsingular E has been considered in [17, 34, 102, 117, 125].
However, only little attention has been paid to generalized Lyapunov equations with a
singular matrix E [106, 116, 123, 147, 151, 153, 175].

It is known that the GCALE (1.1) has a unique solution for every G if the matrix E
is nonsingular and all the eigenvalues of the pencil λE − A have negative real part. The
GDALE (1.2) is uniquely solvable for every G if the matrix E is nonsingular and all the
eigenvalues of λE − A have modulus smaller than one. However, if E is singular, then
the GCALE (1.1) may have no solutions even if all the finite eigenvalues of λE − A lie in
the open half-plane and a solution, if it exists, is not unique. Analogous trouble arises in
the GDALE (1.2) when both the matrices E and A are singular. Such an equation may

11
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have no solutions even if all the finite eigenvalues of the pencil λE − A lie inside the unit
circle. Moreover, if the GDALE (1.2) with singular E and A is solvable, the solution is not
unique.

To overcome these difficulties various types of generalized Lyapunov equations have
been proposed in the literature [11, 106, 116, 153, 154]. Unfortunately, these equations are
mostly limited to the case of pencils of index at most one. In this thesis we consider the
projected generalized continuous-time algebraic Lyapunov equation

E∗XA+ A∗XE = −P ∗rGPr,
X = XPl

(1.3)

and the projected generalized discrete-time algebraic Lyapunov equation

A∗XA− E∗XE = −P ∗rGPr + ξ(I − Pr)∗G(I − Pr),
P ∗l X = XPl,

(1.4)

with ξ = −1, 0, 1. Here Pl and Pr are the spectral projections onto the left and right
deflating subspaces of the pencil λE −A corresponding to the finite eigenvalues. For such
equations, existence and uniqueness theorems can be stated independently of the index of
the pencil λE−A. We also discuss applications of equations (1.3) and (1.4) to the study of
the asymptotic behavior of solutions of singular systems, the distribution of the generalized
eigenvalues of a pencil in the complex plane with respect to the imaginary axis and the
unit circle, as well as controllability and observability properties for descriptor systems.

The classical numerical methods for the standard Lyapunov equations (E = I) are
the Bartels-Stewart method [9], the Hammarling method [72] and the Hessenberg-Schur
method [65]. An extension of these methods to generalized Lyapunov equations with
nonsingular matrix E was given in [34, 55, 56, 65, 117, 125]. These methods are based on
the preliminary reduction of the matrix (matrix pencil) to the (generalized) Schur form [64]
or the Hessenberg-Schur form [65], calculation of the solution of the reduced system and
back transformation. In this thesis we present a generalization of the Bartels-Stewart and
Hammarling methods for the projected generalized Lyapunov equations (1.3) and (1.4).

In numerical problems it is very important to study the sensitivity of the solution to
perturbations in the input data and to estimate errors in the computed solution. There are
several papers concerned with the perturbation theory and the backward error bounds for
standard continuous-time Lyapunov equations, see [61, 74, 75] and references therein. The
sensitivity analysis for generalized Lyapunov equations has been presented in [97], where
only the case of nonsingular E was considered. In this thesis we discuss the perturbation
theory for the projected Lyapunov equations (1.3) and (1.4).

Model reduction is of fundamental importance in modeling and control applications.
Often simulation or controller design for large dynamical systems arising from electrical
networks and partial differential equations becomes difficult because of storage limits and
expensive computations. To overcome these difficulties one can employ model order reduc-
tion that consists in an approximation of the dynamical system by a reduced order system.
It is required that the approximate system preserve properties of the original system like
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stability and passivity and it has a small approximation error. Moreover, the computation
of the reduced order system should be numerically stable and efficient.

For standard state space systems various model reduction techniques have been pro-
posed such as balanced truncation [103, 119, 129, 137, 156, 164], singular perturbation
approximation [95, 107], optimal Hankel norm approximation [58] and Padé approximation
[47, 52, 68]. Unfortunately, there is no general approach that can be considered as optimal.
Surveys on system approximation and model reduction can be found in [2, 4, 48, 121].

Model reduction of descriptor systems based on the Padé approximation via the Lanc-
zos process has been developed in [47, 52]. Drawbacks of this technique are that there
is no approximation error bound for the reduced order system and stability is not neces-
sary preserved. The balanced truncation approach [103, 119, 137, 156, 164] related to the
controllability and observability Gramians is free from these disadvantages. Balanced trun-
cation methods for state space systems are based on transforming the dynamical system to
a balanced form such that the controllability and observability Gramians become diagonal
and equal together with truncation of states that are both difficult to reach and to observe.
In this thesis we extend these methods to descriptor systems.

The thesis is organized as follows. Chapter 2 contains some background material that
we need in the following. Section 2.1 summarizes some necessary definitions and theorems
from matrix analysis. In Section 2.2 we introduce functions of matrix pencils and study
some of their properties.

Chapter 3 is devoted to linear continuous-time and discrete-time descriptor systems.
In Section 3.1 solvability and stability analysis for continuous-time descriptor systems is
presented, while discrete-time descriptor systems are discussed in Section 3.2. We introduce
numerical parameters that characterize the property of a pencil λE − A to have all finite
eigenvalues in the open left half-plane in the continuous-time case and inside the unit
circle in the discrete-time case. In Section 3.3 the different concepts of controllability and
observability for descriptor systems are reviewed and equivalent algebraic and geometric
characterizations are given.

In Chapter 4 we consider generalized Lyapunov equations. Section 4.1 contains some
applications for Lyapunov equations. In Section 4.2 we study the existence and uniqueness
of solutions for generalized continuous-time Lyapunov equations with general and special
right-hand sides. Special attention will be paid to the projected GCALE (1.3). We also
present generalized inertia theorems that give a connection between the signature of the
solution of (1.3) and the numbers of eigenvalues of the pencil λE −A in the left and right
open half-plane and on the imaginary axis. In Section 4.3 we discuss analogous results
for generalized discrete-time Lyapunov equations. Similar to the continuous-time case,
we establish a relationship between the signature of the solution of equation (1.4) and the
number of eigenvalues of the pencil λE−A inside, outside and on the unit circle. Section 4.4
contains a generalization of the controllability and observability Gramians for descriptor
systems that are closely related to the projected generalized Lyapunov equations.

Chapter 5 is concerned with the numerical solution of generalized Lyapunov equations.
In Sections 5.1 and 5.1 we describe a generalized Schur-Bartels-Stewart method and a ge-
neralized Schur-Hammarling method that can be used to solve the projected generalized
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Lyapunov equations (1.3) and (1.4). Numerical aspects and complexity of these methods
are presented in Section 5.3. Iterative methods for (generalized) Lyapunov equations are
discussed in Section 5.4.

Chapter 6 contains the perturbation theory for generalized Lyapunov equations. In
Section 6.1 we review condition numbers and Frobenius norm based condition estimators
for deflating subspaces of matrix pencils corresponding to finite eigenvalues. Section 6.2
presents the known sensitivity results for the generalized Lyapunov equations (1.1) and
(1.2) with nonsingular E. In Section 6.3 we define a spectral norm based condition number
for the projected GCALE (1.3) which can be efficiently computed by solving (1.3) with
G = I. Using this condition number we derive the perturbation bound for the solution of
the projected GCALE (1.3) under perturbations that preserve the deflating subspaces of
the pencil λE −A corresponding to the infinite eigenvalues. In Section 6.4 we present the
sensitivity analysis for the projected GDALE (1.4) with ξ = 1. Section 6.5 contains some
results of numerical experiments.

Chapter 7 deals with model reduction for descriptor systems. In Section 7.1 we review
some properties of the transfer function and its realizations for descriptor systems. In
Section 7.2 we generalize Hankel singular values and study some of their features. Balancing
of descriptor systems is treated in Section 7.3. In Section 7.4 we propose an extension of
the balanced truncation technique for descriptor systems that leads in a natural way to
generalized model reduction algorithms presented in Section 7.5. Section 7.6 contains
numerical examples.

In Chapter 8 we give some conclusions. We also point out several open problems that
will be investigated in the future.



Chapter 2

Definitions and basic properties

In this chapter we give necessary definitions and present some theorems from matrix ana-
lysis that will be used in the sequel. More details can be found in [53, 64, 78, 100, 145].

2.1 Matrices and matrix pencils

A matrix A ∈ Fn,n is Hermitian (symmetric for A ∈ Rn,n) if A = A∗. The matrix A ∈ Fn,n
is called positive (negative) definite on a subspace X ⊂ Fn if v∗Av > 0 (v∗Av < 0) for
all nonzero v ∈ X . The matrix A ∈ Fn,n is called positive (negative) definite and positive
(negative) semidefinite if v∗Av > 0 (v∗Av < 0) and v∗Av ≥ 0 (v∗Av ≤ 0), respectively, for
all nonzero v ∈ Fn.

The following matrix decompositions present useful tools in numerical analysis [64, 100,
144].
QR decomposition. Let A ∈ Fn,n. There exist a unitary matrix Q ∈ Fn,n and an upper
triangular matrix R ∈ Fn,n such that A = QR.
Cholesky decomposition. An Hermitian, positive (semi)definite matrix A ∈ Fn,n can
be represented as A = U∗AUA, where UA ∈ Fn,n is an upper triangular Cholesky factor of A.
Full rank decomposition. Let A ∈ Fn,n be an Hermitian, positive semidefinite matrix
and r = rank(A). Then there exists a matrix RA ∈ Fr,n of full row rank such that
A = R∗ARA. The matrix RA is the full row rank factor and R∗A is the full column rank
factor of A.
Singular value decomposition. Let A ∈ Fn,m and r = rank(A). There exist unitary
matrices U ∈ Fn,n and V ∈ Fm,m such that

A = U

[
Σ 0
0 0

]
V ∗,

where Σ = diag
(
σ1(A), . . . , σr(A)

)
is a diagonal matrix with positive, decreasing diagonal

elements

σ1(A) ≥ σ2(A) ≥ . . . ≥ σr(A) > 0

15
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that are called the (nonzero) singular values of A.
Spectral decomposition. Let A ∈ Fn,n be Hermitian. Then there exists an unitary
matrix U ∈ Fn,n such that

A = UΛU∗,

where Λ = diag
(
λ1(A), . . . , λn(A)

)
, and λj(A) are the eigenvalues of A.

Numerically stable algorithms for computing these decompositions can be found in
[64, 144, 171].

A matrix pencil αE−βA is called regular if E and A are square, and det(αE−βA) 6= 0
for some (α, β) ∈ C2. Otherwise, the matrix pencil αE − βA is called singular. A pair
(α, β) ∈ C2\{(0, 0)} is said to be a generalized eigenvalue of αE−βA if det(αE−βA) = 0.
If β 6= 0, then the pair (α, β) represents a finite eigenvalue λ = α/β of the pencil λE −A.
The pair (α, 0) represents an infinite eigenvalue of λE−A. Clearly, the pencil λE−A has
an eigenvalue at infinity if and only if the matrix E is singular. The set of all generalized
eigenvalues (finite and infinite) of the pencil λE −A is called the spectrum of λE −A and
denoted by Sp(E,A).

Vectors x1, . . . , xk form a right Jordan chain of the pencil λE − A corresponding to
an eigenvalue λ if

(λE − A)x1 = 0, (λE − A)x2 = −Ex1, . . . (λE − A)xk = −Exk−1. (2.1)

Vectors y1, . . . , yk form a left Jordan chain of λE − A corresponding to an eigenvalue λ if

y∗1(λE − A) = 0, y∗2(λE − A) = −y∗1E, . . . y∗k(λE − A) = −y∗k−1E.

The vectors x1 and y1 are called, respectively, right and left eigenvectors of the pencil
λE − A corresponding to λ.

A subspace Vλ ⊂ Fn that is the span of all right (left) Jordan chains corresponding
to an eigenvalue λ is called right (left) deflating subspace of λE − A corresponding to λ.
Deflating subspaces are a natural generalization of invariant subspaces for the standard
eigenproblem λI − A to the generalized eigenproblem λE − A.

Let Λ = {λ1, . . . , λp} be a subset of the spectrum of the pencil λE − A, where λj are
pairwise distinct and let Vλj be the right (left) deflating subspace of λE−A corresponding
to λj for j = 1, . . . , p. Then the subspace

VΛ = Vλ1+̇ . . . +̇Vλp

is the right (left) deflating subspace of λE − A corresponding to Λ. Here +̇ denotes the
direct sum. Moreover, Fn admits a decomposition Fn = VΛ+̇V , where V is the right (left)
complementary deflating subspace of λE−A corresponding to Sp(E,A) \Λ. A projection
P onto the deflating subspace VΛ along the deflating subspace V is called the spectral
projection onto VΛ.

A regular pencil λE − A can be represented in the Weierstrass canonical form that is
a special case of the Kronecker canonical form [53, 145]. There exist nonsingular matrices
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W and T such that

E = W

[
Inf 0
0 N

]
T and A = W

[
J 0
0 In∞

]
T. (2.2)

The block J corresponds to the finite eigenvalues and has the form

J = diag(J1,1, J1,2, . . . , J1,m1 , J2,1, . . . , J2,m2 , . . . , Jk,1, . . . , Jk,mk),

where

Jj,q =


λj 1

. . . . . .
. . . 1

λj


is the Jordan block of order nj,q with

∑k
j=1

∑mj
q=1 nj,q = nf and λj is a finite eigenvalue of

the pencil λE − A. The number mj is called the geometric multiplicity of λj, the number
aj =

∑mj
q=1 nj,q is called the algebraic multiplicity of λj and nf is the dimension of the left

and right deflating subspaces of λE − A corresponding to the finite eigenvalues. A finite
eigenvalue is simple if it has the same algebraic and geometric multiplicity. The block N
in (2.2) corresponds to the eigenvalue at infinity of the pencil λE − A and has the form
N = diag(Nn1 , . . . , Nnt), where

Nnj =


0 1

. . . . . .
. . . 1

0


is a nilpotent Jordan block of order nj. The number n∞ =

∑t
j=1 nj is the algebraic

multiplicity of the eigenvalue at infinity of λE − A and defines the dimension of the right
and left deflating subspaces of λE − A corresponding to the eigenvalue at infinity. The
size of the largest nilpotent block, denoted by ν, is called the index of the pencil λE − A.
Clearly, N ν−1 6= 0 and N ν = 0. If the matrix E is nonsingular, then λE − A is of index
zero. The pencil λE − A is of index one if and only if it has exactly nf = rank(E) finite
eigenvalues. The following theorem gives another equivalent characterizations for λE − A
to have index at most one.

Theorem 2.1. [92] The following statements are equivalent.

1. The pencil λE − A is regular and of index at most one.

2. rank

[
E

K∗E∗A

]
= rank [E, AKE ] = n, where KE and KE∗ are matrices with ortho-

gonal columns spanning the right and left null spaces of E, respectively.
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3. The matrix K∗E∗AKE is nonsingular.

4. ImE+̇AKerE = Fn.

Representation (2.2) defines the decomposition of Fn into two complementary deflating
subspaces of the matrix pencil λE−A corresponding to the finite and infinite eigenvalues.
The matrices

Pl = W

[
Inf 0
0 0

]
W−1 and Pr = T−1

[
Inf 0
0 0

]
T (2.3)

are spectral projections onto the left and right deflating subspaces of λE−A corresponding
to the finite eigenvalues. For simplicity, the deflating subspace of λE − A corresponding
to the finite (infinite) eigenvalues we will call the finite (infinite) deflating subspace.

It is well known that computing the Weierstrass canonical form in finite precision
arithmetic is, in general, an ill-conditioned problem in the sense that small changes in the
data may extremely change the canonical form. Therefore, the Weierstrass canonical form
is only of theoretical interest. From a computational point of view, the Generalized UPper
TRIangular (GUPTRI) form [41, 42] is more suitable. For a regular pencil λE − A with
E, A ∈ Rn,n, there exist orthogonal matrices V and U such that

E = V

[
Ef Eu
0 E∞

]
UT and A = V

[
Af Au
0 A∞

]
UT , (2.4)

where the pencil λEf − Af is quasi-triangular and has only finite eigenvalues, while the
pencil λE∞−A∞ is triangular and all its eigenvalues are infinite. Clearly, the matrices Ef
and A∞ are nonsingular, and E∞ is nilpotent. The GUPTRI form is a special case of the
generalized Schur form for regular pencils [64, 145] and can also be extended to singular
pencils [41, 42]. The numerical computation of the GUPTRI form and the generalized
Schur form of a matrix pencil has been intensively studied and various methods have been
proposed, see [10, 41, 42, 64, 169] and the references therein. A comparison of the different
algorithms can be found in [41].

2.2 Generalized resolvent and functions of matrix

pencils

Let λE−A be a regular matrix pencil. Consider a generalized resolvent (λE−A)−1 which
is a rational matrix-valued function of a complex variable λ defined on C\Sp(E,A). At an
eigenvalue λj(E,A) (finite or infinite) of algebraic multiplicity aj the generalized resolvent
has a pole of order aj. For any λ, µ 6∈ Sp(E,A), the generalized resolvent equation

(λE − A)−1 − (µE − A)−1 = (µ− λ)(λE − A)−1E(µE − A)−1 (2.5)

holds.
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The generalized resolvent (λE − A)−1 has the following Laurent expansion at infinity

(λE − A)−1 = λ−1

∞∑
k=−∞

Fkλ
−k, (2.6)

where the coefficients Fk have the form

Fk =


T−1

[
Jk 0
0 0

]
W−1, k = 0, 1, 2 . . . ,

T−1

[
0 0
0 −N−k−1

]
W−1, k = −1,−2, . . .

(2.7)

with W , T , J and N as in (2.2), see [104]. Note that Fk = 0 for all k < −ν, where ν is
the index of the pencil λE −A. The following theorem gives some useful properties of the
matrices Fk.

Theorem 2.2. Let the matrices Fk be as in (2.7) and let the projections Pr and Pl be as
in (2.3). Then

FjEFk = FkEFj = FjAFk = FkAFj = 0 for j < 0, k ≥ 0, (2.8)

FjEFk = FkEFj =

{
Fj+k, j, k ≥ 0,
−Fj+k, j, k < 0,

(2.9)

FjAFk = FkAFj =

{
Fj+k+1, j, k ≥ 0,
−Fj+k+1, j, k < 0,

EFkA = AFkE for all k,

F0E = Pr, −F−1A = I − Pr, (2.10)

EF0 = Pl, −AF−1 = I − Pl.

Moreover,

EFk = AFk−1 + δ0,kI, (2.11)

FkE = Fk−1A+ δ0,kI,

where δj,k is the Kronecker delta.

Proof. See [11, 113].

Similarly to the matrix case [100], we may define a function of a matrix pencil [39, 63,
149] as follows.

Definition 2.3. Let λE−A be a regular pencil. Let Γ be a closed Jordan curve such that
the finite spectrum of λE −A lies inside Γ. If f is a function that is analytic inside Γ and
continuous on Γ, then the function f(E,A) of the pencil λE − A is defined via

f(E,A) =
1

2πi

∮
Γ

f(λ)(λE − A)−1 dλ. (2.12)
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Equation (2.12) is a matrix pencil version of Cauchy’s integral formula [135]. From
complex function theory [135] it follows that the integral (2.12) does not depend on the
particular choice of the curve Γ. For E = I, we have that f(I, A) = f(A) is a classical
function of the matrix A [100]. If the matrix E is nonsingular, then

f(E,A) = f(E−1A)E−1 = E−1f(AE−1).

Remark 2.4. Note that f(E,A) is a matrix but not a matrix pencil.

Example 2.5. Since the exponential function eλt of the complex variable λ is analytic
everywhere on C, we may define the exponential function of the pencil λE − A via

exp(t, E,A) =
1

2πi

∮
Γ

eλt(λE − A)−1 dλ, (2.13)

where Γ is a closed Jordan curve that encloses the finite spectrum of λE−A. This function
is a generalization of the matrix exponential eAt [100].

Some familiar properties of scalar functions and functions of matrices [63, 100] can be
extended to matrix pencils.

Lemma 2.6. Let Λ be a subset of the finite spectrum of a regular pencil λE − A and let
ΓΛ be a closed Jordan curve enclosing Λ. Then the matrices

Pl,Λ =
1

2πi

∮
ΓΛ

E(λE − A)−1 dλ (2.14)

and

Pr,Λ =
1

2πi

∮
ΓΛ

(λE − A)−1E dλ (2.15)

are spectral projections (known as Riesz projections) onto the left and right deflating sub-
spaces of the pencil λE − A corresponding to Λ.

Proof. See [63, Theorem IV.1.1].

Lemma 2.7 (Generalized Hamilton-Cayley theorem). Let χ(λ) = det(λE − A) be
the characteristic polynomial of a regular pencil λE − A. Then χ(E,A) = 0.

Proof. Let Γ be a closed Jordan curve enclosing the finite spectrum of λE − A. Then the
function χ(λ)(λE − A)−1 is analytic everywhere on C and, hence, by Cauchy’s theorem
[135] we have

χ(E,A) =
1

2πi

∮
Γ

χ(λ)(λE − A)−1 dλ = 0.
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Lemma 2.8. Let λE −A be a regular pencil and let Γ be a closed Jordan curve such that
all finite eigenvalues of λE−A lie inside Γ. Assume that functions f and g are continuous
on Γ and analytic inside Γ. Then

(i) (f + g)(E,A) = f(E,A) + g(E,A), (2.16)

(ii) (af)(E,A) = af(E,A) for all a ∈ C, (2.17)

(iii) (fg)(E,A) = f(E,A)E g(E,A) = g(E,A)E f(E,A). (2.18)

Proof. Clearly, the functions f + g, af and fg are continuous on the curve Γ and analytic
inside Γ. Equations (2.16) and (2.17) are obvious. To prove (2.18), see [39, Lemma 1].

Lemma 2.9. Let Γ be a closed Jordan curve enclosing the finite spectrum of a regular
pencil λE − A and let the matrices Fk be as in (2.7). Then

Fk =
1

2πi

∮
Γ

λk(λE − A)−1 dλ for k ≥ 0. (2.19)

Moreover, if the origin is inside Γ, then

Fk = − 1

2πi

∮
Γ

λk(λE − A)−1 dλ for k < 0. (2.20)

Proof. Using the Weierstrass canonical form (2.2) of the pencil λE − A we obtain

1

2πi

∮
Γ

λk(λE − A)−1 dλ = W−1

(
1

2πi

∮
Γ

[
λk(λI − J)−1 0

0 λk(λN − I)−1

]
dλ

)
T−1.

Since all eigenvalues of J lie inside the curve Γ and N is nilpotent, we have

1

2πi

∮
Γ

λk(λI − J)−1dλ = Jk,
1

2πi

∮
Γ

λk(λN − I)−1dλ = 0 for k ≥ 0.

Furthermore, if the origin is inside Γ, then

− 1

2πi

∮
Γ

λk(λI − J)−1dλ = 0, − 1

2πi

∮
Γ

λk(λN − I)−1dλ = −Nk−1 for k < 0.

Thus, (2.19) and (2.20) hold.

Corollary 2.10. Let λE − A be a regular pencil and let Fk be as in (2.7). Consider
a polynomial p(λ) = a0 + a1λ+ . . .+ amλ

m. Then p(E,A) = a0F0 + a1F1 + . . .+ amFm.

Proof. The result follows from (2.12), (2.16) and (2.19).
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Chapter 3

Linear descriptor systems

Consider a linear time-invariant continuous-time system

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0,
y(t) = Cx(t),

(3.1)

and a linear time-invariant discrete-time system

Exk+1 = Axk +Buk, x0 = x0,
yk = Cxk,

(3.2)

where E, A ∈ Fn,n, B ∈ Fn,m, C ∈ Fp,n, x(t), xk ∈ Fn are state vectors, u(t), uk ∈ Fm are
control inputs, y(t), yk ∈ Fp are outputs and x0 ∈ Fn is an initial value.

If E = In, then systems (3.1) and (3.2) are called standard state space systems. Such
systems have been extensively studied, see, e.g., [89, 94, 176] and the references therein.
Systems (3.1) and (3.2) with singular E are known in the literature as descriptor systems
[104, 117, 174], singular systems [30, 31, 35, 36], differential-algebraic equations [21, 132],
generalized state space systems [84] and implicit linear systems [6, 106]. These equations
arise in many different applications such as electrical circuits [21, 30, 31, 69, 70], multi-
body systems [45, 132, 138], chemical engineering [21, 98], (semi)discretization of partial
differential equations [19, 21, 170], economic systems [110] and others.

In this chapter we present some basic concepts of control theory for continuous-time
and discrete-time descriptor systems (3.1) and (3.2). We consider existence and uniqueness
of solutions of these systems as well as the stability theory. Various types of controllability
and observability for descriptor systems are defined and equivalent algebraic and geometric
characterizations are given.

3.1 Continuous-time descriptor systems

3.1.1 Solvability and the fundamental solution matrix

In this subsection we review some of the results [30, 36] on the existence and uniqueness
of solutions of the continuous-time descriptor system (3.1).

23
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Let λE−A be a regular pencil in Weierstrass canonical form (2.2) and let the matrices

W−1B =

[
B1

B2

]
and CT−1 = [C1, C2] (3.3)

be partitioned in blocks conformally to E and A. Under the coordinate transformation[
z(t)
w(t)

]
= Tx(t),

system (3.1) is decoupled in the slow system

ż(t) = Jz(t) +B1u(t), z(0) = z0, (3.4)

and the fast system

Nẇ(t) = w(t) +B2u(t), w(0) = w0, (3.5)

with y(t) = C1z(t) + C2w(t) and

[
z0

w0

]
= Tx0. Systems (3.4) and (3.5) are called also

dynamic and algebraic parts of (3.1), respectively.
Equation (3.4) has a unique solution for any input u(t) and initial value z0 ∈ Fnf . This

solution has the form

z(t) = etJz0 +

∫ t

0

e(t−τ)JB1u(τ) dτ.

A unique solution of equation (3.5) is given by

w(t) = −
ν−1∑
k=0

NkB2u
(k)(t), (3.6)

where ν is the index of the pencil λE − A. We see from (3.6) that for the existence of
a classical smooth solution x(t), it is necessary that the input u(t) is sufficiently smooth.
Moreover, (3.6) shows that not for all initial conditions x(0) = x0 system (3.1) is solvable.
The initial value x0 has to be consistent, that is, it must belong to the set of consistent
initial conditions given by

X 0
c =

{
T−1

[
z0

w0

]
: z0 ∈ Fnf , w0 = −

ν−1∑
k=0

NkB2u
(k)(0)

}
. (3.7)

Thus, if the pencil λE−A is regular, x0 ∈ X 0
c and u(t) is ν times continuously differentiable,

then system (3.1) has a unique, continuously differentiable solution x(t) [30, 36]. We will
often denote the solution of (3.1) by x(t, x0, u) to show explicitly the dependence on the
initial value x0 and the input u(t).

Similarly to the standard case (E = I), e.g., [61], we can define a fundamental solution
matrix for the descriptor system (3.1).
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Definition 3.1. A matrix-valued function F(t) defined for all t ∈ R is called fundamental
solution matrix of the continuous-time descriptor system (3.1) if it is continuously diffe-
rentiable and satisfies the initial value problem

EḞ(t) = AF(t),
EF(0) = Pl,

(3.8)

where Pl is the projection onto the left finite deflating subspace of the pencil λE − A.

It should be noted that the introduced fundamental solution matrix F(t) differs by
a left multiple factor E from the fundamental solution matrix considered in [67, 148].

The following theorem discusses existence and uniqueness of F(t).

Theorem 3.2. Let λE − A be a regular pencil. Then there exists a unique fundamental
solution matrix F(t) of system (3.1) that has the form

F(t) =
1

2πi

∮
Γ

eλt(λE − A)−1dλ, (3.9)

where Γ is a closed Jordan curve enclosing the finite eigenvalues of the pencil λE − A.

Proof. Consider the exponential function exp(t) = exp(t, E,A) as in (2.13). Substituting
this function in (3.8), we obtain

E
d

dt
exp(t)− A exp(t) =

1

2πi

∮
Γ

eλt(λE − A)(λE − A)−1 dλ =
1

2πi
I

∮
Γ

eλtdλ = 0.

Moreover, it follows from (2.13) and (2.14) that

E exp(0) =
1

2πi

∮
Γ

E(λE − A)−1 dλ = Pl.

Thus, the fundamental solution matrix of (3.1) exists and is given by (3.9).
In order to prove the uniqueness of the fundamental solution matrix, we consider the

homogeneous initial value problem

EḞ(t) = AF(t), EF(0) = 0. (3.10)

Using the Weierstrass canonical form (2.2) for the regular pencil λE − A we obtain that
(3.10) has only the trivial solution F(t) ≡ 0. Let us now suppose that there exist two
fundamental solution matrices F1(t) and F2(t). Then their difference F(t) = F1(t)−F2(t)
satisfying (3.10) is identically equal to zero, i.e., F1(t) = F2(t).

It follows from Lemmas 2.6 and 2.8 that

F(t)Pl = F(t) = PrF(t),

F(t)EPr = F(t)E = PrF(t)E,

PlEF(t) = EF(t) = EF(t)Pl.
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Taking into account (2.2), we can rewrite the fundamental solution matrix F(t) in (3.9) as

F(t) = T−1

[
etJ 0
0 0

]
W−1. (3.11)

Moreover, if the pencil λE − A has no finite eigenvalues on the imaginary axis, then F(t)
has the following integral representations

F(t) =
1

2π

∫ ∞
−∞

eiωtPr(iωE − A)−1 dω =
1

2π

∫ ∞
−∞

eiωt(iωE − A)−1Pl dω. (3.12)

These immediately follow from (3.11) and the identity

etJ =
1

2π

∫ ∞
−∞

eiωt(iωI − J)−1dω,

see, e.g., [61].

Remark 3.3. The fundamental solution matrix F(t) is closely related to the exponential
relation introduced in [13, 14]. For a real matrix pencil λE −A, a linear relation (E\A) is
defined via (

E\A
)

=
{

(x, v) ∈ Rn × Rn : Ev = Ax
}
.

In therms of linear relations, the continuous-time singular system

Eẋ(t) = Ax(t) (3.13)

can be rewritten as (x(t), ẋ(t)) ∈
(
E\A

)
. Moreover, x(t) is the solution of system (3.13) if

and only if
(x(t0), x(t)) ∈ exp

(
E\(A(t− t0))

)
,

where t0 ∈ R and

exp
(
E\(A(t− t0))

)
=
∞∑
k=0

(t− t0)k

k!

(
E\A

)k
is the exponential relation, see [14] for details. On the other hand, the solution of (3.13) has
the form x(t) = F(t − t0)Ex(t0) or, equivalently, (x(t0), x(t)) ∈

(
I\(F(t − t0)E)

)
. Thus,

we obtain that exp
(
E\(A(t− t0))

)
=
(
I\(F(t− t0)E)

)
.

Using the fundamental solution matrix F(t) and the matrices Fk as in (2.7), the classical
solution x(t, x0, u) of the descriptor system (3.1) can be written as

x(t, x0, u) = T−1

[
z(t)
w(t)

]
= F(t)Ex0 +

∫ t

0

F(t− τ)Bu(τ) dτ +
ν−1∑
k=0

F−k−1Bu
(k)(t).

If the initial condition x0 is inconsistent or the input u(t) is not sufficiently smooth
(for example, in most control problems u(t) is only piecewise continuous), then the solution
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of the continuous-time descriptor system (3.1) may have impulsive modes [35, 36]. Such
a solution exists in the distributional sense and has the form

x(t, x0, u) = F(t)Ex0 +

∫ t

0

F(t− τ)Bu(τ) dτ

+
ν−1∑
k=1

δ(k−1)(t)F−kEx
0 +

ν−1∑
k=0

F−k−1Bu
(k)(t),

(3.14)

where δ(t) is the Dirac delta function, δ(k)(t) and u(k)(t) are distributional derivatives [43].
It follows from (3.14) that system (3.1) has no impulsive solutions for every piecewise
continuous input u(t) if and only if x0 ∈ KerE and F−k−1B = 0 for k > 0. Moreover,
impulsive solutions in (3.1) do not arise if the pencil λE − A is of index at most one.

3.1.2 Stability

In this subsection we discuss the asymptotic behavior of solutions of the descriptor system
(3.1) with u(t) ≡ 0. There exist various types of stability for ordinary differential equations
such as exponential stability, Lyapunov stability, asymptotic stability, uniform stability,
internal and external stability, see [61, 71, 89, 111].

The following definitions describe Lyapunov stability for the continuous-time singular
system (3.13).

Definition 3.4. The trivial solution x(t) ≡ 0 of (3.13) is stable in the sense of Lyapunov
or Lyapunov stable if

(i) for all x0 ∈ Fn the initial value problem

Eẋ(t)− Ax(t) = 0,
Pr (x(0)− x0) = 0

(3.15)

has a solution x(t, x0) ∈ ImPr defined on [0,∞);
(ii) for every ε > 0 there exists a δ = δ(ε) > 0 such that ‖x(t, x0)‖ < ε for all t ≥ 0

and for all x0 ∈ Fn with ‖Prx0‖ < δ.

Definition 3.5. The trivial solution x(t) ≡ 0 of (3.13) is asymptotically stable if it is
Lyapunov stable and if there is a δ0 > 0 such that for the solution x(t, x0) of (3.15) with
‖Prx0‖ < δ0 we have that x(t, x0)→ 0 as t→∞.

Remark 3.6. Note that the Lyapunov stability does not depend on the special choice
of the projection Pr which can be replaced by any matrix M with the property that
KerM = KerPr. This fact is an immediate consequence of the relations MPr = M and
Pr = PrM

+M , where the matrix M+ denotes the Moore-Penrose inverse of M , see [32].

The following theorem is well known and gives a necessary and sufficient condition for
the trivial solution of (3.13) to be asymptotically stable, see [36, 67, 123].
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Theorem 3.7. Let λE − A be a regular pencil. The trivial solution x(t) ≡ 0 of equation
(3.13) is asymptotically stable if and only if all the finite eigenvalues of λE − A lie in the
open left half-plane.

We now consider the problem to determine via a numerical method whether all the
finite eigenvalues of a regular pencil λE − A lie in the open left half-plane. This problem
arises also in the study of the asymptotic properties of stationary solutions of autonomous
quasilinear and nonlinear differential-algebraic equations [114, 155] and nonautonomous
differential-algebraic equations with constant linear part and small nonlinearity [115].

Definition 3.8. A matrix pencil λE −A is called c-stable if it is regular and all the finite
eigenvalues of λE − A lie in the open left half-plane.

It is known that the generalized eigenvalue problem as well as the standard eigenvalue
problem may be ill-conditioned in the sense that eigenvalues may change strongly even
under small perturbations in E and A [145, 171]. Consider the following example.

Example 3.9. Let E = I20 and

Aε =


−1 10

. . . . . .
. . . 10

ε −1

 .
All eigenvalues of A0 are −1 and lie in the open left half-plane. However, if ε = 10−18,
then the matrix Aε has an eigenvalue λ = 20

√
10− 1 in the right half-plane.

Recently the concept of ε-pseudospectra and spectral portraits [60, 157] was develo-
ped to better understand the influence of perturbations on the spectrum of matrices and
matrix pencils, see also [62, 76, 158, 159] and references therein. The application of the
ε-pseudospectra in the study of the asymptotic stability of differential equations arising in
computational fluid dynamics can be found in [49, 160, 162].

Another possible approach to investigate the asymptotic behavior of solutions of linear
ordinary differential equations without explicitly computing the eigenvalues is the consi-
deration of so-called dichotomy parameters that characterize numerically the property of
matrices to have all eigenvalues in the open left half-plane and that are efficiently com-
putable [22, 23, 59, 61]. Analogous parameters were introduced in [148, 149] for equation
(3.13).

Consider a matrix

Hc =

∫ ∞
0

F∗(t)F(t) dt, (3.16)

where F(t) is the fundamental solution matrix as in (3.11). If the pencil λE−A is c-stable,
that is, <e(λj(J)) ≤ −ζ < 0, then the estimate

‖etJ‖2 ≤ c(nf )
(‖J‖2

ζ

)nf−1

e−tζ/2
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holds [61]. Here c(nf ) is a constant that depends on nf only. Then from (3.11) we have
the estimate

‖F(t)‖2 ≤ ‖T−1‖2‖W−1‖2‖etJ‖2 ≤ c(nf )‖T−1‖2‖W−1‖2

(‖J‖2

ζ

)nf−1

e−tζ/2, (3.17)

and, hence, the integral (3.16) is convergent. The matrix Hc can be used to compute the
maximum L2-norm of the solution x(t, x0) = F(t)Ex0 of the initial value problem (3.15).
We have

‖E∗HcE‖2 = max
‖v‖=1

∫ ∞
0

‖F(t)Ev‖2dt = max
‖Prx0‖=1

∫ ∞
0

‖x(t, x0)‖2dt.

