

Middleware and Application

Management Architecture

vorgelegt vom

Diplom-Informatiker

Sven van der Meer
aus Berlin

von der Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Gorlatch

Berichter: Prof. Dr. Dr. h.c. Radu Popescu-Zeletin

Berichter: Prof. Dr. Kurt Geihs

Tag der wissenschaftlichen Aussprache: 25.09.2002

Berlin 2002

D 83

Middleware and Application

Management Architecture

Sven van der Meer

Berlin 2002

Preface

Middleware and Application Management Architecture i

Abstract

This thesis describes a new approach for the integrated management of distributed networks, services, and
applications. The main objective of this approach is the realization of software, systems, and services that
address composability, scalability, reliability, and robustness as well as autonomous self-adaptation. It
focuses on middleware for management, control, and use of fully distributed resources. The term integra-
tion refers to the task of unifying existing instrumentations for middleware and management, not their
replacement.

The rationale of this work stems from the fact, that the current situation of middleware and management
systems can be described with the term interworking. The actually needed integration of management and
middleware concepts is still an open issue. However, identified trends in communications and computing
demand for integrated concepts rather than the definition of new interworking scenarios.

Distributed applications need to be prepared to be used and operated in a stable, secure, and efficient
way. Middleware and service platforms are employed to solve this task. To guarantee this objective for a
long-time operation, the systems needs to be controlled, administered, and maintained in its entirety,
supporting the general aim of the system, and for each individual component, to ensure that each part of
the system functions perfectly. Management systems are responsible for this objective. Usage and control
result in mechanisms for mapping information across application, service, and network level. Control,
administration, and maintenance reflect management tasks on each of those levels. Integration of middle-
ware and management results in a system that provides distributed applications with all of the introduced
functionality.

Following the hypothesis of this work, the target environments are evaluated to extract requirements for
the integrated approach. Based on this evaluation, a general framework is developed that clearly identifies
the certain levels of integration, their boundaries, and their individual objectives. Goal of the framework
is to establish a software layer between the applications and distributed technologies that provides inte-
grated management services without loosing the advantages of middleware.

The approach is discussed in three steps. First, a general framework is defined based on the hypothesis
and an evaluation of the target environments. The second step is the derivation of a Middleware and Ap-
plication Management Architecture (MAMA) from this general framework. The last step is the realization
of this architecture and its exploitation.

The result is a software system that decouples distributed applications from concrete middleware and
management technologies. The system’s functionality is offered to applications via an Application Pro-
gramming Interface (API), which provides access to basic middleware and management facilities. The
API is supported by an Application Definition Language that combines interface definitions with seman-
tic information in order to enable automated processes for control and maintenance. Furthermore, applica-
tion services are included to realize standard features such as naming, service lookup and discovery, event
notification, and visual administration.

The approach described in this thesis recognizes international standards and developments. In fact, the
approach depends on commonly used and well-agreed technologies from the areas of telecommunica-
tions, computing, syntax notations, distributed systems, systems management, and user interfaces.

Preface

Middleware and Application Management Architecture ii

Preface

Middleware and Application Management Architecture iii

Zusammenfassung

Die Dissertation zum Thema: Middleware and Application Management Architecture beschreibt einen
neuen Zugang für ein integriertes Managementsystem für verteilte Netzwerke, Dienst und Anwendungen.
Das Hauptziel dieses Ansatzes ist ein Softwaresystem mit Diensten, welche Komponierbarkeit, Skalier-
barkeit, Zuverlässigkeit und Robustheit genau so wie autonome Selbstanpassung ermöglichen. Es kon-
zentriert sich auf Middleware für Management und Kontrolle sowie auf die Nutzung für verteilte Kompo-
nenten. Der Begriff Integration beinhaltet in dieser Arbeit die Vereinigung existierender Instrumente von
Middleware und Management, aber keineswegs ihre Ersetzung.

Die Ausgangslage dieser Arbeit ist die Tatsache, dass die aktuelle Situation des Verhältnisses von Midd-
leware und Management lediglich als Zusammenarbeit bezeichnet werden kann. Bekannte qualitative und
quantitative Tendenzen in der Kommunikation und Datenverarbeitung verlangen nach integrierten Kon-
zepten anstelle immer neuer Szenarien der Zusammenarbeit in spezifischen Konstellationen, die wie In-
seln vielfältige spezifische Brücken zueinander benötigen. Die sich daraus ergebende Notwendigkeit ei-
ner Integration von Middleware- und Management-Konzeptionen ist nach wie vor ein ungelöstes Prob-
lem.

Auf diesem Hintergrund wurde die vorliegende Arbeit konzipiert. Es wird ein Modell für die Integration
von Middleware und Management begründet, entwickelt und seine Funktionsfähigkeit nachgewiesen. Es
stellt ein System dar, welches verteilte Anwendungen mit allen wesentlichen Funktionen ausstattet: Ver-
teilte Anwendungen müssen so beschaffen sein, dass sie stabil, sicher und effizient genutzt und betrieben
werden können. Middleware und Dienstleistungsplattformen werden eingesetzt, um diese Aufgaben zu
erfüllen. Um diesen Zweck über große Zeiträume hinweg zu garantieren, muss das integrierte System in
seiner Gesamtheit kontrolliert, verwaltet und gewartet werden. Damit werden das grundsätzliche Ziel des
Systems und die Aufgabe jeder einzelnen Komponente unterstützt und gesichert, dass jeder Bestandteil
des Systems selbständig und im Zusammenwirken ordnungsgemäß funktioniert. Managementsysteme
sind für diese Zielstellung verantwortlich. Nutzung und Kontrolle verlangen einen Mechanismus zur In-
formationsumwandlung zwischen den Ebenen Anwendung, Dienste und Netzwerke. Zugleich sind Kon-
trolle, Verwaltung und Wartung auf jeder dieser Ebenen erforderlich.

Der Zielstellung dieser Arbeit folgend, ein funktionsfähiges Systems der Integration zu erarbeiten wel-
ches den gestellten Anforderungen gerecht wird, werden die Zielumgebungen analysiert, um deren An-
forderungen an einen integrierten Ansatz zu bestimmen. Basierend auf dieser Analyse wird dann ein ge-
nerelles Rahmenwerk entworfen, das exakt die einzelnen Ebenen für eine Integration definiert, ebenso die
Teilziele der einzelnen Ebenen wie auch die Grenzen zwischen ihnen. Hauptziel des Rahmenwerkes ist
die Definition einer Schnittstelle zwischen Anwendungen und verteilten Technologien, die integrierte
Verwaltungsdienste realisiert ohne die Vorteile von Middleware zu verlieren.

Dieser Ansatz wird in drei Schritten dargelegt. Als erstes wird das generelle Rahmenwerk definiert, wel-
ches auf der Grundthese und der Analyse der Einsatzgebiete beruht. Von diesem Rahmenwerk wird eine
Architektur abgeleitet. Der letzte Schritt besteht in der Realisierung, Implementierung und Verwertung
dieser Architektur in geeigneten Szenarien.

Als Ergebnis der Arbeit entsteht ein Softwaresystem, das verteilte Anwendungen von konkreten Middle-
ware- und Managementtechnologien abkoppelt. Dieses Systems und seine Funktionen wird den Anwen-
dungen über eine entsprechende Programmierschnittstelle zur Verfügung gestellt. Diese bietet Zugang zu
fundamentalen Middleware und Managementdiensten. Das wird von einer formalen Sprache unterstützt,
die neben der herkömmlichen Definition von Objektschnittstellen auch semantische Bezüge der Anwen-
dungen spezifizieren kann, um automatische Kontroll- und Wartungsprozesse zu ermöglichen. Weiterhin
beinhaltet das System Basisdienste für die Anwendungen, wie zum Beispiel die Verwaltung von Namen,
das automatische Suchen von Diensten, Nachrichtenverteilung, und grafische Verwaltung.

Der Ansatz, der in der vorliegenden Arbeit beschrieben wird, verwendet internationale Standards. Er ba-
siert auf weit verbreiteten und allgemein anerkannten Technologien aus den Bereichen Telekommunikati-
on, Computer, formale Sprachen, verteilte Systeme, Systemverwaltung und Benutzerschnittstellen.

Preface

Middleware and Application Management Architecture iv

Preface

Middleware and Application Management Architecture v

Acknowledgements

I would rather be attacked than unnoticed. For the worst thing you can do to an author is to
be silent as to his works.

Samuel Johnson

There have been three men that, to follow the citation, ‘attacked’ constantly. The first of
them has been my mentor, Prof. Radu Popescu-Zeletin. I extend my gratitude to him for giv-
ing me the opportunity to work in the unequaled combination of the department for Open
Communication System (at Technical University Berlin) and the Competence Center for
Open Communication Systems (at Fraunhofer FOKUS). He inspired this work with his vi-
sion of I-centric Communication and he gave me both, time & freedom to work on my own
behalf and stimulus & pressure to go where I have never been before. Prof. Geihs was a per-
fect adviser. He encouraged me with critical comments and the opportunity of a discussion
with his research associates to improve the quality of this thesis. Last not least, Prof. Horst
van der Meer, my father, who was there as a counselor every time I needed him. Thank you
for the long discussions at our summerhouse, the endless hours on the telephone, and your
long comments by email. There where several times when you showed me the right way!

Beside those three great men there is a huge number of friends, fellows, colleagues, students,
and teachers that supported me since my first day at the Technical University Berlin up to
my work as research assistant at OKS and FOKUS: the people who have joined my during
my study, the people of ICE, the PCSS and the iPCSS and the UMS teams, and all the col-
leagues at Fraunhofer FOKUS. Thank you all for your help and patience.

This work has been nearly equally done at my offices at TUB & FOKUS and at several
places where good friends and my lovely family reside. In words I cannot tell how I appreci-
ated your help, encouragement, and support: Mimi & Horst, Kerstin & Thomas & Nico &
Jakob, Ronny & Suse, Marianne, Trine, Kim, Sara, …

Success is the sum of small efforts, repeated day in and day out.
Robert Collier

Finally, I’d like to thank everyone who spent any kind of effort, small or huge, once or often,
knowingly or instinctively, for your time, guidance, and patience!

Berlin, May 2002

Sven van der Meer

Preface

Middleware and Application Management Architecture vi

Preface

Middleware and Application Management Architecture vii

Table of Contents

Chapter 1 Introduction ...1
1.1. Motivation ..1

1.1.1. Trends in Communication and Computing...1
1.1.2. Integration of Management and Middleware..2

1.2. Objectives and Scope...4
1.3. Organization of this Thesis ...5

Chapter 2 Hypothesis and General Framework ...7
2.1. Defining Use, Operation, Control, Administration, and Maintenance.........................7
2.2. Target Environments ..9

2.2.1. Business Models ...9
2.2.2. Service Platforms..10
2.2.3. Applications, Services, and Resources ...11
2.2.4. Emerging Approaches for Distributed Systems..12

2.2.4.1. Peer-to-Peer Networks ..12
2.2.4.2. Agents, Mobile Agents, and Mobile Code ..12
2.2.4.3. Flexible Infrastructure ...13

2.2.5. Web Services ..13
2.3. General Framework ..14

2.3.1. Objectives ...14
2.3.2. Requirements ..14
2.3.3. Conceptual Model...15

2.3.3.1. Application Plane ..16
2.3.3.2. Object Plane ..16
2.3.3.3. Service Plane ...17
2.3.3.4. Technology Plane ..17

2.3.4. Components of an Architecture ..18
2.3.4.1. Object Models ...19
2.3.4.2. Repositories ...21
2.3.4.3. Formal Notations...22
2.3.4.4. Development Tools ...23
2.3.4.5. Communication Services, Protocols, and Formats................................23
2.3.4.6. Core and Application Services ..24
2.3.4.7. Application Programming Interfaces ..27

Chapter 3 Approach ..29
3.1. Object Model..30

3.1.1. Abstract Object Model..30
3.1.2. Meta Schema ..31

3.2. Application Definition Language ...32
3.2.1.1. Lexical Conventions..33
3.2.1.2. Comments..33

Preface

Middleware and Application Management Architecture viii

3.2.1.3. Identifiers...33
3.2.1.4. Keywords...34
3.2.1.5. White Spaces ...34
3.2.1.6. Preprocessing...34

3.2.2. Elements..34
3.2.2.1. Module...34
3.2.2.2. Object ..35
3.2.2.3. Interface...35
3.2.2.4. Attribute...35
3.2.2.5. Action ..35
3.2.2.6. Parameter ...36
3.2.2.7. Qualifier...36

3.2.3. Types and Values..37
3.2.3.1. Basic Types ...37
3.2.3.2. Type Definitions..38
3.2.3.3. Values ..38
3.2.3.4. Arrays ..39

3.2.4. Scopes and Naming...40
3.2.5. xADL – XML for ADL Data Exchange ...40
3.2.6. Development Process..41

3.3. MAMA Core Model...42
3.3.1. Naming Conventions ..43
3.3.2. Qualifiers ..44

3.3.2.1. Descriptive Qualifiers..44
3.3.2.2. Specification Qualifiers ...46
3.3.2.3. Access-related Qualifiers...47
3.3.2.4. Qualifiers for Attribute and Parameter ..48
3.3.2.5. Miscellaneous Qualifiers ...51
3.3.2.6. Dependencies among Qualifiers ..52

3.3.3. Type Definitions ...53
3.3.3.1. Time and Date ...53
3.3.3.2. Tickets and Exceptions..55
3.3.3.3. Specifications for MAMA Core Objects ...56
3.3.3.4. Miscellaneous Definitions ...56

3.3.4. Entity Management ...57
3.3.4.1. Compile Time Information..58
3.3.4.2. Information about the Installation ...58
3.3.4.3. Information about the Application Launch..58
3.3.4.4. General Runtime Information..59
3.3.4.5. Configuration Files ..59
3.3.4.6. Fixed Configuration Information...59
3.3.4.7. Variable Configuration Information..60
3.3.4.8. Log Information...60

3.4. Application Protocol ..60
3.4.1. Protocol Specification...62

Preface

Middleware and Application Management Architecture ix

3.4.1.1. Operation ...62
3.4.1.2. Addresses ..62
3.4.1.3. Parameters, Options, and Return Values...63
3.4.1.4. Example...65

3.4.2. Protocol Information Flows ..66
3.4.2.1. Registration on the Naming Service..67
3.4.2.2. Registration on the Event Service ...67
3.4.2.3. Action Processing..67
3.4.2.4. Registration of Application-specific Operations68
3.4.2.5. Sequence Diagram...69

3.4.3. Protocol Support for Hierarchies ..69
3.4.3.1. Addressing Node Objects ..70
3.4.3.2. Addressing Leaf Objects ...71

3.4.4. Protocol Support for Transactions ..71
3.4.4.1. Successful Transaction ..72
3.4.4.2. Non-successful Transaction ..73
3.4.4.3. Additional Issues ...73

3.5. Application Programming Interface..74
3.5.1. API Specification..75

3.5.1.1. Initialization Functions..75
3.5.1.2. Server Registration Functions ...76
3.5.1.3. Communication Functions ..77

3.5.2. The Standard Library ..78
3.5.2.1. Class swNamedValue..78
3.5.2.2. Class swOptionsList ..78
3.5.2.3. Class swOperationMap..79
3.5.2.4. Class swAddressList..80
3.5.2.5. Class swObjectPath ...80
3.5.2.6. Class swError ..80

3.5.3. The Middleware Library...81
3.5.3.1. Class CORBA Server ..81
3.5.3.2. Class CORBA..81

3.6. Application Services ..81
3.6.1. Directory Naming and Specification Service ...82

3.6.1.1. Terminology ..82
3.6.1.2. Naming Convention ..83
3.6.1.3. DNSS Model ...83
3.6.1.4. Directory Model ..84
3.6.1.5. Directory Service Interface Specifications ..87
3.6.1.6. Specification Model ..88
3.6.1.7. Specification Service Interface Specification..91
3.6.1.8. Security..92
3.6.1.9. Distributed DNSS..92
3.6.1.10. Requirements on Clients ...93

3.6.2. Visualization Service ..94

Preface

Middleware and Application Management Architecture x

3.6.2.1. Understanding a Design...94
3.6.2.2. Specification Data – Navigation and Information Display....................95
3.6.2.3. Directory Data Visualization ...98
3.6.2.4. Visualization of Predefined Models ..99
3.6.2.5. Additional Functionality..100

3.6.3. Notification Event and Log Service..100
3.6.3.1. Notification and Event Service..100
3.6.3.2. Log and Monitoring Service..101

3.6.4. Lifecycle and Configuration Management Service...102
3.6.4.1. Object Lifecycle Interface ...103
3.6.4.2. Cluster Manager ..103
3.6.4.3. Capsule Manager ...104

3.7. Recommendations for the Design of MAMA Applications..105
3.7.1. Special Issues regarding System Management ...105
3.7.2. System Specifications ...106

3.7.2.1. Content-related Analysis ...107
3.7.2.2. System-related Analysis ..108
3.7.2.3. Specifications ..108

3.7.3. Access to non-MAMA Objects...111
Chapter 4 Realization ..113

4.1. ADL Compiler..113
4.1.1. ANother Tool for Language Recognition ...114
4.1.2. Implementation ...115
4.1.3. Command Line Options..115

4.2. Protocol...116
4.2.1. IDLSeqNamedValue...117
4.2.2. IDLSeqObjectPath ..118

4.3. Application Programming Interface ..118
4.3.1. Classes reused from the UMS...118

4.3.1.1. ThreadFilter ...119
4.3.1.2. Event..119
4.3.1.3. UnifiedIdentifier ..119

4.3.2. SWAPI ..119
4.3.3. Standard Library ...120

4.3.3.1. SWNamedValue ..120
4.3.3.2. SWOptionsList ..121
4.3.3.3. SWOperationMap..123
4.3.3.4. SWAddressList..125
4.3.3.5. SWObjectPath ...125
4.3.3.6. SWError...126

4.3.4. Middleware Specific Library ..127
4.3.4.1. SWCORBAServer ...127
4.3.4.2. SWCORBALib..128

4.3.5. Building an Application with the API...129

Preface

Middleware and Application Management Architecture xi

4.3.5.1. Uniform Signature of Operations ..129
4.3.5.2. Declaration of new Operations..130
4.3.5.3. Register Operations with the API..130

4.4. Directory Naming and Specification Service...130
4.4.1. Implementation Design...131
4.4.2. Directory Service Sequence Diagrams ...131

4.4.2.1. Retrieval of Directory Entries ...131
4.4.2.2. Registration of new Directory Entries...132
4.4.2.3. Deregistration of Directory Entries ...133
4.4.2.4. Modification of Directory Entries ...133
4.4.2.5. Retrieval and Manipulation of Attributes..134
4.4.2.6. Retrieval of Object Specifications...135

4.4.3. Specification Service Sequence Diagrams..135
4.4.3.1. Element Retrieval including Filtering and Scoping135
4.4.3.2. Insertion of Specifications and Elements ..136
4.4.3.3. Remove a Specification Element...137
4.4.3.4. Retrieval of Object Instances...138

4.4.4. ADL Manager ...138
4.4.5. UUID Manager ...139
4.4.6. Log Manager...139
4.4.7. Implementation of the DNSS Server ..140

4.4.7.1. DNSS Server ...140
4.4.7.2. Execution of the DNSS Server ..142
4.4.7.3. Persistence ...142
4.4.7.4. Garbage Collector..143
4.4.7.5. Exceptions ...143

4.5. XAMAV – The MAMA Visualization Service ..143
4.5.1. Implementation Backend ..143

4.5.1.1. Backend of the Tree Frame ...143
4.5.1.2. Backend of the Brain Frame..144
4.5.1.3. Backend of the Information Frame..146

4.5.2. Implementation Classes ..147
4.5.3. Class XamavTree..148

4.5.3.1. Class NodeInfo ..148
4.5.3.2. Class TreeSelectionListener ..149
4.5.3.3. Class XamavRenderer ...150

4.5.4. Class XamavBrain ..151
4.5.4.1. Class XamavDataObject..151
4.5.4.2. Class XamavActivator...151
4.5.4.3. Class XamavThoughtPainter ...152

4.5.5. Class XamavInfo...152
4.5.5.1. String Calculations ..153
4.5.5.2. Organization of CSS..153

4.5.6. Dynamic Linking and Unlinking of Thoughts..154
4.5.7. XAMAV User Interface (Manual)..154

Preface

Middleware and Application Management Architecture xii

4.5.7.1. Installation and Startup..155
4.5.7.2. The Tree Frame ...155
4.5.7.3. The Information Frame..157
4.5.7.4. The Brain Frame..157

4.6. Notification Event and Log Service..159
4.7. Lifecycle Management Service ...159

Chapter 5 Summary ..161
5.1. Conclusions...161
5.2. Outlook ...162

5.2.1. Scalability, Portability, and Application ...162
5.2.1.1. Telecommunication – Managing a Unified Messaging System163
5.2.1.2. Internet – Maintaining a World Wide Web Server..............................163
5.2.1.3. I-centric Communication...163
5.2.1.4. Network Appliances ..163

5.2.2. Related Work ..163
5.2.2.1. The JXTA Project..164
5.2.2.2. The Ninja Project...164
5.2.2.3. CORBA MAN...164
5.2.2.4. AlbatrOSS..164

List of Figures ...165
List of Tables ...169
References ...171
Acronyms ...181
Appendix A Conventions in this Document ..185

A.1 Typographical Conventions ..185
A.2 Keywords that indicate Requirement Levels ..185
A.3 Languages and Symbol Tables for Grammar Specifications.....................................186

A.3.1 Extended Backus-Naur Form..186
A.3.2 ANTLR Symbols ..186
A.3.3 EBNF used for OMG IDL Specifications...187

A.4 Graphical Notations...187
A.5 References...189

Appendix B Application Definition Language ...191
B.1 Lexical Conventions...191
B.2 Keywords ..193
B.3 EBNF Grammar ..193

B.3.1 Specification and Definition ...193
B.3.2 Qualifier Definition...193
B.3.3 Qualifier List ...194
B.3.4 Type Definition, Module, and Object ...194
B.3.5 Interface, Attribute, Action, and Parameter ..194
B.3.6 Basic Types...194

Preface

Middleware and Application Management Architecture xiii

B.3.7 Literals and Keywords ..195
B.3.8 Values ...195
B.3.9 Specifications for Lexicographic Analysis ...196

B.4 xADL...196
B.4.1 Document Type Definition ...197
B.4.2 EBNF Grammar..198
B.4.3 Specifications for Lexicographic Analysis ...200

Appendix C MAMA Specifications ...201
C.1 Core Model...202

C.1.1 Qualifiers ..202
C.1.2 Recommended Values for the Qualifier Units..205
C.1.3 Type Definitions ...206
C.1.4 Generic Objects...208
C.1.5 Entity Management...208

C.2 Application Protocol..210
C.2.1 OMG IDL Specification ...210

C.3 Application Programming Interface..211
C.3.1 Standard Library ...212
C.3.2 Middleware Library ..213

C.4 Application Services ..213
C.4.1 Directory Naming and Specification Service ...213

C.4.1.1 eXchange Data Definition ...213
C.4.1.2 DNSS Specifications ...214

C.4.2 XAMAV CSS Specification ...215
C.4.3 Notification Event and Log Service..218
C.4.4 Lifecycle and Configuration Management Service ..218

C.4.4.1 Object Interface ...218
C.4.4.2 Cluster Manager ..219
C.4.4.3 Capsule Manager ...219

Preface

Middleware and Application Management Architecture xiv

Introduction

Middleware and Application Management Architecture 1

Chapter 1
Introduction

1.1. Motivation

The rational of this thesis stems from the need of effective and secure usage, operation, control, ad-
ministration, and maintenance of billions of devices, millions of services, and tens of thousands of ap-
plications. This document describes a new approach for the integration of management and middleware.
This necessity is underlined in a dedicated issue from the specific program of the European Framework
Program 2002-2006 of the European Community that focuses on “new approaches for software, systems,
and services that address composability, scalability, reliability, and robustness as well as autonomous
self-adaptation. It addresses middleware for management, control, and use of fully distributed resources”
[EU-FP6Draft]. The approach of this thesis is presented in form of a new general framework and the de-
rived Middleware and Application Management Architecture (MAMA).

1.1.1. Trends in Communication and Computing

The technical basis of communication is shifting from typical insular solutions towards interworking en-
vironments. New services are going to influence many parts of our daily life (travel, education, enter-
tainment, shopping, recreation, and medical services) and all places people live and work at (home, of-
fice, school and university, car, airplane, elevator, marketplaces, restaurants, clinics, etc.). The communi-
cation systems at such places can exchange many types of information, such as user profiles, accounting
information, and personal data of users.

Applications and systems available today focus on issues like mobility in fixed and wireless networks,
unification of services access, personalization of service delivery (at least for a certain set of services),
and interoperability of services. With interworking environments, the degree of distribution of applica-
tions is growing. Four trends can be identified that influence distributed applications:
1. Telecommunications – The era of monolithic telecommunication networks with centralized intelli-

gence is ending. Computing and telecommunication technologies converge. The integration of ser-
vices based on the Internet Protocol (IP) and the advantages of packet-switched networks are going
to change the characteristics of telecommunication networks. Looking at 3rd generation mobile net-
works (UMTS), new approaches are already in the phase of standardization. The interworking of
formerly separated signaling protocols and the adaptation of information streams by Media Gate-
ways indicates this development. [Magedanz01] [vdMeer00b]

2. Network Computing – The Internet has altered from a scientific network for technical specialists to
a widely used market and information place. IP is going to be extended to overcome its original re-
strictions regarding, e.g., real-time transmission and quality of service demands. The Internet is now
a business driver affecting all parts of global economy. The interconnection of many IP-based net-
works changes the characteristic of workflow process from isolated single host computing towards
real network computing. IP is going to become the protocol that unifies network access. [Cerf00]

3. Devices and Wearables – The miniaturization of microelectronics has enabled small and powerful
handheld devices and wearables, small devices with minimum power consumption, which people
can easily carry. The idea behind wearables is to design gadgets out of simple electronic components
in place of ‘computers’. They need not to be connected to a network, at least not in a permanent way
[Pentland99]. In addition to ‘classical’ Customer Premises Equipment (CPE, such as telephone, fax,
Personal Computer – PC), microelectronic controlled equipment (home theatre, white goods, light
control, burglar alarm, location systems, etc.) are applied in home and office environments. Most of
these systems are currently stand-alone [Pfeifer99]. Integrating these devices in a communication
environment allows new services and demands effective strategies for management.

Introduction

Middleware and Application Management Architecture 2

4. Context-aware Services – The evaluation of service personalization approaches has shown that they
are not sufficient to match user requirements. Service personalization considers factors like time (pe-
riods of time), costs, media conversion, and intelligibility to deliver information. Context-aware ap-
plications combine this information with measured data from the current environment of the user
(like temperature, noise level) and evaluate them in order to adapt the environmental conditions with
regard to the preferences of this very user. [Abowd99]

Telecommunications

Network Computing Devices and Wearables

Intelligent Communications
Personal Communications

Information Access

Fa
cil

ity
 C

on
tro

l

Context-aware Services

UMTS

Unified Messaging

IN

TINA

CORBA

SNMP

WAP
XML

Java

Mobile Agents

ASR

IVR

OCR

TTS

ASP
DCOMRMI

FTP

HTTP

Echolon
Jini

Bluetooth

ACL

GDMO
X.500

IDL
ISDN

GPRS

GSM

Powerline

802.x

xDSL

IrDA

EIB

SSL
RSA

DES

EPOCLinux

Solaris

AN

H.323

MGCP

3GPP

IN-NG
SMTP

X.400

X.700

TMN

Smart,
Ubiquitous,
Computing

Environments

Application, Service,
and Resource
Management

Context-aware,
Intelligent,

Mobile
Services

X.200

CIM
MOF

CC/PPPHP

DIM

MIB

Portals

SAP
WBEM

DEN

XSLT

NRIM

IPTel

ATM
VHE

COPS
SLA

Policy SOAP
BER ASN.1

SMIng

GIF
DECT

3GB

WS
P2P

UDDI

WSDL

KQML

CDN

Figure 1-1: Trends in Communications [vdMeer01a]

These four trends influence the nature of (intelligent) communications. Figure 1-1 shows the resulting
framework. Intelligent communications can be divided into three areas of concern: information access,
personal communications, and facility control. These areas employ a huge number of technologies. Based
on these areas, three important issues can be defined. The first issue is the realization of services, which
deliver a nomadic user with context-aware information. The second issue is the definition of smart, ubiq-
uitous computing environments, which are built out of heterogeneous resources. The third issue is to pro-
vide answers to new requirements for the management of applications, services, and resources.

The questions come from customers and users (regarding applications), service providers (concerning
services), and network operators (dealing with resources). The offered applications and services become
increasingly complex. The network is constructed out of ever more heterogeneous technologies. Opera-
tors and providers compete in a customer-driven market. This leads to a high degree of autonomy and, at
the same time, to an intrinsic need for cooperation between operators and providers.

1.1.2. Integration of Management and Middleware

Do current management frameworks offer answers to the new questions? Are they applicable for future
applications, services, and resources? Answers to those questions can be given after analyzing current
trends in communication and computing and after evaluating the actual level of interworking and integra-
tion of management and middleware. Doing this, the answer is no, under most favorable conditions
maybe.

Introduction

Middleware and Application Management Architecture 3

The current situation can be described by the interworking (not the integration) of middleware and man-
agement systems. Furthermore, the available information sources within companies and organizations
rely on many different solutions for storing data. They are still waiting to be harmonized. In short, this
situation can be described as follows.
1. Distributed applications can access classic management systems via ‘gateways’ that translate

specifications and interactions. Figure 1-2 shows an example where clients from the WWW1 manage
resources via CORBA2. The figure shows the CORBA gateway to the management systems.
[CORBA-MAN]

2. Legacy management systems are used to manage distributed applications. Providers and opera-
tors use their running management systems to administrate distributed applications. Thus, the in-
vestment for the education of this staff is not wasted but reused for distributed applications.
[CORBA-TMN]

3. A few middleware concepts and many different products are used in parallel. Most of them
provide mechanisms for interworking (that means for the invocation of operations and the exchange
of information). The information exchange often needs an informal agreement of developers on se-
mantic. Each middleware concept includes basic management functionality on object level (e.g.
based on the clustering concepts of ODP3; [Raymond95]). Furthermore, “middleware developers
strive to support applications that meet the technical challenges of ubiquitous computing” [Geihs01].

4. Service platforms form a layer of abstraction enabling service creation and deployment, monitor-
ing of distributed applications, and integration of legacy systems. Within those platforms, the man-
agement of services is included by means of the support of tools for the definition of services and
business roles, an execution environment for services, and the management of the platform itself.
[Funabashi00] [Magedanz01]

JavaWeb Browsers

Internet

Object Request Broker

GDMO / SMI CMIS / SNMP
Manager

Agents

Application
Objects

CORBA
Facilities

Domain
Interfaces

CORBA
Services

Figure 1-2: Distributed Applications accessing classic Management Systems [NMF-GB909]

Management is defined as all activities needed to operate communication networks and services in a se-
cure and effective way. It identifies methods and provides tools to support configuration, monitoring,
maintenance, and administration of these networks and their services. The target vision is to support user
and provider in planning and operating networks and distributed systems. Nevertheless, middleware and
service platforms do not reflect management standards sufficiently. Each of them comes with a new con-
cept for managing objects or services. Furthermore, development of middleware does not follow man-
agement principles. The components object specifications, protocols, and data formats are designed
specifically to support distribution. Here, an integration of management concepts into these components
can be an important step. [Hegering99]

1 World Wide Web
2 Common Object Request Broker Architecture
3 Open Distributed Processing

Introduction

Middleware and Application Management Architecture 4

Distributed applications define new requirements, which middleware and management need to address.
Applications and devices are not realized with a single technology. Devices and network appliances need
to be accessed in a technology independent manner. Specifications must be independent of dedicated
vendors. At the same time, the support of autonomy of operators and vendors is needed to enable them to
offer clearly distinguishable products. These are basics for cooperative environments in a competitive
world.

1.2. Objectives and Scope

The aim of this thesis is to describe a unified framework integrating concepts from middleware and man-
agement. This framework decouples the applications from the middleware/management architectures.
The applications should be intrinsically manageable by means of configuration and fault management.

The three stages to reach this goal are shown in the middle of Figure 1-3. They depend on middleware
technology (right side of the figure) and management technology (left side of the figure). The first stage is
to identify the basic characteristics of middleware and management regarding their support of distributed
applications.

The second stage is to define a general framework. This framework should describe individual layers that
need to be distinguished in order to decouple applications from technology. These layers can be used to
describe areas of concern and the functionality that should be integrated. The framework itself should
focus on applications, services, and resources. It needs to be described in a way that is not prophetic (that
is to say predictive by nature) and not too dogmatic (that is to say too authoritative and rigid in style).
Furthermore, the framework can be used to identify components of a specific architecture. These compo-
nents have to reflect actual developments and technologies for the execution of services as well as for the
management of related resources.

Object Model

Middleware
Architectures

Client / Server
Paradigm

Management
Architectures

Management Models

Manager / Agent
Paradigm

General Framework
and Conceptual ModelObject Models /

Languages / Protocols
(CORBA, DCOM,
Java, Jini, UPnP,

MDA, XML, HTTP)

Object Models /
Languages / Protocols
(X.200, X.700, TMN,

SNMP, SMINg, JIDM,
CIM, WBEM, NGOSS)

Middleware accessing
Management Systems

Management accessing
Middleware SystemsExisting Approaches for the

Integration of Management
& Middleware

Management
Principles and
Architectures

Middleware
Principles and
Architectures

Middleware and Application
Management Architecture

Figure 1-3: Development Process

The third stage represents the final result in form of the Middleware and Application Management Archi-
tecture that offers uniform management functionality for applications, services, resources, and compo-
nents of the framework itself.

The concepts developed within this work combine the four characteristics of the current situation of mid-
dleware and management as described in section 1.1.2. This combination results not in a service platform
in the traditional understanding (like the layered architecture of RM-OSI4, the definition of planes of In-
telligent Networks – IN, the separation of management and middleware of CORBA-TMN interworking

4 Reference Model for Open Systems Interconnection

Introduction

Middleware and Application Management Architecture 5

([CORBA-TMN]), or the programming language dependant integration of Jini and the JAVA Manage-
ment Extension – JMX). Instead, the given approach focuses on the integration characteristics but the
independence from technologies from the areas of middleware and management. This is achieved by a
systematic analysis of the state-of-the-art middleware architectures and the long-time used management
frameworks. Result of this analysis is a technological independent specification of components, protocols,
and data formats incorporating features from both worlds.

1.3. Organization of this Thesis

The organization of this document follows the development process of the actual work. After this intro-
duction, Chapter 2 describes the hypothesis of this thesis, which is based on the identification of the ma-
jor tasks of a distributed system. The requirements of distributed systems are analyzed according to envi-
ronments this work is targeting. The hypothesis and the requirement analysis enable the definition of the
general framework.

Chapter 3 is dedicated to the Middleware and Application Management Architecture. This architecture is
derived from the general framework of chapter two. MAMA is defined by five individual solutions. This
starts with the Application Definition Language (ADL) that represents a combination of management lan-
guages and middleware interface definition languages. Based on ADL, a Core Model is specified. The
third solution is the MAMA Application Protocol that defines communication principles. The MAMA
Application Programming Interface (API) decouples applications from middleware technologies. The last
solution is a set of Application Services. The chapter is concluded by a discussion about the development
of MAMA applications.

Chapter 4 features the realization of the architecture. It focuses on the implementations for the solutions
introduced in chapter three. The realizations comprise a compiler for ADL, the c++ implementation of the
MAMA API, and the application services for naming, directory, and visualization.

Chapter 5 summarizes this thesis. The first part of this chapter is dedicated to concluding remarks on the
scientific results of this work. These conclusions indicate the basic assumption of this thesis along with
the important results. The second part of this chapter deals with related applications and with other pro-
jects that investigate in similar issues.

After the List of Figures, the List of Tables, the References, and the Acronyms, three Appendixes pro-
vide additional information on several topics. Appendix A summarizes typographical conventions and
graphical notations. Furthermore, it explains the symbols of languages that are used to specify grammars.
Appendix B is dedicated to ADL. It presents the lexical conventions and the complete grammar of ADL.
Appendix C provides the complete specifications of MAMA that are described in chapter three and four.

Introduction

Middleware and Application Management Architecture 6

Hypothesis and General Framework

Middleware and Application Management Architecture 7

Chapter 2
Hypothesis and General Framework

This chapter is dedicated to the general framework for the integration of management and middleware.
Section 2.1 starts with the definition of five terms: use, operation, control, administration, and mainte-
nance. The combination of those terms provides the basis for the framework itself. They specify areas of
concern. This first section further deals with the two major activities of distributed systems – information
mapping and system management – that are used to set the focal point of the framework. Result of this
excurse is the definition of the hypothesis. Section 2.2 analyses target environments. Section 2.3 describes
the general framework. The objectives and the principles of the framework from chapter one are refined
with the results of section one and two of this chapter.

2.1. Defining Use, Operation, Control, Administration, and Maintenance

Each distributed system is designed to accomplish a purpose. The system and its purpose can be viewed
from different perspectives, whereas each perspective creates its own requirements. However, all perspec-
tives belong to the same basic understanding: A distributed system needs to be prepared to be used and
operated in a stable, secure, and efficient way. To guarantee this objective for a long time operation, the
system needs to be controlled, administered, and maintained in its entirety, supporting the general aim of
the system, and for each single component, to ensure that each ring of the chain functions perfect.

The terms use and operation describe the part of a system that is seen by users and customers. They are
concerned about the system’s ability to serve them. A company running a system relies on its efficient
operation in order to generate revenue. This operation is supported by controlling the system. The term
control describes the brief but permanently reoccurring task of keeping the system stable to serve its cus-
tomers and to generate revenue. This includes e.g. the configuration of system components and the record
of data for accounting.

Administration and maintenance reflect long term operation and control of a system. This general task is
divided into several individual procedures. Administration starts with the permanent monitoring of the
system and the logging of all occurring events to analyze the behavior of its components. The second aim
of monitoring is the detection of system failures.

Two different types of failures can be identified. Technological failures are a result of hardware problems
in computers and components and communication errors (e.g. broken link or overload). Management
systems are already able to detect those failures and to follow (predefined) procedures to reestablish the
communication infrastructure. The other type of failures relates to content and semantic issues. The fore-
cast of those failures is still a difficult task. These failures occur when objects are initialized with wrong
data, when data is changed during transmission, as a result of mistakes from programmers, or problems in
the design of an application. They are especially difficult to handle when the distributed system is of in-
trinsically complex nature.

In Figure 2-1 the three areas of concern are separated. Applications provide the interface to users and
customers enabling them to utilize services. Services are software assemblies of components that offer
functionality for applications and provide the access to resources. Resources are software and hardware
components needed for the provision of services and for their execution. In other words, a distributed
system employs resources to complete services and applications.

The figure furthermore shows the two main activities inside such a system. Information is mapped across
levels, upwards and/or downwards, for usage, operation, and control. The system is managed at each level
through control, administration, and maintenance. The assignment of individual tasks to one activity de-

Hypothesis and General Framework

Middleware and Application Management Architecture 8

pends on the system’s purpose. This is also true for the separation of the activities. The mapping of in-
formation is supported by management activities and the system’s management relies on information
mapping.

Applications

Services

Resourcesneeds to be done
accross levels

needs to be done
at each level

Information
Mapping

System
Management

Figure 2-1: Areas of Concern and Activities of Distributed Systems

Both activities have commonalities. The mapping of information as well as the management of the system
can be described in terms of presentation, specification, submission, re-specification, triggering, queuing,
access, and execution. This layered approach is used to model modular client/server applications. It is
built upon small and functionally specialized components that can be reused across multiple systems.
Each layer of this model provides a specific function in the overall scope of the system.

The first layer focuses on the presentation of information along with the verification of results to support
the specification and the submission of individual tasks. The specification answers six questions about a
task: Who? (identifier) wants What? (request) Where? (destination) When? (schedule) Why? (purpose)
and How? (execution plan). The answers to Who?, What?, When?, and Why? are the basis for a submis-
sion that is a complete job specification. The re-specification is responsible for the mapping of What?
towards a set of commands that is needed to be executed to fulfill the purpose. Triggering activates and
deactivates jobs based on date and time information, completion of other jobs, or other available data.
Queuing provides load balancing and the prioritizing of jobs. Access functions as a mediator between the
above layers and the execution layer. It provides interfaces to resources. Execution executes any job that
is submitted from submission via access. The type of service executed here depends on the overall pur-
pose of the system and might range from database access, media conversion, user interaction, up to device
and network usage. All described layers are supported by navigation, security, metering, and logging.

These commonalities between information mapping and system management should lead to a similar
design of software that handles them. However, the reality is different. Management activities are out-
sourced to specialized systems that act independent of the systems they manage. The reason for that is the
evolution of network systems. Starting with basic services (telephony and data transmission), the first two
types of networks that existed had had no need for automated management. The networks had been oper-
ated manually. Changes in society and on the market have led to the extinction of this business model.
Networks have become connected, the market has demanded more than the basic services, and the num-
ber of devices has increased. This resulted in the actual need for an automated management of services
and resources to continue to run the network in an efficient (and profitable) way. The operation of ser-
vices and their management became separated areas with different approaches. Today, distributed sys-
tems and services run on top of middleware and are managed by dedicated management systems.

New developments can be identified. Formerly separated networks converge. Services for telecommuni-
cation, entertainment, information, and education move to the same infrastructure. The market changes
from a provider dominated market towards a customer driven market. These developments demand for a
rapid service creation, testing, deployment, operation, and withdrawal. The lifecycle of applications, ser-
vices, and resources gets short, so that a dedicated management system cannot be provided just in time.
Generically, two ways of evolution for management are reasonable. Management systems can be engi-
neered basically to be applicable to any type of distributed system or management is incorporated into the
very systems themselves. [Booz96]

The first approach is followed by several international standardization bodies and industry forums. With
the Telecom Operations Map (TOM) and the Next Generation Operations System Support (NGOSS), the

Hypothesis and General Framework

Middleware and Application Management Architecture 9

TeleManagement Forum provides models for the realization of management systems based on the formal
description of business models and the identification of generic management tasks, which can be applied
to concrete distributed systems. With the Model-Driven Architecture (MDA), the Object Management
Group (OMG) has recently published a method for a tool-supported design of distributed applications.
The MDA is based on the Uniform Modeling Language (UML) and the eXtensible Markup Language
(XML). The Distributed Management Task Force (DMTF) comes with an integrated approach of for-
merly separated data sources. Directory Enabled Networks (DEN) offer the unification of information
stored in databases with a Common Information Model (CIM). This model can be mapped to widely used
technologies like the Lightweight Directory Access Protocol (LDAP) and XML. The DMTF addresses
also the Internet and the business needs with its Web-based Enterprise Management (WBEM) solution.

In the second approach, the basic characteristics of middleware and management are harmonized, in other
words, integrated. This integration does not focus on the definition of management functionalities for
middleware platforms, but on the integration of basic characteristics of definition languages, meta infor-
mation, repositories, protocols and protocol elements, programming interfaces, and application services.
It can be described in the form of a general framework.

This work follows the second approach. The integration is done in multiple steps. First, the target envi-
ronments are analyzed. The environments fulfill business needs that are specified with business models
and supported by service platforms. The environments reflect certain applications, services, and resources
that need to be controlled, administrated, and maintained. Furthermore, the environments are affected by
emerging technologies that promise to solve business needs and customer requirements more efficient or
that enable services not possible to be realized yet.

The framework includes the identification of targeted solutions, basic principles, and general components.
Furthermore it describes a mechanism that enables the integration of the two introduced activities of dis-
tributed systems: the mapping of information across layers and the management of layer entities.

2.2. Target Environments

The general framework focuses on specific target environments. In general, these environments are tele-
communication systems. In more detail, these environments are based on object-oriented technologies
and distributed systems. Business models and service platforms formulate the requirements of service
providers and network operators. The service platforms are changing their nature from centralized to-
wards decentralized and flexible structures. Some emerging approaches are important for the future appli-
cability of the general framework.

2.2.1. Business Models

One of the strong driving forces in telecommunications is the need to create a collaboration consensus
between the different players in shared business opportunities. The formal expression of that conception
can be found in a business model, identifying the main players (stakeholders), their business roles, and
interactions between them. It is based on the projection that the telecommunication systems evolve into
an open, deregulated, multi-provider market and information place.

The Intelligent Network (IN) has defined a standard business model for telecommunications [ITU-
Q1201]. The Telecommunication Information Networking Architecture (TINA) has combined new issues
of the telecommunication market to develop a flexible model focusing on the telecommunication market
[TINA-BM]. This model has recently been adopted by the Study Group 11 of the International Telecom-
munication Unit (ITU) as a reference model for the open telecommunication market.

The modeling of business processes is changing in many areas. Concepts like Collaborative Business
(cBusiness) are going to overcome the legacy business process modeling that is focused on information of
a company. The approach of cBusiness demands a negotiation resulting in the definition of a shared goal
of collaboration between two or more companies. The business processes are no longer modeled using a
linear timeline but based on clearly identified business roles. [Röhricht01] [Scheer02]

Hypothesis and General Framework

Middleware and Application Management Architecture 10

Beside these generic business models, other organizations have realized environment specific models for
the description of roles and interactions. One example is the Printer Management Information Base (MIB)
[IETF-RFC1759]. Here, the identified roles are closely related to a printing device. The interactions de-
scribe use cases for a printing device.

2.2.2. Service Platforms

Service platforms are an instrument to design, test, deploy, operate, and terminate services regarding
business needs and technical constraints. The term “service” is used with a very diverse meaning that
depends on the segmentation of areas of concern. A general model for this segmentation is to distinguish
the problem areas of transmission (transmitting bits), connectivity (end-to-end stream binding), communi-
cation (sessions for users and applications), and information (access to distributed entities). Each area
comes with a dedicated definition for the term service.

P 0
7 8

5
2

P 0
7 8

5
2

P 0
7 8

5
2

P 0
7 8

5
2

2

43

1

P 0
7 8

5

2 end-system service intelligencenetwork node (e.g. switch)

Figure 2-2: Service Platforms – Distribution of Intelligence [Campolargo99]

The major paradigm of a service platform depends on the actual place where the intelligence for informa-
tion services resides. Two different approaches are used today (cf. Figure 2-2 case 1 and 2): The intelli-
gence is located centralized within the network (telecommunication, [Magedanz96]) or the intelligence
lies at the end systems (the Internet, [IETF-RFC1958]). Both approaches offer a limited flexibility since
they cannot support all kind of services with a similar quality of service. For example, an emergency call
demands a connection to a responsible operator within several seconds. This cannot be provided when the
intelligence is located at the end-systems, since the emergency call must be transmitted in a very limited
time window and highly prioritized inside the network [Draft-Hohno]. Solutions for the special require-
ments of telephony services within the Internet are currently under investigation [Draft-IEPREP]. Fur-
thermore, the fast creation of new services from independent service providers requires an enormous de-
gree of flexibility. This is usually not offered when the intelligence is located inside a huge telecommuni-
cation network only [DRAFT-OPES].

The convergence of telecommunications and the Internet has resulted in developments that focus on those
issues. Within the last years, Distributed Processing Environments (DPE, [TINA-EMC]) and Open Ser-
vice Access (OSA, [3GPP-OSAReq]) appeared aiming to distribute intelligence within the network and at
the end systems at the same time (case 3 of Figure 2-2).

The trends described in Chapter 1 enable services that are created dynamically and can be activated any-
where [Magedanz01]. This requires service platforms that are capable of placing intelligence wherever it
is needed, at the time it is needed there, and in a form that serves services best: centralized, distributed, at
end systems, at switches, or at special nodes (case 4 of Figure 2-2, [Campolargo99]).

Hypothesis and General Framework

Middleware and Application Management Architecture 11

[Tönnby00] explains the shift from traditional solutions towards new approaches. Services for informa-
tion are no longer built on vertically integrated services and networks but as horizontally structured appli-
cations built on top of services from any kind of network. Portals for information services get important
for unifying information access [Scheer02]. Connectivity services integrate circuit switching and packet
switching, with a significant trend towards packet switching. Connectivity is supposed to be ubiquitous
and, when realized with computers, based on the Internet Protocol (IP). Transmission moves from nar-
row-band networks to broadband networks. Communication services recognize that communication is not
only done between users, but also between users and ‘things’, and between ‘things’.

2.2.3. Applications, Services, and Resources

The appearance of the Internet has been followed by two other categories of IP-based networks, Intranets
and Infranets. Intranets are similar to the Internet, but they cover distinct organizational domains and re-
stricted access policies. Infranets are sub-computer networks usually employed for infrastructure and
equipment control. Currently, Infranets are realized with a variety of technologies. However, huge effort
is spent to adapt or to migrate existing technology towards IP. There exist already more than 12 billion
sub-computer devices, equipped with micro controllers [Luckenbach99]. Those devices produce an enor-
mous amount of information that is processed within specialized application environments only, e.g. to
control the elevators of an office building [Pfeifer99].

Linking the microelectronic controlled devices to the Internet imposes completely new services and sce-
narios that affect all areas of living and working. A (limited) collection of services and resources is pre-
sented in Table 2-1. Services and resources are categorized in four key areas: communication, localiza-
tion, information, and appliances.

 Communication Localization Information Appliances

Services email, fax, voice,
IP telephony, short
message services,
paging, instant
messaging

hardware tracking
and profiling, per-
son tracking and
profiling, theft pro-
tection

e-learning, kiosk
information, media
conversion, content
networking,
e-commerce

surveillance, local-
ization of informa-
tion, access control,
automatic mainte-
nance

Resources telephone, mobile,
fax, PDA1, com-
puter, pager, web
phone, notebook

active badges,
global positioning,
cell location, wire-
less networks

object-oriented &
relational databases,
WWW2, file systems,
net news

smart IP devices,
Powerline, Jini,
embedded systems,
network appliances

Table 2-1: Applications, Services, and Resources [vdMeer01a]

On the one hand, the four different areas include a huge number of services. On the other hand, the ser-
vice vendors are no longer in the position to dictate services for the mass market. Instead, customers and
end-users demand personalized services.

The services and resources need neither to be present permanently nor pre-configured for single use-
cases. They can be available in a spontaneous way, technically backed by ad-hoc networks where devices
are registered and accessible for the duration they appear within a dedicated environment [IBM99]. Ser-
vices need to be designed and operated on heterogeneous networks with several different types and
classes of devices.

1 Personal Digital Assistant
2 World Wide Web

Hypothesis and General Framework

Middleware and Application Management Architecture 12

2.2.4. Emerging Approaches for Distributed Systems

The ‘traditional’ approaches for distributed systems are based on middleware like the Common Object
Request Broker Architecture (CORBA), the Distributed Component Object Model (DCOM), and Enter-
prise Java Beans (EJB). Service platforms and architectures as TINA and OSA profit from the distribu-
tion transparency and a unified view to distributed objects. However, the underlying idea is quite similar
– if not identical – to Remote Procedure Calls (RPC). This results in client/server applications with more
or less intelligent clients.

New approaches for distributed systems follow other paradigms. Since those new developments have a
good chance to influence future service environments, they are an essential part of this thesis. It must be
possible to incorporate them into the framework developed within this thesis in order to provide a solu-
tion that is prepared for the future.

2.2.4.1. Peer-to-Peer Networks
The basic definition of Peer-to-Peer (P2P) is presented by [Shirky00] as “a class of applications that takes
advantage of resources – storage, cycles, content, human presence – available at the edges of the Internet.
Because accessing these decentralized resources means operating in an environment of unstable connec-
tivity and unpredictable IP addresses, P2P nodes must operate outside the Domain Name System (DNS)
and have significant or total autonomy from central servers.” This means, a system is a P2P system when
it supports the temporary establishment of structures to fulfill a special task not demanding fixed configu-
rations of hosts and devices.

A P2P system gives its nodes significant autonomy. Following this, [Schmid01] gives a more simple
definition that a system is peer-to-peer when all components of the system are equal.

[Shirky00] identifies the distinction of ownership as a characteristic for P2P systems. The question here is
who owns the hardware that the service runs on? The given example compares Yahoo3 with Napster4,
where Yahoo runs on Yahoo’s own hardware in Santa Clara while Napster runs on hardware owned by
individual Napster users. P2P is able to decentralize not only features but also costs and administration.
The concept of P2P has been successfully employed in other commercial products [Müller02].

2.2.4.2. Agents, Mobile Agents, and Mobile Code
Agent technology is not totally new. However, this level of usage of agent-based software has dramati-
cally increased in the last year. Agents are software components that fulfill two orthogonal concepts. The
first concept is the agent’s ability for autonomous execution. The second concept is the agent’s ability to
perform domain oriented reasoning. In general, agents are software-based computer systems that com-
prise the following properties:
• Autonomy – agents operate without the direct external interventions and have control over their ac-

tions and their internal state.
• Sociability – agents interact with other agents via agent-to-agent communication languages.
• Reactivity – agents perceive their environment and response in a timely fashion to changes that occur

within it.
• Pro-activeness – agents do not simply act in response to their environment but they are able to ex-

hibit goal-directed behavior by taking initiative.

Complementary, but not mandatory, attributes are intelligence (goals, reasoning, planning, learning), mo-
bility (remote execution, migration), and social ability (communication, co-operation). These attributes
enable the distinction between Intelligent Agents (IA), that can act pro-actively, and Mobile Agents
(MA), that can move between different nodes multiple times. Mobile agents are also called Mobile Code.
Agents that combine intelligence with mobility are called Intelligent Mobile Agents (IMA).

3 Yahoo – one of the first and a still very popular search engine within the WWW
4 Napster – a system for the exchange of audio files

Hypothesis and General Framework

Middleware and Application Management Architecture 13

Special languages have been developed that enable agents to communicate not only information but also
emotions as they appear in human-to-human communication. One example of those languages is the
Knowledge Query and Manipulation Language (KQML). With such characteristics, agents can provide a
do-what-I-mean paradigm (DWIM) where a user e.g. tells an agent that it should buy a new video re-
corder. The agent needs to fulfill several individual tasks to reach this goal: find a video recorder that is
technically compatible with the existing television set, bargaining with vendors of video recorders, select-
ing, asking the users bank for a credit, etc. More complex scenarios can be set up when many agents col-
laborate to reach a joint goal. [Arbanowski98] [Breugst98]

2.2.4.3. Flexible Infrastructure
Software architectures like Jini and Universal Plug and Play (UPnP) already recognize the demand for
scenarios of flexible infrastructure. Looking at mobile networks, the number of not permanently con-
nected devices will increase within the next years. Additionally, the application areas introduced in sec-
tion 2.2.3 describe environments where services, resources, and user-demands meet unplanned. Such
environments need to offer service discovery, registration, and reservation without risking a single-point-
of-failure.

Flexible infrastructure also includes an emerging area: smart devices. This class of resources is character-
ized by intelligence limited to the purpose of the actual device, but flexible enough to allow devices to
exchange information and to ‘combine forces’. To give a simple example, two lights in a room can be
notified by a light sensor that the room is to dark. Both lights can decide to solve the problem in turning
themselves on. Another example is a light switch, which is not preconfigured, that interacts with a light to
control it. The two devices (switch and light) can detect each other, recognize their function, and config-
ure themselves to provide the simple service of switching the light on and off (or to dim the light).
[IBM99] [Rekesh99] [Inet01]

2.2.5. Web Services

Web Services are a development of the World Wide Web Consortium (W3C) [W3C-WS]. It focuses on
the integration of the Hypertext Transfer Protocol (HTTP) and RPC as an important step for linking the
WWW with RPC-based distributed object oriented systems. The first ideas spread out in 1997, but in
2001 the use of XML for remote operations became prevalent [Lee98]5. The W3C coordinates a number
of activities related to Web Services, including working group (WG) for an architecture and a WG for
service description. Furthermore, the standardization of a Simple Object Access Protocol (SOAP) is
aligned with Web Services.

SOAP is a lightweight protocol for exchange of information in a decentralized, distributed environment.
At its core, it is XML based. SOAP defines a framework for the definition of a message and its process-
ing. A complete library of documents and specifications for Web Services, including SOAP, can be found
in [W3C-WS].

The Web Services Interoperability Organization (WS-I) focuses on the development of standards for web
services. [WSI-Intro] indicates that “the fundamental characteristic of web services is interoperability”.
The organization is established by companies who direct the development of web services. The target
environment includes monitoring and analysis tools for control and administration of web services. The
WS-I identifies XML Schema, SOAP, UDDI6, WSDL7 as basic technologies for web services [WSI-
Profiles]. Information about the WS-I can be found at [WSI-WWW].