We introduce

κc(E,A) = 2‖
(
EPr + A(I − Pr)

)−1
A‖2‖E∗HcE‖2, (3.18)

where Pr is as in (2.3). It follows from (3.17) that if the pencil λE − A is c-stable, then
κc(E,A) is bounded. We set κc(E,A) = ∞ if λE − A has at least one finite eigenvalue
with nonnegative real part.

It is interesting that the parameter κc(E,A) can be used for pointwise estimation of
the solution of problem (3.15). We will develop a similar technique as in [61].

Theorem 3.10. Let x(t, x0) be a solution of the initial value problem (3.15). Then

‖x(t, x0)‖ ≤
√
κc(E,A) e−t‖(EPr+A(I−Pr))−1A‖2/κc(E,A)‖Prx0‖. (3.19)

Proof. If κc(E,A) =∞ then inequality (3.19) is fulfilled. Assume that κc(E,A) <∞ and
consider for t ≥ 0 the matrix-valued function

Y (t) =

∫ ∞
t

F∗(τ)F(τ)ds.

It follows from Lemma 2.8 with f(λ) = etλ and g(λ) = eτλ that

F(t+ τ) = F(t)EF(τ) = F(τ)EF(t).

Then

Y (t) =

∫ ∞
t

F∗(τ)F(τ)dτ = F∗(t)E∗
(∫ ∞

0

F∗(τ)F(τ)dτ

)
EF(t) = F∗(t)E∗HcEF(t).

Differentiating the matrix Y (t), we obtain

d

dt
Y (t) = −F∗(t)F(t).

For an arbitrary vector v ∈ Fn we have the estimate

d

dt
〈Y (t)v, v〉 = −〈F(t)v,F(t)v〉 ≤ −〈E

∗HcEF(t)v,F(t)v〉
‖E∗HcE‖2

= − 〈Y (t)v, v〉
‖E∗HcE‖2

,
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which implies that
d

dt

(
et/‖E

∗HcE‖2〈Y (t)v, v〉
)
≤ 0,

and, consequently,

〈F∗(t)E∗HcEF(t)v, v〉 = 〈Y (t)v, v〉 ≤ e−t/‖E
∗HcE‖2〈Y (0)v, v〉

= e−t/‖E
∗HcE‖2〈HcPlv, Plv〉

= e−t/‖E
∗HcE‖2〈Hcv, v〉.

(3.20)

Furthermore, it is not difficult to verify that

F(t)E = et(EPr+A(I−Pr))−1APr.

Then, taking into account that ‖et(EPr+A(I−Pr))−1APrv‖ ≥ e−|t|‖(EPr+A(I−Pr))−1A‖2‖Prv‖, see
[61, p. 24], we have

〈E∗HcEv, v〉 =

∫ ∞
0

‖F(t)Ev‖2dt ≥ ‖Prv‖2

∫ ∞
0

e−2t‖(EPr+A(I−Pr))−1A‖2dt

=
‖Prv‖2

2‖(EPr + A(I − Pr))−1A‖2

.
(3.21)

Substituting in (3.21) the vector v = F(t)Ex0 we obtain that

‖x(t, x0)‖2 = ‖F(t)Ex0‖2 ≤ 2‖
(
EPr + A(I − Pr)

)−1
A‖2〈E∗HcEF(t)Ex0,F(t)Ex0〉.

Finally, from (3.20) with v = Ex0 we have

‖x(t, x0)‖2 ≤ κc(E,A) e−2t‖(EPr+A(I−Pr))−1A‖2/κc(E,A)‖Prx0‖2.

The following example shows that the estimate (3.19) is sharp.

Example 3.11. Consider the system

Eεẋ(t) = Aεx(t) (3.22)

with

Eε =

 1 0 0
0 ε 0
0 0 0

 , Aε =

 −1 0 0
0 −ε 0
0 0 1

 .

For 0 < ε < 1, the general solution of (3.22) is x(t, x0) = e−tPrx
0 and, hence, the trivial

solution of (3.22) is asymptotically stable. We have κc(Eε, Aε) = 1 and from (3.19) it
follows that ‖x(t, x0)‖ ≤ e−t‖Prx0‖. However, for ε = 0 the pencil λEε − Aε is singular,
i.e., under a perturbation of norm ε the trivial solution of (3.22) is not asymptotically
stable.
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From Theorem 3.10 we obtain some useful consequences.

Corollary 3.12. Let κc(E,A) be as in (3.18). The trivial solution of equation (3.13) is
asymptotically stable if and only if κc(E,A) is bounded.

Proof. If κc(E,A) is bounded, then by (3.19) the trivial solution of (3.13) is asymptotically
stable. On the other hand, by Theorem 3.7 it follows from the asymptotic stability of (3.13)
that κc(E,A) <∞.

Corollary 3.13. Let F(t) be a fundamental solution matrix of (3.1). Then

‖F(t)E‖2 ≤
√
κc(E,A) e−t‖(EPr+A(I−Pr))−1A‖2/κc(E,A). (3.23)

Proof. The result follows from the proof of Theorem 3.10.

Corollary 3.14. Let Pr be the spectral projection onto the right finite deflating subspace
of a regular pencil λE − A. Then

‖Pr‖2 ≤
√
κc(E,A). (3.24)

Proof. Since Pr = F(0)E, bound (3.24) immediately follows from (3.23).

From (3.19) it is also possible to derive a weaker but more practical bound for the
solution x(t, x0) of (3.15). Indeed, from ‖E∗HcE‖2 ≤ ‖E‖2

2‖Hc‖2 and (3.19) we obtain the
estimate

‖x(t, x0)‖ ≤
√

2‖E‖2
2‖Hc‖2‖(EPr + A(I − Pr))−1‖2‖A‖2 e

−t/(2‖E‖22‖Hc‖2)‖Prx0‖

=
√
κc,2(E,A)‖E‖2‖(EPr + A(I − Pr))−1‖2 e

−t‖A‖2/(‖E‖2κc,2(E,A))‖Prx0‖,
(3.25)

where κc,2(E,A) = 2‖E‖2‖A‖2‖Hc‖2.
Despite of the fact that bound (3.25) may overestimate the solution x(t, x0) of (3.15),

the parameter κc,2(E,A) also characterizes the behavior of x(t, x0) at infinity. Moreover,
κc,2(E,A), in contrast to κc(E,A), may be more useful to evaluate the ”quality” of the
asymptotic stability. We see in Example 3.11, that κc,2(Eε, Aε) = ε−2 →∞ as ε→ 0 and,
hence, (3.22) approaches to an unstable system.

Note that for E = I both parameters κc(E,A) and κc,2(E,A) coincide with the pa-
rameter æ(A) introduced in [22, 61] to study the asymptotic stability of linear ordinary
differential equations.

To compute the parameters κc(E,A) and κc,2(E,A) we need the matrix Hc. The
numerical computation of this matrix will be discussed in Section 6.3.

3.2 Discrete-time descriptor systems

In this section we study the discrete-time descriptor system (3.2).
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3.2.1 Solvability

Let a regular pencil λE −A be in Weierstrass canonical form (2.2) and let the matrices B
and C be as in (3.3). Then (3.2) is equivalent to the decoupled system of equations

zk+1 = Jzk +B1uk, z0 = z0, (3.26)

Nwk+1 = wk +B2uk, w0 = w0, (3.27)

with yk = C1zk + C2zk. Here[
zk
wk

]
= Txk,

[
z0

w0

]
= Tx0.

Equation (3.26) has a unique forward solution zk, k ≥ 0, for any input uk and initial value
z0 ∈ Fnf . This solution is given by

zk = Jkz0 +
k−1∑
j=0

Jk−j−1B1uj, k ≥ 0.

The unique solution of (3.27) has the form

wk = −
ν−1∑
j=0

N jB2uk+j, k ≥ 0. (3.28)

Thus, if the pencil λE−A is regular and the initial value x0 belongs to the set of consistent
initial conditions

X 0
d =

{
T−1

[
z0

w0

]
: z0 ∈ Fnf , w0 = −

ν−1∑
j=0

N jB2uj

}
.

then the discrete-time descriptor system (3.2) has a unique solution xk for all k ≥ 0. Using
the fundamental matrices Fk as in (2.7), this solution can be written as

xk = FkEx
0 +

k+ν−1∑
j=0

Fk−j−1Buj, k ≥ 0.

We see that to determine xk we need not only past inputs uj, j ≤ k, but also future inputs
uj, k < j ≤ k + ν − 1, see [36] for details. This concept is often called noncausality of
discrete-time descriptor systems. For the causal descriptor system (3.2), the state xk is
determined completely by the initial vector x0 and control inputs u0, u1, . . . , uk. Clearly,
system (3.2) is causal if the pencil λE − A is of index at most one.



3.2. DISCRETE-TIME DESCRIPTOR SYSTEMS 33

3.2.2 Stability

In this subsection we discuss the stability of the singular difference equation

Exk+1 = Axk. (3.29)

First some notions of stability for such an equation are presented.

Definition 3.15. The trivial solution xk ≡ 0 of (3.29) is called stable in the sense of
Lyapunov or Lyapunov stable if

(i) for all x0 ∈ Fn the initial value problem

Exk+1 − Axk = 0,
Pr (x0 − x0) = 0

(3.30)

has a unique solution xk ∈ ImPr defined for k ≥ 0;
(ii) for every ε > 0 there exists a δ = δ(ε) > 0 such that ‖xk‖ < ε for all k ≥ 0 and for

all x0 ∈ Fn with ‖Prx0‖ < δ.

Definition 3.16. The trivial solution xk ≡ 0 of (3.29) is called asymptotically stable if it
is Lyapunov stable and if there is a δ0 > 0 such that for the solution xk of (3.30) with
‖Prx0‖ < δ0 we have that xk → 0 as k →∞.

The following theorem gives a necessary and sufficient condition for the trivial solution
of (3.29) to be asymptotically stable, see [36, 153] for details.

Theorem 3.17. Let λE − A be a regular pencil. The trivial solution xk ≡ 0 of equation
(3.29) is asymptotically stable if and only if all finite eigenvalues of λE − A lie inside the
unit circle.

It should be noted that although the infinite eigenvalues lie outside the unit circle they,
in contrast to the finite eigenvalues of modulus not less than 1, do not affect the behavior
at infinity of solutions of (3.29).

Definition 3.18. A matrix pencil λE−A is called d-stable if it is regular and all the finite
eigenvalues of λE − A lie inside the unit circle.

The problem of the distribution of eigenvalues of the pencil λE−A with respect to the
unit circle has been considered in [62, 112, 113].

Similar to the continuous-time case, as a numerical parameter characterizing the d-sta-
bility of the pencil λE − A we take

κd,2(E,A) =
(
‖E‖2

2 + ‖A‖2
2

)
‖Hd‖2, (3.31)

where the matrix Hd has the form

Hd =
∞∑

k=−∞

F ∗kFk (3.32)
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and the matrices Fk are given in (2.7). If the pencil λE −A is d-stable, then series (3.32)
is convergent and κd,2(E,A) is bounded. We set κd,2(E,A) =∞ if λE−A has at least one
finite eigenvalues of modulus not less than 1. Note that κd,2(E,A) slightly differs from the
unit circle dichotomy parameter introduced in [112].

The following theorem gives bounds on the spectral norm of the matrices FkE with
k ≥ 0 and FkA with k < 0.

Theorem 3.19. Let the matrices Fk be as in (2.7). Then

‖FkE‖2 ≤
√
κd,2(E,A)

(
κd,2(E,A)

1 + κd,2(E,A)

)k/2
, k ≥ 0, (3.33)

‖FkA‖2 ≤
√
κd,2(E,A)

(
κd,2(E,A)

1 + κd,2(E,A)

)(−k−1)/2

, k < 0. (3.34)

Proof. Note that

κd,2(E,A) ≥ ‖E‖2
2‖Hd‖2 ≥ ‖E∗HdE‖2 ≥ ‖F0E‖2

2 = ‖Pr‖2
2 ≥ 1,

κd,2(E,A) ≥ ‖A‖2
2‖Hd‖2 ≥ ‖A∗HdA‖2 ≥ ‖F−1A‖2

2 = ‖I − Pr‖2
2 ≥ 1.

Using (2.8)-(2.10) for every vector v ∈ Fn and every k > 0 we obtain that

〈E∗HdEFkEv, FkEv〉 = 〈E∗HdEFk−1Ev, Fk−1Ev〉 − 〈Fk−1Ev, Fk−1Ev〉

=

(
1− 〈Fk−1Ev, Fk−1Ev〉
〈E∗HdEFk−1Ev, Fk−1Ev〉

)
〈E∗HdEFk−1Ev, Fk−1Ev〉

≤
(

1− 1

‖E‖2
2‖Hd‖2

)
〈E∗HdEFk−1Ev, Fk−1Ev〉 ≤ . . .

≤
(

1− 1

‖E‖2
2‖Hd‖2

)k
〈E∗HdEF0Ev, F0Ev〉

≤ ‖E‖2
2‖Hd‖2

(
1− 1

‖E‖2
2‖Hd‖2

)k
‖Prv‖2.

From this estimate it immediately follows that

‖FkE‖2 = max
v 6=0

‖FkEv‖
‖v‖

= max
Prv 6=0

‖FkEv‖
‖Prv‖

≤
√
κd,2(E,A)

(
κd,2(E,A)

1 + κd,2(E,A)

)k/2
for all k ≥ 0. Furthermore, for v ∈ Fn and k < −1, we have

〈A∗HdAFkAv, FkAv〉 = 〈A∗HdAFk+1Av, Fk+1Av〉 − 〈Fk+1Av, Fk+1Av〉

≤
(

1− 1

‖A‖2
2‖Hd‖2

)
〈A∗HdAFk+1Av, Fk+1Av〉

≤ κd,2(E,A)

1 + κd,2(E,A)
〈A∗HdAFk+1Av, Fk+1Av〉.
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Hence,

‖FkA‖2
2 = max

v 6=0

‖FkAv‖2

‖v‖2
= max
‖(I−Pr)v‖=1

‖FkAv‖2 = ‖FkAv0‖2

≤ κd,2(E,A)

1 + κd,2(E,A)
〈A∗HdAFk+1Av0, Fk+1Av0〉 ≤ . . .

≤
(

κd,2(E,A)

1 + κd,2(E,A)

)−k−1

〈A∗HdAF−1Av0, F−1Av0〉

≤ κd,2(E,A)

(
κd,2(E,A)

1 + κd,2(E,A)

)−k−1

.

Thus, for all k < 0, estimate (3.34) holds.

From Theorem 3.19 we obtain the following bound for the solution of (3.30).

Corollary 3.20. Let xk be a solution of the initial value problem (3.30). Then

‖xk‖ ≤
√
κd,2(E,A)

(
κd,2(E,A)

1 + κd,2(E,A)

)k/2
‖Prx0‖, k ≥ 0. (3.35)

Proof. Since the solution of (3.30) has the form xk = FkEx
0 for all k ≥ 0, bound (3.35)

immediately follows from (2.9), (2.10) and (3.33).

As a consequence of Theorem 3.17 and Corollary 3.20 we have the following result.

Corollary 3.21. Let κd,2(E,A) be as in (3.31). The trivial solution of equation (3.29) is
asymptotically stable if and only if κd,2(E,A) is bounded.

The numerical computation of the matrix Hd and the parameter κd,2(E,A) will be
discussed in Section 6.4.

3.3 Controllability and observability for descriptor

systems

In this section we give a survey of the existing concepts of controllability and observability
for descriptor systems that will be used in the sequel. In contrast to standard state space
systems, for descriptor systems, there are several different notions of controllability and
observability. Unfortunately, there is no uniform terminology in the literature on this
subject, see [24, 35, 36, 106, 166, 174] and references therein.

Definition 3.22. Systems (3.1) and (3.2) are called completely controllable (C-controllable)
if

rank [αE − βA, B] = n for all (α, β) ∈ C2\{(0, 0)}. (3.36)

Systems (3.1) and (3.2) are called controllable on a reachable set (R-controllable) if

rank [λE − A, B] = n for all finite λ ∈ C . (3.37)
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Systems (3.1) and (3.2) are called controllable at infinity (I-controllable) if

rank [E, AKE, B] = n, (3.38)

where the columns of KE span the null space of E.
Systems (3.1) and (3.2) are called strongly controllable (S-controllable) if (3.37) and (3.38)
are satisfied.

The C-controllability implies that for any given initial and final states x0, xf ∈ Fn,
there exists an admissible control input that transfers the system from x0 to xf in finite
time. This notion follows [24, 174] and it is consistent with the definition of controllability
given in [35, 36].

The conception of R-controllability comes from [36] and conforms to the controllability
in [35, 166]. It was shown in [36] that the reachable set for a descriptor system is nothing
else than the solution space. The R-controllability ensures that for any consistent initial
state x0 and final state xf from the solution space, there exists an admissible control
input that transfers the system from x0 to xf in finite time. In the case of E = I, the
R-controllability coincides with the C-controllability and is the usual controllability of state
space systems [89].

In the continuous-time case the I-controllability is also known as impulse controllability
[35, 36] and means that impulsive modes in the solution can be excluded by a suitable linear
state feedback control. In other words, for every initial vector x0 there exists a feedback
control u(t) = Fcx(t) + v(t) with a feedback matrix Fc ∈ Fm,n and a new smooth control
input v(t) ∈ Fm such that the closed-loop system

Eẋ(t) = (A+BFc)x(t) +Bv(t), x(0) = x0

has no impulsive solutions. In the discrete-time case the I-controllability implies that for
every initial vector x0 one can find a feedback control uk = Fcxk + vk with a feedback
matrix Fc ∈ Fm,n and a new control input vk ∈ Fm such that the closed-loop system

Exk+1 = (A+BFc)xk +Bvk, x0 = x0

is causal [36]. Note that the descriptor systems (3.1) and (3.2) with the pencil λE − A of
index at most one are I-controllable.

The relationship between various controllability concepts is presented in the following
diagram.

R-controllability

I-controllability

6?

S-controllabilityR-controllability

������9

I-controllability

XXXXXXz?

C-controllability
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Since controllability of the descriptor systems (3.1) and (3.2) depends only on the
matrices E, A and B, we will say that the triplet (E,A,B) is C(R, I, S)-controllable if
system (3.1) or (3.2) is C(R, I, S)-controllable.

Definition 3.23. Let Fk be as in (2.7). The matrices

C+ = [F0B, . . . , FkB, . . . ] and C− = [ . . . , F−kB, . . . , F−1B ] (3.39)

are called the proper and improper controllability matrices in the continuous-time case and
the causal and noncausal controllability matrices in the discrete-time case. The matrix

C = [ C−, C+ ] = [ . . . , F−kB, . . . , F−1B, F0B, . . . , FkB, . . . ]

is the controllability matrix of the descriptor systems (3.1) and (3.2).

The following theorem gives equivalent algebraic and geometric characterizations of
different concepts of controllability for descriptor systems.

Theorem 3.24. Consider the descriptor systems (3.1) and (3.2) with a regular pencil
λE − A as in (2.2) and the matrices B and C as in (3.3).

1. The following statements are equivalent:

(a) the triplet (E,A,B) is R-controllable;

(b) rank [λI − J, B1] = nf for all λ ∈ C;

(c) Im (λE − A) + ImB = Fn for all λ ∈ C;

(d) Im (λI − J) + ImB1 = Fnf for all λ ∈ C;

(e) rank
[
F0B, F1B, . . . , Fnf−1B

]
= nf ;

(f) rank [B1, JB1, . . . , J
nf−1B1 ] = nf ;

(g) Im C+ = ImPr;

(h) Im [B1, JB1, . . . , J
nf−1B1 ] = Fnf .

2. The following statements are equivalent:

(a) the triplet (E,A,B) is I-controllable;

(b) rank [N, KN , B2] = n∞, where the columns of KN form a basis of KerN ;

(c) KerE + Im (F−1E) + Im (F−1B) = KerPr;

(d) KerN + ImN + ImB2 = Fn∞;

(e) KerE + Im [F−νB, F−ν+1B, . . . , F−1B] = KerPr;

(f) KerN + Im [B2, NB2, . . . , N
ν−1B2] = Fn∞;

(g) ImF−2 = Im [F−νB, F−ν+1B, . . . , F−2B];

(h) ImN = Im [NB2, N
2B2, . . . , N

ν−1B2];
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(i) rank

[
E 0 0
A E B

]
= n+ rank(E);

(j) rank

[
N 0 0
I N B2

]
= n∞ + rank(N);

(k) there exists a feedback matrix Fc ∈ Fm,n such that the pencil λE − (A+BFc) is
regular and of index one;

3. The following statements are equivalent:

(a) the triplet (E,A,B) is C-controllable;

(b) rank [λE − A, B ] = n for all λ ∈ C and rank [E, B] = n;

(c) rank [λI − J, B1 ] = nf for all λ ∈ C and rank [N, B2 ] = n∞;

(d) Im (λE − A) + ImB = Fn for all λ ∈ C and ImE + ImB = Fn;

(e) Im (λI − J) + ImB1 = Fnf for all λ ∈ C and ImN + ImB2 = Fn∞;

(f) rank
[
F0B, F1B, . . . , Fnf−1B

]
= nf , rank [F−νB, F−ν+1B, . . . , F−1B ]= n∞;

(g) rank [B1, JB1, . . . , J
nf−1B1 ] = nf and rank [B2, NB2, . . . , N

ν−1B2 ] = n∞;

(h) Im C+ = ImPr and Im C− = KerPr.

Proof. See [35, 36, 84, 174].

Observability is a dual concept of controllability.

Definition 3.25. Systems (3.1) and (3.2) are called completely observable (C-observable)
if

rank

[
αE − βA

C

]
= n for all (α, β) ∈ C2\{(0, 0)}. (3.40)

Systems (3.1) and (3.2) are called observable on the reachable set (R-observable) if

rank

[
λE − A
C

]
= n for all finite λ ∈ C . (3.41)

System (3.1) and (3.2) are called observable at infinity (I-observable) if

rank

 E
K∗E∗A
C

 = n, (3.42)

where the columns of KE∗ span the null space of E∗.
Systems (3.1) and (3.2) are called strongly observable (S-observable) if (3.41) and (3.42)
are satisfied.
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The relationship between various observability concepts is presented in the following diag-
ram.

R-observability

I-observability

6?

S-observabilityR-observability

������9

I-observability

XXXXXXz?

C-observability

Observability of the descriptor systems (3.1) and (3.2) depends only on the matrices
E, A and C. Therefore, the triplet (E,A,C) will be referred to as C(R, I, S)-observable if
system (3.1) or (3.2) is C(R, I, S)-observable.

Definition 3.26. Let Fk be as in (2.7). The matrices

O+ =


CF0

...
CFk

...

 and O− =


...

CF−k
...

CF−1

 (3.43)

are called the proper and improper observability matrices of the continuous-time descrip-
tor system (3.1) and the causal and noncausal observability matrices of the discrete-time
descriptor system (3.2). The matrix

O =

[
O−
O+

]
is the observability matrix of the descriptor systems (3.1) and (3.2).

The following theorem gives equivalent algebraic and geometric characterizations of
different concepts of observability for descriptor systems.

Theorem 3.27. Consider the descriptor systems (3.1) and (3.2) with a regular pencil
λE − A as in (2.2) and the matrices B and C as in (3.3).

1. The following statements are equivalent:

(a) the triplet (E,A,C) is R-observable;

(b) rank [λI − J∗, C∗1 ] = nf for all λ ∈ C;

(c) Ker (λE − A)
⋂

KerC = 0 for all λ ∈ C;

(d) Ker (λI − J)
⋂

KerC1 = 0 for all λ ∈ C;

(e) rank
[
F ∗0C

∗, F ∗1C
∗, . . . , F ∗nf−1C

∗
]

= nf ;
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(f) rank [C∗1 , J
∗C∗1 , . . . , (Jnf−1)∗C∗1 ] = nf ;

(g) Ker O+

⋂
ImPl = 0;

(h) Ker [C∗1 , J
∗C∗1 , . . . , (Jnf−1)∗C∗1 ] = 0.

2. The following statements are equivalent:

(a) the triplet (E,A,C) is I-observable;

(b) rank [N∗, KN∗ , C
∗
2 ] = n∞, where the columns of KN∗ span KerN∗;

(c) Ker (EF−1)
⋂

ImE
⋂

Ker (CF−1) = ImPl;

(d) KerN
⋂

ImN
⋂

KerC2 = 0;

(e)
ν⋂
k=1

Ker (CF−k)
⋂

ImE = ImPl;

(f)
ν−1⋂
k=0

Ker (C2N
k)
⋂

ImN = 0;

(g) KerF−2 =
ν⋂
k=1

Ker (CF−k);

(h) KerN =
ν−1⋂
k=1

Ker (C2N
k);

(i) rank

[
E∗ 0 0
A∗ E∗ C∗

]
= n+ rank(E);

(j) rank

[
N∗ 0 0
I N∗ C∗2

]
= n∞ + rank(N);

(k) there exists a feedback matrix Fo ∈ Fn,p such that the pencil λE − (A+ FoC) is
regular and of index one;

3. The following statements are equivalent:

(a) the triplet (E,A,C) is C-observable;

(b) rank [λE∗ − A∗, C∗ ] = n for all λ ∈ C and rank [E∗, C∗] = n;

(c) rank [λI − J∗, C∗1 ] = nf for all λ ∈ C and rank [N∗, C∗2 ] = n∞;

(d) Ker (λE − A)
⋂

KerC = 0 for all λ ∈ C and KerE
⋂

KerC = 0;

(e) Ker (λI − J)
⋂

KerC1 = 0 for all λ ∈ C and KerN
⋂

KerC2 = 0;

(f) rank
[
F ∗0C

∗, F ∗1C
∗, . . . , F ∗nf−1C

∗
]

= nf and rank
[
F ∗−νC

∗, . . . , F ∗−1C
∗] = n∞;

(g) rank [C∗1 , J
∗C∗1 , . . . , (Jnf−1)∗C∗1 ]=nf , rank [C∗2 , N

∗C∗2 , . . . , (N ν−1)∗C∗2 ]=n∞;

(h) Ker O+

⋂
ImPl = 0 and Ker O−

⋂
KerPl = 0.

Proof. See [35, 36, 84, 174].
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Here we have considered the stability and various concepts of controllability and obser-
vability for the continuous-time and discrete-time descriptor systems. In the next chapter
we will show how these properties of descriptor systems can be characterized in terms of
solutions of generalized Lyapunov equations.



42 CHAPTER 3. LINEAR DESCRIPTOR SYSTEMS



Chapter 4

Generalized Lyapunov equations

Generalized continuous-time algebraic Lyapunov equations (GCALEs)

E∗XA+ A∗XE = −G (4.1)

and generalized discrete-time algebraic Lyapunov equations (GDALEs)

A∗XA− E∗XE = −G (4.2)

arise in many fields of mathematics and engineering such as stability analysis for differential
and difference equations [53, 61, 123, 149], problems of spectral dichotomy [62, 113, 116]
and control theory [11, 58, 99, 117, 119, 176].

For E = In, equations (4.1) and (4.2) are the standard continuous-time and discrete-
time Lyapunov equations (the latter is also known as the Stein equation). These equations
have been the topic of numerous publications, see [9, 51, 53, 72, 100] and the references
therein. The case of nonsingular E has been considered in [17, 34, 125]. However, many
applications of descriptor systems lead to generalized Lyapunov equations with a singular
matrix E, see [11, 116, 120, 153, 149]. In this chapter we study the existence and uniqueness
of solutions of generalized Lyapunov equations with general and special right-hand sides.

The classical stability and inertia theorems [20, 29, 33, 37, 108, 122, 172, 173] characte-
rize connections between the signatures of solutions of standard Lyapunov equations and
the numbers of eigenvalues of a matrix in the left and right open half-planes and on the
imaginary axis in the continuous-time case and inside, outside and on the unit circle in the
discrete-time case. A brief survey of matrix inertia theorems and their applications has
been presented in [38]. In this chapter we extend these theorems to matrix pencils.

4.1 Applications for generalized Lyapunov equations

In this section we present some applications for generalized Lyapunov equations.

43
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Stability analysis

It is well known that the asymptotic behavior of solutions of differential and difference
equations is closely related to the analysis of Lyapunov equations [61, 74, 123, 151, 153].

Consider the continuous-time singular system (3.13). The trivial solution of (3.13) is
asymptotically stable if there exists a matrix X that is Hermitian, positive definite on the
subspace ImPl and satisfies the GCALE (4.1), where G is Hermitian and positive definite
on ImPr, see [120, 123]. For such a solution X, the matrix E∗XE is Hermitian, positive
definite on the subspace ImPr, and we obtain that

V(t) := x∗(t)E∗XEx(t) > 0, t ∈ [ 0,∞)

for all nonzero solutions x(t) ∈ ImPr of equation (3.13). Moreover, we have

V̇(t) = x∗(t)(A∗XE + E∗XA)x(t) = −x∗(t)Gx(t) < 0.

The quadratic form V(t) is the generalized Lyapunov function for system (3.13).
Similarly, the trivial solution of the discrete-time singular system (3.29) is asymptoti-

cally stable if there exists a matrix X that is Hermitian, positive definite on the subspace
ImPl and satisfies the GDALE (4.2), where G is Hermitian, positive definite on ImPr
[123, 151]. In this case a quadratic form Vk := x∗kE

∗XExk presents the generalized Lyapu-
nov function for system (3.29). We have that Vk > 0 for all nonzero solutions xk ∈ ImPr
of (3.29) and

Vk+1 −Vk = x∗k(A
∗XA− E∗XE)xk = −x∗kGxk < 0.

These results are generalizations of the known connection between the standard Lya-
punov equations and the standard state space differential/difference equations [50, 61, 74].

Linear-quadratic optimal control

Consider the linear-quadratic optimal regulator control problems:
Minimize the cost functional

Jc(x0, u) =
1

2

∫ ∞
0

(
y∗(t)Qy(t) + u∗(t)Ru(t)

)
dt (4.3)

subject to the continuous-time descriptor system

Eẋ(t) = Ax(t) +Bu(t), x(t) = x0,
y(t) = Cx(t),

(4.4)

and
Minimize the cost functional

Jd(x0, u) =
1

2

∞∑
k=0

(
y∗kQyk + u∗kRuk

)
(4.5)
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subject to the discrete-time descriptor system

Exk+1 = Axk +Buk, x0 = x0,
yk = Cxk,

(4.6)

where E, A ∈ Fn,n, B ∈ Fm,n, C ∈ Fp,n, Q ∈ Fp,p is Hermitian and R ∈ Fm,m is Hermitian,
positive definite.

Under stabilizability and detectability conditions, see [117], the optimal solution of the
continuous-time minimization problem (4.3)-(4.4) is given by

uopt(t) = −R−1B∗XEx(t),

where X is an Hermitian, positive semidefinite solution of the generalized continuous-time
Riccati equation

E∗XA+ A∗XE − E∗XBR−1B∗XE + C∗QC = 0. (4.7)

In the discrete-time case, the optimal solution of the minimization problem (4.5)-(4.6)
is given by

(uopt)k = −(R +B∗XB)−1B∗XAxk,

where X is an Hermitian, positive semidefinite solution of the generalized discrete-time
Riccati equation

A∗XA− E∗XE − A∗XB(R +B∗XB)−1B∗XA+ C∗QC = 0, (4.8)

see [12, 117] for details. The generalized Riccati equations (4.7) and (4.8) can be solved
by Newton’s method [12, 99, 117].

Algorithm 4.1.1. Newton’s method for the continuous-time Riccati equation
Input: Matrices E, A, B, C, Q, R and a starting stabilizing guess X0, E is nonsingular.
Output: An approximate solution Xk+1 of the generalized Riccati equation (4.7).
FOR k = 0, 1, 2, . . .

1. Ak = A−BR−1B∗XkE.
2. Rk = E∗XkAk + A∗kXkE + E∗XkBR

−1B∗XkE + C∗QC.
3. Solve the GCALE E∗YkAk + A∗kYkE = −Rk.
4. Xk+1 = Xk + Yk.

END FOR

Algorithm 4.1.2. Newton’s method for the discrete-time Riccati equation
Input: Matrices E, A, B, C, Q, R and a starting stabilizing guess X0, E is nonsingular.
Output: An approximate solution Xk+1 of the generalized Riccati equation (4.8).
FOR k = 0, 1, 2, . . .

1. Kk = (R +B∗XkB)−1B∗XkA.
2. Ak = A−BKk.
3. Rk = A∗kXkAk − E∗XkE +K∗kRKk + C∗QC.
4. Solve the GDALE A∗kYkAk − E∗YkE = −Rk.
5. Xk+1 = Xk + Yk.

END FOR
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We see that in each iteration step of Algorithms 4.1.1 and 4.1.2 we need to solve
generalized Lyapunov equations.

The Lyapunov equations arise also in many other fields of control theory such as system
balancing [103, 119], H∞ control [58, 176] and model reduction [4, 48, 119, 137, 150].

4.2 Generalized continuous-time Lyapunov equations

In this section we present general results concerning the solution of the GCALE

E∗XA+ A∗XE = −G, (4.9)

where E, A, G ∈ Fn,n are given matrices and X ∈ Fn,n is an unknown matrix.

4.2.1 General case

Consider a continuous-time Lyapunov operator Lc : Fn,n → F
n,n given by

Lc(X) := E∗XA+ A∗XE. (4.10)

The GCALE (4.9) can be written in the operator form

Lc(X) = −G. (4.11)

If x = vec(X) and g = vec(G) are vectors of order n2 obtained by stacking the columns of
the matrices X and G, respectively, then we can also rewrite the GCALE (4.9) as a linear
system

Lcx = −g, (4.12)

where the n2 × n2-matrix

Lc = ET ⊗ A∗ + AT ⊗ E∗ (4.13)

is the matrix representation of the continuous-time Lyapunov operator Lc, see, e.g., [78].
In this case we may apply the theory of linear systems [53, 100] to determine conditions
for the existence and uniqueness of solutions of the GCALE (4.9).

Theorem 4.1. [100] Let Lc be as in (4.13) and let x = vec(X), g = vec(G). The GCALE
(4.9) has a solution if and only if rank [ Lc, g ] = rank Lc. There exists a unique solution of
(4.9) if and only if the matrix Lc is nonsingular.

Note that already for moderately large n the matrix Lc is very large. Therefore, the
equivalent formulation (4.12) for the GCALE (4.9) is only of theoretical interest.

The GCALE (4.9) is a special case of the generalized Sylvester equation

BXA− FXE = −G, (4.14)

where A, B, E, F , G ∈ Fn,n are given matrices and X ∈ Fn,n is an unknown matrix.
The following theorem gives the necessary and sufficient conditions for unique solvability
of equation (4.14).
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Theorem 4.2. [34] The generalized Sylvester equation (4.14) has a unique solution X if
and only if the pencils λB−F and λE−A are regular and they have no common eigenvalues.

As a consequence of Theorem 4.2 we have the following necessary and sufficient con-
ditions for the existence and uniqueness of solutions of the GCALE (4.9) in terms of the
spectrum of the pencil λE − A.

Theorem 4.3. [125] Let λE−A be a regular pencil with eigenvalues {λ1, . . . , λn} counted
according to their multiplicities. The GCALE (4.9) has a unique solution for every matrix
G if and only if all eigenvalues of the pencil λE − A are finite and λj + λk 6= 0 for all
j, k = 1, . . . , n.

The GCALE (4.9) is said to be regular if it is uniquely solvable. For such an equation,
the finiteness of the eigenvalues of λE − A implies the nonsingularity of E, while the
condition λj+λk 6= 0 implies that the pencil λE−A has no eigenvalues on the imaginary axis
and, hence, the matrix A is also nonsingular. The GCALE (4.9) is called non-degenerate if
both matrices E and A are nonsingular. Otherwise, the GCALE (4.9) is called degenerate.

The non-degenerate GCALE (4.9) is equivalent to standard Lyapunov equations

XAE−1 + (AE−1)∗X = −E−∗GE−1, (4.15)

(EA−1)∗X +XEA−1 = −A−∗GA−1.

In this case classical Lyapunov theorems [53] on the existence and uniqueness of positive
definite solutions of these equations can be extended to the GCALE (4.9).

Theorem 4.4. Let λE−A be a regular pencil. If all eigenvalues of λE−A are finite and
lie in the open left half-plane, then for every Hermitian, positive (semi )definite matrix G,
the GCALE (4.9) has a unique Hermitian, positive (semi )definite solution X. Conversely,
if there exist Hermitian, positive definite matrices X and G satisfying (4.9), then all eigen-
values of the pencil λE − A are finite and lie in the open left half-plane.

The degenerate GCALE (4.9) is singular in the sense that it may have no solutions
even if all finite eigenvalues of the pencil λE − A have negative real part. Since E and A
play a symmetric role in (4.9), in the sequel we will assume that the matrix E is singular.

Example 4.5. The GCALE (4.9) with

E =

[
1 0
0 0

]
, A = −I2, G = I2

has no solutions.

Even if a solution of the degenerate GCALE (4.9) exists, it is not unique. Indeed, if X
is a solution of the degenerate GCALE (4.9), then for any nonzero vector v ∈ KerE∗, the
matrix X + vv∗ satisfies (4.9) as well.
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The GCALE (4.9) is closely related to the study of the asymptotic properties of so-
lutions of the differential-algebraic equation (3.13), e.g., [120, 123, 148]. The following
theorem gives sufficient conditions for the pencil λE−A to be c-stable or, equivalently, for
the trivial solution of (3.13) to be asymptotically stable.

Theorem 4.6. Let Pl and Pr be the spectral projections onto the left and right finite defla-
ting subspaces of a regular pencil λE−A and let G be a matrix that is Hermitian, positive
definite on the subspace ImPr. If the GCALE (4.9) has a solution X which is Hermitian
and positive definite on ImPl, then the pencil λE − A is c-stable.

Proof. Let the pencil λE−A be in Weierstrass canonical form (2.2) and let the Hermitian
matrix

X = W−∗
[
Y11 Y12

Y ∗12 Y22

]
W−1 (4.16)

satisfy the GCALE (4.9). If X is positive definite on ImPl, then Y11 in (4.16) is positive
definite, and, hence, the matrix

E∗XE = T ∗
[

Y11 Y12N
N∗Y ∗12 N∗Y22N

]
T

is Hermitian, positive definite on the subspace ImPr.

Let v 6= 0 be an eigenvector of the pencil λE − A corresponding to a finite eigenvalue
λ, that is, λEv = Av and v ∈ ImPr. Multiplication of (4.9) on the right and left by v and
v∗, respectively, gives

−v∗Gv = v∗(E∗XA+ A∗XE)v = λ v∗E∗XEv + λ v∗E∗XEv
= 2<e(λ) v∗E∗XEv.

(4.17)

Since G and E∗XE are positive definite on ImPr, we obtain that <e(λ) < 0, i.e., all finite
eigenvalues of the pencil λE − A lie in the open left half-plane.

Example 4.5 demonstrates that the c-stability of the pencil λE−A does not imply the
solvability of the degenerate GCALE (4.9).

It follows from (4.17) that the condition for X to be positive definite on ImPl can be
replaced by the assumption that X is positive semidefinite on Fn. Thus, we obtain the
following result.

Corollary 4.7. Let Pr be the spectral projection onto the right finite deflating subspace of
a regular pencil λE−A and let G be a matrix that is Hermitian, positive definite on ImPr.
If the GCALE (4.9) has an Hermitian, positive semidefinite solution X, then λE − A is
c-stable.
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4.2.2 Special right-hand side: index 1 and 2 cases

Consider the generalized continuous-time Lyapunov equation

E∗XA+ A∗XE = −E∗GE. (4.18)

Such an equation has been studied first in [105, 116]. The presence of E in the right-hand
side guarantees the solvability of the GCALE (4.18) under assumptions that the pencil
λE − A is c-stable and its index does not exceed two.

Theorem 4.8. Let λE−A be a regular pencil of index at most two. If λE−A is c-stable,
then for every matrix G, the GCALE (4.18) has a solution. For all solutions X of (4.18),
the matrix E∗XE is unique. Moreover, if G is positive definite, then every solution X of
(4.18) is positive definite on ImPl.

Proof. Let the pencil λE−A be in Weierstrass canonical form (2.2), where the eigenvalues
of J lie in the open left half-plane and N2 = 0 by assumption. Let the matrices

W ∗GW =

[
W11 W12

W21 W22

]
and W ∗XW =

[
Y11 Y12

Y21 Y22

]
(4.19)

be partitioned in blocks conformally to E and A. Then from (4.18) we have

Y11J + J∗Y11 = −W11, (4.20)

Y12 + J∗Y12N = −W12N, (4.21)

N∗Y21J + Y21 = −N∗W21, (4.22)

N∗Y22 + Y22N = −N∗W22N. (4.23)

Since all eigenvalues of J have negative real part, the standard Lyapunov equation (4.20)
has a unique solution Y11 for every W11, see [53]. Taking into account that the matrices
J−∗ and −N have disjoint spectra, equations (4.21) and (4.22) are uniquely solvable [100]
and their solutions are given by Y12 = −W12N and Y21 = −N∗W21. Equation (4.23) has a
(nonunique) solution for every W22. For example, the matrix Y22 = −1

2
(N∗W22 + W22N)

satisfies (4.23).
Thus, every solution of the GCALE (4.18) has the form

X = W−∗
[

Y11 −W12N
−N∗W21 Y22

]
W−1, (4.24)

where Y11 and Y22 satisfy equations (4.20) and (4.23), respectively. Multiplying equation
(4.23) on the right by the matrix N we obtain that N∗Y22N = 0 holds for every solution
Y22 of (4.23). Since equation (4.20) has the unique solution Y11, the matrix

E∗XE = T ∗
[

Y11 −W12N
2

−(N∗)2W21 N∗Y22N

]
T = T ∗

[
Y11 0
0 0

]
T (4.25)

is uniquely defined for all solutions X of (4.18). If G is positive definite, then also W11

is positive definite and, hence, the solution Y11 of (4.20) is positive definite. Then X in
(4.24) is positive definite on ImPl.
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Note that the assumption for λE − A to be of index at most two is important, since
otherwise the GCALE (4.18) may have no solutions even if the pencil λE − A is c-stable.
To understand better what happens if the index of the pencil is increased from two to
three, we consider the following example.

Example 4.9. Let A = −In, G = In, X = [xij]
n
i,j=1 and E = Nn. Taking these matrices

with n = 2 in (4.18), we have the equation[
0 x11

x11 x12 + x21

]
=

[
0 0
0 1

]
which has the solution set{

X =

[
0 x12

x21 x22

]
: x12 + x21 = 1

}
.

For n = 3 we obtain the equation 0 x11 x12

x11 x12 + x21 x13 + x22

x21 x22 + x31 x23 + x32

 =

 0 0 0
0 1 0
0 0 1


which has no solution.

If G is Hermitian, then (4.18) has Hermitian as well as non-Hermitian solutions
(see, Example 4.9), while the matrix E∗XE is Hermitian for every solution X of (4.18). If
G is positive definite on Fn, then E∗XE is positive semidefinite on Fn and positive definite
on ImPr.

Remark 4.10. Theorem 4.8 still holds if the matrix G in the GCALE (4.18) is positive
definite only on the subspace ImPl.

The converse of Theorem 4.8 also holds.

Theorem 4.11. Let λE−A be a regular pencil and let G be an Hermitian, positive definite
matrix. If the GCALE (4.18) has a solution X, then the pencil λE−A is of index at most
two. Moreover, if X is Hermitian, positive definite on ImPl, then λE − A is c-stable.

Proof. Let the pencil λE − A be in Weierstrass canonical form (2.2) and let the matrices
G and X as in (4.19) satisfy the GCALE (4.18). Then equations (4.20)–(4.23) are fulfilled.

Let the matrices

Y22 =

 Y̌11 · · · Y̌1t
...

. . .
...

Y̌t1 · · · Y̌tt

 and W22 =

 W̌11 · · · W̌1t
...

. . .
...

W̌t1 · · · W̌tt


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be partitioned in blocks conformally to N = diag(Nn1 , . . . , Nnt), where Nnj is a nilpotent
Jordan block of order nj. In this case equation (4.23) is equivalent to the system of matrix
equations

N∗npY̌pq + Y̌pqNnq = −N∗npW̌pqNnq , p, q = 1, . . . , t. (4.26)

Since G is Hermitian and positive definite, also all W̌jj are Hermitian and positive definite.
Assume that the index of the pencil λE − A is larger than two, i.e., there exists a block
Nnk with nk > 2. Let Y̌kk = [yij]

nk
i,j=1 and W̌kk = [wij]

nk
i,j=1. It is easy to verify that

(N∗nk Y̌kk)ij = xi−1,j, i, j = 1, 2, . . . , nk,
(Y̌kkNnk)ij = xi,j−1, i, j = 1, 2, . . . , nk,

(N∗nkW̌kkNnk)ij = wi−1,j−1, i, j = 1, 2, . . . , nk,

where we have set

y0j = yj0 = w0j = wj0 = w00 = 0, j = 1, 2, . . . , nk. (4.27)

It follows from (4.26) for p = q = k that

yi−1 j + yi j−1 = −wi−1 j−1, i, j = 1, 2, . . . , nk. (4.28)

Hence, by (4.27) we obtain y1 j−1 = yj−1 1 = 0 for all j = 2, . . . , nk. Then it follows from
(4.28) that w11 = −y12− y21 = 0 which contradicts the positive definiteness of W̌kk. Thus,
the index of the pencil λE − A is at most two.

Taking into account that E∗GE is Hermitian, positive definite on ImPr and X is
Hermitian, positive definite on ImPl, we have from Theorem 4.6 that all finite eigenvalues
of the pencil λE − A lie in the open left half-plane.

If we replace the condition for the solution X of (4.18) to be positive definite on ImPl
by the assumption that X is positive semidefinite on Fn, then we obtain the following
result.

Corollary 4.12. Let λE−A be a regular pencil and let G be an Hermitian, positive definite
matrix. The GCALE (4.18) has an Hermitian, positive (semi)definite solution X if and
only if the index of the pencil λE − A is at most one and λE − A is c-stable.

Proof. If the pencil λE − A is of index at most one and c-stable, then from the proof of
Theorem 4.8 we obtain that the matrix

X = W−∗
[
Y11 0
0 0

]
W−1

satisfies the GCALE (4.18). Here Y11 is a unique Hermitian, positive definite solution of
(4.20) and Y22 is an arbitrary Hermitian, positive (semi)definite matrix. In this case X is
the Hermitian, positive (semi)definite solution of (4.18).
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Assume now that the GCALE (4.18) with Hermitian, positive definite G has an Her-
mitian, positive (semi)definite solution X. Then equations (4.20)–(4.23) are fulfilled. It
follows from Theorem 4.11 that the index of λE − A is at most two and N∗Y22N = 0,
where Y22 is Hermitian, positive (semi)definite. Hence, Y22N = 0 and N∗W22N = 0. Since
W22 is Hermitian, positive definite, we get N = 0. Thus, λE − A is of index at most one.
Furthermore, by Corollary 4.7 the pencil λE − A is c-stable.

4.2.3 Projected continuous-time Lyapunov equations

As we have seen above, the presence of the eigenvalue at infinity in the pencil λE − A
may be a reason for the unsolvability of the GCALE (4.9). A consideration of the GCALE
(4.18) with a special right-hand side is only partially useful since for such a equation, the
existence theorems can be stated only for pencils of index at most two. To overcome this
difficulty we consider the following generalized continuous-time Lyapunov equation

E∗XA+ A∗XE = −P ∗rGPr, (4.29)

where Pr is the spectral projection onto the right finite deflating subspace of the pencil
λE −A. The following theorem gives necessary and sufficient conditions for the existence
of solutions of the GCALE (4.29). Note that these conditions are independent of the index
of λE − A.

Theorem 4.13. Let λE−A be a regular pencil with finite eigenvalues {λ1, . . . λnf} counted
according to their multiplicities and let Pr and Pl be the spectral projections as in (2.3).
The GCALE (4.29) has a solution for every matrix G if and only if λj + λk 6= 0 for all
j, k = 1, . . . , nf . Moreover, if the solution X of (4.29) satisfies X = XPl, then it is unique.

Proof. Let the pencil λE−A be in Weierstrass canonical form (2.2), where J has eigenvalues
{λ1, . . . λnf}, and let the matrices

T−∗GT−1 =

[
T11 T12

T21 T22

]
and W ∗XW =

[
Y11 Y12

Y21 Y22

]
(4.30)

be partitioned in blocks accordingly to E and A. We have from (4.29) the decoupled
system of equations

Y11J + J∗Y11 = −T11, (4.31)

Y12 + J∗Y12N = 0, (4.32)

N∗Y21J + Y21 = 0, (4.33)

N∗Y22 + Y22N = 0. (4.34)

The Lyapunov equation (4.31) has a unique solution Y11 for every matrix T11 if and only if
λj + λk 6= 0 for any two eigenvalues λj and λk of J , see [100]. The homogeneous equations
(4.32) and (4.33) are uniquely solvable [100] and have the trivial solutions Y12 = 0 and
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Y21 = 0. Equation (4.34) is not uniquely solvable. It follows from X = XPl that Y22 = 0.
Thus, the solution of (4.29) together with X = XPl is unique and given by

X = W−∗
[
Y11 0
0 0

]
W−1, (4.35)

where Y11 satisfies (4.31).

From the proof of Theorem 4.13 it follows that the solution of the GCALE (4.29) is
not unique, since equation (4.34) has many solutions. As usual for linear systems we may
resolve the nonuniqueness of the solution by requiring extra conditions. This may be the
solution of minimum norm, or we may choose the nonunique part Y22 to be zero. In terms
of the original data the latter requirement is expressed as X = XPl. In the following a
system of matrix equations

E∗XA+ A∗XE = −P ∗rGPr,
X = XPl

(4.36)

will be called projected generalized continuous-time algebraic Lyapunov equation.
As a consequence of Corollary 4.7 and Theorem 4.13 we obtain generalizations of clas-

sical Lyapunov stability theorems [53, 100] for the projected GCALE (4.36).

Corollary 4.14. Let λE−A be a regular pencil and let Pr and Pl be the spectral projections
onto the right and left finite deflating subspaces of λE − A. If there exist an Hermitian,
positive definite matrix G and an Hermitian, positive semidefinite matrix X satisfying the
projected GCALE (4.36), then the pencil λE − A is c-stable.

Proof. The result immediately follows from Corollary 4.7.

Corollary 4.15. Let λE−A be a regular pencil and let Pr and Pl be the spectral projections
onto the right and left finite deflating subspaces of λE−A, respectively. If the pencil λE−A
is c-stable, then the projected GCALE (4.36) has a unique solution for every matrix G.
This solution is given by

X =
1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗rGPr(iωE − A)−1dω. (4.37)

If G is Hermitian, then the solution X is Hermitian. If G is positive (semi)definite, then
X is positive semidefinite.

Proof. If λE−A is c-stable, then by Theorem 4.13 the projected GCALE (4.36) is uniquely
solvable for every matrix G. The solution X is given by (4.35), where Y11 satisfies equation
(4.31) and has the form

Y11 =
1

2π

∫ ∞
−∞

(iωI − J)−∗T11(iωI − J)−1dω.

Therefore, (4.37) holds. Clearly, if G is Hermitian and positive (semi)definite, then this
solution X is Hermitian and positive semidefinite.
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Remark 4.16. Note that if λE − A is c-stable and if G is positive definite, then the
solution X of the projected GCALE (4.36) is positive definite on the subspace ImPl and
the matrix E∗XE is positive definite on the subspace ImPr.

Remark 4.17. It follows from Corollaries 4.14 and 4.15 that if the projected GCALE
(4.36) has an Hermitian, positive semidefinite solution for some Hermitian, positive definite
matrix G, then (4.36) is uniquely solvable for every G.

Remark 4.18. The assertions of Corollaries 4.14, 4.15 and Remarks 4.16, 4.17 remain
valid if the matrix G is positive definite only on the subspace ImPr.

In Table 4.1 we review the generalized continuous-time Lyapunov equations with diffe-
rent right-hand sides discussed above.

4.2.4 Inertia with respect to the imaginary axis

The projected GCALE (4.36) can be used to generalize some matrix inertia theorems
[20, 29, 33, 37, 108, 122, 172] for matrix pencils.

First we recall the definition of an inertia with respect to the imaginary axis for matrices.

Definition 4.19. The inertia of a matrix A with respect to the imaginary axis ( c-inertia )
is defined by the triplet of integers

Inc(A) = { π−(A), π+(A), π0(A) },

where π−(A), π+(A) and π0(A) denote the numbers of eigenvalues of A with negative,
positive and zero real part, respectively, counting multiplicities.

Taking into account that a matrix pencil may have finite as well as infinite eigenvalues,
the c-inertia for matrices can be generalized for regular pencils as follows.

Definition 4.20. The c-inertia of a regular matrix pencil λE−A is defined by the quadru-
ple of integers

Inc(E,A) = { π−(E,A), π+(E,A), π0(E,A), π∞(E,A) },

where π−(E,A), π+(E,A) and π0(E,A) denote the numbers of the finite eigenvalues of
λE − A counted with their algebraic multiplicities with negative, positive and zero real
part, respectively, and π∞(E,A) denotes the number of infinite eigenvalues of λE − A.

Clearly, π−(E,A) + π+(E,A) + π0(E,A) + π∞(E,A) = n is the size of E and A. If the
matrix E is nonsingular, then π∞(E,A) = 0 and π%(E,A) = π%(AE

−1) = π%(E
−1A), where

% is −, + and 0. A c-stable pencil λE − A has the c-inertia Inc(E,A) = {nf , 0, 0, n∞ },
where nf and n∞ are the dimensions of the finite and infinite deflating subspaces of λE−A.

The following theorems give connections between the c-inertia of the pencil λE − A
and the c-inertia of the Hermitian solution X of the projected GCALE (4.36).
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right-hand side −G E∗XA+ A∗XE = −G
X = X∗ > 0 on F

n, unique X = X∗ ≥ 0 on F
n, unique

G = G∗ > 0 on Fn ⇐⇒ ⇐⇒
E is nonsingular c-stable c-stable
G = G∗ ≥ 0 on Fn ⇐=
E is nonsingular c-stable

right-hand side −G E∗XA+ A∗XE = −G
X = X∗ > 0 on ImPl X = X∗ ≥ 0 on F

n

G = G∗ > 0 on ImPr =⇒ =⇒
c-stable c-stable

right-hand side E∗XA+ A∗XE = −E∗GE
−E∗GE X = X∗ > 0 on ImPl X = X∗ ≥ 0 on F

n

G = G∗ > 0 on F
n ⇐⇒ ⇐⇒

c-stable c-stable
index at most 2 index at most 1

G = G∗ > 0 on ImPl =⇒ =⇒
c-stable c-stable
⇐= ⇐=

c-stable c-stable
index at most 2 index at most 1

right-hand side E∗XA+ A∗XE = −P ∗rGPr, X = XPl
−P ∗rGPr X = X∗ > 0 on ImPl, unique X = X∗ ≥ 0 on F

n, unique
G = G∗ > 0 on F

n ⇐⇒ ⇐⇒
c-stable c-stable

G = G∗ > 0 on ImPr ⇐⇒ ⇐⇒
c-stable c-stable

G = G∗ ≥ 0 on F
n ⇐=

c-stable

Table 4.1: Generalized continuous-time Lyapunov equations with different right-hand sides
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Theorem 4.21. Let λE−A be a regular pencil and let G be an Hermitian, positive definite
matrix. If the projected GCALE (4.36) has an Hermitian solution X, then

π−(E,A) = π+(X), π+(E,A) = π−(X),
π0(E,A) = 0, π∞(E,A) = π0(X).

(4.38)

Conversely, if π0(E,A) = 0, then there exist an Hermitian matrix X and an Hermitian,
positive definite matrix G such that the GCALE in (4.36) is fulfilled and the c-inertia
identities (4.38) hold.

Proof. Since the Hermitian solution X of the projected GCALE (4.36) has the form (4.35),
where the Hermitian matrix Y11 satisfies the Lyapunov equation (4.31) with the Hermitian,
positive definite matrix T11, it follows from the Sylvester law of inertia [29] and the main
inertia theorem [122, Theorem 1] that

π−(E,A) = π−(J) = π+(Y11) = π+(X),
π+(E,A) = π+(J) = π−(Y11) = π−(X),
π0(E,A) = π0(J) = π0(Y11) = 0,
π∞(E,A) = π∞(E,A) + π0(Y11) = π0(X).

Assume now that π0(E,A) = 0. Then π0(J) = 0, and by the main inertia theorem
[122, Theorem 1] there exists an Hermitian matrix Y11 such that T11 = −(Y11J + J∗Y11) is
Hermitian, positive definite and

π−(J) = π+(Y11), π+(J) = π−(Y11), π0(J) = π0(Y11) = 0.

In this case the Hermitian matrices

X = W−∗
[
Y11 0
0 0

]
W−1 and G = T ∗

[
T11 0
0 I

]
T

satisfy the GCALE in (4.36), G is positive definite and the c-inertia identities (4.38) hold.

Consider now the case when the matrix G is Hermitian, positive semidefinite.

Theorem 4.22. Let λE−A be a regular pencil and let X be an Hermitian solution of the
projected GCALE (4.36) with an Hermitian, positive semidefinite matrix G.

1. If π0(E,A) = 0, then π−(X) ≤ π+(E,A) and π+(X) ≤ π−(E,A).
2. If π0(X) = π∞(E,A), then π+(E,A) ≤ π−(X) and π−(E,A) ≤ π+(X).

Proof. The result immediately follows if we apply the matrix inertia theorems [33, Lemma 1
and Lemma 2] to equation (4.31).

As a consequence of Theorem 4.22 we obtain a generalization of Theorem 4.21 for the
case that G is Hermitian, positive semidefinite.
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Corollary 4.23. Let λE−A be a regular pencil and let G be an Hermitian, positive semi-
definite matrix. Assume that the projected GCALE (4.36) has an Hermitian solution X.
If π0(E,A) = 0 and π0(X) = π∞(E,A), then the c-inertia identities (4.38) hold.

Similar to the matrix case [100, 108, 173], the c-inertia identities (4.38) can also be
derived using observability conditions for the continuous-time descriptor system (3.1). The
following corollary shows that in the case of an Hermitian, positive semidefinite matrix
G = C∗C, the conditions π∞(E,A) = π0(X) and π0(E,A) = 0 in Corollary 4.23 may be
replaced by the assumption for the triplet (E,A,C) to be R-observable.

Corollary 4.24. Let λE − A be a regular pencil. If there exists an Hermitian matrix X
satisfying the projected GCALE

E∗XA+ A∗XE = −P ∗r C∗CPr, X = XPl, (4.39)

and if the triplet (E,A,C) is R-observable, then the c-inertia identities (4.38) hold.

Proof. Let λE − A be in Weierstrass canonical form (2.2) and let CT−1 = [C1, C2 ] be
partitioned in blocks conformally to E and A. Then the Hermitian solution of the projected
GCALE (4.39) has the form (4.35), where Y11 satisfies the Lyapunov equation

Y11J + J∗Y11 = −C∗1C1. (4.40)

Since (E,A,C) is R-observable, by Theorem 3.27 the matrix

[
λI − J
C1

]
has full column

rank for all λ ∈ C. In this case the solution X11 of (4.40) is nonsingular and the matrix J
has no eigenvalues on the imaginary axis [100, Theorem 13.1.4]. Hence, π0(E,A) = 0 and
π0(X) = π0(X11) + π∞(E,A) = π∞(E,A). The remaining relations in (4.38) immediately
follow from Corollary 4.23.

The following corollary gives connections between c-stability of the pencil λE −A, the
R-observability of the triplet (E,A,C) and the existence of an Hermitian solution of the
projected GCALE (4.39).

Corollary 4.25. Consider the statements

1. the pencil λE − A is c-stable,
2. the triplet (E,A,C) is R-observable,
3. the projected GCALE (4.39) has a unique solution X which is Hermitian, positive

definite on the subspace ImPl.

Any two of these statements together imply the third.

Proof. ’1 and 2⇒ 3’ and ’2 and 3⇒ 1’ can be obtained from Corollaries 4.15 and 4.24.
’1 and 3 ⇒ 2’. Suppose that (E,A,C) is not R-observable. Then there exists λ0 ∈ C

and a vector v 6= 0 such that [
λ0E − A

C

]
v = 0.
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We obtain that v is an eigenvector of the pencil λE−A corresponding to the finite eigenvalue
λ0. Hence <e λ0 > 0 and v ∈ ImPr. Moreover, we have Cv = 0. On the other hand, it
follows from the Lyapunov equation in (4.39) that

−‖Cv‖2 = v∗(E∗XA+ A∗XE)v = 2(<e λ0)v∗E∗XEv.

and, hence, Cv 6= 0. Thus, the triplet (E,A,C) is R-observable.

Corollary 4.25 generalizes the stability result of Corollary 4.14 to the case that G= C∗C
is Hermitian, positive semidefinite. We see that weakening the assumption for G to be
positive semidefinite requires the additional R-observability condition. Moreover, Corol-
lary 4.25 gives necessary and sufficient conditions for (E,A,C) to be R-observable.

It is natural to ask what happens if the triplet (E,A,C) is not R-observable. Consider
the proper observability matrix O+ as in (3.43). By Theorem 3.27 the triplet (E,A,C) is
R-observable if and only if rank(O+) = n−π∞(E,A). Using the Weierstrass canonical form
(2.2) and the matrix inertia theorem [108] we obtain the following c-inertia inequalities.

Theorem 4.26. Let λE−A be a regular pencil and let X be an Hermitian solution of the
projected GCALE (4.39). Assume that rank(O+) < n− π∞(E,A). Then

|π−(E,A)− π+(X)| ≤ n− π∞(E,A)− rank(O+),

|π+(E,A)− π−(X)| ≤ n− π∞(E,A)− rank(O+).
(4.41)

Proof. The result follows by applying the matrix inertia theorem from [108] to equation
(4.31).

Other matrix inertia theorems concerning the matrix c-inertia and the rank of the
observability matrix [20, 140] can be generalized for matrix pencils in the same way.

Remark 4.27. By duality of controllability and observability conditions analogies of Co-
rollaries 4.24, 4.25 and Theorem 4.26 can be proved for the dual projected GCALE

EXA∗ + AXE∗ = −PlBB∗P ∗l , X = PrX. (4.42)

4.3 Generalized discrete-time Lyapunov equations

In this section we study the GDALE

A∗XA− E∗XE = −G, (4.43)

where E, A, G ∈ Fn,n are given matrices and X ∈ Fn,n is unknown matrix.
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4.3.1 General case

Consider a discrete-time Lyapunov operator Ld : Fn,n → F
n,n of the form

Ld(X) := A∗XA− E∗XE. (4.44)

Similarly to the continuous-time case, the GDALE (4.43) can be written in the operator
form Ld(X) = −G or as the linear system

Ldx = −g, (4.45)

where x = vec(X), g = vec(G) and the n2 × n2-matrix

Ld = AT ⊗ A∗ − ET ⊗ E∗ (4.46)

is the matrix representation of the discrete-time Lyapunov operator Ld, see [78]. Applying
the theory of linear systems [53, 100] to (4.45), we obtain the following necessary and
sufficient conditions for the GDALE (4.43) to be solvable and to have a unique solution.

Theorem 4.28. [100] Let Ld be as in (4.46) and let x = vec(X), g = vec(G). The GDALE
(4.43) has a solution if and only if rank [ Ld, g ] = rank Ld. There exists a unique solution
of (4.43) if and only if the matrix Ld is nonsingular.

The GDALE (4.43) is a special case of the generalized Sylvester equation (4.14) with
B = A∗ and F = E∗. Then from Theorem 4.2 we have necessary and sufficient conditions
for unique solvability of equation (4.43) in terms of the spectrum of the pencil λE − A.

Theorem 4.29. [125] Let λE−A be a regular pencil with eigenvalues {λ1, . . . , λn} counted
according to their multiplicities. The GDALE (4.43) has a unique solution for every matrix
G if and only if at least one of the matrices E and A is nonsingular and λjλk 6= 1 for all
finite eigenvalues λj and λk of λE − A.

The GDALE (4.43) is said to be regular if it has a unique solution for every G. For
the regular GDALE (4.43), the singularity of one of the matrices E and A implies the
nonsingularity of the other and it follows from the condition λjλk 6= 1 that the pencil
λE−A has no eigenvalues on the unit circle. Unlike the continuous-time case, the GDALE
(4.43) is called non-degenerate if at least one of the matrices E and A is nonsingular, and
the GDALE (4.43) is called degenerate if both the matrices E and A are singular.

The non-degenerate GDALE (4.43) is equivalent to standard discrete-time Lyapunov
equations

(AE−1)∗XAE−1 −X = −E−∗GE−1 (4.47)

or

X − (EA−1)∗XEA−1 = −A−∗GA−1. (4.48)

Then the classical Lyapunov theorems [53] on the existence and uniqueness of positive
definite solutions of (4.47) or (4.48) can be generalized to equation (4.43).
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Theorem 4.30. Let λE−A be a regular pencil. If all eigenvalues of λE−A are finite and
lie inside the unit circle, then for every Hermitian, positive (semi )definite matrix G, the
GDALE (4.43) has a unique Hermitian, positive (semi )definite solution X. Conversely,
if there exist Hermitian, positive definite matrices X and G satisfying (4.43), then all
eigenvalues of the pencil λE − A are finite and lie inside the unit circle.

In contrast to the continuous-time case, the GDALE (4.43) with singular E and positive
definite G has a unique negative definite solution X if and only if the matrix A is nonsin-
gular and all eigenvalues of the pencil λE − A lie outside the unit circle or, equivalently,
the eigenvalues of the reciprocal pencil E − µA are finite and lie inside the unit circle.
However, as the following example demonstrates, if both matrices E and A are singular,
then the degenerate GDALE (4.43) may have no solutions although all finite eigenvalues
of λE − A lie inside the unit circle.

Example 4.31. The GDALE (4.43) with

E =

[
1 0
0 0

]
, A =

[
0 0
0 1

]
, G =

[
1 1
1 1

]
is not solvable.

Even if a solution of the degenerate GCALE (4.43) exists, it is not unique. Indeed, if
X satisfies the degenerate GDALE (4.43), then for any nonzero vectors z ∈ KerE∗ and
v ∈ KerA∗, the matrix X + zv∗ + vz∗ also satisfies (4.43).

Analogous to the continuous-time case, the GDALE (4.43) can be used to investigate
the asymptotic solution behavior of system (3.29). The following theorem gives sufficient
conditions for the pencil λE−A to be d-stable, that is, sufficient conditions for the trivial
solution of (3.29) to be asymptotically stable.

Theorem 4.32. Let Pl and Pr be the spectral projections onto the left and right finite
deflating subspaces of a regular pencil λE − A and let G be a matrix that is Hermitian,
positive definite on the subspace ImPr. If the GDALE (4.43) has a solution X which is
Hermitian, positive definite on the subspace ImPl, then the pencil λE − A is d-stable.

Proof. As in the continuous-time case we have that if X is positive definite on ImPl, then
E∗XE is positive definite on ImPr. Let v 6= 0 be an eigenvector of the pencil λE − A
corresponding to a finite eigenvalue λ, that is, λEv = Av and v ∈ ImPr. Multiplying the
GDALE (4.43) on the right and left by v and v∗ we obtain from

−v∗Gv = v∗(A∗XA− E∗XE)v = λλ v∗E∗XEv − v∗E∗XEv
= (|λ|2 − 1)v∗E∗XEv

(4.49)

that |λ| < 1, i.e., all finite eigenvalues of the pencil λE − A lie inside the unit circle.

It follows from (4.49) that the condition for X to be positive definite on ImPl can be
replaced by the assumption that X is positive semidefinite on Fn.
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Corollary 4.33. Let Pr be the spectral projection onto the right finite deflating subspace
of a regular pencil λE − A and let G be a matrix that is Hermitian, positive definite on
ImPr. If the GDALE (4.43) has an Hermitian, positive semidefinite solution X, then the
pencil λE − A is d-stable.

Example 4.31 shows that d-stability of the pencil λE −A does not imply the existence
of solutions of the degenerate GDALE (4.43) for every G.

It is well known that standard continuous-time and discrete-time Lyapunov equations
are related via a Cayley transformation for matrices defined by C(A) = (A− I)−1(A+ I),
see, e.g., [100]. A generalized Cayley transformation for matrix pencils given by

C(E,A) = λ(A− E)− (E + A) (4.50)

allows us to state a similar connection between generalized Lyapunov equations in conti-
nuous-time and discrete-time cases [118]. Indeed, X is a solution of the GDALE (4.43) if
and only if X satisfies the GCALE

E∗XA+A∗XE = −2G, (4.51)

where λE − A = λ(A− E)− (E + A) is the Cayley-transformed pencil.
The following theorem gives a relationship between the eigenvalues of the pencils λE−A

and λE − A, see [118] for details.

Proposition 4.34. 1. Consider the generalized Cayley transformation (4.50) for the
λE − A associated with the GCALE (4.9). Then

(a) the finite eigenvalues of λE−A in the open left and right half-plane are mapped
to eigenvalues inside and outside the unit circle, respectively, and the eigenvalue
λ = 1 is mapped to ∞;

(b) the finite eigenvalues on the imaginary axis are mapped to eigenvalues on the
unit circle;

(c) the infinite eigenvalues of λE − A are mapped to λ = 1.

2. Consider the generalized Cayley transformation (4.50) for the pencil λE −A associ-
ated with the GDALE (4.43). Then

(a) the finite eigenvalues of λE − A inside and outside the unit circle are mapped
to eigenvalues in the open left and right half-plane, respectively;

(b) the finite eigenvalues on the unit circle except λ = 1 are mapped to eigenvalues
on the imaginary axis and the eigenvalue λ = 1 is mapped to ∞;

(c) the infinite eigenvalues of λE − A are mapped to λ = 1.

Thus, in the case of a nonsingular matrix E we obtain from Proposition 4.34 that the
matrix pencil λE − A is c-stable (d-stable) if and only if the Cayley-transformed pencil
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λE − A is d-stable (c-stable). However, if E is singular, then this assertion does not hold
any more, since infinite eigenvalues of a c-stable pencil are mapped under the generalized
Cayley transformation to an eigenvalue λ = 1 on the unit circle and infinite eigenvalues
of a d-stable pencil are mapped to an eigenvalue λ = 1 in the right half-plane. Therefore,
we consider the generalized Lyapunov equations in the continuous-time and discrete-time
case separately.

4.3.2 Special right-hand side: index 1 case

Analogous to the continuous-time case, we consider the generalized discrete-time Lyapunov
equation

A∗XA− E∗XE = −E∗GE. (4.52)

Such an equation has been considered previously in [116, 153]. The following theorem gives
sufficient conditions for the existence of solutions of the GDALE (4.52), where both the
matrices E and A are singular.

Theorem 4.35. Let λE −A be a d-stable pencil. If λE −A is of index one or if the zero
eigenvalue of λE − A is simple, then for every matrix G, the degenerate GDALE (4.52)
has a solution X. If G is Hermitian, then (4.52) has an Hermitian solution.

Proof. We may assume without loss of generality that the pencil λE −A is in Weierstrass
canonical form

E = W

 I
I

N

T, A = W

 J1

J2

I

T,
where the matrix J1 is nonsingular with all eigenvalues inside the unit circle and the matrix
J2 has zero eigenvalues only. Let the matrices

W ∗GW =

 W11 W12 W13

W21 W22 W23

W31 W32 W33

 and W ∗XW =

 Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

 (4.53)

be partitioned in blocks conformally to E and A. Then from (4.52) we have

J∗i YijJj − Yij = −Wij, i, j = 1, 2, (4.54)

J∗i Yi3 − Yi3N = −Wi3N, i = 1, 2, (4.55)

Y3jJj −N∗Y3j = −N∗W3j, j = 1, 2, (4.56)

Y33 −N∗Y33N = −N∗W33N. (4.57)

Since all eigenvalues of J1 lie inside the unit circle and J2, N are nilpotent, the standard
Lyapunov equations (4.54) and (4.57) have unique solutions for every right-hand side, see



4.3. GENERALIZED DISCRETE-TIME LYAPUNOV EQUATIONS 63

[100]. Equations (4.55) with i = 1 and (4.56) with j = 1 are uniquely solvable for every
W13 and W31, since J1 and N have no common eigenvalues. Moreover, if W31 = W ∗

13, then
Y31 = Y ∗13.

Consider equations (4.55) with i = 2 and (4.56) with j = 2. If the index of λE − A
is one, i.e., N = 0, then these equations have trivial solutions for every W23 and W32. If
the zero eigenvalues of λE−A are simple, i.e., J2 = 0, then these equations have solutions
Y23 = W23 and Y32 = W32, respectively. Clearly, if G is Hermitian, then the GDALE (4.52)
has an Hermitian solution.