5 This reference is an HTML document that was created 1998. The last update to this document was done on February 25th 2002.
6 Universal Description, Discovery, and Integration of businesses for the web
7 Web Services Description Language

Hypothesis and General Framework

Middleware and Application Management Architecture 14

2.3. General Framework

The General Framework offers concepts and rules for the definition of an architecture. The concepts are
expressed in form of objectives and requirements. The main objective is the integration of middleware
and management with unified management. This objective leads to a number of requirements, such as the
support of services for naming of objects and building of repositories. The rules reflect the concept in a
multi-layer model. This conceptual model defines rules that need to be followed in order to realize the
concepts. Finally, the concepts and the rules can be viewed together to define an architecture and its com-
ponents. The General Framework gives recommendations for the realization of identified components.
Additionally, this section provides a review of available technologies.

2.3.1. Objectives

The main objective of this framework is the integration of management and middleware concepts while
maintaining the independence from concrete technologies. The integration serves as a basis to develop
service platforms with integrated management facilities that enable applications, services, and resources
to be used, controlled, operated, administered, and maintained in a unified way. The independence pro-
vides the realization of the framework employing the technology of choice, whereas the decision for the
technology can be neither foreseen nor predicted.

Components that belong to the framework should benefit from the integrated and unified management in
the way that their management can be done by the framework itself (instead of a certain complementary
management system).

The second objective is that the framework needs to be designed for multiple purposes. The target envi-
ronment spans from small systems built for a simple purpose (as the usage and control of a home net-
work) up to huge distributed systems covering a multitude of service within a multi-domain environment
and many different roles and businesses.

The third objective is to support the two major activities (information mapping and system manage-
ment) as introduced in section 2.1. The framework should offer mechanisms to map information across
identified levels and, at the same time, to manage entities of those levels.

The fourth objective refers to the acceptance of the framework itself. The history of the Internet has
taught that adoption is a better predictor than perfection. The acceptance of the framework is not given for
the sake that it integrates middleware and management. Instead, the framework will be used only if it
integrates management and middleware up to a reasonable level, employs widely known and accepted
methods and technologies, and creates novel functions or improves existing ones.

2.3.2. Requirements

The objectives for the definition of the framework as well as the target environments lead to the definition
of the requirements. In general, the framework should enable interworking, portability, and scalability.
Interworking reflects the need of business roles and framework components to interact, since the target
environment of the framework is a global market of converged services and networks. Portability is a
requirement that has to be introduced because the further usage of existing technologies is not certain,
emerging technologies have not shown their applicability, and future technologies are yet unknown. Scal-
ability should prepare the framework for distributed systems for the range of small up to huge application
areas.

The second block of general requirements relates to the functionality the framework has to support. Since
applications, services, and resources are realized by distributed components, the framework itself must
support distribution. The distributed components can be implemented with various technologies. This
leads to the necessity of a framework that is technology independent. The integration of distributed sys-
tems in the Internet and the WWW imply requirements that are described as web-enabled and directory-
enabled. Last but not least, the mapping of information across levels and the management of each level

Hypothesis and General Framework

Middleware and Application Management Architecture 15

follows pre-defined or negotiated methods of actions. The framework should offer mechanism to enable a
policy-based realization of them.

The handling of distributed systems makes it necessary for the framework to offer the basic functionality
that the distribution of components demands. Mechanisms must be identified for the naming and ad-
dressing of components as well as for their registration. The approach of a centralized naming service
(as a single point of failure) seems not sufficient, especially looking at P2P networks and mobile agent
technology. Registered components will seek for services with a certain Quality of Service (QoS). They
should be aided by discovery and lookup services. The communication among components can be ar-
ranged in a peer-to-peer manner or by message services.

The support of automated control, administration, and maintenance must be based on formal descriptions
of components and policies for their interaction. Policy and profile services (or data and type reposito-
ries) can be mechanisms to realize this. The visualization of components, interactions, and data types is a
requirement for the manual control of a distributed system.

The technical challenges can be seen in the interoperability of components, the control of resources that
are employed by the framework, and the definition of formats for data exchange and evaluation. Connec-
tivity and reliability of framework services might be based on middleware technology. However, the
framework has to ensure them explicitly.

2.3.3. Conceptual Model

The conceptual model identifies four planes. Each plane is dedicated to a specific problem context. Each
problem context describes a dedicated viewpoint to the two areas of concern (information mapping and
system management) and the five terms (use, operation, control, administration, and maintenance) intro-
duced in 2.1. The planes are used to specify the different types of information that need to be mapped and
the different levels of management that is needed. The approach of a conceptual model is taken from the
IN standard series [ITU-Q1201].

Technology
Plane

CORBA

PHP
CORBA

SNMP
UPnP JNDI

XML/
HTTP

JINI J2EE

Service Plane

Object Plane

DomainA

DomainB
DomainC

Application
Plane WWW

AlertWWW
Monitoring

WWW
Editing

SDO
I-Centric
Service

Context
Interpreter

SDO

Context
Server

Figure 2-3: General Framework – Conceptual Model

Hypothesis and General Framework

Middleware and Application Management Architecture 16

The conceptual model provides the basis for a specific architecture. It presents rules for components of a
specific architecture and describes relationships between those components. The four planes of the con-
ceptual model are presented in Figure 2-3. The definitions of each plane can be employed to describe
particular aspects of the architecture. The four planes are
• Application Plane, covering functionality within functional blocks;
• Object Plane, modeling functional blocks as computational objects;
• Service Plane, modeling core and application services as computational objects; and
• Technology Plane, identifying the employed technologies and their relationships.

On the first view, the conceptual model separates the applications from technologies. Applications be-
come technology independent. This means, an application is not using a particular middleware or man-
agement technology. Those technologies become transparent for the application. The conceptual model
allows substituting middleware and management technologies without changing the applications.

However, the conceptual model must not be seen as a dogma. Application might need direct access to
technologies. This is especially important for the management of resources. This direct access belongs to
the business model and the design of the application. An architecture derived from the conceptual model
should not deny such a direct access.

In the vertical axis, Figure 2-3 shows two example distributed applications. The left side of the Applica-
tion Plane depicts a WWW editing and monitoring system. The right side shows components of an I-
Centric communication system [vdMeer01a]. Components of the two systems are shown for each plane.
The significant interactions between components within one plane are presented with bold lines. These
interactions follow the functionality that the particular plane describes. For the Service Plane, Figure 2-3
shows also the interactions that occur in the Object Plane (normal lines). The dashed lines are used to
present the mapping of individual components between planes.

For example, the application component WWW Monitoring interacts with WWW Editing and WWW Alert.
In the Object Plane, this component belongs to DomainA. The Service Plane shows that this WWW Moni-
toring has relationships to two services. This can be a naming service to register the component and an
event service where notifications are sent to. The dashed line from the component to the Technology
Plane shows that WWW Monitoring is realized as a CORBA object.

2.3.3.1. Application Plane
The Application Plane focuses on the design and the implementation of applications. An application is an
implementation of a set of functionalities that might be distributed over multiple hosts. This set of func-
tionality does not include the support for distribution [TMF-ACT01-99]. Following [TINA-ODL], a
group of object consists of object specifications that are called components. An application can be seen as
a group of objects. An application component is then a single object specification within a group.

The design of an application can be derived from a business model. Appropriate models and tools can be
used for design and implementation. The final implementation can profit from a concrete architecture.
Some areas of applications have been introduced in section 2.2.3. The actual purpose of future applica-
tions can neither be predicted nor foreseen. The conceptual model gives no further recommendations for
this plane.

2.3.3.2. Object Plane
The Object Plane concentrates on the modeling of (distributed) objects. An object is a part of an applica-
tion that models a real world entity. It is implemented in a computational, identifiable entity that encapsu-
lates state and operations. Attributes are sets of data with a fixed semantic [CORBA] [TMF-ACT01-99].
Figure 2-4 shows an object that offers interfaces with operations. These operations are internally imple-
mented as data and methods.

The interfaces of objects are specified in a certain language. Many middleware and management architec-
tures employ a specific interface language. The languages are combined with tools for automated process-
ing such as compilers and interpreters. The selection of an appropriate interface language depends on the
objectives of the specific architecture. Many languages only include the signature of an interface. This

Hypothesis and General Framework

Middleware and Application Management Architecture 17

signature might not be enough. Languages from the management area often add semantic information to
individual parts of a signature. This information can be used to qualify an interface or parts of it. Fur-
thermore, this information can provide the basis for repositories that enable lookup, monitoring, and con-
figuration of objects.

Object

Data Methods

Interfaces

Figure 2-4: General Framework – Object

A specific architecture can support the application design with a set of basic specifications. This can be
done e.g. in form of a core model (like the DMTF core model [DMTF-CIM]) or a structure of information
(like the Structure of Management Information – SMI; [IETF-RFC2578]).

Beside objects, Figure 2-3 shows the concept of domains. A domain can be used to separate (or to dele-
gate) responsibilities. Domains can be implemented e.g. for the collection of objects that deal with differ-
ent connectivity services (signaling, packet switching), objects that belong to functional areas (like the
management functions of [ITU-X700]), or objects that relate to layers of the Reference Model for Open
Systems Interconnection (RM-OSI; [ITU-X200]). A domain can also be used to reflect geographical
distribution or hierarchies of an organization. The reflection of business models is an important factor for
modeling domains.

A protocol is needed to define how interactions between objects can take place. The characteristics of the
protocol depend on the interface language. The specification of the protocol should enable an easy map-
ping to technologies of the Technology Plane. The protocol must enable the identification of called ob-
jects. Furthermore, it should provide a reliable and encrypted transmission. An Application Programming
Interface (API) can be used to realize protocol mechanisms and to provide access to protocol features.

2.3.3.3. Service Plane
The Service Plane models a collection of interfaces and objects (services) that provide basic functions for
(application) objects [CORBA-NS]. A service is independent from the application domain and from ob-
jects of the Object Plane. One of the most important services is a naming service, which enables the iden-
tification of (available) objects. The target environments introduced in section 2.2 demand for other ser-
vices. The exchange of asynchronous events can be realized with an event service. Monitoring of objects
and longtime configuration management relies on logged events. Ad-hoc networking and P2P communi-
cation need lookup services to search for objects that offer a specific functionality.

The basic services that must be provided by a specific architecture are a naming service and an event
service. Furthermore, the architecture should offer services that combine information about object in-
stances (naming) with information about object classes (specification). This combination allows the as-
sembly of repositories that ease the administration and maintenance of a system. Additionally, the archi-
tecture should offer functionality for the visualization of instances and classes in order to support the
manual management of a system.

2.3.3.4. Technology Plane
The technology plane is introduced to model middleware and management technologies. This plane func-
tions as a mediator to the actually employed middleware with specific interface languages, communica-
tion protocols, and services. Management systems can be integrated into the architecture and existing

Hypothesis and General Framework

Middleware and Application Management Architecture 18

specifications can be reused if available. The technology comprises middleware and management archi-
tectures (such as CORBA, Java, Simple Network Management Protocol – SNMP, Telecommunication
Management Network – TMN) as well as concrete products.

Figure 2-3 gives an example that includes eight different technologies. Beside two major middleware
platforms (CORBA and Java), the figure shows a Java based directory platform (JNDI) and a Java based
ad-hoc networking platform (Jini). PHP8, XML/HTTP, UPnP, and SNMP are included as examples for
middleware that is based on standards from the W3C and the Internet Engineering Task Force (IETF).

The connections between the technologies in Figure 2-3 should indicate that there must exist an inter-
working between these very technologies. This interworking is needed to enable a communication be-
tween the objects and services. To give an example: The application WWW Monitoring is realized in
CORBA and the application WWW Alert is based on an SNMP Manager (dashed lines). Both objects
should communicate with each other. This communication can be realized with a CORBA/SNMP bridge
(horizontal integration within the Technology Plane). Another possible realization is that the application
WWW Alert would also be a CORBA object that communicates with the SNMP Manager and functions as
a gateway by itself (vertical integration realized in the Object Plane and the Technology Plane).

2.3.4. Components of an Architecture

The general framework defines the basic concepts and the conceptual model specifies the basic rules for a
concrete architecture. The architecture developed within this work is the Middleware and Application
Management Architecture (MAMA). This architecture concentrates on the two middle planes of the con-
ceptual model. The rules of the Object Plane are used to define the basic components of MAMA. The
rules of the Service Plane already identify services that need to be realized. The architecture is not going
to define methods for business models. Those models are related to the business logic of application,
which should be supported but cannot be defined by the architecture. The Technology Plane depicts im-
portant realizations and products. The architecture must recognize those technologies and should reuse
existing approaches for interworking between different technologies.

API

Core Services

Communication Services
Control Services

Protocol Services

Protocols and Formats

Configuration
Console

Performance
Monitoring

Administration
Tools

Development Execution Environment Deployment

Naming, Directory, Monitoring,
Lifecycle, Config, NotificationAPI

Application Services
Messaging, Specification,
Visualization, DatabaseAPI

Meta Schema

Core Model

Repository

Formal
Notation

Compiler
Mappings

Tools

Figure 2-5: General Framework – Components

The components of MAMA belong to the three parts of development and operation of a distributed sys-
tem. These three parts are depicted in Figure 2-5. They are development, execution environment, and de-
ployment. The development step follows a business model. MAMA should support the development with
an appropriate formal notation for the specification of objects. This specification is based on a meta
schema (or object model), which needs to be designed in a way that reflects the needs of the target envi-

8 PHP Hypertext Preprocessor

Hypothesis and General Framework

Middleware and Application Management Architecture 19

ronments (cf. section 2.2). A core model can be specified using the formal notation. Task of the core
model is to provide basic definitions for a distributed system, such as often used data types and generic
objects. The formal notation defines syntax and semantic of a language that is derived from an object
model. Here, the mapping of specifications to concrete middleware technology, programming languages
and compilers must be specified by MAMA. This mapping can be supported by tools for an automated
processing of specifications.

The second step is the execution of the distributed system. This is supported by MAMA in form of an
execution environment, which provides an interface to the Technology Plane. Figure 2-5 shows the exe-
cution environment in form of three layers. Each layer provides a unified access to its functionality via
one or more APIs. The lowest layer realizes the communication between objects and between objects and
services. For this communication, MAMA needs to define a protocol along with data formats, and control
services. The protocol defines the communication behavior, including the transmission of data. The data
formats are used by the protocol for the transmission of information specified in the formal notation. The
control services can be used to include additional functionality for addressing, security, and transactions.
The protocol must be specified in a technology independent way. This should allow the usage of many
different technologies for the actual exchange of data.

The services of the Service Plane are further separated in two groups. The first group collects core ser-
vices, which must be present in the execution environment for usage and operation of a distributed sys-
tem. The second group depicts services that might be present. This second group of services should im-
prove the architecture’s ability to support control, administration, and maintenance.

The final step is the deployment of the objects and the distributed system itself. Here, a number of tools
should be provided for the configuration of the system. These tools can be offered in form of an admini-
stration application. This application should be able to visualize information about the actual state of ob-
jects, including instantiated objects, request counts, runtime behavior, monitoring, and log information.
The tools should be based on core and/or application services. Following this approach, an administration
tool by itself is a distributed application that can be modeled using the conceptual model and the mecha-
nisms of the architecture.

The following subsections discuss state of the art technologies for the components of the architecture.
These technologies are parts of actually available middleware and management architectures. Section
2.3.4.1 starts discussion with an overview of object models and meta schemas. Section 2.3.4.3 concen-
trates on interface languages and syntax notations. An object model and a formal notation provide the
basis for the definition of repositories. Section 2.3.4.2 shows that a repository represents a virtual data
store that combines specifications (object classes and related definitions) and runtime information (object
instances).

The sections 2.3.4.5 and 2.3.4.7 review approaches for protocols, data formats, communication services,
and APIs to define the lowest layer of the execution environment. Section 2.3.4.6 is dedicated to core and
application services. Tools and user interfaces to application services should support the deployment of
applications. Other tools for the deployment of applications are not discussed explicitly. They belong to
the concrete target environment. However, the specifications of MAMA should give recommendations
for those tools.

2.3.4.1. Object Models
An object model is the composition of interacting objects that concentrates on clearly identified aspects of
the real world. Object models can be abstract or concrete. An abstract object model identifies basic char-
acteristics of objects [OMG-OMA]. The client/server paradigm ([Orfali96]) and the manager/agent
relationship ([Hegering99]) can be denoted as abstract object models. A concrete object model adds
specific recommendations and rules. A concrete object model identifies the semantic of objects.
Furthermore, it can restrict the abstract model by eliminating entities or placing additional restrictions
[CORBA]. The object models of [CORBA] and [TINA-CMC] define an object as presented in section 2.3.3.2. In
general, these characteristics apply also to managed objects. In detail, managed objects are further re-
stricted. They provide an abstraction from a physical resource (network component) or logical resource
(e.g. profiles). The operations of a managed object are often predefined in the object model. SNMP de-
clares access policies for attributes (read-only, read-write, read-create, not-accessible; [IETF-RFC2578])

Hypothesis and General Framework

Middleware and Application Management Architecture 20

that directly influence set and get operations of the protocol. X.700 has standard operations defined for all
managed objects (create, delete, action) and standard operations for attributes (get, replace; [ITU-X720]).

Furthermore, managed objects emit notifications. Notifications are closely related to the resource that is
modeled by the managed object. This is an important characteristic of the manager/agent relationship.
[Hegering99]

The CIM Meta Schema allows describing object instances [DMTF-CIM]. This feature enables a designer
to specify a distributed system in a very restricted way, including a set of object instances. This approach
makes configuration management easier and solves some issues of an initial start-up of a system.

A Reference Model

The Reference Model for Open Distributed Processing (RM-ODP; [ITU-X901], [Raymond95]) can be
used as a guideline for the design of distributed systems. The computational and the engineering view-
point can be employed as a basis for concrete object models. The left side of Figure 2-6 shows a computa-
tional object, the right side an engineering object. [Linington95] states that “Objects can have any number
of interfaces. This ability to partition the observable behavior of an object between multiple interfaces
gives a valuable tool for structuring the specification of an object’s behavior.”

Operational
Interface

Hard- and Software

Core
Object

Legacy
Integration

Object2Object1

Object Group

Streaming
Interface

Figure 2-6: Computational and Engineering Objects

Figure 2-6 shows Object2 with one computational and one streaming interface. Furthermore, the mapping
to engineering objects is presented. These engineering objects decouple the interfaces (interface objects)
from the implemented behavior (core object) and legacy technology (legacy integration).

Semantic Information

The concrete object models of middleware offer mechanisms that describe the syntax of an object. TINA
adds the two textual descriptions behaviorText and usage, which should be used to explain behavior and
usage in a natural language of choice [TINA-CMC] [TINA-ODL]. SNMP calls such a description a defi-
nition, which must be used to explain the minimum requirements on an object’s implementation [IETF-
RFC2578].

The CIM meta schema introduces qualifiers to characterize objects and other named elements. This
mechanism allows the CIM meta schema to be “extensible in a limited and controlled fashion” [DMTF-
CIM]. Adding new qualifiers increases the availability of meta data about a schema, which can be auto-
matically processed in a particular management environment.

Attributes and Parameters

Attributes and parameters of interfaces belong to specific types. The permitted types are usually identified
in the concrete object model. Middleware distinguishes between basic types and constructed types e.g.
described in [CORBA]. Basic types are in many cases similar to basic types of programming languages,
like different kinds of integers, floating point numbers, characters, and Boolean types. Constructed types
can be records (struct), discriminated unions, sequences of other types, arrays, interfaces etc. The descrip-
tion of the semantic of types is mostly limited to ranges (e.g. for integers), minimum/maximum bounda-
ries (e.g. for arrays), and the memory allocation (e.g. characters).

Hypothesis and General Framework

Middleware and Application Management Architecture 21

Management object models define a more restricted semantic of types. E.g., SMI uses one type for IP
addresses, two types for counters, and one type for time ticks [IETF-RFC2578]. The CIM meta schema
includes a type for date and time information [DMTF-CIM]. [ITU-X721] defines generic types for attrib-
utes, actions, and notifications. Generic attribute types include counters (simple and settable), gauge (dy-
namic variable), and tide-mark (minimum or maximum value of a gauge during measurement time). Each
implementation of such an object model is expected to support the defined types along with their seman-
tic. Interworking between management systems is only guaranteed when these types are used.

Object Identifiers

For management, administrative policies are used for assigning identifiers. These policies are either de-
fined directly in the object model (SNMP in [IETF-RFC2578]) or belong to the characteristic of em-
ployed technologies (e.g. distinguished names for directories as defined in [ITU-X720]). These identifiers
are further used to generate repositories and to enable interworking between different implementations.

Rules for Object Instantiation

In middleware, an interface represents a syntactical description of a service that is offered to clients. An
object satisfies an interface when it provides the service according to the operations of this very interface.
Management defines more restrictive rules for the instantiation of objects. An OSI managed object must
support all the attributes, operations, behavior, and notifications specified in all mandatory packages.
Furthermore, it exists, from a management point of view, if it has a distinguished name and supports the
operations and notifications defined for its class. Otherwise, it does not exist from a management point of
view, even if a physical counterpart exists [ITU-X720].

Object orientation

Object-orientation is based on at least two key issues: encapsulation and inheritance. Encapsulation re-
flects the fact that objects distinguish between their interfaces and their implementation. Inheritance pro-
vides the basis for code-reuse and for code-clarity [Stroustrup92]. The most management object models
do not allow multiple inheritance [Hegering99]. As [CORBA-MAN] states: “Real embedded interfaces
don’t differ in the services they offer, they differ in the entities they manage … In object-oriented terms,
services represent a case in which inheritance is not appropriate.”

However, not all object models must follow an object oriented approach. The object model of SNMP
does not include any kind of object-oriented design mechanism. SNMP managed objects are declared,
implemented, and used as a set of variables. The variables can be structured in tables. A table might con-
tain any number of columns and each column represents a single variable (managed object)
[Zeltserman99].

2.3.4.2. Repositories
Management Information Bases and Interface/Object Repositories are (usually distributed) virtual data
stores that manage information about an object-oriented system. A MIB defines the naming conventions
for stored objects. In middleware, the term repository describes a database that holds interface/object
signatures. For DCOM and CORBA, these repositories contain information about an object’s signature
and its actual implementation. Middleware for the control of appliances, such as Jini and UPnP, add in-
formation about the semantic of interfaces/objects.

Management architectures define a central naming scheme in which names (or parts of names) are as-
signed by an authority. The names are arranged in a hierarchical structure reflecting a hierarchy of man-
aged objects. SNMP uses an OBJECT IDENTIFIER that is constructed of a number of labels [IETF-
RFC1157]. The SNMP standards track demands the implementation of several parts of the MIB at each
agent. The implementation of the system group, e.g., is mandatory [IETF-RFC1213]. For OSI manage-
ment, a name binding must be assigned to each object specification [ITU-X720]. Furthermore, an Object
Identifier Tree (OIT) is defined as basis for a consistent object naming [ITU-X722].

The CIM mechanisms for naming and object databases facilitate the task of sharing management informa-
tion between a variety of platforms. The major issue of naming is the enterprise-wide addressing of ob-
jects. Object databases based on CIM naming are employed to realize a MIB-like instrumentation

Hypothesis and General Framework

Middleware and Application Management Architecture 22

[DMTF-CIM]. The creation of different scope hierarchies, regarding the actually used models, must be
able to be changed over times. This does not permit a single, standardized MIB as of SNMP and X.700
management systems.

2.3.4.3. Formal Notations
Formal notations are languages used for the specification of objects and their interfaces. They do not de-
pend on actual implementations. Those languages are built of a number of definitions that explain syntax
and semantic of an object model (or a meta schema). A formal notation is defined by a grammar, usually
a variant of the Backus-Naur Form (BNF), such as Augmented BNF (ABNF, [IETF-RFC2234]) or Ex-
tended BNF (EBNF, [ISO14977]). Notations for managed objects are often based on the Abstract Syntax
Notation 1 (ASN.1) [ITU-X208]. Almost all specifications are coded as plain text files. This gives a num-
ber of intrinsic characteristics:
• Platform independence (every platform is able to handle plain text files);
• Extendibility (every platform supports tools for editing plain text files);
• Automated processing (no additional re-formatting is necessary); and
• Readability (as long as the reader is familiar with the formal notation).

A formal notation defines conventions for permitted character sets (ASCII9, Unicode, ISO10 Latin-1),
identifiers, keywords, comments (single line, multi-line), and preprocessing. With particular language
elements, the definition of naming and scoping rules is established.

The formal notation that are of interest for MAMA can be categorized as follows.
• Interface Definition Language (IDL) – is used for the specification of interface signatures in DCE11,

CORBA, and DCOM. [DCE-RPC] [CORBA]
• Object Definition Language (ODL) – enables the description of ODP computational objects with

interfaces, object groups, and a number of templates. [TINA-ODL]
• Languages for the specification of managed objects – are employed by management architectures.

Examples for those languages are SMI, the Guidelines for the Definition of Managed Objects –
GDMO, and DMTF Managed Object Format – MOF. These languages are either a subset of ASN.1
(SMI [IETF-RFC2578], GDMO [ITU-X722]) or an extension of IDL (DMTF MOF; [DMTF-CIM]).

• Languages for generic data exchange – XML and derived languages provide technology independent
mechanisms for data exchange. As a meta language, XML offers the ability to specify domain spe-
cific languages that can be processed with standardized tools.

All languages are designed following a concrete object model. The applicability of the languages within
this thesis depends on the concrete object model of MAMA. In general, languages from all categories can
be used. However, each category has specific characteristics that need to be considered.

The object models of CORBA and DCOM do not distinguish between object and interface. Their IDL
does not support more than one interface per object. With ODL, multiple interfaces per object can be
realized. Both languages give no recommendations or restrictions for operations and type definitions.
Languages from the area of management primarily support generic interfaces for specific management
functionality. This includes meta information on semantic of objects, interfaces, and attributes as intro-
duced by an object model. IDL and ODL do not offer such a facility.

Object identifiers are almost case-insensitive. This means, two identifiers collide when they differ only in
the case of their characters. Case-insensitive identifiers already support scripting languages, which do not
distinguish between upper-case and lower-case characters. [DMTF-CIM]

In IDL, attributes can be declared as read-only. Parameters of operations can be declared as in, out, or
both; clarifying in which direction a parameter should be transmitted [ITU-X920]. Furthermore, map-

9 American Standard Code for Information Interchange
10 International Standardization Organization
11 Distributed Computing Environment

Hypothesis and General Framework

Middleware and Application Management Architecture 23

pings from IDL to programming languages are defined [CORBA]. ODL adds templates for the creation of
interfaces, objects, and object groups. These templates serve for “software distribution and modularity”
[TINA-ODL]

SNMP goes a similar way offering an object-type macro that should be used to define SNMP managed
objects [IETF-RFC2578]. The OSI management framework provides a complete set of guidelines.
GDMO includes templates for objects, attributes, behaviors, and notifications [ITU-X722]. Each managed
object can be assembled with packages. A package can be declared as conditional, which offers a policy
for object instantiation. Each managed object is accompanied with a name binding [ITU-X722].

The DMTF MOF language adopts many IDL features (from DCE IDL). Special compiler directives are
available to include paths in a global name space for MOF object classes and instances [DMTF-CIM].

The combination of SOAP and XML promises a mechanism to access distributed systems from the
WWW. XML was originally defined as “[…] a method for putting structured data in a text file” [W3C-
XML-10P]. Basically, XML defines no objects or interfaces but documents. Structure of information and
content are separated. Structure of information can be declared with tags [ISO8879]. A Document Type
Definition (DTD) defines constraints on storage layout and logical structure. XML further distinguishes
between well-formed (XML conform) and valid (conform to a well-formed DTD) documents [W3C-
XML].

The use of ASN.1 as basis for languages from the management area is currently discussed in the IETF.
The discussion started with the work on a new version of SMI (SMIng; [IETF-RFC3216]), which incor-
porates management and policy schemes. [Draft-SMIng] defines a new language that depicts several fea-
tures from object-oriented languages and from programming languages. On the other hand, [Draft-
ASN1NG] proposes the usage of ASN.1 for the new version of the SMI. The IETF Draft is conforming to
the requirements identified in [IETF-RFC3216].

2.3.4.4. Development Tools
Development Tools play an important role in the development process. They offer a Software Develop-
ment Kit (SDK) or an Integrated Development Environment (IDE). Both are usually toolsets that include
editors, debuggers, and documentation for a programming language, middleware, and/or management
architecture. SDK and IDE usually allow the integration of external tools for specific tasks. Following
this approach, a compiler for the formal notation of MAMA can be integrated in an existing development
environment. Therefore, a specific development environment will not be depicted for MAMA.

2.3.4.5. Communication Services, Protocols, and Formats

Protocols

A protocol defines mechanisms for the exchange of data between distributed objects. [ITU-X210] rec-
ommends a reference model that includes the basic definitions of a protocol and protocol services. Infor-
mation is transmitted in Protocol Data Units (PDU), which contain protocol information (header) and the
actual data (payload). PDUs can be designed for specific service primitives [ITU-X210].
[Tannenbaum96] and [Badach94] explain many protocols in detail.

SNMP defines a protocol in [IETF-RFC1157] as “an application protocol by which the variables of an
agent’s MIB may be inspected or altered. Communication among protocol entities is accomplished by the
exchange of messages, each of which is entirely and independently represented within a single datagram
using the basic encoding rules of ASN.1”. The OSI management framework recommends a complex set
of entities, services, and protocols for the exchange of management information. [ITU-X701] [ITU-X710]

Another example of a protocol is HTTP. The HTTP is an application level protocol [IETF-RFC2616]. It
is based on an asynchronous communication model and realized as a request/response protocol. Commu-
nication is organized with the simple exchange of messages in form of documents. Access to legacy sys-
tems is provided by gateways and proxies. This protocol can serve as communication protocol for other
application protocols (such as the Simple Mail Transfer Protocol – SMTP or the File Transfer Protocol -
FTP).

Hypothesis and General Framework

Middleware and Application Management Architecture 24

Data Encoding

An important issue for data transmission is data encoding. [CORBA] defines a transfer syntax (Common
Data Representation – CDR) that maps ordinary IDL data types to a bi-canonical, low-level representa-
tion. The Basic Encoding Rule (BER) formulates encoding rules for the transmission of ASN.1 typed
information. Application level protocols, such as FTP and HTTP, are often based on text messages. The
actual transmission of these messages is realized with transport protocols. Special transport mappings are
used to define how information “maps onto an initial set of transport domains” [IETF-RFC1906].

[Palme02] provides a comparison of ABNF, ASN.1 BER and DTD-XML. The excerpt compares charac-
teristics regarding the level of coding, the encoded format, the readability of the code, and the efficiency
of data packing, binary data, and layout facilities. One example is given for textual encoding measured in
octets. This example shows that ASN.1 BER is the most efficient language (61%) followed by ABNF
(19%) and XML (11%). [Palme02] has recently specified an encoding for XML data, which promises to
optimize the encoding of XML data for transmission.

Message Formats

Message formats provide a facility to generate requests, to locate objects, and to manage communication
channels [CORBA]. For management protocols, these message formats are predefined in form of a set of
PDUs (SNMP; [IETF-RFC1905]) or a combination of PDUs and service elements (OSI, [ITU-X710]).
For middleware protocols, these message formats realize a subset of interactions needed for a cli-
ent/server relationship [CORBA] [DCE-RPC].

SNMP uses a mechanism called variable binding for the payload of a PDU. This is a simple list of vari-
able names and corresponding values. Some PDUs are concerned only with the name of a variable and
not its value (e.g., the GetRequest-PDU). In this case, the value portion of the binding is ignored by the
protocol entity. [IETF-RFC1157]

Protocol Services

An SNMP request is atomic, which means it is either completely successful or not at all. More sophisti-
cated transaction protocols are the 2 Phase Commit Protocol (2PC) and the 3 Phase Commit Protocol
(3PC). They are able to operate a unit of work over multiple objects. Commit and abort messages are
exchanged to signal a successful operation of a complete unit or to instruct a rollback [Heuer97]. The
Common Management Information Service (CMIS) offers a parameter that indicates in which manner
operations over multiple (managed) objects are to be synchronized. This parameter can be set to atomic
(similar to SNMP) or best effort. [ITU-X710]

The Common Management Information Protocol (CMIP) allows the collection of managed objects for
each operation [ITU-X710]. Such a selection involves two phases: scoping and filtering. Scoping entails
the identification of the managed objects to which a filter is to be applied. Filtering entails the application
of a set of tests to each member of the set of previously scoped managed objects to extract a subset. The
subset of scoped managed objects that satisfy the filter is selected for the operation. Four specifications of
scoping level are defined, enabling to address managed objects in a management hierarchy: the base ob-
ject alone, the nth level subordinates of the base object, the base object and all of its subordinates down to
and including the nth level and the base object and all of its subordinates (entire sub tree).

2.3.4.6. Core and Application Services

Naming and Directory Services

Naming services support the identification of objects. The naming service provides a name-to-object reso-
lution. Each object must register itself at a naming service. Other objects can retrieve information about
registered objects, at least their system specific address. Commonly used naming schemes are object ref-
erences (in CORBA), hash identifiers (in Java Remote Method Invocation – RMI), or distinguished
names (in OSI, TMN). IP networks use a different naming scheme. Here, a name is a set of labels with
clear boundaries (SNMP, Domain Name System – DNS; [IETF-RFC2929]).

Naming schemes can be based on name spaces that are managed by an authority (Universal Resource
Locator – URL [IETF-RFC2396], X.500 distinguished names [ITU-X501]). Other mechanisms, like the

Hypothesis and General Framework

Middleware and Application Management Architecture 25

CORBA Interoperable Object Reference – IOR ([CORBA]) and the DCE Universally Unique Identifier –
UUID ([DCE-RPC]), do not involve such an authority. They are based on generic algorithms.

A certain protocol can be assigned to a name, which indicates how an object can be accessed. A CORBA
IOR can be assigned to the Internet Inter-ORB Protocol IIOP, RMI, or DCE. Furthermore, a CORBA
IOR can be expressed in form of a URL [CORBA-NS]. A URL can be assigned to any available protocol.
Furthermore, the access to a resource addressed by a URL might involve more than one protocol. For
access to an HTML12 document a client needs to request a host name from the DNS and than the docu-
ment via HTTP [IETF-RFC2396]. Names need not to be interpreted by an application. This is task of the
implementation of the protocol.

Names can be further integrated into a directory service. Such a service employs directory names. An
entry in a directory can be aliased, which means more than one entry can be assigned to the same object
without replicating this very object. Access to a directory service is offered to clients via a protocol [ITU-
X500] or an API [JNDI-API] [CORBA-NS].

State of the art directory services, such as LDAP, JNDI, and Active Directory (AD), are realized as dis-
tributed services. They offer a single point of access to clients and manage distributed databases, which
can rely on different technologies [DMTF-CIM]. The management of these databases involves two im-
portant concepts: referrals and replication.

DUA DSA C

DSA B
request

referral (to B)
DSA A

referral (B)

request

request

DSA C

DSA B
request

referral (to A)
DSA A

request

DUA DSA
request

DSA
request

responseresponse
DUA DSA

DSA
request

response
DSA

response

request

request

DUA

response

21

43

Figure 2-7: Distributed Directory and Referrals [ITU-X501]

The DNS, X.500, LDAP, and JNDI realize the search operations in a distributed directory with referrals.
Figure 2-7 shows four cases for the usage of referrals as defined for X.500 and LDAP. In case 1, the Di-
rectory System Agent (DSA) C handles a referral from DSA A to retrieve the requested information from
DSA B without further interactions with the client. In case two, the original client’s request is answered
with a referral to another directory server. The client is responsible for a consecutive request. The cases 3
and 4 show two approaches for chaining. Case 3 depicts uni-chaining (one request is passed through sev-
eral DSAs). Case 4 shows a multi-chaining example (one request is forwarding it to two or more other
DSAs). [ITU-X500]

The concept of replication was introduced to improve the availability and reliability of a directory service.
Replication is employed under every circumstance that denies an LDAP server the appropriate processing
of incoming requests. The concept comprises clients, masters, and slaves. The master, a special LDAP
replication daemon, offers the replication service to slaves. Modifications made by clients on the master
LDAP server are automatically forwarded to all relevant slaves. [Draft-LDUP]

An example for a directory service that covers multiple technologies is JNDI. Here, a name is related to a
naming context, which is the starting point for exploring a namespace. An initial context contains a vari-
ety of name bindings from one or more naming systems [JNDI-API].

12 Hypertext Markup Language

Hypothesis and General Framework

Middleware and Application Management Architecture 26

Visualization

Human-Computer Interaction (HCI) analysis defines design alternatives, data structures, and evaluation
of human factors in terms of efficiency for a variety of tasks. Visualization and navigation on structured
data must be seen as a single entity. In the Curricula of HCI [Hewett96], the work is described as: “Hu-
man computer interaction is a discipline concerned with the design, evaluation, and implementation of
interactive computing systems for human use and with the study of major phenomena surrounding them.”

In the actual world of computing, human beings interact more with information objects and less with
computers. Hereby the computer is a tool that is used for the interaction with information objects. HCI
provides skills and techniques for information design and makes computers more and more invisible.
Interactions are split into the human side and the mechanism side for one particular machine. The main
fields of HCI are [Hewett96]:
1. the tasks by humans and machines;
2. the structure of communication between human and machine;
3. human capabilities to use machines (including the learnability of interfaces);
4. algorithms and programming of the interface itself;
5. engineering concerns that arise designing interfaces;
6. the process of specification and design; and
7. the implementation of interfaces.

The first and central question at the beginning of a HCI process should be: “What is the goal and how can
it be achieved?” This question can be answered with a human-machine categorization followed by a task
analysis. One analytical method follows the GOMS13 model [John96]. It provides a guideline to investi-
gate tasks in the terms of goal-directness, the amount of required skills, the control of interactions, and the
interaction sequences.

The characterization of tasks in the context of other tasks is another key concern in HCI [Wright96]. Con-
trol of interaction can be done in an active or a passive context. In the active context, the machine requires
a direct action (e.g. a video game). In passive contexts, tasks can be performed by the user at will because
no direct response is necessary (e.g. web browser).

The intended functionality is by, for example, commands a user can enter and or/items he can selection
completing a sequence of interactions. Input and output devices and techniques should be predefined. The
relevant input techniques which best match with user requirements are to be determined. This can be key-
board-based (e.g. commands, menus), mouse-based (e.g. picking, rubber-band lines), pen-based (e.g.
character recognition, gesture) or voice-based. Operating systems usually offer guidelines ([Schlosser97]
[MSDN-UI01]) for graphical user interfaces that are supported by class libraries ([JAVA-J2SE]).

Dialogue is the technique for interaction with humans. [DIN96] describes sound issues that need to be
considered. Dialogues should work adequate, self describing, controlled by hand, reaction conform, error
tolerant, and individual to adapt. They should also assist in learning to control an application.

The interaction can be done in a primary or secondary dialogue with a modal or modeless category. A
document based dialogue can be realized as a single document interface (SDI) or a multiple document
interface (MDI) [Balzert99]. New developments and newly available technologies allow the application
of avatars and voice-based interactions with the user.

Some basic concepts of computer graphics are useful for HCI, too, like the use of color, 2-D and 3-D
spatial organization. The graphic representation of data can be form based, diagram oriented, iconic, or a
combination of all three representations [Tiziana96].

Management Services

[ITU-X700] defines five functional areas for system management: Fault, Configuration, Accounting,
Performance, and Security (FCAPS). A variety of system management functions is defined in the ITU
recommendations X.730 up to X.799. These management functions can be applied to control, administra-

13 Components of a design model : Goals, Operators, Methods, Selection rules

Hypothesis and General Framework

Middleware and Application Management Architecture 27

tion, and maintenance of applications, services, and resources. Service platforms enhance the five func-
tional areas with e.g. functions for subscription and service management [TINAC]. Here, the management
function is applied to the management of one particular layer.

Fault management encompasses fault detection, isolation, and correction of abnormal operation of the
system. Faults cause systems to fail to meet their operational objectives. Faults can be persistent or tran-
sient. Faults manifest themselves as particular events. Error detection provides a capability to recognize
faults. Fault management includes functions to maintain and examine error logs, accept and act upon error
detection notifications, trace and identify faults, carry out sequences of diagnostic tests, and correct faults.

Configuration management identifies, exercises control, collects data, and provides data that allow man-
agement systems to initialize, start, operate continuously, and terminate services and network elements.
This includes functions to control the routine operation, associate names with managed objects, initialize
and close down managed objects, collect information on demand about the current condition, obtain an-
nouncements of significant changes in the condition of the system, and change the configuration.

Accounting management enables charges to be established for the use of resources in the system and for
costs to be identified for the use of those resources. This includes functions to inform users of costs in-
curred or resources consumed, enable accounting limits to be set and tariff schedules to be associated with
the use of resources, and enable costs to be combined where multiple resources are invoked to achieve a
given communication objective.

Performance management enables to evaluate the behavior of resources in the system and the effective-
ness of communication activities. This includes functions to gather statistical information, maintain and
examine logs of system state histories, determine system performance under natural and artificial condi-
tions, and alter system modes of operation for conducting performance management activities.

Security management supports the application of security policies by means of functions that include the
creation, deletion, and control of security services and mechanisms, the distribution of security-relevant
information, and the reporting of security-relevant events.

2.3.4.7. Application Programming Interfaces
An API is a convention by which applications gain access to operating systems or other services [FODC].
The first APIs have been defined at source code level, as an integral component of operating systems. Up
to now, the intention of APIs has not changed. However, the concepts have evolved from technology
dependent towards technology independent developments.

The Parlay API is an open and technology-independent specification for distributed telecommunication
applications. The intention of the Parlay API is to help application developers to work out new applica-
tion and service possibilities independent of network and infrastructure developments. The API facilitates
the migration of new protocols as well as the increase of portability of telecommunication applications.
[Parlay-API]

A middleware architecture and its APIs offer an abstraction from underlying hardware and software.
Here, the API’s major task is the translation of parameter lists from one format to another. Furthermore,
the API is responsible for the interpretation of call-by-value and call-by-reference arguments in one or
both directions. [Orfali96]

One advantage of XML is the availability of two different APIs for the processing of XML documents.
The Document Object Model (DOM) is a widely used, tree structure-based API issued as a W3C recom-
mendation [W3C-DOM98]. DOM is best applicable for applications that modify the structure of XML
documents and for sharing access to the DOM tree with other applications. The Simple API for XML
(SAX; [SAX]) represents an event-driven API, which is not supported by a standardization body. SAX is
best applicable when an application deals with large XML documents that do not fit in memory, for
counting the total number of elements in a document, and for extracting the content of specific elements.
[Maruyama00]

Hypothesis and General Framework

Middleware and Application Management Architecture 28

Approach

Middleware and Application Management Architecture 29

Chapter 3
Approach

The general framework developed in the last chapter provides the basis for the Middleware and Applica-
tion Management Architecture. This chapter starts with the definition of the architecture, which is assem-
bled from six parts that cover the requirements of the framework. The sections 3.1 up to 3.6 are dedicated
to one part each, which in combination form the architecture. Each part is discussed in a similar way.
This begins with the objectives, followed by the relevant specifications and definitions, and finalized by
additional issues and concluding remarks. Section 3.7 concludes with this chapter with recommendations
for the design of applications using the advantages of the solutions.

The Middleware and Management Architecture (MAMA, cf. Figure 3-1) concentrates on the two middle
planes of the conceptual model that was introduced in section 2.3.3. The Object Plane of the conceptual
model provides concepts and mechanisms for this design process. The Service Plane adds the necessary
core services and enhanced services for integrated management. Both planes offer technological transpar-
ency to the applications.

Application
Object

API
ADL

Application
Object

API
ADL

Naming
Service

API
ADL

Directory
Service

API
ADL

Monitoring
Service

API
ADL

Notification
Service

API
ADL

Specification
Service

API
ADL

Visualization
Service

API
ADL

Application
Object

API
ADL

Application
Object

API
ADL

Application Protocol

Figure 3-1: Middleware and Application Management Architecture

The applications are not bound directly to middleware and management technologies. Six recommenda-
tions form the basis to realize this transparency:
1. The basis of MAMA is an abstract object model. A concrete object model, called Meta Schema, is

derived from the abstract object model. The Meta Schema defines the basic specification elements of
a MAMA application.

2. The Application Definition Language (ADL) is a formal notation that is used to express the Meta
Schema. This language combines characteristics from middleware interface definition languages,
languages for the definition of managed objects, and languages used to specify data that is ex-
changed between applications.

3. Application objects are specified in ADL. MAMA defines a Schema based on ADL and a Core
Model that is relevant for all applications and independent of domain specific specifications. The ba-
sic part of the Core Model is the identification of a reasonable set of qualifiers providing meta infor-
mation about ADL typed application objects.

4. An Application Protocol is responsible for the transport of information among application objects
including features that enable the construction of management hierarchies like addressing of hierar-
chies, scoping and filtering, and transactions.

5. An Application Programming Interface (API) decouples application objects from middleware
technology and enables the seamless integration of management functionality into applications. The
API offers a small and simple to use set of operations for the parameterization of the protocol. Tools

Approach

Middleware and Application Management Architecture 30

are responsible for the automatic generation of parts of the API code that is needed for the exchange
of information between applications.

6. Application services realize the naming of objects; enable the mapping of ADL specified informa-
tion to directories, and the usage of type and data repositories for applications and MAMA compo-
nents. All application services can be accessed in a unified way similar to the access to other applica-
tions. The API implements standard jobs like lookup for available services and registration.

The Meta Schema, the ADL and the Core Model take advantage by using existing mechanisms and tech-
niques and, simultaneously, enhancing them to meet the requirements and objectives of the general
framework. They are neither specific to middleware nor management. The Application Protocol and the
API provide a generic interface to the application. Internally, they map this generic interface to middle-
ware specific interfaces that need to be adapted to any employed concrete middleware technology.

The protocol and the internal realization of the API are transparent to the applications. Any application
developed with MAMA is ready to run on any middleware that MAMA supports. The support of a new
kind of middleware has some requirements. First, the MAMA API must support the new kind of middle-
ware. This is realized with a specific implementation of the API that recognizes the available facilities of
the middleware. Second, the new kind of middleware must be integrated in the existing middleware tech-
nologies. The integration reflects the Technology Plane of the Conceptual Model. MAMA applications
that are designed to communicate with each other must be supported by gateways between the middle-
ware technologies (cf. example of section 2.3.3.4). When these two requirements are fulfilled, the new
kind of middleware is available for all MAMA applications. It is also possible to substitute the actually
employed type of middleware without changing the applications.

3.1. Object Model

The MAMA object model builds the basis for the design of a MAMA application. It combines character-
istics from middleware object models and from object models from management architectures. The object
model has the following objectives:
• Define an abstract object model.
• Derive a concrete object model.
• Provide the basic functionality for a formal notation.

The concrete object model identifies the basic characteristics of a MAMA application. An application is a
piece of software that solves a specific task. An application consists of one or more components, namely
application objects. These objects are modeled following the abstract object model.

The concrete object model represents a formal description of the abstract object model. It follows the
facilities of the object model of the Common Object Request Broker Architecture (CORBA; [CORBA])
and the Meta Schema of the Common Information Model (CIM; [DMTF-CIM]). For MAMA, the con-
crete object model is expressed in form of a meta schema in the Unified Modeling Language (UML). The
UML specification provides the basis for a formal notation, which is used to specify application objects.

3.1.1. Abstract Object Model

Application objects and core services are handled in the same way. That is, core services profit from the
advantages of MAMA similar to regular applications. Application objects are modeled as computational
objects by means of the computational viewpoint of the Reference Model for Open Distributed Process-
ing (RC-ODP; cf. section 2.3.4.1). Their interfaces are specified in ADL. This approach of ADL-typed,
middleware independent interfaces does not change the design of computational objects. In fact, the map-
ping of computational objects to engineering objects and the basic engineering objects themselves follow
a new approach.

The left side of Figure 3-2 shows a classic ODP computational object with its engineering objects for
interfaces and the core object. The interface objects realize middleware specific interfaces such that are

Approach

Middleware and Application Management Architecture 31

implemented using a specific CORBA product. The right side of Figure 3-2 shows a MAMA computa-
tional object. Here, the core object is supported by the API and MAMA interface objects.

MAMA
API

MAMA
Interface

Core
Object

MAMA
Interface

MAMA
Interface

Operational
Interface

Operational
Interface

Operational
Interface

Core
Object

Figure 3-2: Object Model – ODP vs. MAMA Computational Object

The API is a supporting engineering object modeling an abstract interface for the core object to any of-
fered features of the architecture. The MAMA interface objects are responsible for the realization of the
Application Protocol. They are further mapped to concrete middleware technologies. The core object is
completely independent of concrete middleware as long as the API is able to handle the middleware. Fur-
thermore, the Application Protocol is completely hidden from the core object.

3.1.2. Meta Schema

The MAMA Meta Schema is a concrete object model. The Meta Schema – as shown in Figure 3-3 – starts
with the element specification. A MAMA specification includes every statement that belongs to the speci-
fied application:
• A specification contains all statements that belong to the same schema. A specification includes zero

or an infinite positive number of declarations for qualifiers and definitions. It can be distributed over
multiple source files.

• A definition can be a module, an object, or a user-defined type, called type definition.
• Qualifiers need to be defined (qualifierdef) before any other statement within the specification. They

are used within any declaration. Specified qualifiers can be assigned to the elements module, object,
interface, attribute, action, and parameter.

• The element module aggregates any infinite non-negative number of definitions that is type defini-
tions, objects, or (sub-) modules.

• An object has zero or more interfaces and zero or more type definitions. Objects can inherit charac-
teristics from other objects. Multiple inheritance is not supported. Inherited characteristics from other
objects cannot be changed nor specialized.

• An interface embraces zero or more actions, attributes, and type definitions. Interface inheritance is
not supported.

• An attribute can be of a certain type, either basic or user-defined. Each attribute is additionally han-
dled as a new type definition within the specification.

• An action may contain any number of parameters.
• Parameters are a part of an action. A parameter is treated like an attribute. The separation of pa-

rameter and attribute has been introduced to allow the definition of specific qualifiers for stand-alone
attributes and action-dependent parameters.

• A typedef can be used to introduce new data types in a specification. New type definitions can be
based on basic types or any other already defined type. A member represents an element of a con-
structed type.

Approach

Middleware and Application Management Architecture 32

The Meta Schema defines five core elements: module, object, interface, attribute, action, and parameter.
The two additional elements are type definitions and qualifiers. Type definitions serve as a mechanism to
extend the basic data types by adding new types to a specification. Qualifiers are related to the generation
of meta information about the described application.

A module groups zero or more objects. It may also contain any number of other modules. An object
represents an object following the definition of a computational object of the Telecommunication Infor-
mation Networking Architecture (TINA; [TINA-CMC]). Objects include any number of interfaces. The
interface of an object collects a number of operations, which are called actions in the Meta Schema, and
any number of attributes. An action may contain any number of parameters defined for this action only or
reused from formerly defined attributes.

A type definition represents an identifiable entity with an associated predicate. “An entity satisfies a type
if the predicate is true for that entity. An entity that satisfies a type is called a ‘member of the type’”
[CORBA]. The Meta Schema defines a set of basic types and provides a mechanism to define new types
based on those basic types, structures, and attributes.

defines
declares

Qualifier Element
-name: String

Specification

Object

Interface

Typedef Module

AttributeParameter Action

1

Member

Qualifierdef

Definition

0..*
0..1

10..*

10..*

1

0..*0..*0..*

0..*10..* 0..*1 1

1
0..*

0..* 1

Subtype
Supertype

0..*

Figure 3-3: Object Model – Meta Schema

The element qualifier is adopted from [DMTF-CIM]. A qualifier is used to characterize the instantiation
of core elements within specifications. The introduction of this element provides a mechanism that makes
the object model extensible in a limited and fashionable way by applying an appropriate set of meta in-
formation. Each environment that employs the Meta Schema can define its own set of qualifiers. The
Meta Schema itself defines no specific qualifier at all.

3.2. Application Definition Language

The Application Definition Language follows the specifications of the MAMA meta schema. Its ability to
function as a language for data exchange is based on a specified mapping of ADL to the eXtensible
Markup Language (XML). This mapping can be done in both ways. An XML document valid against the
ADL Document Type Definition (DTD) can be transformed to an ADL specification and vice versa. ADL
offers a solution for common tasks for the specification of a manageable distributed system:
• the definition of distributed applications and objects;
• the definition of interfaces of objects that client objects call and object implementations provide;
• the generation of object- and interface repositories;
• the definition of communication protocols for objects and applications on top of middleware;
• the generation of data exchanged by objects;
• the definition of events sent by objects;

Approach

Middleware and Application Management Architecture 33

• the definition of derived types;
• the definition of managed objects that describe managed resources;
• the definition of Management Information Bases; and
• the definition of information beyond the scope of this document.

ADL is independent of actual business models, communication protocols, programming languages, and
languages that are used to describe information exchanged among applications. Protocol mappings, pro-
gramming language mappings, and data exchange language mappings can be specified for specific envi-
ronments in an individual way. Mappings from ADL to programming languages or markup languages
depend on the facilities of the target languages. This document defines language mappings for the Inter-
face Definition Language (IDL) as defined by the Object Management Group (OMG), specifies an XML
notation for ADL, and provides instructions for the development of other mappings.

3.2.1.1. Lexical Conventions
An ADL specification contains five different lexical elements: keywords, identifiers, operators, literals,
and other separators. The following rules apply to any ADL specifications:
• an ADL file contains a sequence of ADL statements and/or preprocessor directives;
• every ADL statement starts with a keyword followed by a number of arguments;
• arguments that are allowed to follow a keyword depend on the given keyword;
• every statement is terminated by a semicolon;
• white spaces are ignored unless they are used to separate tokens; and
• comments are ignored and will not be translated within a language mapping.

3.2.1.2. Comments

SL_COMMENT = "//" (~'\n')* '\n';
ML_COMMENT = "/*"
 (STRING_LITERAL
 | CHAR_LITERAL | '\n' | '*' ~'/' |~'*')*
 "*/";

Comments are part of lines, lines, or complete paragraphs that must not be interpreted as part of the speci-
fication. Two different types of comments can be used within ADL:
• A traditional comment, similar to C++, is used to mark the start and the end of a comment. The start

is marked with ‘/*’ and the end is marked with ‘*/’. All statements between start point and end point
of the comment are ignored. Traditional comments cannot be nested.

• An end-of-line comment is indicated by ‘//’. From this sign, every other character up to the end of the
current line is ignored.

Both types of comments are defined in [ISO14882]. Additionally, the documentation comment might be
used by any ADL specification. This comment is similar to the traditional comment, except that the start
sign includes an additional asterisk character (‘/**’). Characters between those two signs can be proc-
essed by specialized tools to prepare automatically generated documentation of a specification.

3.2.1.3. Identifiers

IDENT = ('a'..'z'|'A'..'Z'|'_')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;

Identifiers are sequences of characters from the American Standard Code for Information Interchange
(ASCII), as listed in the left row of Table B-1, digits from Table B-4, and the underscore character as
listed in Table B-2. The first character must be an ASCII alphanumeric character. All characters are sig-
nificant. Identifiers are treated as case sensitive. That is, two identifiers that differ only in case do not

Approach

Middleware and Application Management Architecture 34

collide. Once defined, an identifier cannot be overwritten by a proceeding definition within the same
name scope.

3.2.1.4. Keywords
The identifiers listed in Table 3-1 are reserved keywords. They cannot be used otherwise. Keywords must
be written exactly as shown in the table.

action alterable attribute boolean char descr double FALSE

float interface long mandatory module NULL object octet

optional parameter qualifier required scope short string signed

struct TRUE type typedef unsigned void

Table 3-1: ADL – Keywords

3.2.1.5. White Spaces

WS_ = (' ' | '\t' | '\n' | '\r');

White spaces are characters to separate individual tokens. The following ASCII characters are treated as
white spaces: space, horizontal tab, form feed, and the line terminators line feed (LF) and carriage return
(CR) (cf. Table B-3).

3.2.1.6. Preprocessing

PREPROC_DIRECTIVE = '#' (~'\n')* '\n';

For preprocessing, ADL adopts the specifications of [ISO14882] that is the ISO1 standard for the C++
programming language. Following this approach, the individual preprocessors from any development
environment can be used to parse ADL specifications.