Note that if the index of the pencil λE−A is larger than one and if λE−A has a zero
eigenvalue which is not simple, then as the following example shows, the GDALE (4.52)
may have no solutions.

Example 4.36. For X = [xij]
4
i,j=1, G = [gij]

4
i,j=1 and

E =

[
I2 0
0 N2

]
, A =

[
N2 0
0 I2

]
,

we have

A∗XA− E∗XE =


−x11 −x12 0 −x13

−x21 x11 − x22 x13 x14 − x23

0 x31 x33 x34

−x31 x41 − x32 x43 x44 − x33


= −E∗GE = −


g11 g12 0 g13

g21 g22 0 g23

0 0 0 0
g31 g32 0 g33

 .
If g13 6= 0 or g31 6= 0, then this equation has no solution.

The following theorem gives necessary and sufficient conditions for the GDALE (4.52)
to have an Hermitian, positive semidefinite solution.

Theorem 4.37. Let λE−A be a regular pencil and let G be an Hermitian, positive definite
matrix. The GDALE (4.52) has an Hermitian, positive semidefinite solution X if and only
if the pencil λE − A is of index at most one and it is d-stable.

Proof. From the proof of Theorem 4.35 we have that if the d-stable pencil λE − A is of
index at most one, then the matrix

X = W−∗

 Y11 Y12 0
Y21 Y22 0
0 0 0

W−1

satisfies the GDALE (4.52), where[
Y11 Y12

Y21 Y22

]
=
∞∑
j=0

[
J∗1 0
0 J∗2

]j [
W11 W12

W21 W22

] [
J1 0
0 J2

]j
.
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Since G is Hermitian and positive definite, X is Hermitian and positive semidefinite.
Conversely, assume that an Hermitian, positive definite matrix G and an Hermitian,

positive semidefinite matrix X satisfy equation (4.52). Let G and X be as in (4.53). Then
Y33 is an Hermitian, positive semidefinite solution of equation (4.57). This solution is
given by

Y33 = −
ν−1∑
j=1

(N∗)jW33N
j,

where ν is the index of the pencil λE − A. For every nonzero vector v, we have

0 ≤ v∗Y33v = −
ν−1∑
j=1

v∗(N∗)jW33N
jv ≤ 0.

Hence, v∗N∗W33Nv = 0. Since W33 is Hermitian and positive definite, we obtain that
N = 0.

Since G is Hermitian, positive definite, the matrix E∗GE is Hermitian, positive definite
on ImPr. Then by Corollary 4.33 the pencil λE − A is d-stable.

Remark 4.38. If the d-stable pencil λE − A is of index at most one and if G is Hermi-
tian, positive definite on Fn (or positive definite only on ImPl), then equation (4.52) has
a (nonunique) Hermitian solution which is positive definite on ImPl and positive semidefi-
nite on Fn. In this case for all solutions X of (4.52), the matrix E∗XE is unique, positive
definite on ImPr and positive semidefinite on Fn.

In Table 4.2 we review the generalized discrete-time Lyapunov equations discussed
above.

4.3.3 Projected discrete-time Lyapunov equations

Consider now the generalized discrete-time Lyapunov equation

A∗XA− E∗XE = −P ∗rGPr + ξ(I − Pr)∗G(I − Pr), (4.58)

where ξ = −1, 0 or 1. Note that, unlike the GCALE (4.29), equation (4.58) has two
terms on the right-hand side. Which sign ξ is used, as we will see later, depends on the
applications. We will study all three cases simultaneously. The following theorem gives
necessary and sufficient condition for the existence of solutions of the GDALE (4.58).

Theorem 4.39. Let λE−A be a regular pencil with finite eigenvalues {λ1, . . . λnf} counted
according to their multiplicities and let Pr and Pl be the spectral projections onto the right
and left finite deflating subspaces of λE −A. The GDALE (4.58) has a solution for every
matrix G if and only if λjλk 6= 1 for all j, k = 1, . . . , nf . Moreover, if a solution of (4.58)
satisfies P ∗l X = XPl, then it is unique.
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right-hand side −G A∗XA− E∗XE = −G
X = X∗ > 0 on Fn, unique X = X∗ ≥ 0 on Fn, unique

G = G∗ > 0 on F
n ⇐⇒ ⇐⇒

E is nonsingular d-stable d-stable
G = G∗ ≥ 0 on F

n ⇐=
E is nonsingular d-stable

right-hand side −G A∗XA− E∗XE = −G
X = X∗ > 0 on ImPl X = X∗ ≥ 0 on F

n

G = G∗ > 0 on ImPr =⇒ =⇒
d-stable d-stable

right-hand side −E∗GE A∗XA− E∗XE = −E∗GE
X = X∗ > 0 on ImPl X = X∗ ≥ 0 on F

n

G = G∗ > 0 on F
n ⇐= ⇐⇒

d-stable d-stable
index at most 1 index at most 1

=⇒
d-stable

G = G∗ > 0 on ImPl ⇐= ⇐=
d-stable d-stable

index at most 1 index at most 1
=⇒ =⇒

d-stable d-stable

Table 4.2: Generalized discrete-time Lyapunov equations with different right-hand sides

Proof. Let the pencil λE−A be in Weierstrass canonical form (2.2), where J has eigenvalues
{λ1, . . . λnf}. Substituting the matrices G and X be as in (4.30) in the GDALE (4.58), we
obtain the system of matrix equations

J∗Y11J − Y11 = −T11, (4.59)

J∗Y12 − Y12N = 0, (4.60)

Y21J −N∗Y21 = 0, (4.61)

Y22 −N∗Y22N = ξT22. (4.62)

The Lyapunov equation (4.59) has a solution for every T11 if and only if λjλk 6= 1 for
any two eigenvalues λj and λk of J , see [100]. Since N is nilpotent, equation (4.62) has
a unique solution for every T22 [100]. Equations (4.60) and (4.61) are solvable and have,
for example, trivial solutions. It follows from P ∗l X = XPl that

P ∗l X = W−∗
[
Y11 Y12

0 0

]
W−1 = XPl = W−∗

[
Y11 0
Y21 0

]
W−1,
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i.e., Y12 = Y21 = 0. Thus, the matrix

X = W−∗
[
Y11 0
0 Y22

]
W−1 (4.63)

is the unique Hermitian solution of the GDALE (4.58) together with P ∗l X = XPl.

If the GDALE (4.58) is solvable and if A is nonsingular, then the solution of (4.58) is
unique. If both the matrices E and A are singular, then the nonuniqueness of the solution
of (4.58) is resolved by requiring the extra condition for the nonunique part Y12 to be zero.
In terms of the original data this requirement is written as P ∗l X = XPl. In the following
a system of matrix equations of the form

A∗XA− E∗XE = −P ∗rGPr + ξ(I − Pr)∗G(I − Pr),
P ∗l X = XPl,

(4.64)

is called projected generalized discrete-time algebraic Lyapunov equation.
Analogous to Corollaries 4.14 and 4.15 we can prove the following stability result for

the projected GDALE (4.64).

Corollary 4.40. Let λE − A be a regular pencil and let Pr and Pl be as in (2.3). For
every Hermitian, positive definite matrix G, the projected GDALE (4.64) has a unique
Hermitian solution X which is positive definite on ImPl if and only if the pencil λE − A
is d-stable. This solution is given by

X =
1

2π

∫ 2π

0

(eiϕE − A)−∗
(
P ∗rGPr + ξ(I − Pr)∗G(I − Pr)

)
(eiϕE − A)−1dϕ. (4.65)

Proof. Let the pencil λE − A be in Weierstrass canonical form (2.2) and let the matrices
G and X as in (4.30) satisfy the projected GDALE (4.64). Since the matrix X is positive
definite on the subspace ImPl and P ∗rGPr−ξ(I−Pr)∗G(I−Pr) for ξ = −1, 0, 1 is positive
definite on ImPr, by Theorem 4.32 the pencil λE − A is d-stable.

Assume now that λE − A is d-stable. Then by Theorem 4.39 the projected GDALE
(4.64) has a unique solution for every G. This solution X is given by (4.63), where Y11 and
Y22 satisfy equations (4.59) and (4.62), respectively. The solutions of (4.59) and (4.62) are
represented as

Y11 =
1

2π

∫ 2π

0

(eiϕI − J)−∗T11(eiϕI − J)−1dϕ

and

Y22 =
ξ

2π

∫ 2π

0

(eiϕN − I)−∗T22(eiϕN − I)−1dϕ,

see [62]. Thus, (4.65) holds. Clearly, if G is Hermitian, positive definite, then Y11 and Y22

are Hermitian, and Y11 is positive definite. In this case the solution of (4.64) is positive
definite on ImPl.
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Remark 4.41. Note that Corollary 4.40 remains valid if the matrix G is positive definite
only on the subspace ImPr.

Remark 4.42. Assume that the pencil λE−A is d-stable and G is positive definite. Then
the solution X of the projected GDALE (4.64) with ξ = −1 is positive definite on ImPl
and negative definite on KerPl. For ξ = 0, the solution of (4.64) is positive definite on
ImPl and positive semidefinite on Fn. If ξ = 1, then the solution of the projected GDALE
(4.64) is positive definite on Fn.

In Table 4.3 we review the projected GDALEs discussed above.

right-hand side −P ∗rGPr A∗XA− E∗XE = −P ∗rGPr, P ∗l X = XPl
X = X∗ > 0 on ImPl X = X∗ ≥ 0 on F

n

unique unique
G = G∗ > 0 on F

n ⇐⇒ ⇐⇒
d-stable d-stable

G = G∗ > 0 on ImPr ⇐⇒ ⇐⇒
d-stable d-stable

G = G∗ ≥ 0 on F
n ⇐=

d-stable

right-hand side A∗XA− E∗XE = −P ∗rGPr − (I − Pr)∗G(I − Pr)
−P ∗rGPr − (I − Pr)∗G(I − Pr) P ∗l X = XPl

X = X∗ > 0 on ImPl X = X∗ < 0 on KerPl
unique unique

G = G∗ > 0 on F
n ⇐⇒ ⇐=

d-stable d-stable
G = G∗ > 0 on ImPr ⇐⇒

d-stable

right-hand side A∗XA− E∗XE = −P ∗rGPr + (I − Pr)∗G(I − Pr)
−P ∗rGPr + (I − Pr)∗G(I − Pr) P ∗l X = XPl

X = X∗ > 0 on ImPl X = X∗ > 0 on F
n

unique unique
G = G∗ > 0 on F

n ⇐⇒ ⇐⇒
d-stable d-stable

G = G∗ > 0 on ImPr ⇐⇒ =⇒
d-stable d-stable

Table 4.3: Projected generalized discrete-time Lyapunov equations with different right-
hand sides



68 CHAPTER 4. GENERALIZED LYAPUNOV EQUATIONS

4.3.4 Inertia with respect to the unit circle

We recall that the inertia of a matrix A with respect to the unit circle ( d-inertia ) is defined
by the triplet of integers

Ind(A) = { π<1(A), π>1(A), π1(A) },

where π<1(E,A), π>1(E,A) and π1(E,A) denote the numbers of the eigenvalues of A
counted with their algebraic multiplicities inside, outside and on the unit circle, respec-
tively.

Before extending the d-inertia for matrix pencils, it should be noted that in some
problems it is necessary to distinguish the finite eigenvalues of a matrix pencil of modulus
larger than 1 and the infinite eigenvalues although the latter also lie outside the unit circle.
As we have seen in Section 3.2.2, the presence of infinite eigenvalues of λE−A, in contrast
to the finite eigenvalues outside the unit circle, does not affect the behavior at infinity of
solutions of the discrete-time descriptor system (3.29).

Definition 4.43. The d-inertia of a regular pencil λE −A is defined by the quadruple of
integers

Ind(E,A) = { π<1(E,A), π>1(E,A), π1(E,A), π∞(E,A) },

where π<1(E,A), π>1(E,A) and π1(E,A) denote the numbers of the finite eigenvalues of
λE − A counted with their algebraic multiplicities inside, outside and on the unit circle,
respectively, and π∞(E,A) denotes the number of infinite eigenvalues of λE − A.

If E is nonsingular, then π∞(E,A) = 0. A d-stable pencil λE − A has the d-inertia
Ind(E,A) = {nf , 0, 0, n∞ }.

Although there is a difference between the discrete-time and continuous-time gene-
ralized Lyapunov equations, inertia theorems in the discrete-time case in many aspects
resemble the continuous-time case. Thus, to avoid repetition, results for the d-inertia are
only listed without proof unless necessary.

The following theorem gives a connection between the d-inertia of the pencil λE − A
and the c-inertia of the Hermitian solution of the projected GDALE

A∗XA− E∗XE = −P ∗rGPr + (I − Pr)∗G(I − Pr),
P ∗l X = XPl.

(4.66)

Theorem 4.44. Let λE − A be a regular pencil. If there exists an Hermitian matrix X
that satisfies the projected GDALE (4.66) with Hermitian, positive definite G, then

π<1(E,A) + π∞(E,A) = π+(X), π>1(E,A) = π−(X), π1(E,A) = π0(X) = 0. (4.67)

Conversely, if π1(E,A) = 0, then there exist an Hermitian matrix X and an Hermitian,
positive definite matrix G such that the GDALE in (4.66) is satisfied and the inertia iden-
tities (4.67) hold.
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Proof. Every Hermitian solution X of (4.66) has the form (4.63), where the Hermitian
matrix Y11 satisfies the Lyapunov equation (4.59) and the Hermitian matrix Y22 is a unique
solution of the Lyapunov equation (4.62) with ξ = 1 that is given by

Y22 =
ν−1∑
j=0

(N∗)jT22N
j.

If T22 is positive definite, then Y22 is also positive definite.
It follows from from the Sylvester law of inertia [29] and the matrix inertia theorem

[172] that

π<1(E,A) = π<1(J) = π+(X11) = π+(X)− π+(X22) = π+(X)− π∞(E,A),
π>1(E,A) = π>1(J) = π−(X11) = π−(X)− π−(X22) = π−(X),
π1(E,A) = π1(J) = π0(X11) = 0.

Moreover, π0(X) = π0(X11) + π0(X22) = 0.
Suppose that π1(E,A) = 0. Then by the matrix inertia theorem [172] there exists

Hermitian matrices X11, X22 and Hermitian, positive definite matrices T11, T22 such that
(4.59) and (4.62) with ξ = 1 are satisfied and

π<1(J) = π+(X11), π>1(J) = π−(X11), π1(J) = π0(X11) = 0,
π∞(E,A) = π+(X22), π−(X22) = π0(X22) = 0.

Thus, the Hermitian matrices

X = W−∗
[
X11 0
0 X22

]
W−1, G = T ∗

[
T11 0
0 T22

]
T

satisfy the GDALE in (4.66), G is positive definite and the d-inertia identities (4.67)
hold.

There are also unit circle analogies of Theorem 4.22 and Corollary 4.23 that can be
established in the same way.

Theorem 4.45. Let λE − A be a regular pencil and let X be an Hermitian matrix that
satisfy the projected GDALE (4.66) with Hermitian, positive semidefinite G.

1. If π1(E,A) = 0, then π+(X) ≤ π<1(E,A) + π∞(E,A) and π−(X) ≤ π>1(E,A).
2. If π0(X) = 0, then π+(X) ≥ π<1(E,A) + π∞(E,A) and π−(X) ≥ π>1(E,A).

Corollary 4.46. Let λE −A be regular and let G be an Hermitian, positive semidefinite.
Assume that π1(E,A) = 0. If there exists a nonsingular Hermitian matrix X that satisfies
the projected GDALE (4.66), then the inertia identities (4.67) hold.

The inertia identities (4.67) can also be obtained from observability conditions for the
discrete-time descriptor system (3.2). Consider the projected GDALE

A∗XA− E∗XE = −P ∗r C∗CPr + (I − Pr)∗C∗C(I − Pr),
P ∗l X = XPl.

(4.68)
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The presence of the second term in the right-hand side of the GDALE in (4.68) makes it pos-
sible to characterize not only R-observability but also S-observability and C-observability
properties of the discrete-time descriptor system (3.2). We will show that the condition for
the pencil λE − A to have no eigenvalues of modulus 1 and the condition for the solution
of (4.68) to be nonsingular together are equivalent to the property for the triplet (E,A,C)
to be C-observable.

Theorem 4.47. Consider the discrete-time descriptor system (3.2) with a regular pencil
λE − A. Let X be an Hermitian solution of the projected GDALE (4.68). The triplet
(E,A,C) is C-observable if and only if π1(E,A) = 0 and X is nonsingular.

Proof. Let the pencil λE − A be in Weierstrass canonical form (2.2) and let the matrix
CT−1 = [C1, C2 ] be partitioned conformally to E and A. The solution of the projected
GDALE (4.68) has the form (4.63), where Y11 is the solution of the Lyapunov equation

J∗Y11J − Y11 = −C∗1C1 (4.69)

and Y22 is the solution of the Lyapunov equation

Y22 −N∗Y22N = C∗2C2. (4.70)

Since (E,A,C) is C-observable, by Theorem 3.27 the matrices

[
λI − J
C1

]
and

[
λN − I
C2

]
have full column rank for all λ ∈ C. In this case J has no eigenvalues on the unit circle
and the solutions Y11 and Y22 of (4.69) and (4.69) are nonsingular [100, Theorem 13.2.4].
Thus, π1(E,A) = 0 and the solution X of the projected GDALE (4.68) is nonsingular.

Conversely, let v ∈ ImPr be a right eigenvector of λE − A corresponding to a finite
eigenvalue λ with |λ| 6= 1. We have

−‖Cv‖2 = −v∗C∗Cv = v∗(A∗XA− E∗XE)v = (|λ|2 − 1)v∗E∗XEv.

SinceX is nonsingular, Ev 6= 0 and π1(E,A) = 0, we obtain that Cv 6= 0. Hence, the triplet
(E,A,C) is R-observable. For v ∈ KerE, we have ‖Cv‖2 = v∗C∗Cv = v∗A∗XAv 6= 0, i.e,
the triplet (E,A,C) is C-observable.

It follows from Theorem 4.47 that if π1(E,A) = 0 and an Hermitian solution X of
(4.68) is nonsingular, then the triplet (E,A,C) is S-observable. However, S-observability
of (E,A,C) does not imply that the solution of (4.68) is nonsingular.

Example 4.48. The projected GDALE (4.68) with

E =

[
1 0
0 0

]
, A =

[
2 0
0 1

]
, C = [ 1, 0 ]

has the unique solution

X =

[
−1/3 0

0 0

]
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which is singular although rank

[
λE − A
C

]
= 2 and rank

 E
K∗E∗A
C

 = 2.

As an immediate consequence of Corollary 4.46 and Theorem 4.47 we obtain the fol-
lowing results.

Corollary 4.49. Consider system (3.2) with a regular pencil λE − A. Let the triplet
(E,A,C) be C-observable. If an Hermitian matrix X satisfies the projected GDALE (4.68),
then the inertia identities (4.67) hold.

Furthermore, from Theorem 4.47 and Corollary 4.49 we have the following connection
between d-stability of the pencil λE − A, the C-observability of the triplet (E,A,C) and
the existence of an Hermitian solution of the projected GDALE (4.68).

Corollary 4.50. Consider the statements:

1. the pencil λE − A is d-stable,
2. the triplet (E,A,C) is C-observable,
3. the projected GDALE (4.68) has a unique Hermitian, positive definite solution X.

Any two of these statements together imply the third.

Remark 4.51. Note that Corollary 4.50 still holds if we replace the C-observability con-
dition by the weaker condition for (E,A,C) to be R-observable, and if we require for
solutions of (4.68) to be positive definite on ImPl only.

If the triple (E,A,C) is not C-observable, then we can derive inertia inequalities similar
to (4.41). Consider a proper observability matrix O+ and an improper observability matrix
O− as in as in (3.43). By Theorem 3.27 the triplet (E,A,C) is C-observable if and only
if rank(O+) = n− π∞(E,A) and rank(O−) = π∞(E,A). Using the Weierstrass canonical
form (2.2) and representation (4.63) for the solution X of the projected GDALE (4.68) we
obtain the following inertia inequalities.

Theorem 4.52. Let λE−A be a regular pencil and let X be an Hermitian solution of the
projected GDALE (4.68). Then

|π<1(E,A)− π+(X) + rank(O−)| ≤ n− π∞(E,A)− rank(O+),
|π>1(E,A)− π−(X)| ≤ n− π∞(E,A)− rank(O+).

Remark 4.53. All results of this subsection can also be reformulated for the projected
generalized discrete-time Lyapunov equation

A∗XA− E∗XE = −P ∗rGPr + ξ(I − Pr)∗G(I − Pr),
P ∗l X = XPl

with ξ = 0 or −1. For these equations we must consider instead of (4.67) the inertia
identities

π<1(E,A) = π+(X), π>1(E,A) = π−(X), π1(E,A) = 0, π∞(E,A) = π0(X)
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for the case ξ = 0 and

π<1(E,A) = π+(X), π>1(E,A) + π∞(E,A) = π−(X), π1(E,A) = π0(X) = 0

for the case ξ = −1.

By duality of controllability and observability conditions, analogies of Theorems 4.47,
4.52 and Corollaries 4.49, 4.50 can be obtained for the dual projected GDALE

AXA∗ − EXE∗ = −PlBB∗P ∗l + ξ(I − Pl)BB∗(I − Pl)∗,
PrX = XP ∗r .

(4.71)

4.4 Controllability and observability Gramians

In this section we establish relationships among solutions of projected generalized Lyapu-
nov equations and the controllability and observability Gramians for descriptor systems
introduced in [11]. Since the results for the continuous-time case are partly related to the
discrete-time case, we begin our discussions with the discrete-time problem.

4.4.1 The discrete-time case

Consider the causal and noncausal controllability matrices C+ and C− defined in (3.39)
and the causal and noncausal observability matrices O+ and O− defined in (3.43). Assume
that the pencil λE − A is d-stable. Then the infinite sums

Gdcc := C+C∗+ =
∞∑
k=0

FkBB
∗F ∗k (4.72)

and

Gdco := O∗+O+ =
∞∑
k=0

F ∗kC
∗CFk, (4.73)

where Fk are as in (2.7), converge. The matrix Gdcc is called the causal controllability
Gramian of the discrete-time descriptor system (3.2) and the matrix Gdco is called the
causal observability Gramian of (3.2). The matrices

Gdnc := C−C∗− =
−1∑

k=−ν

FkBB
∗F ∗k (4.74)

and

Gdno := O∗−O− =
−1∑

k=−ν

F ∗kC
∗CFk (4.75)
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are called, respectively, the noncausal controllability Gramian and the noncausal observabi-
lity Gramian of system (3.2). In summary, the controllability Gramian of the discrete-time
descriptor system (3.2) is defined by

Gdc = Gdcc + Gdnc (4.76)

and the observability Gramian for the discrete-time descriptor system (3.2) is defined by

Gdo = Gdco + Gdno. (4.77)

If E = I, then Gdc = Gdcc and Gdo = Gdco are the classical controllability and observabi-
lity Gramians for standard discrete-time state space systems [176].

The following lemma gives integral representations for the controllability and observa-
bility Gramians of the descriptor system (3.2).

Lemma 4.54. Consider the discrete-time descriptor system (3.2). Let λE−A be d-stable.

1. The controllability Gramian of system (3.2) can be represented as

Gdc =
1

2π

2π∫
0

(eiϕE − A)−1
(
PlBB

∗P ∗l + (I − Pl)BB∗(I − Pl)∗
)

(eiϕE − A)−∗dϕ.

(4.78)

2. The observability Gramian of system (3.2) can be represented as

Gdo =
1

2π

2π∫
0

(eiϕE − A)−∗
(
P ∗r C

∗CPr + (I − Pr)∗C∗C(I − Pr)
)

(eiϕE − A)−1dϕ.

(4.79)

Proof. Since all finite eigenvalues of the pencil λE−A lie inside the unit circle, the sequence
‖Fk‖ is uniformly bounded for all integers k. Then the Fourier series

∞∑
k=−∞

Fke
ikϕ

converges [135]. Using (2.11) we have

(E − eiϕA)
∞∑

k=−∞

Fke
ikϕ =

∞∑
k=−∞

(EFk − AFk−1)eikϕ = I

and, hence,

(E − eiϕA)−1 =
∞∑

k=−∞

Fke
ikϕ =

∞∑
k=−ν

Fke
ikϕ (4.80)
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is the Fourier expansion of the matrix-valued function (E−eiϕA)−1. It immediately follows
from the Parseval identity [135] that

Gdcc =
∞∑
k=0

FkBB
∗F ∗k =

∞∑
k=−∞

FkPlBB
∗P ∗l F

∗
k

=
1

2π

∫ 2π

0

(E − eiϕA)−1PlBB
∗P ∗l (E − eiϕA)−∗dϕ

=
1

2π

∫ 2π

0

(eiϕE − A)−1PlBB
∗P ∗l (eiϕE − A)−∗dϕ, (4.81)

Gdnc =
−1∑

k=−ν

FkBB
∗F ∗k =

∞∑
k=−∞

Fk(I − Pl)BB∗(I − Pl)∗F ∗k

=
1

2π

∫ 2π

0

(eiϕE − A)−1(I − Pl)BB∗(I − Pl)∗(eiϕE − A)−∗dϕ. (4.82)

Thus, (4.76), (4.81) and (4.82) imply (4.78). The integral representation (4.79) for Gdo can
be obtained analogously.

As a consequence of Theorem 4.39, Corollary 4.50 and Lemma 4.54 we obtain the
following result.

Corollary 4.55. Consider the discrete-time descriptor system (3.2). Let the pencil λE−A
be d-stable.

1. The causal observability Gramian Gdco of (3.2) exists and is a unique Hermitian
solution of the projected GDALE

A∗XA− E∗XE = −P ∗r C∗CPr, X = XPl. (4.83)

Moreover, Gdco is positive definite on the subspace ImPl if and only if the triplet
(E,A,C) is R-observable.

2. The noncausal observability Gramian Gdno of (3.2) is a unique Hermitian solution of
the projected GDALE

A∗XA− E∗XE = (I − Pr)∗C∗C(I − Pr), X = X(I − Pl). (4.84)

Moreover, Gdno is positive definite on KerPl if and only if rank

[
E
C

]
= n.

3. The observability Gramian Gdo of (3.2) exists and is a unique Hermitian solution of
the projected GDALE (4.68). Moreover, Gdo is positive definite on Fn if and only if
the triplet (E,A,C) is C-observable.

An analogous result holds for the controllability Gramians.
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Corollary 4.56. Consider the discrete-time descriptor system (3.2). Let the pencil λE−A
be d-stable.

1. The causal controllability Gramian Gdcc of (3.2) exists and is a unique Hermitian
solution of the projected GDALE

AXA∗ − EXE∗ = −PlBB∗P ∗l , X = PrX.

Moreover, Gdcc is positive definite on the subspace ImP ∗r if and only if the triplet
(E,A,B) is R-controllable.

2. The noncausal controllability Gramian Gdnc of (3.2) is a unique Hermitian solution
of the projected GDALE

AXA∗ − EXE∗ = (I − Pl)BB∗(I − Pl)∗, X = (I − Pr)X.

Moreover, Gdnc is positive definite on KerP ∗r if and only if rank [E, B ] = n.

3. The controllability Gramian Gdc of (3.2) exists and is a unique Hermitian solution
of the projected GDALE (4.71) with ξ = 1. Moreover, Gdc is positive definite on Fn

if and only if the triplet (E,A,B) is C-controllable.

4.4.2 The continuous-time case

Consider now the continuous-time descriptor system (3.1). Assume that the pencil λE−A
is c-stable and the fundamental solution matrix F(t) is as in (3.12). Then the infinite
integrals

Gcpc =

∫ ∞
0

F(t)BB∗F∗(t) dt (4.85)

and

Gcpo =

∫ ∞
0

F∗(t)C∗CF(t) dt (4.86)

exist. The matrix Gcpc is called the proper controllability Gramian and the matrix Gcpo
is called the proper observability Gramian of the continuous-time descriptor system (3.1).
The improper controllability Gramian and the improper observability Gramian of (3.1) are
defined by

Gcic =
−1∑

k=−ν

FkBB
∗F ∗k (4.87)

and

Gcio =
−1∑

k=−ν

F ∗kC
∗CFk, (4.88)
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respectively, were the matrices Fk are as in (2.7). The controllability Gramian of the
descriptor system (3.1) is given by

Gcc = Gcpc + Gcic (4.89)

and the observability Gramian of the continuous-time descriptor system (3.1) has the form

Gco = Gcpo + Gcio. (4.90)

In the case E = I the proper controllability and observability Gramians are classical
controllability and observability Gramians of standard continuous-time state space systems
[176].

It follows from (4.74), (4.75), (4.87) and (4.88) that the improper controllability and
observability Gramians of the continuous-time descriptor system (3.1) coincide with the
noncausal controllability and observability Gramians of the discrete-time descriptor system
(3.2). Therefore, in the sequel we are discussing only the proper controllability and obser-
vability Gramians of (3.1).

The following lemma gives integral representations for the proper controllability and
observability Gramians Gcpc and Gcpo in terms of the generalized resolvent (λE − A)−1.

Lemma 4.57. Consider the continuous-time descriptor system (3.1). Let the pencil
λE − A be c-stable.

1. The proper controllability Gramian of system (3.1) can be represented as

Gcpc =
1

2π

∫ ∞
−∞

(iξE − A)−1PlBB
∗P ∗l (iξE − A)−∗dξ. (4.91)

2. The proper observability Gramian of system (3.1) can be represented as

Gcpo =
1

2π

∫ ∞
−∞

(iξE − A)−∗P ∗r C
∗CPr(iξE − A)−1dξ. (4.92)

Proof. From (3.12) we have that the entries of the matrices Pr(iξE−A)−1 and (iξE−A)−1Pl
are the Fourier transformations of the entries of F(t). Then the integrals (4.91) and (4.92)
immediately follow from the Parseval identity [135].

If we compare the integrals (4.91) and (4.92) with the solutions of the projected
GCALEs (4.42) and (4.39), respectively, then from Corollaries 4.15, 4.25 and Remark 4.27
we obtain the following result.

Corollary 4.58. Consider the continuous-time descriptor system (3.1). Let the pencil
λE − A be c-stable.

1. The proper controllability Gramian Gcpc of (3.1) exists and is a unique Hermitian
solution of the projected GCALE (4.42). Moreover, Gcpc is positive definite on ImP ∗r
if and only if the triplet (E,A,B) is R-controllable.



4.4. CONTROLLABILITY AND OBSERVABILITY GRAMIANS 77

2. The proper observability Gramian Gcpo of (3.1) exists and is a unique Hermitian
solution of the projected GCALE (4.39). Moreover, Gcpo is positive definite on ImPl
if and only if the triplet (E,A,C) is R-observable.

Remark 4.59. Corollaries 4.55, 4.56 and 4.58 imply the following conditions.
1. The controllability Gramian Gcc of (3.1) is positive definite if and only if the pencil

λE − A is c-stable and the triplet (E,A,B) is C-controllable.
2. The observability Gramian Gco of (3.1) is positive definite if and only if the pencil

λE − A is c-stable and the triplet (E,A,C) is C-observable.

It should be noted that the proper controllability (observability) Gramian of (3.1) is
defined via the projected generalized continuous-time Lyapunov equation and the improper
controllability (observability) Gramian of (3.1) is defined via the projected generalized
discrete-time Lyapunov equation. Unlike the discrete-time descriptor system (3.2), we do
not know how to express the controllability and observability Gramians of the continuous-
time descriptor system (3.1) via solutions of a single Lyapunov equation.
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Chapter 5

Numerical solution of generalized
Lyapunov equations

Due to the practical importance the numerical solution of Lyapunov equations has received
a lot of attention, see [9, 17, 55, 64, 72, 81, 101, 109, 126, 127, 136, 147] and the references
therein. The classical numerical methods for standard Lyapunov equations are the Bartels-
Stewart method [9], the Hammarling method [72] and the Hessenberg-Schur method [65].
An extension of these methods to regular generalized Lyapunov equations is given in [34,
55, 56, 65, 117, 125]. These methods are based on the preliminary reduction of the matrix
(matrix pencil) to the (generalized) Schur form [64] or the Hessenberg-Schur form [65],
calculation of the solution of a reduced system and back transformation.

In this chapter we extend the Bartels-Stewart and Hammarling methods for projected
Lyapunov equations. A review of iterative methods for (generalized) Lyapunov equations
is also presented.

5.1 Generalized Schur-Bartels-Stewart method

Consider the projected GCALE

ETXA+ ATXE = −P T
r GPr,

X = XPl,
(5.1)

where E, A, G ∈ Rn,n (the complex case is similar). Let the pencil λE − A be in the
GUPTRI form (2.4). To compute the right and left deflating subspaces of λE −A corres-
ponding to the finite eigenvalues we need to compute matrices Y and Z such that[

I −Z
0 I

] [
λEf − Af λEu − Au

0 λE∞ − A∞

] [
I Y
0 I

]
=

[
λEf − Af 0

0 λE∞ − A∞

]
.

This leads to the generalized Sylvester equation

EfY − ZE∞ = −Eu,
AfY − ZA∞ = −Au.

(5.2)

79
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Since the pencils λEf−Af and λE∞−A∞ have no common eigenvalues, equation (5.2) has
a unique solution (Y, Z) [34]. Then the pencil λE − A can be reduced by an equivalence
transformation to the Weierstrass-like canonical form

λE − A = V

[
I Z
0 I

] [
λEf − Af 0

0 λE∞ − A∞

] [
I −Y
0 I

]
UT

= W1

[
λEf − Af 0

0 λE∞ − A∞

]
T1,

where the matrices

W1 = V

[
I Z
0 I

]
and T1 =

[
I −Y
0 I

]
UT

are nonsingular. In this case the spectral projections Pr and Pl onto the right and left
finite deflating subspaces of λE − A have the form

Pr = T−1
1

[
I 0
0 0

]
T1 = U

[
I −Y
0 0

]
UT , (5.3)

Pl = W1

[
I 0
0 0

]
W−1

1 = V

[
I −Z
0 0

]
V T . (5.4)

Assume that the pencil λE − A is c-stable. Setting

V TXV =

[
X11 X12

X21 X22

]
and UTGU =

[
G11 G12

G21 G22

]
, (5.5)

we obtain from the GCALE in (5.1) the decoupled system of matrix equations

ET
f X11Af + ATfX11Ef = −G11, (5.6)

ET
f X12A∞ + ATfX12E∞ = G11Y − ET

f X11Au − ATfX11Eu, (5.7)

ET
∞X21Af + AT∞X21Ef = Y TG11 − ET

uX11Af − ATuX11Ef , (5.8)

ET
∞X22A∞ + AT∞X22E∞ = − Y TG11Y − ET

uX11Au − ATuX11Eu − ET
∞X21Au

− AT∞X21Eu − ET
uX12A∞ − ATuX12E∞. (5.9)

Since all eigenvalues of λEf−Af are finite and lie in the open left half-plane, by Theorem 4.4
the GCALE (5.6) has a unique solution X11. The pencils λEf − Af and λE∞ − A∞ have
no eigenvalues in common and, hence, by Theorem 4.2 the generalized Sylvester equations
(5.7) and (5.8) are uniquely solvable. To show that the matrix X12 = −X11Z satisfies
equation (5.7), we substitute this matrix in (5.7). Taking into account equations (5.2) and
(5.6), we obtain

ET
f X12A∞ + ATfX12E∞ = − ET

f X11(AfY + Au)− ATfX11(EfY + Eu)

= − (ET
f X11Af + ATfX11Ef )Y − ET

f X11Au − ATfX11Eu

= G11Y − ET
f X11Au − ATfX11Eu.
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Similarly, it can be verified that the matrix X21 = −ZTX11 is the solution of (5.8).

Consider now equation (5.9). Substitute the matrices X12 = −X11Z, X21 = −ZTX11

in (5.9). Using (5.2) and (5.6) we obtain

ET
∞X22A∞ + AT∞X22E∞ = Y TET

f X11(ZA∞ − AfY ) + Y TATfX11(ZE∞ − EfY )

+ ET
uX11ZA∞ + ATuX11ZE∞ − Y TG11Y

= (EfY + Eu)
TX11ZA∞ + (AfY + Au)

TX11ZE∞

= ET
∞Z

TX11ZA∞ + AT∞Z
TX11ZE∞.

Then

ET
∞(X22 − ZTX11Z)A∞ + AT∞(X22 − ZTX11Z)E∞ = 0. (5.10)

Clearly, X22 = ZTX11Z satisfies (5.9). Moreover, we have

X = V

[
X11 −X11Z

−ZTX11 ZTX11Z

]
V T

= V

[
X11 −X11Z

−ZTX11 ZTX11Z

] [
I −Z
0 0

]
V T = XPl.

Thus, the matrix

X = V

[
X11 −X11Z

−ZTX11 ZTX11Z

]
V T (5.11)

is the unique solution of the projected GCALE (5.1).

In some applications we need the matrix ETXE rather that the solution X itself [148].
Using (2.4), (5.2) and (5.11) we obtain that

ETXE = U

[
ET
f X11Ef −ET

f X11EfY

−Y TET
f X11Ef Y TET

f X11EfY

]
UT .

Remark 5.1. It follows from (5.10) that the general solution of the GCALE in (5.1) has
the form

X = V

[
X11 −X11Z

−ZTX11 X∞ + ZTX11Z

]
V T ,

where X∞ is the general solution of the homogeneous GCALE ET
∞X∞A∞+AT∞X∞E∞ = 0.

If we require for this solution to satisfy X = XPl, then we obtain that X∞ = 0.

In summary, we have the following algorithm for computing the solution X of the
projected GCALE (5.1).
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Algorithm 5.1.1. Generalized Schur-Bartels-Stewart method for the projected GCALE.
Input: A real symmetric matrix G and a real regular pencil λE−A such that λj +λk 6= 0
for any two finite eigenvalues λj and λk of λE − A.
Output: The symmetric solution X of the projected GCALE (5.1).
Step 1. Use the GUPTRI algorithm [41, 42] to compute (2.4).
Step 2. Use the generalized Schur method [87, 88] or the recursive blocked algorithm [82]
to solve the generalized Sylvester equation (5.2).
Step 3. Compute the matrix

UTGU =

[
G11 G12

GT
12 G22

]
. (5.12)

Step 4. Use the generalized Bartels-Stewart method [9, 125] or the recursive blocked algo-
rithm [83] to solve the regular GCALE

ET
f X11Af + ATfX11Ef = −G11. (5.13)

Step 5. Compute the matrix

X = V

[
X11 −X11Z

−ZTX11 ZTX11Z

]
V T . (5.14)

Consider now the projected GDALE

ATXA− ETXE = −P T
r GPr + ξ(I − Pr)TG(I − Pr),

P T
l X = XPl,

(5.15)

where ξ = −1, 0 or 1. Assume that the pencil λE − A is d-stable. Using (2.4), (5.3) and
(5.5) we obtain from the GDALE in (5.15) the following system of matrix equations

ATfX11Af − ET
f X11Ef = −G11, (5.16)

ATfX12A∞ − ET
f X12E∞ = G11Y − ATfX11Au + ET

f X11Eu, (5.17)

AT∞X21Af − ET
∞X21Ef = Y TG11 − ATuX11Af + ET

uX11Ef , (5.18)

AT∞X22A∞ − ET
∞X22E∞ = −Y TG11Y + ξ

(
Y TG11Y + Y TG12 +G21Y +G22

)
−ATuX11Au − ATuX12A∞ − AT∞X21Au (5.19)

+ET
uX11Eu + ET

uX12E∞ + ET
∞X21Eu.

Since all eigenvalues of the pencil λEf − Af lie inside the unit circle, by Theorem 4.30
the regular GDALE (5.16) has a unique solution X11. It follows from P T

l X = XPl that
X12 = −X11Z and X21 = −ZTX11. Moreover, we can verify that these matrices satisfy
equations (5.17) and (5.18), respectively. Substituting these matrices in (5.19) and taking
into account equations (5.2) and (5.16), we obtain that

AT∞X22A∞ − ET
∞X22E∞ = ξ

(
Y TG11Y + Y TG12 +G21Y +G22

)
+ AT∞Z

TX11ZA∞ − ET
∞Z

TX11ZE∞.
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Thus, the solution of the projected GDALE (5.15) has the form

X = V

[
X11 −X11Z

−ZTX11 X∞ + ZTX11Z

]
V T ,

where X11 satisfies the regular GDALE (5.16) and X∞ is a solution of the regular GDALE

AT∞X∞A∞ − ET
∞X∞E∞ = ξ(Y TG11Y + Y TG12 +G21Y +G22).

Analogous to the continuous-time case, we have the following algorithm for computing
the solution X of the projected GDALE (5.15).

Algorithm 5.1.2. Generalized Schur-Bartels-Stewart method for the projected GDALE.
Input: A real symmetric matrix G and a real regular pencil λE − A such that λjλk 6= 1
for any two finite eigenvalues λj and λk of λE − A.
Output: The symmetric solution X of the projected GDALE (4.64).
Step 1. Use the GUPTRI algorithm [41, 42] to compute (2.4).
Step 2. Use the generalized Schur method [87, 88] or the recursive blocked algorithm [82]
to solve the generalized Sylvester equation (5.2).
Step 3. Compute the matrix UTGU as in (5.12).
Step 4a. Use the generalized Bartels-Stewart method [9, 125] or the recursive blocked
algorithm [83] to solve the regular GDALE

ATfX11Af − ET
f X11Ef = −G11. (5.20)

Step 4b. If ξ = 0, then X∞ = 0. Otherwise, use the generalized Bartels-Stewart method
[9, 125] or the recursive blocked algorithm [83] to solve the regular GDALE

AT∞X∞A∞ − ET
∞X∞E∞ = ξ(Y TG11Y + Y TG12 +GT

12Y +G22). (5.21)

Step 5. Compute the matrix

X = V

[
X11 −X11Z

−ZTX11 X∞ + ZTX11Z

]
V T . (5.22)

5.2 Generalized Schur-Hammarling method

In many applications it is necessary to have the Cholesky factor of the solution of the
Lyapunov equation rather than the solution itself, e.g., [103]. An attractive algorithm for
computing the Cholesky factor of solutions of regular Lyapunov equations with a positive
semidefinite right-hand side is the generalized Hammarling method [72, 125] We will show
that the Hammarling method can also be used to solve the projected GCALE

ETXA+ ATXE = −P T
r C

TCPr, X = XPl, (5.23)



84 CHAPTER 5. NUMERICAL SOLUTION

where E, A ∈ Rn,n, C ∈ Rp,n. In fact, we can compute the full rank factorization [100] of
the solution X = LTL without constructing X and the matrix product CTC explicitly.

Let λE − A be in the GUPTRI form (2.4) and let CU = [C1, C2 ] be partitioned in
blocks conformally to E and A. Then the solution of the projected GCALE (5.23) has the
form (5.11), where the symmetric, positive semidefinite matrix X11 satisfies the GCALE

ET
f X11Af + ATfX11Ef = −CT

1 C1.

Let UX11 be a Cholesky factor of the solution X11 = UT
X11

UX11 . Compute the QR decom-
position

UX11 = Q

[
L1

0

]
,

where Q is orthogonal and L1 has full row rank [64]. Then

X = V

[
UT
X11

−ZTUT
X11

]
[UX11 , −UX11Z ]V T

= V

[
LT1

−ZTLT1

]
[L1, −L1Z ]V T = LTL

is the full rank factorization of X, where L = [L1, −L1Z ]V T has full row rank.
Thus, we have the following algorithm for computing the full row rank factor of the

solution of the projected GCALE (5.23).

Algorithm 5.2.1.Generalized Schur-Hammarling method for the projected GCALE (5.23)
Input: A real c-stable pencil λE − A and a real matrix C.
Output: A full row rank factor L of the solution X = LTL of (5.23).
Step 1. Use the GUPTRI algorithm [41, 42] to compute (2.4).
Step 2. Use the generalized Schur method [87, 88] or the recursive blocked algorithm [82]
to compute the solution of the generalized Sylvester equation (5.2).
Step 3. Compute the matrix

CU = [C1, C2 ] . (5.24)

Step 4. Use the generalized Hammarling method [72, 125] to compute the Cholesky factor
UX11 of the solution X11 = UT

X11
UX11 of the GCALE

ET
f X11Af + ATfX11Ef = −CT

1 C1. (5.25)

Step 5a. If rank(UX11) < nf , then use Householder or Givens transformations [64] to

compute the full row rank matrix L1 from the QR decomposition UX11 = QL1

[
L1

0

]
.

Otherwise, L1 := UX11.
Step 5b. Compute the full row rank factor

L = [L1, −L1Z ]V T . (5.26)
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In some applications we need to compute the full column rank factor R of the solution
X = RRT of the dual projected GCALE

EXAT + AXET = −PlBBTP T
l , X = PrX, (5.27)

where E, A ∈ Rn,n, B ∈ Rn,m. Algorithm 5.2.1 can be rewritten for this equation as
follows.

Algorithm 5.2.2.Generalized Schur-Hammarling method for the projected GCALE (5.27)
Input: A real c-stable pencil λE − A and a real matrix B.
Output: A full column rank factor R of the solution X = RRT of (5.27).
Step 1. Use the GUPTRI algorithm [41, 42] to compute (2.4).
Step 2. Use the generalized Schur method [87, 88] or the recursive blocked algorithm [82]
to compute the solution of the generalized Sylvester equation (5.2).
Step 3. Compute the matrix

V TB =

[
B1

B2

]
.

Step 4. Use the generalized Hammarling method [72, 125] to compute the Cholesky factor
UX11 of the solution X11 = UT

X11
UX11 of the regular GCALE

EfX11A
T
f + AfX11E

T
f = −(B1 − ZB2)(B1 − ZB2)T . (5.28)

Step 5a. If rank(UX11) < nf , then use Householder or Givens transformations [64] to

compute the full column rank matrix R1 from the QR decomposition UX11 = QR1

[
RT

1

0

]
.

Otherwise, R1 := UT
X11

.
Step 5b. Compute the full column rank factor

R = U

[
R1

0

]
. (5.29)

Analogous to the continuous-time case, we obtain the following algorithm for computing
the full row rank factor L of the solution X = LTL of the projected GDALE

ATXA− ETXE = −P T
r C

TCPr + ξ(I − Pr)TCTC(I − Pr),
P T
l X = XPl

(5.30)

where ξ is 0 or 1. Note that for ξ = −1, the solution of (5.30) is indefinite and, hence, the
full rank factorization for this solution does not exist.

Algorithm 5.2.3. Generalized Schur-Hammarling method for the projected GDALE
Input: A real d-stable pencil λE − A and a real matrix C.
Output: A full row rank factor L of the solution X = LTL of the projected GDALE (5.30)
with ξ = 0 or 1.
Step 1. Use the GUPTRI algorithm [41, 42] to compute (2.4).
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Step 2. Use the generalized Schur method [87, 88] or the recursive blocked algorithm [82]
to solve the generalized Sylvester equation (5.2).
Step 3. Compute the matrix CU as in (5.24).
Step 4a. Use the generalized Hammarling method [72, 125] to compute the Cholesky factor
UX11 of the solution X11 = UT

X11
UX11 of the regular GDALE

ATfX11Af − ET
f X11Ef = −CT

1 C1. (5.31)

Step 4b. If ξ = 0, then UX∞ = 0. Otherwise, use the generalized Hammarling method
[72, 125] to compute the Cholesky factor UX∞ of the solution X∞ = UT

X∞UX∞ of the regular
GDALE

AT∞X∞A∞ − ET
∞X∞E∞ = (C1Y + C2)T (C1Y + C2). (5.32)

Step 5. Use the Householder or Givens transformations [64] to compute the full row rank
matrix L from the QR decomposition(

UX11 −UX11Z
0 UX∞

)
V T = Q

[
L
0

]
. (5.33)

An algorithm for computing the full column rank factor of the solution of the dual
projected GDALE can be obtained in the same way.

5.3 Numerical aspects and complexity

We will now discuss numerical aspects and computational cost for the algorithms described
in the previous subsections in detail. We focus on Algorithm 5.1.1 and give some notes
about the differences to the other algorithms.

Step 1. To deflate the infinite eigenvalues of the pencil λE−A and to reduce this pencil
to the quasi-triangular form (2.4) we use the GUPTRI algorithm [41, 42]. This algorithm
is based on the computation of the infinity-staircase form [161] of λE − A which exposes
the Jordan structure of the infinite eigenvalues, and the QZ algorithm [64] for a subpencil
which gives quasi-triangular blocks with the finite eigenvalues. The GUPTRI algorithm is
numerically backwards stable and requires O(n3) operations [41].

Step 2. To solve the generalized Sylvester equation (5.2) we can use the generalized
Schur method [87, 88]. Note that the pencils λEf −Af and λE∞ −A∞ are already in the
generalized real Schur form [64], that is, the matrices Ef and E∞ are upper triangular,
whereas the matrices Af and A∞ are upper quasi-triangular. Since the infinite eigenvalues
of λE∞ − A∞ correspond to the zero eigenvalues of the reciprocal pencil E∞ − µA∞, we
obtain that A∞ is upper triangular. Let Af = [Afij]

k
i,j=1 and A∞ = [A∞ij ]li,j=1 be partitioned

such that the diagonal blocks Afjj are of size 1 × 1 or 2 × 2 and A∞jj are of size 1 × 1.
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Let Ef = [Ef
ij]
k
i,j=1, E∞ = [E∞ij ]li,j=1, Eu = [Eu

ij]
k,l
i,j=1, Au = [Auij]

k,l
i,j=1, Y = [Yij]

k,l
i,j=1 and

Z = [Zij]
k,l
i,j=1 be partitioned in blocks conformally to Af and A∞. Then (5.2) is equivalent

to the kl equations

Ef
ttYtq − ZtqE∞qq = −Etq −

k∑
j=t+1

Ef
tjYjq +

q−1∑
j=1

ZtjE
∞
jq =: −Ětq, (5.34)

AfttYtq − ZtqA∞qq = −Atq −
k∑

j=t+1

AftjYjq +

q−1∑
j=1

ZtjA
∞
jq =: −Ǎtq (5.35)

for t = 1, . . . , k and q = 1, . . . , l. The matrices Ytq and Ztq can be computed successively
in a row-wise order beginning with t = k and q = l from these equations. Since E∞qq = 0,
the 1× 1 or 2× 1 matrix Ytq can be computed from the linear equation (5.34) of size 1× 1
or 2× 2 using Gaussian elimination with partial pivoting [64]. Then from (5.35) we obtain

Ztq = (AfttYpq + Ǎtq)(A
∞
qq)
−1.

The algorithm for solving the generalized Sylvester equation (5.2) via the generalized Schur
method is available as the LAPACK subroutine TGSYL [1] and costs 2n2

fn∞ + 2nfn
2
∞

flops [88].

To compute the solution of the quasi-triangular generalized Sylvester equation (5.2) we
can also use the recursive blocked algorithm [82, Algorithm 3]. This algorithm consists in
the recursive splitting equation (5.2) in smaller subproblems that can be solved using high-
performance kernel solvers. For comparison of the recursive blocked algorithm and the
LAPACK subroutine, see [82].

Step 3 is a matrix multiplication. In fact, in Algorithm 5.1.1 only the nf × nf block
G11 in (5.12) is needed. Let U = [U1, U2 ], where the columns of the (n × nf )-matrix U1

form the basis of the right finite deflating subspace of λE − A. Exploiting the symmetry
of G, the computation of G11 = UT

1 GU1 requires n2nf + nn2
f/2 flops. In Algorithm 5.2.1

we only need the p× nf block C1 in (5.24) which can be computed as C1 = CU1 in npnf
flops. The computation of UTGU in Algorithm 5.1.2, V TB in Algorithm 5.2.2 and CU in
Algorithm 5.2.3 requires 3n3/2, mn2 and pn2 flops, respectively.

Step 4. To solve the regular GCALE (5.13) in Algorithm 5.1.1 and the regular GDALEs
(5.20), (5.21) in Algorithm 5.1.2 we can use the generalized Bartels-Stewart method [9, 125].
Here we briefly describe the generalized Bartels-Stewart method for the GCALE (5.13).
Let the matrices X11 = [X ′ij]

k
i,j=1 and G11 = [G′ij]

k
i,j=1 be partitioned in blocks conformally

to Ef and Af . Then equation (5.13) is equivalent to k2 equations

(Ef
tt)

TX ′tqA
f
qq + (Aftt)

TX ′tqE
f
qq = −Ǧtq, t, q = 1, . . . k, (5.36)



88 CHAPTER 5. NUMERICAL SOLUTION

where
Ǧtq = G′tq +

t,q∑
i=1,j=1

(i,j) 6=(t,q)

(
(Ef

it)
TX ′ijA

f
jq + (Afit)

TX ′ijE
f
jq

)

= G′tq +
t∑
i=1

[
(Ef

it)
T

(
q−1∑
j=1

X ′ijA
f
jq

)
+ (Afit)

T

(
q−1∑
j=1

X ′ijE
f
jq

)]

+
t−1∑
i=1

[
(Ef

it)
TX ′iqA

f
qq + (Afit)

TX ′iqE
f
qq

]
.

We compute the blocks X ′tq in a row-wise order beginning with t = q = 1. Using the

column-wise vector representation of the matrices X ′tq and Ǧtq we can rewrite the genera-
lized Sylvester equation (5.36) as a linear system(

(Afqq)
T ⊗ (Ef

tt)
T + (Ef

qq)
T ⊗ (Aftt)

T
)

vec(X ′tq) = −vec(Ǧtq) (5.37)

of size 2× 2, 4× 4 or 8× 8. The solution vec(X ′tq) can be computed by solving (5.37) via
Gaussian elimination with partial pivoting [64].

To compute the Cholesky factors of solutions of the GCALE (5.25) in Algorithm 5.2.1
and the regular GDALEs (5.31), (5.32) in Algorithm 5.2.3 we can use the generalized
Hammarling method, see [72, 125] for details.

The solutions of the regular Lyapunov equations (5.13) and (5.20) using the generalized
Bartels-Stewart method requires O(n3

f ) flops, while computing the Cholesky factors of
solutions of equations (5.25) and (5.31) via the generalized Hammarling method requires
O(n3

f + pn2
f + p2nf ) flops [125]. The computation of the right-hand side in the regular

GDALE (5.21) and the solution of this equation requiresO(n3
∞+n2

fn∞+nfn
2
∞). Calculation

of the right-hand sides in the regular GCALE (5.28) and the regular GDALE (5.32) and
the Cholesky factors of the solutions of these equations costs O(n3

f +m2nf +mn2
f +mnfn∞)

and O(n3
∞ + pn2

∞ + p2n∞ + pnfn∞) flops, respectively.
The generalized Bartels-Stewart method and the generalized Hammarling method are

implemented in LAPACK-style subroutines SG03AD and SG03BD, respectively, that are avail-
able in the SLICOT Library [16].

The quasi-triangular generalized Lyapunov equations (5.13), (5.20) and (5.21) can also
be solved using the recursive blocked algorithm [83, Algorithm 3]. Comparison of this
algorithm with the SLICOT subroutines can be found in [83].

Step 5. The matrices X in (5.14) and (5.22) are computed in O(n3 + n2
fn∞ + nfn

2
∞)

flops. The computation of the full rank factor L in (5.26) and R in (5.29) requires, re-
spectively, O(n3

f + nfn∞r1 + n2r1) and O(n3
f + nnfr2) flops, where r1 = rank(L) and

r2 = rank(R). The full row rank factor L in (5.33) is computed in O(n3 + n2
fn∞) flops.

Thus, the total computational cost of the generalized Schur-Bartels-Stewart method as
well as the generalized Schur-Hammarling method is estimated as O(n3) and they require
O(n2) memory location. These methods can be used, unfortunately, only for projected
Lyapunov equations of small or medium size (n ≤ 1000). Moreover, they do not take into
account the sparsity and any structure of the coefficient matrices and are difficult to be
parallelize.
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5.4 Iterative methods

Iterative methods are very useful for large scale sparse problems because they are more
suitable for parallelization than direct methods and often do not destroy sparsity. In this
section we briefly review some iterative methods for (generalized) Lyapunov equations.

The matrix sign function method

One of the most popular approaches to solve large scale dense Lyapunov equations is the
matrix sign function method. This method was proposed for standard Lyapunov equations
in [133], see also [25, 93, 101], and extended to generalized Lyapunov equations in [12, 17,
54, 102].

Consider the GCALE (4.9) with real matrices E, A and G. The matrix sign function
method for (4.9) is given by

A0 = A, G0 = G,

Ak+1 =
1

2

(
Ak + EA−1

k E
)
,

Gk+1 =
1

2

(
Gk + ETA−Tk GkA

−1
k E

)
.

(5.38)

If the matrix E is nonsingular and the pencil λE − A is c-stable, then iteration (5.38)

is convergent globally quadratic and X = 1
2
E−T

(
lim
k→∞

Gk

)
E−1 satisfy the GCALE (4.9),

see [17].
The solution of the GCALE (4.9) with symmetric, positive semidefinite G = CTC can

be computed directly in factored form X = LTL via

A0 = A, C0 = C,

Ak+1 =
1

2

(
Ak + EA−1

k E
)
,[

Ck
CkA

−1
k E

]
= Qk+1

[
Rk+1

0

]
, (QR decomposition)

Ck+1 =
1√
2
Rk+1.

(5.39)

In this case L = 1√
2

(
lim
k→∞

Ck

)
E−1, see [18, 102] for details. The stopping criterion in (5.38)

and (5.39) can be chosen as ‖Ak + E‖ ≤ tol‖E‖ for some matrix norm ‖ · ‖ and a user-
defined tolerance tol. Scaling strategies to accelerate the convergence of the sign function
iterations have been presented in [8, 25, 54, 133].

The matrix sign function method can also be used to solve the GDALE (4.43) with
nonsingular E by applying to the Cayley-transformed equation (4.51).

Comparison of the matrix sign function method to the generalized Bartels-Stewart
and Hammarling methods with respect to the accuracy and computational cost can be
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found in [17]. There it has been observed that the matrix sign function method is about
as expensive as the Bartels-Stewart method and both methods require approximately the
same amount of work space. However, the matrix sign function method is more appropriate
for parallelization [15] than the generalized Bartels-Stewart method and is currently the
only practicable approach to solve regular generalized Lyapunov equations with large scale
dense coefficient matrices.

A disadvantage of the matrix sign function method is that a matrix inversion is required
in every iteration step which may lead to significant roundoff errors for ill-conditioned Ak.
Such difficulties may arise when eigenvalues of the pencil λE−A lie close to the imaginary
axis or λE−A is nearly singular. Note that if the matrix E is singular, then Ak diverges for
the pencil λE−A of index greater than two and converges to a singular matrix, otherwise,
see [152]. Thus, the matrix sign function method cannot be directly utilized for projected
generalized Lyapunov equations.

The Malyshev algorithm

A different approach to compute approximate solutions of generalized Lyapunov equations
is the Malyshev algorithm proposed in [112, 113], see also [7, 12, 62], to compute deflating
subspaces of a pencil corresponding to eigenvalues inside and outside the unit circle.

Consider the projected GDALE (4.64) with real matrices E, A and G = I. Assume that
the pencil λE − A is d-stable. Note that E is not necessarily nonsingular. The Malyshev
algorithm is described by the following schema

E0 = ET , A0 = AT ,[
Ek
−Ak

]
=

[
Q1k Q2k

Q3k Q4k

] [
Rk

0

]
, (QR decomposition),

Ek+1 = QT
4kEk, Ak+1 = QT

2kAk.

(5.40)

Then the solution of the projected GDALE (4.64) is given by

X = lim
k→∞

(
(Ek + Ak)

−1Ek(Ek + Ak)
−1(Ek + Ak)

−TET
k (Ek + Ak)

−T

+ ξ (Ek + Ak)
−1Ak(Ek + Ak)

−1(Ek + Ak)
−TATk (Ek + Ak)

−T
)
,

(5.41)

see [62, 112, 113] for details. For the case ξ = 0 or 1, the solution X of (4.64) is symmetric,
positive (semi)definite and can be computed in factored form X = LTL with

L = lim
k→∞

[
(Ek + Ak)

−TET
k (Ek + Ak)

−T

ξ (Ek + Ak)
−TATk (Ek + Ak)

−T

]
.

The Malyshev algorithm can also be used to solve the projected GDALE (4.64) with
symmetric, positive definite G = CTC by applying to the pencil λEC−1−AC−1. However,
there is no straightforward way to utilize this algorithm for the projected GDALE (4.64),
where G is singular.
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Iteration (5.40) converges globally quadratically. However, as mentioned in [7, 112],
some convergence difficulties may arise if eigenvalues of the pencil λE −A lie close to the
unit circle or λE − A is nearly singular.

As a stopping criterion it has been proposed in [112] to use ‖Rk − Rk−1‖ ≤ tol‖Rk‖
with some matrix norm ‖ · ‖ and a tolerance tol. Note that for nonsingular E, the pencil
λE − A is d-stable if and only if Ak converges to zero. This observation can be used to
verify numerically whether the pencil λE − A with nonsingular E is d-stable. We are not
aware of a similar d-stability criterion for the case when E is singular.

It should be noted that the Malyshev algorithm converges even if the pencil λE −A is
not d-stable but it has no eigenvalues on the unit circle. In this case the matrix X as in
(5.41) is a solution of the generalized Lyapunov equation

ATXA− ETXE = −P T
r,0Pr,0 + ξ(I − Pr,0)T (I − Pr,0),

P T
l,0X = XPl,0,

where Pl,0 and Pr,0 are the spectral projections onto the left and right deflating subspaces
of λE − A corresponding to the eigenvalues inside the unit circle. The projection Pl,0 is
computed as Pl,0 = lim

k→∞
ET
k (Ek+Ak)

−T , see [7, 112]. The projection Pr,0 can be determined

in the same way via iteration (5.40) with the starting matrices E0 = E and A0 = A. Note
that the left and right deflating subspaces of λE − A corresponding to the eigenvalues
inside the unit circle can be computed without inverting the matrix Ek +Ak explicitly, see
[7] for details.

Also, one can use the Malyshev algorithm to solve the GCALE (4.9) with nonsingular
E by applying to the Cayley-transformed pencil λ(A − E) − (E + A). However, if the
matrix E is singular, then by Proposition 4.34 the infinite eigenvalues of the pencil λE−A
are mapped by the Cayley transformation to eigenvalues on the unit circle. In this case
the Malyshev algorithm cannot be applied.

Perturbation theory, error analysis and parallelization issues for the Malyshev algorithm
can be found in [7, 12, 62, 112]. A connection between this algorithm and the matrix sign
function method is discussed in [12, 112].

The ADI and Smith methods

The alternating direction implicit (ADI) method was originally proposed for linear systems
[124] and then applied in [109, 141, 167] to the continuous-time Lyapunov equation

ATX +XA = −CTC. (5.42)

The ADI iteration can be written as

(AT + pkI)Xk−1/2 = −CTC −Xk−1(A− pkI),

(AT + pkI)XT
k = −CTC −XT

k−1/2(A− pkI)

with X0 = 0 and the shift parameters p1, . . . , pk ∈ C−. If all eigenvalues of the matrix A lie
in the open left half-plane, then Xk converges to the solution of equation (5.42). The rate
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of convergence is determined by the spectral radius of the error transfer operator given by

Tk(X) =
(
rk(A)rk(−A)−1

)T
X
(
rk(A)rk(−A)−1

)
,

where rk is the polynomial rk(t) = (t− p1) · . . . · (t− pk). The minimization of this spectral
radius with respect to the parameters p1, . . . , pk leads to the ADI minimax problem

{p1, . . . , pk} = arg min
{p1,... ,pk}∈C−

max
t∈Sp(A)

|rk(t)|
|rk(−t)|

. (5.43)

This problem is solved for equations with symmetric A, e.g. [168], while the case of complex
eigenvalues is still under development, see [109, 125, 141, 142, 168] for some contributions.

The computational cost of the ADI method is, in general, O(n3). However, compu-
tations can be reduced by previously transformation of A to tridiagonal form [109]. The
ADI method is efficient for structured matrices and sparse matrices with small bandwidth
[167].

For any real p < 0, equation (5.42) is equivalent to the discrete-time Lyapunov equation

ATXA−X = −CTC, (5.44)

where A = (A−pI)(A+pI)−1 and C =
√
−2pC(A+pI)−1. It can be shown that if all the

eigenvalues of the matrix A lie inside the unit circle or, equivalently, all the eigenvalues of
A are in the open left half-plane, then the Smith iteration

X0 = CTC, Xk+1 = CTC +ATXkA

converges linearly to the solution X, see [139]. The quadratic convergence can be achieved
by using the squared Smith method [139] based on the iteration

X0 = CTC, A0 = A,
Xk+1 = ATkXkAk, Ak+1 = A2

k.

The number of iterations required for a desired accuracy in the approximate solution
Xk of equation (5.42) depends on the parameter p. It should be noted that the Smith
method is, in fact, the ADI iteration with a single parameter. Therefore, an optimal value
p = p1 = . . . = pk from (5.43) can be used to increase the convergence.

The Smith method costs O(n3) flops and has just as the ADI method the memory
complexity O(n2), since the solution X is computed explicitly and it is dense even if the
coefficient matrix A is sparse. Note that in many cases the storage requirement rather
than the computational cost is a limiting factor for feasibility of numerical methods for
large scale problems.

Recently, efficient modifications of the ADI and Smith methods have been proposed to
compute low-rank approximations for solutions of standard Lyapunov equations [80, 125,
127]. These are the low-rank ADI iterate and the cyclic low-rank Smith method. It was
observed that the eigenvalues of the symmetric solutions of large scale Lyapunov equations
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with low-rank right-hand side generally decay very rapidly, see [5, 128]. This makes it
possible to approximate such solutions by low-rank matrices.

The cyclic low-rank Smith method consists of two stages. First one computes

Z1 =
√
−2p1(AT + p1I)−1CT ,

Zk =
[

(AT − pkI)(AT + pkI)−1Zk−1,
√
−2pk(A

T + pkI)−1CT
]
, k = 1, . . . , l,

(5.45)

with the shift parameters p1, . . . , pk and then one iterates

Z(l) = Zl,

Z((k+1)l) =

(
l∏

j=1

(AT − pjI)(AT + pjI)−1

)
Z(kl), k = 1, 2, . . . ,

Z(k+1)l =
[
Zkl, Z

(k+1)l
]
.

In this case a low-rank approximate solution of equation (5.42) is computed as X = ZklZ
T
kl.

Note that the cyclic low-rank Smith method is equivalent to the low-rank ADI iterate with
the cyclically repeated shift parameters p1, . . . , pl, see [127].

Numerical aspects, area of application and computing of the shift parameters for the
low-rank ADI and Smith methods for sparse problems are discussed in detail in [126, 127].
Some convergence results and improvements on the memory requirements for these methods
can be found in [3, 80].

Krylov subspace methods

An alternative technique to compute low-rank approximate solutions of large scale sparse
Lyapunov equations is the full orthogonalization method (FOM) and the generalized mini-
mum residual (GMRES) method [44, 81, 136]. These methods are based on the calculation
of an orthonormal basis Vk ∈ Rn,k of the Krylov subspace

Kk(AT , CT ) = Im
[
CT , ATCT , . . . , (AT )k−1CT

]
via the block Arnoldi or Lanczos process [64, 81, 171] together with solving reduced order
linear matrix equations.

In the FOM a low-rank approximate solution of the Lyapunov equation (5.42) is com-
puted as X̂ = VkXkV

T
k , where Xk ∈ Rk,k satisfies the Galerkin condition

V T
k

(
ATVkXkV

T
k + VkXkV

T
k A+ CTC

)
Vk = 0.

To provide this condition we have to solve the reduced order Lyapunov equation

(V T
k AVk)

TXk +Xk(V
T
k AVk) = −V T

k C
TCVk.

This equation can be solved by using any direct method.
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In the GMRES method one constructs an approximate solution X̂ = VkXkV
T
k , where

Xk ∈ Rk,k satisfies the minimization problem

‖ATVkXkV
T
k + VkXkV

T
k A+ CTC‖F → min !.

This problem leads to a low order generalized Sylvester equation, see [81, 136] for details.
Note that the FOM and the GMRES can be used in a similar way to solve the discrete-

time Lyapunov equation ATXA−X = −CTC [81].
A drawback of the Krylov subspace methods is that they often converge slowly and

relatively many iterates should be performed to determine the approximate solution with
high accuracy. However, for increasing k the storage requirements to save the dense matrix
Vk become excessive and the computing Xk gets expensive.

All iterative methods presented above for standard Lyapunov equations can also be used
to solve generalized Lyapunov equations (4.9) and (4.43) with nonsingular E by applying
to equations (4.15) and (4.47), respectively. However, if the matrix E is ill-conditioned this
is not a numerically feasible approach to solve generalized Lyapunov equations. Moreover,
in many applications E is sparse, whereas inverse of E may be dense. An extension of
these methods to projected generalized Lyapunov equations is an open problem.



Chapter 6

Perturbation theory for generalized
Lyapunov equations

There are several papers concerned with the perturbation theory and the backward error
bounds for standard continuous-time Lyapunov equations, see [50, 57, 61, 74, 75] and the
references therein. The sensitivity analysis for regular generalized Lyapunov equations has
been presented in [97]. In this chapter we discuss the perturbation theory for projected
generalized Lyapunov equations.

A condition number for a problem is an important characteristic to measure the sen-
sitivity of the solution of this problem to perturbations in the original data and to bound
errors in the approximate solution. If the condition number is large, then the problem is
ill-conditioned in the sense that small perturbations in the data may lead to large variations
in the solution.

The solution of the projected generalized Lyapunov equations is determined essentially
in two steps that include first a computation of the deflating subspaces of a pencil cor-
responding to the finite and infinite eigenvalues due reduction to the GUPTRI form and
solving the generalized Sylvester equation and then a calculation of the solution of the
regular generalized Lyapunov equation. In such situation it may happen that although
the projected generalized Lyapunov equation is well-conditioned, one of the intermediate
problems may be ill-conditioned. This may lead to large inaccuracy in the numerical so-
lution of the original problem. In this case we may conclude that either the combined
numerical method is unstable or the solution is ill-conditioned, since it is a composition
of two mappings one of which is ill-conditioned. Therefore, along with the conditioning
of the projected GCALE (4.36) and the projected GDALE (4.64) we consider the pertur-
bation theory for deflating subspaces, the generalized Sylvester equation (5.2), the regular
Lyapunov equations (4.9) and (4.43).

95
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6.1 Conditioning of deflating subspaces

The perturbation analysis for deflating subspaces of a regular pencil corresponding to the
specified eigenvalues and error bounds have been presented in [40, 86, 87, 143, 145]. Here
we briefly review the main results.

To compute the right and left deflating subspaces of the pencil λE − A corresponding
to the finite eigenvalues we have to solve the generalized Sylvester equation (5.2). Consider
a Sylvester operator S : Fnf ,2n∞ → F

nf ,2n∞ given by

S(Y, Z) := (EfY − ZE∞, AfY − ZA∞). (6.1)

Then equation (5.2) can be written in the operator form S(Y, Z) = (Eu, Au). Using the
column-wise vector representation for the matrices Y and Z we rewrite (5.2) as a linear
system

S

[
vec(Y )
vec(Z)

]
= −

[
vec(Eu)
vec(Au)

]
, (6.2)

where the (2nfn∞ × 2nfn∞)-matrix

S =

[
In∞ ⊗ Ef −ET

∞ ⊗ Inf
In∞ ⊗ Af −AT∞ ⊗ Inf

]
is the matrix representation of the Sylvester operator S. The norm of S induced by the
Frobenius matrix norm is given by

‖S‖F := sup
‖(Y,Z)‖F=1

‖(EfY − ZE∞, AfY − ZA∞)‖F = ‖S‖2.

We define the separation of two regular pencils λEf − Af and λE∞ − A∞ as

Difu ≡ Difu(Ef , Af ;E∞, A∞) := inf
‖(Y,Z)‖F=1

‖(EfY − ZE∞, AfY − ZA∞)‖F = σmin(S),

where σmin(S) is the smallest singular value of S [143]. Note that Difu(E∞, A∞;Ef , Af )
does not, in general, equal Difu(Ef , Af ;E∞, A∞). Therefore, we set

Difl ≡ Difl(Ef , Af ;E∞, A∞) := Difu(E∞, A∞;Ef , Af ).

The values Difu and Difl measure how close the spectra of λEf − Af and λE∞ − A∞
are. In other words, if there is a small perturbation of λEf − Af and λE∞ − A∞ such
that the perturbed pencils have a common eigenvalue, then either Difu or Difl is small.
However, small separations do not imply that the corresponding deflating subspaces are
ill-conditioned [145].