3.2.2. Elements

This subsection describes the specifications of the ADL elements. ADL is defined using the Extended
Backus-Naur Form (EBNF). A short description of EBNF can be found in Appendix A.3. EBNF is an
ISO standard completely described in [ISO14977]. A good overview of this notation with motivation and
examples is given in [Scowen93]. The complete ADL grammar is presented in Appendix B.3. Specifica-
tions starting with a number belong to the EBNF for a parser, specifications without a starting number
belong to the EBNF for a lexicographic analysis.

3.2.2.1. Module

20 module = module_header LCURLY {definition} RCURLY;
21 module_header = module_literal identifier;

The element module provides a simple mechanism to group a configuration of objects for different use
cases:
• separation of name spaces within complex specifications;
• geographical or administrative distinction of objects similar to, for example, the X.500 directory tree;
• separation of objects regarding the organizational structure of a company; and

1 International Standardization Organization

Approach

Middleware and Application Management Architecture 35

• grouping of objects that offer similar services or solve a specific task in combination.

A module can have zero or more type definitions. A module can include any number of other modules
and/or any number of objects.

3.2.2.2. Object

22 object = object_header LCURLY object_body RCURLY;
23 object_header = object_literal identifier [inheritance_spec];
24 object_body = {object_export};
25 object_export = [qualifier_list] (interface SEMI | type_def SEMI);
26 inheritance_spec = COLON scoped_name;
27 scoped_name = [[SCOPEOP] identifier {SCOPEOP identifier} SCOPEOP]
 identifier;

An object represents a computational object as described in [TINA-CMC]. The object header contains an
optional list of qualifiers, the object literal, and a unique identifier for the object. Furthermore, inheritance
definitions are included in the object header. The object body might contain any number of interfaces
and/or type declarations. A scoped name must denote a previously defined object.

3.2.2.3. Interface

28 interface = interface_header LCURLY interface_body RCURLY;
29 interface_header = interface_literal identifier;
30 interface_body = {interface_export};
31 interface_export = [qualifier_list]
 (attribute SEMI | action SEMI | type_def SEMI);

An interface is always part of an object. It is constructed by a header and a body. The interface header
includes an optional list of qualifiers, the interface literal, and a unique name of the interface (identifier).
The interface body can contain any number of attributes, actions, and type declarations.

3.2.2.4. Attribute

32 attribute = attribute_header;
33 attribute_header = attribute_literal simple_type_spec identifier;

An attribute is part of an interface. For each attribute, the ADL compiler will create appropriate opera-
tions to read the current value of this attribute (get) and to alter it (set). An attribute satisfies the following
definition: It consists of an optional list of qualifiers, a type specification, and a unique identifier. The
operations set and get are constructed by using the prefix ‘set_’ and ‘get_’ before the attribute’s identifier.

For the declaration of an attribute, only basic types and scoped names are allowed. That is, any prior de-
clared type (including structures) can be used. An attribute defines a new type itself that can be used in
the following specifications.

3.2.2.5. Action

34 action = action_header
 LPAREN [param_decl {COMMA param_decl}] RPAREN;
35 action_header = action_type_spec identifier;
36 action_type_spec = simple_type_spec | void_literal;

An action is an operation of an interface, in object-oriented programming languages also known as
method. The definition of an action consists of an action header and a list of parameters. The action
header may contain a list of qualifiers. The header must contain a type specification for the action. This
specification defines the type of the return value of the action that can be of any previously defined type
or empty (void).

Approach

Middleware and Application Management Architecture 36

The list of parameters is either empty (no parameters at all), or contains any positive number of parame-
ters. Some ADL compiler might limit the number of actually allowed parameters of an action. Each com-
piler should at least recognize the first 32 parameters.

3.2.2.6. Parameter

37 param_decl = [qualifier_list] simple_type_spec identifier;

A parameter can contain a list of qualifiers. A parameter must contain a type specification, which can be
any previously defined type, a unique identifier, and an optional array declaration.

3.2.2.7. Qualifier
A qualifier supplies additional or meta-information about modules, objects, interfaces, actions, attributes,
parameters, and type definitions. Additionally, the members of constructed types are applied with qualifi-
ers. Qualifiers are defined by:
• a name that is unique within the specification;
• a scope that identifies the ADL elements where this qualifier is applicable;
• a type indicating the ADL basic type for the qualifier;
• a default value for the initialization;
• a number of status attributes associated to each element of its scope to specifying the level of appli-

cation for of the qualifier for this element (see Table 3-2);
• an attribute alterable specifying whether the value of the qualifier can be altered or not; and
• an attribute containing a description or a specific scheme of a Uniform Resource Locator (URL) of

type httpurl, ftpurl, or fileurl according to and usable as described in [IETF-RFC1738] section 3 as
link to the actual description of the qualifier.

The scope of a qualifier is a list of pairs that are constructed by an element and a status. The element
specifies the ADL element the qualifier is defined for. The status gives a requirement level for the quali-
fier following Table 3-2.

Status Description

Required The qualifier needs to be defined with a non-zero default value.

Mandatory The qualifier needs to be defined, with unspecified default value.

Optional The qualifier might, but has not to be defined.

Table 3-2: ADL – Statuses of Qualifiers for a certain Scope

A system specified in ADL must provide a mechanism to alter the value of qualifiers that are alterable.
The common approach is to define an abstract object with an interface that offers such operations. Quali-
fiers that are used to characterize type definitions are not alterable. Additionally, those qualifiers are not
inherited by attributes, actions, and parameters that are based on the type definitions. Qualified type defi-
nitions represent a recommendation on how to use the new introduced types in the following specifica-
tion.

A system may define qualifiers that contain any kind of text. The XML mapping of ADL indicates that
such pieces of text should not include statements that can be misinterpreted by XML parsers. Further-
more, if such text is intended to be used in Hypertext Markup Language (HTML) document it should not
include any special HTML character such as the ampersand.

The definition of qualifiers has to be done before any other ADL statement. Qualifiers cannot be specified
after the first type definition, module, or object occurred. The identifiers of qualifiers are case-sensitive
and cannot be used for other ADL statements or as identifier for other ADL elements. The following
EBNF code specifies the definition of qualifiers.

Approach

Middleware and Application Management Architecture 37

03 qualifier_def = qualifier_header qualifier_body SEMI;
04 qualifier_header = qualifier_literal identifier COLON;
05 qualifier_body = qualifier_type COMMA qualifier_alt COMMA
 qualifier_scope COMMA qualifier_descr;
06 qualifier_alt = alterable_literal LPAREN alterable RPAREN;
07 alterable = true_literal | false_literal;
08 qualifier_scope = scope_literal
 LPAREN scope_rank {COMMA scope_rank} RPAREN;
09 scope_rank = LBRACK element COMMA rank RBRACK
10 element = (module_literal | object_literal
 |interface_literal | action_literal
 |attribute_literal | parameter_literal);
11 rank = required_literal | mandatory_literal
 | optional_literal;
12 qualifier_descr = descr_literal LPAREN string_value RPAREN;
13 qualifier_type = type_literal LPAREN
 base_type_spec {array_declarator} default_value RPAREN;
14 default_value = ASSIGN constant_value;

Once defined, qualifiers can be used. The scope of qualifiers identifies the ADL elements it can be ap-
plied to and the level of requirement called rank. Qualifiers that are ranked as mandatory or required have
to be applied to all ADL definitions of the regarding ADL element. Qualifiers that are not scoped for a
specific ADL element cannot be used with this element. The following EBNF code shows how qualifiers
are collected and surrounded by square brackets.

15 qualifier_list = LBRACK qualifier {COMMA qualifier} RBRACK;
16 qualifier = identifier [qualifier_param];
17 qualifier_param = LPAREN constant_value {COMMA constant_value} RPAREN;

3.2.3. Types and Values

ADL offers a number of basic types and a mechanism to introduce new, environment specific types. Ba-
sic types are related to values that are permitted for those types.

3.2.3.1. Basic Types
Similar to programming or interface languages, ADL offers a number of basic types that build the founda-
tion of all data types available for a specification.

40 simple_type_spec = (scoped_name | base_type_spec) {array_declarator};
41 base_type_spec = (numeric_type | char_type | string_type
 |boolean_type | octet_type);
43 numeric_type = integer_type | floating_pt_type;

Integers can be short, long, or extra long with a signed or unsigned characteristic.

45 integer_type = [unsigned_literal | signed_literal]
 (short_literal | (long_literal [long_literal]));

Floating numbers are floats, double precise, and long double precise. The corresponding types are float,
double, and long double. They follow the Institute of Electric and Electronic Engineers (IEEE) standard
for single-precision, double-precision, and double-extended floating point numbers as described in the
American National Standards Institute (ANSI) standard 754-1985. C++ and OMG IDL follow the same
standard. Adopting this for floating points is a necessity for acceptance and interoperability of ADL.

44 floating_pt_type = float_literal | [long_literal] double_literal;

Approach

Middleware and Application Management Architecture 38

Characters can be expressed by the type char, which is an 8-bit quantity that encodes a single byte char-
acter from any byte oriented code set or, when used in an array, a multi-byte character from a multi-byte
code set. The ISO 8859-1 (Latin1) character set standard defines meaning and representation of all possi-
ble graphic characters used in ADL. These are space and alphabetic characters given by Table B-1, the
graphic characters of Table B-2, the digits of Table B-4, and the escape characters of Table B-5. Addi-
tionally, the meaning of null and formatting characters (cf. Table B-3) is the numerical value of the char-
acter as defined by ASCII (ISO646) standard. All other characters and their meaning is implementation
dependent.

46 char_type = char_literal;

The data type boolean is used for elements that can only take the value true or false. No other values are
permissible for a Boolean-typed element.

48 boolean_type = boolean_literal;

The type string can consist of all possible 8-bit quantities in form of a sequence of characters

47 string_type = string_literal;

The data type octet is an “8-bit quantity that is guaranteed not to undergo any conversion when transmit-
ted by the communication system.” [CORBA]

49 octet_type = octet_literal;

3.2.3.2. Type Definitions

18 type_def = (typedef_literal type_spec | struct_type_spec);
19 type_spec = simple_type_spec identifier;
38 struct_type_spec = struct_literal identifier LCURLY {member}- RCURLY;
39 member = [qualifier_list] type_spec SEMI;

The language construct typedef is included to allow the definition of new environment specific types. A
type definition can be simple or complex. Simple type definitions are variations of existing basic types or
already defined new types. Complex type definitions are structures. This mechanism is the same as in
C++ and OMG IDL. Qualifiers that are defined for attributes apply also for type definitions. Here, type
definitions and attributes are handled equally.

The definition of a simple type is simple. The typedef literal is followed by a simple type (basic type or
predefined other simple type) and a unique identifier. Complex type definitions are identified by the lit-
eral struct, which is followed by a unique identifier and the members of this structure surrounded by curly
brackets. Members can be basic types and earlier simple or complex type definitions. The definition of
new structures within structures is not supported.

3.2.3.3. Values

80 constant_value = integer_value | char_value | string_value
 | boolean_value | binary_value | float_value;

Values are expressed with the EBNF token constant_value for integer, character, string, boolean, binary,
and float types. Additional definitions, also given in EBNF, provide a formal specification that can be
used for the assembly of compilers or interpreters for ADL.

Binary values are used for bit fields and for Boolean data types. Only the values true and false are permit-
ted. Both values are placeholders for the two binary values 0 and 1. A binary value other than a Boolean
is interpreted as an integer. To distinguish a base 10 integer from a base 2 binary value, the binary value
must be preceded by the character b or B.

Approach

Middleware and Application Management Architecture 39

81 binary_value = BINARY;
BINARY = ("b" | "B") (BINARYDIGIT)+;
BINARYDIGIT = ('0' | '1');

An integer value can be either of base 10 (decimal), base 8 (octal value), or base 16 (hexadecimal value).
A decimal value is just the number, octal values are indicated by an o, and a hexadecimal value can be
identified by the preceding 0x or 0X.

82 integer_value = INT | OCTAL | HEX;
DIGIT = '0'..'9';
OCTDIGIT = '0'..'7';
HEXDIGIT = ('0'..'9' | 'a'..'f' | 'A'..'F');
HEX = ("0x" | "0X") (HEXDIGIT)+;
INT = (DIGIT)+ // base-10
 ['.' (DIGIT)*
 [('e' | 'E') ['+' | '-'] (DIGIT)+]
 |('e' | 'E') ['+' | '-'] (DIGIT)+
];

Integer values express numbers regarding the following rules for ranges [CORBA]:

Integer type Range of values

short 215 … 215 - 1

long 231 … 231 - 1

long long 263 … 263 - 1

unsigned short 0 … 216 - 1

unsigned long 0 … 232 - 1

unsigned long long 0 … 264 - 1

Table 3-3: ADL – Integer Types and their Value Range

String values are defined as a constant_value that is surrounded by double quote characters. For better
readability of specifications, ADL allows the separation of one string into several parts where each part is
surrounded by double quote characters and a white space is used to concatenate those parts.

85 string_value = strings {strings} | null_literal;
86 strings = STRING_LITERAL;
STRING_LITERAL = '"' (ESC | ~'"')* '"';

The other values follow the rules of the basic data types they are defined for.

83 float_value = FLOAT;
84 char_value = CHAR_LITERAL;
87 boolean_value = true_literal | false_literal;
FLOAT = '.' (DIGIT)+ [('e' | 'E') ['+' | '-'] (DIGIT)+];
CHAR_LITERAL = '\'' (ESC | ~'\'') '\'';

3.2.3.4. Arrays

42 array_declarator = LBRACK RBRACK;

Every basic type and every new type definition can be declared as an array by applying square brackets to
the type. An array cannot comprise more than one type. The length of an array is not to be specified. An
API is responsible for handling array boundaries. Additionally, an ADL specification can restrict the us-

Approach

Middleware and Application Management Architecture 40

age of arrays with appropriate qualifiers that indicate minimum and/or maxim members of the array. Mul-
tiple-dimensional arrays are permitted.

3.2.4. Scopes and Naming

ADL employs named and unnamed scopes. A named scope is defined by the elements module, object,
and interface. An unnamed scope is defined by the element action and by the constructed type struct
(structure). A qualified (scoped) name can be used to resolve names. A scoped name consists of names
separated by two colon characters ‘::’. Unnamed scopes cannot be resolved. They are used to enable iden-
tical identifiers for action parameters and structure members.

A scope starts immediately after the opening (‘{’) and terminates immediately after the closing (‘}’)
bracket of the respective ADL element. Identifiers can only be defined once within a scope. The identifi-
ers of the elements module, object, interface, action, and struct can be redefined in the immediate scope.
The following ADL example shows a number of declarations for type definitions, attributes, and actions
with the use of qualified names (qualifiers are not shown):

01 module m1{
02 typedef unsigned short t1;
03 typedef t1 t2;
04 typedef string t3;
05
06 object o1{
07 typedef short t1;
08 typedef t1 t2;
09 typedef string t3;
10
11 interface i1{
12 typedef short t1;
13 typedef t1 t2;
14 typedef string t3;
15 attribute t3 a3;
16 attribute m1::o1::t3 a2;
17
18 long act1(long p1, unsigned short p2);
19 m1::t3 act2(string p1, long p2, short p3);
20 };
21 };
22 };

Line four shows a type definition that binds the identifier t3 to the type string. The same identifier is used
in the object o1 and in the interface i1, also bound to the type string. In i1, all three type definitions are
used (line 15, 16, and 19). The first occurrence references the type definition done in the interface i1 (line
14), the second the one done in the object o1 (line 9), and the last the one done m1 (line 3).

3.2.5. xADL – XML for ADL Data Exchange

The eXchange ADL (xADL) format is an exact representation of ADL in the XML language. It has been
developed to enable the exchange of data between MAMA applications. The conversion between ADL
and xADL and vice versa can be done without information loss. Table 3-4 shows the elements of xADL
with their attributes contained elements.

xADL definitions are collected by the element collection. This allows grouping any kind of xADL defini-
tion into single XML documents. Information that is included in a collection cannot be converted to ADL,
since it follows not the rules of the EBNF specification of ADL. The element collection has been added to
allow the exchange of information for application services.

Approach

Middleware and Application Management Architecture 41

xADL Element Attributes Elements

collection - specification, qualifierdef, module,
object, interface, attribute, action,
parameter, typedef, member,
qualifier, scope, description,
constant_value

specification name, distinguished_name, uuid qualifierdef, module, object, typedef

qualifierdef name, distinguished_name, base_type,
signed, default_value, alterable, array_dim

scope, description

module name, distinguished_name qualifier, module, object, typedef

object name, distinguished_name, extends qualifier, typedef, interface

interface name, distinguished_name qualifier, typedef, attribute, action

attribute name, distinguished_name, type, base_type,
array_dim, signed

qualifier

action name, distinguished_name, type, base_type,
array_dim, signed

qualifier, parameter

parameter name, distinguished_name, type, base_type,
array_dim, signed

qualifier

typedef name, distinguished_name, type, base_type,
array_dim, signed

qualifier, member

qualifier name, distinguished_name constant_value

constant_value - -

member name, distinguished_name, type, base_type,
array_dim, signed

-

scope element, rank -

element - -

rank - -

description - -

Table 3-4: xADL – Elements and Attributes

The name of the master ADL file defines the name of the specification. Some elements have an additional
attribute distinguished_name. This attribute has been added to support naming and directory services.
This attribute need not to be converted to ADL and can be ignored by a parser or interpreter. All other
definitions of xADL follow the specifications of ADL. The complete XML DTD for xADL and the
EBNF are presented in Appendix B.4.

3.2.6. Development Process

The process of developing applications with ADL is depicted by Figure 3-4. The system designer creates
an ADL specification with any tool that is able to save this in form of a plain text. Usually, this tool
would be a more or less featured text editor. The specification itself can be split-up over multiple files. In
this case, the preprocessor directive #include must be used to concatenate the respective files virtually.
This mechanism has to be employed because ADL requires complete specifications that start with quali-
fier declarations prior to any other definition, followed by type definitions, modules, and/or objects.

Approach

Middleware and Application Management Architecture 42

ADL
Specification

ADL
Compiler

xADL
Specification

Application
Object

API
ADL

Repository

Figure 3-4: ADL – Development Process

The specification is handed over to an ADL compiler. This compiler is responsible to analyze the specifi-
cation. Any declaration that does not follow the rules defined by ADL should be clearly identified and
marked as an error. In case errors are detected, no further action should be undertaken by the compiler.
When the specification is error-free, the compiler has the option to generate several transformations. First,
it must be able to transform the ADL specification into xADL. Second, the compiler can produce pro-
gramming language specific code that represents an API for the system programmer. Furthermore, the
compiler can support the ADL-typed interface of an application object by extracting this very description
for each object in the specification.

The actual offered transformations and output formats depend on the compiler. The minimum functional-
ity of a compiler should comprise the ability to transform ADL to xADL and vice versa, to examine a
given specification in order to detect any kind of error (including reuse of identifiers, multiple declara-
tions, exact use of naming conventions, etc.), and to generate statistical information about a given specifi-
cation that can be used in repositories. The compiler itself can be integrated into development environ-
ments that offer additional tools for debugging, tracing, and other features that support an effective design
and implementation of MAMA applications. The characteristics of such a Software Development Kit
(SDK) are not part of the ADL language specification.

3.3. MAMA Core Model

The MAMA Core Model is an information model that captures issues that are applicable to all MAMA
applications. It is a small set of type definitions, classes, and other specifications that, in combination,
provide the basic vocabulary for analyzing and describing MAMA applications and services. The Core
Model is a specialization of the ADL schema. While the Core Model might be enhanced, major changes
to the specifications presented in this section are not anticipated. The Core Model follows four objectives:
1. to identify a reasonable set of qualifiers to extend the specification of ADL elements with meta in-

formation for repositories;
2. to specify basic type definitions for the MAMA protocol, the MAMA API, MAMA services, and

applications;
3. to declare abstract base classes that can be inherited from by any MAMA application object; and
4. to define basic rules that apply to all MAMA specifications, such as the specification of events and

exceptions, recommendations for naming conventions, and possible enhancements of specifications
for the Core Model itself.

Figure 3-5 shows the individual specifications of the MAMA Core Model. The Core Model defines a set
of qualifiers, which are scoped to the eight ADL elements. Regarding ADL, qualifiers can be ranked as
required, mandatory, and optional.

The Core Model assigns seven mandatory and only two optional qualifiers to the ADL element module.
Therefore, a module has an almost fixed set of meta information that must be specified for each module in
a MAMA specification. Objects and interfaces have one mandatory qualifier less, six, but eight optional
qualifiers. Here, the flexibility is enhanced reflecting the different possible target environments and their

Approach

Middleware and Application Management Architecture 43

specific requirements on object and interface definitions. For actions, the Core Model reserves five man-
datory and five optional qualifiers.

Entity Management

Compile Time

Installation

Launch

Run Time

Configuration

Time & Date

Type Definitions

Tickets

Core Object

Misc Types

Exceptions

Management

Manager

Agent

Managed Object

Qualifier Definitions

Descriptive

Specification

Access-related

for Attributes

Miscellaneous

MAMA Core Model

Figure 3-5: MAMA – Core Model

Attributes and type definitions are handled equally regarding qualifier specifications. Both elements re-
quire only three, but can be accompanied with up to twenty-three qualifiers. The last element, parameter,
requires no specific qualifier. The total number of fifteen qualifiers has been identified applicable to the
element parameter. Since not all qualifiers are applicable simultaneously, the Core Model describes the
dependencies among them with regulations and recommendations for their use.

The qualifier definitions for ADL elements module, object, and interface are more restrictive than for the
other five ADL elements. Repositories build out of the meta information provide general agreed and fixed
information on the first type of ADL elements since their role for distributed applications is almost fixed.
The second type of elements is more flexible to enable expandable application-specific and domain-
specific specifications.

Furthermore, the Core Model identifies basic types that are useful for MAMA applications. Those types
comprise a unified specification for time and data information, tickets, and exceptions. Additionally, an
abstract core object is included. This object can be used as base class for MAMA applications. The type
definitions are concluded by a number of miscellaneous definitions.

The Core Model acknowledges definitions for management. For this reason, some general specifications
for management of installation and configuration of MAMA applications are included (Entity Manage-
ment). Additionally, generic objects for the management roles Manager, Agent, and Managed Object are
made to simplify the specification of management hierarchies.

3.3.1. Naming Conventions

To simplify the application of the MAMA Core Model, declarations follow a naming convention.
• The identifiers of modules start with the character m.
• The identifiers of objects starting with the character o.
• The identifiers of interfaces starting with the character i.
• The identifiers of attributes starting with the character a.
• The identifiers of type definitions starting with the character t.
• The identifiers of structures starting with the character s.

No special recommendations are given for the ADL elements action and parameter. Both elements de-
clare identifiers that are only applicable in the naming scope of a single interface and cannot reused later
in a specification file.

Approach

Middleware and Application Management Architecture 44

3.3.2. Qualifiers

The Core Model defines a set of qualifiers as basis for all specifications. They must be declared as de-
scribed in this document. It is not valid to change any of this information except the default value that is
the assumed initial value. The complete matrix of qualifiers is listed in Table C-1 in Appendix C.1.1.

Each qualifier is assigned with a scope that identifies the ADL elements where this very qualifier is appli-
cable to. Required and mandatory qualifiers must be given to any declaration of a specific ADL element,
optional qualifiers might be. Some optional qualifiers are further constrained because they are mutually
exclusive or the use of one qualifier implies restrictions on the value of another qualifier. Those depend-
encies among qualifiers are explained at the end of this section.

Qualifiers are not inherited or passed from one declaration to another. A set of qualifiers assigned to a
type definition is not valid for attributes and parameters using this new type. Qualifiers assigned to ob-
jects are not inherited by a specialized object.

The MAMA Core Model includes a generic object that is automatically inherited by all new object decla-
rations. This generic object includes operations to alter qualifiers when qualifiers are declared alterable.
A MAMA application might decide that qualifiers cannot be altered even if specified so. This functional-
ity is provided by the MAMA API.

The next subsections describe the legal MAMA qualifiers. The qualifiers are grouped using the following
classification.
• Descriptive qualifiers add description in a natural language: Behavior, Contact, Description, History,

Organization, and Usage.
• Specification qualifiers clarify the current status of a specification: Revision, SpecStatus, Status, and

Version.
• Access-related qualifiers explain access policies to ADL elements: Permissions, Group, and Owner.
• Qualifiers for attributes and parameters comprise meta information for the generation of repositories:

ArrayType, Counter, BitMap, BitValues, DisplayHint, DisplayName, MaxLen, MaxValue, MinLen,
MinValue, StepIndex, ValueMap, Values, Wildcards, and Units.

• Miscellaneous qualifiers belong not to another classification: Abstract, In, Out, Quality, Registere-
dAs, and xmlDTD.

Each qualifier is accompanied with its ADL specification. The general form of this specification is:

qualifier Q1: type(string = NULL), alterable(TRUE|FALSE),
 scope([element1, status], [element2, status]),
 description("text");

Furthermore, the particularities of the qualifiers are described, the possible ways of using the qualifiers
are shown, and relationships to standards are presented.

3.3.2.1. Descriptive Qualifiers
Descriptive qualifiers include information that is usually contained in manuals only. Such information is
useful for an application programmer to understand the meaning of a specification. On application run-
time, these qualifiers offer information that can be employed to generate on-line help systems for human
operators and users.

The qualifiers are intended to comprise descriptions in a natural language of choice, a formal language
specific to an application, or links to such descriptions. Three formats are recognized and will be auto-
matically processed by a MAMA environment:
• Plaintext is text that can be built out of any character listed in Table B-1 (alphabetic characters),

Table B-2 (graphic characters), Table B-3 (formatting characters), Table B-4 (numeric characters),
and Table B-5 (escape characters). This text might be either human readable plaintext or any kind of

Approach

Middleware and Application Management Architecture 45

formal language for automated processing. White spaces shall be ignored displaying or processing
this type of text.

• HTML is formatted text according to [W3C-HTML] that serves for an easy integration in web en-
abled applications.

• A URL as link to either plaintext or HTML formatted text can be used instead of the actual descrip-
tion to minimize the overhead that is produced by the descriptions. A URL must follow a specific
scheme of type httpurl, ftpurl, or fileurl according to and usable as described in [IETF-RFC1738].

Behavior

qualifier Behavior: type(string = NULL), alterable(FALSE),
 scope([object, mandatory], [interface, mandatory],
 [action, mandatory], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/behavior.html");

This qualifier explains the behavior of the ADL elements object, interface, and action. For an object, the
behavior describes the change of a stable internal condition. An operation (in ADL an action) represents a
behavior. When this qualifier is used for an object or an interface, it describes the collection of behaviors
for the ADL element. When this qualifier is used for an action, it describes this very action. In general,
the change of a state can occur on the change of values on external or internal stimuli. Each attribute of an
interface can be accompanied with a description of its behavior with this qualifier.

Contact

qualifier Contact: type(string = NULL), alterable(FALSE),
 scope([module, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/contact.html");

For each module, a contact has to be specified that names a person that is responsible for the specification
of this module. It should contain at least one name, affiliation (if not included in or different to organiza-
tion), and optional postal address, telephone and fax number, WWW address, and email address.

Description

qualifier Description: type(string = NULL), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, optional],
 [attribute, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/description.html");

It is an obligation that each ADL element (except parameter) is connected to a textual description. This
description is used for the visualization of applications. This can be an online help system, manual, or
documentation. The description of an element should be done in a natural language of choice. The de-
scription might include information similar to the qualifiers Behavior, Contact, Organization, and Usage.

History

qualifier History: type(string = NULL), alterable(FALSE),
 scope([module, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/history.html");

This qualifier explains the history of the module. Any progress of the module should be stated here by
date, person, and actual change. Entries should be sorted by time in a descendant order. The actual string
can be automatically generated by code revision software, such the Concurrent Versions System (CVS) or
the Revision Control System (RCS).

Approach

Middleware and Application Management Architecture 46

Organization

qualifier Organization: type(string = NULL), alterable(TRUE),
 scope([module, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/organization.html");

The organization qualifier contributes information on the organization that is responsible for the module.
It also might contain copyright information.

Usage

qualifier Usage: type(string = NULL), alterable(FALSE),
 scope([object, mandatory], [interface, mandatory],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/usage.html");

The content of the qualifier Usage should provide programmers with information on how to use an object,
interface, or attribute (i.e. description of values for parameters of actions, the intention of actions inside of
an interface, and so forth). When appropriate, this comprises also references to other qualifiers. The con-
tent of this qualifier can be used for example to assemble documentation about a specification.

3.3.2.2. Specification Qualifiers

Revision

qualifier Revision: type(short = 0), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/revision.html");

This qualifier describes the minor number of the versions of a module and optional of objects and inter-
faces. Permitted values are zero or any infinite positive number within the range of an integer type.

SpecStatus

qualifier SpecStatus: type(string = "current"), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, mandatory],
 [attribute, mandatory], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/specstatus.html");

It is an obligation that a status is defined for each ADL element (except parameter). This qualifier is simi-
lar to the status clause of the Structure of Management Information (SMI), “which must be present, indi-
cates whether this definition is current or historic.” [IETF-RFC2578] The default value is current.

Value Description

current “The specification is current and valid.” [IETF-RFC2578]

obsolete “The specification is obsolete and should not be implemented and/or can be removed
if previously implemented.” [IETF-RFC2578]

deprecated “It permits new/continued implementation in order to foster interoperability with
older/existing implementations.” [IETF-RFC2578]

Table 3-5: MAMA Core Model – Values for the Status Qualifier

Approach

Middleware and Application Management Architecture 47

Status

qualifier Status: type(string = "optional"), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, mandatory],
 [attribute, mandatory], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/status.html");

It is an obligation that a status is defined for each ADL element. This qualifier indicates whether the spe-
cific element needs to be implemented or not. Permitted values are required, mandatory, and optional.
The default value is optional.

Value Description

required The element needs to be implemented with a meaningful value.

mandatory The element needs to be present but might have a non-meaningful value.

optional The element might be implemented or instantiated.

Table 3-6: MAMA Core Model – Values for the Status Qualifier

Version

qualifier Version: type(short = 0), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/version.html");

This qualifier describes the major number of the versions of a module and optional of objects and inter-
faces. Permitted values are zero or any infinite positive number within the range of a short type.

3.3.2.3. Access-related Qualifiers

Permissions

qualifier Permissions: type(octet = 0755), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/permissions.html");

Permissions are access policies for objects, interfaces, attributes, and actions. The permissible values for
this qualifier are adopted from UNIX operating systems as described in [SunOS-chmod]. For simplifica-
tion, MAMA employs read, write, and execute permissions only. Advanced permissions like mandatory
locking, set-identifier, and sticky bits are ignored. The given permissions can be pre-defined with this
qualifier. However, this qualifier is alterable to enable changes of permissions at run-time.

Permission consists of attributes for read, write, and execute. Permissions can be defined for the owner of
an ADL element; a group the element is associated to, and for all other clients. Following this, permis-
sions can be expressed by three sequences each having three characters:

User Group Other
rwx rwx rwx

The character r marks read permission; w is used for write permission, and x for execution permission.
When the character is missing (indicated by ‘-’), the respective permission is not granted. For automated
processing, the permissions are coded in form of a three digit octet where the first digit represents permis-
sions for the owner, the second for the group, and the last for all others. Each digit can have one of the
following meanings:

Approach

Middleware and Application Management Architecture 48

• 0 – no access permissions at all;
• 1 – execute permission;
• 2 – write permission;
• 3 – execute and write permissions;
• 4 – read permission;
• 5 – read and execute permissions;
• 6 – read and write permissions; and
• 7 – read, write, and execute permissions.

Only the owner of an ADL element should be able to change the actual permissions of this very element.
Therefore, this qualifier should be used at least in combination with the qualifier Owner in order to iden-
tify privileged objects.

Group

qualifier Group: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/group.html");

This qualifier defines the group of an object, interface, attribute, or action in form of a string. The actual
interpretation of the string is out of scope of MAMA core definitions. However, MAMA recommends
using this qualifier according to the group management of UNIX operating systems.

Owner

qualifier Owner: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/owner.html");

This qualifier defines the owner of an object, interface, attribute, or action in form of a string. The actual
interpretation of the string is out of scope of MAMA core definitions. However, it is recommended to use
this qualifier according to the user management of UNIX operating systems.

3.3.2.4. Qualifiers for Attribute and Parameter

ArrayType

qualifier ArrayType: type(string = "bag"), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/arraytype.html");

This qualifier is derived from [DMTF-CIM]. It is used for array-typed attributes to qualify the type of the
array. Permitted values are bag, ordered, and indexed. The default value is bag.

Values Description

Bag Unordered and multi-valued array, allowing duplicate entries

Ordered Specialized bag with the same characteristic, values are returned in an implementation
dependant way with a fixed order

Indexed Maintains the order of elements e.g. with an integer index for each value of the array

Table 3-7: MAMA Core Model – Values for the ArrayType Qualifier

Approach

Middleware and Application Management Architecture 49

BitMap

qualifier BitMap: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/bitmap.html");

This qualifier is derived from [DMTF-CIM]: “Indicates which bit positions are significant in a bit map.
The position of a specific value in the BitMap array defines an index that is used in selecting a string lit-
eral from the BitValues array.”

qualifier BitValues: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/bitvalues.html");

BitValues

This qualifier is derived from [DMTF-CIM]: It “… provides translation between a bit position value and
an associated string. See the description for the BitMap qualifier.”

Counter

qualifier Counter: type(boolean = FALSE), alterable(FALSE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/counter.html");

This qualifier indicates that the given attribute is used as a counter.

DisplayHint

qualifier DisplayHint: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/displayhint.html");

This qualifier, when used for attributes, gives a hint for graphical user interfaces on how to display the
value of the given attribute. This usages adopts the definitions of the Simple Network Management Pro-
tocol (SNMP) found in [IETF-RFC2579] on page 21 and 22. When this qualifier is used for objects or
interfaces, it should contain a reference in form of an URL to code that can be used for displaying the
capabilities of the relative element. This code should be a graphical user interface by nature, which is
HTML, Java, or native code for any operating system platform.

DisplayName

qualifier DisplayName: type(string = NULL), alterable(TRUE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/displayname.html");

This qualifier gives a name different from the specified name of the attribute that can be used in a graphi-
cal user interface.

MaxLen

qualifier MaxLen: type(long = 1024), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/maxlen.html");

This qualifier defines the maximum length of an attribute that is typed as a string or an array with an
infinite positive number. This qualifier is not applicable for all other basic types. When used for an attrib-
ute of type string, this qualifier indicates the maximal allowed length of the string in single byte charac-
ters. When used for an attribute of type array, this qualifier indicates the maximal allowed members of the

Approach

Middleware and Application Management Architecture 50

array. Both numbers might be related to memory issue. However, strings and arrays can extend the
maximum length, but overhead information will not be processed.

MaxValue

qualifier MaxValue: type(long = 1024), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/maxvalue.html");

This qualifier defines the maximum value for attributes typed as integers or real numbers according to the
ADL EBNF. This qualifier is not applicable for all other basic types.

MinLen

qualifier MinLen: type(long = 0), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/minlen.html");

This qualifier defines the minimum length of an attribute that is typed as a string or an array with an infi-
nite positive number or zero. This qualifier is not applicable for all other basic types. When used for an
attribute of type string, this qualifier indicates the minimum allowed length of the string in single byte
characters. When used for an attribute of type array, this qualifier indicates the minimum allowed mem-
bers of the array. Both numbers might be related to memory issue. However, strings and arrays can ex-
tend the minimum length, but overhead information will not be processed.

MinValue

qualifier MinValue: type(long = 0), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/minvalue.html");

This qualifier defines the minimum value for attributes typed as integers or real numbers according to the
ADL EBNF. This qualifier is not applicable for all other basic types.

StepIndex

qualifier StepIndex: type(long = 1), alterable(FALSE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/stepindex.html");

This qualifier specifies the step index for an attribute of type integer that is used as a counter. It should
not be used without the qualifier Counter. StepIndex is of type signed long, indicating that the value for
the associated counter is incremented or decremented. Permitted values are any negative or non-negative
number.

Units Qualifier

qualifier Units: type(string = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/units.html");

This qualifier is derived from [DMTF-CIM]. It provides units in which data of the associated attribute is
expressed. Recommended values for this qualifier are listed in Table C-2.

ValueMap

qualifier ValueMap: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/valuemap.html");

Approach

Middleware and Application Management Architecture 51

This qualifier is derived from [DMTF-CIM]. It defines a set of permissible values for the associated at-
tribute. A ValueMap can be used alone or in combination with the qualifier Values. “When used in com-
bination with the Values qualifier, the location of the value in the ValueMap array provides the location
of the corresponding entry in the Values array. ValueMap may only be used with string and integer val-
ues.” [DMTF-CIM]

Values

qualifier Values: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/values.html");

This qualifier is derived from [DMTF-CIM]. This qualifier provides a map for translations of integer
values (enumerations) to associated strings.

Wildcards

qualifier Wildcards: type(boolean = FALSE), alterable(FALSE),
 scope([attribute, required], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/wildcards.html");

This qualifier indicates that wildcards are allowed for the given attribute. It should be used for string and
character typed attributes. The precise definition of the allowed wildcard syntax and semantic is up to the
distributed system. MAMA uses extended regular expressions as defined by the Portable Operating Sys-
tem Interface (POSIX; [IEEE-1003.2]).

3.3.2.5. Miscellaneous Qualifiers

Abstract

qualifier Abstract: type(boolean = FALSE), alterable(FALSE),
 scope([object, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/abstract.html");

This qualifier is derived from [DMTF-CIM]. It indicates that the object is abstract and serves only as base
class. An instance of an abstract element cannot be created.

RegisteredAs

qualifier RegisteredAs: type(string = NULL), alterable(FALSE),
 scope([module, optional], [object, optional],
 [interface, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/registeredas.html");

Indicates the registration name of the given module, object, or interface regarding the employed naming
scheme. This qualifier is optional. That implies, that the respective ADL element can be specified without
a pre-described name. In this case, the naming service is responsible for selecting an appropriate name
and node within the naming tree. An MAMA object might suggest an appropriate name for its instances
to the naming service. This qualifier will not be used to derive the name of classes since that is generated
directly out of the specification.

In

qualifier In: type(boolean = TRUE), alterable(FALSE),
 scope([parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/in.html");

The declaration of a parameter of an action must have a directional attribute. This attribute informs the
protocol and the API in which direction the parameter has to be passed. The In qualifier identifies that a

Approach

Middleware and Application Management Architecture 52

parameter is passed from client to server (or from calling object to a called object respectively). When it
is used in combination with the Out qualifier, the parameter will be passed in both directions. This behav-
ior is similar to the parameter attributes defined by [CORBA]. While the status of this qualifier is op-
tional, it is necessary to use at least one qualifier for the direction of a parameter.

Out

qualifier Out: type(boolean = FALSE), alterable(FALSE),
 scope([parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/out.html");

The declaration of a parameter of an action must have a directional attribute. This attribute informs the
protocol and the API in which direction the parameter has to be passed. The Out qualifier identifies that a
parameter is passed from server to client (or from calling object to a called object respectively). When it
is used in combination with the In qualifier, the parameter will be passed in both directions. This behavior
is similar to the parameter attributes defined by [CORBA]. While the status of this qualifier is optional, it
is necessary to use at least one qualifier for the direction of a parameter.

Quality

qualifier Quality: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/quality.html");

This qualifier provides information for both programmers of objects and users on Quality of Service
(QoS) that can be used i.e. for accounting. Regarding objects, this qualifier indicates whether the imple-
mentation of this object might become simple or large. From the viewpoint of interfaces and actions, this
qualifier describes whether the usage of those elements might result in expensive or cheap accounting.
With this mechanism, a MAMA environment can define constraints for object deployment. E.g., large
objects will not be useful on settop boxes with limited processing power and simple objects cannot solve
monitoring of thousands of employees of a company. Similar, the user (client software) can be informed
that the activation of a certain interface is expensive so that he can decide to try other interfaces that pro-
vide similar services but need maybe more time.

The actual definition of large, simple, expensive, and cheap has to be done within the concrete MAMA
environment. This task is out of scope of the MAMA core specifications. Allowed values are large, small,
expensive, and cheap. The basic intention for a large or small object is to give enhanced information on
its implementation. Expensive and cheap reflect the usage of resource and can affect accounting and bill-
ing of operation calls.

xmlDTD

qualifier xmlDTD: type(string = NULL), alterable(FALSE),
 scope([interface, optional], [attribute, optional],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/xmlDTD.html");

This qualifier indicates the URL to a DTD that is used to code the XML statements that are used within
the interface, attribute, or action. When used for the ADL element attribute, this very attribute has to be of
the type string. The content of this qualifier can be plain text or a URL as a link to the actual DTD. A
URL must follow a specific scheme of type httpurl, ftpurl, or fileurl according to and usable as described
in [IETF-RFC1738].

3.3.2.6. Dependencies among Qualifiers
Several qualifiers have dependencies to other qualifiers. Those dependencies can only be processed by a
MAMA specific ADL parser, which has the knowledge on the semantics of qualifier definitions. There-
fore, the ADL parser is a tool specific to a certain Core Model, in this case to the MAMA Core Model.

Approach

Middleware and Application Management Architecture 53

Qualifiers Dependencies

Counter, StepIndex StepIndex can only be used when Counter is present.

Abstract, Status When Abstract is used, the qualifier Status defines under which conditions an
instance of the object should exist. Required defines, that at least one instance
must be present. Mandatory indicates that basic services depend on an existing
instance. Optional means that no instance must be present.

In, Out These two qualifiers can be used alone or together, but at least one of them needs
to be present for any parameter.

MaxLen,
MaxValue,
MinLen, MinValue,
StepIndex

Here, StepIndex is not used as indication for a counter, but to define the permit-
ted set of values for an attribute or parameter. When StepIndex is used, it charac-
terizes the intended values. Otherwise, the ADL element accepts any (analog)
value in the given maximum and minimum borders.

Group, Owner,
Permission

The qualifier Permission should be used in compartment of User and Group
These qualifiers can be used to define an element as read-only. With the permis-
sions set to ‘0444’ and a given owner, only this very owner can change the per-
missions to another value.

SpecStatus, Status When SpecStatus is set to current, Status can take all defined values. Otherwise,
the status of a specification should be changed to optional.

ValueMap, Values When Values is used alone, it defines the permitted values of an attribute,
typedef, parameter, or structure member. It must contain only values that can be
carried by the type the ADL element is assigned to. When both qualifiers are
used in combination, ValueMap defines the location of the corresponding entry
in the array of Values.

Table 3-8: MAMA Core Model – Dependencies among Qualifiers

When new qualifiers are added, the parser must be supplied with the semantic information about these
new qualifiers. Dependencies should be avoided when possible. Table 3-8 lists the dependencies of quali-
fiers of the MAMA Core Model.

3.3.3. Type Definitions

This section introduces the basic type definitions of the Core Model. Some specifications are not pre-
sented here but in the sections that deal with the MAMA application protocol, the MAMA API, and with
the Application Services. The complete set of type definitions is included in Appendix 5.2.2.4.C.1.3. No
descriptive qualifiers are given for specifications.

3.3.3.1. Time and Date
Time and date is important information that is not yet standardized among distributed systems. The ISO
standard [ISO8601] defines a common format to express certain moments in time. This standard cannot
be used for the definition of time durations as used by personal schedules. However, it is applicable for
time stamps as they occur whenever an event is to be reported or any kind of action needs to be logged.

Furthermore, the dates specified in [ISO8601] are going to be used as general time and date format for
Internet protocols making an adoption of this standard a significant issue for interworking. The standard
gives the syntax description in the Augmented Backus-Naur Form (ABNF, cf. [IETF-RFC2234]):

date-fullyear = 4DIGIT
date-month = 2DIGIT ; 01-12
date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31
time-hour = 2DIGIT ; 00-23
time-minute = 2DIGIT ; 00-59

Approach

Middleware and Application Management Architecture 54

time-second = 2DIGIT ; 00-58, 00-59, 00-60
time-secfrac = "." 1*DIGIT
time-numoffset = ("+" / "-") time-hour ":" time-minute
time-offset = "Z" / time-numoffset

partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
full-date = date-fullyear "-" date-month "-" date-mday
full-time = partial-time time-offset

date-time = full-date "T" full-time

The characters T and Z might also be used in the lower cases t and z. Although time and date information
can be combined, separated by the character T, applications might choose to specify full date and full time
separated by a space character for the sake of readability. The token date-mday can receive the following
values:
• 0-28 for the month February in a normal year;
• 0-29 for the month February for a leap year;
• 0-30 for the months April, June, September, and November; and
• 0-31 for the months January, March, May, July, August, October, and December.

Special care has to be taken for months in which a leap second occurs. Here, the time-second token is
permitted to take the value 60. It is also possible for a leap second to be subtracted, at which times the
maximum value of time-second is 58. In all other cases, the maximum value for time-second is 59. Fur-
ther, in time zones other than Z, the leap second point is shifted by the zone offset in order to reflect the
fact that it happens at the same time around the globe.

Leap seconds cannot be predicted far into the future. The International Earth Rotation Service (IERS)
publishes bulletins that announce leap seconds with a few weeks warning. Applications should not gener-
ate timestamps involving inserted leap seconds before the leap seconds are announced.

The token time-hour is allowed to have the value 24 following [ISO8601]. However, this specification
does only permit values in the interval 0 and 23 for the actual hour.

The following code shows the definitions for time and date information. The specification defines two
complex structures, one for time information and one for date information. Furthermore, three simple
strings are specified that provide stringified information.

struct sTime{
 [MinValue(0), MaxValue(23), StepIndex(1)]
 unsigned short hour;

 [MinValue(0), MaxValue(59), StepIndex(1)]
 unsigned short minute;

 [MinValue(0), MaxValue(60), StepIndex(1)]
 unsigned short second;

 [MinValue(0), MaxValue(9), StepIndex(1)]
 unsigned short secFrac;

 signed short numOffset;
 signed short offset;
 signed short partialTime;
};

struct sDate{
 [MinValue(1), MaxValue(12), StepIndex(1)]
 unsigned short month;

Approach

Middleware and Application Management Architecture 55

 [MinValue(1), MaxValue(31), StepIndex(1)]
 unsigned short day;

 [StepIndex(1)]
 signed short fullyear;
};
struct sTime{
 unsigned short hour;
 unsigned short minute;
};
typedef string tTime;
typedef string tDate;
typedef string tTimeDate;

The structures sTime and sDate follow directly the specifications of [ISO8601]. The strings tTime, tDate,
and tTimeDate are introduced to simplify the exchange of time information and to allow simple time
stamps for notifications and logs. The content of the three strings will only be processed by MAMA com-
ponents (protocol, API, services) when it strictly follows the time specifications of [ISO8601].

3.3.3.2. Tickets and Exceptions
Tickets are used within the system to notify any interested component about events that have occurred.
The following ADL code specifies a generic ticket structure that shall be used for the exchange of notifi-
cations. The structure sTicket consists of two parts. The first part represents the header. It goes up to the
structure member optionalHeaderFields. The second part of a ticket – called body – contains additional
information.

[ValueMap("0", "1", "2", "3", "4", "5", "6"),
 Values("unknown", "Information", "Warning", "Error", "Exception",
 "Accounting", "Notification")]
typedef unsigned short ticketCategory;

struct sTicket {
 ticketCategory category;
 tTimeDate time;
 unsigned long ticketPriority;
 string ticketType;
 string ticketOriginator;
 string ticketDescription;
 tNameValueList optionalHeaderFields;
 tNameValueList filterableBody;
 tNameValueList anyThingElse;
};

The first part starts with a category. The category of a ticket can be specified by means of unknown, in-
formation, warning, error, exception, accounting and notification. The categories should be used as de-
scribed below.
• Unknown should be used when the ticket cannot be categorized with any other value, e.g. for appli-

cation specific categories included in the optional part of the ticket.
• Information should be used to describe low prioritized status changes to all interested application

objects. Tickets of this category might require a response of other objects, but this response must not
be done immediately.

• A notification should be used to notify a group of application objects about important changes that
might require notice but not necessarily further action. A notification can be used to realize scenarios
as the trap-directed polling of SNMP.

• A warning indicates that a certain condition has reached a level where the attention of other applica-
tion objects is needed to monitor further developments. The monitoring can be realized directly on

Approach

Middleware and Application Management Architecture 56

the object that has emitted the warning. Otherwise, the event service might be overloaded with warn-
ings during critical phases of a distributed system.

• An exception is an event that requires the immediate attention of application objects that receive it.
Furthermore, an exception can be used to inform calling objects about an exception that has been
recognized during the processing of an action. This mechanism can be used to realize programming
language exceptions similar to C++.

• Accounting events are used to generate information useful for accounting and performance manage-
ment, as well as for generating statistically information about the runtime behavior of application ob-
jects. The content of those tickets is application specific and should not be processed by the event
services.

The time in the ticket structure indicates the time the ticket was originally created and sent by an object,
not the time it was received at the event service. The priority is not further processed by MAMA. Appli-
cations can define a specific policy for handling priorities. Only the type long is predefined for priorities.

The member ticketOriginator should contain the address of the object that has created the ticket. This
member is specified as string. Therefore, the address can be a middleware specific object identifier (e.g.
CORBA IOR) or an address from the MAMA naming service. The member ticketDescription should
contain a description of the message following the rules that are given for descriptive qualifiers in section
3.3.2.1. The member optionalHeaderFields is included to allow applications the specification of specific,
non interpreted parameters for the ticket header.

The body of a ticket will not be processed by MAMA. This part comprises application specific informa-
tion. This information can be separated into a filterable part (filterableBody) and a non-filterable part
(anyThingElse). This approach follows the definition of a structured event in the CORBA notification
service [CORBA-NotS].

3.3.3.3. Specifications for MAMA Core Objects
Each MAMA object must provide functionality to alter qualifiers and to send specification information on
request. The Core Model declares an abstract object oMamaCore, which serves for those two use cases.
The functionality of this object is automatically inherited by all MAMA objects. The object class
oMamaCore serves as abstract base class for all MAMA objects. The MAMA API is responsible for the
implementation of the functionality. Therefore, requests for the actual specification and the change of
qualifiers is transparent to the application object,

[ValueMap("0", "200", "201", "300", "400", "500", "600", "700", "800"),
 Values("unspecified", "ADL", "xADL", "CORBA-IDL", "DCOM-IDL", "TINA-ODL",
 "JAVA", "SNMP-SMI", "OSI-GDMO")]
typedef short tSpecLanguage;

[Abstract]
object oMamaCore{
 interface iMamaCore{
 boolean changeQualifier([In] string name, [In] string value);
 string getSpecification([Out] MAMA::tSpecLanguage language);
 };
};

The object contains one interface, which declares two actions. The first action can be used to change the
values of qualifiers when those qualifiers are explicitly declared as alterable. The application object can
override this characteristic for each qualifier. The second action returns the specification of the applica-
tion object in the requested language.

3.3.3.4. Miscellaneous Definitions
Table 3-9 comprises miscellaneous type definitions that are not discussed with their actual specification.
Each definition in this table is further used by the MAMA protocol, the MAMA API, or application ser-
vices. Furthermore, the definitions are intended to provide a basic set for MAMA applications.

Approach

Middleware and Application Management Architecture 57

Definition Description

sNamedValue This definition is the basic of a name-value list. It combines a name as a unique
identifier with a value, a type, and a flag defining access policies.

tAccessFlag The access flag is defined for the name-value lists used in the protocol.

tElementType This is the declaration of enumerates for each ADL element. It is used in the direc-
tory service to identify groups of specifications.

tEntityStatus Each application object has an actual status. This information is important for
management issues, such as monitoring.

tEntityType Entity types are used to qualify a MAMA object that represents a certain role of
the manager/agent paradigm or a MAMA specific service. Values are manager,
sub-manager, agent, sub-agent, dynamic managed object (one that is controlled
completely by MAMA, including start and stop), static managed object (one that
is only accessed by MAMA to control its behavior), Graphical User Interface
(GUI), event server, and directory server.

tMiddleware This definition is included to identify supported types of middleware. It is used for
application management to specify the middleware an application object supports
for communication.

tNameValueList A list of name-value pairs, mostly used in the protocol.

tOperatingSystem Each managed application object is accompanied with information about the oper-
ating system it is able to run on. This definition includes all known operating sys-
tems in form of enumerates. The list of operating system is provided by the Inter-
net Assigned Number Authority (IANA) in [IANA-OS].

tPath A path is a MAMA address of an application object. The definition is used in the
protocol to generate complex structures for addressing single objects and objects
in hierarchies. Multiple addresses are separated by the character semicolon.

tSecurityLevel Specifies the security level for the protocol options.

tSpecLanguage Each application object offers information about its specification in a certain lan-
guage. Although MAMA initially supports ADL and xADL only, other languages
might be interesting for specific use cases.

tURL A URL is a basic addressing scheme. This type has been introduced to provide a
generic description of URLs with minimum permitted values. Values are URL
schemes defined e.g. in [IETF-RFC1738].

Table 3-9: Core Model – Miscellaneous Type Definitions

3.3.4. Entity Management

The Core Model provides basic specifications for the management of MAMA core objects. These specifi-
cations are collected by the abstract base class oEntityMgmt. Each MAMA core object that wants to offer
status information just needs to inherit the functionality from this class. The MAMA API is responsible
for the implementation of the functionality. The class oEntityMgmt identifies four different types of in-
formation:
1. information available at the time the application was compiled;
2. information about the installation of the application on a specific node or host computer;
3. information available at the time the application was launched, that is started; and
4. information about the runtime status of the application.

Approach

Middleware and Application Management Architecture 58

The information on runtime is further divided into general information, URLs that lead to external con-
figuration files, fixed configuration information, variable configuration information, and information
about requests that are stored by the API.

The information on each type is collected by a dedicated structure. The class oEntityMgmt declares each
of the eight structures as an attribute with appropriate access permissions to enable other application ob-
jects to access the stored information.

3.3.4.1. Compile Time Information

struct sCompileTime{
 unsigned short numberOfInterfaces;
 MAMA::tTime compileTime;
 unsigned short version;
 unsigned short revision;
 string cvs;
 MAMA::tEntityType type;
};

The compile time information can be generated automatically by an ADL compiler. They include the
number of interfaces, the actual time the application was compiled, and the version and revision number
of the compilation result (usually an executable). Additionally, a string that describes the identifier of an
automatic code revision system for that very compilation and the type of application is included in this
information.

3.3.4.2. Information about the Installation

struct sInstallation{
 MAMA::tPath pkgLocation;
 MAMA::tDate pkgDate;
 string pkgSerialNumber;
 string pkgProductName;
 string pkgVersion;
 string pkgManufacturer;
};

The information about the current installation of the application is derived from [IETF-RFC2287]. They
comprise the location of the installation in form of an operating system specific path, the date of the in-
stallation. Furthermore, the structure contains information about the software package as there are an
optional serial number for the package, the product name of the package that might differ from the appli-
cation’s name, the package version, and the manufacturer of the package. This information should be
read-only to avoid manipulation.

3.3.4.3. Information about the Application Launch

struct sLaunch{
 string launchUser;
 string launchParameters;
 string launchTime;
};

An application is usually launched by a specific user (regarding the domain of the system where the ap-
plication was started), with a number of parameters, at a specific time. All this information is included in
the structure that deals with launch-time information. This information must be read-only to avoid ma-
nipulation.

Approach

Middleware and Application Management Architecture 59

3.3.4.4. General Runtime Information

struct sRuntimeGeneral{
 string supportContact;
 string physicalLocation;
 string ID;
 unsigned short boots;
 MAMA::tTime time;
 MAMA::tTime uptime;
 MAMA::tTime localTime;
 MAMA::tOperatingSystem OS;
 MAMA::tMiddleware middleware;
 string host;
 MAMA::tEntityStatus status;
};

The general information about a running MAMA application starts with the identification of a person
responsible for support. This includes contact information like email and telephone number, and the
physical location where the application is running (or the host computer respectively) by means of floor,
room, or other appropriate location information.

Each application should be accompanied by a unique identifier. MAMA recommends the usage of a Uni-
versally Unified Identifier (UUID; [DCE-RPC]) for this purpose.

Each application can be booted and restarted several times. The time of the last boot can be stored, and
the total runtime of the application can be measured. All this information might become useful for per-
formance monitoring during long runtimes.

A running application depends on the middleware it is based on and the operating system of its host com-
puter. The host computer has usually a local time and an IP2 address. This information is also handled by
this structure.

3.3.4.5. Configuration Files

struct sRuntimeConfigUrls{
 MAMA::tURL configUrl;
 MAMA::tURL persistentUrl;
 MAMA::tURL logUrl;
 MAMA::tURL eventServerUrl;
 MAMA::tURL entityUrl;
};

Application specific parameters that describe the actual configuration of an application are (most prefer-
able) contained in configuration files. These files need to be accessed by the application at startup. The
file locations of MAMA applications should be given to the applications in form of a URL (cf. [IETF-
RFC1738]). The configuration information is grouped to general information (ConfigUrl), information
about or location of persistence and log files, the address of the event service, and the application itself.