Important quantities that measure the sensitivity of the right and left finite deflating
subspaces of the pencil λE −A to perturbations in E and A are the norms of the spectral
projections Pr and Pl. If ‖Pr‖2 ( or ‖Pl‖2 ) is large, then the right (left) deflating subspace
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of λE − A corresponding to the finite eigenvalues is close to the right (left) deflating
subspace corresponding to the infinite eigenvalues.

Let the pencil λE−A be in the GUPTRI form (2.4) and let the transformation matrices
U = [U1, U2 ] and V = [V1, V2 ] be partitioned conformally to the blocks associated with
the finite and infinite eigenvalues. In this case U = ImU1 and V = ImV1 are the right
and left finite deflating subspaces of λE − A, respectively, and they have dimension nf .

Consider a perturbed pencil λẼ−Ã = λ(E+∆E)−(A+∆A). Let Ũ and Ṽ be, respectively,

the right and left finite deflating subspaces of λẼ− Ã and suppose that they have the same
dimensions as U and V . The distance between two subspaces U and Ũ is defined as

θmax(U , Ũ) = max
u∈U

min
ũ∈Ũ

θ(u, ũ),

where θ(u, ũ) is the acute angle between the vectors u and ũ. Then one has the following
perturbation bounds for the deflating subspaces of the regular pencil λE − A.

Theorem 6.1. [40] Suppose that the right and left finite deflating subspaces of a regular

pencil λE −A and a perturbed pencil λẼ − Ã = λ(E + ∆E)− (A+ ∆A) corresponding to
the finite eigenvalues have the same dimensions. If

‖(∆E,∆A)‖F <
min(Difu,Difl)√

‖Pl‖2
2 + ‖Pr‖2

2 + 2 max(‖Pl‖2, ‖Pr‖2)
=: ℘,

then

tan θmax(U , Ũ) ≤ ‖(∆E,∆A)‖F
℘‖Pr‖2 − ‖(∆E,∆A)‖F

√
‖Pr‖2

2 − 1
(6.3)

≤ ‖(∆E,∆A)‖F
‖Pr‖2 +

√
‖Pr‖2

2 − 1

℘

and

tan θmax(V , Ṽ) ≤ ‖(∆E,∆A)‖F
℘‖Pl‖2 − ‖(∆E,∆A)‖F

√
‖Pl‖2

2 − 1
(6.4)

≤ ‖(∆E,∆A)‖F
‖Pl‖2 +

√
‖Pl‖2

2 − 1

℘
.

Bounds (6.3) and (6.4) imply that for small enough ‖(∆E,∆A)‖F , the right and left

finite deflating subspaces of the perturbed pencil λẼ − Ã are small perturbations of the
corresponding right and left deflating subspaces of λE −A. Perturbation ‖(∆E,∆A)‖F is
bounded by ℘ which is small if the separations Difu and Difl are small or the norms ‖Pl‖2

and ‖Pr‖2 are large.
Thus, the quantities Difu, Difl, ‖Pl‖2 and ‖Pr‖2 can be used to characterize the condi-

tioning of the right and left finite deflating subspaces of the pencil λE − A.
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From representations (5.3) and (5.4) for the spectral projections Pr and Pl we have

‖Pr‖2 =
√

1 + ‖Y ‖2
2, ‖Pl‖2 =

√
1 + ‖Z‖2

2, (6.5)

where (Y, Z) is the solution of the generalized Sylvester equation (5.2). We see that the
norms of Y and Z also characterize the sensitivity of the deflating subspaces. It follows
from (6.2) that

‖(Y, Z)‖F ≤ Dif−1
u ‖(Eu, Au)‖F . (6.6)

This estimate gives a connection between the separation Difu and the norm of the solution
of the generalized Sylvester equation (5.2).

The perturbation analysis, condition numbers and error bounds for generalized Sylves-
ter equations are presented in [85, 88]. Consider a perturbed generalized Sylvester equation

(Ef + ∆Ef )Ỹ − Z̃(E∞ + ∆E∞) = −(Eu + ∆Eu),

(Af + ∆Af )Ỹ − Z̃(A∞ + ∆A∞) = −(Au + ∆Eu),
(6.7)

where the perturbations are measured norm-wise by

ε = max

{
‖(∆Ef ,∆Af )‖F

α
,
‖(∆E∞,∆A∞)‖F

β
,
‖(∆Eu,∆Au)‖F

γ

}
(6.8)

with α = ‖(Ef , Af )‖F , β = ‖(E∞, A∞)‖F and γ = ‖(Eu, Au)‖F . Then one has the fol-
lowing first order relative perturbation bound for the solution of the generalized Sylvester
equation (5.2).

Theorem 6.2. [85] Let the perturbations in (6.7) satisfy (6.8). Assume that both the
generalized Sylvester equations (5.2) and (6.7) are uniquely solvable. Then

‖(Ỹ , Z̃)− (Y, Z)‖F
‖(Y, Z)‖F

≤
√

3 ε
‖S−1MS‖2

‖(Y, Z)‖F
, (6.9)

where the matrix MS of size 2nfn∞ × 2(nn∞ + n2
f ) has the form MS = diag(BS, BS) with

BS = [α(Y T ⊗ Inf ), −β(In∞ ⊗ Z), γInfn∞ ].

The number

κst =
‖S−1MS‖2

‖(Y, Z)‖F
is called the structured condition number for the generalized Sylvester equation (5.2).
Bound (6.9) shows that the relative error in the solution of the perturbed equation (6.7)
is small if κst is not too large, i.e., if the problem is well-conditioned.

From (6.9) we obtain another relative error bound

‖(Ỹ , Z̃)− (Y, Z)‖F
‖(Y, Z)‖F

≤
√

3 εDif−1
u

(α + β) ‖(Y, Z)‖F + γ

‖(Y, Z)‖F
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that, in general, is worse than (6.9), since it does not take account of the special structure
of perturbations in the generalized Sylvester equation (6.7).

We define the condition number for the generalized Sylvester equation (5.2) induced by
the Frobenius norm as

κ :=
(
‖(Ef , Af )‖2

F + ‖(E∞, A∞)‖2
F

)1/2

Dif−1
u .

Applying the standard linear system perturbation analysis [64] to (6.2) we obtain the
following relative perturbation bounds.

Theorem 6.3. [88] Suppose that the generalized Sylvester equation (5.2) has a unique
solution (Y, Z). Let the perturbations in (6.7) satisfy (6.8). If εκ < 1, then the perturbed

generalized Sylvester equation (6.7) has a unique solution (Ỹ , Z̃) and

‖(Ỹ , Z̃)− (Y, Z)‖F
‖(Y, Z)‖F

≤ ε (κ‖(Y, Z)‖F + ‖(Eu, Au)‖F )

(1− ε κ)‖(Y, Z)‖F
≤ 2 ε κ

1− ε κ
. (6.10)

Note that both the bounds in (6.10) may overestimate the true relative error in the
solution, since they do not take into account the structured perturbations in the matrix S.
Nevertheless, quantities Dif−1

u and κ are used in practice to characterize the conditioning
of the generalized Sylvester equation (5.2).

The computation of Difu = σmin(S) is expensive even for modest nf and n∞, since the
cost of computing the smallest singular value of the matrix S is O(n3

fn
3
∞) flops. It is more

practical to compute lower bounds for Dif−1
u , see [87, 88] for details. The Frobenius norm

based Dif−1
u -estimator can be computed by solving one generalized Sylvester equation in

triangular form and costs (2n2
fn∞ + 2nfn

2
∞) flops. The one-norm based estimator is a

factor 3 to 10 times more expensive and it does not differ more than a factor
√

2nfn∞
from Dif−1

u [87]. The computation of both these Dif−1
u -estimators is implemented in the

LAPACK subroutine TGSEN [1].

6.2 Condition numbers for regular generalized

Lyapunov equations

The perturbation theory and some useful condition numbers for the standard Lyapunov
equations were presented in [50, 61, 74, 75], see also the references therein. The case of
generalized Lyapunov equations with nonsingular E was considered in [96, 97, 113]. In this
subsection we review some results from there.

Consider the regular GCALE (4.9). Let Lc be a continuous-time Lyapunov operator
as in (4.10). The norm of Lc induced by the Frobenius matrix norm is computed via

‖Lc‖F := sup
‖X‖F=1

‖E∗XA+ A∗XE‖F = ‖Lc‖2,
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where Lc is as in (4.13). Analogously to the Sylvester equation, an important quantity in
the sensitivity analysis for Lyapunov equations is the separation defined for the GCALE
(4.9) by

Sepc(E,A) := inf
‖X‖F=1

‖E∗XA+ A∗XE‖F = σmin(Lc),

where σmin(Lc) is the smallest singular value of Lc, see [55]. If the GCALE (4.9) is regular,
then the Lyapunov operator Lc is invertible and the matrix Lc is nonsingular. The norm
of the inverse L−1

c induced by the Frobenius norm can be computed as

‖L−1
c ‖F = ‖L−1

c ‖2 = Sep−1
c (E,A).

Consider a perturbed GCALE

(E + ∆E)∗X̃(A+ ∆A) + (A+ ∆A)∗X̃(E + ∆E) = −(G+ ∆G), (6.11)

where

‖∆E‖F ≤ εF , ‖∆A‖F ≤ εF , ‖∆G‖F ≤ εF , (∆G)∗ = ∆G. (6.12)

Using the equivalent formulation (4.12) for the GCALE (4.9) we have the following per-
turbation estimate for the solution of (4.9) in the real case, see [97] for the complex case.

Theorem 6.4. [97] Let E, A, G ∈ Rn,n and let G be symmetric. Assume that the GCALE
(4.9) is regular. Let the absolute perturbations in the GCALE (6.11) satisfy (6.12). If

εF
(
lc,E + lc,A + 2εFSep−1

c (E,A)
)
< 1,

then the perturbed GCALE (6.11) is regular and the norm-wise absolute perturbation bound

‖X̃ −X‖F ≤
√

3 εF‖L−1
c Mc‖2 + 2ε2

FSep−1
c (E,A)‖X‖2

1− εF
(
lc,E + lc,A + 2εFSep−1

c (E,A)
) (6.13)

holds, where

Mc =
[

(In2 + Πn2)
(
In ⊗ (ATX)

)
, (In2 + Πn2)

(
In ⊗ (ETX)

)
, In2

]
,

lc,E =
∥∥L−1

c (In2 + Πn2)
(
In ⊗ AT

)∥∥
2
,

lc,A =
∥∥L−1

c (In2 + Πn2)
(
In ⊗ ET

)∥∥
2
.

The number

κc,st(E,A) =
‖L−1

c Mc‖2

‖X‖F
is called the structured condition number for the GCALE (4.9). Bound (6.13) shows that if
κc,st(E,A), Sep−1

c (E,A), lc,E and lc,A are not too large, then the solution of the perturbed
GCALE (6.11) is a small perturbation of the solution of (4.9). Note that bound (6.13) is
asymptotically sharp [97].
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We define the condition number for the GCALE (4.9) induced by the Frobenius norm
as

κc,F (E,A) := 2‖E‖2‖A‖2Sep−1
c (E,A). (6.14)

This condition number allows to obtain relative perturbation bounds for the solution of
the GCALE (4.9).

Corollary 6.5. Suppose that the GCALE (4.9) is regular. Let the perturbations in (6.11)
satisfy ‖∆E‖2 ≤ ε‖E‖2, ‖∆A‖2 ≤ ε‖A‖2 and ‖∆G‖2 ≤ ε‖G‖2. If ε (2 + ε)κc,F (E,A) < 1,
then the perturbed GCALE (6.11) is regular and

‖X̃ −X‖F
‖X‖F

≤ (2ε+ ε2)κc,F (E,A)‖X‖F + ε‖G‖2Sep−1
c (E,A)

(1− ε(2 + ε)κc,F (E,A) )‖X‖F

≤ ε(3 + ε)κc,F (E,A)

1− ε(2 + ε)κc,F (E,A)
.

(6.15)

Proof. The result immediately follows from Theorem 6.4.

It should be noted that bounds (6.15) may overestimate the true relative error, since
they do not take account of the specific structure of perturbations in (6.11). In the case of
symmetric perturbations in G, sharp sensitivity estimates for general Lyapunov operators
can be derived by using so-called Lyapunov singular values instead of standard singular
values, see [96, 97] for details. Note that for the Lyapunov operator Lc as in (4.10), the
Lyapunov singular values are equal to the standard singular values.

Let X̂ be an approximate solution of the GCALE (4.9) and let

Rc := E∗X̂A+ A∗X̂E +G (6.16)

be a residual of (4.9) corresponding to X̂. Then from Corollary 6.5 we obtain the following
forward error bound

‖X̂ −X‖F
‖X‖F

≤ κc,F (E,A) ‖Rc‖F
2‖E‖2‖A‖2‖X‖F

=: Estc,F . (6.17)

This bound shows that for well-conditioned problems, a small relative residual implies
a small error in the approximate solution X̂. However, if the condition number κc,F (E,A)

is large, then X̂ may be inaccurate even for a small residual.
It follows from bounds (6.15) and (6.17) that κc,F (E,A) and Sepc(E,A) = σmin(Lc) can

be used as a measure of the sensitivity of the solution of the regular GCALE (4.9). Since
computing the smallest singular value of the (n2×n2)-matrix Lc is not acceptable even for
modest n, it is more practical to compute estimates for Sep−1

c (E,A). A Sep−1
c -estimator

based on the one-norm differs from Sep−1
c (E,A) at most by a factor n. Computing this

estimator is implemented in the LAPACK subroutine LACON [1] and costs O(n3) flops.
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Unfortunately, if the matrix E is singular, then Sepc(E,A) = 0 and κc,F (E,A) = ∞.
In this case we cannot use (6.14) as the condition number for the projected GCALE (4.36).

Consider now the regular GDALE (4.43). Let Ld be a discrete-time Lyapunov operator
given in (4.46). Analogous to the continuous-time case, the separation for the GDALE
(4.43) is defined by

Sepd(E,A) := inf
‖X‖F=1

‖A∗XA− E∗XE‖F = σmin(Ld),

where the matrix Ld is as in (4.46). If the GDALE (4.43) is regular, then Ld is invertible
and the matrix Ld is nonsingular. In this case we obtain that

‖L−1
d ‖F = ‖L−1

d ‖2 = Sep−1
d (E,A).

There is a discrete-time analogue of Theorem 6.4 for the perturbed GDALE

(A+ ∆A)∗X̃(A+ ∆A)− (E + ∆E)∗X̃(E + ∆E) = −(G+ ∆G). (6.18)

Theorem 6.6. [97] Let E, A, G ∈ Rn,n and let G be symmetric. Suppose that the GDALE
(4.43) is regular. Let the absolute perturbations in (6.18) satisfy (6.12). If

εF
(
ld,E + ld,A + 2εFSep−1

d (E,A)
)
< 1,

then the perturbed GDALE (6.18) is regular and

‖X̃ −X‖F ≤
√

3εF‖L−1
d Md‖2 + 2ε2

FSep−1
d (E,A)‖X‖2

1− εF
(
ld,E + ld,A + 2εFSep−1

d (E,A)
) , (6.19)

holds, where

Md =
[
−(In2 + Πn2)

(
In ⊗ (ETX)

)
, (In2 + Πn2)

(
In ⊗ (ATX)

)
, In2

]
,

ld,E =
∥∥L−1

d (In2 + Πn2)
(
In ⊗ ET

)∥∥
2

ld,A =
∥∥L−1

d (In2 + Πn2)
(
In ⊗ AT

)∥∥
2
.

The number

κd,st =
‖L−1

d Md‖2

‖X‖F
is called the structured condition number for the regular GDALE (4.43).

Similar to the continuous-time case, we define the condition number for the GDALE
(4.43) induced by the Frobenius norm as

κd,F (E,A) :=
(
‖E‖2

2 + ‖A‖2
2

)
Sep−1

d (E,A). (6.20)

From Theorem 6.6 we obtain the following relative perturbation bounds for the solution
of the GDALE (4.43).
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Corollary 6.7. Let the GDALE (4.43) be regular. Suppose that the perturbations in (6.18)
satisfy ‖∆E‖2 ≤ ε‖E‖2, ‖∆A‖2 ≤ ε‖A‖2 and ‖∆G‖2 ≤ ε‖G‖2. If ε(2 + ε)κd,F (E,A) < 1,
then the perturbed GDALE (6.18) is regular and

‖X̃ −X‖F
‖X‖F

≤ (2ε+ ε2)κd,F (E,A) + εSep−1
d (E,A)‖G‖2

(1− ε(2 + ε)κd,F (E,A))‖X‖F

≤ ε(3 + ε)κd,F (E,A)

1− ε(2 + ε)κd,F (E,A)
.

(6.21)

Let X̂ be an approximate solution of the GDALE (4.43). A residual of (4.43) corre-
sponding to X̂ is defined by

Rd := A∗X̂A− E∗X̂E +G. (6.22)

By Corollary 6.7 we have the following forward error estimate

‖X̂ −X‖F
‖X‖F

≤ κd,F (E,A) ‖Rd‖F
(‖E‖2

2 + ‖A‖2
2)‖X‖F

=: Estd,F .

This bound shows that if the GDALE (4.43) is well-conditioned and if the relative residual
is small, then the error in the approximate solution X̂ is also small. However, for ill-
conditioned problems, X̂ may be inaccurate even if the residual is small.

Thus, Sepd(E,A) and κd,F (E,A) can be used to measure the sensitivity of the solution
of the regular GDALE (4.43) to perturbations in the data. However, in the case when both
the matrices E and A are singular we obtain that Sep−1

d (E,A) =∞. Thus, it is impossible
to use κd,F (E,A) as the condition number for the projected GDALE (4.64).

In [50, 61, 74] condition numbers based on the spectral norm have been used as a mea-
sure of sensitivity of the standard continuous-time and discrete-time Lyapunov equations.
In the following subsections we extend this idea to the projected GCALE (4.36) and the
projected GDALE (4.64).

6.3 Conditioning of the projected GCALE

Assume that the pencil λE−A is c-stable. Consider the matrix Hc as in (3.16). Using the
Parseval identity [135], we obtain the integral representation

Hc =
1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗r Pr(iωE − A)−1dω. (6.23)

Consider a linear operator L−c : Fn,n → F
n,n defined as follows: for a matrix G, the

image X = −L−c (G) is the unique solution of the projected GCALE (4.36). Note that
the operator L−c is a (2)-pseudoinverse [32] of the Lyapunov operator Lc, since it satisfies
L−c LcL−c = L−c .
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Lemma 6.8. Let λE − A be c-stable. Then ‖L−c ‖2 = ‖Hc‖2.

Proof. Let u and v be the left and right singular vectors of unit length corresponding to the
largest singular value of the solution X of the projected GCALE (4.36) with some matrix
G. Then

‖L−c (G)‖2 = ‖X‖2 = u∗Xv =
1

2π

∫ ∞
−∞

u∗(iωE − A)−∗P ∗rGPr(iωE − A)−1v dω

≤ 1

2π
‖G‖2

∫ ∞
−∞

∥∥Pr(iωE − A)−1u
∥∥

2

∥∥Pr(iωE − A)−1v
∥∥

2
dω.

Using the Cauchy-Schwarz inequality [90] and (6.23) we obtain

‖L−c (G)‖2 ≤
1

2π
‖G‖2

 ∞∫
−∞

∥∥Pr(iωE − A)−1u
∥∥2

2
dω

 1
2
 ∞∫
−∞

∥∥Pr(iωE − A)−1v
∥∥2

2
dω

 1
2

≤ ‖G‖2

∥∥∥∥ 1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗r Pr(iωE − A)−1 dω

∥∥∥∥
2

= ‖G‖2‖Hc‖2.

Hence, ‖L−c ‖2 ≤ ‖Hc‖2.
On the other hand, we have

‖L−c ‖2 = sup
‖G‖2=1

‖L−c (−G)‖2 ≥ ‖L−c (−I)‖2 = ‖Hc‖2.

Thus, ‖L−c ‖2 = ‖Hc‖2.

If E is nonsingular, then L−c = L−1
c is the inverse of the Lyapunov operator Lc and

‖L−1
c ‖2 = ‖Hc‖2.
By Corollary 4.15 the matrix Hc is the unique Hermitian, positive semidefinite solution

of the projected GCALE

E∗HcA+ A∗HcE = −P ∗r Pr, Hc = HcPl. (6.24)

We define the spectral condition number for the projected GCALE (4.36) as

κc,2(E,A) := 2‖E‖2‖A‖2‖Hc‖2.

In Section 3.1.2 we have seen that the parameter κc,2(E,A) is closely related to the analysis
of the asymptotic behavior of solutions of the continuous-time singular system (3.13). Here
we will show that κc,2(E,A) can also be used to estimate the distance from the finite
eigenvalues of a c-stable pencil λE − A to the imaginary axis as well as to measure the
sensitivity of the solution of the projected GCALE (4.36).

Theorem 6.9. Let λE −A be a c-stable pencil. Then all finite eigenvalues of λE −A lie
in the closed half-plane{

z ∈ C : <e(z) ≤ − ‖A‖2

‖E‖2κc,2(E,A)

}
.
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Moreover, for all ω ∈ R, the estimate

‖Pr(iωE − A)−1‖2 ≤
5πκc,2(E,A)

2‖A‖2

(6.25)

holds.

Proof. Let λ0 be a finite eigenvalues of the pencil λE−A and v ∈ ImPr be an eigenvector
corresponding to λ0. Then from the projected GCALE (6.24) we have

−‖v‖2 = −‖Prv‖2 = v∗(E∗HcA+ A∗HcE)v = 2<e(λ0)v∗E∗HcEv.

Hence,

<e(λ0) = − ‖v‖2

2v∗E∗HcEv
≤ − 1

2‖E‖2
2‖Hc‖2

= − ‖A‖2

‖E‖2κc,2(E,A)
.

To prove (6.25), consider the integral representation (6.23) for the matrix Hc. For any
vector v of unit length we obtain that

κc,2(E,A)

2‖E‖2‖A‖2

= ‖Hc‖2 ≥
1

2π

∫ ∞
−∞
‖Pr(iωE − A)−1v‖2dω. (6.26)

Let ω0 be a point on the real line where the norm ‖Pr(iωE −A)−1‖2 achieves its maximal
value. Using the relation

Pr(iωE − A)−1E = Pr(iωE − A)−1EPr = (iωE − A)−1EPr

we obtain

Pr(iωE − A)−1 = Pr(iω0E − A)−1 − i(ω − ω0)Pr(iωE − A)−1EPr(iω0E − A)−1.

Then we have the estimate

‖Pr(iωE − A)−1‖2 ≤
‖Pr(iω0E − A)−1‖2

1− |ω − ω0|‖E‖2‖Pr(iω0E − A)−1‖2

which is valid for all ω such that |ω − ω0|‖E‖2‖Pr(iω0E − A)−1‖2 < 1. Furthermore,
choosing a vector v such that ‖Pr(iω0E − A)−1v‖ = ‖Pr(iω0E − A)−1‖2, we obtain that

‖Pr(iωE − A)−1v‖ ≥ ‖Pr(iω0E − A)−1v‖ (1− |ω − ω0|‖E‖2‖Pr(iωE − A)−1‖2)

≥ ‖Pr(iω0E − A)−1‖2
1− 2|ω − ω0|‖E‖2‖Pr(iω0E − A)−1‖2

1− |ω − ω0|‖E‖2‖Pr(iω0E − A)−1‖2

.

Setting τ = ‖E‖2‖Pr(iω0E − A)−1‖2, we get from (6.26) that

π‖E‖2κc,2(E,A)

‖A‖2

≥

ω0+ 1
2τ∫

ω0− 1
2τ

τ 2

(
1− 2|ω − ω0|τ
1− |ω − ω0|τ

)2

dω

= 2τ

∫ 1/2

0

(
1− 2t

1− t

)2

dt = 2τ(3− 4 ln 2) ≥ 2τ

5
.

Therefore, (6.25) holds.
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Bound (6.25) implies that the finite eigenvalues of the c-stable pencil λE − A are
separated from the imaginary axis by a distance not less than 2‖A‖2/(5πκc,2(E,A)). In
other words, (6.25) yields a lower bound for perturbations which preserve the dimension of
the finite deflating subspace of λE−A and cause the pencil to obtain a finite eigenvalue on
the imaginary axis. Thus, the parameter κc,2(E,A) characterizes the absence of eigenvalues
of the pencil λE − A not only on the imaginary axis but in a neighbourhood of it. This
result generalizes the matrix case (E = I), see [22, 23, 62], for matrix pencils.

To measure the smallest real (complex) perturbation to a stable matrix required to make
the perturbed matrix unstable, the real (complex) stability radius can be used [77, 163].
For numerical methods for the computation of the stability radius see, e.g., [26, 73, 130]
and the references therein. Unfortunately, these results are not immediately applicable to
matrix pencils. The general problem to measure or estimate the distance to instability for
the pencil, i.e., the distance from the given pencil to the ”nearest” pencil that is singular or
has an eigenvalue in the closed right half-plane, is more difficult. Only partial solutions are
known. A lower bound for the stability radius for the pencil λE−A, allowing perturbations
in A only, is given in [131]. A computable expression for the stability radius for the regular
pencil of index less than or equal to one is studied in [28]. Computationally attractive
upper and lower bounds for smallest norm de-regularizing perturbation are discussed in
[27].

Consider now a perturbed pencil λẼ−Ã = λ(E+∆E)−(A+∆A) with ‖∆E‖2 ≤ ε‖E‖2

and ‖∆A‖2 ≤ ε‖A‖2. Assume that the dimension of the right and left deflating subspaces
of λE − A corresponding to the infinite eigenvalues is not changed under perturbations.
In many practical applications this is justified [28]. Consider, for example, semi-explicit
differential-algebraic equations

ẋ1(t) = A11x1(t) + A12x2(t) +B1u(t), (6.27)

0 = A21x1(t) + A22x2(t) +B2u(t). (6.28)

Equation (6.27) describes the dynamic behavior of the system, while equation (6.28) gives
algebraic constraints on the states. Obviously, it is unreasonable to consider perturbations
which cause the algebraic constraints to become differential.

Note that in the study of asymptotic stability for the differential-algebraic equation
(3.13) it is allowed for the index of the pencil λE −A to be changed under perturbations.
It is important only that finite eigenvalues stay finite and infinite eigenvalues must stay
infinite. However, the perturbation analysis in this case is very complicated. We will deal
only with perturbations which preserve the nilpotency structure of the pencil λE−A, i.e.,
the right and left infinite deflating subspaces of λE − A are not changed. This condition
can be written as

kerPr = ker P̃r, kerPl = ker P̃l, (6.29)

where P̃r and P̃l are the spectral projections onto the right and left finite deflating subspaces
of the perturbed pencil λẼ−Ã. Moreover, we will assume for such allowable perturbations
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that we have an error bound ‖P̃r − Pr‖2 ≤ εK with some constant K (for such estimate
for the pencil λE − A of index one, see [148]). This estimate implies that the right finite

deflating subspace of the perturbed pencil λẼ − Ã is close to the right finite deflating
subspace of λE − A.

Consider now the perturbed projected GCALE

Ẽ∗X̃Ã+ Ã∗X̃Ẽ = −P̃ ∗r G̃P̃r, X̃ = X̃P̃l. (6.30)

The following theorem gives a relative error bound for the solution of (4.36).

Theorem 6.10. Let λE − A be a c-stable pencil and let X satisfy the projected GCALE
(4.36). Consider a perturbed pencil λẼ−Ã = λ(E+∆E)−(A+∆A) with ‖∆E‖2 ≤ ε‖E‖2

and ‖∆A‖2 ≤ ε‖A‖2. Assume that for the spectral projections P̃r and P̃l onto the right

and left deflating subspaces corresponding to the finite eigenvalues of λẼ − Ã, relations
(6.29) are satisfied and a bound ‖P̃r − Pr‖2 ≤ εK < 1 holds with some constant K. Let

G̃ be a perturbation of G such that ‖∆G‖2 ≤ ε‖G‖2. If ε(2 + ε)κc,2(E,A) < 1, then the

perturbed projected GCALE (6.30) has a unique solution X̃ and

‖X̃ −X‖2

‖X‖2

≤
ε

(
(εK + ‖Pr‖2)(K + ‖Pr‖2)‖G‖2 + 3‖E‖2‖A‖2‖X‖2

)
κc,2(E,A)

‖E‖2‖A‖2‖X‖2(1− ε(2 + ε)κc,2(E,A))
. (6.31)

Proof. It follows from (6.29) that

P̃rPr = P̃r, PrP̃r = Pr, P̃lPl = P̃l, PlP̃l = Pl. (6.32)

The perturbed GCALE in (6.30) can be rewritten as

E∗X̃A+ A∗X̃E = −
(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
,

where ∆Lc(X̃) = (∆E)∗X̃Ã+E∗X̃∆A+ (∆A)∗X̃E + Ã∗X̃∆E. Using (2.4) and (5.2) we
can verify that PlE = PlEPr = EPr and PlA = PlAPr = APr. Analogous relations hold
for the perturbed pencil λẼ− Ã. Then by (6.32) we obtain that X̃ = X̃Pl = X̃PlP̃l = X̃P̃l
and

X̃E = X̃PlE = X̃EPr = X̃PlEPrP̃r = X̃EP̃r,

X̃Ẽ = X̃P̃lẼ = X̃ẼP̃r = X̃P̃lẼP̃rPr = X̃ẼPr.

These relationships remain valid if we replace E by A and Ẽ by Ã. Combining these
relations we obtain

P̃ ∗r G̃P̃r + ∆Lc(X̃) = P ∗r

(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
Pr = P̃ ∗r

(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
P̃r. (6.33)

Then the perturbed projected GCALE (6.30) is equivalent to the projected GCALE

E∗X̃A+ A∗X̃E = −P ∗r
(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
Pr, X̃ = X̃Pl. (6.34)
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Since the pencil λE − A is c-stable, this equation has a unique solution given by

X̃ =
1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗r

(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
Pr(iωE − A)−1dω. (6.35)

Thus, we have an integral equation X̃ = I(X̃) for the unknown matrix X̃, where

I(X̃) =
1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗r

(
P̃ ∗r G̃P̃r + ∆Lc(X̃)

)
Pr(iωE − A)−1dω.

From ‖∆Lc(X̃)‖2 ≤ 2(‖∆E‖2‖Ã‖2 + ‖∆A‖2‖E‖2)‖X̃‖2 ≤ 2ε(2 + ε)‖E‖2‖A‖2‖X̃‖2, we
obtain for any matrices X1 and X2, that

‖I(X1)− I(X2)‖2 =

∥∥∥∥ 1

2π

∫ ∞
−∞

(iωE − A)−∗P ∗r ∆Lc(X1 −X2)Pr(iωE − A)−1 dω

∥∥∥∥
2

≤ ‖∆Lc(X1 −X2)‖2‖Hc‖2 ≤ ε(2 + ε)κc,2(E,A)‖X1 −X2‖2.

Since ε(2+ε)κc,2(E,A) < 1, the operator I is contractive. Then by the fixed point theorem

[90] the equation X̃ = I(X̃) has a unique solution X̃ and we can estimate the error

‖X̃ −X‖2 =

∥∥∥∥∥∥ 1

2π

∞∫
−∞

(iωE − A)−∗P ∗r

(
P̃ ∗r G̃P̃r + ∆Lc(X̃)− P ∗rGPr

)
Pr(iωE − A)−1dω

∥∥∥∥∥∥
2

≤
(
‖P̃ ∗r G̃P̃r − P ∗rGPr‖2 + ‖∆Lc(X̃)‖2

)
‖Hc‖2.

Taking into account that

‖P̃ ∗r G̃P̃r − P ∗rGPr‖2 ≤ ‖P̃r − Pr‖2(‖G̃‖2‖P̃r‖2 + ‖Pr‖2‖G‖2) + ‖Pr‖2‖G̃−G‖2‖P̃r‖2

≤ ε ((εK + ‖Pr‖2)((1 + ε)K + ‖Pr‖2) + εK‖Pr‖2) ‖G‖2

≤ 2ε (εK + ‖Pr‖2 ) (K + ‖Pr‖2) ‖G‖2

and ‖∆Lc(X̃)‖2 ≤ 2ε(2+ε)‖E‖2‖A‖2(‖X‖2+‖X̃−X‖2) we obtain the relative perturbation
bound (6.31).

Bound (6.31) implies that if perturbations in (6.30) satisfy (6.29) and if κc,2(E,A), K
and ‖Pr‖2 are not too large, then the solution of the perturbed projected GCALE (6.30)
is a small perturbation of the solution of the projected GCALE (4.36).

Thus, κc,2(E,A) can be used to characterize the sensitivity of the solution of the pro-
jected GCALE (4.36) to perturbations in the input data. To compute κc,2(E,A) we need
to solve the projected GCALE (6.24). The solution Hc of this equation can be calculated
via the generalized Schur-Bartels-Stewart method or the generalized Schur-Hammarling
methods presented in Sections 5.1 and 5.2.

From Theorem 6.10 we can obtain some useful consequences.
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Corollary 6.11. Under the assumptions of Theorem 6.10 we have that if the matrix G is
Hermitian, positive definite and if

2ε
(
2(1 + 2ε)(εK + ‖Pr‖2)2 + 1

)
κc,2(E,A)‖G‖2 < λmin(G), (6.36)

where λmin(G) is the smallest eigenvalue of G, then the perturbed pencil λẼ− Ã is c-stable
and the following relative perturbation bound

|κc,2(Ẽ, Ã)− κc,2(E,A)|
κc,2(E,A)

≤ 3ε (K(K + 2‖Pr‖2) + κc,2(E,A) + 1)

1− ε(2 + ε)κc,2(E,A)
(6.37)

holds.

Proof. First we will show that the matrix P̃ ∗r G̃P̃r + ∆Lc(X̃) is positive definite on the
subspace ImPr. For all nonzero v ∈ ImPr, we have

( (P̃ ∗r G̃P̃r + ∆Lc(X̃))v, v ) = ( (P̃ ∗r (G+ ∆G)P̃r + P̃ ∗r ∆Lc(X̃)P̃r)v, v )

≥
(
λmin(G)− ‖∆Lc(X̃)‖2 − ‖∆G‖2

)
‖P̃rv‖2.

(6.38)

It follows from (6.35) that

‖X̃‖2 ≤
‖P̃r‖2

2‖G̃‖2‖Hc‖2

1− ε(2 + ε)κc,2(E,A)
≤ (1 + ε)(εK + ‖Pr‖2)2‖G‖2‖Hc‖2

1− ε(2 + ε)κc,2(E,A)
. (6.39)

Then taking into account estimate (6.36) we get

‖∆Lc(X̃)‖2 + ‖∆G‖2 ≤
ε (2(1 + 2ε)(εK + ‖Pr‖2)2 + 1)κc,2(E,A)‖G‖2

1− ε(2 + ε)κc,2(E,A)
< λmin(G).

Since P̃rv 6= 0, we have from (6.38) that ( (P̃ ∗r G̃P̃r + ∆Lc(X̃))v, v ) > 0 for all nonzero

v ∈ ImPr, i.e., the matrix P̃ ∗r G̃P̃r + ∆Lc(X̃) is positive definite on the subspace imPr.

Hence, by Corollary 4.15 the solution X̃ of the projected GCALE (6.34) is positive semidef-

inite. Moreover, (6.36) yields that the matrix G̃ is positive definite. Applying now Corol-

lary 4.14 to the perturbed projected GCALE (6.30) we obtain that the pencil λẼ − Ã is
c-stable.

From the proof of Theorem 6.10 with G̃ = G = I it follows that

‖H̃c −Hc‖2 ≤
ε (K(εK + 2‖Pr‖2) + (2 + ε)κc,2(E,A)) ‖Hc‖2

1− ε(2 + ε)κc,2(E,A)
,

where H̃c is the solution of the perturbed projected GCALE (6.30) with G̃ = I. Then

|κc,2(Ẽ, Ã) − κc,2(E,A)| = 2
∣∣∣ ‖Ẽ‖2‖Ã‖2‖H̃c‖2 − ‖E‖2‖A‖2‖Hc‖2

∣∣∣
≤ 2

(
‖Ẽ‖2‖Ã‖2‖H̃c −Hc‖2 + ‖Ẽ − E‖‖Ã‖2‖Hc‖2 + ‖E‖2‖Ã− A‖2‖Hc‖2

)
≤ 3εκc,2(E,A) (K(K + 2‖Pr‖2) + κc,2(E,A) + 1)

1− ε(2 + ε)κc,2(E,A)
.
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Furthermore, from the proof of Theorem 6.10 for P̃r = Pr = I we obtain the following
perturbation bound for the solution of the regular GCALE (4.9).

Corollary 6.12. Consider the GCALE (4.9), where the pencil λE−A is c-stable and the
matrix E is nonsingular. Assume that perturbations in (6.11) satisfy ‖∆E‖2 ≤ ε‖E‖2,
‖∆A‖2 ≤ ε‖A‖2 and ‖∆G‖2 ≤ ε‖G‖2. If ε (2 + ε)κc,2(E,A) < 1, then the perturbed

GCALE (6.11) has a solution X̃ and the relative error bound

‖X̃ −X‖2

‖X‖2

≤ ε(3 + ε)κc,2(E,A)

1− ε(2 + ε)κc,2(E,A)
(6.40)

holds.

Note that bound (6.40) can also be obtained by applying the linear operator perturba-
tion theory [91] to the regular GCALE (4.9) in the operator form Lc(X) = −G.

If X̂ is an approximate solution of the GCALE (4.9) and if Rc is a residual given by
(6.16), then from Corollary 6.12 with ∆E = 0, ∆A = 0 and ∆G = Rc we obtain the
following forward error bound

‖X̂ −X‖2

‖X‖2

≤ κc,2(E,A) ‖Rc‖2

2‖E‖2‖A‖2‖X‖2

=: Estc,2. (6.41)

Bounds (6.40) and (6.41) show that κc,2(E,A) just as κc,F (E,A) may also be used to
measure the sensitivity of the solution of the regular GCALE (4.9). From the relationship

1√
n
‖L−1

c ‖2 ≤ ‖L−1
c ‖F ≤

√
n‖L−1

c ‖2

we obtain that the Frobenius norm based condition number κc,F (E,A) does not differ more
than a factor

√
n from the spectral condition number κc,2(E,A). Thus, κc,2(E,A) may be

used as an estimator of κc,F (E,A). Note that to compute Sep−1
c -estimators we need to solve

approximately five generalized Lyapunov equations of the form E∗XA+A∗XE = −G and
EXA∗+AXE∗ = −G, see [1, 75], whereas the computation of ‖Hc‖2 requires solving only
one additional generalized Lyapunov equation E∗XA+ A∗XE = −I.

6.4 Conditioning of the projected GDALE

In this subsection we present the perturbation theory for the projected GDALE

A∗XA− E∗XE = −P ∗rGPr + (I − Pr)∗G(I − Pr),
P ∗l X = XPl.

(6.42)

All results are based on the approach developed in [112, 113].
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Assume that the pencil λE − A is d-stable. We define a spectral condition number for
the projected GDALE (6.42) as

κd,2(E,A) := (‖E‖2
2 + ‖A‖2

2)‖Hd‖2, (6.43)

where Hd is the positive definite matrix as in (3.32). Using (4.80), we obtain from the
Parseval identity [135] that

Hd =
1

2π

∫ 2π

0

(eiϕE − A)−∗
(
P ∗r Pr + (I − Pr)∗(I − Pr)

)
(eiϕE − A)−1dϕ. (6.44)

Then by Theorem 4.39 we have that Hd is the unique Hermitian, positive definite solution
of the projected GDALE

A∗HdA− E∗HdE = −P ∗r Pr + (I − Pr)∗(I − Pr),
P ∗l Hd = HdPl.

(6.45)

As we have seen in Section 3.2.2, the parameter κd,2(E,A) characterizes the asymptotic
stability of the singular difference equation (3.29). Here we will show that κd,2(E,A) can
also be used to estimate the distance from the finite eigenvalues of a d-stable pencil λE−A
to the unite circle and to measure the sensitivity of the solution of the projected GDALE
(6.42).

Set
Θ := max

0≤ϕ≤2π
‖(eiϕE − A)−1‖2.

Clearly, if the pencil λE−A is d-stable, then Θ <∞. However, the boundedness of Θ does
not imply that λE−A is d-stable. The following lemma gives lower and upper bounds for
Θ by means of κd,2(E,A).

Theorem 6.13. Assume that the pencil λE−A is d-stable. Then all finite eigenvalues of
λE − A lie in the closed disk{

z ∈ C : |z| ≤ κd,2(E,A)− 1

κd,2(E,A)

}
.

Moreover, √
κd,2(E,A)

‖Pr‖2

√
2(‖E‖2

2 + ‖A‖2
2)
≤ Θ ≤ 10π‖E‖2κd,2(E,A)

‖E‖2
2 + ‖A‖2

2

. (6.46)

Proof. Let λ0 be a finite eigenvalue of the pencil λE−A and let v ∈ ImPr be an eigenvector
corresponding to λ0. Then from the projected GDALE (6.45) we obtain that

−‖v‖2 = −‖Prv‖2 = v∗(A∗HdA− E∗HdE)v = (|λ0| − 1)v∗E∗HdEv,

and, hence,

|λ0| = 1− ‖v‖2

v∗E∗HdEv
≤ 1− 1

κd,2(E,A)
=
κd,2(E,A)− 1

κd,2(E,A)
.
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The first estimate in (6.46) immediately follows from the inequalities

κd,2(E,A) ≤ 1

2π
(‖E‖2

2 + ‖A‖2
2)(‖Pr‖2

2 + ‖I − Pr‖2
2)

∫ 2π

0

‖(eiϕE − A)−1‖2
2dϕ

≤ 2(‖E‖2
2 + ‖A‖2

2)‖Pr‖2
2Θ2.

On the other hand, we have

κd,2(E,A)

‖E‖2
2 + ‖A‖2

2

= ‖Hd‖2 = max
‖v‖=1

(Hdv, v)

≥ 1

2π

∫ 2π

0

v∗(eiϕE − A)−∗
(
P ∗r Pr + (I − Pr)∗(I − Pr)

)
(eiϕE − A)−1v dϕ

=
1

2π

∫ 2π

0

(
‖Pr(eiϕE − A)−1v‖2 + ‖(I − Pr)(eiϕE − A)−1v‖2

)
dϕ

≥ 1

4π

∫ 2π

0

‖(eiϕE − A)−1v‖2dϕ.

Let 0 ≤ ϕ0 ≤ 2π be a point where the norm ‖(eiϕE − A)−1‖2 achieves its maximal value.
It follows from the generalized resolvent equation (2.5) with λ = eiϕ and µ = eiϕ0 that the
estimate

‖(eiϕE − A)−1‖2 ≤
‖(eiϕ0E − A)−1‖2

1− |ϕ− ϕ0|‖E‖2‖(eiϕ0E − A)−1‖2

holds for all ϕ0 such that |ϕ − ϕ0|‖E‖2‖(eiϕ0E − A)−1‖2 < 1. Let v be the right singular
vector of unit length corresponding to the largest singular value of the matrix (eiϕ0E−A)−1.
Then ‖(eiϕ0E − A)−1v‖ = ‖(eiϕ0E − A)−1‖2 and

‖(eiϕE − A)−1v‖ ≥ ‖(eiϕ0E − A)−1v‖(1− |ϕ− ϕ0|‖E‖2‖(eiϕE − A)−1‖2)

≥ ‖(eiϕ0E − A)−1‖2
1− 2|ϕ− ϕ0|‖E‖2‖(eiϕ0E − A)−1‖2

1− |ϕ− ϕ0|‖E‖2‖(eiϕ0E − A)−1‖2

.

Hence, for ψ = ‖E‖2‖(eiϕ0E − A)−1‖2, we have

4π‖E‖2
2κd,2(E,A)

‖E‖2
2 + ‖A‖2

2

≥

ϕ0+ 1
2ψ∫

ϕ0− 1
2ψ

ψ2

(
1− 2|ϕ− ϕ0|ψ
1− |ϕ− ϕ0|ψ

)2

dϕ = 2ψ(3− 4 ln 2) ≥ 2ψ

5
.

Thus, the upper bound in (6.46) holds.

The second estimate in (6.46) shows that the eigenvalues of the d-stable pencil λE−A
are separated from the unit circle by a distance not less than (‖E‖2+‖A‖2)/(10πκd,2(E,A)).
Thus, the parameter κd,2(E,A) characterizes the absence of eigenvalues of λE −A on the
unite circle as well as in a neighbourhood of it.
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Consider now a perturbed projected GDALE

Ã∗X̃Ã− Ẽ∗X̃Ẽ = −P̃ ∗r G̃P̃r + (I − P̃r)∗G̃(I − P̃r),
P̃ ∗l X̃ = X̃P̃l,

(6.47)

where P̃r and P̃l are the spectral projections onto the right and left finite deflating subspaces
of the perturbed pencil λẼ − Ã = λ(E + ∆E)− (A+ ∆A). Note that small perturbations
in E and A can make the infinite eigenvalues of the pencil λE − A to be finite.

In this case the perturbation analysis for the projected GDALE (6.42) becomes difficult.
In the sequel we will consider only perturbations that do not change the dimension of the
deflating subspaces of λE−A corresponding to the finite eigenvalues. The following lemma
gives an error bound for the spectral projection Pr.

Lemma 6.14. Let λE−A be a d-stable pencil and let λẼ− Ã be a perturbation of λE−A
such that ‖Ẽ − E‖2 ≤ ε‖E‖2 and ‖Ã − A‖2 ≤ ε‖A‖2. Assume that the finite deflating

subspaces of λE − A and λẼ − Ã have the same dimension. If

20πεκd,2(E,A)
(

30πκd,2(E,A) + 1
)
< 1, (6.48)

then the pencil λẼ − Ã is d-stable and we have the following estimate

‖P̃r − Pr‖2 ≤ 20πεκd,2(E,A)
(

30πκd,2(E,A) + 1
)
. (6.49)

Proof. It follows from the generalized resolvent equation (2.5) that

(eiϕẼ − Ã)−1 = (eiϕE − A)−1 − (eiϕE − A)−1
(
eiϕ(Ẽ − E)− (Ã− A)

)
(eiϕẼ − Ã)−1.

(6.50)

Using (6.46) we get

‖(eiϕẼ − Ã)−1‖2 ≤
‖(eiϕE − A)−1‖2

1− ε(‖E‖2 + ‖A‖2)‖(eiϕE − A)−1‖2

≤ 10π‖E‖2κd,2(E,A)

(1− 20πεκd,2(E,A))(‖E‖2
2 + ‖A‖2

2)
.

(6.51)

Thus, if λE − A is d-stable and 20πεκd,2(E,A) < 1, then the pencil λẼ − Ã has no
eigenvalues on the unit circle.

By Lemma 2.6 the spectral projection Pr onto the right finite deflating subspace of the
d-stable pencil has the form

Pr =
1

2π

∫ 2π

0

eiϕ(eiϕE − A)−1E dϕ,
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and the spectral projection onto the right deflating subspace of the pencil λẼ − Ã corres-
ponding to the eigenvalues inside the unit circle is given by

P̃ =
1

2π

∫ 2π

0

eiϕ(eiϕẼ − Ã)−1Ẽ dϕ.

From (6.46) and (6.50) we have

‖(eiϕẼ − Ã)−1 − (eiϕE − A)−1‖2 ≤
ε‖(eiϕE − A)−1‖2

2(‖E‖2 + ‖A‖2)

1− ε(‖E‖2 + ‖A‖2)‖(eiϕE − A)−1‖2

≤ 2ε(10πκd,2(E,A))2

(1− 20πεκd,2(E,A))‖E‖2

.

(6.52)

Therefore,

‖P̃ − Pr‖2 =

∥∥∥∥ 1

2π

∫ 2π

0

eiϕ
(

(eiϕẼ − Ã)−1Ẽ − (eiϕE − A)−1E
)
dϕ

∥∥∥∥
2

≤ 1

2π

∫ 2π

0

(
‖(eiϕẼ − Ã)−1 − (eiϕE − A)−1‖2‖Ẽ‖2 + ε‖(eiϕE − A)−1‖2‖E‖2

)
dϕ

≤ 10πεκd,2(E,A) (30πκd,2(E,A) + 1)

1− 20πεκd,2(E,A)
.

It follows from estimate (6.48) that ‖P̃ − Pr‖2 < 1, and, hence, ImPr and Im P̃ have

the same dimension. In this case P̃ = P̃r is the spectral projection onto the right finite
deflating subspace of λẼ − Ã. Thus, λẼ − Ã is d-stable and bound (6.49) holds.

The following theorem gives a relative error bound for the solution of the projected
GDALE (6.42).

Theorem 6.15. Let λE − A be a d-stable pencil and let X be a solution of the projected
GDALE (6.42). Let perturbations in (6.47) satisfy ‖Ẽ−E‖2 ≤ ε‖E‖2, ‖Ã−A‖2 ≤ ε‖A‖2

and ‖G̃−G‖2 ≤ ε‖G‖2. Assume that the right and left finite deflating subspaces of λE−A
and λẼ−Ã have the same dimension. If (6.48) is fulfilled, then then the perturbed projected

GDALE (6.47) has a unique solution X̃ and an error bound

‖X̃ −X‖2 ≤
εκd,2(E,A)(80πκd,2(E,A) + 1)(60πκd,2(E,A)(1 + 2‖Pr‖2) + ‖Pr‖2

2)‖G‖2

(1− 20πεκd,2(E,A))2(‖E‖2
2 + ‖A‖2

2)
(6.53)

holds.

Proof. It follows from Lemma 6.14 that the perturbed pencil λẼ − Ã is d-stable. Then by
Theorem 4.39 the projected GDALE (6.47) has a unique solution X̃ given by

X̃ =
1

2π

∫ 2π

0

(eiϕẼ − Ã)−∗
(
P̃ ∗r G̃P̃r + (I − P̃r)∗G̃(I − P̃r)

)
(eiϕẼ − Ã)−1dϕ.
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The solution X of the projected GDALE (6.42) has the form (4.65) with s = 1, and, hence,

X̃ −X =
1

2π

∫ 2π

0

(
(eiϕẼ − Ã)−∗D̃(eiϕẼ − Ã)−1 − (eiϕE − A)−∗D(eiϕE − A)−1

)
dϕ,

where D̃ = P̃ ∗r G̃P̃r + (I − P̃r)∗G̃(I − P̃r) and D = P ∗rGPr + (I − Pr)∗G(I − Pr). Taking
into account estimates (6.51) and (6.52) we obtain

‖(eiϕẼ − Ã)−∗D̃(eiϕẼ − Ã)−1 − (eiϕE − A)−∗D(eiϕE − A)−1‖2

≤ ‖(eiϕẼ − Ã)−1 − (eiϕE − A)−1‖2‖D‖2

(
‖(eiϕẼ − Ã)−1‖2 + ‖(eiϕE − A)−1‖2

)
+‖(eiϕẼ − Ã)−1‖2

2‖D̃ −D‖2

≤ ‖D̃ −D‖2 + 2ε(‖E‖2 + ‖A‖2)‖(eiϕE − A)−1‖2‖D‖2

(1− ε(‖E‖2 + ‖A‖2)‖(eiϕE − A)−1‖2)2
‖(eiϕE − A)−1‖2

2

≤ ‖D̃ −D‖2 + 40πε‖D‖2κd,2(E,A)

(1− 20πεκd,2(E,A))2
‖(eiϕE − A)−1‖2

2.

Using (6.48) and (6.49) we have

‖D̃ −D‖2 ≤ 2(‖P̃r − Pr‖2‖G̃‖2(‖P̃r‖2 + ‖Pr‖2) + ‖G̃−G‖2‖Pr‖2
2

≤ 60πεκd,2(E,A)(30πεκd,2(E,A) + 1)‖G‖(1 + 2‖Pr‖2) + ε‖G‖2‖Pr‖2
2.

Thus, bound (6.53) holds.

Bound (6.53) shows that if ‖Pr‖2 and κd,2(E,A) are not too large, then the solution
of the perturbed projected GDALE (6.47) is a small perturbation of the solution of the
projected GDALE (6.42). A large ‖Pr‖2 implies that the right finite deflating subspace of
the pencil λE − A is ill-conditioned, whereas a large condition number κd,2(E,A) implies
that a finite eigenvalue of the d-stable pencil λE − A lies close to the unit circle.

Thus, κd,2(E,A) can be used to estimate the sensitivity of the solution of the projected
GDALE (6.42) to perturbations in the data. To compute κd,2(E,A) we need to solve
the projected GDALE (6.45). The solution Hd of this equation can be calculated via the
generalized Schur-Bartels-Stewart method or the generalized Schur-Hammarling methods
presented in Sections 5.1 and 5.2. Note that for the the projected GDALE (6.45) one can
also use the Malyshev algorithm [112, 113].

From Theorem 6.15 we have the following perturbation bound for the spectral condition
number κd,2(E,A).

Corollary 6.16. Under the assumptions of Theorem 6.15 we have the following relative
perturbation bound

|κd,2(Ẽ, Ã)− κd,2(E,A)|
κd,2(E,A)

≤ 60πεκd,2(E,A)((30πεκd,2(E,A) + 1)(1 + 2‖Pr‖2) + 1) + 3ε

(1− 20πεκd,2(E,A))2
.
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Proof. From the proof of Theorem 6.15 with G̃ = G = I we obtain that

‖H̃d −Hd‖2 ≤
40πεκd,2(E,A)((30πεκd,2(E,A) + 1)(1 + 2‖Pr‖2) + 1)

(1− 20πεκd,2(E,A))2
‖Hd‖2,

where H̃d is the solution of the perturbed GDALE (6.47) with G̃ = I. In this case

|κd,2(Ẽ, Ã) − κd,2(E,A)| =
∣∣∣(‖Ẽ‖2

2 + ‖Ã‖2
2)‖H̃d‖2 + (‖E‖2

2 + ‖A‖2
2)‖Hd‖2

∣∣∣
≤
∣∣∣(ε+ 1)2(‖E‖2

2 + ‖A‖2
2)(‖H̃d −Hd‖2 + ‖Hd‖2)− (‖E‖2

2 + ‖A‖2
2)‖Hd‖2

∣∣∣
≤
(

60πεκd,2(E,A)((30πεκd,2(E,A) + 1)(1 + 2‖Pr‖2) + 1) + 3ε

(1− 20πεκd,2(E,A))2

)
κd,2(E,A).

The following corollary gives a perturbation bound for the regular GDALE (4.43). It

can be obtained from the proof of Theorem 6.15 with P̃r = Pr = I or by applying the
linear operator perturbation theory [91] to (4.43) in the operator form Ld(X) = −G.

Corollary 6.17. Consider the GDALE (4.43), where the pencil λE − A is d-stable and
the matrix E is nonsingular. Assume that perturbations in (6.18) satisfy ‖∆E‖2 ≤ ε‖E‖2,
‖∆A‖2 ≤ ε‖A‖2 and ‖∆G‖2 ≤ ε‖G‖2. If

ε (2 + ε)κd,2(E,A) < 1,

then the perturbed GDALE (6.18) has a solution X̃ and the relative error bound

‖X̃ −X‖2

‖X‖2

≤ ε(3 + ε)κd,2(E,A)

1− ε(2 + ε)κd,2(E,A)
(6.54)

holds.

Let X̂ be an approximate solution of the GDALE (4.43) and let Rd be a residual given
in (6.22). Then from Corollary 6.17 with ∆E = 0, ∆A = 0 and ∆G = Rd we have the
following forward error bound

‖X̂ −X‖2

‖X‖2

≤ κd,2(E,A) ‖Rd‖2

(‖E‖2
2 + ‖A‖2

2)‖X‖2

=: Estd,2.

This bound implies that if the regular GDALE (4.43) is well-conditioned and the residual
is small, then the approximate solution X̂ is a small perturbation of the exact solution. We
see that the spectral condition number κd,2(E,A) likewise the Frobenius norm condition
number κd,F (E,A) may be used to measure the sensitivity of the solution of the regular
GDALE (4.43). Similar the continuous-time case, it can be shown that κd,2(E,A) does
not differ more than a factor

√
n from κd,F (E,A). However, to compute the one-norm

estimators for κd,F (E,A) we need to solve several generalized Lyapunov equations of the
form A∗XA−E∗XE = −G and AXA∗−EXE∗ = −G, see [1, 75], whereas the computation
of the spectral condition number κd,2(E,A) requires solving only one additional generalized
Lyapunov equation A∗XA− E∗XE = −I.
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6.5 Numerical examples

In this section we present results of two sets of numerical experiments. The goal of the
first set is to compare the spectral norm condition numbers and the Frobenius norm based
condition numbers for regular generalized Lyapunov equations. In the second set we demon-
strate the relevance of the spectral condition numbers proposed for projected generalized
Lyapunov equations. Computations were carried out on IBM RS 6000 44P Modell 270
with relative machine precision EPS ≈ 2.22 · 10−16.

Example 6.18. [125] The matrices E and A are defined as

E = In + 2−tUn,
A = (1− 2−t)In − diag(1, 2, . . . , n)− UT

n

in the continuous-time case and

E = 2−tIn + diag(1, 2, . . . , n) + UT
n ,

A = In + 2−tUn

in the discrete-time case, where Un is the n× n strictly lower triangular matrix with unit
entries below the main diagonal. Note that E is nonsingular. The matrix G is defined so
that a true solution X of the GCALE (4.9) or the GDALE (4.43) is a random matrix with
entries uniformly distributed in (0, 100).

We generated the generalized Lyapunov equations for a medium size n = 100 and
different values of the parameter t. To compute the solutions of the GCALE (4.9) and
the GDALE (4.43), the matrices Hc and Hd satisfying, respectively, (4.9) and (4.43) with
G = I as well as the Frobenius norm based estimators for Sep−1

c (E,A) and Sep−1
d (E,A),

we use the SLICOT library subroutine SG04AD [16].
We compare the spectral condition numbers and the Frobenius norm based condition

number in Figure 6.1 in the continuous-time case and in Figure 6.2 in the discrete-time
case. One can see that κc,2(E,A) is a factor 2-3 smaller than κc,F (E,A) and κd,2(E,A) is a
factor 2-8 smaller than κd,F (E,A). Both problems become ill-conditioned as the parameter
t increases. Figures 6.3 and 6.4 show the relative errors in the spectral and Frobenius norms

RERR2 =
‖X̂ −X‖2

‖X‖2

, RERRF =
‖X̂ −X‖F
‖X‖F

,

where X̂ is an approximate solution of (4.9) or (4.43) computed by the generalized Bartels-
Stewart method. As expected from the perturbation theory, the accuracy of X̂ may get
worse as the condition numbers are large, while the relative residuals

RRESC2 =
‖E∗X̂A+ A∗X̂E +G‖2

2‖E‖2‖A‖2‖X‖2

, RRESCF =
‖E∗X̂A+ A∗X̂E +G‖F

2‖E‖2‖A‖2‖X‖F
in the continuous-time case (Figure 6.5) and

RRESD2 =
‖A∗X̂A− E∗X̂E +G‖2

(‖E‖2
2 + ‖A‖2

2)‖X‖2

, RRESDF =
‖A∗X̂A− E∗X̂E +G‖F

(‖E‖2
2 + ‖A‖2

2)‖X‖F
in the discrete-time case (Figure 6.6), remain small.
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The continuous-time case
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Figure 6.1: κc,2(E,A) and κc,F (E,A)

The discrete-time case
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Figure 6.2: κd,2(E,A) and κd,F (E,A)
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Figure 6.3: Relative errors in the solution
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Figure 6.4: Relative errors in the solution
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Figure 6.5: Relative residuals RRESC2 and
RRESCF
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Figure 6.6: Relative residuals RRESD2 and
RRESDF
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The continuous-time case
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Figure 6.7: RERR/Estc,2 and RERR/Estc,F

The discrete-time case
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Figure 6.8: RERR/Estd,2 and RERR/Estd,F
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Figure 6.9: CPU-time in seconds required
for computing κc,2(E,A) and κc,F (E,A)
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Figure 6.10: CPU-time in seconds required
for computing κd,2(E,A) and κd,F (E,A)

Figure 6.7 shows the ratios RERR2/Estc,2 and RERRF/Estc,F between the relative errors
and the computed residual based error estimates given by (6.17) and (6.41). An analogous
result for the discrete-time case is presented in Figure 6.8. We see that the estimates in
the spectral norm are sharper than the estimates in the Frobenius norm.

Finally, in Figures 6.9 and 6.10 we compare the CPU-time (in seconds) obtained via
the LAPACK subroutine DSECND [1] that is required to compute the spectral norm and
Frobenius norm condition numbers of the GCALE (4.9) and the GDALE (4.43) for the
fixed parameter t = 5 and different sizes n ∈ {20, . . . , 500}. We see that the computation
of κc,2(E,A) and κd,2(E,A) is significantly faster especially for large problems than the
estimators for κc,F (E,A) and κd,F (E,A). This is not surprising because to compute the
spectral norm condition numbers we need to solve only one additional generalized Lyapunov
equation, while computing the Frobenius norm based condition numbers requires solving
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approximately five generalized Lyapunov equations.

This numerical example shows that the spectral norm condition numbers and the Frobe-
nius norm based condition numbers gives the similar information on the conditioning of
regular generalized Lyapunov equations. However, from the point of view of computational
costs the first are superior.

Example 6.19. Consider a family of projected GCALEs with

E = V

[
I3 D(N3 − I3)
0 N3

]
UT , A = V

[
J (I3 − J)D
0 I3

]
UT ,

G = U

[
G11 −G11D
−DG11 DG11D

]
UT ,

where N3 is a nilpotent Jordan block of order 3,

J = diag(−10−k, −2, −3× 10k), k ≥ 0,

D = diag(10−q, 1, 10q), q ≥ 0,

G11 = diag(2, 4, 6).

The transformation matrices V and U are elementary reflections chosen as

V = I6 −
1

3
eeT , e = (1, 1, 1, 1, 1, 1)T ,

U = I6 −
1

3
ffT , f = (1,−1, 1,−1, 1,−1)T .

(6.55)

The exact solution of the projected GCALE (4.36) is given by

X = V

[
X11 −X11D
−DX11 DX11D

]
V T (6.56)

withX11 = diag(10k, 1, 10−k). The problem becomes ill-conditioned when k and q increase.

To solve the projected GCALE (4.36) we use Algorithm 5.1.1. Computations were
performed using MATLAB mex-functions based on the GUPTRI routine [41, 42] and the
SLICOT routines SG04OD and SG03AD [16, 165].

In Figures 6.11 and 6.12 we show the values of Dif−1
u and κc,2(Ef , Af ) as functions of k

and q. We see that the condition numbers of the generalized Sylvester equation (5.2) and
the regular GCALE (5.13) are independent of q and increase with k.

In Figure 6.13 we show the values of ‖Hc‖2 and the condition number κc,2(E,A) of the
projected GCALE (4.36) for the same values of k and q. When k and q are increased, the
condition number κc,2(E,A) increases more quickly than ‖Hc‖2. Note that the projected
GCALE (4.36) may be ill-conditioned even if both the intermediate problems are well-
conditioned.
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Figure 6.11: Conditioning of the generali-
zed Sylvester equation in Example 6.19
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Figure 6.12: Conditioning of the regular
GCALE
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Figure 6.13: Conditioning of the projected GCALE
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Figure 6.14: Relative error in the com-
puted solution of the projected GCALE
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Figure 6.15: Relative residual RRESC
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Finally, Figure 6.14 shows the relative error RERR = ‖X̂ −X‖2/‖X‖2, where X̂ is the
computed solution, and Figure 6.15 shows the relative residual

RRESC =
‖ET X̂A+ AT X̂E + P̂ T

r GP̂r‖2

2‖E‖2‖A‖2‖X‖2

,

where P̂r is the computed projection onto the right deflating subspace of the pencil λE−A
corresponding to the finite eigenvalues. We see that the relative residual is small even for
the ill-conditioned problem. However, this does not imply that the relative error in the
computed solution remains close to zero when the condition number κc,2(E,A) is large.

The relative error in X̂ increases as κc,2(E,A) grows.

Example 6.20. Consider the projected GDALE (6.42) with

E = V

[
I3 D(N3 − I3)
0 N3

]
UT , A = V

[
J1 DJ2 − J1D
0 J2

]
UT ,

G = U

[
G11 −G11D
−DG11 DG11D

]
UT ,

where
J1 = diag(1− 10−k, 1/2, 0), k ≥ 0,

J2 = diag(102q/3, 1, 10−2q/3), q ≥ 0,

D = diag(10−q, 1, 10q),

G11 = diag(2− 10−k, 3/4, 10−k),

and U , V are given by (6.55). The exact solution of the projected GDALE (6.42) has
the form (6.56) with X11 = diag(10k, 1, 10−k). An approximate solution X̂ of (6.42) is
computed using Algorithm 5.1.2.

In Figures 6.16 we show the values of Dif−1
u as functions of k and q. One can see that

the generalized Sylvester equation (5.2) is well-conditioned for all k ∈ [0, 9] and q ∈ [0, 2.7].
Figures 6.17 and 6.18 show the spectral condition numbers κd,2(Ef , Af ) and κd,2(Einf , Ainf )
of the regular GDALE (5.20) and the regular GDALE (5.21). The condition number of
(5.20) does not depend on q and increases with k, while the condition number of (5.21)
grows with q and is independent of k.

The spectral condition number κd,2(E,A) of the projected GDALE (6.42) is depicted
in Figure 6.19. We see that equation (6.42) becomes ill-conditioned when k and q increase.

The relative error RERR = ‖X̂ −X‖2/‖X‖2 and the relative residual

RRESD =
‖AT X̂A− ET X̂E + P̂ T

r GP̂r − (I − P̂r)TG(I − P̂r)‖2

(‖E‖2
2 + ‖A‖2

2)‖X‖2

are shown in Figure 6.20 and Figure 6.21, respectively. Here P̂r is the computed projection
onto the right deflating subspace of λE − A corresponding to the finite eigenvalues. We
see that even though the relative residual remains small, the accuracy in X̂ may get
worse for the large condition number κd,2(E,A). Moreover, the computed solution may be
inaccurate, if one of intermediate problems is ill-conditioned.
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Figure 6.16: Conditioning of the generali-
zed Sylvester equation in Example 6.20
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Figure 6.17: The spectral condition num-
ber κd,2(Ef , Af )
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Figure 6.18: The spectral condition num-
ber κd,2(Einf , Ainf )
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Figure 6.19: Conditioning of the projected
GDALE
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Figure 6.20: Relative error in the com-
puted solution of the projected GDALE
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Figure 6.21: Relative residual RRESD
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Chapter 7

Model reduction

An important field of applications for projected generalized Lyapunov equations is the
model reduction of large scale descriptor systems that arise, for instance, from electri-
cal circuit simulation and discretization of partial differential equations. The numerical
methods for solving large systems or real time controller design cannot be applied to such
systems due their computational complexity and storage requirements. This motivates the
model order reduction that consists in the continuous-time case in an approximation of the
descriptor system

E ẋ(t) = Ax(t) +B u(t), x(0) = x0,
y(t) = C x(t)

(7.1)

with E, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rp,n by a reduced order system

Ẽ ˙̃x(t) = Ã x̃(t) + B̃ u(t), x̃(0) = x̃0,

ỹ(t) = C̃ x̃(t),
(7.2)

where Ẽ, Ã ∈ R`,`, B̃ ∈ R`,m, C̃ ∈ Rp,` and `� n. Note that systems (7.1) and (7.2) have
the same input u(t). One requires for the approximate system (7.2) to preserve properties
of the original system (7.1) like regularity and stability. Since the descriptor system (7.1)
consists of differential equations that describe the dynamic behavior of the system as well
as algebraic equations characterizing a constraint manifold for the solution, it is natural to
require for the reduced order system to have the same algebraic constraints as the original
one. Clearly, it is also desirable that the approximation error is small. Moreover, the
computation of the reduced order system should be numerically stable and efficient.

There exist various model reduction approaches for standard state space systems such
as balanced truncation [103, 119, 129, 137, 156, 164], moment matching approximation
[52, 68], singular perturbation approximation [95, 107] and optimal Hankel norm appro-
ximation [58]. Surveys on system approximation and model reduction can be found in
[4, 48]. One of the most effective and well studied model reduction techniques is balanced
truncation which is closely related to the controllability and observability Gramians. The
balanced truncation method consists in transforming the state space system to a balanced
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form whose controllability and observability Gramians become diagonal and equal together
with a truncation of states that are both difficult to reach and to observe. The diagonal
elements of the transformed Gramians are known as the Hankel singular values of the
dynamical system, and the truncated states correspond to the small Hankel singular values,
see [119] for details. An important advantage of the balanced truncation approach is that if
the original system is asymptotically stable then the reduced system is also asymptotically
stable. Moreover, a priory bounds on the approximation error can be derived [46, 58].

In this chapter we generalize the Hankel singular values for descriptor systems and
present an extension of known balanced truncation algorithms such as the square root
method [103, 156] and the balancing free square root method [164] to descriptor systems.

7.1 Transfer function and realization

Consider the Laplace transform of a function f(t), t ∈ R, given by

f(s) = L[f(t)] =

∫ ∞
0

e−stf(t) dt,

where s is a complex variable called frequency. A discussion of the convergence region of
f(s) in the complex plane and properties of the Laplace transform may be found in [43].
If we take in (7.1) the Laplace transform, then we obtain that

x(s) = (sE − A)−1Bu(s) + (sE − A)−1Ex(0), (7.3)

y(s) = C(sE − A)−1Bu(s) + C(sE − A)−1Ex(0), (7.4)

where x(s), u(s) and y(s) are the Laplace transforms of x(t), u(t) and y(t), respectively.
A rational matrix-valued function

G(s) := C(sE − A)−1B (7.5)

is called the transfer function of the continuous-time descriptor system (7.1). We see in
(7.4) that if Ex(0) = 0, then G(s) gives the relation between the Laplace transforms of
the input u(t) and the output y(t). In other words, the transfer function G(s) describe
the input-output behavior of system (7.1) in the frequency domain. The transfer function
G(s) is said to be c-stable if the matrix pencil λE−A is c-stable, i.e., all finite eigenvalues
of λE − A lie in the open left half-plane.

If for any rational matrix-valued function G(s) there exist matrices E, A, B and C such
that G(s) = C(sE − A)−1B, then system (7.1) with these matrices is called a realization
of G(s). We will also denote a realization of G(s) by G = [E, A, B, C ] or by

G =

[
sE − A B
C 0

]
.

Note that the realization of G(s) is, in general, not unique [36].
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Definition 7.1. Two realizations [E, A, B, C ] and [ Ě, Ǎ, B̌, Č ] are restricted system
equivalent if there exist nonsingular matrices W̌ and Ť such that

E = W̌ ĚŤ , A = W̌ ǍŤ , B = W̌ B̌, C = ČŤ .

A pair (W̌ , Ť ) is called system equivalence transformation.

The notion of the restricted system equivalence is in line with [134]. A characteris-
tic quantity of system (7.1) is input-output invariant if it is preserved under a system
equivalence transformation. The transfer function G(s) is input-output invariant, since

G(s) = C(sE − A)−1B = ČŤ Ť−1(sĚ − Ǎ)−1W̌−1W̌ B̌ = Č(sĚ − Ǎ)−1B̌.

Definition 7.2. A transfer function G(s) is called proper if lim
s→∞

G(s) < ∞. Otherwise,

G(s) is improper. If lim
s→∞

G(s) = 0, then G(s) is said to be strictly proper.

Let the pencil λE − A be in Weierstrass canonical form (2.2) and let the matrices B
and C be as in (3.3). Using the Laurent expansion (2.6) for the generalized resolvent
(λE − A)−1, the transfer function G(s) can be written as

G(s) = C1(sI − J)−1B1 + C2(sN − I)−1B2 = Gsp(s) + P(s),

where

Gsp(s) = C1(sI − J)−1B1 =
∞∑
k=1

CFk−1Bs
−k

is the strictly proper part of G(s) and

P(s) = C2(sN − I)−1B2 =
ν−1∑
k=0

CF−k−1Bs
k

is the polynomial part of G(s). The proper part of G(s) is given by

Gp(s) = C1(sI − J)−1B1 − C2B2 =
∞∑
k=0

CFk−1Bs
−k.

The matrices Mk = CFk−1B are called the Markov parameters of system (7.1). Clearly,
they are input-output invariants. The transfer function G(s) = Gp(s) is proper if and only
if Mk = CFk−1B = 0 for k < 0. For example, if the pencil λE−A is of index at most one,
then G(s) is proper. The transfer function G(s) = Gsp(s) is strictly proper if and only if
Mk = CFk−1B = 0 for k ≤ 0.

Other important results from the theory of rational functions and realization theory
may be found in [36, 79, 166].
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7.2 Hankel singular values

Assume that the pencil λE −A in the continuous-time descriptor system (7.1) is c-stable.
Consider the controllability and observability Gramians of (7.1) introduced in Section 4.4.2.
Similar to the state space systems [176], these Gramians can be used to define Hankel
singular values for system (7.1) that will play a significant role in the model reduction via
balanced truncation.