3.3.4.6. Fixed Configuration Information

struct sRuntimeConfigFixed{
 string serialNumber;
 string vendor;
 string manufacturer;
 string modelName;
 string languageEdition;
};

2 Internet Protocol

Approach

Middleware and Application Management Architecture 60

Fixed configuration information does not change. Most of them are fixed for the total runtime; some of
them are changeable but not in short periods of time. This type of information is an application’s serial
number (that might differ from the installation serial), the vendor and the manufacturer of the application,
the vendor-specific model identifier, and the supported languages.

3.3.4.7. Variable Configuration Information

struct sRuntimeConfigVariable{
 unsigned short logLevel;
 unsigned short debugLevel;
 unsigned short monitoringLevel;
 unsigned short transactionTimeout;
 string securityModel;
 MAMA::tSecurityLevel securityLevel;
 string operationStatus;
 MAMA::tTime lastChange;
};

Variable configuration information might change or might be changed frequently during the total runtime
of the application. The first group relates to the levels of log, debug, and monitoring the application
should be configured to. The transaction timeout, security model, and security model are reserved for the
protocol. The operation status explains the current runtime status of the application (up, running, initializ-
ing, down, broken, waiting). The last member of the structure specifies the last time the application was
changed, e.g. a new library was added or configuration data changed.

3.3.4.8. Log Information

struct sRuntimeLog{
 MAMA::tTime lastRequestIn;
 MAMA::tTime lastRequestOut;
 MAMA::tTime lastResultIn;
 MAMA::tTime lastResultOut;
 MAMA::tTime rejectedRequestsIn;
 MAMA::tTime rejectedRequestsOut;
 unsigned long requestInCount;
 unsigned long requestOutCount;
 unsigned long resultInCount;
 unsigned long resultOutCount;
 unsigned long rejectedRequestsInCount;
 unsigned long rejectedRequestsOutCount;
};

Log information reflects the processing of operation calls (requests) by the application. The first four
members of this structure provide information on the last time the application called an operation, an op-
eration was called on the application, the application sent results, and the application received results. The
next two members store the time the application has rejected an operation call or received the rejection of
its own operation calls. The last six members provide statistical information on sent and received opera-
tion calls, results, and rejects.

3.4. Application Protocol

The Application Protocol defines the mechanisms of data exchange between applications and among ap-
plications and services. The protocol has the following objectives:
1. Provide a generic mechanism for the communication between distributed objects. This mechanism

needs to be independent of concrete middleware technology but should be mapped to employed
middleware easily.

Approach

Middleware and Application Management Architecture 61

2. Realize the communication between MAMA objects supported by the API. The protocol defines
communication behavior and the API implements it. The communication between MAMA objects is
done via the exchange of either ADL typed or xADL typed parameters.

3. Support of management hierarchies. Management systems assume the existence of a management
hierarchy that aligns managers, agents, and managed objects in form of a management tree. Since
distributed objects are only loosely coupled, this special requirement needs to be supported by the
protocol with mechanisms for hierarchical addressing of objects, scoping and filtering, and the reali-
zation of transactional operations.

The communication between application objects can be divided into three different layers. As Figure 3-6
shows, the first layer describes the relationships between the core objects of applications. These objects
exchange information by means of messages or operation calls to realize the aims of the application. The
second layer models the transmission of messages and/or operation calls between MAMA API objects.
The MAMA protocol specifications reside in this layer. The third layer is dedicated to the employed mid-
dleware and the middleware specific protocol. Further layers are not needed since the middleware proto-
col already abstracts from underlying network transport protocols.

This approach can be compared to the Reference Model for Open Systems Interconnection (RM-OSI;
[ITU-X200]). The layers are independent of each other. Protocol services are offered via Service Access
Points (SAP) here called interfaces. The MAMA API utilizes the ADL specification of the system to offer
the application core objects with an interface for message transfer and operation calls. This interface,
described in ADL, is mapped to the actual implementation language of the core object. Therefore, it is
middleware generic but programming language specific. The interface to specific middleware architec-
tures is specified middleware generic in ADL and needs to be mapped to the actual middleware. The API
must implement this interface for each type of middleware.

MAMA Interface O2MAMA Interface O1

Core Object

MAMA
API

Channel
Control

Function
Stub

Binder

Protocol
Adapter

Messages / Calls

MAMA Protocol

Middleware Protocol

Core Object

MAMA
API

ADL
Interface O1

ADL
Interface O2

Figure 3-6: MAMA – Protocol

The MAMA protocol is a combination of the MAMA interface and interaction schemes that are defined
by the actions and attributes of application objects. The MAMA interface is specified in ADL in a way
that it can be easily mapped to any concrete middleware language.

The design of a middleware independent protocol implies an exact method for the mapping of informa-
tion from the core objects via the MAMA API towards the actual employed middleware protocol. This
mapping is characterized by the interfaces each layer offers. The core objects of applications communi-
cate via messages or operation calls. The information exchanged is ADL typed data. This information
needs to be mapped to the MAMA interface. This mapping is realized by the MAMA API, which offers
programming language specific methods for message exchange and operation calls. Furthermore, the API
converts the information into the middleware specific protocol, which is an environment specific model-
ing of the MAMA interface.

Approach

Middleware and Application Management Architecture 62

3.4.1. Protocol Specification

MAMA::tNameValueList swAction([In] tOperation operation,
 [In] tSeqObjectPath addresses,
 [In] MAMA::tNameValueList parameters,
 [In] MAMA::tNameValueList options);

The MAMA interface is specified in ADL. The interface is modeled following management protocols.
The interfaces of managed objects rely on a fixed set of operations that are offered by the management
protocol. SNMP grants operations to retrieve information about attributes and to alter them. The Common
Management Information Protocol (CMIP) adds a specialized operation called action that is capable of
wrapping specific operations of managed objects. Thus, management systems decouple the access to
managed objects and their behavior from the description of that very behavior. The latter is described by
management languages (SMI, Guidelines for the Definition of Managed Objects – GDMO). Whatever the
definition of a managed object includes, the operations to access this managed object are fixed to:
• get – retrieve information of a managed object and its attributes;
• set – alter information of a managed object and its attributes; and
• action – perform a further described specific operation on a managed object or its attributes.

Applying these three general operations to a middleware interface definition results in the following code:

void set (listOfParameters params);
NameValueList get (listOfParameters params);
NameValueList action (string operation, listOfParameters params);

This interface depends not on the middleware interface definitions and it is not subject to be changed.
Therefore, the signature of the interface will not change and a re-compilation of client or server is not
necessary when the interface definitions of the computational objects change.

The three operations can be further compressed. The operation action already includes a string that identi-
fies the requested operation. This string can also have the values set or get, so that the first two operations
of the given interface are not needed.

NameValueList action (string operation, listOfParameters params);

The result is one interface operation that wraps concrete operations of application objects. This is exactly
what the MAMA interface is doing. This interface operation is called swAction to distinguish it from
normal interface operations and to show the conceptual relationship to management protocol operations
especially the action operation of CMIP. The operation swAction returns a data type tSeqNamedValue and
gets several arguments that are necessary for the correct handling of operation calls. The arguments are
the called operation, a list of addresses, the parameters for the called operations, and a list of options for
the parameterization of the protocol itself.

3.4.1.1. Operation

typedef string tOperation;

The required operation is presented in form of a string. This string can be interpreted by the MAMA API
to select an appropriate function on the application’s core object or an API specific operation. This pa-
rameter of the operation swAction must follow the rules of identifiers as described in section 3.2.1.3.

3.4.1.2. Addresses

typedef MAMA::tPath[] tSeqObjectPath;

Approach

Middleware and Application Management Architecture 63

For each call to an operation, the calling object must specify the objects where this very operation should
be executed. In classic middleware, this address is a single object. For management systems, those ad-
dresses need to cover management hierarchies and groups of objects that should be called at once. There-
fore, the address field in the protocol interface specification is modeled as an array of strings.

Each operation call can be associated to any infinite non-negative number of addresses. Each address is
represented by one member of the string array tSeqObjectPath. With this mechanism, group of objects
can be contacted by an application with only one function call. Protocol options can be applied to indicate
the policy for processing this operation call for each individual object of the array.

Each string of the array describes either a single identifiable object (like in classic middleware) or the
path in a management hierarchy to a specific object (as in management systems. When a single object is
addresses, the processing of the operation is simply to call the operation on the object.

The situation becomes more complex when complete object paths are given as address. In this case, the
path will be traversed and evaluated at each node. These nodes will change the path (by removing them-
selves from the path) and look for options that indicate a local execution or a further forwarding to other
objects addressed in the path.

The part of the protocol that is visible to the applications core objects handle MAMA specific addresses.
The actual naming conventions for MAMA objects are not specified by the protocol itself but by the
MAMA naming service. The protocol demands only that object names are given in form of strings. The
protocol itself processes MAMA addresses and transforms them into middleware specific addresses. This
is done by the help of the naming service. The application core object only needs to deal with MAMA
addresses.

3.4.1.3. Parameters, Options, and Return Values
Parameters, options, and return values are transmitted in form of Name-Value Lists (NVL). An NVL is a
complex map for exchanging typed values in form of a sequence. This concept can be found in many
application protocols although it is not every time called so. SNMP uses variable bindings and CMIP
managed objects contain attributes composed as name-value lists. The MAMA protocol specifies further
a set of flags to configure the behavior of operation calls. Those flags are combined in the option field of
the protocol.

Name-Value List

struct sNamedValue{
 string name;
 string value;
 tDataType nvDataType;
 tAccessFlag nvAccessFlag;
};
typedef sNamedValue[] tNameValueList;

The name-value list for the MAMA protocol is a list that collects any number of sNamedValue. This
again is a structure that contains all information on a single value that is necessary for marshaling/de-
marshaling. The first three members describe the parameter that should be transmitted:
• name is the name of the parameter;
• value is the value assigned to the name;
• nvDataType represents the ADL data type of the parameter; and
• nvDataFlag characterizes the access permissions for each value.

With these three members it is possible to marshal any declaration of a basic data type. Declarations that
are based on new type definitions can be decomposed until a basic data type matches. The fourth member
of the structure is used to indicate whether the parameter is read only or writable. Read only parameters
are not subject to be changed by the called operation. Writable parameters are used as return values.

Approach

Middleware and Application Management Architecture 64

tDataType

[ValueMap("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
 "12", "13", "18", "19"),
 Values("inconsistent", "char", "string", "boolean", "octet", "short",
 "ushort", "long", "ulong", "longlong", "ulonglong", "float",
 "double", "longdouble", "array", "struct")]
typedef unsigned short tDataType;

A tDataType identifies the ADL basic type of a value to reconvert transmitted values into the original
data type. The values 1 to 13 express ADL basic data types. The value 0 indicates a non-ADL data type.
New data types, beyond the scope of ADL basic types, can be added in order to model domain specific
requirements. Those data types should start not before the value 19. Data types that cannot be reconverted
because their actual type is unknown are converted to a string.

Arrays and structures are structured data types that need to be treated in a special way. For both, the start
and the end has to be marked clearly. The protocol marks both data types at the start with the name of the
array or structure and with the respective value for the data type (that is 18 or 19). The end of them is
identified by an empty name and the respective value for the data type. Members of structures are charac-
terized by their name, data type, and value. Members of arrays are only characterized by their data type
and value. Following this procedure, arrays and structures can be marshaled and de-marshaled by the
protocol.

tAccessFlag

[ValueMap("0", "1", "2", "4"),
 Values("none", "read", "write", "exec")]
typedef unsigned short tAccessFlag;

A tAccessFlag specifies flags for the access of values according to UNIX file permissions [SunOS-
chmod], as described in section 3.3.2.3. Each value can have a set of flags. It is possible to set all permu-
tations of read, write, and executable. The default is 0 so that the access to a value is no further specified.

This flag relates to the qualifier In and Out. The value of read indicates and In parameter, the value of
write indicates an Out parameter, and finally the combined value of read and write indicates an In and
Out parameter. The values none and exec are included to characterize unknown access policies and for
the identification of functions that might be called similar to function pointers in C++.

Options

In general, the protocol can be configured by four flags. All flags are transmitted with an operation call in
the options filed of swAction. Since this field is a name-value list, new options and application specific
options can be added easily. The MAMA API is in charge to provide appropriate functionality.

The flag transactionFlag requests that an operation call is treated as a transaction. The protocol realizes a
2 Phase Commit (2PC; [Heuer97]) automatically and returns only success or non-success to the calling
application object. The flag localExecutionFlag is included for operation calls that take place in object
hierarchies. This flag demands each object that receives an operation call to execute the included action
locally. The flag recursivelyFlag is also defined for hierarchical structures. When this flag is activated,
each object receiving an operation call is commanded to forward this operation to subordinate objects in
the hierarchy. The last flag, entityType, can be used to specify on which type of application objects an
operation call should be executed. This flag can be used in hierarchies or when the application type is
actually not known but used as a policy for the execution.

Security Options

Security requirements of the protocol are authentication of objects and encryption of communication data.
The following security levels are supported by the protocol
1. Level 0: No security, plain communication among objects.

Approach

Middleware and Application Management Architecture 65

2. Level 1: Object authentication (for caller and callee). Protection against active interventions which
may try to sabotage the system.

3. Level 2. Authentication of objects and encryption of communication data. Protection against active
interventions and passive interventions trying to catch information.

The security options can be configured for each call. The configuration is realized by setting the flag se-
curity in the option filed with the integer value of the requested security level. Server objects can demand
a certain level, which than has to be followed by client objects. When an incoming communication re-
quest does not comply with the adjusted security level or if the communication could not be established at
the wanted security level (e.g. authentication failures, decryption failures) the appropriate security excep-
tions have to be raised.

3.4.1.4. Example
The following example shows how the NVL can be used to marshal ADL data types. The example in-
cludes an array with three members, a structure with two members, and some standalone data. First, the
ADL declaration of the data types and an imaginary function are given:

typedef string[] aliases;
struct person{
 string name;
 string famelyName;
};
action setUser ([In] aliases nicknames, [In] person userName,
 [In] short yearOfBirth, [In] longlong hashId);

The function setUser can now be called from an application. The information about a user is filled in the
array aliases and in the structure person. The information yearOfBirth and hashId are generated when the
function is actually called. The following code shows a C++ notation.

aliases al;
al[0] = "vdmeer@cs.tu-berlin.de";
al[1] = "vdmeer@fokus.fhg.de";
person pr;
pr.name = "Sven";
pr.famelyName = "van der Meer";
setUser(al, pr, 1971, 83e2855d8fd96e64785e50500c492cc0);

The protocol transforms the parameters of the called function into a name-value list to generate the pa-
rameters of the ADL action. The result has the following form, also presented in C++ notation.

parameters[0].name = "nicknames";
parameters[0].value = "";
parameters[0].nvDataType = 18; // for array
parameters[0].nvAccessFlag = 1; // for read
parameters[1].name = "";
parameters[1].value = "vdmeer@cs.tu-berlin.de";
parameters[1].nvDataType = 2; // for string
parameters[1].nvAccessFlag = 1; // for read
parameters[2].name = "";
parameters[2].value = "vdmeer@fokus.fhg.de";
parameters[2].nvDataType = 2; // for string
parameters[2].nvAccessFlag = 1; // for read
parameters[3].name = "";
parameters[3].value = "";
parameters[3].nvDataType = 18; // for array
parameters[3].nvAccessFlag = 1; // for read
parameters[4].name = "userName";
parameters[4].value = "";
parameters[4].nvDataType = 19; // for struct

Approach

Middleware and Application Management Architecture 66

parameters[4].nvAccessFlag = 1; // for read
parameters[5].name = "name";
parameters[5].value = "Sven";
parameters[5].nvDataType = 2; // for string
parameters[5].nvAccessFlag = 1; // for read
parameters[6].name = "famelyName";
parameters[6] value = "van der Meer";
parameters[6].nvDataType = 2; // for string
parameters[6].nvAccessFlag = 1; // for read
parameters[7].name = "";
parameters[7].value = "";
parameters[7].nvDataType = 19; // for struct
parameters[7].nvAccessFlag = 1; // for read
parameters[8].name = "yearOfBirth";
parameters[8].value = "1971";
parameters[8].nvDataType = 5; // for short
parameters[8].nvAccessFlag = 1; // for read
parameters[9].name = "hashId";
parameters[9].value = "83e2855d8fd96e64785e50500c492cc0";
parameters[9].nvDataType = 11; // for float
parameters[9].nvAccessFlag = 1; // for read

This resulting sequence can be transformed to any specific middleware, since every interface definition
language supports lists, arrays, or sequences of structured data.

3.4.2. Protocol Information Flows

The protocol information flows explain how the protocol supports MAMA applications. Each application
must check in on the naming service in order to enable other applications to find available functionalities.
Furthermore, applications might want to register at the event service to send events or to retrieve events
from other objects. Both activities belong to the initialization process. The protocol offers the basic
mechanisms for this initialization. Figure 3-7 shows the protocol checkpoints for the initialization.

check in at
naming service

checked in

registered

check in

registration at
event service

internal registration
procedure on
naming service

successful check in
at naming service

registration
and role announcement
at event service

successful registration
(equal to idle mode)

execution
of the action

idle

action

internal handling of the
specified operation of
the requested action

idle mode, awaiting
next action

indication of an
action request

Figure 3-7: Protocol – Protocol Checkpoints [Fritzsch01]

The initialization of a MAMA application starts with the check-in at the naming service. The specific
operations of the naming service are not part of the protocol. They are discussed in section 4.4. The pro-
tocol connects to the naming service, calls the appropriate operation for check in, and handles further
processing until a successful check in is confirmed by the naming service along with a unique identifier
for the application object. When requested by the application, the protocol proceeds with the registration
at the event service. The final checkpoint of the initialization is registered. An application that reaches
this state operates as a MAMA application.

Approach

Middleware and Application Management Architecture 67

The state registered is equal to the checkpoint idle, shown in the right side of Figure 3-7. After the ini-
tialization, the protocol loops between action and idle. Action indicates that an action of the core object is
called (server) or that an action of another object should be called (client). The protocol performs the
requested action and returns to the state idle awaiting the next action.

3.4.2.1. Registration on the Naming Service
The registration on the naming service is explained in section 3.6.1.5. This section describes the interface
of the MAMA naming service including operations for the registration of new object instances.

The protocol connects to the naming service. In fact, the protocol searches for an available naming ser-
vice on the local machine, than in the local domain. When no naming service is found, it starts a local
naming service. Once connected to the naming service, the protocol takes care of the registration. The
return value not registered is aligned with a specific error message to enable a separation of failures that
might occur on the naming service.

3.4.2.2. Registration on the Event Service
A MAMA application can register on the event service. The application can decide to register as con-
sumer, as producer, or in both roles. The latter action can be achieved by registering first as consumer and
later as producer (or vice versa).

registered

register

set consumer
role

set producer
role

producer
role?

consumer
role?

yes yes

no no

not registered

Figure 3-8: Protocol – Registration on Event Service [Fritzsch01]

The protocol connects to the event service. In fact, the protocol searches for an available event service on
the local machine, than in the local domain. When no event service is found, it requests the activation of a
local event service from the naming service. Once connected to the event service, the protocol takes care
of the registration in the requested role. In the case that no role is specified, the protocol returns the state
not registered otherwise registered. Additionally, the return value not registered can be aligned with a
specific error message to enable a separation of failures that might occur on the event service from the
simple error that no role was specified by the application.

The protocol needs to be supplied with some information in order to register correctly and to process in-
coming events for the application. First, the role needs to be identified. Next, the application must provide
callback functions that can be invoked in case an event is received for the application. The Core Model
specifies several classes of events. An application can assign a callback function for each event class to
enable a different processing of information, warning, and error events. Furthermore, the application can
subscribe available event channels on the event service. This subscription is supported by the protocol by
calling the appropriate function on the event service.

3.4.2.3. Action Processing
For each operation call that is issued to an application, the protocol is responsible for the evaluation of the
related information. The protocol searches for an appropriate operation in its local database. When the
operation was not found, an exception is generated and returned to the calling object. Otherwise the pro-
tocol can proceed. The next step is to filter the options of the operation call. As introduced in the protocol

Approach

Middleware and Application Management Architecture 68

specifications, an action can be applied with two flags that indicate local execution and forwarding. An
additional flag identifies types of objects the operation should be forwarded to. The protocol analyzes the
flags to decide whether the operation should be executed locally, forwarded to specific types of objects,
or forwarded in form of a broadcast to all objects connected to the application.

idle

action

forward
operation

execute
operation

update
address list

forward
to a specific

address?

forward
as broadcast?run local? filter

options

yes
yes

yes

no

no

no

get
operations

operation
exists?

yes

no throw
exception

Figure 3-9: Protocol – Action Processing

The local execution and the forwarding can be combined so that an operation is executed locally and for-
warded. After the evaluation of the filter parameter, the protocol invokes the proper action, transmits pos-
sible return values, and returns to the state idle awaiting new operation calls.

3.4.2.4. Registration of Application-specific Operations
Initially, the protocol supports only pre-defined operations from the MAMA Core Model. Application
specific operations must be registered. The protocol handles a simple database with all available opera-
tions of a MAMA application to route an action request to the appropriate action.

update operation get
operations

operation
exists?

yes

no

update
database

register
operation

idle

Figure 3-10: Protocol – Registration of Application-specific Operations

Operations can be registered with the protocol at any time during the runtime of the application. This
enables the registration of new operations at startup, the registration of new operations that are dynami-
cally added to the application, and the update of already registered operations when they have been
changed during runtime. The protocol searches its internal database for the operation that should be regis-
tered. If found, the operation is added to the database, otherwise the database will be updated.

The integration of this behavior in the protocol offers applications to run on different roles. They can
operate as node objects inside of a hierarchy or as leaf objects. It is also possible that an application be-

Approach

Middleware and Application Management Architecture 69

longs to more than one hierarchical structure of objects and that it runs in more than one role at the same
time. Considering a management system, an application can act as a manager, an agent, and a managed
object simultaneously.

3.4.2.5. Sequence Diagram
Figure 3-11 shows the sequence diagram of the whole lifecycle of a MAMA application. Application A
invokes its initialization on startup. The protocol connects to the naming service to check in and to re-
ceive a unique identifier for the application that is used as address by other applications. The second step
is the registration on the event service. This service returns general information on available event chan-
nels and registers the application for certain types of events.

checkIn()

entitiyInfo(A)
register()

eventServerInfo()
getComponent()

entitiyInfo(B)
requestOperation()

result()
checkOut()

acknowledge()

deregister()

acknowledge()

entitiyInfo(A)
register()

eventServerInfo()
getComponent()

entitiyInfo(B)
requestOperation()

result()
checkOut()

acknowledge()

deregister()

acknowledge()

Application BApplication A Naming Service Event Service

Figure 3-11: Protocol – Sequence Diagram [Fritzsch01]

Application A is now a registered MAMA application. In the given example, A requests information about
an application B from the naming service. The returned information might include more than just the ad-
dress as for example information on the application’s interfaces. Now, A calls an operation on B and B
returns the results to A. The protocol is responsible for the connection between A and B and for the trans-
mission of data (that is marshaling and de-marshaling). Finally, A terminates. The termination can be
done right after the protocol was requested to checkout of the naming service. In Figure 3-11, the naming
service sends an event to the event service about the termination and the event service automatically de-
registers application A. The protocol receives the final acknowledgement and application A can terminate.

3.4.3. Protocol Support for Hierarchies

The protocol supports hierarchies as used in management systems and peer to peer networks by means of
addressing objects within a hierarchy. Additionally, objects can be filtered and scoped, and operations can
be forwarded via a set of objects until the finally addressed object is reached.

Hierarchical structures consist of objects that offer specific functionality. In a management system, those
objects are managers, agents, and managed objects. In a peer to peer network those objects might offer
distributed lookup and discovery services, persistency, and resource management. Objects can invoke
operations on other objects and they can receive notifications on occurred events. Both types of commu-
nication can be either synchronous or asynchronous. Policies can be applied for the forwarding of opera-
tion calls and notifications. The following subsections introduce the application of the protocol for ad-
dressing objects within hierarchies taking a management system as example. The mechanisms can be also
employed by other applications, such as peer to peer networks or intelligent agents.

Management operation requests are forwarded along the hierarchical structure of the management tree to
the agents or the managed objects, on which these operations should be performed. Therefore, the address
of an object consists of a description of the path to this object and unique an object identification. The

Approach

Middleware and Application Management Architecture 70

path description is composed by one or more unique object identifications of agents, which are responsi-
ble for the addressed agent or managed object.

An address may regard to single or multiple agents or managed objects (e.g. all objects of an agent or
even all objects of a specific sub-tree). Addresses and lists of addresses are assigned to a management
operation request. The protocol already offers flags in the option parameter of the operation swAction that
describe the execution policy of operations. For better understanding, the following abstract operation is
used instead of the complete swAction. The field list of entities contains all information regarding the
addresses of objects. The field flag includes the options introduced in section 3.4.1.3.

Op('list of entities', 'flag', ...)

A hierarchy consists of nodes and leafs. Each node and each leaf represent an object of a distributed ap-
plication with a special functionality. Nodes can forward operation calls to other nodes or leafs. Nodes
can also execute operations locally. Leafs receive operation calls and execute them. Both, leafs and nodes,
can send notifications to other objects in the hierarchy. In a management system, nodes are called agents
and leafs are called managed objects.

3.4.3.1. Addressing Node Objects
Each node in the hierarchy of a management system is provided with the information that it belongs to the
group of agents. Addressing a node in the hierarchy now implies to set the flag entityType to agent. The
management protocol can evaluate this flag at each node to invoke the proper operation or to discard the
operation completely. The two other flags of the option field of the protocol have the following meaning:
• When the recursivelyFlag is set, the operation is forwarded from each node to all other subordinate

nodes. No action regarding a forward is done when this flag is not set.
• When the localExecutionFlag is set, the operation is executed by the node itself. No action regarding

a local execution is done when this flag is not set.

Op(Agent4, NotRecursively, ...)
⇒ Op("Agent2, Agent4", ...)

Op("Agent4", NotRecursively, ...)

2 Op(Agent2, Recursively, ...)
⇒ Op("Agent2", ...)

Op(..., Recursively, ...)

Op(...)Op(...)

Manager

Agent4

MO4MO3

Agent2

MO2

Agent3

Agent1

MO1

1

Op(...)

Manager

Agent4

MO4MO3

Agent2

MO2

Agent3

Agent1

MO1

Figure 3-12: Protocol – Addressing of Nodes

The two flags do not affect each other. In the worst case, the operation is neither executed locally nor
forwarded to other nodes. Furthermore, the two flags allow three variants.
1. An operation is executed locally and not forwarded to other nodes.
2. An operation is not executed locally but forwarded to other nodes.
3. An operation is executed locally and forwarded to other nodes.

Figure 3-12 shows the effects of the recursivelyFlag. In case 1, a single node is addressed directly. The
operation is initiated by the object Manager and forwarded via the object Agent2 to the object Agent4. In
case an operation is called by the object Manager on the object Agent2 with an activated recursivelyFlag.
The object Agent2 automatically forwards this operation call to the objects Agent3 and Agent4. The loca-

Approach

Middleware and Application Management Architecture 71

lExecutionFlag is used to ensure that the operation is executed on the addressed objects (Agent4 in case 1,
Agent3 and Agent4 in case 2) only or also on the objects that forward the operation (Agent2 in both cases).

The usage of these two flags can be combined with the addressing of objects supported by the manage-
ment protocol. The address field of the protocols allows for multiple addresses and object paths. This
means, the object Manager is able to invoke the same operations not only on the nodes Agent2, Agent3,
and Agent4 but with the same call on the object Agent1.

3.4.3.2. Addressing Leaf Objects
Each leaf in the hierarchy of a management system is provided with the information that it belongs to the
group of managed objects. Addressing a leaf in the hierarchy implies to set the flag entityType to man-
aged object. The management protocol can evaluate this flag at each node to invoke the proper operation
in the managed object itself. The option recursivelyFlag has no special meaning and will not be inter-
preted by leaf objects. The flag localExecutionFlag is evaluated and the operation is invoked locally
when set. Otherwise the requested operation is forwarded up to the addressed leaf object.

Op(MO34 Group, ...)
⇒ Op("Agent2, Agent4", ...)

Op(MO3, ...)
⇒ Op("Agent2, Agent4, MO3", ...)

Op("Agent4, MO3", ...)

Op("MO3", ...)

Op("Agent4", ...)

Op(...) Op(...)Op(...)

2

Op(...)

Manager

Agent4

MO4MO3

Agent2

MO2

Agent3

Agent1

MO1

1

Manager

Agent4

MO4MO3

Agent2

MO2

Agent3

Agent1

MO1

Figure 3-13: Protocol – Addressing Leafs

Figure 3-13 shows the two possibilities for addressing leaf objects within hierarchies. In case 1, the object
Manager addresses the object MO3 directly. All objects in between Manager and MO3 forward the opera-
tion request. Case 2 depicts the addressing of two leaf objects with a group call. The object Manager ad-
dresses the objects MO3 and MO4 with one function call. This kind of addressing can be achieved by two
different ways. First, the address filed can include the address of the object Agent4 and the options field
has an activated flag recursivelyFlag and a deactivated flag localExecutionFlag. The second possibility is
to address both objects, MO3 and MO4, directly with an activated flag localExecutionFlag. The flag enti-
tyType must be set to managed object for this scenario.

3.4.4. Protocol Support for Transactions

The MAMA protocol supports transactional operations. The necessity of the transaction concept refers to
operations changing the state of multiple objects within the system. If the states of multiple objects de-
pend on one another, the performance of operations on these objects may be only sensible when they are
performed successfully on all affected objects. If the operation could not be performed on one or more
objects, the system is in an inconsistent state. This may influence the system’s runtime behavior nega-
tively and has to be avoided. The MAMA protocol employs the 2PC protocol. Additionally, transactions
are combined with the support for hierarchies so that transactional operations cannot only be provided for
peer to peer object communication but also for hierarchical object communication.

The protocol applies transaction processing to an operation call when the transactionFlag in the options
filed is activated. The MAMA API is in the position to offer a configuration function that activates this
flag for all operation calls or for the communication with a certain object group, or for the communication
with a certain object.

Approach

Middleware and Application Management Architecture 72

When the flag transactionFlag is activated, the protocol generates a Transaction Identifier (TID) for the
related operation call. The protocol must be supplied with information, how the requested operation can
be rolled back, that is how the object can be returned to the state it had before the transactional operation
was executed. This information, usually a function call on the application object, is stored together with
the TID. This is the mechanism to remember an undo operation as long as the transaction is active. The
application object has to take care that the altered data cannot be changed until the end of the transaction,
e.g. applying locking mechanisms.

When the transactional operation is performed on multiple objects, each individual call is treated as a
single transaction. Node objects must store all TIDs of subordinate objects and the rollback mechanism
for each operation call. When node or leaf object do not support transactional operations (e.g. when they
are not implementing transaction processing), the superior objects can simulate a transaction by interpret-
ing return values and restore the object’s pre-transactional state through specific operations.

Figure 3-14 and Figure 3-15 show the protocol handling of a successful and a non-successful transaction
in four steps. The initialization of the transaction is identical for both. The object Manager requests an
operation that should be executed on the objects MO1, MO2, MO3, and MO4 as a single transaction. It
generates two TIDs, one for the operation call to the object Agent1 and one for the operation call to the
object Agent2. Now, it requests the forwarding of the operation. Subordinate objects (in the example
Agent3) perform the same actions.

3.4.4.1. Successful Transaction
The first step is finalized by the successful execution of the requested operation on all leaf objects. In step
2 of a successful transaction (case two of Figure 3-14), all leaf objects have executed the requested opera-
tion successfully and return the TID to notify the object Manager.

commit(TID1) commit(TID2)

commit(TID4)commit(TID3)

commit(TID1)

set("MO1, MO2, MO3, MO4", ...)

set("MO2, MO3, MO4", ...)

set("MO3, MO4", ...)

set("MO1", ...)

set(...) set(...)

set(...) set(...)

TID1

TID1

TID1234

TID2 TID34

TID3

commit(TID1234)

commit(TID234)

commit(TID34) ack

ack

ack

ack

ack

ack

ack

TID234

ack

2
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

1
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

4
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

3
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

TID4

Figure 3-14: Protocol – Successful Transaction

Since each operation is treated as a single transaction, all node object and the object Manager follow the
same procedure. When they have received all TIDs from subordinate objects, they return the TID related
to the communication with their own superior object to that very object. Finally, the object Manager re-
ceives the two TIDs it has generated by itself from the node objects Agent1 and Agent2

Approach

Middleware and Application Management Architecture 73

Now, the object Manager invokes step 3. It sends a commit message to all objects to indicate that the
transaction was completely successful and that no rollback mechanism has to be performed. This commit
message is forwarded up to the leaf objects.

The final step number 4 comprises the emitting of an acknowledgement message from all involved ob-
jects. At the same time, all information related to the transactions is removed by the objects. The objects
receiving a commit message release the locks of its data and the transaction related information. The sys-
tem has reached its final state and is ready for further transactions.

3.4.4.2. Non-successful Transaction
In a non-successful transaction, the first step could not be performed on all objects successfully. The sec-
ond step of a non-successful transaction is shown by case 2 in Figure 3-15. In the given example, the re-
quested operation could not be executed on the leaf object MO4. This event changes the steps 2, 3, and 4.
In step 2, the leaf object MO4 returns an abort message to the superior object. The node object Agent3
receives one commit message and the abort message. It stores the TID from the leaf object MO3 to re-
member that the operation was successfully executed there, and the abort message for MO4. Now, it sends
an abort message to its own superior object. At the end of the chain, the object Manager receives one
commit message (from Agent1) and one abort message (from Agent2).

abort(TID1) abort(TID2)

abort(TID4)abort(TID3)

abort(TID1)

set("MO1, MO2, MO3, MO4", ...)

set("MO2, MO3, MO4", ...)

set("MO3, MO4", ...)

set("MO1", ...)

set(...) set(...)

set(...) set(...)

TID1

TID1

TID1234

TID2 TID3 abort

TID3

abort(TID1234)

abort(TID234)

abort(TID34) ack

ack

ack

ack

ack

ack

ack

abort

TID23 abort

ack

2
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

1
Manager

MO3

Agent2

MO2

Agent1

MO1

4
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

3
Manager

Agent3

MO4MO3

Agent2

MO2

Agent1

MO1

Agent3

MO4

Figure 3-15: Protocol – Non-successful Transaction

In step 3, the manager sends an abort command to all objects. All objects that receive the abort command
invoke the proper actions to rollback the already performed operation. Step 4 shows that all objects that
successfully realized the undo actions send an acknowledge message. When the object Manager has re-
ceived all acknowledgements, the system is in the same state as prior to the transaction.

3.4.4.3. Additional Issues
The 2PC protocol has several disadvantages. The commit, abort, and acknowledge messages need to be
transmitted successfully in order to realize the transaction. In the case that these messages are not re-
ceived by the addressed objects, the system might run into a deadlock awaiting messages and locking
other transactions or operations. For this reason, the 3-Phase-Commit (3PC) protocol has been developed.

Approach

Middleware and Application Management Architecture 74

This protocol provides a secure handling of transactions, but increases the protocol overhead and the
number of communications during a transaction. The 3PC protocol was tested and this overhead pre-
vented the adoption of this protocol.

MAMA applies a more simple mechanism to avoid deadlocks. Each transaction is accompanied with a
timeout. This parameter specifies that objects should invoke a rollback automatically when they have not
received messages within a certain time slot. A transaction is no longer valid after the time out has been
reached. The MAMA API offers the configuration of this time out.

3.5. Application Programming Interface

The MAMA API in an interface for application core objects to communicate with MAMA services and
with other application core objects. The API has three different assignments:
1. Decouple the core object from any concrete middleware.
2. Provide a simple, unified interface to the functionality offered by MAMA.
3. Introduce basic management functionality transparent to the core object.

The API is placed between the application core object and the MAMA interfaces. Figure 3-16 shows an
engineering view of an application with these three engineering objects. The first objective is achieved
already by this engineering design. The API mediates between the core object and the middleware spe-
cific interface objects and therefore decouples the core object from the middleware. This objective also
demands that the parts of the API that are visible to the core object include no middleware specific opera-
tions or parameters, at least not for the communication between objects. The API is responsible for the
mapping of ADL typed interfaces to middleware specific interfaces described by the protocol. Further-
more, the API is in charge to realize middleware specific operations (e.g. for initialization) and standard
duties (e.g. registration at naming server and event service).

MAMA
API

Core
Object

MAMA
Interface

MAMA
Interface

MAMA
Interface

Figure 3-16: MAMA – Application Programming Interface

One part of the API is visible to the core object. The design of this part must meet the second objective. A
strictly limited set of operation must be identified in order to provide a simple interface that is portable
across platforms on which MAMA is realized.

One of the main tasks of the API is the evaluation of operation calls that are received by the MAMA in-
terface. The API must analyze the parameters of the operation call and forward it to appropriate opera-
tions implemented by the core object. This mechanism of intercepting operation calls is now used for the
seamless integration of management functionality. Additional interfaces, for the purpose of management,
can be added to the application object. Parts of the API can implement the functionality specified in those
interfaces and the evaluation of operation calls can result in a forward to those parts of the API, transpar-
ent to the core object.

The API itself is separated into libraries. The first library represents the part of the API that is visible by
the application programmer. This part is explained in the following section. All other libraries are not
visible outside of the API. Instead, they provide generic mechanisms for the management of name-value
lists, the access to the specific middleware, the realization of the MAMA protocol, and standard function-

Approach

Middleware and Application Management Architecture 75

ality like address handling, ticket processing (send and receive), command line parsing, thread handling,
logging, and tracing. The internal libraries of the API are the standard library, the middleware specific
libraries, and libraries for management functionality. The library for management functionality imple-
ments the complete functionality of the object oEntitiyMgmt as specified in the MAMA Core Model.

The following section describes the API specification. Descriptive qualifiers are not given for the ADL
specifications. Right after the API specification, two supporting libraries are discussed. These are the
standard library and the middleware library. They are not part of the API. Those libraries represent rec-
ommendations for programmers that implement the MAMA API.

3.5.1. API Specification

The API specification covers the complete functionality that is offered to the core objects. The functions
are grouped into initialization functions, functions for the registration on application services, and func-
tions for the communication with other core objects.

The specifications of the API are given in ADL. Therefore, the specifications are independent of the pro-
gramming language. A mapping from the ADL specification to programming languages has to be done to
employ the API specification. Specific characteristics of programming languages might imply minor
changes to the specification. Each class and function has been assigned with the prefix sw in order to dis-
tinguish the API from other APIs.

3.5.1.1. Initialization Functions

Operation initializeEntity

[ValueMap("0", "100", "101", "200", "300",),
 Values("standard", "corba", "corba_orbix", "jini", "upnp")]
typedef short swMiddleware;

[MinValue(1), MaxValue(9999), StepIndex(1)]
typedef unsigned long swMaxErrors;

typedef boolean swTransmiterror;
typedef string swServerName;

short initializeEntity([In] swMiddleware mwtype, [In] swMaxErrors maxerrors,
 [In] swTransmiterror transmiterror,
 [In] swServerName servername);

Issue Description

General Core objects that want to act as a MAMA object has to call this initialization function.

Arguments The arguments the type of middleware the core object wants to use, the maximum
number of errors the API should store, a flag to decide whether errors should be send to
an event server or not, and the name of the core object requests.

Returns This function returns true when the initialization was successful. Otherwise, the opera-
tions returns 1 for a not supported middleware (mwtype), 2 for maxerrors not accepted,
and 3 for problems with the registration at the MAMA naming service. For 1 and two,
the initialization must be requested again.

Caveats initEntity registers the standard operations of each MAMA object automatically. Fur-
thermore, this operation registers the object automatically with the MAMA naming
service. In case the requested name of the object (servername) is already used within
the naming service, the object must register itself with another name.

Table 3-10: MAMA API – initializeEntity

Approach

Middleware and Application Management Architecture 76

Operation configureMiddleware

typedef string swObjectPtr;
short configureMiddleware([In] swObjectPtr ptr);

Issue Description

General In each middleware, a server object must process some initialization routines. This
function handles this duty automatically.

Arguments The function expects to get a middleware specific pointer to an object in order to bind
the MAMA interface to this very object. This function is added for middleware envi-
ronments the employ dedicated binding mechanism.

Returns This function returns true when the initialization was successful, false otherwise.

Table 3-11: MAMA API – configureMiddleware

Operation addNewOperation

short addNewOperation([In] swOpName opname,
 [In] string pointer,
 [In] swOpDescr opdescr);

Issue Description

General This function registers a new operation with the API. This operation is marked as im-
plemented and available, and will be recognized by the API when incoming requests
are processed.

Arguments Arguments are the name of the operation (as declared in the ADL interface of the ob-
ject), a programming language specific pointer to the implemented operation, and a
short description of the operation similar to the MAMA qualifier description.

Returns This function returns true when the operation was successfully inserted in the opera-
tions map, false otherwise.

Table 3-12: MAMA API – addNewOperation

3.5.1.2. Server Registration Functions

Operation registerEvSrv

short registerEvSrv([In] swEventServerFlags evflags);

Issue Description

General This function registers an application at an event service. The event service is discov-
ered as described by the MAMA protocol.

Arguments The application object can specify policies for sending and receiving events.

Returns This function returns true when registration was successful, false otherwise.

Table 3-13: MAMA API – registerEvSrv

Operation deRegisterEvSrv

short deRegisterEvSrv();

Approach

Middleware and Application Management Architecture 77

Issue Description

General This function de-registers an application object from the event service.

Arguments -

Returns This function returns true when de-registration was successful, false otherwise.

Table 3-14: MAMA API – deRegisterEvSrv

Operation changeRegistrationEvSrv

short changeRegistrationEvSrv([In] swEventServerFlags evflags);

Issue Description

General This function changes the policies for sending and receiving events.

Arguments The policies in form of flags.

Returns This function returns true when the re-registration was successful, false otherwise.

Table 3-15: MAMA API – changeRegistrationEvSrv

3.5.1.3. Communication Functions

Operation performAction

struct swArgStruct{
 swOpName opName;
 tNameValueList addressList;
 tNameValueList parametersList;
 tNameValueList optionsList;
};

short performAction([In] swArgStruct arglist,
 [Out] tNameValueList retarglist);

Issue Description

General This function serves as the general access point of core objects to the protocol. It has to
be called each time a core object wants to invoke an operation on other MAMA ob-
jects. performAction is responsible for generating the name-value lists required by the
protocol and the mapping to middleware specific interfaces.

Arguments The functions expects an argument list including the name of the called operation, an
address list as described by the protocol, a list of parameters in form of a name-value
list, and a list of options as described by the protocol. The other argument is used by
performAction to send back the return values of the called operation. This argument is
a name-value list.

Returns This function returns true when the operation was invoked successfully, false other-
wise. When the return value is true, the second argument includes the return values
from the called operation. When the return value is false, the second argument includes
the error code and description in form of a MAMA ticket.

Table 3-16: MAMA API – performAction

Approach

Middleware and Application Management Architecture 78

Operation sendEvent

short sendEvent([In] swEventDescr evdescr, [In] swEventNumber number);

Issue Description

General This function can be used to send tickets to the event service.

Arguments The function is parameterized with a description of the ticket and the ticket category.
When an application wants to use the facility of individual header and body informa-
tion (cf. section 3.3.3.2), the event services must be accessed directly (not via the API).

Returns Returns true when the ticket was sent successfully, false otherwise.

Caveats Tickets can be sent at any time, even before registering with the event services. The
API stores up to 50 tickets and sends them when the application connects to the event
service.

Table 3-17: MAMA API – sendEvent

3.5.2. The Standard Library

The access to and the realization of the MAMA protocol is specified in the standard library of the API.
This library can be visible to the application programmer. All data structures that are needed to realize the
protocol are specified in classes. Each class is accompanied by one or more member functions that ease
the handling of the data structures.

3.5.2.1. Class swNamedValue
The class swNamedValue represents an easy mechanism to access and to manage name-value pairs. All
protocol information is converted into this kind of structure. This class represents the basis for all lists,
since all protocol information is processed with name-value lists. Information on the structure of a name-
value list, relevant flags, and options are explained in section 3.4.1.3.

Member Function Arguments Description

Name - Return the content of the field name.

changeName string Change the field name of the current object.

Value - Return the value in a string representation.

Table 3-18: MAMA API – Member Functions of the Class swNamedValue

3.5.2.2. Class swOptionsList
The class swOptionsList is the most complex class of the API. All information that is placed into maps
can be handled by this class. Its main objective is to provide a basis class for name-value lists. Each entry
in an option list is a key-value pair, where the value part is represented by a name-value pair. The key
depends on the field name of an swNamedValue. The class itself has defined methods for persistence.
This offers the possibility to save current state information into files or data streams.

An implementation of this class can profit from commercial class libraries, which offer basic functionality
for list handling. However, the implementation should hide additional libraries. This prevents a MAMA
application from becoming dependent on specific commercial class libraries.

Member functions that insert entries into the map do not overwrite existing entries. When an entry should
be added to the map that already exists, the functions return FALSE. This value is also returned when
iterators have reached the end of the map or the map is empty.

Approach

Middleware and Application Management Architecture 79

Member Function Arguments Description

changeNV name-value pair Change the current entry to the given name-value pair. This
will change all information in this entry to the given pair.

concat option list Concatenate the current and the given option list to one list.
The sequence of the entries may change after this operation.

contains string Return true if the argument matches a key in the map.

current - Return the current entry as name-value pair.

entries - Return the count of entries in the list.

getNext name-value pair Change the argument to the next entry in the map.

getNextKey string Change the argument to the next key in the map.

insert name-value list Insert the given argument into the map.

next - Increase the internal iterator by one.

remove string Remove the entry matching the argument.

reset - Reset the internal iterator for the current list to the first entry.

showAll - Stream all entries to the standard output device.

Table 3-19: MAMA API – Member Functions of the Class swOptionsList

3.5.2.3. Class swOperationMap
The class swOperationMap is the part of the API that deals with all ADL defined actions of an applica-
tion object. It should exist only with one instance for each core object. This instance includes standard
API operations, special API operations from other API libraries, and the application specific operations.
API operations are automatically registered with the map, while application specific operations must be
added manually during the initialization of an application object.

Member Function Arguments Description

contains string Returns true if argument matches an operation, false otherwise.

getNext - Returns the name of the next operation in the map. When no
more operations are available, the string is empty.

getCurrent - Returns the current key.

getCurrentDescription - Returns the current operation’s description, if available.

reset - Resets the internal iterator of the map.

insert key,
operation,
description

Inserts the parameterized operation. It will overwrite existing
operations with the same name.

entries - Returns the number of available operations as unsigned long.

showAll - Stream all entries to the standard output device.

list operation Return name and description of the matching operation.

listAll - Return a list of all associated operations.

Table 3-20: MAMA API – Member Functions of the Class swOperationMap

Approach

Middleware and Application Management Architecture 80

An operation map actually consists of two maps. The first map collects function pointers to the operations
implemented by the core object or other API libraries. All implemented operations have the same signa-
ture that is identically to the MAMA protocol. The evaluation of parameters and operation-specific op-
tions is up to the implementation. The second map includes descriptions for each operation. An applica-
tion object can use addNewOperation to register new operations.

3.5.2.4. Class swAddressList
The protocol specifications for addresses are realized by the class swAddressList. It is the API equivalent
of the prSeqObjectPath of the protocol (cf. section 3.4.1.2). The class handles all requirements of the
addressing of objects within hierarchies, including the manipulation of address lists before the actual for-
warding of operations to subordinate objects.

Member Function Arguments Description

entries - Returns the count of addressed components as unsigned long.

getFirst - Returns the first existing path.

removeFirst - Returns the first element and removes it from the path.

Table 3-21: MAMA API – Member Functions of the Class swAddressList

3.5.2.5. Class swObjectPath
This class deals with a single address line. This line can identify an application object by its identifier
(middleware) or by the path (management hierarchy). The major operation of this class is to decrement an
object path while an operation call is forwarded via application objects that are in the role of managers or
agents. The general mechanism of addressing application objects is explained in section 3.4.3.

Member Function Arguments Description

decrementPath - Returns the first element of the object path and removes it.

Table 3-22: MAMA API – Member Functions of the Class swObjectPath

3.5.2.6. Class swError
This class handles all errors that occur at runtime. Each object must specify the policy for error handling
while initializing. Error messages are managed similar to events. The class swError stores all errors lo-
cally in a map. This map is a sorted list, whereas the sort criterion is the time of occurrence of the error
and the sort order is ascending.

Member Function Arguments Description

setServerName string Set the name of the (event) server errors should be sent to.

setTransmitMode boolean When the argument is true, all errors are sent immediately.

newError error list Generates a new error message.

lastError - Returns the last occurred error.

listErrors - Returns a list of all errors in the local error map.

showErrors - Prints all errors on the standard output device.

showLastError - Prints the last error on the standard output device.

sendLastError boolean Send the last occurred error to the event server.

Table 3-23: MAMA API – Member Functions of the Class swError

Approach

Middleware and Application Management Architecture 81

3.5.3. The Middleware Library

The decoupling of the core object from the middleware is already achieved by the API specifications.
However, most internal parts of the API need also to be kept middleware independent. The general han-
dling of incoming operation calls e.g. is not bound to middleware, but to the MAMA protocol. Therefore,
the API includes some libraries that are responsible for the handling of middleware specific mechanisms
like creation of interface objects, configuration of servers, and registration with basic services.

3.5.3.1. Class CORBA Server
The CORBA server comprises CORBA specific functionality that is dedicated to a server object. A server
must create interface objects. A server must forward operation calls to the implementations of the core
object. And a server provides general functions for monitoring, start, and shutdown. Furthermore, the
server represents the application itself. It can take over the tasks of command line parsing, version and
usage output, and naming service handling.

Member Function Arguments Description

shutdown - Stop the core object, cleanup all resources, and terminate.

visible - Activate and deactivate the server’s standard output device.

checkLocalExecution argument list Check local execution policy.

checkForwardExecution argument list Check forwarded execution policy.

ForwardExecution argument list Forward the execution regarding forward execution policy.

Table 3-24: MAMA API – Member Functions of the Class CORBA Server

3.5.3.2. Class CORBA
The CORBA library defines an object that acts independent of the actual application objects. This object
comprises all CORBA specific function calls a client application object requires. These function calls are
representation for complex CORBA mechanisms, like registration on naming service, object address re-
trieval, and the actual function call on server objects.

Member Function Arguments Description

Initiate Bind the given CORBA object pointer.

Action argument list,
return list

Request an action on other objects. Check the argument list
for the action, parameters, and options.

Table 3-25: MAMA API – Member Functions of the Class CORBA

3.6. Application Services

The application services represent definitions and specifications to realize requirements of the general
framework (cf. section 2.3.2) and rules of the Service Plane of the Conceptual Model (cf. section 2.3.3.3).
The requirements depicted by the application services are: naming and addressing and registration of
objects, discovery and lookup services, message services, and visualization. The rules already identify the
four services that required for MAMA by means of naming, event, repository, and visualization services.
The following subsections specify the application services that are needed to provide a MAMA execution
environment.

Approach

Middleware and Application Management Architecture 82

3.6.1. Directory Naming and Specification Service

The Directory Naming and Specification Service (DNSS) is a combination of the three most important
services of distributed applications. A directory represents the most favored mechanism of storing struc-
tured data in form of tree hierarchies. A naming service is the foundation of every distributed application
because it provides unambiguously identification of application objects. A specification service realizes
the virtual database of a management system, also called a Management Information Base (MIB). The
DNSS has the following objectives:
1. Define a naming convention for MAMA. This naming convention must specify a set of rules for

syntax and semantics of names for MAMA objects. The rules must not be technology-specific. This
means, the naming conventions of a specific middleware or management system are sufficient.

2. Provide an association between names and MAMA application object. This association must enable
to locate an application object based on its name.

3. Specify a directory for structured information of a MAMA system. This includes mechanisms for
storing the directory structure in databases or with other appropriate technology. The directory itself
should be distributed in order to address requirements such as scalability.

4. Identify a structure for storing and processing specification information. This information is defined
in ADL or xADL. This is at least the MAMA Core Model.

5. Provide a relationship between the information about object classes (specification) with the informa-
tion about object instances (directory). An application should be able to retrieve information about
all known instances of an object class as well as the specification of a particular object instance.

6. Ensure the persistence of the information maintained by the DNSS. When the server crashes or ter-
minates by accident, the registrations of objects and their specifications must not be lost. A uniform
format must be developed to store the data and to exchange information between clients and the
DNSS. Exchange formats for both specification and directory data are needed.

The combination of the three services solves several problems in a one-stop-shopping. It offers distributed
applications mechanisms to search and interoperate. An application can register its services with the
DNSS in order to be found by applications that profit from those services. The DNSS operates as a me-
diator between supplier and demander of services. Furthermore, the DNSS takes over the responsibility of
a database storing information on application objects. DNSS permits applications to populate the database
by registering and manipulating the stored information through uniform interfaces.

The DNSS can be compared to Yellow Pages (YP). Applications can be searched according to the ser-
vices their offer or by their addresses. The DNSS offers the information that guides the distributed appli-
cations to select the right service and get its address. Additionally, the DNSS serves as a single point of
contact for search, filter, and scoping operations. An application can request specific information apply-
ing filters for particular characteristics and behavior, or defining the scope of services it searches for.

The first three objectives define the basic functionality of the DNSS. The objectives four and five focus
on basic features of an implementation. The following sections discuss the objectives step-by-step, in
order to present the specification of the DNSS. This discussion starts with the naming conventions, which
is followed by the general DNSS model (integration of directory and specification issues). The DNSS
model provides the basis to derive the directory model and the specification model.

3.6.1.1. Terminology
A name is assigned to an object by following the naming syntax called the naming convention. The as-
sociation of a name with an object is called a binding. Objects are not placed directly inside of the nam-
ing service. They are referenced by a pointer or a (object) reference. A context is a set of name-to-object
bindings. This is an object with a state that represents bindings with distinct names. A context has an as-
sociated naming convention. A sub context can be created when a name of one context is bound to an-
other context with the same naming convention. A naming system is a connected set of contexts of the
same type. A name space is a set of names in a naming system.

A directory is an application that manages a set of inter-connected directory objects and provides direc-
tory services. A directory service offers functionality for creation, addition, remove, and modification of

Approach

Middleware and Application Management Architecture 83

attributes that are associated with directory objects. A directory object represents a logical or physical
object. Directory objects contain attributes that describe the represented object. An attribute has an at-
tribute identifier and a set of attribute values. The identifier is a token that identifies an attribute inde-
pendent of its values. Directory objects are arranged in a structure named the Directory Information Tree
(DIT). The structure is flat or hierarchical a tree.

3.6.1.2. Naming Convention
The naming convention covers two issues. The first issue focuses on the identification of object instances
of a distributed system. The second issue deals with the processing of additional information in form of
specification data.

The different kinds of middleware supported by MAMA include different kinds of naming schemes and
conventions. To support each type of middleware, the naming conventions of the DNSS must be able to
cover all naming schemes. Each naming scheme has tendency towards the provision of mnemonic names.
A descriptive name tells about the characteristics of the object it addresses. Based on these assumptions,
the DNSS naming convention defines the following syntax rules:
• Names can be written in Unicode Standard character set.
• Every name starts with an alphanumeric character. Names are case-sensitive.
• A name can be constructed from any character as shown in Appendix B on the left side of Table B-1

and all characters shown in Table B-4. Special symbols or key symbols including white spaces are
disallowed.

• A name can be of any length. However, it is recommended to use not more than 256 characters.

The concept of Distinguished Names (DN) and Relative Distinguished Names (RDN) is used for the con-
catenation of name parts to names. An RDN is a general name, which is used to identify an entity within a
namespace. The RDN of an entity is simply called the name of the entity. The DN is the prefix of an RDN
in order to identify entities in the entire DNSS. The DN is also a composite name. It can span (multiple)
name spaces. The interpretation of a composite name is done from left to right. The last part is the RDN
of the addressed entity. The slash character ‘/’ is used to separate name parts of a DN.

3.6.1.3. DNSS Model
The DNSS distinguishes between context information related to an object and information regarding an
object. These types of information are maintained separately. In order to provide clients with a transparent
and unified access, the DNSS is specified in form of three different models. The DNSS model realizes the
access to the DNSS and defines the functionality accessible by client. The directory model handles con-
text related information of objects; that is the name of an object instance. Additionally, it provides direc-
tory services. The specification model manages the specifications of objects.