Note that under a system equivalence transformation (W̌ , Ť ) the proper and improper
controllability Gramians Gcpc and Gcic of (7.1) are transformed to Ǧcpc = Ť−1GcpcŤ−T and
Ǧcic = Ť−1GcicŤ−T , respectively, whereas the proper and improper observability Gramians
Gcpo and Gcio are transformed to Ǧcpo = W̌−TGcpoW̌−1 and Ǧcio = W̌−TGcioW̌−1, respec-
tively. Thus, the Gramians are not input-output invariants. However, we know that for
standard state space systems the spectrum of the product of the controllability and obser-
vability Gramians does not change under the system equivalence transformation [176]. For
the descriptor system (7.1), an analogous result holds for the matrices

Φc,1 := GcpcETGcpoE,
Φc,2 := EGcpcETGcpo,
Φc,3 := GcpoEGcpcET ,

Φc,4 := ETGcpoEGcpc.

(7.6)

Indeed, under a system equivalence transformation (W̌ , Ť ) these matrices are transformed
to

ǦcpcĚT ǦcpoĚ = ŤGcpcETGcpoEŤ−1,

ĚǦcpcĚT Ǧcpo = W̌−1EGcpcETGcpoW̌ ,

ǦcpoĚǦcpcĚT = W̌ TGcpoEGcpcET W̌−T ,

ĚT ǦcpoĚǦcpc = Ť−TETGcpoEGcpcŤ T ,

and, hence, the eigenvalues of Φc,q are input-output invariants. Moreover, we can prove
that the matrices Φc,q, q = 1, . . . , 4, have the same spectrum.

Lemma 7.3. Let λE −A be c-stable. Then the matrices Φc,q, q = 1, . . . , 4, given in (7.6)
are diagonalizable and have the same eigenvalues that are real and non-negative.

Proof. It follows from (4.85) and (4.86) that the matrices Gcpc and ETGcpoE are symmetric
and positive semidefinite. In this case there exists a nonsingular matrix Ť such that

ŤGcpcŤ T =


Σ1 0

Σ2

0
0 0

 , Ť−TETGcpoEŤ−1 =


Σ1 0

0
Σ3

0 0

 ,
where Σ1, Σ2 and Σ3 are diagonal matrices with positive diagonal elements [176, p.76].
Then we get

ŤΦc,1Ť
−1 = ŤGcpcETGcpoEŤ−1 =

[
Σ2

1 0
0 0

]
= Ť−TETGcpoEŤ T = Ť−TΦc,4Ť

T ,
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i.e., the matrices Φc,1 and Φc,4 are similar to the same diagonal positive semidefinite matrix.
Moreover, we have ΦT

c,1 = Φc,4. Analogously, it can be shown that ΦT
c,2 = Φc,3 and the

matrices Φc,2, Φc,3 are diagonalizable and have the same eigenvalues that are real and
non-negative.

We will now show that the matrices Φc,1 and Φc,2 have the same non-zero eigenvalues.
Let λ 6= 0 be an eigenvalue of Φc,1 and let v 6= 0 be a corresponding eigenvector. We have
Φc,1v = GcpcETGcpoEv = λv 6= 0. Then Ev 6= 0 and Φc,2(Ev) = EGcpcETGcpo(Ev) = λEv,
that is, Ev is an eigenvector of Φc,2 corresponding to the eigenvalue λ.

A similar result is valid for the matrices

Ψc,1 := GcicATGcioA,
Ψc,2 := AGcicATGcio,
Ψc,3 := GcioAGcicAT ,
Ψc,4 := ATGcioAGcic.

(7.7)

Lemma 7.4. The matrices Ψc,q, q = 1, . . . , 4, given in (7.7) are diagonalizable and have
the same eigenvalues. These eigenvalues are real and non-negative.

The matrices Φc,q and Ψc,q play the same role for descriptor systems as the product of
the controllability and observability Gramians for standard state space systems [58].

Definition 7.5. Let λE − A be a c-stable pencil and let nf and n∞ be the dimensions
of the deflating subspaces of λE − A corresponding to the finite and infinite eigenvalues,
respectively. The square roots of the nf largest eigenvalues of the matrix Φc,1 denoted by
ςj, are called the proper Hankel singular values of the continuous-time descriptor system
(7.1). The square roots of the n∞ largest eigenvalues of the matrix Ψc,1 denoted by ϑj, are
called the improper Hankel singular values of system (7.1).

The proper and improper Hankel singular values together form the set of the Hankel
singular values of the continuous-time descriptor system (7.1). They are input-output
invariants of system (7.1). For E = I, the proper Hankel singular values are the classical
Hankel singular values of the standard state space system [58].

Since the proper and improper controllability and observability Gramians are symmetric
and positive semidefinite, there exist Cholesky factorizations

Gcpc = RpR
T
p , Gcpo = LTpLp,

Gcic = RiR
T
i , Gcio = LTi Li,

(7.8)

where the matrices Rp, Lp, Ri, Li ∈ Rn,n are Cholesky factors [100]. The following lemma
gives a connection between the proper and improper Hankel singular values and the stan-
dard singular values of the matrices LpERp and LiARi.

Lemma 7.6. Assume that the descriptor system (7.1) is c-stable. Consider the Cholesky
factorizations (7.8) of the Gramians of (7.1). Then the proper Hankel singular values are
the nf largest singular values of the matrix LpERp, while the improper Hankel singular
values are the n∞ largest singular values of the matrix LiARi.



130 CHAPTER 7. MODEL REDUCTION

Proof. We have

ς2
j = λj(GcpcETGcpoE) = λj(RpR

T
pE

TLTpLpE) = λj(R
T
pE

TLTpLpERp) = σ2
j (LpERp),

ϑ2
j = λj(GcicATGcioA) = λj(RiR

T
i A

TLTi LiA) = λj(R
T
i A

TLTi LiARi) = σ2
j (LiARi),

where λj(·) and σj(·) denote the eigenvalues and the singular values of a matrix ordered
decreasingly.

As a consequence of Corollaries 4.55, 4.56, 4.58 and Lemma 7.6 we obtain the following
result.

Corollary 7.7. Consider the descriptor system (7.1). Assume that λE − A is c-stable.

1. System (7.1) is R-controllable and R-observable if and only if all its proper Hankel
singular values are non-zero.

2. System (7.1) is I-controllable and I-observable if all its improper Hankel singular
values are non-zero.

3. System (7.1) is S-controllable and S-observable if all its Hankel singular values are
non-zero.

4. System (7.1) is C-controllable and C-observable if and only if all its Hankel singular
values are non-zero.

The following example shows that the condition for system (7.1) to be I-controllable
and I-observable does not imply that all the improper Hankel singular values of (7.1) are
non-zero.

Example 7.8. The descriptor system (7.1) with

E =

[
1 0
0 0

]
, A =

[
−1 0
0 1

]
, B =

[
2
0

]
, C = [ 2, 1 ]

is I-controllable and I-observable. The improper controllability and observability Gramians
have the form

Gcic =

[
0 0
0 0

]
, Gcio =

[
0 0
0 1

]
,

and, hence, the improper Hankel singular value is ϑ = 0.

The same example can be used to demonstrate that the S-controllable and S-observable
descriptor system may have zero Hankel singular values.
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7.3 Balancing of descriptor systems

As mentioned above, for a given transfer function G(s), there are many different realiza-
tions. Here we are interesting only in particular realizations that are most useful in the
model reduction.

Definition 7.9. A realization [E,A,B,C ] of the transfer function G(s) is called R-mini-
mal if the triplet (E,A,B) is R-controllable and the triplet (E,A,C) is R-observable.

Definition 7.10. A realization [E,A,B,C ] of the c-stable transfer function G(s) is called
proper balanced if the proper controllability and observability Gramians Gcpc and Gcpo are
equal and diagonal.

We will show that for a R-minimal realization [E,A,B,C ] of the c-stable transfer
function G(s), there exists a system equivalence transformation (W T

b , Tb) such that the
realization

[W T
b ETb, W

T
b ATb, W

T
b B, CTb ] (7.9)

is proper balanced.
Consider the Cholesky factors Rp and Lp of the proper controllability and observability

Gramians as in (7.8). If (E,A,B) is R-controllable and (E,A,C) is R-observable, then by
Corollary 4.58 we have rank(Gcpc) = rank(Gcpo) = nf . Compute the QR decompositions

RT
p = Qc

[
RT

0

]
, Lp = Qo

[
L
0

]
,

where Qc, Qo are orthogonal and RT , L ∈ Rnf ,n have full rank. Then Gcpc = RpR
T
p = RRT ,

Gcpo = LTpLp = LTL and ςj = σj(LER). It follows from Corollary 7.7 that the matrix
LER ∈ Rnf ,nf is nonsingular. Let

LER = UfΣV
T
f (7.10)

be a singular value decomposition of LER, where Uf and Vf are orthogonal matrices and
Σ = diag(ς1, . . . , ςnf ) is nonsingular. Consider the matrices

Wb =
[
LTUfΣ

−1/2, W∞
]
, W ′

b =
[
ERVfΣ

−1/2, W ′
∞
]

(7.11)

and

Tb =
[
RVfΣ

−1/2, T∞
]
, T ′b =

[
ETLTUfΣ

−1/2, T ′∞
]
. (7.12)

Here the columns of matrices W∞ and T∞ span, respectively, the left and right deflating
subspaces of the pencil λE−A corresponding to the infinite eigenvalues, and matrices W ′

∞
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and T ′∞ satisfy W T
∞W

′
∞ = (T ′∞)TT∞ = In∞ . Clearly, for Pr and Pl as in (2.3), we have

I − Pr = T∞(T ′∞)T and I − Pl = W ′
∞W

T
∞. Since

(I − Pr)RRT (I − Pr)T = (I − Pr)Gcpc(I − Pr)T = 0,

(I − Pl)TLTL(I − Pl) = (I − Pl)TGcpo(I − Pl) = 0,

we obtain that

RTT ′∞ = 0 and LW ′
∞ = 0. (7.13)

Then

(T ′b)
TTb =

[
Σ−1/2UT

f LERVfΣ
−1/2 Σ−1/2UT

f LET∞
(T ′∞)TRVfΣ

−1/2 (T ′∞)TT∞

]
= In,

i.e., the matrices Tb and T ′b are nonsingular and (T ′b)
T = T−1

b . Similarly, we can show that
the matrices Wb and W ′

b are also nonsingular and (W ′
b)
T = W−1

b .
Using (7.10)-(7.13), we obtain that the proper controllability and observability Gra-

mians of the transformed system (7.9) have the form

T−1
b GcpcT

−T
b =

[
Σ 0
0 0

]
= W−1

b GcpoW
−T
b ,

where Σ = diag(ς1, . . . , ςnf ) with the proper Hankel singular values ςj. Thus, (W T
b , Tb)

with Wb and Tb as in (7.11) and (7.12), respectively, is the balancing transformation and
realization (7.9) is proper balanced.

Just as for standard state space systems [58, 119], the balancing transformation for
descriptor systems is not unique.

Remark 7.11. Note that the pencil λEb − Ab = W T
b (λE − A)Tb is in Weierstrass-like

canonical form. Indeed, from (7.10)-(7.12) we have

Eb =

[
Σ−1/2UTLERV Σ−1/2 Σ−1/2UTLET∞

W T
∞ERV Σ−1/2 W T

∞ET∞

]
=

[
Inf 0
0 E∞

]
,

Ab =

[
Σ−1/2UTLARV Σ−1/2 Σ−1/2UTLAT∞

W T
∞ARV Σ−1/2 W T

∞AT∞

]
=

[
A1 0
0 A∞

]
,

where A1 = Σ−1/2UTLARV Σ−1/2, E∞ = W T
∞ET∞ is nilpotent and A∞ = W T

∞AT∞ is
nonsingular. Clearly, the pencil λEb − Ab is regular, c-stable and has the same index as
λE − A.

7.4 Balanced truncation

In the previous section we have considered a reduction of an R-minimal realization to
proper balanced form. However, computing the proper balanced realization may be ill-
conditioned as soon as Σ in (7.10) has small singular values. In addition, if the realization
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is not R-minimal, then the matrix Σ is singular. In the similar situation for standard
state space systems one performs a model reduction by truncating the state components
corresponding to the zero and small Hankel singular values without significant changes
of the system properties, see, e.g., [119, 156]. This procedure is known as projection of
dynamics or balanced truncation. It can also be applied to the descriptor system (7.1).

The proper controllability and observability Gramians can be used to describe the
future output energy

Ey :=

∫ ∞
0

yT (t)y(t) dt

and the minimal past proper input energy

Eu := min
u∈Lm2 (R−)

∫ 0

−∞
uT (t)u(t) dt (7.14)

that is needed to reach from x(−∞) = 0 the state x(0) = x0 ∈ ImPr. Here R− = (−∞, 0)
and Lm2 (R−) is the Hilbert space of all square integrable functions f : R −→ R

m such that
f(t) = 0 for t ≥ 0.

Theorem 7.12. Consider a descriptor system (7.1) that is c-stable and R-minimal. Let
Gcpc and Gcpo be the proper controllability and observability Gramians of (7.1). If x0 ∈ ImPr
and u(t) = 0 for t ≥ 0, then

Ey = (x0)TETGcpoEx0.

Moreover, for uopt(t) = BTF(−t)G−cpcx0, we have

Euopt = (x0)TG−cpcx0,

where G−cpc is the unique solution of

GcpcG−cpcGcpc = Gcpc,
P T
r G−cpcPr = G−cpc.

(7.15)

Proof. System (7.1) with x0 ∈ ImPr and u(t) = 0 for t ≥ 0 has a unique solution given by
x(t) = F(t)Ex0. Then y(t) = CF(t)Ex0 for t ≥ 0 and, hence,

Ey =

∫ ∞
0

yT (t)y(t) dt =

∫ ∞
0

(x0)TETFT (t)CTCF(t)Ex0 dt = (x0)TETGcpoEx0.

Consider now the minimization problem (7.14) subject to the constraint for the initial
conditions

x0 =

∫ 0

−∞
F(−t)Bu(t) dt. (7.16)

Let µ ∈ Rn be a Lagrange multiplier vector and let

L(u(t), µ) =

∫ 0

−∞
uT (t)u(t) dt+ µT

(
x0 −

∫ 0

−∞
F(−t)Bu(t) dt

)
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be the Lagrange function. For any variations ∆u(t) and ∆µ we have that

∆L(u(t), µ) = 2

∫ 0

−∞
uT (t)∆u(t) dt− µT

∫ 0

−∞
F(−t)B∆u(t) dt

+ ∆µT
(
x0 −

∫ 0

−∞
F(−t)Bu(t) dt

)
= 0

if and only if (7.16) holds and

uT (t) =
1

2
µTF(−t)B =

1

2
µTPrF(−t)B. (7.17)

Substitution of (7.17) in (7.16) gives

x0 =
1

2

∫ 0

−∞
F(−t)BBTFT (−t)µ dt =

1

2

∫ ∞
0

F(t)BBTFT (t)µ dt =
1

2
Gcpcµ. (7.18)

Using (2.2) and (3.3) we obtain from the projected GCALE (4.42) that the proper control-
lability Gramian Gcpc has the form

Gcpc = T−1

[
G1 0
0 0

]
T−T , (7.19)

where G1 is a unique symmetric solution of the Lyapunov equation JG1 +G1J
T = −B1B

T
1 .

Since (E,A,B) is R-controllable, the matrix G1 is positive definite. In this case equation
(7.15) has a unique solution G−cpc given by

G−cpc = T T
[
G−1

1 0
0 0

]
T. (7.20)

It follows from (7.18) that 2G−cpcx0 = G−cpcGcpcµ = P T
r µ. Hence, for the optimal input

uopt(t) = BTFT (−t)G−cpcx0,

we have that

Euopt =

∫ 0

−∞
uTopt(t)uopt(t) dt =

∫ 0

−∞
(x0)T (G−cpc)TF(−t)BBTFT (−t)G−cpcx0 dt

= (x0)T (G−cpc)T
(∫ ∞

0

F(t)BBTFT (t) dt

)
G−cpcx0 = (x0)TG−cpcx0.

Remark 7.13. Using (7.19) and (7.20) we obtain the relationships

GcpcG−cpc = Pr, G−cpcGcpc = P T
r , G−cpcGcpcG−cpc = G−cpc.

The latter together with the first equation in (7.15) implies that G−cpc is a (1, 2)-pseudo-
inverse of Gcpc, see [32]. The second equation in (7.15) provides the uniqueness of G−cpc.
However, if P T

r = Pr, then G−cpc is the Moore-Penrose inverse [32] of Gcpc.
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Theorem 7.12 shows that a large input energy Eu is required to reach from x(−∞) = 0
any state x(0) = Prx

0 which lies in an invariant subspace of the proper controllability
Gramian Gcpc corresponding to its small non-zero eigenvalues. Moreover, if x0 is contained
in an invariant subspace of the matrix ETGcpoE corresponding to its small non-zero eigen-
values, then the initial value x(0) = Prx

0 has a small effect on the output energy Ey. For
the proper balanced system, Gcpc and ETGcpoE are diagonal and equal. In this case the
states related to the small proper Hankel singular values are less important from the energy
point of view and they may be truncated without change system properties significantly.

Let [E,A,B,C ] be a realization (not necessarily R-minimal) of the c-stable transfer
function G(s). Consider the full rank factorizations Gcpc = RTR and Gcpo = LLT , where
the matrices R ∈ Rn,rc , LT ∈ Rn,ro have full column rank and rc = rank(Gcpc) ≤ nf ,
ro = rank(Gcpo) ≤ nf . Let

LER = [U1, U0 ]

[
Σ1 0
0 Σ0

]
[V1, V0 ]T (7.21)

be an ”economy size” singular value decomposition of LER ∈ Rro,rc , where [U1, U0 ] ∈ Rro,r
and [V1, V0 ] ∈ Rrc,r have orthogonal columns,

Σ1 = diag(ς1, . . . , ς`f ) and Σ0 = diag(ς`f+1, . . . , ςr)

with ς1 ≥ ς2 ≥ . . . ≥ ς`f � ς`f+1 ≥ . . . ≥ ςr > 0 and r = rank(GcpcETGcpoE) ≤ min(rc, ro).
Then the reduced order realization can be computed as[

sẼ − Ã B̃

C̃ 0

]
=

[
W T
` (sE − A)T` W T

` B
CT` 0

]
, (7.22)

where

W` =
[
LTU1Σ

−1/2
1 , W∞

]
∈ Rn,`, T` =

[
RV1Σ

−1/2
1 , T∞

]
∈ Rn,` (7.23)

and ` = `f +n∞. Here W∞ and T∞ form the bases of the left and right deflating subspaces,
respectively, corresponding to the infinite eigenvalues of λE − A.

Note that computing the reduced order descriptor system can be interpreted as per-
forming a system equivalence transformation (W̌ , Ť ) such that

[
W̌ (sE − A)Ť W̌B

CŤ 0

]
=

 sEf − Af 0 Bf

0 sE∞ − A∞ B∞
Cf C∞ 0

 ,
where the pencil λEf−Af has only finite eigenvalues, while all eigenvalues of λE∞−A∞ are
infinite, and then reducing the order of the subsystem [Ef , Af , Bf , Cf ] with nonsingular
Ef . Clearly, the reduced order system (7.22) is c-stable, R-minimal and proper balanced.
Choosing `f in (7.21) as a maximal integer such that ς`f > 0, this procedure can be used
to compute the R-minimal realization of the transfer function G(s) = C(sE−A)−1B. The
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described decoupling of system matrices is equivalent to the additive decomposition of the
transfer function as G(s) = Gp(s) + P(s), where Gp(s) = Cf (sEf −Af )−1Bf is the proper
part and P(s) = C∞(sE∞−A∞)−1B∞ is the polynomial part of G(s). The transfer function

of the reduced system has the form G̃(s) = G̃p(s)+P(s), where G̃p(s) = C̃f (sẼf−Ãf )−1B̃f

is the reduced subsystem. In this case the difference G(s) − G̃(s) = Gp(s) − G̃p(s) is a
proper rational function, and we have the following upper bound on the H∞-norm of the
error system

‖G− G̃‖H∞ := sup
ω∈R
‖G(iω)− G̃(iω)‖2 ≤ 2(ς`f+1 + . . .+ ςnf ) (7.24)

that has been derived in [46, 58]. Thus, if we remove the states corresponding to small
proper Hankel singular values, then the approximation error is small and the reduced order
system is a good approximation to (7.1) in the H∞-norm.

7.5 Numerical algorithms

To reduce the order of the descriptor system (7.1) we have to compute the full rank factors
L and R of the proper observability and controllability Gramians that satisfy the projected
generalized Lyapunov equations (4.39) and (4.42), respectively. We also need the matrices
W∞ and T∞, whose columns span the left and right infinite deflating subspaces of the pencil
λE−A. The projected generalized Lyapunov equations (4.39) and (4.42) can be solved for
the full rank factors via the generalized Schur-Hammarling method, see Algorithms 5.2.1
and 5.2.2. Simultaneously, this method produces the matrices W∞ and T∞. Indeed, if the
pencil λE − A is reduced to the GUPTRI form (2.4), then W∞ and T∞ are computed as

W∞ = V

[
0
In∞

]
and T∞ = U

[
Y
In∞

]
, (7.25)

where Y satisfy the generalized Sylvester equation (5.2).

The following algorithm is a generalization of the square root balanced truncation method
[103, 156] for the descriptor system (7.1).

Algorithm 7.5.1. Generalized Square Root (GSR) method.

Input: A realization [E, A, B, C ] such that λE − A is c-stable.

Output: A reduced order system [ Ẽ, Ã, B̃, C̃ ].

Step 1. Use Algorithms 5.2.1 and 5.2.2 to compute the full rank factors L and R of the
proper observability and controllability Gramians Gcpo = LTL and Gcpc = RRT as well as
the matrices W∞ and T∞ given in (7.25).

Step 2. Compute the ”economy size” singular value decomposition (7.21).

Step 3. Compute the matrices W` = [LTU1Σ
−1/2
1 , W∞ ] and T` = [RV1Σ

−1/2
1 , T∞ ].

Step 4. Compute the reduced order system [Ẽ, Ã, B̃, C̃]=[W T
` ET`, W

T
` AT`, W

T
` B, CT` ].
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If the original system (7.1) is highly unbalanced, then the matrices W` and T` are ill-
conditioned. To avoid accuracy loss in the reduced system, a square root balancing free
method has been proposed for standard state space systems in [164]. This approach can
be generalized for descriptor systems as follows.

Algorithm 7.5.2. Generalized Square Root Balancing Free (GSRBF) method.

Input: A realization [E, A, B, C ] such that λE − A is c-stable.

Output: A reduced order system [ Ẽ, Ã, B̃, C̃ ].

Step 1. Use Algorithms 5.2.1 and 5.2.2 to compute the full rank factors L and R of the
proper observability and controllability Gramians Gcpo = LTL and Gcpc = RRT as well as
the matrices W∞ and T∞ given in (7.25).

Step 2. Compute the ”economy size” singular value decomposition (7.21).

Step 3. Compute the ”economy size” QR decompositions

RV1 = QRR0, LTU1 = QLL0,

where QR, QL ∈ Rn,`f have orthogonal columns and R0, L0 ∈ R`f ,`f are upper triangular,
nonsingular.

Step 4. Compute the reduced order system [Ẽ, Ã, B̃, C̃]=[W T
` ET`, W

T
` AT`, W

T
` B, CT` ],

where W` = [QL, W∞ ] and T` = [QR, T∞ ].

The GSR and GSRBF methods are mathematically equivalent in the sense that they
deliver a reduced system with the same transfer function. But the matrices W` and T`
computed by the GSRBF method are often significantly better conditioned than those
computed via the GSR method.

Remark 7.14. In fact, we do not need to compute the full rank Cholesky factors R
and L and the matrices W∞ and T∞. From (2.4) and (7.25) we have W T

∞ET∞ = E∞,
W T
∞AT∞ = A∞, W T

∞B = B∞ and CT∞ = CfY + C2 = C∞. Moreover, it follows from
(2.4), (5.26) and (5.29) that LER = L1EfR1. Thus, computation of the proper Hankel
singular values in Step 2 of Algorithms 7.5.1 and 7.5.2 can be performed working only
with the matrices L1, Ef and R1. This reduces the computational cost and the memory
requirement. Note that the singular value decomposition of L1EfR1 may be computed
without forming this product explicitly, see [66] for details.

7.6 Numerical examples

In this section we consider numerical examples to illustrate the reliability of the proposed
model reduction methods for descriptor systems. All of the following results were obtained
on an IBM RS 6000 44P Model 270 with relative machine precision ε = 2.22× 10−16 using
MATLAB mex-functions based on the GUPTRI routine [41, 42] and the SLICOT library
routines SB04OD and SG03BD [16, 165].
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Figure 7.1: Proper Hankel singular values of the linearized truck model

Example 7.15. Consider the holonomically constrained planar model of a truck [138].
The linearized equation of motion has the form

ṗ(t) = v(t),
M v̇(t) = Kp(t) +Dv(t)−GTλ(t) +B2u(t),

0 = Gp(t),
(7.26)

where p(t) ∈ R11 is the position vector, v(t) ∈ R11 is the velocity vector, λ(t) ∈ R is the
Lagrange multiplier, M is the positive definite mass matrix, K is the stiffness matrix, D
is the damping matrix, G is the constraint matrix and B2 is the input matrix. System
(7.26) together with the output equation y(t) = p(t) forms a descriptor system of order
n = 23 with m = 1 input and p = 11 outputs. The dimension of the deflating subspace
corresponding to the finite eigenvalues is nf = 20.

Figure 7.1 shows the proper Hankel singular values ςj. We approximate system (7.26)
by a model of order ` = 5. Figure 7.2 illustrates how accurate the reduced order model
approximates the original one. We display the amplitude Bode plot of the error system
computed as ‖G(iω) − G̃(iω)‖2 for a frequency range ω ∈ [1, 103]. Comparison of this
error with the upper bound 2(ς3 + . . . + ς20) = 1.69 × 10−5 shows that the error estimate
(7.24) is tight. Note that the Bode plots of the original and reduced systems, that is, the

spectral norms of the frequency responses G(iω) and G̃(iω) are not presented, since they
were impossible to distinguish.
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Figure 7.2: Bode plot of the error system for the linearized truck model

Example 7.16. Consider the two dimensional instationary Stokes equation describing the
flow of an incompressible fluid

∂v

∂t
= ∆v −∇ρ+ f, (x, t) ∈ Ω× (0, tf ),

0 = ∇ · v, (x, t) ∈ Ω× (0, tf ),

with appropriate initial and boundary conditions. Here v(t, x) ∈ R2 is the velocity vector,
ρ(t, x) ∈ R is the pressure, f(t, x) ∈ R2 is the vector of external forces and Ω = [0, 1]×[0, 1].
Using a finite volume semidiscretization method on an uniform staggered grid [19, 170],
we obtain the descriptor system

v̇(t) = A11v(t) + A12ρ(t) +B1u(t),
0 = AT12v(t),

(7.27)

with the output equation y(t) = C2ρ(t). Here v(t) ∈ Rnv is the semidiscretized vector
of velocities, ρ(t) ∈ Rnρ is the semidiscretized vector of pressures, A11 = AT11 ∈ Rnv,nv

is the discretized Laplace operator, A12 ∈ Rnv,nρ is the discretized gradient operator,
B1 ∈ Rnv,m is the input matrix resulting from boundary conditions and f(t, x) with di-
mensions nv = 480, nρ = 255, m = 64 and p = 15. The matrix A12 has full column
rank. In this case system (7.27) is of index 2 and the dimension of the dynamic part is
nf = nv − nρ = 225.

Figure 7.3 shows the proper Hankel singular values of system (7.27). We see that the
proper Hankel singular values decay sufficiently fast. The dynamic part of (7.27) has been
approximated by a system of order `f = 10. The reduced order model is of order ` = 520
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and has the form

˙̃v(t) = Ã11ṽ(t) + Ã12ρ̃(t) + B̃1u(t),

0 = Ã21ṽ(t).
(7.28)

One can see that the structure of (7.27) is preserved, but system (7.28) is no more
symmetric. The latter is due to the transformation matrices W` and T` given in (7.23)
include the full rank factors L and R of the solutions of the projected Lyapunov equations
(4.39) and (4.42) that are not equal. However, if the output matrix C is the transpose of
the input matrix B, then W T

` = T` and the reduced order system will be symmetric.
In Figure 7.4 we compare the spectral norms of the frequency responses of the original

system G(iω) and the reduced order system G̃(iω) for a frequency rang ω ∈ [10−1, 104].
One can see that the full order system is approximated the reduced order system quite
well. The Bode plot of the error systems is presented in Figure 7.5.

Remark 7.17. As Example 7.16 shows, the dimension of the deflating subspaces of the
pencil corresponding to the infinite eigenvalues may be much larger than the dimension of
the deflating subspaces corresponding to the finite eigenvalues. In this case the algebraic
part of the descriptor system is much larger than the dynamic one. It is interesting, whether
the order of the algebraic part can be reduced? Formally, we can transform the descriptor
system such that the improper controllability and observability Gramians become diagonal
and equal. Their diagonal elements are exactly the improper Hankel singular values. What
happens if we truncate the states corresponding to small improper Hankel singular values.
Is it possible to obtain an error estimate? These questions remain open.
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Chapter 8

Conclusions

In this thesis we have presented the theoretical analysis, numerical solution and perturba-
tion theory for generalized continuous-time and discrete-time Lyapunov equations.

The stability analysis for continuous-time and discrete-time singular systems has been
considered. It is known that the singular system is asymptotically stable if and only if
all the finite eigenvalues of the associated pencil lie in the open left half-plane in the
continuous-time case and inside the unit circle in the discrete-time case [36, 123]. We
have introduced numerical parameters that estimate the asymptotical decay of solutions
of singular systems. These parameters can be used to characterize the property of matrix
pencils to have all the finite eigenvalues in the open left half-plane or inside the unit circle
without explicitly computing eigenvalues.

An important role in stability theory as well as in many control problems for descriptor
systems play generalized Lyapunov equations. We have presented solvability and unique-
ness theorems for these equations with a general right-hand side −G. However, some
difficulties arise if one of the coefficient matrices in the continuous-time case and both
the coefficient matrices in the discrete-time case are singular. Such equations may be not
solvable and even if solution exists, it is not unique.

In the case of singular E we have studied generalized Lyapunov equations with a special
right-hand side −E∗GE. For such equations, a generalization of classical Lyapunov stabil-
ity theorems turned out to be only for pencils of index at most two in the continuous-time
case and of index at most one in the discrete-time case.

Further, we have considered projected generalized Lyapunov equations obtained via
projection in an appropriate way of the right hand-side and the solution onto the right
and left deflating subspaces of the pencil corresponding to the finite eigenvalues. For such
equations, necessary and sufficient conditions for existence and uniqueness of solutions
have been derived. These conditions are independent of the index of matrix pencils. We
have shown that projected generalized Lyapunov equations can be used to characterize
the asymptotic stability of singular systems as well as controllability and observability
properties of descriptor systems. Moreover, these equations are useful to generalize matrix
inertia theorems to matrix pencils. Finally, we have seen that the controllability and
observability Gramians of descriptor systems introduced in [11] can be computed by solving
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projected generalized Lyapunov equations.
Even though the numerical solution of standard Lyapunov equations has been the

subject of intense research in many years, e.g. [9, 64, 72, 81, 127, 136], there are not many
contributions to numerical methods for generalized Lyapunov equations [17, 55, 117, 125].
In this thesis we have proposed generalizations of the Bartels-Stewart and Hammarling
methods for projected generalized Lyapunov equations and studied their numerical pro-
perties and complexity. A disadvantage of both methods is that they cost O(n3) because
the computation of the GUPTRI form of a pencil is required. As a consequence, these
methods can be used only for problems of small and medium size. Moreover, they do not
make use the sparsity of coefficient matrices.

Large scale dense regular generalized Lyapunov equations can be solved via the matrix
sign function method or Malyshev algorithm. The latter is applicable also to projected
generalized discrete-time Lyapunov equations with nonsingular G in the right-hand side.
A generalization of iterative methods like low-rank ADI and Smith methods as well as
Krylov subspace methods for projected generalized Lyapunov equations is a subject for
further research.

Also, we have developed the perturbation theory for generalized Lyapunov equations.
The spectral condition numbers have been introduced and perturbation bounds for solu-
tions of the projected generalized Lyapunov equations have been derived. In the case of
nonsingular E, the spectral condition numbers are equivalent to the well-known Frobenius
norm based condition numbers. However, from computational point of view the spectral
condition numbers have considerable superiority.

Unfortunately, the perturbation bound for projected generalized Lyapunov equations
have been obtained under assumption that perturbations in E and A do not change the
dimension of the deflating subspaces of the pencil corresponding to the infinite eigenvalues.
Moreover, in the continuous-time case we have supposed that the nilpotency structure of
the pencil is preserved. The sensitivity theory for general perturbations and backward
error analysis for projected Lyapunov equations are still open problems.

Our last topic was the model reduction of descriptor systems. For these systems proper
and improper Hankel singular values have been defined and balanced truncation methods
have been presented. The proper Hankel singular values can be considered as a measure for
the importance of the state components. We have shown that if the c-stable continuous-
time descriptor system is in a proper balanced form, that is, if the proper controllability and
observability Gramians are diagonal and equal, then a large (small) amount of input energy
is required to reach the states corresponding to small (large) proper Hankel singular values
and these states generate a small (large) amount of output energy. Balanced truncation
methods for descriptor systems are based on the decoupling these systems into dynamic
and algebraic parts and reducing the order only the dynamic part by truncation of the
states that are related to small proper Hankel singular values. Important properties of
these methods are that the stability is preserved in the reduced order system and there is
a bound on the approximation error.
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[1] T. Stykel. Stability and Inertia Theorems for Generalized Lyapunov Equations.
To appear in Linear Algebra Appl., 2002.

[2] T. Stykel. Numerical Solution and Perturbation Theory for Generalized Lyapunov
Equations. Linear Algebra Appl., 349(1-3), 2002, 155–185.

[3] T. Stykel. On Criteria for Asymptotic Stability of Differential-Algebraic Equa-
tions. Z. Angew. Math. Mech., 82(3), 2002, 147–158.

[4] T. Stykel. Model Reduction of Descriptor Systems. Technical Report 720-2001,
Institut für Mathematik, Technische Universität Berlin, December 2001.

[5] T. Stykel. Generalized Lyapunov Equations for Descriptor Systems: Stability and
Inertia Theorems. Preprint SFB393/00-38, Fakultät für Mathematik, Technische
Universität Chemnitz, October 2000.

[6] T. Stykel. On a Criterion of Asymptotic Stability of Differential-Algebraic Equa-
tions. Preprint SFB393/99-17, Fakultät für Mathematik, Technische Universität
Chemnitz, August 1999.





LEBENSLAUF

Tatjana Stykel Berlin, 20.03.2002

Geburtsdatum: 19. Juli, 1973
Geburtsort: KasMIS, Kasachstan
Staatsangehörigkeit: Deutsch
Familienstand: ledig

SCHULBILDUNG und STUDIUM

Schulbildung: Sekundarschule, KasMIS, Kasachstan Sept. 1980 - Juni 1990
Studium: Fakultät für Mechanik und Mathematik, Sept. 1990 - Juni 1994

Staatliche Universität Novosibirsk, Rußland
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die bezüglich der Ableitungen unlösbar sind.

Magistergrad: Magisterin der Mathematik Juni 1996

Promotionsstudium:
Staatliche Universität Novosibirsk, Rußland Juli 1996 - Juni 1997
Technische Universität Chemnitz, Deutschland Okt. 1998 - März 2001

WEITERBILDUNG

Humboldt-Universität zu Berlin wissenschaftliche Fortbildung Okt. 1997 - Sept. 1998
Technische Universität Chemnitz Weiterbildung März 2000

”Lehren und Lernen an der Hochschule”

BERUFSTÄTIGKEIT

Technische Universität Chemnitz Wissenschaftliche Mitarbeiterin März 2000 - Okt. 2000
Technische Universität Berlin Wissenschaftliche Mitarbeiterin seit Nov. 2000

STIPENDIEN

International Soros Science Education Program, Soros Student Stipendium 1994 - 1996
Open Society Institution

International Soros Science Education Program, Soros Graduate Student 1996 - 1997
Open Society Institution Stipendium

Deutscher Akademischer Austauschdienst Jahresstipendium 1997 - 1998
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