Directory Entry Instances

DNSS
Model

Spec

Module

Object Class

Default
Spec

Default
Object

Directory
Model

Top

Directory Entry

Specification
Model

Top

Figure 3-17: DNSS –Three Model Approach [Singh01]

Approach

Middleware and Application Management Architecture 84

The DNSS model has a bi-directional relationship to the two other models, which are only visible inside
of the DNSS. Figure 3-17 shows this three model approach. The DNSS provides all functionality that is
realized in the directory model and the specification model. On request of client applications, the DNSS
model checks where the requested information is located and which model supports the incoming request.

This mechanism can be compared to referrals (cf. section 2.3.4.6). When the directory model needs in-
formation from the specification model, it requests this information via internal interfaces, and vice versa.
Additionally, the information objects stored in the two models maintain references to each other.

3.6.1.4. Directory Model
The directory model specifies rules for the naming service part of the DNSS. The purpose of the directory
model is to build naming contexts and binding instances of objects. It allows a client to create specific
naming contexts according to the semantics of the client application. The model does not follow the ap-
proaches of an X.500 directory or an SNMP MIB, which bind instances of objects directly with their
definitions. This approach limits the logical distribution of object instances modeling real world struc-
tures. In the DNSS, an instance of a printer does not belong to the definition of a printer, but e.g. to a cer-
tain floor of a building and to an organizational unit.

The directory model uses a DIT to process information about object instances. Predefined search opera-
tions like breadth-first, backtracking, and greedy can be employed in this structure. Figure 3-18 shows the
DIT of the directory model. It groups several naming contexts under one root node.

Directory
Information

Tree

dcomObject corbaObjectjavaObject ...
Distributed
Computing

Environment Reference

Directory Entry Alias
Directory Entry Instance

Directory Entry Context

Figure 3-18: DNSS – Directory Information Tree [Singh01]

The basic building block of the DNSS directory is a directory entry. Each directory entry can be identi-
fied by its DN. Two consecutive directory entries maintain a bi-directional parent-child relationship. This
allows traversing the DIT vertically.

A directory entry represents a node in the DIT and a name space in a naming tree. A directory entry may
contain zero or more sub-directory entries as nodes and leaves. A directory entry is considered as node,
even when it contains no further references to other nodes or leaves. When a directory entry is removed,
the sub-entries cannot be rearranged within the DIT. They are also removed. A directory entry is created
when a client application requests the registration of an instance of an object with a composite name. It
can be removed explicitly by the client or implicitly a garbage collector.

A directory entry instance is a registered object in the DIT. It represents a leaf. Such an instance does
not store the actual object; it stores only a logical image in form of collected information. The instance
consists of a number of attributes:
• The name attribute contains the RDN of the object instance. This is the same as the name a client

application has supplied with the registration of this object instance.
• The distinguished name stores the DN through which the directory instances can be identified.
• The parent directory attribute is a reference to the parent node of the directory entry instance.

Approach

Middleware and Application Management Architecture 85

• The uuid attribute registers the UUID of the client application with the directory entry instance. This
attribute serves for security to allow changes of the directory only to authorized client applications.

• The corresponding object reference attribute stores a reference to the definition (specification) of the
corresponding object class. This reference is a DN.

• The instance reference attribute contains the middleware specific address of the object instance.
• The reference type attribute specifies the type of an instance reference.
• The state attribute declares the current state of the directory entry instance. This state can be directly

influenced by the client application that is responsible for the directory entry. This attribute can be
used to activate and deactivate objects in a logical way.

The directory entry alias is a construct that allows registering object instances more than once in differ-
ent naming contexts, without replicating the actual registration. An alias comprises its name, a DN, a
UUID, and a reference to its parent. One additional attribute contains a reference of an instance entry
from which it is the alias. An alias entry is allowed to have a one-to-one pointer to an entry instance. The
value of the UUID attribute must not be the same as of the aliased entry instance. An alias entry is auto-
matically removed when its corresponding entry instance is removed.

Directory Service Use Cases

The use cases shown in Figure 3-19 identify the functionality of the directory service. Two actors are
recognized. A service provider registers object instances. It is the owner of a registered entry. Identifica-
tion of ownership is done by a UUID attribute of the directory entry instance.

DNSS

read attribute

Service Lookup
User

Service
Provider

register entry

search entry

deregister entry

get UUID

modify attribute

modify entry
name

*

*

*
*

*
**

*

*

*

*

*

«uses»«uses»

«uses»

«uses»

«uses»

«extends»

get object
specification

Figure 3-19: DNSS – Directory Service Use Cases [Singh01]

The service lookup user has the ability to lookup, search, and filter information from the directory. The
resulting use cases can be classified as directory interrogation requests and directory modification re-
quests. Interrogations are public operations of the DNSS. Access to private attributes (such as the security
relevant UUID) is not granted. Interrogations are:
• read attribute – retrieve the values of attributes associated with a directory entry.
• search entry – search for directory entries according to given conditions, i.e. as a specific name.
• get object specification – returns the all specification information for the given element.

Modifications are only offered to actors that belong to the service provider role. They are used to change
information of the directory and its entries:
• register entry – registers new directory entry instances or aliases in the directory.
• deregister entry – deregisters and removes existing entries in the directory.
• modify entry name / modify attribute – changes the state of directory entries by changing the values

of attributes, e.g. set, activate, and deactivate requests.
• get UUID – assigns a UUID to a service provider.

Approach

Middleware and Application Management Architecture 86

All modifications must pass a security check that evaluates the UUID of the service provider with the
UUIDs of directory entry instances. Valid UUIDs can only be created and are maintained by the DNSS.

Directory Service Class Design

The class design represents the formal description of the rules and semantics of the directory model. All
entries in the directory are symbolized as directory entries. An abstract class directoryEntryAbstract is
introduced as the base class for all directory entries. All other classes of directory entries inherit their
characteristics from this class, as depicted by Figure 3-20.

DirectoryEntryAbstract

+convertToxDDFormat(in conversionGrad: int) : String

-name: String
-distinguishedName: String
-parentDirectoryEntry: DirectoryEntry

DirectoryEntryInstance
-instanceReference: String
-correspondingObjectDN: String
-uuid: String
-active: bool
-referenceType

DirectoryEntryAlias
-uuid: StringDirectoryEntry

DirectoryModel xDDParser

-refers -refered by

DNSSInterface
-suplier -parser
1 1

1

1

* 1 *

*

Figure 3-20: DNSS – Directory Service Class Diagram [Singh01]

The class DirectoryModel has the same characteristics as DirectoryEntry. It can contain zero or more
directory entries of any type. The DirectoryModel is also associated to XDDParser to model the relation-
ship of an external parser for the xDD format, which is discussed in the next subsection. This parser is
responsible for the generation of the information in the directory model. The class diagram also specifies
the DirectoryInterface that provides access to the directory functionality of the DNSS.

Directory Exchange Format – xDD

The eXchange Directory Definition (xDD) defines the format that is used to exchange DNSS directory
data. The mapping between the directory specification (class diagram in Figure 3-20) and xDD is one-to-
one. This means, the xDD format is a notation to express directories that follow the directory model.

xDD Element Attributes Elements

collection - directoryEntryInstance,
directoryEntryAlias, directoryEntry

directoryEntry name, distinguished_name directoryEntryInstance,
directoryEntryAlias, directoryEntry

directoryEntryInstance name, distinguished_name, state,
reference, reference_type,
object_distinguished_name, uuid

-

directoryEntryAlias name, distinguished_name,
entry_instance_reference, uuid

-

Table 3-26: DNSS – eXchange Directory Definition

Approach

Middleware and Application Management Architecture 87

xDD is an XML based format. It is specified in form of a DTD. Table 3-26 shows each defined element
with its attributes and sub elements. The complete DTD can be found in Appendix C.4.1.1. xDD informa-
tion starts with the element collection. This element does not contain any attribute and cannot be created
as object in the DIT. It functions as container for all other elements. A collection can store the entire DIT
or parts of the directory tree.

The other elements contain the attributes as specified in the directory model and in the directory class
diagram. The element DirectoryEntry is used as a container for directory information. The elements di-
rectoryEntryInstance and directoryEntryAlias do not contain sub-elements.

3.6.1.5. Directory Service Interface Specifications
The operations of the directory interface of the DNSS are derived from the use cases. Clients can retrieve
and manipulate directory data with these operations. Most of the operations must specify which kind of
directory data they want to be processed. Therefore, directory entries are assigned with constant values. A
directory entry is associated to 100, a directory entry instance to 101, and a directory entry alias to 102.
Table 3-27 lists all operations of the directory interface. The complete ADL specification of this interface
can be found in Appendix C.4.1.2.

The operation getObjectSpec represents the link to the object specification. It allows retrieving meta in-
formation of an object class from the specification model for each known object instance. Parameters are
the DN of an object instance and a flag that identifies the format the information should be returned in.

Operation Major Parameters Description

deregister entryDN, entryType Remove an instance entry or alias entry from the DIT.

getAll - The entire DIT is returned (xDD string).

getAttributeValue entryDN, entryType,
attributeName

Return value of any attribute. Return type is a string.

getCount parentDN, entryType Return number of entries of a given entryType, which
are bound to the given node.

getEntries parentDN, entryType
fromIndex, toIndex

This operation returns a list of entries (xDD) of the
given entryType, which are assigned to the given node.

getEntry entryDN, entryType This operation returns an entry with the given DN.

getInstanceIOR entryDN Return the middleware-specific object reference of a
directory entry instance.

getObjectSpec instanceDN,
formatType

Returns the specification (specification model) of a
given instance (directory model) in ADL or xADL.

getUUID - A new UUID is created and returned as string.

modifyEntryName oldEntryDN
entryType
newEntryDN

Change the position and the RDN of an entry in the DIT.
Precondition is that newEntryDN is unique in the direc-
tory. Return type is a Boolean.

register instanceDN
reference
referenceKind
objectDN

This operation registers an object instance. The RDN
must not be unique. When ObjectDN is not found in the
specification model, the instance entry refers automati-
cally to the default object. Return type is a Boolean.

registerAlias aliasDN, instanceDN Create an alias entry.

setAttributeValue entryDN, entryType
attributeName
attributeValue

This operation modifies the content of an attribute. An
attribute of an entry with given values can be assigned.
Return type is a Boolean.

Table 3-27: DNSS – Directory Service Interface Operations

Approach

Middleware and Application Management Architecture 88

The input parameters follow a given syntax and semantic. Parameters that are handled as distinguished
name are constructed out of a string that identifies the directory class they describe (entry, instance, alias)
and the acronym DN. The parameters of the interface operations are interpreted as follows:
• attributeName is the name of an attribute of a directory entry class.
• attributeValue the value of an attribute which is expected by the operation. The value is always

transmitted in form of a string, even when the attribute is of a different type.
• entryDN is a string interpreted as the DN of the entry.
• entryType is an integer that identifies the entry class according to the definitions of section 3.3.3.4.
• fromIndex and toIndex indicate that the operation can generate a list as result. Both parameters can

be used to specify start and end points of the list. For example, the generated list is {2,8,3,8,6,3,9,0},
fromIndex is 3, and toIndex is 6 than the returned list is {8,6,3,9}.

• parentDN is a string with the DN of the parent node of an entry.
• recursive is a Boolean flag. When set to true, the operation should be invoked recursively from the

starting node up to the bottom of the tree.
• reference represents the middleware-specific reference to the object instance, e.g. a CORBA Interop-

erable Object Reference (IOR).
• referenceKind shows the type of reference which has originally been provided during the registration

of the object instance.
• uuid is a string interpreted as the UUID of the client application.

Boolean return values indicate a successful processing on true and any error on false. For the retrieval of
errors, notifications are used.

3.6.1.6. Specification Model
The specification model handles schemas. Its functionality is similar to a MIB. xADL is used in the speci-
fication model to describe specification objects. Beside the characteristics that xADL directly inherits
from ADL, the attributes uuid and distinguished_name are introduced to store and process specification
information. The UUID serves for security in the same way as already discussed in the directory model.

The distinguished_name is used to identify specification objects with in the model. The relationships be-
tween an entry in the directory model (object instance) and in the specification model are transparent to
client applications. This information is assigned to each xADL element of type object in form of a list.
When an object in the specification model is removed, all references of objects in the directory model are
to be changed to point to a default specification object. In case a new object instance is registered without
the provision of specification information, this object points to the default object, too.

QualifierY1

QualifierX1TypedefQ

ObjectC

QualifierdefX

ModuleB1

ModuleB TypedefP QualifierY

ObjectC

QualifierX1

InterfaceZ QualifierY1

TypedefK

SpecificationC

top

SpecificationA SpecificationB

Figure 3-21: DNSS – Specification Information Tree

Approach

Middleware and Application Management Architecture 89

The specifications are stored in a tree structure. Figure 3-21 shows an example Specification Information
Tree (SIT). All specification elements are represented as nodes in the SIT. Two consecutive nodes have a
parent-child relationship in form of a containment relationship. Every specification element is accompa-
nied with a pointer to its parent node. The root of an SIT represents always the element top. All specifica-
tion nodes are arranged below top.

The example SIT shows three specifications. For SpecificationA, only modules, objects, and interfaces are
depicted. Each element has its own DN and RDN. An RDN may exist more than once in the SIT, as long
as the DNs of the elements are not the same. In the given example, the RDN ObjectC is used twice. The
DN of the first occurrence of this RDN is /SpecificationA/ModuleB/ObjectC, the DN of the second occur-
rence is /SpecificationA/ModuleB/ModuleB1/ObjectC.

Specification Service Use Cases

The use cases shown in Figure 3-22 identify the functionality of the specification service. Two actors are
recognized. A service provider adds specification objects. It is the owner of each specification element.
Identification of ownership is done by the UUID attribute of the specification element.

The service lookup user has the ability to lookup, search, and filter information from the specification
model. The resulting use cases can be classified as specification interrogation requests and specification
modification requests. Interrogations are public operations of the DNSS. Access to private attributes (such
as the security relevant UUID) is not granted. Interrogations are:
• read attribute – retrieve the values of attributes associated with a specification element.
• search entry – search for specification elements according to given conditions, such as a specific

name or value of an attribute.
• get object instance – returns all information about an object instance.

DNSS

read attribute

Service Lookup
User

Service
Provider

search element

remove element
get UUID

modify attribute

*

*

*

*

*

*

*

*

*

*

*

add specification

add element *

modify element
name

get object
instance

«uses»

«uses»

«uses»

«uses»
«uses»

«extends»

«extends»

*

Figure 3-22: DNSS – Specification Service Use Cases [Singh01]

Modifications are only offered to actors that belong to the service provider role. They are used to change
information of the SIT:
• add specification / add element – add an entire specification or a specific element to the SIT.
• remove specification / remove element – remove an entire specification or a specification element

from the SIT.
• modify element name / modify attribute – change the state of specification elements by changing the

values of attributes.
• get UUID – assigns a UUID to a service provider.

Approach

Middleware and Application Management Architecture 90

All modifications must pass a security check that evaluates the UUID of the service provider with the
UUIDs of specification elements. Valid UUIDs can only be created and are maintained by the DNSS. The
get UUID use case is introduced to allow clients to assign a UUID to all their requests.

Specification Service Class Design

The class design represents a formal description of the rules and semantics of the specification model. It
is based on the MAMA Core Model (cf. section 3.3 and Figure 3-5). Some new classes have been added
to develop an object-oriented design suitable for the provision of specification services. Those classes are
needed to construct an SIT.

The class diagram in Figure 3-23 shows that all classes inherit their basic characteristics from the abstract
base class SpecificationElementAbstract. Therefore, every specification element includes a name, a refer-
ence to the parent specification, and a distinguished name.

The class SpecificationModel is not part of the MAMA Core Model and has no association to qualifiers.
This difference is modeled with the separation of the classes SpecificationModel and SpecificationEle-
ment. The class SpecificationEntryAbstract serves as abstract base class for the ADL element module
(SpecificationEntryModule), object (SpecificationEntryObject), and interface (SpecificationEntryInter-
face). Those elements are realized as container classes in the specification model.

All typed ADL elements (attribute, action, parameter, and member) inherit their basic characteristics from
the class SpecificationTypeElementAbstract. All those elements can be defined as arrays. They can have
the characteristic signed or unsigned. Additionally, they are defined either as a base type (an ADL base
type) or as a new introduced type (a prior type definition). An attribute with a plural name is a collection
attribute. This means, it contains zero or more values and its attribute type can be chosen as a list or a
vector.

SpecificationModel

SpecificationInterface

Typedef

SpecificationEntryModule SpecificationEntryInterface

Attribute MemberParameter

Qualifierdef
-alterable: Boolean
-description: String
-defaultValue: String
-scope

Action

implements
SpecificationElementAbstract

+convertToxADLFormat(in conversionGrad: int) : String

-name: String
-parentSpecificationElement: SpecificationElementAbstract
-distinguishedName: String

SpecificationEntryAbstract

SpecificationElement

SpecificationEntryObject
-correspondingDirectoryInstance

SpecificationTypeElementAbstract
-array_dim: Long
-base_type: String
-signed: Boolean
-type: String

SpecificationEntrySpecification
-uuid: String

1Qualifier
-constant_value 1*

1 * 1

1

1
1

1

*

1 *

*

1
1

**

1

«interface»

Figure 3-23: DNSS – Specification Service Class Diagram [Singh01]

Approach

Middleware and Application Management Architecture 91

The operation convertToxADLFormat, inherited by all classes, specifies that each class must realize a
conversion to xADL. How this conversion is done is up to the implementation.

3.6.1.7. Specification Service Interface Specification
The operations of the specification interface are derived from the use cases. Clients can retrieve and ma-
nipulate information of the SIT with the operations of this interface. Table 3-28 lists all operations of this
interface along with their major parameters and a short description. The complete ADL specification of
this interface can be found in Appendix C.4.1.2.

The operation getInstances represents the link to the object instances. This operation allows retrieving
information about all object instances from the directory model for each known object class. The opera-
tion expects the DN of an object class of the SIT. The returned list can be further restricted.

Operation Major Parameters Description

addSpecification specName Adds a new specification to the SIT.

addToSpecification newElement
elementType
parentDN

This operation adds the given element to the given node
in the SIT. The additional parameter uuid is used for
security checks.

getAll - All specifications are returned as string.

getElement elementDN
elementType

An element can be searched in the SIT. The returned
string can be compact or complete, in ADL or xADL.

getCount elementDN
elementType

This operation returns the number of elements of ele-
mentType, which are bound to elementDN.

getElements parentDN
elementType
fromIndex, toIndex

This operation returns a list of the elements of the given
type from the given node. The format of the list can be
compact or complete, ADL or xADL.

getElementsByValue attributeName
attributeValue
elementType
fromIndex, toIndex

All elements are returned, which have same attribute
value as the given attribute value. The length of the list
can be further restricted. The returned string can be
compact or complete, in ADL or xADL.

getInstances objectDN,
fromIndex, toIndex

Returns all registered instances (directory model) of the
given object class (specification model) in xDD format.

modifyElementName oldElementDN
elementType
newElementDN

The position and RDN of a specification element in the
SIT is changed. Precondition is that newElementDN is
unique in the SIT.

remove elementDN
elementType

All kinds of specification elements (including their com-
plete specification) are removed.

Table 3-28: DNSS – Specification Service Interface Operations

The operations getAttributeValue, getUUID, and setAttributeValue are the same as in the directory inter-
face specification. They are not listed in Table 3-28.

The input parameters follow a given syntax and semantic. Parameters that are handled as distinguished
name are include the acronym DN. The parameters of the interface operations are interpreted as follows:
• elementType – specifies which ADL element is of interest. All ADL elements are associated to con-

stant integer values as defined by tElementType in the MAMA Core Model (cf. section 3.3.3.4).
• elementDN – contains the DN of the element.
• parentDN – contains the DN of the parent node of a specification element.

Approach

Middleware and Application Management Architecture 92

• recursive – is a Boolean flag for the recursive execution. When recursive value is true then the op-
eration is executed from the starting node to the bottom of the tree.

• newElement – is a string in xADL or ADL format that contains a specification element.
• uuid – contains the UUID assigned to the client.
• formatType – specifies the format the client expects as result in form of an integer. ADL format is

assigned with constant value 200 and xADL format is assigned with constant value 201, as defined
by tSpecLanguage in the MAMA Core Model (cf. section 3.3.3.4).

• compact – refers to the alternative to return specification information in a compact form (false) or in
the complete form (true). The compact form does only include specification elements and their man-
datory attributes. All elements will be empty; they do not contain any sub-element. E.g., a module
element will not contain any sub-modules or objects. The complex form includes all requested and
available specification data.

• attributeName – is the name of an attribute, which belongs to any class shown in the specification
class diagram in Figure 3-23.

• attributeValue – indicates that the operation expects the value of an attribute.
• fromIndex and toIndex indicate that the operation can generate a list as result. Both parameters can

be used to specify start and end points of the list. For example, the generated list is {3,6,2,6,3,2},
fromIndex is 1, and toIndex is 4 than the returned list is {6,2,6}.

Boolean return values indicate a successful processing on true and any error on false. For the retrieval of
errors, notifications are used.

3.6.1.8. Security
The DNSS is supplied with a minimum of security. The objective is to disallow non-authorized modifica-
tions of the DIT and the SIT. Furthermore, access to private attributes is not granted. All other informa-
tion of the DNSS can be accessed by clients without special permissions.

According to the DNSS design, every specification element, directory instance, and directory alias stores
the UUID of its owner. Access for modifications is only granted, when the UUID supplied by the client
along with the modification request is identical to the UUID of the entry or element. The attribute uuid
can only be accessed by components of the DNSS system. The implementation of the DNSS is responsi-
ble to realize this behavior.

3.6.1.9. Distributed DNSS
The DNSS is developed as a stand-alone service that supports applications within a domain. To enable the
support of inter-domain communication of applications, the DNSS concept has been enhanced with
mechanisms that allow a distributed cluster of DNSS servers. The mechanisms of this concept are a com-
bination of the replication approach of the Lightweight Directory Access Protocol (LDAP; [IETF-
RFC2251]) and the multi master replication approach of the Active Directory (AD; [MS-ADArch]).

When more than one DNSS server is available, one of these servers operates in the role of a master DNSS
server. The master DNSS server manages complete replications from other DNSS servers on request, not
by default. DNSS servers that are going to shutdown can transfer their data to the master DNSS server.
This avoids redundancies in the maintained information and extra data management.

A client communicates with one DNSS server. The communication between DNSS servers is transparent
for the client. Client requests that cannot be processed by its dedicated DNSS server are forwarded the
master DNSS server. The master DNSS server is responsible for either processing the request or return
the reference of a DNSS server that is in the position to process the request.

Figure 3-24 shows the distributed processing of DNSS functions in form of a sequence diagram. The fig-
ure comprises a client, two DNSS servers, and the master DNSS server of an exemplary distributed sys-
tem. A client request results in the following steps.

Approach

Middleware and Application Management Architecture 93

DNSS Client
getEntry()

searchEntry(){entry found or no
known DNSS servers}

DNSS Master ServerDNSS Server1 DNSS ServerN

getEntry()
searchEntry(){entry found}

getDNSSReferences()

getEntry()
searchEntry()

forward message
{entry not found}

{entry found or no
known DNSS servers}

{OR}

{OR}

Figure 3-24: DNSS – Distributed DNSS

1. The client requests its dedicated DNSS server to search for a directory entry.
2. When the entry was found, it is returned. When the entry was not found, the request is forwarded to

the master DNSS server. When no relationship exists between the DNSS server and the master
DNSS server, the DNSS server notifies the client that the entry was not found.

3. The master DNSS server receives the request and searches in its directory model for the entry. When
the entry was found, it returns the result to the DNSS server which returns it to the client. When the
entry was not found the master DNSS server notifies the DNSS server about this event.

4. The worst case is that the searched entry was neither found at the DNSS server nor at the master
DNSS server. In this case, the DNSS server requests references of other known DNSS servers from
the master DNSS server. The result is a list with references. The DNSS server can now request each
DNSS server of the list for the searched entry. The transaction with the client terminates immediately
when the entry was found.

When a DNSS server is started, the reference of the master DNSS server must be supplied as argument.
Right after startup, the DNSS server must register with the master DNSS server. When no reference is
supplied, the started DNSS server can act as a master DNSS server itself.

3.6.1.10. Requirements on Clients
An application is considered as a client of the DNSS when it calls operations provided by the DNSS. A
client can be categorized as an application that consumes services of the DNSS, an application that medi-
ates between another application and the DNSS, or another DNSS system that communicates with the
DNSS.

The DNSS is a MAMA application service. It fully supports the MAMA protocol. A client that wants to
utilize DNSS services must match the following conditions:
• use the MAMA protocol to communicate;
• understand the XML formats xDD for directory data; and
• understand the XML format xADL or the format ADL for specification data.

When a client registers an object instance, it must supply the middleware-specific reference of the object
and describe the type of reference. When this information is not supplied, no other application can con-
nect to the registered object instance. The MAMA API is responsible for supplying this information.

Every client of the DNSS must maintain the UUID that is assigned to it. This UUID is issued by the
DNSS and must be presented for modification requests. Modification requests without a UUID are not
performed.

Approach

Middleware and Application Management Architecture 94

3.6.2. Visualization Service

The major task of the Visualization Service is to provide access to information about MAMA applications
with a GUI. The information available for visualization can be classified as follows:
• Information about object classes –specification data in ADL or xADL format.
• Information about object instances – directory data in xDD format for naming and in ADL for the

current configuration of the instances.
• Information of a predefined model – the Core Model and application-specific extensions in ADL or

xADL format.
• Combination of the available information realized for example in the DNSS where specification

information and directory information is related to each other.

The aim of this service is the general visualization of ADL/xADL based systems and a detailed visualiza-
tion of MAMA applications. The most important ADL elements are module and object. The element
module provides naming contexts and an object represents a MAMA application. All other ADL elements
belong to objects and should be presented with their object. Four aspects are important for the visualiza-
tion:
• Receive all information about the specification that is currently in use;
• Receive all information about object instances (names and current configuration);
• Receive all information about the Core Model; and
• Connect the three parts above to show dependencies and relationships.

The graphical representation should be based on graph visualization. This concept is used as an external
representation that exploits human visual processing to reduce the cognitive load of the user tasks
[Munzner00]. For the visualization of dependencies, this concept must be supported with other graphical
approaches, such as content maps and WWW browsers.

The human user group for the Visualization Service consists of developers who create system parts and
developers who integrate functionality into distributed applications. At a later point of time, administra-
tors and support persons will be able to use the Visualization Service for the maintenance of a running
MAMA system.

The graphical interface enables users to handle provided functionality in an easy and intuitive way. The
usage of functions built into the interface has to be done on the basis of user commands. The interaction
control of the system is passive (directed by the user, not by the application itself). At this time, there are
no special requirements for the execution time. The following goals can be identified for Human Com-
puter Interaction (HCI):
• navigating through the data structure (specification, instances, Core Model) and requesting the detail

information;
• navigating through the data structure and requesting filtered detail information;
• connecting specification data and data instances;
• finding similar data instances; and
• finding correspondences of specification/instances data with data from the Core Model.

It is helpful to compare different design aspects in order to define the appropriate GUI. This can be done
with case studies and empirical analysis’ for the design of back-end and front-end components. Interest-
ing aspects for backend components are source code reusability as well as application and device inde-
pendence.

3.6.2.1. Understanding a Design
People and their relationship to workspace and environmental parameters often depend on the time they
need to understand the system. A good design should reduce the skills needed to use the system. Besides
the informal understanding of design issues, the error handling is an important part. Preventing users from

Approach

Middleware and Application Management Architecture 95

making errors, predicting when errors are likely to happen, and helping the users to recover from errors
[John96] increases the acceptance of a system.

The developer should care for the arrangement of displays and controls, link analysis, human cognitive
and sensory limits, display design, control design, fatigue and health issues, furniture and lighting design,
temperature and environmental noise issues, design for stressful or hazardous environments, and design
for the disabled [Hewett96]. Example systems are [Hewett96]:
• Command-oriented: PC-DOS3 (command style interface known to millions of users)
• Graphics-oriented: Apple Macintosh (similar interface for many applications)
• Frame-based: HyperCard (Graphically-oriented frame-based system with user programming lan-

guage; first mass market frame-oriented system).
• User-defined combinatorics: UNIX (strong combinatoric paired with weak human factors); Emacs

(large combinatoric command set); Nintendo (learnable without a manual by school children)

Who centric? is another aspect for the design of applications. The usual approaches are user centric,
document/information centric, and application centric. The distinctions between the three approaches
reflect the differences for user interaction with the system. In application centric architectures, the basic
unit is the file. With the introduction of graphical user interfaces and the desktop metaphor, files became
direct visual objects. The objects are accessible directly by the user, storable on the desktop or in folders,
and to a limited extent they can be organized by the user or application in semantically meaningful ways.
However, the content of the files is still not directly accessible for the user.

With the document and information centric interface paradigm, the basic unit is no longer the file, but a
document or information. The applications role is subordinated and the user can focus on direct manipula-
tion of documents. Users can literally get their hands on their documents. Hints of this approach may be
found in a few existing interfaces. For example, recent Microsoft Word supports dragging of selected text
from one place in the document to another. The Macintosh system provides transparent drag-and-drop,
which Netscape enables images to be dragged from web page directly onto the desktop [Roth98].

The following subsections give recommendations for the visualization of structured data. The recommen-
dations can be used to develop GUIs the visualize MAMA systems, MAMA applications, and MAMA
services. They are presented starting with the information that need to be displayed, the required user
tasks, the basic user interface structure, and comments regarding the essential front-end capabilities. The
Visualization Service assumes that information is available in xADL or xDD format. ADL format is not
considered, since it can be easily converted into xADL.

3.6.2.2. Specification Data – Navigation and Information Display
The data that is handled here can be classified into three levels shown in Figure 3-25. The first level con-
tains the structure of data. This level is static and predefined by the structure of xADL. The second level
contains the element names. Depending on the specified element, this part is dynamic. The third level
contains the huge amount of detail information. This amount data depends on the element specified.

Level 2Level 1 Level 3

Data Strucutre Element Detailed Information

module
 object
 interface
 ...

element name this element is
optional for ...

the properties are
...

Figure 3-25: Visualization Service – Three Levels of Information

3 Personal Computer Disc Operating System

Approach

Middleware and Application Management Architecture 96

All specification data is structured in xADL by the use of separate elements. That means, most of the data
can be classified in the first and second level. Some elements, however, only characterize the parent ele-
ments and are not important for the first level. This data is located in the third level according to its de-
scriptive character. The following, partial xADL DTD shows the important elements for the first level.
Those elements are module, object, interface, attribute, action and typedef.

<!ELEMENT module (qualifier*, (typedef | object | module)+)>
<!ELEMENT object (qualifier*, (interface | typedef)*)>
<!ELEMENT interface (qualifier*, (attribute | action | typedef)*)>
<!ELEMENT attribute (qualifier*)>
<!ELEMENT action (qualifier*, parameter*)>

The elements module and object are independent of a predefined parent element. They can appear alter-
nately as root elements. Therefore, these elements are of special interest.

User Tasks

The user can request two tasks, navigation through specification data (including detailed information) and
requesting filtered detail information. Realizing the navigation through the complete structure of specifi-
cation data means to display two different types of information, structure as well as actual content. There-
fore, the display needs to be divided into at least two parts. This follows the assumption that it is impera-
tive for a predictable interface to display only the information needed at a specific time without missing
other parts of information.

The starting elements to access specification data are module and object. They should be used as selecting
points for detail information. They are usually found in the first and second level of the data hierarchy.
The source of all filtered information is modules and objects. Two tasks are necessary to receive filtered
information: selecting the module or object and selecting the structural filter for this module or object.

Basic Structure of the User Interface

Figure 3-26 shows a recommendation for the user interface. It comprises three parts. The first part dis-
plays a selectable tree of the specification data. The second part includes a selectable filter for structured
data. The last part focuses on the visualization of detailed information.

Structural Filter
(module, object, interface,
action, attribute, typedef)

Task A: Display
Detail Information

Task B: Display
Filtered Detailed Information

Tree Filter

detailed
information

Specification Tree
(modules and objects)

Figure 3-26: Visualization Service – Tasks for Specification Data

The parts Tree and Filter are active. This means, they support navigation and selection done by the user.
The last part is passive. Its function is to display a set of data. The interaction between the three parts
depends on the chosen element of the Tree part and on the Filter part.

The user interface must realize the visualization of detailed information and of filtered, detailed informa-
tion. The access to information can be realized with two frames, while the third frame displays detailed
information.

The recommended user interface shows close similarities to standard mail tools (Microsoft’s Outlook,
Netscape’s Messenger, and the mail part of Opera). The Tree part matches with the rubric part, the Filter
part matches with the header part, and the detail information matches with the body part. Using the pat-

Approach

Middleware and Application Management Architecture 97

tern of a standard, frame-orientated mail tool offers another advantage: Users know how to handle tools
based on these structures every day, so the learning and using of this new tool will be easy.

The disadvantage of such a window-oriented visualization is the danger that the user might loose the con-
text of information. When too much information (in form of controlling panels, icons, scroll bars, etc.) is
presented, the user’s cognitive capabilities are overloaded. Therefore, the recommendation includes three
windows, two with selectable items and one for displaying information.

By using file system metaphors, the Tree part can be realized in form of a simple tree structure. The ele-
ment module is similar to folders. A module can be presented as an expandable tree node, which contains
other modules and objects. The element object is similar to a file. Access, expansion, and selection within
this tree can be done using any pointing device. The tree should be realized as a vertical frame following
the pattern of a standard mail tool.

The access to structural filter information can also follow the pattern of a mail tool. The frame at the top
of the user interface can be small, relatively to the dimension of the complete GUI. This frame should
comprise the Filter part, which can be realized as a static tree or an arrangement of simple buttons. The
elements that should be considered for the filter are module, object, interface, attribute, action, and
typedef.

Detailed information (third level of information) can be arranged as the main frame (bottom-right of the
GUI). This frame needs to be large, since it might contain a large amount of textual information. The
information itself should be formatted and if appropriate colored.

For a better adaptation on the current display device and for means of personalization, it is possible to
adjust the display with an external style definition. The detail information display should be flexible and
able to display other information as well. The following data is displayed:
• detail information about the selected element in the specification data;
• detail information about the selected element in the directory data;
• filtered detail information about selected directory or specification data;
• detail information about Core Model elements; and
• administrative content like help and preferences.

Information Filter

The filtering of the detail information is done by selecting one of the important elements. The resulting
filtered information for the elements includes also basic structural information. This information repre-
sents e.g. the relationship of an action with the interface where it is specified. The following listing shows
the range of data that should be displayed when a filter is active:
• general filter: module name, object name, and interface name;
• module filter: module name, module qualifier, module type definitions, object name, and interface

name;
• object filter: object name and extends attribute, object qualifier, object type definitions, and interface

name;
• interface filter: object name, interface name, interface qualifier, interface type definitions, attribute

name and action name;
• attribute filter: object name, interface name, attribute name including the XML attributes, and attrib-

ute qualifier;
• action filter: object name, interface name, action name including the XML attributes, action parame-

ter, and action qualifier; and
• type definition filter: module name, object name, interface name, all names of type definitions in-

cluding the XML attributes, members, and qualifiers.

Approach

Middleware and Application Management Architecture 98

3.6.2.3. Directory Data Visualization
The directory data contains information on object instances. Access to specification information is
granted with a pointer in form of a distinguished name. The relationship between a directory entry and a
specification element can be many-to-one. The elements of the directory are defined in the xDD DTD.
The following fragment shows the relevant elements for the Visualization Service:

<!ELEMENT directoryEntry (directoryEntry*, directoryEntryInstance*,...)>
<!ATTLIST directoryEntry
name CDATA #REQUIRED
...>
<!ELEMENT directoryEntryInstance EMPTY>
<!ATTLIST directoryEntryInstance
name CDATA #REQUIRED
...
object_distinguished_name CDATA #REQUIRED
...>

The goals of the visualization of directory information are:
• navigating through the structure of data instances and requesting the detail information;
• navigating through the data structure and requesting filtered detail information;
• connecting specification data and object instances; and
• finding similar data instances.

The cognitive skill viewpoint [Munzner00] offers a solution of the visualization issue with displaying and
filtering of detail information. Identical information should be accessed in identical ways. According to
the display of specification data, directory data should also be visualized in the same selectable tree part
of the application.

User Tasks

Displaying the directory and specification tree data at the same time is not necessary. However a connec-
tion between the two trees has to be made. The change between both trees has to be connected closely.
Nodes in the directory tree should be marked if they match with the last accessed node in the specification
tree. A reload function should be provided, because of dynamics of the data. Additionally, the directory
tree nodes with the same pointer (object_distinguished_name) should be marked when the data is re-
loaded.

Structural Filter
(module, object, interface,
action, attribute, typedef)

Task C: Load / Reload
Specification Tree or

Directory Tree

Task AB: Display
(Filtered) Detailed
Information

Tree Filter

detailed
information

Specification Tree
or Directory Tree

Figure 3-27: Visualization Service – Tasks for Directory Specification Data

Figure 3-27 shows the recommended parts of the application and the main user tasks. No general change
of the concept is necessary. Only one user task is added in order to realize the handling of directory data.
The tasks for displaying filtered or unfiltered data are the same as for the specification data. They are
combined to task AB.

Approach

Middleware and Application Management Architecture 99

Directory Tree Front-end

The switch between the directory and specification data should be realized with two buttons. The position
of these buttons is on the top of the left frame. The buttons are used for switching between the data and
for reloading data. The display of both types of data in the same frame calls for different visualizations.
The displayed trees need a clearly distinctive mark, so that the tree node icons must be different.

3.6.2.4. Visualization of Predefined Models
Specification data and Core Model data are both described in xADL. Important for the design process are
the differences of those data descriptions.

The data structures of the specification data and the Core Model differ only regarding qualifier defini-
tions. Those definitions can only be found in the Core Model. The relevant elements are shown in the
following xADL DTD fragment:

<!ELEMENT specification (qualifierdef*, (typedef | object | module)+)>
<!ELEMENT qualifierdef (scope+, description)>
<!ELEMENT module (qualifier*, (typedef | object | module)+)>
<!ELEMENT object (qualifier*, (interface | typedef)*)>
<!ELEMENT interface (qualifier*, (attribute | action | typedef)*)>
<!ELEMENT attribute (qualifier*)>
<!ELEMENT action (qualifier*, parameter*)>

User Tasks

The tasks can be identified following the goals of the visualization of the Core Model:
• navigating through the Core Model data structure and requesting the detail information; and
• finding correspondences of specification/instances data and data from the Core Model.

Moving through the Core Model structure and displaying the detail information works in a different way
than moving through the specification and directory tree. Major points of interest are the qualifier defini-
tions and the description of every element. A separate structure of objects and modules is not in the main
focus. The structural representation of Core Model data (first and second level) should be realized by
using a hierarchical visualization.

Structural Filter
(module, object, interface,
action, attribute, typedef)

Task C: Load / Reload
Specification Tree or

Directory Tree

Task D: Display
Core Model
Information

Tree
Filter

detailed
information

Specification Tree
or Directory Tree

CM

Core Model Tree

Task AB: Display
(Filtered) Detailed

Information

Figure 3-28: Visualization Service – Tasks for all Types of Data

The second goal is the connection of directory/specification data and Core Model data. To avoid major
changes in the actual recommendation for the user interface, this connection should be done by the struc-
ture filter because its structural aspect has to be covered, too. The user needs the context information at
the time of filter selection and Core Model connection.

Filter

The filter, which is a type of representing a static structure, needs to be realized in a very structural form.
A simple kind of tree or any other hierarchical visualization fits this model. Additionally, the process of
connecting the Core Model data has to be performed by this filter because no detailed structural informa-

Approach

Middleware and Application Management Architecture 100

tion is available in the directory or specification tree. The GUI needs to support cross connections and
standard hierarchical structures.

3.6.2.5. Additional Functionality
The GUI of the visualization service should provide basic functionality like quite and help functions.
Help information can be displayed in the information frame. The selection of the basic functions needs to
be integrated in the general layout. It should follow common style guides.

To realize a flexible data input for the xADL and xDD data, user defined preferences can be added. They
can be located in an external XML file containing the needed information. This preferences XML file can
be parsed in the same way as the other files.

Execution Time

There are no particular requirements for execution time, though some aspects have to be taken into con-
sideration. By generating strings for the detail information, all nodes have to be converted to an HTML
string (or any other chosen output format). The conversion of all filter strings is usually done in one proc-
ess, so the detail information is immediately available. In consequence of a fast parsing process, the XML
file should be read completely at every load or reloads. The Core Model data should be read just once
during the launch of the application because of its static character.

Error Handling

An error information display should be provided, at least during the startup of the GUI. The errors which
could occur are parsing errors and file not found errors.

Links in Detail Information

Some detail information of the Core Model data contains hyperlinks. So, the passive behavior of the de-
tail display has to change to an active behavior. The activation of links and the display of the linked page
or information are also possible in that frame. Displaying help information for more than one page should
be performed in the same way.

3.6.3. Notification Event and Log Service

Task of the Notification Event and Log Service (NELS) is to receive, process, and store notifications.
Notifications are pieces of information that inform an application about occurred events. A notification is
sent in form of a ticket. The supported ticket is defined in the MAMA Core Model (cf. section 3.3.3.2).

Clients of the NELS can register in different roles. A client can restrict a subscription to notifications that
describe a particular event, notifications of particular object classes, or notifications of particular object
instances. These three types of subscription are also called channels. This means, a client can subscribe a
certain channel that is offered by the NELS in order to receive notifications. Notifications can be sent to
clients employing the push method or the pop method.

The NELS provides event service and log service functionality. The complete functionality can be de-
scribed as notification service. Additionally, the NELS can function as a system monitor. For this task,
the NELS must be provided with a console as output window for received tickets.

3.6.3.1. Notification and Event Service
The notification and event service part of the NELS offers services that are similar to the CORBA notifi-
cation service [CORBA-NS] and the CORBA event service [CORBA-ES]. However, the functionality of
the NELS is limited compared to the two CORBA services. This enables a simple and lean implementa-
tion of the NELS. For more complex application areas, the NELS can be realized in form of a mediator
between MAMA applications and a notification service such as the one of CORBA.

A client must register at the NELS in order to receive tickets. This registration is called subscription. The
subscription can be parameterized. The parameters are collected in a structure that is specified as follows:

Approach

Middleware and Application Management Architecture 101

struct nelsSubscription{
 [ValueMap("1", "2", "3", "4"),
 Values("Consumer", "Producer", "Subscriber", "Publisher")]
 short role;

 [ValueMap("1", "2"),
 Values("push", "pop")]
 short method;

 string channel;
 string objectClass;
 string objectInstance;
 MAMA::ticketCategory category;
};

The first member of the structure identifies the role of the client. A consumer and a subscriber want to
receive tickets. A producer and a publisher submit tickets. The roles consumer and subscriber are the
same. The roles producer and publisher are the same. The roles subscriber and publisher have been added
for applications that follow this terminology (instead of consumer and producer).

The second member indicates how the client wants to receive tickets. Push means that the NELS sends
notifications automatically, usually immediately after reception. Pop means that the NELS just stores
notifications and the clients request them. This method implies a polling of the client.

The last four members can be used by a client to restrict the subscription. A channel is a pipe where
events of a certain type can be submitted and received. Channels must be configured at the NELS. Fur-
thermore, the client can specify that it is interested in tickets from a certain object class (objectClass),
object instance (objectInstance), or of a certain category (category).

The operations subscribe and unSubscribe are used by clients to register at and de-register from the
NELS. A client can register multiple times in different roles, using different methods, and for different
channels. The two members role and method of the structure nelsSubscription must be set. For the other
four members applies the following algorithm. When the value of the member is not the default value
(which is NULL for strings and 0 for category), the clients wants to subscribe with restrictions. When it is
the default value, the client wants to receive every ticket. In addition to the subscription structure, the
client must provide its name in form of a distinguished name as specified by the DNSS.

boolean subscribe([In] nelsSubscription subscription,
 [In] MAMA::oDNSS::tInstanceDN name);
boolean unSubscribe([In] nelsSubscription subscription,
 [In] MAMA::oDNSS::tInstanceDN name);

The operation getChannels can be used by a client to request a list with all currently available channels.

string[] getChannels();

The operation submitTicket can be used by clients to send a ticket to the NELS. This operation should
only be used by clients that have created the ticket. Furthermore, the clients should be registered at the
NELS as a producer or publisher. However, it is also possible to send tickets without a prior subscription.
The address of the client is not needed here, because it is already included in the ticket.

boolean submitTicket([In] MAMA::sTicket ticket);

3.6.3.2. Log and Monitoring Service
The NELS logs all received tickets. The actual number of tickets that should be logged can be configured.
The default number is 500. The NELS logs tickets grouped in channels. Furthermore, the NELS should
offer a monitoring in form of the following operation.

Approach

Middleware and Application Management Architecture 102

void showTicket();

When this operation is called, the NELS should print all tickets that are logged since the last call of this
operation to the default output device. An implementation can also use a specific window or console for
printing tickets. Further monitoring activities should be realized by a monitoring object.

3.6.4. Lifecycle and Configuration Management Service

This service offers generic mechanisms for two important issues of distributed systems:
1. The control of the lifecycle of object instances of a specific object class, and
2. The control of a configuration of object instances, from possibly different object classes.

The two features are combined to one service. The modeling follows the mechanisms and principles of
the engineering viewpoint of ODP and the engineering model of TINA as described in [TINA-EMC].
MAMA supports development and runtime of distributed objects with the Lifecycle and Configuration
Management Service (LCMS). Supported objects must share a common specification principle.

Interface
Object I2

Lifecycle
Interface

Computational
Object O (V)

Cluster
Manager Typ U

Cluster
Manager Typ V

Cluster
Manager Typ W

Capsule
Manager

Interface
Object I1

Core Basic
Engineering Object

Figure 3-29: LCMS – Uniform Lifecycle Management [Eckert97]

The LCMS provides mechanisms for design and deployment. The lifecycle of objects with all its four
stages – creation, initialization, execution, and termination – is supported in a uniform way. The designed
configuration patterns are based on the TANGRAM project [Eckert97] and the object management of the
intelligent Personal Communication Support System (iPCSS; [vdMeer96]).

Figure 3-29 shows the three components that have been identified. The capsule manager offers external
interfaces of a configuration to its environment. It is also responsible for the creation, initializing, execu-
tion, and termination of a configuration of objects. Accompanying requests are delegated to type specific
objects. The cluster manager is responsible for the creation, initializing, and termination of interfaces of
one object class. The initialization and the termination of single objects are done by the invocation of
operations on control interfaces of those objects. The object’s control interface has to be provided by
every computational object and can be understood as a uniform solution for the introduction of new com-
ponents. The following code shows the basic type definitions for the LCMS:

struct sInterface{
 MAMA::oDNSS::tInstanceDN instanceDN;
 string intReference;
 MAMA::tMiddlewareReference intReferenceType;
 MAMA::oDNSS::tDN interfaceSpec;
};
typedef sInterface[] interfaceList;

Approach

Middleware and Application Management Architecture 103

struct sObject{
 MAMA::oDNSS::tInstanceDN objectDN;
 MAMA::oDNSS::tDN objectSpec;
 sInterface[] interfaces;
};
typedef sObject[] objectList;

The basic type definitions are introduced to enable the description of a single interface, a set of interfaces,
a single object, and a set of objects. This information is further used by the operations of the object lifecy-
cle interface, the cluster manager, and the capsule manager.

3.6.4.1. Object Lifecycle Interface
The objects lifecycle interface represents the basis of the LCMS. This interface provides three operations.
Two operations are introduced to control the instantiation of an instance of an object class. This starts
with the operation create, which causes the creation of the composite object. This creation comprises the
core object, all interface objects the computational object supports, and the installation of appropriate
relationships between core object and interface objects. The second operation is init, which supplies the
object-specific initialization information to the new created instance. After the call to init, the object is
completely instantiated and ready to operate in the distributed environment.

object oMamaObjectInit:MAMA::oMamaCore{
 interface iMamaObjectInit{
 boolean create();
 void init([In] MAMA::tNameValueList initParams);
 void terminate();
 void checkpoint();
 };
};

One operation is introduced for the termination of object instances. This operation is consequently named
terminate. A call to this operation results in the deletion of all created interface objects, a cleanup of re-
sources reserved and used by the object, and the final deletion of the core object.

To enable the temporary deactivation of objects, the object lifecycle interface should support an operation
checkpoint. When this operation is called, the object should use any kind of mechanism to store its actual
status in a non-volatile memory (that is making itself persistent) and terminate. The cluster manager of the
object class is responsible for the provision of mechanism to restore a dedicated object instance with its
state.

3.6.4.2. Cluster Manager
The cluster manager provides the service of managing the lifecycle of multiple instances of a dedicated
object class. This component offers an abstract interface for this purpose. This interface is an aggregation
of object factory and object naming service functionality. The object factory part is responsible for the
creation, initialization, and termination of object instances. The name service part is designed to retrieve
interfaces of instances of computational object.

The cluster manager relies on the ADL specifications of the object class it manages. It can be seen as
guard object, delegating every call to its actions to the control interface of the addressed instance of the
object class managed by it (cf. Figure 4-38).

object oClusterManager{
 interface iClusterManagement{
 [Permissions("0444")]
 attribute MAMA::mLCMS::objectList objects;

 MAMA::oDNSS::tInstanceDN create(MAMA::oDNSS::tInstanceDN instanceDN);
 void init([In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::tNameValueList initParams);

Approach

Middleware and Application Management Architecture 104

 void terminate([In] MAMA::oDNSS::tInstanceDN instanceDN);
 MAMA::mLCMS::interfaceList getIntRefs(
 [In] MAMA::oDNSS::tInstanceDN instanceDN);
 MAMA::mLCMS::interfaceList getAllIntRefs();
 MAMA::oDNSS::tDN selectIntRef(
 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::oDNSS::tDN interfaceType);
 };
};

Operation Related to Description

create object
factory

Create an instance of an object class. At first, the core object is created
and then the needed instances of all interface objects. At second, all inter-
face objects are connected to the core object. The capsule manager stores
object references in a map.

init object
factory

Supplies created objects with initialization information. After that, the
core object will be directed to initialize the computational object.

terminate object
factory

Delete the interface objects as well as the core object of the given in-
stance. The core object will be notified about the deletion, so that allo-
cated resources can be released.

getIntRefs naming Return all supported interfaces.

getAllIntRefs naming Return all known interface references.

selectIntRef naming Return the demanded interface of a specified object instance.

Table 3-29: LCMS – Cluster Management Operations

3.6.4.3. Capsule Manager
The capsule manager is a further abstraction of the cluster manager. It combines the object class specific
cluster managers and offers an interface that allows the instantiation of a configuration of objects. This
makes the capsule manager distinct for special environments. The interface includes a function create that
is used to instantiate object classes on specific cluster managers. The other functions offer management
functionality for discovery and lookup of interfaces. The capsule manager automatically searches for the
cluster managers it should control. When one or more of them are not found, it will create them automati-
cally. Most of the operations of the capsule manager are forwarded to the appropriate cluster manager.

object oCapsuleManager{
 interface iCapsuleManagement{
 boolean setType(MAMA::oDNSS::tDN elementDN);
 boolean delType(MAMA::oDNSS::tDN elementDN);
 MAMA::oDNSS::tDN getTypes();

 MAMA::mLCMS::sObject create([In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);
 void init([In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::tNameValueList initParams);
 void terminate([In] MAMA::oDNSS::tInstanceDN instanceDN);
 MAMA::mLCMS::interfaceList getIntRefs(
 [In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);
 MAMA::mLCMS::objectList getAllIntRefs(
 [In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);
 MAMA::mLCMS::sInterface selectIntRef(
 [In] MAMA::oDNSS::tDN co_type,

Approach

Middleware and Application Management Architecture 105

 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::oDNSS::tDN interface_type);
 };
};

Operation Related to Description

create factory Create and initializes instances of a specific object class.

terminate factory Realize the withdrawal of configurations for dedicated object instances.

getIntRefs naming Return information on all interfaces of the specified instance of an object.

getAllIntRefs naming Return information on all interfaces of all instances of an object class.

selectIntRef naming Return one interface reference of a queried interface type of a specific
object instance.

Table 3-30: LCMS – Capsule Management Operations

3.7. Recommendations for the Design of MAMA Applications

This section focuses on issues that are important for the design of MAMA applications. Since not every
designer of a distributed system is familiar with management systems, the recommendations start with a
discussion of subjects related to a management hierarchy. Next, a methodology for the specification of
application interfaces is explained. This technique is a combination of several analysis steps that – in
combination – can lead a system designer to appropriate specifications for managers, agents, managed
objects, managed resources, and other application objects. The final recommendation depicts possible
variants to access non-MAMA compliant objects. This issue is of special interest when MAMA is used to
integrate legacy systems or to provide migration strategies towards MAMA applications.

3.7.1. Special Issues regarding System Management

The MAMA protocol and API already support the design, installation, and configuration of management
systems within MAMA. The peculiarities of system management need to be recognized in the develop-
ment process to optimize control, administration, and maintenance. Figure 3-30 shows objects that act in
the management roles. Here, managers (general or local managers) invoke operations on agents (general
or sub agents). Agents direct the managed objects that are able to control specific resources. Communica-
tion in the other direction is realized by the exchange of notifications.

Manager -
Agent

Relationship

Agent - Agent
Relationship

Agent - MO
Relationship

Manager -
Manager

Relationship

Managed
ObjectManager Local

Manager Agent Sub
Agent

Management Operations

Notifications

Managed
Resource

MO - Resource
Relationship

Management Interface Regular Interface
Notification Interface

Management Operations

NotificationsSpecialized Manager Interface

Figure 3-30: MAMA Development – Relationships between Management Roles and Interfaces

Approach

Middleware and Application Management Architecture 106

Managers, agents, and managed objects belong to the system’s management. They are applied with man-
agement specific interfaces. The managed resource is either a logical resource in form of an application
object or a physical resource in form of a device. Managed resources are not bound to the communication
paradigm of operation/notification and need not to specify management-specific interfaces.

In a classical management system, notifications are exchanged via special notification interfaces. MAMA
already offers an event service that should be used instead of the approach depicted by Figure 3-30. How-
ever, the system designer should be aware of the special relationships between all roles. These relation-
ships model the functionality of each role. Managers are provided with information about the whole sys-
tem that has to be managed. They generate complex management operations and offer them to superior
management systems or human operators. Agents have only knowledge on specific parts of the system.
They are able to split management operations to the managed objects they control. A managed object
maps a simple management operation to appropriate operations of the managed resource. The Core Model
already declares a type definition that covers all relevant management roles. Each application object can
be accompanied with this information in order to characterize it as manager, agent, or managed object.

3.7.2. System Specifications

The possibilities that are offered by MAMA need to be carefully overlooked in the design and specifica-
tion phase of a distributed system. Especially the combination of middleware and management function-
ality requires a systematic analysis of the tasks of the application(s). This analysis can be used as the basis
for interface specifications and for the identification of proper object interactions. Regarding management
systems, the task is to describe simple to use complex management operations offered by managers and to
split them up into specific management operations of agents, managed objects, and proprietary managed
resources. Hereby, the scope changes from general system management up to individual resource man-
agement.

Which types of
objects exist?

Information

Description of
the Distributed

System

Which data
has to be

managed?

System
Management

Functions

Which objects
are affected?

What can be
managed at
each object?

How can the
data be

managed?

Management
Functions

Management
Hierarchy

Object
Management

Interfaces

Technology

What type of
Servers have to
be managed?

Which techno-
logies have to
be managed?

How can the
Servers

be managed?

How can the
technologies
be managed?

Regular
Object

Interfaces

Manager,
Agent & MO

Specifications

Components &
Objects

Distribution &
Configuration

Figure 3-31: MAMA Development – Analysis

Figure 3-31 shows a recommendation for such a systematic analysis, which results in the definition of
interfaces for management. This recommendation can be used to design standalone, separated manage-
ment systems as well as integrated management systems. Other methodologies might be given precedence
for the design of distributed applications without dedicated management functionality. The graphic shows
four issues that are included in the overall system description: components and objects, information, dis-
tribution and configuration, and technology. Compared to ODP, they reflect the computational, informa-
tion, engineering, and technology viewpoint. However, the system description might not be based on

Approach

Middleware and Application Management Architecture 107

ODP and so the four parts might not reflect ODP recommendations. The analysis starts with these basic
information about the system, identifies what is important for its management, answers the questions on
how to manage it, and specifies appropriate interfaces for managers, agents, and managed objects.

In general, the analysis can be divided in a system related part and a content related part. The system re-
lated analysis considers the structure of the distributed system, e.g. the relationship between objects, how
they communicate with each other, or lifecycle issues. The content related analysis concentrates on the
maintenance of the system’s data that is hold and processed by the objects. The system and the content
related analysis are used to clarify management semantics (control, administration, and maintenance).
However, they can be also used to for usage semantic (usage, operation, and control).

3.7.2.1. Content-related Analysis
The content related analysis collects all data that is handled by the distributed application. This collection
is compared to the major task of the application to construct data structures that reflect this task. The most
important data can be combined to more or less complex data structures that need to be controlled and
maintained as a whole. The processed data might be distributed over several objects. However, this step
of the analysis does not consider the objects the data is assigned to.

Which types of
objects exist?

Description of
the Distributed

System

Which data
has to be

managed?

System
Management

Functions

Which objects
are affected?

What can be
managed at
each object?

How can the
data be

managed?

Management
Hierarchy

Object
Management

Interfaces

What type of
Servers have to
be managed?

Which techno-
logies have to
be managed?

How can the
Servers

be managed?

How can the
technologies
be managed?

Regular
Object

Interfaces

Management
Functions

Manager,
Agent & MO

Specifications

Information TechnologyComponents &
Objects

Distribution &
Configuration

Figure 3-32: MAMA Development – Content-related Analysis

To give an example: A system maintains information about users. A single user is described by his real
name, a unique identifier, an address, a password, and some communication addresses like email and
telephone number. This kind of data is handled by different objects. One part of the system deals with
authentication (that is identifier and password), another part of the system covers communications (here
the addresses are of interest). The information about a single user need to be maintained as if they where
stored at a single place. The result of the content related analysis is the definition of a complex data struc-
ture, which might be called user profile, which is managed at once regarding the introduction of new us-
ers, the change of user related information, and the deletion of users.

The first step answers the question which data has to be managed. The second step clarifies how the data
can be managed. The later result is the basis to specify system wide management functions that can be
further used to identify general management operations of managers and local managers as well as single
management operations of agents.

Approach

Middleware and Application Management Architecture 108

3.7.2.2. System-related Analysis
The system related analysis considers the structure of the system. In the first step, the individual compo-
nents and objects of the system are examined. Each object handles specific types of data and has certain
relationships to other objects of the overall system. One result of the first step is to investigate the distri-
bution of the data structures of the content related analysis and to combine this description with the actual
place the data structures are processed at. This includes the communication links and dependencies
among objects. Figure 3-33 shows the two questions that need to be answered by this first step: Which
objects exists in the system and what type of data can (and should) be managed on those objects.

The second step focuses on the distribution aspect and on the actual configuration of the system. There
are several suitable ways for the implementation and deployment of objects. In general, each instance of
an object is handled by a server and those servers also offer management functionality. This includes the
instantiation and termination of objects as well as the activation and deactivation of complete objects or
single interfaces. The third step follows technological aspects. Here, specific technologies that should be
included in the system’s management are analyzed to specify appropriate management functions.

Which types of
objects exist?

Description of
the Distributed

System

Which data
has to be

managed?

System
Management

Functions

Which objects
are affected?

What can be
managed at
each object?

How can the
data be

managed?

Management
Hierarchy

Object
Management

Interfaces

What type of
Servers have to
be managed?

Which techno-
logies have to
be managed?

How can the
Servers

be managed?

How can the
technologies
be managed?

Regular
Object

Interfaces

Management
Functions

Manager,
Agent & MO

Specifications

Information TechnologyComponents &
Objects

Distribution &
Configuration

Figure 3-33: MAMA Development – System-related Analysis

Finally, the management needs of the determined objects, servers, and technologies have to be examined
regarding system management. This leads to the definition of the management interface of each object
type and to the definition of corresponding management functions. It is up to the considered system
whether the individual managed objects are supported with a corresponding management interface, or if
the necessary management functionality is shifted to the appropriate agent. For example, if an already
implemented system should be provided with management facilities belatedly, the individual objects usu-
ally cannot be supported with an extra management interface. Then, the ordinary interfaces of the objects
have to be sufficient to comply with the management needs. With it, the controlling agent of the appropri-
ate objects has to translate the management operations and the configuration functions to the according
operations of the ordinary interfaces. These kinds of managed objects can be managed by such extended
and specialized agents only.

3.7.2.3. Specifications
The outcome of all analysis steps is the specification of a management system (cf. Figure 3-34). This
specification comprises regular object interfaces that can be used for management purposes, the definition
of object management interfaces that can be assigned to existing objects, and the definition of managed
objects that supervise managed resources. Furthermore, the specification describes the management hier-
archy. This hierarchy takes into account business processes and other constrains that enable a secure and

Approach

Middleware and Application Management Architecture 109

effective operation of the system. The hierarchy consists at least of one manager and one agent. For more
complex systems, the hierarchy can be defined in a more fine-graded way with local managers and sub-
agents to realize geographical or organizational structures.

The system’s management functions are processed and forwarded within the management hierarchy.
Managers provide simple management operations that cover complex management tasks. Those opera-
tions need to be forwarded to appropriate local managers and agents while the manager still keeps control
of their execution. With the management functions, single interfaces of all roles in the management hier-
archy can be specified.

The specifications are used to assemble repositories of a MAMA system, similar to MIBs. Management
standards already identify basic criteria for the design of a MIB that can be also applied here. The Internet
Engineering Task Force (IETF) standard [IETF-RFC1493] summarizes such criteria as follows.
1. Start with a small set of essential objects and add only as further objects are needed.
2. Require objects be essential for either fault or configuration management.
3. Consider evidence of current use and/or utility.
4. Limit the total number of objects.
5. Exclude objects which are simply derivable from other objects in this or other MIBs.
6. Avoid causing critical sections to be heavily instrumented.

Which types of
objects exist?

Description of
the Distributed

System

Which data
has to be

managed?

System
Management

Functions

Which objects
are affected?

What can be
managed at
each object?

How can the
data be

managed?

Management
Hierarchy

Object
Management

Interfaces

What type of
Servers have to
be managed?

Which techno-
logies have to
be managed?

How can the
Servers

be managed?

How can the
technologies
be managed?

Regular
Object

Interfaces

Management
Functions

Manager,
Agent & MO

Specifications

Information TechnologyComponents &
Objects

Distribution &
Configuration

Figure 3-34: MAMA Development – Specifications

These criteria have been extended because experiences have shown that the actual design of MIB mod-
ules and repositories is a mission critical step in the specification of a management system [Draft-Config]:
• Before MIB Module design, identify goals and objectives for the MIB module. How much of the

underlying system will be exposed depends on goals set.
• Minimizing the total number of objects is not explicit goal, but usability is. Be sure to consider

deployment and usability requirements.
• During configuration, consider supporting explicit error state, capability, and capacity objects.
• When evaluating rule number five above, consider the impact on a management application. If an

object can help reduce an application’s complexity, consider defining objects that can be derived.

[Draft-Config] gives further examples for the best common practice defining MIB modules. The draft
document identifies a variety of problems that occur during this process. To give a comprehensive exam-
ple, many specifications (for MIB modules as well as for other purposes) assume that an object can com-

Approach

Middleware and Application Management Architecture 110

plete a set operation as quickly as it is requested and alters the current state to the new one. The following
ADL example models a wheel that can spin clockwise and counter clockwise. The example specifies a
variable that publishes the current state of the wheel.

object oWheel{
 interface iWheelRotationState{
 [Description("The current state of a wheel."),
 ValueMap("0", "1", "2", "3")
 Values("unknown", "idle", "spinClockwise", "spinCounterClockwise")]
 attribute iWheelRotationState;
 };
};

The system designer might not have considered the question how long it takes the wheel to change the
actual rotation state. The variable with the state needs to be enhanced with a transition state that indicates
that the wheel is currently changing the rotation state, which can involve a number of actions: stopping
the wheel, changing the configuration of the motor, starting to rotate in the new direction. [Draft-Config]
shows explains other issues that need to be taken care off defining a MIB module.

Specification of Managed Objects

Specifications of managed objects involve all the management needs related to managed resources. This
regards to the data of the objects as well as to the position of the objects within the system. Furthermore, a
description of the management interface for the managed object is part of the specification. Fundamen-
tally, the management interface should comply with the general management concept. The interface has
to support the set-/get-operations with appropriate configuration functions. If the management interface
does not comply with the general concept or does not exist at all, the specification has to be considered
within an agent specification. This kind of agent is then responsible for the management of this kind of
managed object.

Managed objects can be divided into dynamic and static managed objects. Static objects can be accessed
by the management system, but their lifecycle is controlled by other authorities. Dynamic objects are
completely controlled by the management system. The MAMA API identifies this fact within the specifi-
cation of entity types (cf. section 3.3.3.4).

Specification of Agents

Agents are able to transform management operations they offer to superior management objects into a
sequence of operations that need to be executed on one or more managed objects/resources. An agent
controls a unit of work in form of a transaction. Furthermore, agents are responsible for handling notifica-
tions respecting the system’s policy (e.g. described by forwarding discriminators). Agents should at least
inherit functionality from the management part of the MAMA API and possibly from the cluster manager
of the LCMS when they control dynamic managed objects.

Specification of the Manager(s)

Specification of the Manager(s) considers on the one hand the provided functionality and on the other
hand the realization of this functionality. This functionality embraces all management operations within
the system. This includes the performance of management operations as well the representation of sys-
tem’s information. The appropriate operations should be put together in a system’s management interface
provided by the manager. Then, this interface may be used by user applications or by higher management
systems.

Usually, these management actions and their data are more complex and therefore have to be split into
several single management operations. This translation is an important result of the analyzing process.
The specification of the manager has to involve how the individual management operations are performed
on the system, that means which managed objects and which configuration functions are affected. Fur-
thermore, possible dependencies among objects have to be considered performing a management opera-
tion. It has to be determined if these operations should be performed as transactional operations.

Approach

Middleware and Application Management Architecture 111

3.7.3. Access to non-MAMA Objects

MAMA offers functionality for all requirements of a distributed application. However, it might be neces-
sary to access objects that are not compliant with MAMA. Those objects do not implement the MAMA
interface and cannot be accessed via the MAMA protocol. In order to allow communication with such
objects, the variants of access to non-MAMA objects are discussed in this section. Three different mecha-
nisms can be used to integrated objects that are not based on MAMA.
1. The object offers only regular, operational interfaces. In this case, a MAMA object is in charge to

provide an ADL-typed interface towards the MAMA system and to use those operational interfaces.
This special object functions than as a gateway between the MAMA system and the legacy system.

2. The object offers regular, operational interfaces and a MAMA-like interface. This case is depicted by
Figure 3-35. Now, the special gateway object can still use the operational interfaces. However, im-
portant functionality can be put into the MAMA-like interface to simplify the translation of specifi-
cations and operation calls.

3. The object offers only a MAMA-like interface. In this case, the object can be considered as an al-
most MAMA compliant object. The system designer should investigate whether the object can be
converted to a completely MAMA compliant object or the MAMA system still needs a gateway ob-
ject for access.

Core
Object

Operational
Interface

Operational
Interface

MAMA-like
Interface

Figure 3-35: MAMA Development – Object with MAMA-like Interfaces

Management of distributed objects can be realized by calling configuration functions of the object’s regu-
lar interfaces. However, it is sensible to combine all configuration functions that should be offered as
management operations into one or multiple extra interfaces – the management or MAMA-like inter-
face(s). Figure 3-35 shows the engineering view of a distributed object with one additional management
interface. The definition of such an additional interface does not influence the existing operational inter-
faces. It decouples usage from management (what makes it easy to introduce different policies and secu-
rity strategies for usage and management), and enables a flexible management system independent from
the actual task of the distributed system. The usage of a management interface is inevitable when the
regular interfaces do not provide the necessary configuration functions. The following code shows a sim-
ple interface that is almost conforming to the MAMA interface:

interface iManagedObject {
 set ([In] string ConfigurationFunction, [In] ValueList values);
 ValuesList get ([In] string ConfigurationFunction);
};

This specification can be easily mapped to middleware IDL. Additionally, the object applied with this
interface has no significant overhead in dealing with the parameters. The parameter ConfigurationFunc-
tion needs to be evaluated to select an appropriate implemented operation of the core object to forward it
to. Next, the parameter values must be examined to extract the values given with the configuration func-
tion. All other features of the protocol, such as hierarchical addressing and transaction handling, are not
subject of integration and can be left out of scope.

Approach

Middleware and Application Management Architecture 112

An important issue is the ability to send and to receive tickets. A non-MAMA compliant object might still
be in the position to send tickets and also want to receive them. For this case, the interface needs to be
enhanced (or a second interface needs to be added). This interface should be capable of handling simple
tickets that the NELS can process. The following code shows an extra notification interface with such a
simple structure for tickets in OMG IDL notation.

interface iNotification {
 enum NotificationType {
 information, // for informational notifications
 error // for notifications of errors
 };

 struct Notification {
 integer priority; // notification priority
 string sender; // sending object’s reference
 NotificationType type;
 string date;
 string time;
 string message; // textual event description
 };

 void notify(in Notification notification);
};

This interface solves the tasks of receiving tickets and defines a data structure for tickets. In order to be
able to send tickets, the non-MAMA compliant object must be enabled to access a MAMA event server.
This process is environment specific and differs from middleware to middleware (and possibly from pro-
gramming language to programming language). Therefore, no further recommendations are given within
this document.

Realization

Middleware and Application Management Architecture 113

Chapter 4
Realization

This chapter features the realization of the Middleware and Application Management Architecture
(MAMA). Each solution of chapter three is represented by appropriate implementations. A compiler for
the Application Definition Language (ADL) is a tool for the automated processing of ADL specifications.
The Core Model and the protocol are realized by specific libraries that, in combination, form the process-
ing environment. This environment can be accessed via the MAMA Application Programming Interface
(API). One implementation of the API is described in detail to show how the specifications of chapter
three can be transformed to programming language and operating system specific libraries. Finally, the
implementations of application services are explained in detail.

4.1. ADL Compiler

The ADL compiler has been developed to enable an automated parsing, evaluation, and transformation of
the formats ADL and eXchange ADL (xADL). The compiler accepts only complete ADL and xADL
specifications for processing. The ADL compiler automatically detects the format of the given input file.

Every ADL file has to start with a preprocessor directive, a comment, or the declaration of a qualifier,
module, object, or type definition. xADL files need to start with the XML1 tag <?xml. Files that start with
other tokens are rejected. The compiler consists of two parts; one part for each language it supports as
shown in Figure 4-1. After the file check, the processing is handed over to the part of the compiler that is
responsible for the detected language.

start check
command line

yes

yes

nooptions
acceptable?

ADL? noyeslexicographic
analysis

syntactic
errors?

semantic
analysis

semantic
errors?

no

XML
validation

valid
document?

generate ADL
specification

found
errors?

yes

generate
output exit print error

message(s)

yes

no

no

no

yes

Figure 4-1: ADL Compiler – Work Flow

1 eXtensible Markup Language

Realization

Middleware and Application Management Architecture 114

An xADL file is processed in the following way. First, the compiler searches for a Document Type Defi-
nition (DTD) file that is either contained in the xADL specification (in line 2, 3, or 4 of the xADL file) or
must be provided via a command line option. Now, the compiler checks if the xADL specification is valid
for the given DTD. After that, it generates temporary ADL. This ADL is further processed by the ADL
part of the compiler. Finally, the compiler removes all temporary created files. When requested via com-
mand line options, the ADL specification is moved from the temporary place to the location of the xADL
specification.

The processing of an ADL file starts with the invocation of a preprocessor, when requested. The output of
the preprocessor is than a file that contains the complete ADL specification. This file is handed over to
the lexer, which is responsible for lexicographic analysis. After that, the parser is started that applies the
ADL grammar to the input character stream. Finally, the compiler generates xADL output when re-
quested via command line options. The XML tags in this file are automatically formatted for better read-
ability.

The compiler does not check the types of qualifiers against the qualifier declarations. However, it (in
detail the part that parses an ADL specification) does the following examinations:
• Validate the qualifier declarations corresponding to the ADL rules (cf. section 3.2.2.7).
• Validate the definitions of identifiers, corresponding to the ADL naming conventions (cf. section

3.2.1.3).
• Check if all required/mandatory qualifiers of the Core Model are applied to the ADL elements mod-

ule, object, interface, actions, attribute, parameter, type definition (typedef), and member.
• Check if qualifiers that are applied to an ADL element have been defined in the Core Model to be

applicable to this very type of ADL element (cf. section 3.3.2).
• Includes new type definition in the global map of types and checks later usage.
• Validates object inheritance regarding scoping and naming rules (cf. section 3.2.4).

Additionally, the ADL compiler includes facilities for the generation of statistical information. This in-
formation can be printed out to the standard output in a simple or complete form. This output can include
complete naming scopes or the identifiers only.

4.1.1. ANother Tool for Language Recognition

The ADL parser has been implemented using the ANother Tool for Language Recognition (ANTLR)
parser generator. ANTLR constructs human-readable recursive-descent parsers in C++ and Java from
pred-LL(k) grammars. This tool can generate parsers for context-sensitive languages and non-LL(k) con-
text-free languages. [Parr95]

The yacc2 LR-based parser generator was one of the first tools that unified the specification of lexer and
parser. ANTLR goes a bit further recognizing a stream of input that can be characters, tokens, or tree
nodes. The three different types of parsers (lexers, parsers, and tree parsers) are specified using the same
syntax and the same code generator. [ANTLR-Man]

The ADL parser uses the lexer and parser facilities of ANTLR. The lexer (also called a scanner) breaks
up the input stream of characters into vocabulary symbols for a parser. The parser applies a grammatical
structure to that symbol stream.

In addition, ANTLR offers many features that enabled a fast realization and implementation of the ADL
parser. ANTLR accepts grammar constructs in the Extended Backus-Naur Form (EBNF), which is the
notation used to define ADL. ANTLR has automatic and manual facilities for error handling and recovery
that allowed ADL specific error messages. ANTLR allows grammar rules to have parameters and return
values. This feature has been used for the evaluation of ADL element identifiers, for the generation of
static information on a given ADL specification, and for revision of the ADL naming conventions.

2 yet another compiler compiler

Realization

Middleware and Application Management Architecture 115

4.1.2. Implementation

The implementation comprises C++ files (file extension .cpp), C++ header files (file extension .h), and
ANTLR grammar files (file extension .g). The ANTLR grammar files are further separated in files that
contain lexer and parser specific parts of the grammar.

Files Content

main.cpp This file contains the main function of the compiler, including facilities for general
file access, command line parsing, language detection (ADL or xADL), handling of
temporary files, and the help text as default output.

adl.cpp This file represents the C++ access to the ADL part of the compiler. Here, the ADL
lexer and the ADL parser are instantiated, appropriate functions for the processing of
the given ADL file called, and the final output is prepared.

xadl.cpp This file represents the C++ access to the xADL part of the compiler. Here, the xADL
lexer and the xADL parser are instantiated, appropriate functions for the processing
of the given xADL file called, and the final output is prepared.

dtd.cpp The XML parsing facility is based on the Apache package Xerces. The file dtd.cpp is
an adoption of the original sample file SAXPrint.cpp from Xerces. The ADL compiler
is independent of any external tool for XML parsing, because the Xerces libraries all
necessary functionality could be built-in right into the compiler itself.

adllexer.g This file contains the grammar for lexicographic analysis of ADL specifications.

adlparser.g This file includes private member functions for the ADL parser and the actual
ANTLR grammar for parsing ADL specifications (cf. Appendix B.3.9). Furthermore,
it contains functions for the generation of a character stream (as input for the lexer)
and for error handling (to catch ANTLR exceptions and print appropriate error mes-
sages).

xadllexer.g This file is similar to adllexer.g, except that it defines the lexer grammar for xADL
specifications (cf. Appendix B.4.3)

xadlparser.g This file contains the ANTLR grammar for xADL specifications. This grammar is
used to transform an xADL specification into an ADL specification that can be fur-
ther processed by facilities declared in adlparser.g.

Table 4-1: ADL Compiler – Files of the Implementation

The files with the suffix .g are processed by ANTLR, which generates appropriate C++ and header files
for lexer and parser. Those files contain C++ declarations for the actual definitions made in the ANTLR
grammar files.

The developed ADL compiler does not include facilities for preprocessing. Preprocessing tools exist in
every development environment, so that available parsers can be reused. The current implementation is
designed to use the preprocessor cpp from the Microsoft development environment. This tool generates a
file with the suffix .i in the temporary directory of the operating system. The ADL parser invokes the
preprocessor with the options /nologo and /Tp, waits for its termination, and searches for the generated
file. This file is than further processed by the ADL compiler.

4.1.3. Command Line Options

The compiler can be parameterized in several ways via command line options. Mandatory for the process-
ing of a specification is to specify the file that should be processed. The parser will not produce any out-
put unless instructed to do so. This output can be either in ADL or in xADL format. The parser generates
statistical information that can be printed after the successful processing of a specification. This informa-

Realization

Middleware and Application Management Architecture 116

tion includes per default identifiers with their complete scoped names. Furthermore, the parser provides
complete statistic information on request.

Option Description

[-c | --complete-stat] Print complete statistic information. This includes separated counts of specified
ADL elements and separated listings of identifiers for each ADL element type.

[-a | --adl] With this flag and a given specification in xADL, the parser generates ADL
after a successful processing of the file. The resulting filename is the input
filename with the extension .adl.

[-d | --dtd] <file> This specifies the DTD in form of a file that is needed for XML parsing.

[-f | --file] <file> This flag specifies the file the parser should process. The file can be either an
ADL or an xADL file.

[-h | --help | -? | /?] Display help information and exit.

[-n | --no-scope] Print statistics without the naming scope of identifiers. In this case, only the
identifiers are listed.

[-p | --preprocessor] Use a preprocessor before actually processing ADL files. The parser has no
built-in facility for preprocessing, so this feature must be provided by an exter-
nal tool. This tool is started by the compiler. The default configuration for the
tool is the Microsoft C++ compiler.

[-s | --stat] Print simple statistics for the successfully processed specification.

[-v | --version] Display the program’s version and exit.

[-x | --xml] With this flag and a given specification in ADL, the parser generates xADL
after a successful processing of the file. The resulting filename is the input
filename with the extension .xml.

Table 4-2: ADL Compiler – Command Line Options

4.2. Protocol

The generic ADL specification of the MAMA protocol needs to be mapped to the actually supported
middleware. This document defines the mapping for the Interface Definition Language (IDL) as defined
by the Object Management Group (OMG). Mappings to other interface definition languages can be done
in a similar way.

ADL and OMG IDL have a number of communalities that ease the mapping of ADL specifications to
OMG IDL. The following code shows the MAMA interface in OMG IDL:

module MAMA{
 interface iManagement{
 IDLSeqNamedValue swAction(in IDLOperation operation,
 in IDLSeqObjectPath addresses,
 in IDLSeqNamedValue parameters,
 in IDLSeqNamedValue options)
};

The module MAMA serves as a name space for the protocol specifications. The IDL compiler translates
this name space into the employed programming language. No name clashing can occur, as long as no
other module MAMA exists.

Realization

Middleware and Application Management Architecture 117

The suffixes of the names are changed from t to IDL to indicate for which environment the specification
is made. The attributes of the operation swAction can be mapped with little changes regarding OMG IDL
as described in Table 4-3.

ADL OMG IDL Description

swAction swAction The protocol operation that handles all operation calls.
The name of this operation is kept the same as introduced
in the MAMA protocol.

tOperation IDLOperation No changes made.

tSeqObjectPath IDLSeqObjectPath The type of the list is moved from an array of strings
(ADL) towards a sequence of strings (IDL).

tNameValueList IDLSeqNamedValue The type of the list is changed from an array of strings
(ADL) towards a sequence of strings (IDL).

Table 4-3: MAMA Protocol – ADL to OMG IDL Mapping

The interface defines three structures. The structures represent a direct mapping from the ADL structures
that are defined for the protocol in section 3.4.1.

4.2.1. IDLSeqNamedValue

struct IDLNamedValue{
 string name;
 string value;
 IDLDataType vdatatype;
 IDLDataFlag vdataflag;
};
typedef sequence<IDLNamedValue> IDLSeqNamedValue;

This sequence is used to transmit Name-Value Lists (NVL). The elements name and value are similar to
the ADL specification of the protocol.

The two flags vdatatype and vdataflag are specified with the MAMA qualifiers Values and ValueMap.
Those qualifiers provide the declaration of enumerated items that can be applied to an attribute or pa-
rameter. In OMG IDL, this specification can be made as enumerate or using constant values. Enumerates
are a list of non-negative integers.

A critical drawback of enumerates is that implementations can be written relying on the integers. When
the specification changes and integers are rearranged, the implementations need to be adapted. The usage
of constant value solves this problem. Here, an integer value is assigned to a specific identifier. Imple-
mentations use the identifier, and not the actual value. Drawback is a slightly more complex specification.

The member vdatatype represents the ADL member nvDataType. It is used by the MAMA API to identify
the type of a value in the NVL. This information is necessary for marshalling and de-marshalling.

typedef unsigned short IDLDataType;
const IDLDataType IDL_DT_inconsistent = 0;
const IDLDataType IDL_DT_char = 1;
const IDLDataType IDL_DT_string = 2;
const IDLDataType IDL_DT_boolean = 3;
const IDLDataType IDL_DT_octet = 4;
const IDLDataType IDL_DT_short = 5;
const IDLDataType IDL_DT_ushort = 6;
const IDLDataType IDL_DT_long = 7;
const IDLDataType IDL_DT_ulong = 8;
const IDLDataType IDL_DT_longlong = 9;

Realization

Middleware and Application Management Architecture 118

const IDLDataType IDL_DT_ulonglong = 10;
const IDLDataType IDL_DT_float = 11;
const IDLDataType IDL_DT_double = 12;
const IDLDataType IDL_DT_longdouble = 13;
const IDLDataType IDL_DT_array = 18;
const IDLDataType IDL_DT_struct = 19;

The member vdataflag represents the ADL member tAccessFlag. This flag defines the access to a value in
the NVL. It reflects the MAMA qualifiers In and Out. Parameters that are declared as In are read-only
(IDL_DF_read). Parameters that are declared as Out are write-only (IDL_DF_write). The integer values
can be combined in order to allow read and write of a parameter. The rules for this combination similar to
UNIX file system attributes as explained for the qualifier Permissions in section 3.3.2.3.

typedef unsigned short IDLDataFlag;
const IDLDataFlag IDL_DF_none = 0;
const IDLDataFlag IDL_DF_read = 1;
const IDLDataFlag IDL_DF_write = 2;
const IDLDataFlag IDL_DF_exec = 4;

4.2.2. IDLSeqObjectPath

This sequence contains the addresses of objects in form of object paths. The ADL specification is given in
section 3.4.1.2. The path is traversed and evaluated by the MAMA API according to the addressing
mechanisms presented in section 3.4.3.

typedef string IDLObjectPath;
typedef sequence<IDLObjectPath> IDLSeqObjectPath;

4.3. Application Programming Interface

The API has been realized for the programming languages C++ and Java. The following sections describe
the C++ port of the API. All specifications are given in C++ syntax. It was developed on Windows NT
(Service Pack 6a) and on Windows 2000 (Service Pack2). The C++ port employs the following develop-
ment environment:
• RogueWave’s class libraries Tools.h++, Tools.h++ Professional, and Threads.h++;
• IONA’s Orbix 3.0.1 (Patch 20); and
• Microsoft Visual Studio 6.0, including Visual Source Safe (Service Release 4).

The RougeWave class library offers the API a huge number of basic functionality such as list handling,
comfortable string processing, and thread handling. Orbix represents the Object Request Broker (ORB)
that is used for the communication between applications. Visual Studio includes functionality for debug-
ging, source repositories, and project management.

The current version of the C++ API uses static linked libraries. Future releases will use Dynamic Linked
Libraries (DLL) in order to reduce occupied resources and to increase the flexibility of the API.

4.3.1. Classes reused from the UMS

The C++ API reuses a number of classes that have been developed for the Unified Messaging System
(UMS; [vdMeer00b]). The original specification of those classes can be found in [Dutkowski01]. The
classes are grouped in a library called MAMACUtilLib. The classes are CommandLineParser, Object-
Manager, ThreadFilter, TSingleton, UnifiedIdentifier, Event, and VersionInfo.

Realization

Middleware and Application Management Architecture 119

4.3.1.1. ThreadFilter
The ThreadFilter class is an example of a proposed threading mechanism implementation using Rogue-
Wave’s Thread.h++ library and Orbix’s proprietary Filter extensions. This class is based on the UM-
SThreadFilter. A few adjustments have been made. This concerns especially operations for controlling
capsulated thread handling. Actually, the mechanism is built on the collaboration between the filter class
and a policy class. For each possible policy, a specialized class is derived from the policy base class. The
UMSServer base class for applications handles almost everything automatically that is necessary to use
these classes, except selecting a policy. [Dutkowski01]

4.3.1.2. Event
The SWEvent class encapsulates the ticket structure. It is implemented comparable to a stream object
from the standard C++ library. Information can be streamed using the operator (<<operator) together
with manipulators. This information is buffered until the operation submit is called, similar to flush a
stream buffer.

4.3.1.3. UnifiedIdentifier
Universally Unique Identifiers (UUID) are used within the API for identifying objects. Identifiers are
encapsulated by this class. UnifiedIdentifiers are based on the UUID generator implemented by Micro-
soft.

4.3.2. SWAPI

Synopsis

#include <API/SWAPI.h>
SWAPI api;

Description

The class SWAPI represents the main class for the application programmer. This class realizes the con-
figuration of the API, the registration of the application at the naming service and at the event service,
configuration of the employed middleware, and provision of an operation for the invocation of actions.

Usage

Each component must instantiate at least one SWAPI object.

Members

int initEntity(const SWMiddleWare& mwtype,
 const unsigned long maxerrors = SW_MAXERRORS,
 const bool transmiterror = false,
 const RWCString& ServerName = (RWCString)"");

This operation configures the API. It must be called before any other API operation. An application can
set the type of middleware that should be used for communication (SWMiddleWare). The parameter max-
errors defines the maximum number of errors the API should store when no connection to an event ser-
vice exists. The parameter transmiterror instructs the API to send errors immediately to the event server
(true) or not at all (false). The parameter ServerName can be used to supply a name for the application
that is used for the registration at the naming service.

int configMiddleWare(const Management_ptr TIE);

This operation binds an existing TIE object to the SWAPI object.

Realization

Middleware and Application Management Architecture 120

int registerEvSrv(const unsigned long evFlags);

The application must register itself at the event service. This registration follows the rules of the MAMA
event service as explained in section 3.6.3.

int deregisterEvSrv();

Deregistration from the event service.

int changeRegistrationEvSrv(const unsigned long evFlags);

A change in the registration to the event server is realized by a de-registration and a following new regis-
tration. The API takes over the related calls to the event service.

struct SWArgStruct{
 RWCString OperationName;
 SWAddressList AddressList;
 SWParametersList ParametersList;
 SWOptionsList OptionsList;
};
int performAction(SWArgStruct& ArgStruct,
 SWReturnList& ReturnList);

This operation performs an action call on another MAMA application. It completely implements the
MAMA protocol, including the rules for marshalling and de-marshalling of the operation parameters.

int sendEvent(const RWCString& desc, unsigned long number);

Send the given event to the event service.

void addNewOperation(const RWCString& operation, const PSWOPERATION pop,
 const RWCString& descr);

The application needs to announce each supported operation to the API in order to make them available.
An operation can be clearly identified with its name and a pointer to this very operation.

4.3.3. Standard Library

The standard library (MAMAStandardLib) comprises all classes that support the API. Those classes are
used for the provision of internal maps inside of the API and for the conversion of C++ data into OMG
IDL.

4.3.3.1. SWNamedValue
The class SWNamedValue is the implementation of a name-value pair.

Synopsis

#include <SWStandard/SWNamedValue.h>
SWNamedValue nv;

Description

This classes mainly features the mapping the OMG IDL data type IDLNamedValue to C++ and vice
versa. A name-value pair is a structure with the key name and the value. The flags are for setting the
original type of the value to retranslate the presentation of string correctly.

Realization

Middleware and Application Management Architecture 121

Usage

The developer does not need to address this class directly. The API creates an instance of this class for
every conversion from OMG IDL to C++ and vice versa. The class defines methods for persistence to
save the current state into files or write it into streams.

Members

RWCString Name() const;

Return the name.

void changeName(const RWCString& name);

Change the name.

RWCString Value() const;

Return the value.

SWDataType _dt() const { return m_ValueType; };

This operation determines the type of the value field. Returned is an integer according to the definitions
of the MAMA protocol.

unsigned int _df() const { return m_ValueFlag; };

The operation determines the access permissions according to the specification of the MAMA protocol.
The default status after the class is instantiated is 0 (inconsistent).

operator const char*() const;

This is a cast operator to a string (char*) for the value field.

operator const unsigned long() const;

This is a cast operator to a string (unsigned long) for the value field.

operator const IDLNamedValue() const;

This is a cast operator to the IDL data type.

bool operator==(SWNamedValue& swnv) const;

This is an operator that enables two name-value pairs to be compared. It returns true when all members
are identical, false otherwise.

4.3.3.2. SWOptionsList
This class is the most complex class in the API. It represents the implementation of an NVL. Most of the
data structures handled by the API are given as NVL. The class SWOptionsList adds a key element to a
name-value pair in order to simplify the maintenance of NVLs. The class is able to handle OMG IDL
typed lists as well as the basic name-value list defined by the MAMA protocol.

Synopsis

#include <SWStandard/SWOptionsList.h>
SWOptionsList opl;

Realization

Middleware and Application Management Architecture 122

typedef RWTValMap<RWCString, SWNamedValue, std::less<RWCString> >
 SWNAMEDVALUEMAP;

Description

The main task of this class is to represent the IDLOptionsList in C++. This map has a key and value field.
The value is an instance of the class SWNamedValue. The key depends on the name field of the
SWNamedValue.

Usage

This class is used to create a structure for combining large amounts of name-value lists in one map. It is
the most important structure for exchanging data. The class comprises methods for persistence. These
methods allow writing the actual state of an instance of this class to a file or a stream.

Members

void changeNV(SWNamedValue& nv);

Changes the current entry to the given parameter nv. This will change all information in this entry to the
information contained in the parameter nv.

bool concat(SWOptionsList& oplist);

Concatenate the current and the given map (oplist) to one map. The sequence of the entries may have
changed after this operation.

bool contains(const RWCString& str);

Return true when the parameter str matches a key in the map.

SWNamedValue current();

Return the current entry as SWNamedValue.

IDLNamedValue currentIDL();

Return the current entry in form of an IDLNamedValue.

unsigned long entries() { return m_oplist.entries(); };

Return the number of entries that are present in the map.

bool getNext(IDLNamedValue& IDLnv);

Change the parameter IDLnv to the next entry in the map. Return false when the map is empty or the cur-
rent key is the last available.

bool getNext(SWNamedValue& nv);

Change the parameter nv to the next entry in the map. Return false when the map is empty or the current
key is the last available.

bool getNextKey(RWCString& str);

Change the parameter str to the next key in the map. Return false when the iterator is currently at the end
of the map or the map is empty.

Realization

Middleware and Application Management Architecture 123

bool insert(const IDLNamedValue& nv);

Insert the given parameter nv to the map. Return false when the key is already present.

bool insert(const SWNamedValue& nv);

Insert the given parameter nv to the map. Return false when the key is already present.

bool next();

Increase the internal iterator by one. Returns false when the current value is the last in the map or the map
is empty.

bool remove(const RWCString& str);

Remove the SWNamedValue matching str. Returns false when no matching key was found or the map is
empty.

void reset();

Reset the internal iterator for the current map and set it to the first entry.

void showAll();

This operation simply streams all entries with key and value to the standard output device stdout.

operator const IDLSeqNamedValue();

Cast the current map to IDLSeqNamedValue.

SWNamedValue operator[](RWCString str);

An operator to return the matching key str as SWNamedValue.

4.3.3.3. SWOperationMap
The API has to process all incoming requests of clients. Each request must specify which action is called.
The API is in the position to forward the request to the actual implementation of the action. The general
mechanism is explained in section 3.4.2.3.

The class SWOperationMap represents the global database of all operations that a client has announced to
the API as available implementations of actions. This class should be instantiated only once per applica-
tion. The C++ port of the API handles the operations in form of a list of pointers. This class realizes the
complete maintenance of this list.

Synopsis

#include <SWStandard/SWOperationMap.h>
SWOperationMap operationmap;

// type definition of the function pointer
typedef SWReturnList* (SWOperationMap::*PSWOPERATION)(const
 SWArgStruct& argstruct);

// type definition for the operation’s map
typedef RWTValMap< RWCString, PSWOPERATION, std::less<RWCString>
 > SWOPERATIONMAP;

Realization

Middleware and Application Management Architecture 124

Description

This is the most powerful map of each MAMA application. It is the representation for registered opera-
tions accessible by other applications. Standard operations for each application are automatically inserted
in this list.

This class has two maps, one for the function pointers and one for their description. The information is
divided because C++ offers no mechanism to define structures that include function pointers as members.

Usage

The class SWAPI is responsible for instantiate this map. The developer uses the operation addNewOpera-
tion to register new operations.

Members

PSWOPERATION operator[](const RWCString& strOP);

Return a pointer to the operation with the name depicted by the parameter strOP.

bool contains(const RWCString& strOP) const;

Return true when the parameter strOP matches an operation, false otherwise.

RWCString getNext();

Return the name of the next operation in the map. The string is empty when no more operations are avail-
able.

RWCString getCurrent() const;

Return the current key.

RWCString getCurrentDescription() const;

Return the description of the currently selected operation, if available.

void reset();

Reset the internal iterator.

void insert(const RWCString& key, const PSWOPERATION& pop,
 const RWCString& descr);

Insert the parameterized operation. An existing operation with the same name will be overwritten.

unsigned long entries() const;

Return the number of available operations.

void showAll();

This function simply streams all entries with key and value to the standard output device stdout.

SWNamedValue list(const RWCString& operation);

Return the name and the description of the operation depicted by the parameter operation.

Realization

Middleware and Application Management Architecture 125

SWReturnList* listAll();

Return a list of all associated operations.

4.3.3.4. SWAddressList
This class handles addresses of MAMA applications according to the definitions of the MAMA protocol
(cf. section 3.4.1.2).

Synopsis

#include <SWStandard/SWAddressList.h>
SWAddressList addrList;
typedef RWTValSlist< SWObjectPath > SWADDRESSLIST;

Description

This class is responsible for the address handling. It represents the implementation of IDLSeqObjectPath.
Each application which is addressed is represented by one SWObjectPath.

Usage

This class is used by the API according to the definitions of the MAMA protocol. The term self in the
following descriptions of member functions relates to the application itself.

Members

unsigned long entries(void);

Return the current count of the list.

SWObjectPath getFirst();

Return the first existing path of self.

SWObjectPath removeFirst();

Return the first element of self and remove it.

void operator=(const IDLSeqObjectPath&);

Add the given IDLSeqObjectPath to the self.

operator const IDLSeqObjectPath();

Cast operator to convert self to IDLSeqObjectPath. This is the common cast operator to map a given path
to IDL.

4.3.3.5. SWObjectPath
This class handles the address of a single MAMA application.

Synopsis

#include <SWStandard/SWObjectPath.h>
SWObjectPath opPath;

Realization

Middleware and Application Management Architecture 126

Description

An object path is the address to a MAMA application. This includes the support for addressing objects in
a hierarchy (cf. section 3.4.3). Here, the path is a concatenation of each address an action has to be for-
warded to through the hierarchical tree.

Usage

This class is used by the API to realize management hierarchies. The term self in the following descrip-
tions of member functions relates to the application itself.

Members

RWCString decrementPAth(void):

Return the first element in self and remove it.

operator const RWCString() const;

Cast operator for RWCString.

operator const char*() const;

Cast operator for char*.

4.3.3.6. SWError
This class deals with runtime errors. Applications can specify the policy for the error handling on startup.
Errors are handled like events.

Synopsis

#include <SWStandard/SWError.h>
SWError swError;
typedef RWTValSortedDlist<SWNamedValue, std::less<SWNamedValue> >
 SWERRORMAP;

Description

This class is responsible for handling errors occurring at runtime. The map SWERRORMAP stores all
errors locally. The maximum number of stored errors can be configured.

Usage

Each error is represented as an SWNamedValue. The map, which contains all errors, is a sorted list.

Members

void setServerName(const RWCString& ServerName);

Set the name of the server errors should be sent to. Usually, this is the event service.

bool setTransmitMode(const bool transmit);

When true, all errors will be sent immediately. When false, errors will be stored in the map.

void newError(const SWNamedValue& swnv);

Generate a new item.

Realization

Middleware and Application Management Architecture 127

SWNamedValue lastError() const;

Return the last error in the map.

SWReturnList listErrors();

Return a list of all stored errors.

void showErrors();

Send all errors from the map to the standard output device stdout.

void showLastError() const;

Send the last error in the map to the standard output device stdout.

bool sendLastError(const bool transmit = false) const;

Send the last error in the map to a specified server. No action is performed when transmit is set to false.

4.3.4. Middleware Specific Library

The C++ port of the API provides a skeleton that already includes all operations needed for the communi-
cation following the specifications of the Common Object Request Broker Architecture (CORBA). This
skeleton is based on developments done for the UMS. The original specifications can be found in
[Dutkowski01].

The library includes two classes. The class SWCORBAServer is responsible for handling the entire ini-
tialization of a CORBA application. The class SWCORBALib implements the OMG IDL version of the
MAMA interface as described in section 4.2.

4.3.4.1. SWCORBAServer
This class represents the core of the application. It is implemented as a singleton object. Additionally, it
implements the main function, which serves as entry point for the application. The main function controls
the application flow and calls specific operations of the instance of the class SWCORBAServer. The class
includes functionality for the evaluation of command line options, versioning, and usage information.

Synopsis

#include <SWCORBA/SWCORBAServer.h>
SWCORBAServer swCORBAServer;

Description

This class is the implementation for all functions and mechanism needed to implement a CORBA applica-
tion. The SWCORBAServer class is included in the static library called CORBALib.

Usage

The functionality of this class is completely hidden to the application programmer. All methods per-
formed are redirects from the class SWCORBALib. The three member functions, which deal with the exe-
cution policies, follow the specification of the MAMA protocol (cf. section 3.4.2.3).

Members

void shutdown();

Realization

Middleware and Application Management Architecture 128

Stop the core object, cleanup all subscribed and used resources, and terminate.

void visible();

When the server has a window for standard output, a call to this function activates and de-activates this
window.

bool checkLocalExecution(SWArgStruct& actionargs);

This method is responsible for validating whether this action is required to run at this application or not.

bool checkForwardExecution(SWArgStruct& actionargs);

This method checks whether the action should be forwarded to all associated applications.

SWReturnList ForwardExecution(SWArgStruct& actionargs);

This method forwards the execution of the requested action to all associated applications. It takes care to
change the addresses and response back to the callee.

4.3.4.2. SWCORBALib
This class implements the MAMA interface (cf. section 3.4.1 for ADL and section for 4.2 IDL specifica-
tions). The implementation supports two directions. First, it receives requests from the CORBA interface
and invokes the proper implemented operation. Second, it can be used by the application object to invoke
operations on other objects.

When an application calls an action of another application, this class resolves the addressed application
and requests the called actions via the IDL interface.

Synopsis

#include <SWCORBA/SWCORBALib.h>
SWCORBALib swCORBALib;

Description

This class redirects all incoming requests and initialization processes to the implemented operations.

Usage

When an action on another application should be called, this class can be used to realize the appropriate
CORBA processing.

Members

int Initiate(const Management_ptr TIE);

Initializes the class instance. In fact, it binds the given TIE pointer to the IDL interface.

int Action(SWArgStruct& ArgStruct, SWReturnList& ReturnList);

This method is responsible for requesting an action on other applications. It checks the parameter
ArgStruct for valid data about the called action, the address of the application, and parameters of the
called action. The parameter ReturnList contains all return values for the given action.

Realization

Middleware and Application Management Architecture 129

4.3.5. Building an Application with the API

The above described C++ port of the API supports the implementation of MAMA applications. Each
application needs to declare one class that inherits from the middleware stub. The follow code shows the
skeleton for a MAMA application, including the definitions for the CORBA server. The example class is
implemented as a singleton object:

#include <CORBA/SWCORBAServer.h>
#include <Util/TSingleton.h>

class ExampleApplication : public SWCORBAServer
{
 public:
 ExampleApplication(); // default constructor
 ~ExampleApplication(); // default destructor

 virtual int OnInitServer(int argc, char *argv[], char *envp[]);
 virtual void OnExitServer();
};

DEF_TIE_SW_Management(ExampleApplication);
typedef TSingleton<ExampleApplication> theExampleApplication;

Each application must declare and implement the two operations OnInitServer and OnExitServer. These
operations are called by the class SWCORBAServer to realize functionality similar to the standard con-
structor and destructor of a C++ object. Within these operations, each component can initiate application
specific structures, load and store files to accomplish persistence of complex structures, etc.

4.3.5.1. Uniform Signature of Operations
An operation represents the implementation of an action that is specified in ADL. Since operations are
called via the MAMA IDL interface, the signature of the operations is identical. The API profits from this
fact. It implements a generic function that can handle all actions. In order to support the API, operations
need to be declared in a uniform way:

typedef SWReturnList* OperationName(SWOperationMap::*PSWOPERATION)(const
 SWArgStruct& argstruct);

This declaration generates an operation of type SWOperationMap::*SWOPERATION with argstruct as
argument. The return value is a pointer to SWReturnList. Each application must inherit from the class
SWOperationMap and follow this declaration. The argument of the operation is realized as a structure as
follows:

typedef SWOptionsList SWParametersList, SWReturnList;
struct SWArgStruct{
 RWCString OperationName;
 SWAddressList AddressList;
 SWParametersList ParametersList;
 SWOptionsList OptionsList;
};

The member OperationName is a string that must be unique within the operation map. The member Ad-
dressList is a list of all applications. The member ParameterList is an NVL that comprises all parameters
of the operation as specified in ADL for the regarding action. Finally, the member OptionsList can be
used to transmit specific options for the execution.

To simplify the usage of SWArgStruct, all map definitions are of the type SWOptionsList. This provides a
similar behavior and usage for all elements. Usually, an operation should only look in the parameter list
for given arguments. This list can be further processed and returned as SWReturnList.

Realization

Middleware and Application Management Architecture 130

4.3.5.2. Declaration of new Operations
When an application wants to provide its own operations to other applications, it simply creates a class
that contains all declaration of these operations. The following example shows such a class:

#include <Std/SWOptionsList.h>
#include <Std/SWOperationMap.h>
#include <Util/TSingleton.h>

class SWTestOperations : public SWOperationMap{
 public:
 SWReturnList* checkIn(const SWArgStruct& actionargs);
 SWReturnList* checkOut(const SWArgStruct& actionargs);
 SWReturnList* listOperation(const SWArgStruct& actionargs);
 SWReturnList* updateOperation(const SWArgStruct& actionargs);
 SWReturnList* getServer(const SWArgStruct& actionargs);
 SWReturnList* getServerList(const SWArgStruct& actionargs);
};
typedef TSingleton<SWTestOperations> the SWTestOperations;

As the example shows, the object SWTestOperations is implemented as singleton, too. The object uses
SWOperationsMap as base class in order to delegate the maintenance of the list of all operations to the
API. All operations have the same type (PSWOPERATION), which is used as the generic function pointer
to the operations.

4.3.5.3. Register Operations with the API
The access to self-defined operations is only possible through the API and the object SWOperationMap.
Operations that should be registered at the APIs handling must be present in the operation map. The fol-
lowing code sample shows the process of a started component to add new operations.

swapi->addNewOperation("checkIn",
(PSWOPERATION)theSDSOperations::Instance()->getServer, "login@DNSS");

swapi->addNewOperation("checkOut",
(PSWOPERATION)theSDSOperations::Instance()->checkIn, "logout from DNSS");

In the example, the two operations checkIn and checkOut are registered with the API via the API opera-
tion addNewOperation. The API checks its internal map and stores the function pointers in this map when
no operation with the same name is already registered. The last parameter is used for the description map.

At least, only three steps are necessary to register a new operation. First, a class needs to be defined
which inherits from the class SWOperationMap. Next, the operation is declared within this class. All op-
erations are of the type PSWOPERATION and must follow the uniform signature. Finally, the API opera-
tion addNewOperation must be called.

4.4. Directory Naming and Specification Service

The Directory Naming and Specification Service (DNSS) has been implemented following the definitions
described in section 3.6.1. The implementation design is based on the object-oriented paradigm. The
DNSS server is constructed by a set of components. Each component has a significant task. However, the
design of the implementation is open for the integration of new components in order to enhance its func-
tionality or to improve its behavior. The design and the components are described in the following sec-
tions. Specifications are presented in Java.

Realization

Middleware and Application Management Architecture 131

4.4.1. Implementation Design

The DNSSModel is the core component of the DNSS system. It provides a uniform interface to access all
services. Furthermore, this model uses the implementation of the MAMA interface (MAMA protocol and
API) to enable access from MAMA application objects. The DNSSModel manages all sub-systems of the
DNSS.

The DirectoryModel and the SpecificationModel are responsible for processing service requests. The
DNSS allows transparent access to directory data and to specification data. The implementation of the
DNSS uses two different information trees to store this data. The Data Information Tree (DIT) is handled
by the DirectoryModel. It contains information in eXchange Directory Data (xDD) format. The Specifica-
tion Information Tree (SIT) is maintained by the SpecificationModel. It contains information in xADL
format.

ADLManager SpecificationModel UUIDManager LogManager DirectoryModel xDDParser

DNSSModel

-notificationSender

1
-transformer -suplier -uuidDemander -uuidDemander-uuidProvider -suplier -parser

1111111

-notificationSender-notificationReceiver

1111

«interface»
MAMAInterface

«interface»
DNSSInterface

implements
11

Figure 4-2: DNSS – Class Diagramm of the DNSS Model [Singh01]

The models are supported by an ADL Manager, an xDD Parser, a Log Manager, and a UUID Manager.
Figure 4-2 shows the class diagram of the DNSS implementation with all sub-systems and their relation-
ships.

4.4.2. Directory Service Sequence Diagrams

The following sequence diagrams show the realization of the use cases of the directory model of the
DNSS (cf. section 3.6.1.4). The operations used in the sequence diagrams are specified in the Directory
Interface (cf. section 3.6.1.5).

The following descriptions use a simplified terminology to identify the type of entry in the DIT. Directory
entries are called directory entries. They are completely managed by the DNSS. Directory instance entries
are called instance entries. Directory alias entries are called alias entries. The term entry is used when
instance entries and alias entries are depicted.

4.4.2.1. Retrieval of Directory Entries
The client can search and retrieve entries. Two operations are provided. The first operation returns infor-
mation on a single entry. It is parameterized with the Distinguished Name (DN) of this directory entry
and the type of the entry. The second operation returns a list of all entries that belong to a certain naming
context. Filter parameters can be used to restrict the list. They are described in section 3.6.1.5.

string getEntry(string entryDN, integer entryType);
string getEntries(string parentDN, integer entryType, boolean recursive,
 integer fromIndex, integer toIndex);

Realization

Middleware and Application Management Architecture 132

DNSS Client DNSSModel DirectoryModel
getEntry()getEntry()

getEntries() getEntries()

searchEntry()

getSubEntries()

searchEntry()

Figure 4-3: DNSS – Entry Lookup

Figure 4-3 shows a sequence diagram including both operations. The parameter parentDN of the opera-
tion getEntries specifies the root node from which the entry search should be started. The parameter en-
tryType specifies the type of the entries that should be processed. The flag recursive indicates whether the
operation should be performed on all sub-nodes of parentDN or not. Both operations involve the classes
DNSSModel and DirectoryModel.

4.4.2.2. Registration of new Directory Entries
The registration of new entries in the DIT comprises the registration of instance entries and alias entries.
For both use cases, the DNSS checks if the entry already exists in the DIT. The registration is only done,
when no entry exists with the requested DN. Following this approach, existing entries cannot be overwrit-
ten with a new registration.

The registration of a new instance entry expects parameters for the DN the entry should be assigned to
and the element type of the entry (e.g. module, object). Furthermore, the client should provide the specifi-
cation of the element in xADL or ADL format. When no specification is supplied by the client, the speci-
fication reference of the new instance entry points to the default specification.

DNSS Client DNSSModel SpecificationModel DirectoryModel UUIDManager
getUUID() getUUID()getUUID()

register() register()
searchEntry()

getElement()

getElement()

setAttributeValue()

setAttributeValue()

createEntry()

setAttributeValue()

{DN of new
entry is
unique}

Figure 4-4: DNSS – Registration of a new Directory Entry [Singh01]

Figure 4-4 shows the sequence diagram for the registration of a new instance entry. The first step for the
client is to obtain a UUID from the DNSS server. This UUID is assigned as a private attribute. The fol-
lowing operations are involved in this process:

string getElement(string entryDN, integer entryType,
 integer formatType, boolean compact);
boolean setAttributeValue(string entryDN, integer entryType,

Realization

Middleware and Application Management Architecture 133

 string attributeName, string[] attributeValue,
 string uuid);
boolean register(string instanceDN, string reference, string referenceKind,
 string objectDN, string uuid);

The operation comprises the classes DNSSModel, DNSSModel, and SpecificationModel. Additionally, the
UUIDManager is requested to supply a new UUID for the client. Clients which have already a UUID do
not need to request a new one.

The registration of a new alias entry is shown in Figure 4-5. The client must request a valid UUID for this
operation, too. The registration itself is similar to the registration of a new instance entry.

boolean registerAlias(string aliasDN, string instanceDN, string uuid);

DNSS Client DNSSModel DirectoryModel
registerAlias() registerAlias()

createAliasEntry()

searchEntry(){DN of new
alias entry
is unique}

Figure 4-5: DNSS – Registration of a new Alias Entry

The operation registerAlias expects the DN of the new alias entry and the DN of the instance entry that
should be aliased. The operation involves the classes DNSSModel, DirectoryModel, and UUIDManager
(if the client needs to request a UUID).

4.4.2.3. Deregistration of Directory Entries
Authorized clients can deregister instance entries and alias entries. A deregistration results in the deletion
of all associated data, including all sub-nodes of the entry. A client is authorized for this operation when
its UUID is valid and the same as the UUID of the entry that should be removed. Only one directory entry
can be removed per operation call.

boolean deregister(string entryDN, integer entryType, string uuid);

DNSS Client DNSSModel
deregister() deregister()

deleteEntry()

{entryType != 100
AND

entryUUID == clientUUID}

compareUUID()
searchEntry()

DirectoryModel UUIDManager

Figure 4-6: DNSS – Deregistration of a Directory Entry

Figure 4-6 shows the sequence diagram for this operation. The entry type to be deregistered cannot be a
directory entry. It must be an instance entry or an alias entry. The operation involves the classes
DNSSModel, DirectoryModel, and UUIDManager.

4.4.2.4. Modification of Directory Entries
The DN or the Relative Distinguished Name (RDN) of a registered entry (instance or alias) can be
changed. The effect is that an instance entry can be moved from one position (possibly naming context) to

Realization

Middleware and Application Management Architecture 134

another. The last part of the name must be unique in the DIT. The name of a directory entry cannot be
changed.

boolean modifyEntryName(string oldEntryDN, integer entryType,
 string newEntryDN, string uuid);

DNSS Client DNSSModel DirectoryModel UUIDManager
modifyEntryName()

compareUUID()

modifyEntryName()
searchEntry()

setAttribute()

{entryType != 100
AND

entryUUID == clientUUID}

Figure 4-7: DNSS – Modification of Directory Names [Singh01]

The client must be authorized in order to process the modification. The given client’s UUID and the
UUID of the entry to be modified must be identical. This operation involves the classes DNSSModel,
DirectoryModel, and UUIDManager.

4.4.2.5. Retrieval and Manipulation of Attributes
Figure 4-8 shows the two use cases that allow clients to access and to alter attributes of entries. Every
attribute, except the uuid attribute, can be read out and manipulated. For both operations, the client must
specify the DN and the attribute name of the entry. The operations can be employed for the directory
model and the specification model. The DNSS checks the element type and decides which model is re-
sponsible for processing the request.

string getAttributeValue(string eDN, integer eType,
 string attributeName);
boolean setAttributeValue(string eDN, integer eType,
 string attributeName, string[] attributeValue,
 string uuid);

DNSS Client DNSSModel DirectoryModel UUIDManager
getAttributeValue()

compareUUID()

getAttributeValue()

searchEntry()

setAttribute()

{entryType != 100
AND

entryUUID == clientUUID}

getAttribute()

searchEntry()

setAttributeValue()setAttributeValue()

{attribute name != "uuid"}

Figure 4-8: DNSS – Retrieval and Manipulation of Attributes [Singh01]

For the modification of attributes, the client’s UUID must be the same as the UUID of the entry the at-
tribute belongs to. The UUIDManager is employed to check the UUIDs. Both operations involve the
classes DNSSModel, DirectoryModel, and UUIDManager. When specification elements should be proc-
essed, the class SpecificationModel is involved instead of DirectoryModel.

Realization

Middleware and Application Management Architecture 135

4.4.2.6. Retrieval of Object Specifications
A client can obtain the specification of a registered entry. In this use case, the SpecificationModel is also
engaged, because the specification of the object is stored in the SIT. The client needs to provide the DN
of the instance entry or alias entry.

string getObjectSpec(string instanceDN, integer formatType);

DNSS Client DNSSModel SpecificationModel DirectoryModel
getObjectSpec()getObjectSpec()

searchEntry()
getElement()

getElement()

Figure 4-9: DNSS – Retrieval of Object Specifications [Singh01]

This use case involves the classes DNSSModel, DirectoryModel, and SpecificationModel. The entry type
cannot be a directory entry. It must be an instance entry or an alias entry.

4.4.3. Specification Service Sequence Diagrams

The following sequence diagrams show the realization of the use cases of the specification model of the
DNSS (cf. section 3.6.1.6). The operations used in the sequence diagrams are specified in the Directory
Interface (cf. section 3.6.1.7).

4.4.3.1. Element Retrieval including Filtering and Scoping
The DNSS supports a number of operations to retrieve information about specification elements. All op-
erations expect the DN of the specification element.

Furthermore, the element type should be identified. For all operations, the format of the returned string
can be configured. This format can be either compact or complex. Compact means that only requested
information about the specification element is returned. Complex means that the information can also
include applied qualifiers and child elements. Additionally, the presentation format of the string can be
selected. Permitted formats are ADL and xADL.

DNSS Client DNSSModel
getElement()getElement()

getElements() getElements()

searchElement()

SpecificationModel

searchElement()

getAttributeValue()

filterElements()

Figure 4-10: DNSS – Element Retrieval including Filtering and Scoping

The first operation provides the simple retrieval of a specification element. This operation involves the
classes DNSSModel and SpecificationModel (first sequence in Figure 4-10).

Realization

Middleware and Application Management Architecture 136

string getElement(string elementDN, integer elementType,
 integer formatType, boolean compact);

Two other operations allow selecting specific sub-elements including filtering and scoping. The operation
getElements returns child elements that belong to a specified parent element. The operation getElements-
ByValue allows retrieving all elements filtered by the existence of a specific attribute. Additional filter
parameters are the value of the attribute and the element type (cf. section 3.3.3.4). The flag recursive is
added to the operation getElements to limit the amount of processed data. The specification is searched
recursively when this flag is set to true, only.

Both operations support parameters for scoping and for specifying the format of the returned string. Scop-
ing is realized with the parameters fromIndex and toIndex as introduced in section 3.6.1.7.

string getElements(string parentDN, integer elementType, boolean recursive,
 integer fromIndex, integer toIndex,
 integer formatTyp, boolean compact);

string getElementsByValue(string attributeName, string attributeValue,
 integer elementType, integer fromIndex,
 integer toIndex, integer formatType,
 boolean compact);

The operation getAttributeValues can be employed to retrieve attribute values. These values can be fur-
ther used as input parameters for getElementsByValue.

string getAttributeValue(string elementDN, integer elementType,
 string attributeName);

The second sequence of Figure 4-10 shows an example for filtering and scoping. A client calls the opera-
tion getElements to receive a list of available specification elements. Next, the operation getAttributeVal-
ues can be used to read out the value of a certain attribute.

Finally, the client can invoke getElementsByValue to receive a list of all elements (possibly of the same
type) that have the same attribute with the same value. Furthermore, the list of elements can be scoped in
order to receive i.e. only the five first elements that apply to the filter parameters.

4.4.3.2. Insertion of Specifications and Elements
Figure 4-11 shows two use cases for the insertion of new specifications and new elements in the SIT. The
first use case enables clients to add a new specification. The first step for the client is to obtain a new
UUID from the DNSS. This UUID is assigned as a private attribute to all data of the specification. When
a client sends a new specification, the DNSS checks whether the specification exists already or not. An
existing specification cannot be overwritten with the operation addSpecification.

boolean addSpecification(string specificationName,
 string specification, string uuid);

The operation comprises the classes DNSSModel and SpecificationModel. Additionally, the UUIDMan-
ager is requested to supply a new UUID for the client. Clients which have already a UUID do not need to
request a new one.

The second sequence depicted by Figure 4-11 provides an operation to add new elements to a pre-existing
specification. An existing specification can be modified in several ways:
• Add a new element to the specification.
• Modify an existing element. The modification is not done by the DNSS. Instead, the client must first

remove the particular element and than add a new element.
• Modify parts of an element by changing the values of its attributes.

Realization

Middleware and Application Management Architecture 137

boolean addToSpecification(string newElement, integer elementType,
 string parentDN, string uuid);

DNSS Client DNSSModel UUIDManager

addSpecification()addSpecification()

addSpecification()

SpecificationModel
getUUID()getUUID() getUUID()

searchSpecification(){RDN of
specification

is unique}

addToSpecification()addToSpecification()

addElement()

compareUUID()
searchSpecification()

{RDN of
specification

is unique}

Figure 4-11: DNSS – Insertion of Specifications and Elements [Singh01]

This operation involves the classes DNSSModel, SpecificationModel, and UUIDManager. The UUIDs of
the client and the specification must be the same. The element type can be ‘1’, ‘2’, ‘7’, or ‘8’ according to
the specification of tElementType in section 3.3.3.4.

4.4.3.3. Remove a Specification Element
This use case allows removing specification elements from the SIT. When an object class is removed, the
references of all object instances to this object class are redirected to the default object specification.

DNSS Client DNSSModel SpecificationModel DirectoryModel UUIDManager
remove()

compareUUID()

remove()
searchElement()

removeElement()

{elementType == 2}
setAttributeValue()

setAttributeValue()

Figure 4-12: DNSS – Remove a Specification Element [Singh01]

Figure 4-12 shows the sequences of operations that are involved. First, the element is searched. Next, the
UUIDs of the client and the element are compared. When the UUIDs are equal and the specification ele-
ment is of type object, the directory model is requested to rearrange the references of the object instances.
Finally, the element is removed from the SIT. The DNSS provides no reversal of this operation.

boolean remove(string elementDN, integer elementType, string uuid);

The operation involves the classes DNSSModel and SpecificationModel. The only constraint is that the
UUIDs of the requesting client and the entry that should be removed are identical.

Realization

Middleware and Application Management Architecture 138

4.4.3.4. Retrieval of Object Instances
A client can search for every registered object instance of a known object class. The specification model
searches for the object class and employs the directory model to collect all registered object instances, as
shown in Figure 4-13. Obviously, instances can only be collected when they exist.

DNSS Client DNSSModel SpecificationModel DirectoryModel
getInstances()getInstances()

searchElement()
getEntry()

getEntry()
{corresponding
entry count > 0}

Figure 4-13: DNSS – Retrieval of Object Instances [Singh01]

Two operations are involved in this processing.

string getEntry(string entryDN, integer entryType);
string getInstances(string objectDN);

The retrieval of object instances involves, beside a DNSS client, the implementation classes DNSSModel,
SpecificationModel, and DirectoryModel.

4.4.4. ADL Manager

Specification objects are defined in ADL or xADL format. The ADL Manager is the component that con-
trols the format of input streams and output streams. Figure 4-14 shows the implementation classes of the
ADL Manager. An ADL Parser represents a composite part in this class diagram. The ADL Manager acts
as xADL supplier for the ADL Parser.

xadlparserxADLParser

ADLParser

ADLManager

xADLSpecification

xadlsupplier

1
1

Figure 4-14: DNSS – ADL Manager [Singh01]

Figure 4-15 shows algorithm for handling both specification formats. Specifications are handled in form
of strings. One specification is represented by one string, which can by of any length. The ADL Manager
examines the specification string and determines its actual format. The evaluation searches for the line
that starts an XML document:

<?xml version="1.0" encoding="UTF-8"?>

All valid XML files have to start with this line. When the xADL format is detected, it is forwarded to the
xADL parser.

When the XML line was not found, the specification is forwarded to the ADL parser. This parser gener-
ates xADL when the specification was given in ADL format. The generated xADL format is than trans-
ferred to the xADL parser. In case the ADL parser cannot detect the actual format of the specification, it
ignores the given string.

Realization

Middleware and Application Management Architecture 139

xADL parser parses specification and
creates specification and its elements

in specification model.

Specification model sends specification
as a string, but format is unknown.

«precondition»

xADLParser

ADLParser

ADLManager

/ parsexADL(xadl)
/ sendxADL(xadl)

/ ADL2xADL(adl)

/ isxADLFormat(adl)

/ parsexADL(xadl)
{xADL format}

«precondition»
{xADL format}

«precondition»
{ADL format}

/ parseSpecification(adl)

Figure 4-15: DNSS – Processing of ADL formatted Specifications [Singh01]

The ADL Manager is able to supervise conversion in both directions, from xADL to ADL and vice versa.
This allows the DNSS to offer both formats to clients. The conversion of xADL to ADL is realized with
three steps. First, an object creates its specification in xADL format and sends it to ADL manager. Next,
the ADL manager forwards the specification with parameters to the ADL parser. Parameters tell the ADL
parser to convert the given specification to ADL format. Finally, the ADL parser recognizes the parame-
ters and transforms xADL-formatted specification in ADL format.

4.4.5. UUID Manager

The UUID Manager assigns a UUID to a directory entry or a specification element. The UUID Manager
consists of two key objects, the UUID constructor and a register. The UUID constructor creates new
UUID on demand. The register the maintenance of assigned UUIDs.

A register can be a list, a vector, a hash table or any other data structure. However, it should be able to
save, compare, and search the UUIDs. All UUIDs contained in a register are unique. The UUID construc-
tor is a composite part of the UUID Manager that cannot be accessed from outside the DNSS.

The two tasks of the UUID Manager are the creation of new UUIDs and the comparison of UUIDs. A
UUID is assigned per client, not per request. Clients that have already obtained a UUID should reuse this
UUID for further requests.

The creation of a UUID can be demanded by the DirectoryModel or by the SpecificationModel. The
UUID Manager creates a new instance of the class UUID. A copy of this new UUID is stored in a local
register and the UUID is returned to the requester.

The comparison of UUIDs represents the authorization of clients. Authorization is done per request, not
per client. The DirectoryModel or the SpecificationModel request a UUID check. The parameter for this
operation is the UUID of the client that wants to add or modify data in the DIT or the SIT. The UUID is
confirmed by the UUID Manager when it exists in the local register. When the UUID is not found, the
Boolean value of false is returned in order to mark the given UUID as not valid. This simple mechanism
provides basic security for data manipulation.

4.4.6. Log Manager

The Log Manager is responsible for the durability of data in the DNSS. As sub-component of the DNSS,
it is a passive component that acts on behalf of the DirectoryModel and the SpecificationModel. The Log
Manager waits for notifications about changed data in the DIT or SIT.

Realization

Middleware and Application Management Architecture 140

The DirectoryModel and the SpecificationModel send notifications to the Log Manager, when data has
been changed. This is indicated by the operations with the number 1 in Figure 4-16. The Log Manager
requests the models to format their data into XML format (xADL or xDD). This XML data is than written
to the log files for directory data or specification data.

2:DirectoryModel:=convertDirectoryModel2XMLFormat()

notificationSender:
DirectoryModel

notificationSender:
SpecificationModel

LogManager

initialSpecificationModel:
file

initialDirectoryModel:
file

2:SpecificationModel:=convertSpecificationModel2XMLFormat()

1:SpecificationModelChanged()

1:DirectoryModelChanged()
{OR}

{OR}

3:WriteModel2File()

«self» 3:WriteModel2File()

«self»
{OR}

Figure 4-16: DNSS – Tasks of the Log Manager [Singh01]

The data of the directory model is written into one single file. The data of the specification model are
further separated into the individual specifications contained in the SIT. Each specification is written into
a dedicated file. The Log Manager creates a backup file for each data.

4.4.7. Implementation of the DNSS Server

The DNSS is implemented following the design that is described in the sections above. The employed
programming language is Java. Since the implementation design and the programming language Java are
object-oriented, the actual implementation of the DNSS follows the object-oriented approach.

Java has been chosen because the Java Software Development Kit (SDK) provides already a wide range
of APIs and libraries that can be re-used by the DNSS. Pre-defined classes for hash tables have been util-
ized to enable local lists of attributes, UUIDs, and persistent data. The implementation was performed
with the development tool Visual Age for Java Applications.

4.4.7.1. DNSS Server
The DNSS Server is a single Java main class. It is associated with all other classes. All implemented
classes are classified according to their significance within different packages, as shown in Figure 4-17.
Each package defines local classes and interfaces to other packages. Each class has been documented
with the Java documentation tool. The documentation of a class includes a description of functionality.
The individual classes can be characterized as follows:

specification

dnss

naming directory parser utility mama
111111

Figure 4-17: DNSS – Java Packages [Singh01]

Realization

Middleware and Application Management Architecture 141

• dnss: This is the main package of the implementation. It encloses all other source classes in its sub
packages. It contains the classes DNSS.java, DNSSModel.java, and DNSSInterface.java. The initial
files for specification, directory, and non-java files (e.g. ADL compiler) must be located in the same
directory where DNSS server is executed.

• specification: This package contains all classes shown in Figure 3-23, except the class xADLparaser.
The classes contained in this package depend on classes of other packages like utility and parser.

• naming: This package comprises the classes that are related to the naming service. The naming
classes provide static methods for the naming service. For example, the classes DirectoryModel and
SpecificationModel are supplied with operations for parsing of DNs.

• directory: This package is the sub package of the naming package. It contains all classes depicted in
the Figure 3-20, except the class XDDparser.

• parser: This includes both the XADLParser for the SpecificationModel and the XDDParser for the
DirectoryModel. These parsers extend the Simple API for XML (SAX; [SAX]) parser class provided
by VisualAge. Both parsers have the ability to parse a file in three input formats: as a string, reading
a file from a given location with the File Transfer Protocol (FTP) or the Hypertext Transfer Protocol
(HTTP), and a file in a local directory.

• utility: This package contains classes that are used commonly by all packages or by the DNSS server
class. E.g., the UUID class is part of this package. It fulfills the requirements prescribed in the
3.6.1.8.

• mama: This package realizes the interface to the Java port of the MAMA API.

The exchange formats (xADL and xDD) are handled by a SAX parser. SAX offers an event-driven, serial
access to XML documents. In comparison to the Document Object Model (DOM; [W3C-DOM]) parsers,
this characteristic allows a less expensive memory management and a more flexible handling of XML
data. The implemented SAX parser creates instances of classes for each XML tag. E.g., the xADL tag
object is represented by class SpecificationEntryObject and each time an object tag is identified an in-
stance of this class is created.

All scenarios discussed in the sections 4.4.2 and 4.4.3 have been realized. The implementation supports
also the approaches for security (section 3.6.1.8) and the distributed DNSS (section 3.6.1.9). The imple-
mentation has the following additional features:
• Searching of objects in the directory model and specification model is based on breadth-first search.
• None of the implemented classes contain an attribute for the distinguished name of an object. In the

implementation, the distinguished name is treated as logical name. While parsing the XML docu-
ments, the bi-literal relationship (parent-child) between objects are created. They can be changed
during runtime of the DNSS. As a result, they are provided to objects only on demand.

The resulting server with its components is depicted by Figure 4-18. The components are realized follow-
ing the implementation’s design (cf. Figure 4-2).

Specification
Database

Directory
Database

ADL
Manager

ADL
Parser

xADL
Parser

xDD
Parser

UUID
Manager

Log
Manager

Garbage
Collector

Specification
Model

Directory
Model

MAMA
API

MAMA
Interface

Figure 4-18: DNSS – Server Components

Realization

Middleware and Application Management Architecture 142

The DNSS supports the MAMA API and the MAMA protocol. Additionally, the DNSS Server can be
accessed via Java native interfaces (Java Remote Method Invocation – RMI). The components of the
DNSS Server represent instantiated classes of the introduced Java packages. The directory database and
the specification database are realized in form of object instances in the server’s process and with hash
tables. Here, the utilization of real database products such as Oracle or MySQL might improve the per-
formance and stability of the DNSS server.

4.4.7.2. Execution of the DNSS Server
The source code of the DNSS Server and all related classes are compiled and archived in a Java Archive
(JAR). The resulting file is called dnss.jar. A Java Virtual Machine (VM) is needed on the host where the
DNSS is supposed to be executed. Two variants for the execution exist:

java -jar DNSS.jar [-cwd <dirpath>] [-iord <dirpath>] [-iordm <dirpath>]
java [Java options] DNSS [-cwd <dirpath>] [-iord <dirpath>] [-iordm <dirpath>]

The DNSS accepts a number of command line options. The current working directory is specified with
cwd. This directory should contain the initial files for DIT and SIT, which are permanently updated by the
DNSS Server (Log Manager). The option iord instructs the DNSS Server to write its CORBA Interoper-
able Object Reference (IOR) into a file. This approach realizes that clients can resolve the initial reference
to an executed DNSS Server. Finally, the option iordm specifies the directory path where the reference to
a running DNSS master server is located.

4.4.7.3. Persistence
On startup, the DNSS server reads in two files with initial information. The file InitialSpecification.xml
contains the initial SIT structure in xADL format. When the DNSS server is started for the first time, this
file includes only the default specification. The second file InitialDirectory.xml includes the initial DIT in
xDD format. This file is empty when the DNSS server is started for the first time.

read initial specification

/ specificationModelChanged

read initial directory

ready for invocation

update inital filesexecute operationsystem
shuts down / directoryModelChanged

/ writeSpecification

/ writeDirectory

system crash

Figure 4-19: DNSS – Persistence Mechanism [Singh01]

When both files are parsed successfully, the DNSS server enters its default state and waits for invocations
(cf. Figure 4-19). Each client request is processed and the server returns to the default state. When a client
request modifies the DIT or the SIT, the responsible model (directory or specification) sends a notifica-
tion to the Log Manager. This component receives the notifications and requests the respective model to
send its current state in XML format (xADL for specification model and xDD for directory model). The
received XML string is than written to the file for initial specifications or directory information.

Realization

Middleware and Application Management Architecture 143

4.4.7.4. Garbage Collector
Directory entries cannot be removed by clients (only instances and aliases). The Garbage Collector is
responsible for checking the DIT every time an instance or alias was deregistered.

The Garbage Collector process is synchronized with the log manager. Whenever a change in directory
model takes place, the Garbage Collector starts searching for entries that do not contain sub-entries in
order to delete them.

The Garbage Collector is a process started by directory model to clean the directory model. The garbage
collector filters the empty directory entries from the directory model and deletes them. A directory entry
is empty if it does not contain any instance entry, alias entry, or directory entries.

4.4.7.5. Exceptions
The DNSS employs the MAMA API with the OMG IDL specifications for the interface. Errors that occur
during the dynamic execution of operations of the DirectoryModel and the SpecificationModel are re-
turned in form of exceptions. The exceptions are sent in form of a string. The following exceptions are
implemented:
• NullPointerException: no class is found which provides invoked method.
• IllegalArgumentException: the semantic of parameters is not valid or a non-specified argument is

included in the operation call.
• IllegalAccessException: the invoked method of the java class is not accessible.
• InvocationTargetException: the invoked method did not complete its execution

When the request is completed normally, the return value of the operation is returned to the client. Void
operations do not return results, only exceptions.

4.5. XAMAV – The MAMA Visualization Service

This section describes the realization of the MAMA Visualization Service. The implemented user inter-
face is named XAMAV – XML ADL MAMA Visualization Tool. XAMAV follows strictly the recom-
mendation for the visualization of MAMA data as described in section 3.6.2.

XAMAV is split into three frames: Tree, Brain, and Information. The Tree Frame shows the specification
data and the directory data according to the sections 3.6.2.2 and 3.6.2.3. The Brain Frame displays the
structural filter, the Core Model (cf. section 3.6.2.4), and additional information. The Information Frame
contains the detail information. Furthermore, the Console notifies the user about the actual processing
steps and about errors that might occur. The console is realized in a separate window.

4.5.1. Implementation Backend

The general backend of this application is the Java Swing package contained in the Java SDK. It provides
predefined classes for the user interface, like splitting frames and standard buttons. This functionality is
used in the main application window.

4.5.1.1. Backend of the Tree Frame
The specification tree is realized with the JTree class. A set of classes around the JTree package allows
the realization of a standard tree while giving full control about the look and feel.

The information for the specification tree is provided in xADL. There should be the possibility to access
the XML content via the local file system for testing and demonstrations. In a second case, the access of
the XML files has to be realized via HTTP to communicate with the DNSS remotely. After reading the
XML file the content have to be parsed and displayed by the JTree.

To enable the access of XML-file content, an XML parser is implemented. Two APIs are described in
[SAX] and [W3C-DOM98]. The useful API in that case is DOM, because the whole content of the XML

Realization

Middleware and Application Management Architecture 144

document is available in one stored document after the parsing process. SAX in distinction from DOM
generates events during the parsing process, which have to be resolved. SAX does not provide a docu-
ment after the parsing process and is not so useful for this application.

Kind of Node
e.g. object

Name of the Node
e.g. objectname

Correspondent DOM Tree Node

Invisible
Root Node

Nodes

JTree

Figure 4-20: XAMAV – Concept for the Specification Tree

The nodes in the DOM tree document contain the data of the XML elements and can be accessed indi-
vidually. The access and manipulation can be done with interfaces provided by DOM. To connect the
XML content to JTree (cf. Figure 4-20), the corresponding DOM tree node is attached to the JTree node.
It is used as a selection point for the display of detail information.

JTree provides an invisible root node, which is used to connect the module and object nodes. The display
of these elements can be started at the visible top level without displaying to much structural information.
A JTree node must contain three pieces of information. The kind of the node is used for displaying differ-
ent node icons. The name is the textual description of the node, and the attached DOM node is used for
further processing.

The accessing and parsing process of directory data is realized in the same way as for specification data.
The same JTree is used to attach and remove tree nodes. Because of the invisible root node, the user has
the impression that the tree is completely changed.

The icons can appear or disappear while resolving the kind of node. In one case an icon stands for an
object or module node and in the other case it stands for a directory entry or directory entry instance node.
The matching information is stored and resolved for the special icons. The load/reload buttons (cf. section
3.6.2.3) are implemented with the use of the Java JButton class.

4.5.1.2. Backend of the Brain Frame
Personal Brain by The Brain Technologies Corporation allows a user to organize information in an indi-
vidual way without limiting it to a pre-determined file structure. It uses a new concept, a data format
called thoughts. Thoughts can be about any type of information, including documents, spreadsheets, im-
ages, shortcuts, and HTML documents [Brain00a]. The user can organize the data in form of a tree, but
this is not a requirement.

Relationships in Personal Brain are made by creating and arranging child, parent, and jump thoughts. The
names simply describe the relationship to the active thought and to each other. Every node (thought) can
be connected to every other node over the parent (top), child (bottom), or jump (left) gate. Parent thoughts
are displayed directly above the active thought, child thoughts are displayed below the active thought, and
jump thoughts are displayed to the left of the active thought (cf. Figure 4-21). [Brain00a]

Brother/Sister

Child

Current

Parent

Jump

Parent Plain

Current Plain

Child Plain

Figure 4-21: XAMAV – The Plains of the Brain

Realization

Middleware and Application Management Architecture 145

The Brain Frame is used for displaying the Core Model and the dynamic linking. It displays hierarchical
and fully connected structures and has the ability to generate cross connections between the data. The
following challenge is described in [Herman99]: “A fundamental challenge for information visualization
applications that use graph visualization techniques for relational data sets is the scale and structural com-
plexity of the data.” This is solved by the Brain interface in the way shown in Figure 4-21.

The static Core Model structure is displayed with static core model thoughts. The entry to the Core Model
part is the CORE_MODEL thought. The elements module, object, interface, and action are connected as
shown in Figure 4-22. One static thought (qualifierdef), which additionally includes Core Model descrip-
tions, is added directly under the CORE_MODEL.

Data

Data

CORE_MODEL

module
qualifierdef

object

interface

attributeaction

typedef

Data

Figure 4-22: XAMAV – Core Model Structure

The Core Model data elements, defined in xADL, are connected to the static core model thoughts via a
jump connection as shown in Figure 4-22. They are read by the Core Model xADL file and added dy-
namically. They are called dynamic core model thoughts. Every time a dynamic core model thought is
activated, the type of the element is shown as jump connection and the detail information about this ele-
ment is displayed in the Information Frame.

The connection of Core Model data with the directory and specification data is realized by structural filter
thoughts. The filter thoughts, depending on the selected tree node in the directory or specification tree, are
linked to the dynamic core model thoughts that contain the related information (cf. Figure 4-23).

Data

CORE_MODELData

root

Filter

object

Figure 4-23: XAMAV – Dynamic Linking

For example: An object X is selected in the directory tree and the object filter thought is currently used.
All qualifierdef thoughts of the dynamic Core Model data which match with an object qualifier are linked
as a jump connection to the object filter thought. By selecting another thought, this connection is rebuilt
for this element.

The dynamic core model thought is directly selectable. This provides users the possibility to obtain de-
tailed information about the meaning of qualifiers. For an easy understanding, the static core model
thoughts, dynamic core model thoughts, and the filter thoughts appear in different colors.

Realization

Middleware and Application Management Architecture 146

Figure 4-24 shows the structural filter. It returns a node graph. These nodes are called filter thoughts.
FILTER represents the structural entry of this graph. NO_FILTER is added to show the unfiltered detail
information.

For an easy understanding of the design the structural data filters (first level, cf. Figure 4-21) are located
below FILTER. Typedef elements can be associated to the elements module, object, or interface. To sim-
plify the graph without having three typedef thoughts, they are concentrated in one thought and linked to
the module-, object- and interface filter thought. One of all filter thoughts is active every time a tree node
in the directory or specification tree is selected.

FILTER

module

object

interface

attributeaction
typedef

NO_FILTER

Figure 4-24: XAMAV – Filter Structure

The Brain Frame is implemented using the Brain SDK classes. Brain SDK is divided into three packages:
Database, User-Interface, and Common. The Database package has three primary functions:
1. persistent storage and retrieval of Brains;
2. creation, association, and access of thought objects; and
3. associating thoughts and links with user defined objects.

The User-Interface package manages the visual display and communicates with the Database package to
access thoughts and links. It passes three types of events to a Brain-enabled application:
1. brain events - mouse down, mouse over, and thought selection events;
2. paint events - a way to control the display of specific brain elements; and
3. application events - application close event.

The Common package contains utility classes that are used by the two other packages. The separation of
the Database, User-Interface, and Common packages makes it possible to build applications and applets
to create and manipulate brains without a user interface. An obvious functionality of this approach is to
create programs that automatically create brains. [Brain00b]

The filter thoughts and the static core model thoughts are added statically. The Core Model data is parsed
at startup. Operating with the thoughts is similar to operating with the JTree nodes. The DOM nodes are
attached to the thoughts and are extracted by selecting the corresponding thought.

The name of the Core Model element is converted to the dynamic core model thought name and the type
of the element is used to provide a jump connection to a static core model thought. On selection of static
and dynamic core model thoughts or filter thoughts, different behaviors are implemented. For dynamic
linking between filter and dynamic core model thoughts, the information of all relevant thoughts is stored.

4.5.1.3. Backend of the Information Frame
The Information Frame is realized with the JEditorPane component of the Java Swing package. This
component allows to display HTML formatted text. The format definitions can be done by defining an
external Cascaded Style Sheet (CSS). The source for the detail information is the DOM node attached to
the specification tree structure. Starting from this node, the content of all sub nodes is written in an
HTML string. This string includes the references to the external style sheet.

Realization

Middleware and Application Management Architecture 147

The Information Frame is also used for displaying external HTML pages and other plain text content.
This is useful for help or documentation content. Here, the style definition used to display detail informa-
tion for the Core Model differs from those used for the display of detail information of the directory or
specification tree. The main difference is that for the display of core model detail information no separate
filtering mechanism is required. The reason for this is that third level information (cf. Figure 4-21) is only
displayed for this specific element (selected thought). Information about the sub elements is not dis-
played. They can be selected and viewed by using the Brain interface. Additional structural information
as in the other detail information data is not necessary.

4.5.2. Implementation Classes

The implementation is based on the Java 1.3.1 SDK by Sun Microsystems, the XML4J classes version
1.1.16 by IBM, and the Brain SDK version 2.1 (evaluation copy) by The Brain Technologies Corporation.
The Brain and XML4J classes are included in the xamav.jar file, where also the classes for the XAMAV
application are located. Only one system class path has.

The class Xamav represents the core of the implementation. This class is an extension of the standard
javax.swing.JPanel class, including the main method used for starting the application. The different com-
ponents are associated with the class Xamav as show in Figure 4-25. The panel is split into panes. The
following source code fragment shows in which way the class Xamav is defined, and how the split frame
is created.

public class Xamav extends JPanel // class definition
public Xamav() // constructor
JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZO NTAL_SPLIT);
JSplitPane splitPaneleft = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
JSplitPane splitPaneright = new JSplitPane(JSplitPane.VERTICAL_SPLIT);

The main functionality is located inside the classes XamavTree, XamavBrain, and XamavInfo. XamavTree
and XamavBrain are loaded and initialized by the Xamav class and added to the JSplitPane. XamavInfo is
initialized by the XamavTree class at the first selection of the directory respectively specification tree, or
by the XamavBrain class at the first selection of a dynamic core model thought.

Xamav

XamavBrain

XamavInfo

XamavInfoLinkListenerXamavTree

XamavThoughtPainter

XamavActivator

XamavDataObject

XamavRenderer

TreeSelectionListener

NodeInfo

XamavTreeModelListener

Figure 4-25: XAMAV – Application Class Association

The Information Frame is built using the javax.swing.JEditorPane class. The function setText is used to
print a string inside this frame. All strings, generated by the XamavInfo class, are displayed in the same
way. The XamavInfoLinkListener is an implementation of the standard HyperlinkListener class, which
handles the activation of links in the Information Frame. The load/reload buttons are realized using the
javax.swing.JButton class. They are added within the XamavBrain and XamavTree in a similar way as the
JEditorPane. The following source code fragment performs the initialization of the Information Frame:

Realization

Middleware and Application Management Architecture 148

htmlPane = new JEditorPane(); // init class
htmlPane.setContentType("text/html");
htmlPane.addHyperlinkListener(new XamavInfoLinkListener(htmlPane));
htmlPane.setText(initialTextHTML);
JScrollPane infoPane = new JScrollPane(htmlPane);
splitPaneright.setBottomComponent(infoPane); // set splitpane

The instantiation of the class Xamav is done by the main method. After instantiation, the class is added to
the javax.swing.JFrame and is displayed on the screen.

4.5.3. Class XamavTree

public class XamavTree extends JPanel // class definition
public XamavTree() // constructor

The class XamavTree contains all operations for building the directory tree and the specification tree. This
includes the basic design and selection rules, the basic methods for parsing and matching the XML docu-
ments, and a class which allows DOM nodes to be attached to the JTree structure. During startup the
JTree, XamavRenderer and TreeSelectionListener are initialized. All classes used with the JTree func-
tionality are extensions or implementations of the standard Java classes.

Method: parsenXML

static public Document parsenXML(boolean url, String XMLName)

The parsenXML method parses the XML document and returns a DOM tree document depending on the
parameter url. The parser validates the XML document when a DTD is available.

The XMLName parameter has to be an URL to an XML file in the local file system if the value for the
parameter url is true. Otherwise, the URL has to start with <http://> and the XML file will be loaded via
the HTTP protocol from the given location. The return value is a DOM document which includes all data
of the XML document.

4.5.3.1. Class NodeInfo

class NodeInfo // class def.
public NodeInfo(Node TreeNode, String Type, String Name) // constructor

This class plays a key role connecting the DOM tree nodes to JTree. The class contains the type (e.g.
module), the name (e.g. app_one), and the complete DOM tree node of this element. Inside this class, the
standard Java method toString() is redefined to get the name of the string. The method getDomNode()
performs the access to the DOM tree node.

Method: pref

public void pref(Document prefDoc) {
 // enumeration of the DOM nodes
 for (Node prefNode = prefDoc.getDocumentElement().getFirstChild();
 prefNode != null; prefNode = prefNode.getNextSibling()){
 // construct if element found
 if (prefNode.getNodeName().equals("spec")){
 // write the attribute in the variable
 XamavTree.SPEC_NAME = ((TXElement)prefNode).getAttribute("name");
 XamavTree.SPEC_TYPE = ((TXElement)prefNode).getAttribute("type");
 }
 }
}

Realization

Middleware and Application Management Architecture 149

The method pref is supplied with the DOM tree document of the preferences.xml file as input parameter.
The values of the attributes type and name are stored in a system variable, which takes affect by loading
or reloading the directory tree and the specification tree. The following source code fragment shows the
three steps for accessing the DOM tree. This method is called once during the initialization phase.

Method: spec

public void spec(Document specDoc)

After the spec method has accessed the DOM tree of the XML document, defined in the spec element of
preferences.xml, it reloads the specification tree. All existing nodes are replaced, except the invisible root
node of the tree. Traversing the DOM tree is supported for a depth up to five levels. Only the object and
module nodes will be connected to the tree as instances of the class NodeInfo.

Accessing the DOM tree, the attribute distinguished_name is also evaluated. If this attribute matches the
last accessed directory or specification tree node, this information is stored in a hash table. Depending on
these entries, the new specification tree is loaded and expanded up to that node. This method is performed
on every reload of the specification tree.

Method: xdsdTree

public void xdsdTree(Document tdoc)

The xdsdTree method behaves similarly to the spec method. After the xdsd method has accessed the
DOM tree of the XML document, defined in the xdsd element of preferences.xml, it reloads the directory
tree. All existing nodes will be replaced, except the invisible root node of the tree. Traversing the DOM
tree is supported for a depth up to twelve levels.

All nodes are connected to the tree as instances of the class NodeInfo. Accessing the DOM tree, the at-
tribute object_distinguished_name is evaluated. When this attribute matches the last accessed specifica-
tion or directory tree node, this information is stored in a hash table. Depending on these entries, the new
directory tree is loaded and expanded up to that node.

This method is performed on every reload of the directory tree.

4.5.3.2. Class TreeSelectionListener

// instantiation of the standard listener class
tree.addTreeSelectionListener(new TreeSelectionListener() {
public void valueChanged(TreeSelectionEvent e)
{***** event handling ******}

One of the two main listeners of the application is the standard Java class TreeSelectionListener. The
selection of single nodes placed in the directory tree and the specification tree is monitored by this lis-
tener.

XamavTree
node selection

yesdirectory
node

selected?

no initialize
XamavInfo

brain
filter thought

selected?
get detail

information

display detail
information

parse
specification

yes

match
DN

activate brain
FILTER thought

no

Figure 4-26: XAMAV – Tree Selection Event Handling

Realization

Middleware and Application Management Architecture 150

In case of a TreeSelectionEvent, the following steps are done (cf. Figure 4-26):
• unlink dynamically linked Brain thoughts;
• extract the DOM node and the name of the attached NodeInfo instance; and
• run different tasks according to the selected tree node.

The selection of a tree node referring to a directoryEntryInstance DOM node requires two more tasks to
be fulfilled in comparison to the selection of other types of tree nodes
1. parse the specification XML document; and
2. compare the distinguished_name of all element nodes of this tree with the Ob-

ject_Distinguished_Name of the selected directory tree node.

The first matching DOM node is returned. By selecting a specification tree node, this chosen node is re-
turned. The remaining tasks are the same in both cases.
• instantiate XamavInfo;
• replace the detail information with the filter thought dependent detail information string delivered by

XamavInfo; and
• link the dynamic core model thoughts to the filter thought syntax.

This listener is called whenever the specification or directory tree is selected.

Method: dnSpecSearch

public Node dnSpecSearch (Document specdoc1, String dnSearchString)

The directory XML file contains only information about the locations of object instances and the corre-
sponding objects in the specification tree. This method searches for the first node inside the specification
DOM tree that has the same distinguished name. The parameters for this method are the specification
DOM tree and the distinguished name.

This method is called each time the directory tree or specification tree is selected.

4.5.3.3. Class XamavRenderer

private class XamavRenderer extends Defaul tTreeCellRenderer // class def.
public XamavRenderer() // constructor

All currently matched nodes are listed in the hash table hasdisName. Different icons are chosen by the
renderer to represent a node. This depends on the type of the tree node and whether the node is listed in-
side the hash table or not.

load/reload
specification or
directory tree

yesparse
specification
or directory

matches
the tree
node?

display match
icon

no

get stored
DN

display normal
icon

Figure 4-27: XAMAV – Reload Matching

The renderer updates the icons of the nodes every time after a reload or after a change of the directory
tree or the specification tree. The symbols are stored in the images directory, which is located in the
working directory of XAMAV. The following list shows the correspondences.

objectIcon = "images/oi.gif"

Realization

Middleware and Application Management Architecture 151

objectMatchIcon = "images/omi.gif"
moduleIcon = "images/mi.gif"
moduleMatchIcon = "images/mmi.gif"
directoryEntryIcon = "images/dei.gif"
directoryInstanceIcon = "images/dii.gif"
directoryInstanceMatchIcon = "images/dimi.gif"

4.5.4. Class XamavBrain

public class XamavBrain extends BrainApp // class def.
public XamavBrain() // constructor

The class XamavBrain includes all operations for building and initializing the Brain. The initialization
phase comprises the building of the static thoughts, storing their identifiers, and the parsing of the Core
Model file. The following steps are the conversion of the relevant DOM nodes to Brain thoughts and at-
taching the DOM nodes, building the tree, and connecting each thought with a static core model thought.

During this process, the number of core model thoughts is tested if it exceeds an admitted value. After
this, the element name and Brain thought pairs are stored in hash tables for dynamic linking. The classes
XamavThoughtPainter and XamavActivator are initialized. All classes sharing functionality with the
Brain are extensions or implementations of the Brain SDK classes.

XamavBrain is initialized once during the launch of the application.

4.5.4.1. Class XamavDataObject

class XamavDataObject implements DataObject // class definition
public XamavDataObject (Node node) // constructor

This class is similar to the class NodeInfo. It is used to connect the DOM tree information to the Brain
thoughts. The type of an element (e.g. module) determines the kind of connection between the dynamic
core model thought and the static core model thought. The thought name is set to the name of the element
(e.g. app_one) and the complete DOM tree node of this element is attached to the thought.

Instances of the class are created during the dynamic core model thought building by using the method
setDataObject(). The method getXDONode() realizes the access to the DOM node.

4.5.4.2. Class XamavActivator

class XamavActivator implements ThoughtActivator // class definition
public void processEvent (ThoughtEvent e) // method for event processing

The second main listener of the application is the XamavActivator. The listener controls the selection of
the Brain thoughts (cf. Figure 4-28). In addition to this ThoughtEvent handling, the type of thought has to
be tested and different tasks have to be done. These tasks are:
• unlink and link the dynamic linked core model thoughts with a filter thought in case of a filter

thought selection and display the filtered detail information;
• display the dynamic core model thought detail information if selected;
• display the buttons Help, About or Preference information if selected;
• open the Open File or Open URL window; and
• exit the application if Quit is selected.

This activator is called whenever a thought is selected.

Realization

Middleware and Application Management Architecture 152

XamavBrain
thougt selection

brain
filter

thought?

dynamic
CM

thought?

quit?

open
File or
URL?

help?
preferences?

about?

no

get CM
DOM node

initialize
XamavInfo

get detail
information

display detail
information

yes

yes get detail
information

exit
application

display
specification view

in XamavTree

no

parse
specification

yes

nodisplay
help, preferences,

or about Info

no

idle

no

yes yes

Figure 4-28: XAMAV – Thought Event Handling3

4.5.4.3. Class XamavThoughtPainter

class XamavThoughtPainter implements ThoughtPainter // class definition
public void preDraw(ThoughtRep rep) // method for recursive thought painting

The class tests recursively the type of every thought and paints it in the type dependent color. This draw-
ing is performed once at startup of the application. The instantiation of this class is done in XamavBrain.

4.5.5. Class XamavInfo

public class XamavInfo // class definition
public XamavInfo(Node node) // constructor

The detail information is displayed in the Information Frame. This frame is initialized at the application’s
startup. The classes which are used for generating this frame are extensions or implementations of the
javax.swing.JEditorPane classes. One feature of JEditorPane is displaying of HTML content formatted
with a CSS, which is used in this implementation. The XamavInfo class creates different strings for the
detail information in HTML syntax and provides the use of an external CSS.

The parameter node, which is required for instantiating the class, is the starting point for the string crea-
tion after string initialization. The information needed for the dynamic linking of the dynamic core model
thoughts is stored in a hash table during processing phase.

3 CM – Core Model

Realization

Middleware and Application Management Architecture 153

The instantiation is done by selecting nodes in the directory tree or the specification tree and by selecting
dynamic core model thoughts in the Brain.

4.5.5.1. String Calculations
The string calculations have two main tasks. The first task is generating HTML by the use of CSS. The
second task is generating strings for the different filter options. To perform the calculations in an effective
way, they are done accessing the DOM tree. Nine different calculations are completed after one process-
ing phase. A change of a filter thought causes a reload of the Information Frame containing the new detail
information string without any recalculations. The nine parts of the detailed information are listed below.

public String nofilter_info = HTML_INI; //NO_FILTER thought selection
public String filter_info = HTML_INI; //FILTER thought selection
public String module_info = HTML_INI; //module thought selection
public String object_info = HTML_INI; //object thought selection
public String interface_info = HTML_INI;//interface thought selection
public String action_info = HTML_INI; //action thought selection
public String attribute_info = HTML_INI;//attribute thought selection
public String typedef_info = HTML_INI; //typedef thought selection
public String cm_info = HTML_INI; //dynamic core model thought selection

The initialization string starts with <html>. The following header information defines that a CSS is used
and where it is located. The name (xamav.css) and the location (XAMAV working directory) of the ex-
ternal CSS file are fixed. The following syntax shows the entire HTML initialization string:

String HTML_INI =
"<html><head><link rel=\"stylesheet\" type=\"text/css\"
href=\"file:xamav.css\">"+"<style type=\"text/css\"></style></head><body>";

The information of every accessed node is put in a string. This string is concatenated for every type of
filter. The code example below describes an object node:

// DOM-Tree access
name = ((TXElement)child).getAttribute("name");
object_extends = ((TXElement)child).getAttribute("extends");

// String calculation for the filter_info *******************************
filter_info = filter_info+
 "<li class=\"f.object\">Object : "
 +name+"";

// String calculation for the nofilter_info *****************************
nofilter_info = nofilter_info+
 "<li class=\"f.object\">Object : "
 +name+ " Extends: "
 +" "+object_extends
 +"";

4.5.5.2. Organization of CSS
The organization of the CSS is done by class definitions. The major class separation is done for the filter
and Core Model. The other separations are done for the xADL elements, attributes and values of the
specification, and Core Model document. A list description is added for all elements, which are directly
selectable by the corresponding filter and dynamic core model thought. For the class definitions, the fol-
lowing syntax was chosen:
• (list entry). filter/core model. element name. value of attribute type =”name”
• .filter/core model. element name. attribute type. value of attribute type

Realization

Middleware and Application Management Architecture 154

The definition of the separate style sheet document is built with a subset of CSS1 styles. The usable styles
are defined at the top of the style sheet document. The complete style sheet definition can be found in
Appendix C.4.2. The following fragment of the style sheet document (xamav.css) shows class definitions
for the element object.

/* object styles (filter)*/
li.f.object { color:red; font:18pt Helvetica;}
.f.object.name { color:black; font:18pt Helvetica;}
.f.object.ext { color:red; font:12pt Helvetica;}
.f.object.ext.name { color:black; font:12pt Helvetica;}

4.5.6. Dynamic Linking and Unlinking of Thoughts

The information for dynamic linking and unlinking of thoughts is stored in hash tables. Different match-
ing tables are used for the elements qualifierdef, object, attribute, and typedef dynamic core model
thoughts. The linking tables are built for module, object and interface filter thoughts. For the linking and
unlinking mechanism, the tables are created in three different steps.

XamavActivator or
TreeSelectionListener

Matching
Hash Tables

Linking
Hash Tables

Unlinking
Hash Tables

Brain
Thoughts

Event

unlinkThoughts()

getMatchingTable()

writeLinkingTable()

getLinkingTable()

linkThoughts()

getUnlinkingTable()

writeUnlinkingTable()

Figure 4-29: XAMAV – Dynamic Linking of Thoughts

1. All matching tables are created while building the dynamic core model thoughts at startup of the
application. They are static while the application is running.

2. The linking tables are created on every initialization of XamavInfo. This is done on every selection
change of the XamavTree.

3. The unlinking table is a copy of the linking table which is responsible for the actual thought linking.

The key and value entry pairs of all hash tables are identical. The attribute name of the element is used as
key (e.g. <qualifierdef name=”Abstract” ...> ; key = “Abstract”). The dynamic core model thought with
the corresponding thought name is the value entry of the hash table. The linking and unlinking process
enumerates the correspondent hash table. It links/unlinks the actual selected/deselected thought to the
thoughts listed in the table. The dynamic linking process is illustrated in Figure 4-29.

4.5.7. XAMAV User Interface (Manual)

The main components of the application are shown in Figure 4-30. They are the Brain Frame, the Tree
Frame, the Information Frame, and the Console window. The Brain Frame displays the Brain consisting
of thoughts. The Tree Frame displays the directory tree or the specification tree. The Information Frame
displays the detail information and the Console window shows error messages or processing information.

Realization

Middleware and Application Management Architecture 155

Tree Frame
+ module
 - object
 - object...

Console
process information;
error messages

Brain Frame
Thoughts

Information
Frame
Object: oDNSS
Extends: ****
Qualifier: ...

Load / Reaload Button

Figure 4-30: XAMAV – User Interface

4.5.7.1. Installation and Startup
The hardware and software requirements are a Microsoft Windows or UNIX platform with a Java Run-
time Environment (JRE) version 1.3.1 or higher. XAMAV is delivered as a Zip archive. The installation
directory has to be created manually e.g. C:\program files\XAMAV (Windows system) or /opt/XAMAV
(UNIX system). The archive has to be copied into that directory and to be extracted. The following files
and folders are present after extraction:
• xamav.jar – Java archive include all necessary classes;
• preferences.xml – preferences file for XAMAV;
• xamav.css – CSS for the XAMAV Information Frame;
• help.html/css.html – help information pages;
• xdd.xml/spec.xml/cm.xml – demonstration files for the three types of input data;
• images – directory which contains the Tree Frame symbols; and
• xamav.bat – Batch file for launching XAMAV.

The system variable CLASSPATH has to be changed. The path to xamav.jar has to be added. After setting
the path, XAMAV can be started by using the batch file or by the command java Xamav. This command
has to be executed in the working directory of XAMAV e.g. C:\program files\XAMAV. The filenames for
the specification data, directory data, and the Core Model data can be edited in the preferences.xml file.
XAMAV requires an XML file with the root node <xamav_preferences> and three child nodes:
<spec...>, <xdsd...> and <cm...>. The following code example shows the preferences.xml:

<xamav_preferences>
<spec type="FILE" name="spec.xml"/>
<xdsd type="FILE" name="xdsd.xml"/>
<cm type="FILE" name="cm.xml"/>
</xamav_preferences>

4.5.7.2. The Tree Frame
The Tree Frame displays the directory and the specification tree. Directory tree information is displayed
by pressing the Directory button. Specification tree information is displayed by pressing the Specification
button. The navigation through both trees is similar. The tree icons show what tree is actually loaded.

Realization

Middleware and Application Management Architecture 156

The document specified in the xdsd element of the preferences file is displayed in the directory tree. The
DirectoryEntry element is displayed as an expandable node and the DirectoryEntryInstance element is
displayed as a leaf. The specification tree, specified in the spec element of the preferences file, displays
the element module as an expandable node and the element object as a leaf.

Directory
Tree
Icons

Specification
Tree

Icons

Figure 4-31: XAMAV – Load with Specification and Directory Tree

Figure 4-31 shows the directory tree and the specification tree. Furthermore, it shows the effect of loading
a tree. To illustrate this on an example: When the object SchildiPrinter1 in the specification tree is se-
lected and the Directory button is pressed, the Tree Frame switches the display to the directory tree and
shows all instances of the object SchildiPrinter1 with a red icon. The displayed information in the Infor-
mation Frame is not changed. The Information Frame displays detailed information, when a node of the
Tree Frame was selected.

A selection of an expandable node in the directory tree displays no detail information because of its prop-
erty. By switching between the two trees, a red icon appears at the corresponding class in the specification
tree or at the instances in the directory tree. All instances of the same class are marked with the red icon
after a reload of the directory tree.

Figure 4-32: XAMAV – Reload of the Directory Tree

Figure 4-32 illustrates how the reload takes effect. When the node 3rd.LogServer in the directory tree is
selected and the Directory button is pressed, all instances of the same object are shown with a red icon.

Realization

Middleware and Application Management Architecture 157

4.5.7.3. The Information Frame
The Information Frame displays three kinds of data. It shows the detail information of the selected object,
module, or instance node of the directory tree or the specification tree. Furthermore it shows detail infor-
mation of the Core Model, when the thoughts are selected in the Brain Frame. Beside this, the Informa-
tion Frame is used to display some general information like preferences or help information. Figure 4-33
shows the displayed detail information.

Figure 4-33: XAMAV – Interface Filter

4.5.7.4. The Brain Frame
The Brain Frame consists of different types of thoughts. These types are:
• yellow thoughts (administrative functions);
• red thoughts (structural filter functions);
• green thoughts (static Core Model structure); and
• white thoughts (dynamic Core Model elements).

The yellow thoughts, including the blue Quit thought, represent the entrance and exit of XAMAV. Fur-
ther functions of these thoughts are: display the help information (Help), display the about information
(About), and display the current preferences (Preferences). The content is displayed in the Information
Frame. The root thought of the Brain is XAMAV. It connects all thoughts. Pins (thought aliases) are
placed on the top of the brain. They allow a faster access to these thoughts. (cf. Figure 4-34).

Green Thought

Yellow Thoughts Pins

Red Thought

Figure 4-34: XAMAV – Brain Frame with Thoughts

The red thoughts are the filters for the detail information. The activation of the thoughts leads to filtering
the detail information:
• FILTER – module, object, and interface names are displayed;
• NO_FILTER – all detail information is displayed; and
• detail information of the actual selection is displayed.

Realization

Middleware and Application Management Architecture 158

Example: When the object filter thought is activated, all detail information of the current selected object
in the Tree Frame is displayed. The detail information of the object’s substructures (interfaces or typedef)
is not displayed. This information is only displayed if an interface or typedef filter thought is activated.

Figure 4-35: XAMAV – Core Model Information

The green thoughts show the structure of the Core Model data and represent the key to the white thoughts.
The white thoughts contain the Core Model elements by name. They are connected via a jump connection
to the green thoughts with the correspondent kind. By activating one of the white thoughts, the detail in-
formation is displayed in the Information Frame (cf. Figure 4-35).

Pins are selectable buttons on the top of the Brain frame. They are aliases of existing thoughts and acti-
vate the corresponding thought on selection. Result is a change in the Brain Frame: The thought selected
by the activation of a pin is displayed in the center of the Brain Frame. The Brain Frame offers five dif-
ferent pins that enable an immediate context switch. The pins, as depicted by Figure 4-34, are FILTER,
NO_FILTER, XAMAV, CORE_MODEL, and Quit. The XAMAV thought (root thought) is used to rebuild
the initial constellation of the Brain thoughts.

Figure 4-36: XAMAV – Object Filter inclusive Linking of Core Model Thoughts

Connection links between a red thought and white thoughts appear when the Core Model data corre-
sponds with elements located in directory tree or specification tree. Figure 4-36 illustrates how the con-
nection appears in the Brain Frame.

Realization

Middleware and Application Management Architecture 159

4.6. Notification Event and Log Service

The Notification Event and Log Service (NELS) has been implemented in the first step as a stand-alone
object. In the second step, this stand-alone object has been included in the MAMA API. This approach
has been chosen to avoid an extra, centralized server within a MAMA execution environment. The over-
head the NELS functionality produced in the API was acceptable.

With the integration of the API and the NELS, all MAMA objects within a domain can play the role of an
NELS. Each object registers with the DNSS of its domain. The next step is the search for NELS function-
ality. This search is done with a request on the DNSS. When no NELS is found, the object itself can pro-
vide NELS functionality. Because this mechanism is realized by the API, it is completely transparent for
the core object.

Notification,
Event,
and Log Service

Event
DatabaseMonitor

NELS

Event
Forwarding

Figure 4-37: Services – Notification Event and Log Service

Figure 4-37 shows the realization of the NELS. The implementation consists of four objects. The object
NELS implements the operations of the NELS as described in section 3.6.3. The object Event Forwarding
handles all client subscriptions and evaluates to which clients an incoming ticket should be sent. The ob-
ject Monitor is a console window that prints received tickets. The object Event Database is a name-value
list that manages all received tickets. This functionality has been separated from the other objects in order
to allow the usage of a real database in the future.

4.7. Lifecycle Management Service

Figure 4-38 depicts the control of a single MAMA application object. The capsule manager forwards
lifecycle operations to the cluster manager that invokes them on the lifecycle interface of the application
object. This interface is specified in the Core Model and realized by the MAMA API. The lifecycle opera-
tions are transparent to the core object.

Cluster
Manager

Capsule
Manager

Core
Object

MAMA Co
Control

MAMA
Interface

MAMA
Interface

MAMA
Interface

Figure 4-38: LCMS – Engineering View for a specific Object Class

The capsule manager can control more object instances of different object classes by the help of object
specific cluster managers. With this mechanism, the lifecycle control of objects is decoupled from the
control of a set of object instances. The capsule manager can implement templates for a configuration of
objects. Following this idea, a set of objects can be instantiated at the same time.

Realization

Middleware and Application Management Architecture 160

The functionality of the object’s control interface was realized within the MAMA API. The functionality
is completely hidden to the application programmer. A management application can access the control
interface with standard MAMA mechanism (that is, it calls the ADL typed operations).

A configuration of MAMA objects is responsible for the creation of the capsule and the cluster manager.
These managers are realized as standard MAMA applications. They can be configured via command line
options and preference files in order to server for a particular type of objects or object groups.

Summary

Middleware and Application Management Architecture 161

Chapter 5
Summary

This chapter concludes this thesis. The chapter summarizes the basic ideas and results of this thesis. The
major objective of this thesis is to develop an approach for the integration of middleware and manage-
ment concepts. Due to the current situation, which can be described by interworking instead of integra-
tion, this work has investigated how management concepts can be applied to middleware.

5.1. Conclusions

Embedded into the concepts of I-centric Communication, this work has and related developments have
presented a way for the integration of management and middleware concepts. Starting with the identifica-
tion of major activities, followed by the definition of a general framework and the derivation of a specific
architecture, a prototype implementation has been developed. It shows the integration of concepts from
both areas middleware and management.

The challenging aspect of this work has been on the one hand to the diversity of available concepts and on
the other hand the fact that emerging concepts and technologies are going to change all facets of software
development. In chapter one, the section 1.1 describes the areas of application with their particular re-
quirements. This thesis recognizes telecommunication, network computing, devices and wearables, and
context-aware applications. All these areas demand for integrated solutions in order to optimize the han-
dling of applications, services, and resources. The approach of this thesis combines a basic assumption, a
general framework, and a specific architecture.

The basic assumption for this work was a clear identification of areas of concern and activities of distrib-
uted systems. Section 2.1 defines five terms that can be applied to middleware and management systems.
They cover all aspects of a distributed system: interface to users and costumers (use, operation), require-
ments of network and service operators (control), and long term operation (administration, maintenance).
Based on these definitions, the two major activities of a distributed system are identified as information
mapping and system management. Both activities are related to a layered model that depicts applications,
services, and resources. An approach for the integration of middleware and management must support the
mapping of information between layers and the management of individual layers supporting use, opera-
tion, control, administration, and maintenance of a distributed system.

The general framework offers concepts and rules. It is based on the introduced assumption and an evalua-
tion of target environments. The concepts of the framework cover objectives and requirements. The major
objective of the framework is to provide a distributed system an integrated mechanism for operation and
management. The requirements depict important issues such as technology independence, portability, and
scalability. The rules of the general framework reflect the concepts within a multi-layered model. The
conceptual model provides the basis for the development of a specific architecture. The model itself in-
cludes rules for four specific problem contexts: applications, objects, services, and technology. The model
sets the focus for a specific architecture on the planes regarded to objects and services.

The Middleware and Application Management Architecture (MAMA) is the specific architecture that is
directly derived from the general framework. Six recommendations form the architecture a Meta Schema
(object model), the Application Definition Language (ADL) for the specification of applications, a
Schema and a Core Model with generic specifications for applications and the architecture itself, an Ap-
plication Protocol, an Application Programming Interface (API), and a set of Application Services to
support applications. Furthermore, the MAMA describes a method for the realization of distributed appli-
cations employing all six recommendations. Each recommendation starts with specific objectives and
requirements. This enables the substitution of the concrete technologies that have been developed with

Summary

Middleware and Application Management Architecture 162

other, more appropriate or environment specific solutions without changing the architecture itself and
without a negative impact to the other recommendations and technologies.

The specific architecture was implemented following the objectives of the framework to show that the
provided recommendations are a solution that is lightweight, open, smart, and service generic.
• Lightweight as the solution can be widely adopted by vendors and providers of different size and

market penetration. This means the solution take into account commonly accepted principles already
adopted by service providers and network operators.

• Open as the solution includes well-defined interfaces. Interoperability with legacy systems is a key
issue for a smooth integration. This thesis reflects the term open also to indicate that the market de-
mands for an easy adaptation of new technology and interworking with other systems.

• Smart as the solutions must reflect the intrinsically dynamic aspects (particularly for the subscrip-
tion, deployment, and session set up process of applications, services, and resources), enabling a
flexible adaptation to customer requirements and operator/provider needs. This will is supported
through the use of meta-data repositories throughout the whole system life-time to provide a com-
prehensive knowledge base improving multi-domain service provisioning and also in the opera-
tions/maintenance phase.

• Service generic as the solution is independent of the actual services that are offered. Nobody can
predict if there is a killer-application for future services and which one this might be. The preferred
applications, services and resources will surely differ significantly within different countries and dif-
ferent cultural groups.

This thesis describes a new approach for the support of distributed applications. However, some issues
have been considered to be out of the scope for this approach. These issues are security, testing, and tool
support. All of them are important for the specification and operation of distributed applications. They
have been introduced when appropriate to show the places where further investigation on these issues is
necessary. Some aspects of security have been recognized in two recommendations of the architecture
(Application Protocol and Application Services). In both recommendations, a basic set of security options
has been included. Testing is supported for the formal processing of ADL specifications with the imple-
mented parser. Further formal test methods have not been developed. The support of tools for specifica-
tion, development, and deployment is limited to the ADL parser and the visualization service.

The basic result of this work is the conclusion that an approach that integrates basic concepts of middle-
ware and management – compared to the state of the art gateways between both worlds, provides benefits
in many different areas. The unification of use, operation, and control with the tasks of maintenance and
administration minimizes the effort that has to be spent for the mid- and long term operation of a distrib-
uted application. The independence of concrete middleware and management technologies improves the
portability of applications. An application designer and programmer can concentrate on its actual task –
the realization of profitable applications instead of dealing with constantly changing technological issues.
The simplicity of the six recommendations of the architecture allowed for a simple and lightweight im-
plementation that can be employed in many different environments, starting from small devices up to
complex and huge service platforms.

5.2. Outlook

5.2.1. Scalability, Portability, and Application

The implementation of the developed architecture allows tailoring for various purposes and environments.
While the first implementation is focused on the evaluation of the concepts of the architecture, the scal-
ability in many directions was a major objective of this thesis.

The developed architecture and the realized implementation can be employed for two purposes – com-
plementary management system to support existing applications and for the development of distributed
applications that are completely based on MAMA. The architecture already provides an algorithm for the
definition of distributed applications including the identification of managers, agents, and managed ob-

Summary

Middleware and Application Management Architecture 163

jects. This algorithm provides a sound tool for the use of the architecture for both purposes. The results of
this work have been used and will be further used for several projects and systems that are related to the
research activities of the department for Open Communication Systems (OKS) at the Technical Univer-
sity Berlin and the Fraunhofer institute FOKUS.

5.2.1.1. Telecommunication – Managing a Unified Messaging System
OKS has developed a Unified Messaging System (UMS). MAMA has been employed to build a comple-
mentary management system for the UMS. For the management system, the algorithm described in sec-
tion 3.7 has been used. The functional description of the UMS ([vdMeer00b]) and the technical descrip-
tion of its components ([Dutkowski01]) have been carefully processed to indicate relevant management
function, specifications for agents and managed objects, and the hierarchical structure of the management
system itself.

Result was a management system that covered the complete functionality of the UMS with appropriate
management functions. The system was assembled out of eleven managed objects, four agents, one local
manager, and one global manager. It allowed for an easy management of user related information (which
are spread over multiple objects) and the monitoring of the actual system behavior.

5.2.1.2. Internet – Maintaining a World Wide Web Server
OKS offers all information related to lecturing and research via a complex World Wide Web (WWW)
server. One important issues is the monitoring of this WWW server in order to analyze the user behavior
(which pages are viewed how often from different users), to notify any case of an error, and to maintain
and update information.

The MAMA implementation has been used in combination with a number of scripts to realize those ob-
jectives. All scripts are handled as managed objects. The scripts allowed to extract OKS related informa-
tion from the log files of the WWW server and to add information on the OKS web pages. This small and
simple system can be enhanced to offer a complete solution for the monitoring of WWW servers that deal
with complex information.

5.2.1.3. I-centric Communication
Some aspects of the general framework and the application services have already been introduced into the
concept of I-centric Communications [vdMeer00a]. Furthermore, the specific architecture and the realized
applications can now be used as a platform for deploying I-centric Communication systems within het-
erogeneous environments. Another challenge for further developments is the adaptation of MAMA within
the I-centric Communication System to improve the operation, control, ad maintenance of the system
itself.

5.2.1.4. Network Appliances
One emerging issues in telecommunications is the convergence of information and communication net-
works. Here, the control of network appliances is a key factor for the telecommunication business to cre-
ate value-added services that can attract new groups of users. This thesis already provides a scalable and
portable mechanism to control and to maintain resources. The application of the MAMA implementation
for the control of IP devices, which are currently developed by Fraunhofer FOKUS, would be an excel-
lent evaluation of the results of this thesis.

5.2.2. Related Work

In the last years, a number of projects have been started aiming for the integration of management and
middleware. A couple of those projects have still investigated into the development of gateways and new
methods for the mapping of information from and to a management architecture (like TMN1) from and to

1 Telecommunication Management Network

Summary

Middleware and Application Management Architecture 164

a middleware architecture (like CORBA2). The ACTS projects FlowTrhu, REFORM, and VITAL are
candidates for this category of projects (cf. [Pavlou99]). The other category of projects goes a similar way
as this thesis does. Applications are decoupled from underlying technology and an architecture takes care
of standard tasks. These projects do not always recognize the management aspect.

5.2.2.1. The JXTA Project
In 2001, Bill Joy and Mike Clary from Sun Microsystems started the JXTA project as a set of open, gen-
eralized peer-to-peer protocols [JXTA]. JXTA promotes the communication among applications, admin-
istrative commands for peer-to-peer tasks, a small core, supports multiple platforms, and addresses secu-
rity. Focusing on the support of peer communication, the JXTA project promises to harmonize recent
developments generating software for interoperable peer-to-peer systems.

5.2.2.2. The Ninja Project
The Ninja project was started from Matt Welsh at the University of California at Berkeley [Ninja]. This
projects aims to develop a software infrastructure for next generation Internet applications. The Ninja
project can be seen as a source for further developments of MAMA, including approaches for wide-area
state management, automatic service composition, and mobile code for service deployment.

5.2.2.3. CORBA MAN
The CORBA MAN project addresses issues of telecommunication management that involves the use of
CORBA [CORBA-MAN]. The basic approach is to develop a CORBA management agent for the fault
management of embedded CORBA systems.

5.2.2.4. AlbatrOSS
The IST project AlbatrOSS – Architecture for Location Based Applications of Third generation Operation
Support Systems – was started on March 1st 2002. Aim of this project is to develop an Operation Support
System (OSS) for 3rd generation mobile networks, including services for the Virtual Home Environment
(VHE). This thesis has already contributed to this project. Furthermore, the results of this thesis will be
used as one basis for the definition of the OSS architecture.

2 Common Object Request Broker Architecture

List of Figures

Middleware and Application Management Architecture 165

List of Figures

Figure 1-1: Trends in Communications [vdMeer01a]...2
Figure 1-2: Distributed Applications accessing classic Management Systems [NMF-GB909]....................3
Figure 1-3: Development Process ...4
Figure 2-1: Areas of Concern and Activities of Distributed Systems ...8
Figure 2-2: Service Platforms – Distribution of Intelligence [Campolargo99]...10
Figure 2-3: General Framework – Conceptual Model ..15
Figure 2-4: General Framework – Object ...17
Figure 2-5: General Framework – Components..18
Figure 2-6: Computational and Engineering Objects ..20
Figure 2-7: Distributed Directory and Referrals [ITU-X501] ...25
Figure 3-1: Middleware and Application Management Architecture ...29
Figure 3-2: Object Model – ODP vs. MAMA Computational Object ..31
Figure 3-3: Object Model – Meta Schema ..32
Figure 3-4: ADL – Development Process ...42
Figure 3-5: MAMA – Core Model ..43
Figure 3-6: MAMA – Protocol..61
Figure 3-7: Protocol – Protocol Checkpoints [Fritzsch01]..66
Figure 3-8: Protocol – Registration on Event Service [Fritzsch01] ..67
Figure 3-9: Protocol – Action Processing ...68
Figure 3-10: Protocol – Registration of Application-specific Operations...68
Figure 3-11: Protocol – Sequence Diagram [Fritzsch01]..69
Figure 3-12: Protocol – Addressing of Nodes...70
Figure 3-13: Protocol – Addressing Leafs...71
Figure 3-14: Protocol – Successful Transaction..72
Figure 3-15: Protocol – Non-successful Transaction ..73
Figure 3-16: MAMA – Application Programming Interface ..74
Figure 3-17: DNSS –Three Model Approach [Singh01]...83
Figure 3-18: DNSS – Directory Information Tree [Singh01] ...84
Figure 3-19: DNSS – Directory Service Use Cases [Singh01] ...85
Figure 3-20: DNSS – Directory Service Class Diagram [Singh01] ..86
Figure 3-21: DNSS – Specification Information Tree ..88
Figure 3-22: DNSS – Specification Service Use Cases [Singh01] ...89
Figure 3-23: DNSS – Specification Service Class Diagram [Singh01] ..90
Figure 3-24: DNSS – Distributed DNSS...93
Figure 3-25: Visualization Service – Three Levels of Information...95

List of Figures

Middleware and Application Management Architecture 166

Figure 3-26: Visualization Service – Tasks for Specification Data ..96
Figure 3-27: Visualization Service – Tasks for Directory Specification Data ..98
Figure 3-28: Visualization Service – Tasks for all Types of Data ..99
Figure 3-29: LCMS – Uniform Lifecycle Management [Eckert97]..102
Figure 3-30: MAMA Development – Relationships between Management Roles and Interfaces............105
Figure 3-31: MAMA Development – Analysis ...106
Figure 3-32: MAMA Development – Content-related Analysis ...107
Figure 3-33: MAMA Development – System-related Analysis ..108
Figure 3-34: MAMA Development – Specifications ..109
Figure 3-35: MAMA Development – Object with MAMA-like Interfaces ..111
Figure 4-1: ADL Compiler – Work Flow..113
Figure 4-2: DNSS – Class Diagramm of the DNSS Model [Singh01]..131
Figure 4-3: DNSS – Entry Lookup..132
Figure 4-4: DNSS – Registration of a new Directory Entry [Singh01]...132
Figure 4-5: DNSS – Registration of a new Alias Entry...133
Figure 4-6: DNSS – Deregistration of a Directory Entry ..133
Figure 4-7: DNSS – Modification of Directory Names [Singh01]..134
Figure 4-8: DNSS – Retrieval and Manipulation of Attributes [Singh01] ..134
Figure 4-9: DNSS – Retrieval of Object Specifications [Singh01]...135
Figure 4-10: DNSS – Element Retrieval including Filtering and Scoping..135
Figure 4-11: DNSS – Insertion of Specifications and Elements [Singh01] ..137
Figure 4-12: DNSS – Remove a Specification Element [Singh01]...137
Figure 4-13: DNSS – Retrieval of Object Instances [Singh01]...138
Figure 4-14: DNSS – ADL Manager [Singh01]..138
Figure 4-15: DNSS – Processing of ADL formatted Specifications [Singh01] ..139
Figure 4-16: DNSS – Tasks of the Log Manager [Singh01] ...140
Figure 4-17: DNSS – Java Packages [Singh01] ..140
Figure 4-18: DNSS – Server Components ..141
Figure 4-19: DNSS – Persistence Mechanism [Singh01]..142
Figure 4-20: XAMAV – Concept for the Specification Tree ..144
Figure 4-21: XAMAV – The Plains of the Brain ..144
Figure 4-22: XAMAV – Core Model Structure ..145
Figure 4-23: XAMAV – Dynamic Linking...145
Figure 4-24: XAMAV – Filter Structure...146
Figure 4-25: XAMAV – Application Class Association...147
Figure 4-26: XAMAV – Tree Selection Event Handling..149
Figure 4-27: XAMAV – Reload Matching..150
Figure 4-28: XAMAV – Thought Event Handling ...152

List of Figures

Middleware and Application Management Architecture 167

Figure 4-29: XAMAV – Dynamic Linking of Thoughts ..154
Figure 4-30: XAMAV – User Interface ..155
Figure 4-31: XAMAV – Load with Specification and Directory Tree ...156
Figure 4-32: XAMAV – Reload of the Directory Tree ...156
Figure 4-33: XAMAV – Interface Filter ...157
Figure 4-34: XAMAV – Brain Frame with Thoughts...157
Figure 4-35: XAMAV – Core Model Information..158
Figure 4-36: XAMAV – Object Filter inclusive Linking of Core Model Thoughts158
Figure 4-37: Services – Notification Event and Log Service..159
Figure 4-38: LCMS – Engineering View for a specific Object Class ...159
Figure A-1: Graphical Conventions – UML Sequence and Collaboration Diagram [OMG-UML]187
Figure A-2: Graphical Conventions – UML Use Case and State Chart Diagrams [OMG-UML]188
Figure A-3: Graphical Conventions – Information Modeling [OMG-UML]..188
Figure A-4: Graphical Conventions – Explicit Computational Binding [TINA-CMC]............................188
Figure A-5: Graphical Conventions – Computational Modeling [TINA-CMC].......................................189
Figure A-6: Graphical Conventions – Engineering Modeling [Eckert97] ..189
Figure A-7: Graphical Conventions – Explicit Engineering Binding [TINA-EMC]189

List of Figures

Middleware and Application Management Architecture 168

List of Tables

Middleware and Application Management Architecture 169

List of Tables

Table 2-1: Applications, Services, and Resources [vdMeer01a]...11
Table 3-1: ADL – Keywords...34
Table 3-2: ADL – Statuses of Qualifiers for a certain Scope..36
Table 3-3: ADL – Integer Types and their Value Range ..39
Table 3-4: xADL – Elements and Attributes...41
Table 3-5: MAMA Core Model – Values for the Status Qualifier..46
Table 3-6: MAMA Core Model – Values for the Status Qualifier..47
Table 3-7: MAMA Core Model – Values for the ArrayType Qualifier ..48
Table 3-8: MAMA Core Model – Dependencies among Qualifiers ...53
Table 3-9: Core Model – Miscellaneous Type Definitions ...57
Table 3-10: MAMA API – initializeEntity ...75
Table 3-11: MAMA API – configureMiddleware...76
Table 3-12: MAMA API – addNewOperation..76
Table 3-13: MAMA API – registerEvSrv ...76
Table 3-14: MAMA API – deRegisterEvSrv ..77
Table 3-15: MAMA API – changeRegistrationEvSrv ..77
Table 3-16: MAMA API – performAction ...77
Table 3-17: MAMA API – sendEvent ..78
Table 3-18: MAMA API – Member Functions of the Class swNamedValue...78
Table 3-19: MAMA API – Member Functions of the Class swOptionsList...79
Table 3-20: MAMA API – Member Functions of the Class swOperationMap ..79
Table 3-21: MAMA API – Member Functions of the Class swAddressList ..80
Table 3-22: MAMA API – Member Functions of the Class swObjectPath ..80
Table 3-23: MAMA API – Member Functions of the Class swError ...80
Table 3-24: MAMA API – Member Functions of the Class CORBA Server ...81
Table 3-25: MAMA API – Member Functions of the Class CORBA ..81
Table 3-26: DNSS – eXchange Directory Definition..86
Table 3-27: DNSS – Directory Service Interface Operations ...87
Table 3-28: DNSS – Specification Service Interface Operations..91
Table 3-29: LCMS – Cluster Management Operations...104
Table 3-30: LCMS – Capsule Management Operations ...105
Table 4-1: ADL Compiler – Files of the Implementation ...115
Table 4-2: ADL Compiler – Command Line Options...116
Table 4-3: MAMA Protocol – ADL to OMG IDL Mapping ..117
Table A-1: EBNF Symbols [Scowen93] ...186

List of Tables

Middleware and Application Management Architecture 170

Table A-2: ANTLR Symbols [ANTLR-Man]...187
Table A-3: EBNF used for OMG IDL Specifications [CORBA]..187
Table B-1: ADL Lexical Conventions – Alphabetic Characters [CORBA]..191
Table B-2: ADL Lexical Conventions – Graphic Characters [CORBA] ..192
Table B-3: ADL Lexical Conventions – Formatting Characters [CORBA] ...192
Table B-4: ADL Lexical Conventions – Numeric Characters...192
Table B-5: ADL Lexical Conventions – Escape Sequences [CORBA] ..193
Table B-6: ADL – Keywords ..193
Table C-1: Core Model – Qualifier Matrix ...202
Table C-2: Qualifiers – Recommended Values for Units [DMTF-CIM] ..205

References

Middleware and Application Management Architecture 171

References

References in this document are constructed by the main authors name and the year of publication. For
documents that are produced by an organization, the reference contains the organizations acronym and
an abbreviation of the document title. Documents of project milestones are a combination of an acronym
of the project name and an acronym describing the deliverable number.

References from the World Wide Web (WWW) are accompanied with the Uniform Resource Locator
(URL) that points to the actual document in the WWW. Additionally, each WWW reference is provided
with information when the author of this document has last visited the related document. It is most likely,
that the content of the WWW document has changed since this last visit or that the WWW document is no
longer available at all. All referenced documents from the WWW can be requested from the author.

[3GPP-OSAReq] 3GPP: Stage 1Service Requirements for the Open Service Access (OSA). 3rd Genera-
tion Partnership Project, Technical Specification, Release 5, Document Number TS
22.127, June 2001

[Abowd99] Abowd, G. D.; Dey, A. K. et. al.: Towards a Better Understanding of context and
Context-Awareness. First International Symposium on Handheld and Ubiquitous
Computing, HUC’99, Karlsruhe, Germany, September, 27-29, 1999

[ANTLR-Man] Terence Parr et. al: ANTLR Reference Manual. Manual for ANTLR Version 2.7.1,
October 1, 2000
available at <http://www.antlr.org> (last visited 03/14/02)

[Arbanowski00a] Arbanowski, St., van der Meer, S., Popescu-Zeletin, R.: I-centric Services in the Area
of Telecommunication ‘The I-Talk Service’. Proc. of 6th IFIP Conference on Intelli-
gence in Networks, SmartNet 2000, Vienna, Austria, September 18-22, 2000, pp. 499-
508

[Arbanowski99] Arbanowski, St.; van der Meer, S.: Service Personalization for Unified Messaging
Systems. Proc. of the 4th IEEE Symposium on Computers and Communications,
ISCC’99, Red Sea, Egypt, July 6-8, 1999

[Arbanowski00b] Arbanowski, St.; Waterstrat, H.; van der Meer, S.; Popescu-Zeletin, R.: Open Profil-
ing for Ubiquitous Computing. Proc. of the 1st Workshop on Ubiquitous Computing,
PACT 2000, Philadelphia, PA, October 15–19, 2000

[Arbanowski98] Arbanowski, St., Breugst, M., Busse, I., Magedanz, T.: Impact of Standard Mobile
Agent Technology on Telecommunications. Proc. of the 5th Conference on Computer
Communications, AFRICOM-CCDC’98, Tunis, October 20-22, 1998

[Badach94] Badach, A., Hoffmann, E., Knauer, O.: High Speed Internetworking: Grundlagen und
Konzepte des FDDI- und ATM-Einsatzes. Addison Wesley, Reading, Massachusetts,
1994

[Badach97] Badach, Antol: High Speed Internetworking: Grundlagen, Kommunikationsstandards,
Technologien der Shared und Switched LANs. 2. aktualisierte und überarbeitete Auf-
lage, Addison Wesley, Longman, 1997

[Balzert99] Helmut Balzert: Lehrbuch Grundlagen der Informatik. Spektrum Akad. Verlag; Hei-
delberg/Berlin; 1999

[Bapat94] Bapat, S.: Object-oriented Networks. Prentice Hall, Englewood Cliffs, New Jersey,
1994

References

Middleware and Application Management Architecture 172

[Booz96] Booz Allen & Hamilton: Telekommunikation in der Welt von morgen: Marktstrate-
gien, Konzepte und Kompetenzen für das 21. Jahrhundert. Institut für Medienentwick-
lung und Kommunikation (IMK), Verlagsgruppe Frankfurter Allgemeine Zeitung,
1997

[Brain00a] The Brain: PersonalBrain Manual. Version 1.74, included in PersonalBrain 1.74,
TheBrain Technologies Corp. Santa Monica (CA), 2000

[Brain00b] The Brain: BrainSDK Documentation. Version 2.1, included in BrainSDK 2.1, The-
Brain Technologies Corp. Santa Monica (CA), 2000

[Breugst98] Markus Breugst, Thomas Magedanz: Mobile Agents – Enabling Technology for Active
Intelligent Network Implementation. IEEE Network Magazine, Special Issue on Ac-
tive and Programmable Networks, Volume 12, No 3, May/June 1998

[Campolargo99] Mario Campolargo: Information society – R&D Challenges and Opportunities. Invited
Speech, 4th International Symposium on Autonomous Decentralized Systems, IS-
ADS’99, Tokyo, Japan, March 21-23, 1999

[Cerf00] Vinton G. Cerf: Internet: Transforming the Developing World. Planery Session, 5th
IEEE Intelligent Network Workshop, IN2000, Cape Town, South Africa, May, 7-11,
2000

[CORBA] OMG: The Common Object Request Broker: Architecture and Specification. Minor
Editorial Version CORBA 2.4.1, OMG Document 00-11-03, November 2000 (Revi-
sion 2.4 October 2000)

[CORBA-ES] OMG: Event Service Specification. Version 1.0, OMG Document 00-06-15, OMG,
June 2000

[CORBA-MAN] CORBAMAN: CORBA Management Agent Generic and NE specific information
model. Revision 1.1, March 6th, 2001
available at <http://www.corbaman.com> (last visited 03/14/02)

[CORBA-NotS] OMG: Notification Service Specification. Version 1.0, OMG Document 00-06-20,
OMG, June 2000

[CORBA-NS] OMG: Naming Service Specification. Revised Version, OMG Document 01-02-65,
OMG, February 2001

[CORBA-TMN] OMG: Interworking between CORBA and TMN Systems Specification. Version 1.0,
OMG Document 00-08-01, OMG, August 2000

[DCE-RPC] Open Group Technical Standard: DCE1.1: Remote Procedure Call. Document Num-
ber C706, August 1997
<http://www.opengroup.org/publications/catalog/c706.htm> (visited on 09/07/2001)

[DIN96] DIN EN ISO 9241-10: Grundsätze der Dialoggestaltung. 1996

[DMTF-CIM] DMTF: Common Information Model (CIM) Specification. DMTF, Version 2.2, June
14, 1999

[Draft-ASN1NG] O. Dubuisson, P. H. Griffin, M. Perin, A. Sarma, B. Scott, A. Triglia: ASN.1 for
SMIng. IETF Draft, Networking Group, November 13, 2001
Document expires May 13, 2002

[Draft-Config] M. MacFaden, J. Saperia, W. Tackabury: Configuring Networks and Devices With
SNMP. IETF Draft, Snmpconf Working Group, Version 8, May 10, 2002
Document expires November 2002

[Draft-Hohno] H. Ohno, R.Atarashi: The Emergency Communications on the internet. IETF Draft,
Version 0, November 2001

[Draft-IEPREP] Hal Folts: Emergency Telecommunications Service in Evolving Networks. IETF Draft,
Version 0, February 15th, 2002

References

Middleware and Application Management Architecture 173

[Draft-LDUP] Ed Reed, Uppili Srinivasan: LDAP Replication Architecture. IETF Draft, Version 0.7,
March 2002

[DRAFT-OPES] G. Tomlinson, R. Chen, M. Hofmann: A Model for Open Pluggable Edge Services.
IETF Draft, November 20th, 2001

[Draft-SMIng] F. Strauss, J. Schoenwaelder: SMIng - Next Generation Structure of Management In-
formation. IETF Draft, Networking Group, July 20, 2001
Document expired January 18th, 2002

[Draft-UUID] Paul J. Leach, Rich Salz: UUIDs and GUIDs. IETF Draft, Networking Group, Febru-
ary 4, 1998
Document expired since August 4, 1998, no new version available

[Dutkowski01] Simon Dutkowski: Design Patterns for Distributed Communication Systems. Diplom-
arbeit, Technische Universität Berlin, Fachbereich Informatik, Fachgebiet für Offene
Kommunikationssysteme (OKS), August 23, 2000

[Eckert97] K.P. Eckert, M. Festini, P. Schoo, G. Schürmann: TANGRAM: Development of Object-
oriented Frameworks for TINA-C-based Multimedia Telecommunication Applications.
Proceedings of the 3rd International Symposium on Autonomous Decentralized Sys-
tems, ISADS’97, Berlin, Germany, April 9-11, 1997

[EU-FP6Draft] Commission of the European Communities: Proposals for COUNCIL DECISIONS
concerning the specific programs implementing the Framework Program 2002-2006
of the European Community for research, technological development and demonstra-
tion activities. Presented by the Commission, COM(2001) 279 final, Brussels, Bel-
gium, 30.05.2001
<http://www.cordis.lu/rtd2002/fp-debate/cec.htm> (last visited 11/01/01)

[Fahner02] Michael Fahner: Information Visualization for Distributed Systems. Diplomarbeit,
Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik, Fachge-
biet für Offene Kommunikationssysteme (OKS), January 28, 2002

[FODC] Free On-line Dictionary of Computing
<http://foldoc.doc.ic.ac.uk> (last visited 01/10/02)

[Fritzsch01] Wolfram Fritzsch: Integrated Management of Distributed Components. Diplomarbeit,
Technische Universität Berlin, Fakultät IV - Elektrotechnik und Informatik, Fachge-
biet für Offene Kommunikationssysteme (OKS), June 17, 2001

[Funabashi00] Motoshiba Funabashi et.al.: Development of Open Service Collborative Platform for
Coming ECs. by International Joint Efforts. SSGRR 2000, August 2000

[Geihs01] Kurt Geihs: Middleware Challenges Ahead. IEEE Computer, Volume 34, No 6, June
2001

[Hegering99] Hegering et.al.: Integriertes Management vernetzter Systeme. 1. Auflage, dpunkt –
Verlag für digitale Technologie, Heidelberg, Germany, 1999

[Herman99] I.Herman, M.S.Marshall, G.Melancon, D.J.Duke, M Delest, J.-P.Domenger: Skeletal
Images as Visual Cues. in Graph Visualisation. in Data Visualisation 99, Springer, Vi-
enna, 1999

[Heuer97] Andreas Heuer: Objektorientierte Datenbanken: Konzepte, Modelle, Standards und
Systeme, 2. Auflage, Addison Wesley Longman Verlag GmbH, Bonn, 1997

[Hewett96] Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank: ACM
SIGCHI Curricula for Human-Computer Interaction. ACM SIGCHI, 1992, 1996
< http://sigchi.org/cdg/cdg2.html> (last visited 09/01/01)

[IANA-OS] IANA: Operating System Names. Last updated 04/29/02
<http://www.iana.org/assignments/operating-system-names> (last visited 05/13/02)

References

Middleware and Application Management Architecture 174

[IBM99] IBM: Discovering Devices and Services in Home Networks. IBM White Paper,
June1999

[IEEE-1003.2] IEEE/ANSI Std 1003.2 & IEEE/ANSI 1003.2a-1999 (ISO/IEC 9945-2): Information
Technology-Portable Operating System Interface (POSIX) - Part 2: Shell and Utili-
ties.

[IETF-RFC1157] J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin: Simple Network Management Proto-
col (SNMP). IETF RFC 1157, May 01, 1990

[IETF-RFC1213] K. McCloghrie, M.T. Rose: Management Information Base for Network Management
of TCP/IP-based internets: MIB-II. IETF RFC 1213, Mar 01, 1991

[IETF-RFC1493] E. Decker, P. Langille, A. Rijsinghani, K. McCloghrie: Definitions of Managed Ob-
jects for Bridges. IETF RFC 1493, July, 1993

[IETF-RFC1738] T. Berners-Lee, L. Masinter, M. McCahill: Uniform Resource Locators (URL). IETF
RFC 1738, December 1994

[IETF-RFC1759] R. Smith, F. Wright, T. Hastings, S. Zilles, J. Gyllenskog: Printer MIB. IETF RFC
1759, March 1995

[IETF-RFC1777] W. Yeong, T. Howes, S. Kille: Lightweight Directory Access Protocol. IETF RFC
1777, March 1995

[IETF-RFC1905] J. Case, K. McCloghrie, M. Rose, S. Waldbusser: Protocol Operations for Version 2
of the Simple Network Management Protocol (SNMPv2). IETF RFC 1905, January
1996

[IETF-RFC1906] J. Case, K. McCloghrie, M. Rose, S. Waldbusser: Transport Mappings for Version 2
of the Simple Network Management Protocol (SNMPv2). IETF RFC 1906, January
1996

[IETF-RFC1958] B. Carpenter et. Al.: Architectural Principles of the Internet. IETF RFC 1958, June
1996

[IETF-RFC2119] Bradner, S.: Key words for use in RFCs to Indicate Requirement Levels. BCP 14,
IETF RFC 2119, March 1997.

[IETF-RFC2234] D. Crocker: Augmented BNF for Syntax Specifications: ABNF. IETF RFC 2234, No-
vember 1997

[IETF-RFC2251] M. Wahl, T. Howes, S. Kille: Lightweight Directory Access Protocol (v3). IETF RFC
2251, December 1997

[IETF-RFC2287] Krupczak, C. and J. Saperia: Definitions of System-Level Managed Objects for Appli-
cations. IETF RFC 2287, February 1998.

[IETF-RFC2396] T. Berners-Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Ge-
neric Syntax. IETF RFC 2396, August 1998

[IETF-RFC2578] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M. and S. Waldbusser:
Structure of Management Information Version 2 (SMIv2). STD 58, IETF RFC 2578,
April 1999.

[IETF-RFC2579] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M. and S. Waldbusser:
Textual Conventions for SMIv2. STD 58, IETF RFC 2579, April 1999.

[IETF-RFC2616] R. Fielding et. al.: Hypertext Transfer Protocol -- HTTP/1.1. IETF RFC 2616, June,
1999

[IETF-RFC2929] D. Eastlake, E. Brunner-Williams, B. Manning: Domain Name System (DNS) IANA
Considerations. IETF RFC, September, 2000

[IETF-RFC3216] C. Elliott, D. Harrington, J. Jason, J. Schoenwaelder, F. Strauss, W. Weiss: SMIng
Objectives. IETF RFC 3216, December 2001

References

Middleware and Application Management Architecture 175

[Inet01] Fraunhofer Gesellschaft FOKUS: I-net – Individual-centric Networking. Verbundpro-
jekt, Meilenstein 1, 2001

[ISO11578] ISO/IEC 11578:1996 : Information technology - Open Systems Interconnection - Re-
mote Procedure Call. Edition 1
<http://www.iso.ch/cate/d2229.html> (visited on 09/07/2001)

[ISO14882] ISO/IEC 14882: Programming language C++. ISO, Geneva, Switzerland, September
1, 1998

[ISO14977] ISO/IEC 14977: Information technology -- Syntactic metalanguage -- Extended BNF.
ISO, Geneva, Switzerland, 1996

[ISO8601] ISO 8801: Data elements and interchange formats -- Information interchange -- Rep-
resentation of dates and times. ISO, Geneva, Switzerland, 2000

[ISO8879] ISO 8879: Information Processing - Text and Office Systems - Standard Generalized
Markup Language (SGML). ISO, Geneva, Switzerland, 1986

[ITU-M3000] ITU-T Recommendation M.3000 (02/00): Telecommunications management network
– Overview of TMN Recommendations.

[ITU-M3010] ITU-T Recommendation M.3010 (02/00): Telecommunications management network
– Principles for a telecommunications management network.

[ITU-Q1201] ITU-T Recommendation I.312/Q.1201 (10/92): Principles of the Intelligent Network
Architecture. Geneva, Switzerland, October, 1992

[ITU-X200] ITU-T Recommendation X.200: Information Technology – Open Systems Intercon-
nection – Basic Reference Model: The Basic Model. International Telecommunication
Unit, Geneva, Switzerland, July 1994

[ITU-X208] ITU-T Recommendation X.200: Open Systems Interconnection – Model and Notation
– Specification of Abstract Syntax Notation One (ASN.1). International Telecommuni-
cation Unit, Geneva, 1993

[ITU-X210] ITU-T Recommendation X.210: Information Technology – Open Systems Intercon-
nection – Basic Reference Model: Conventions for the Definition of OSI Services. In-
ternational Telecommunication Unit, Geneva, November 1993

[ITU-X500] ITU-T Recommendation X.500 (1993): Information technology – Open Systems Inter-
connection – The Directory: Overview of concepts, models and services. International
Telecommunication Unit, Geneva, 1993

[ITU-X501] ITU-T Recommendation X.501 (08/97): Information Technology – Open Systems
Interconnection – The Directory: Models. International Telecommunication Unit, Ge-
neva, August 1997

[ITU-X700] ITU-T Recommendation X.700: Management Framework for Open Systems Intercon-
nection (OSI) for CCITT Applications. International Telecommunication Unit, Ge-
neva, September 1992

[ITU-X701] ITU-T Recommendation X.701 (1997): Information technology – Open Systems Inter-
connection – Systems management overview.

[ITU-X710] ITU-T Recommendation X.710 (1997): Information technology – Open Systems Inter-
connection – Common management information service.

[ITU-X720] CCITT Recommendation X.720 (1992): Information technology – Open Systems In-
terconnection – Structure of management information: Management information
model.

[ITU-X721] CCITT Recommendation X.721 (1992): Information technology – Open Systems In-
terconnection – Structure of management information: Definition of management in-
formation.

References

Middleware and Application Management Architecture 176

[ITU-X722] CCITT Recommendation X.722 (1992): Information technology – Open Systems In-
terconnection – Structure of management information: Guidelines for the definition of
managed objects.

[ITU-X901] ITU-T Recommendation X.901 (1997): Information technology – Open Distributed
Processing – Reference model: Overview.

[ITU-X920] ITU-T Recommendation X.920 (1997): Information technology – Open Distributed
Processing – Interface Definition Language.

[JAVA-J2SE] Sun Microsystems: J2SE API Specification Version: 1.3. Sun Microsystems, Palo Alto
(CA),2000

[JAVA-JDMK] Sun Microsystems: Java Dynamic Management Kit White Paper. Sun Microsystems,
Palo Alto, 2000

[JAVA-JMX] Sun Microsystems: Java Management Extensions – Instrumentation and Agent Speci-
fication 1.0. Final Release, Sun Microsystems, Palo Alto, July, 2000

[JNDI-API] Sun Microsystems: Java Naming and Directory Interface – Application Programming
Interface (JNDI API). JNDI 1.2/Java 2 Platform, Standard Edition, v 1.3, Sun Micro-
systems, July 14, 1999

[John96] Bonnie E. John, David E. Kieras: Using GOMS for Interface Design and Evaluation:
Which Technique? Association for Computing Machinery Inc., Pittsburgh (PA) / Ann
Arbor (MI), 1996

[JXTA] JXTA home page <http://www.jxta.org> (last visited 05/20/02)

[Lee98] Tim Berners-Lee: Web Architecture from 50,000 feet. Created 1998, last updated 25
February 2002
<http://www.w3.org/DesignIssues/Architecture> (last visited 05/14/02)

[Linington95] Linington, P.: Why objects have multiple interfaces. ISO/IEC JTC1 SC21 / WG7 Draft
answer to Q7/5, 1995

[LPG95] Sven Goldt, Sven van der Meer, Scott Burkett, Matt Welsh: The Linux Programmer’s
Guide. Version 0.4, published in “The New Book of LINUX”, Just Computers!,
Rohnert Park, CA, USA, 1995

[Luckenbach99] Thomas Luckenbach: Seamless Integration of Infranetworks into the Internet: The I-
Cube-C Project. - in Proc. of the Home Networking 11053, London, 14-15 September,
1999

[Magedanz96] Magedanz, T., Popescu-Zeletin, R: Intelligent Networks. Basic Technology, Standards
and Evolution. Int. Thomson Computer Press, London, 1996

[Magedanz99a] Thomas Magedanz: Intelligent Network Evolution – Middleware Technologies for
Open Service Architectures. Habilitationsschrift, Technische Universität Berlin, Fach-
bereich Informatik, Fachgebiet für Offene Kommunikationssysteme (OKS), October,
1999

[Magedanz00] Thomas Magedanz et.al.: Towards an Integrated Architecture fort he Harmonization
of PSTN and Internet Services. International Conference on Intelligence in Networks,
ICIN 2000, Bordeaux, France, January 18-20, 2000

[Magedanz01] Thomas Magedanz: Enhancing Parlay with Mobile Code Technologies. Proc. of the
6th IEEE Intelligent Network Workshop, IN2001, Boston, MA, USA, May 6-9, 2001

[Maruyama00] Hiroshi Maruyama, Kent Tamura, Naohiko Uramoto: XML and Java Developing Web
Applications. Addison-Wesley, Reading (MA), 2000

[Mbedi00] Mbedi, E.: A CORBA-based Approach to access distributed SQL-databases. Diplom-
arbeit, Technische Universität Berlin, Fachbereich Informatik, Fachgebiet für Offene
Kommunikationssysteme (OKS), February 26, 2000

References

Middleware and Application Management Architecture 177

[Millerl98] Eric Miller: An Introduction to the Resource Description Framework. In: D-Lib Ma-
gazine, May 1998

[MS-ADArch] Microsoft Corporation: Active Directory Architecture. White Paper, Microsoft Corpo-
ration, 2002
<http://www.microsoft.com/technet/prodtechnol/ad> (last visited 05/19/02)

[MSDN-UI01] Microsoft: User Interface Design and Development. Microsoft Developer Network
MSDN
<http://msdn.microsoft.com/library/> (last visited 10/23/01)

[Müller02] Wolfgang Müller: P2P in kommerziellen Anwendungen. iX, Magazin für professionel-
le Informationstechnik, Nr. 4/02, HeiseVerlag

[Munzner00] Tamara Munzner: Interactive Visualization of Large Graphics and Networks. PhD
Thesis, Stanford University, 2000

[Ninja] Ninja Project home page <http://ninja.cs.berkeley.edu> (last visited 05/20/02)

[NMF-GB909] Network Management Forum: SMART TMN Technology Integration Map. Network
Management Forum, Document GB909, Issue 1, April, 1998

[OMG-OMA] Object Management Group: A discussion of the Object Management Architecture.
OMG Document 00-06-41, OMG, January, 1997

[OMG-UML] Object Management Group: OMG Unified Modeling Language Specification. OMG,
Version 1.3, First Edition, March, 2000

[Orfali96] Robert Orfali, Dan Harkey, Jeri Edwards: The essential distributed object survival
guide. John Willey & Sons, New Yprk, 1996

[OSGi-FAQ] OSGi: Frequently Asked Questions.
< http://www.osgi.org/about/faqs.asp > (last visited 11/12/01)

[P614-D11] Eurescom Project P614, Implementation Strategies for Advanced Access Networks:
Deliverable 11 – Broadband Home Network for residential and small business.
Eurescom, December 1998

[P812-D1] Eurescom Project P812-GI, TMN Evolution – Service Provider’s Needs for the Next
Millennium: Deliverable 1 – TMN Evolution. Volume 2 of 2, Annexes, Eurescom,
March, 1999

[Palme02] Jacob Palme: Acomparision of ABNF, ASN.1, and XML. Course Internet application
protocols and Standards, last revised March 18th 2002
<http://www.dsv.du.se/jpalme/internet-course/Int-app-prot-kurs.html>
(last visited 05/19/02)

[Parlay-API] Parlay Group: Framework Interfaces, Parlay Service View. Parlay API, Version 2.1,
June 26th, 2000
available at <http://www.parlay.org> (last visited 12/14/01)

[Parr95] T.J. Parr, R.W. Quong: ANTLR: A Predicated –LL(k) Parser Generator. Software-
Practice and Experiences, Vol. 25(7), July 1995

[Pavlou99] G. Pavlou: A Novel Approach for Mapping OSI-SM / TMN Model to ODP / OMG
CORBA. Proc. of Integrated Network Management VI, Proceedings of the IEEE/IFIP
Integrated Management Symposium (IM '99), Boston, USA, May 1999

[Pentland99] Pentland, A.: Perceptual Intelligence. First International Symposium on Handheld and
Ubiquitous Computing, HUC’99, Karlsruhe, Germany, September, 27-29, 1999

[Pfeifer97] Pfeifer, T.; Arbanowski, St.; Popescu-Zeletin, R.: Resource Selection in Heterogene-
ous Communication Environments using the Teleservice Descriptor. 4rd COST 237
Workshop, Lisboa, Dec. 15-19, 1997

References

Middleware and Application Management Architecture 178

[Pfeifer98] Pfeifer, T.; van der Meer, S.: The Active Store providing Quality Enhanced Unified
Messaging. Proc. of the 5th Conference on Computer Communications, AFRICOM-
CCDC’98, Tunis, October 20-22, 1998

[Pfeifer99] Pfeifer, T.: Internet – Intranet – Infranet: A Modular Integrating Architecture. Proc.
Of the 7th IEEE Workshop on Future Trends of Distributed Computer Systems,
FTDCS’99, Cape Town, South Africa, December 20-22, 1999

[Raymond95] Raymond, K: Reference Model of Open Distributed Processing (RM-ODP): Introduc-
tion. Proc. of the International Conference on Open Distributed Processing,
ICODP’95, Brisbane, Australia, 20 - 24 February, 1995

[Rekesh99] John Rekesh: UpnP, Jini and Salutation – A look at some popular coordination frame-
works for future networking devices. California Software Labs, June 17th, 1999
availeble at <http://cswl.com/whiteppr/tech> (last visited 05/01/02)

[Röhricht01] Röhricht, J., Schlögerl, C.: cBusiness. Addison Wesley, München, 2001

[Roth98] Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina C. Gomberg, Michael B. Burks,
Philip J. Stroffolino, John A. Kolojejchick & Carolyn Dunmire: Visage: A User Inter-
face Environment for Exploring Information. MAYA Design Group, Pittsburgh (PA),
1998

[Salutation-OV] Salutation Consortium: Overview.
<http://www.salutation.org/Overview.htm> (last visited 11/01/01)

[SAX] SAX Project <http://www.saxproject.org> (last visited 05/19/02)

[Scheer02] August Wilhelm Scheer, Thomas Feld, Sven Zang: Vitamin C für Unternehmen –
Collaborative Business. Reihe „Kompendium der neuen BWL“, Frankfurter Allge-
meine Zeitung, Nr. 53, Seite 25, Frankfurt, 4. März 2002

[Schlosser97] Otto Schlosser, Jun Suzuki: Mac OS 8 Human Interface Guidelines. Apple Computer
(CA), Technical Publications, 1997

[Schmid01] Alexander Schmid, Markus Völker, Eberhard Wolff: IT-Ameisen – Software Zukunft:
Peer-toPeer Systeme, Agenten, mobiler Code. iX, Magazin für professionelle Informa-
tionstechnik, Nr. 8/01, HeiseVerlag

[Scowen93] Scowen, R.S.: Extended BNF - A Generic Base Standard. In Proc. 1993 Software En-
gineering Standards Symposium (SESS’93), Brighton, UK, 30 August - 3 September
1993. IEEE Computer Society Press

[Shirky00] Clay Shirky: What is P2P … and what isn’t.
<http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html>
(last visited 11/01/01)

[Singh01] Mandeep Singh: Integrated Management Services for Directory, Naming, and Specifi-
cation of Distributed Components. Diplomarbeit, Technische Universität Berlin, Fa-
kultät IV - Elektrotechnik und Informatik, Fachgebiet für Offene Kommunikationssys-
teme (OKS), December 20, 2001

[Steglich98] Steglich, St.: Management of Distributed Objects in Middleware Platforms. Diplom-
arbeit, Technische Universität Berlin, Fachbereich Informatik, Fachgebiet für Offene
Kommunikationssysteme (OKS), April 21, 1998

[Stroustrup92] Bjarne Stroustrup: Die C++ Programmiersprache. Second Edition, München, Addi-
son-Wesley, Reading, Massachusetts, 1992

[SunOS-chmod] SunOS 5.6 manpage for command chmod, /usr/man/cat1/chmod.1

[Tannenbaum96] Andrew S. Tannenbaum: Computer Networks, Prentice Hall International, Third Edi-
tion, 1996

References

Middleware and Application Management Architecture 179

[Thai01] Thuan Thai, Hoang Q. Lam: .NET Framework Essentials. First Edition, O’Reilly &
Associates, Sebastopol, CA, USA, 2001

[Tian01] Min Tian: Applying Network Connection Technology for Dynamic Provisioning of
User Interfaces. Diplomarbeit, Technische Universität Berlin, Fakultät IV - Elektro-
technik und Informatik, Fachgebiet für Offene Kommunikationssysteme (OKS), May
31, 2001

[TINA-BM] TINA-C: TINA Business Model and Reference Points. TINA-C Deliverable, TINA
1.0, Version 4.0, May 20, 1997

[TINAC] <http://www.tinac.com/about/principles_of_tinac.htm> (visited 11/01/01)

[TINA-CMC] TINA-C: Computational Modeling Concepts. TINA-C Deliverable, TINA 1.0, Ver-
sion 3.2, Archiving Label TP_HC.012_3.2_96, TINA-C, May 17, 1996

[TINA-EMC] TINA-C: Engineering Modeling Concepts (DPE Architecture). TINA-C Deliverable,
Version 2.0, Archiving Label TB_NS.005_2.0_94, TINA-C, December 1994

[TINA-OCP] TINA-C: Overall Concepts and Principles of TINA. TINA-C Deliverable, TINA 1.0,
Version 1.0, Document Label TB_MDC.018_1.0_94, TINA-C, February 17, 1995

[TINA-ODL] TINA-C: TINA Object Definition Language Manual. TINA-C Deliverable, TINA 1.0,
Version 2.3, Archiving Label TR_NM.002_2.2_96, TINA-C, July 22, 1996

[Tiziana96] Tiziana Catarci, Shi-Kuo Chang, Maria F. Costabile, Stefano Levaldi, Giuseppe
Santucci. A Graph-based Framework for Multiparadigmatic Visual Access to Data-
bases. Universita di Roma “La Sapienza”, Roma, 1996

[TMF-ACT01-99] TeleManagement Forum: Requirements of Management of ORB-based Telecommuni-
cation Management Building Blocks. TIM/ACT Working Document, Issue 1, August
2nd, 2000

[Tönnby00] Ingmar Tönnby: It’s all about co…. 7th International Conference on Intelligence in
Services and Networks, IS&N 2000, Athens, Greece, February, 23-25, 2000

[vdMeer96] van der Meer, S.: Dynamic Configuration Management of the Equipment in Distrib-
uted Communication Environments. Diplomarbeit, Technische Universität Berlin,
Fachbereich Informatik, Fachgebiet für Offene Kommunikationssysteme (OKS), Oc-
tober 6, 1996

[vdMeer99a] van der Meer, S.; Arbanowski, St., Magedanz, M.: An Approach for a 4th Generation
Messaging System. Proc. of the 4th International Symposium on Autonomous Decen-
tralized Systems, ISADS’99, Tokyo, Japan, March 21-23, 1999

[vdmeer99b] van der Meer, S., Arbanowski, St., Popescu-Zeletin, R.: Environment-aware Applica-
tions: Integrating Mobile Communications and Ubiquitous Computing. Proc. of 7th
Annual International conference on Advances in Communication and Control, COM-
CON 7, Athens, Greece, June28 – July 2, 1999

[vdMeer99c] van der Meer, S.; Arbanowski, St.; Popescu-Zeletin, R.: A Platform for Environment-
Aware Applications. Proc. of the 1st International Symposium on Handheld and Ubiq-
uitous Computing, HUC’99, Karlsruhe, Germany, September 27-29, 1999

[vdMeer99t1] van der Meer, S., Arbanowski, St.: Management of Autonomous Decentralized Sys-
tems. Tutorial at the 4th International Symposium on Autonomous Decentralized Sys-
tems, ISADS’99, Tokyo, Japan, March 21-23, 1999

[vdMeer00a] van der Meer, S., Arbanowski, St., Steglich, St., Popescu-Zeletin, R.: The Human
Communication Space – Towards I-centric Communications. Workshop on “The
What, Who, Where, When, Why and How of Context-awareness”, CHI 2000, The
Hague, Netherlands, April 1-6, 2000

References

Middleware and Application Management Architecture 180

[vdMeer00b] van der Meer, S., Arbanowski, St., Steglich, St.: Flexible Control of Media Gateways
for Service Adaptation. Proc. of the 5th IEEE Intelligent Network Workshop, IN2000,
Cape Town, South Africa, May, 7-11, 2000

[vdMeer00c] van der Meer, S., Arbanowski, St.: Service Interoperability through advanced Media
Gateways. Proc. of 6th IFIP Conference on Intelligence in Networks, SmartNet 2000,
Vienna, Austria, September 18-22, 2000

[vdMeer00t1] van der Meer, S., Arbanowski, St.: Flexible Media and Content Adaptation for Com-
munication Systems. Proc. of the 5th IEEE Conference on Protocols for Multimedia
Systems, PROMS 2000, Krakow, Poland, October 22-25, 2000

[vdMeer01a] van der Meer, S., Arbanowski, St.: From Unified Messaging towards I-centric - Ser-
vices for the Virtual Home Environment. Proc. of the 6th IEEE Intelligent Network
Workshop, IN2001, Boston, MA, USA, May 6-9, 2001

[W3C] World Wide Web Consortium Home Page
<http://www.w3.org> (last visited 11/01/01)

[W3C-DOM] World Wide Web Consortium: Document Object Model.
<http://www.w3.org/DOM> (last visited 05/19/02>

[W3C-DOM98] W3C: Document Object Model (DOM) Level 1 Specification. W3C Recommendation
1 October 1998
<http://www.w3.org/TR/1998/RECDOM-Level-1-19981001>, (last visited 01/25/02)

[W3C-HTML] HyperText Markup Language Home Page; http://www.w3.org/MarkUp/
(last visited 11/12/01)

[W3C-URI] World Wide Web Consortium: Naming and Addressing: URIs, URLs, ….W3C Archi-
tecture Document, December 12th, 2001
<http://www.w3.org/Addressing/> (last visited 01/04/02)

[W3C-WS] World Wide Web Consortium: Web Services Activity
<http://www.w3.org/2002/ws/> (last visited 11/01/01)

[W3C-XML] World Wide Web Consortium: Extensible Markup Language (XML) 1.0 - W3C Rec-
ommendation, 10-February-1998;
<http://www.w3.org/TR/1998/REC-xml-19980210> (last visited 11/01/01)

[W3C-XML-10P] World Wide Web Consortium: XML in 10 points;
<http://www.w3.org/XML/1999/XML-in-10-points> (last visited 11/01/01)

[W3C-XSLT] World wide Web Consortium: XSL Transformations (XSLT), Version 1.0 - W3C
Recommendation 16 November 1999;
<http://www.w3.org/TR/1999/REC-xslt-19991116> (last visited 11/01/01)

[Wright96] Peter C. Wright, Bob Fields, Michael D. Harrison: Distributed Information Resources:
A New Approach to Interaction Modelling. Dept. of Computer Science University of
York, Helsington/York, 1996

[WSI-Intro] WS-I: Introduction Presentation. WS-I, February 6, 2002
available at <http://www.ws-i.org/Documents.aspx> (last visited 03/13/02)

[WSI-Profiles] WS-I: Web Services Profiles – An Introduction. WS-I
available at <http://www.ws-i.org/Documents.aspx> (last visited 03/13/02)

[WSI-WWW] Web Services Interoperability Organization Home Page
<http://www.ws-i.org> (last visited 03/13/02)

[Zeltserman99] David Zeltserman: A practical Guide to SNMPv3 and Network Management. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1999

Acronyms

Middleware and Application Management Architecture 181

Acronyms

This chapter includes all acronyms that have been used within this document. This includes acronyms
shown in figures, which are not always mentioned elsewhere in the document. The list also takes account
of words and terms that are often misunderstood as acronyms or that look like acronyms. The actual
meaning of those terms is described very shortly.

2PC Two Phase Commit
3GB 3G Beyond
3GPP 3rd Generation Partnership Program
3PC Three Phase Commit

ABNF Augmented Backus-Naur Form
ACL Agent Control Language
AD Active Directory (Microsoft)
ADL Application Definition Language
AN Active Networks
ANSI American National Standards Insti-

tute
ANTLR ANother Tool for Language Rec-

ognition
API Application Programming Interface
ASCII American Standard Code for In-

formation Interchange
ASN.1 Abstract Syntax Notation 1
ASP Application Service Provider
ASR Automatic Speech Recognition
ATM Asynchronous Transfer Mode

BCP Best Current Practice
BER Basic Encoding Rules
BNF Backus-Naur Form

CC/PP Composite Capabilities/Preference

Profiles
CCITT Comité Consultatif International de

Télégraphique et Téléphonique
CDN Content Delivery Network
CDR Common Data Representation
CIM Common Information Model
CMIP Common Management Information

Protocol
CMIS Common Management Information

Service

COPS Common Open Policy Service
CORBA Common Object Request Broker

Architecture
COST European Co-operation in the field

of Scientific and Technical Re-
search

CPE Customer Premises Equipment
CR Carriage Return
CVS Concurrent Versions System

DCE Distributed Computing Environ-

ment
DCOM Distributed Component Object

Model
DECT Digital Enhanced Cordless Tele-

communications
DEN Directory Enabled Networks
DES Data Encryption Standard
DIM Desktop Management Interface
DIT Directory Information Tree
DLL Dynamic Link Library
DMTF Distributed Management Task

Force
DN Distinguished Name
DNS Domain Name Service
DNSS Directory Naming and Specifica-

tion Service
DOM Document Object Model
DOS Disc Operating System
DPE Distributed Processing Environ-

ment
DSA Directory System Agent
DSL Digital Subscriber Line
DTD Document Type Definition
DWIM do what I mean

EBNF Extended Backus-Naur Form
EIB European Installation Bus

Acronyms

Middleware and Application Management Architecture 182

EJB Enterprise Java Beans

FCAPS Fault, Configuration, Accounting,

Performance, and Security
FDDI Fiber Distributed Data Interface
FOKUS Research Institute for Open Com-

munication Systems
FTP File Transfer Protocol

GDMO Guidelines for the Definition of

Managed Objects
GIF Graphics Interchange Format
GOMS Goals, Operators, Methods, Selec-

tion rules
GPRS General Packet Radio System
GSM Global System for Mobile commu-

nications
GUI Graphical User Interface

HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol

IANA Internet Assigned Numbers Author-

ity
IDL Interface Definition Language
IEC International Engineering Consor-

tium
IEEE Institute of Electrical and Electronic

Engineers
IERS International Earth Rotation Service
IETF Internet Engineering Task Force
IFIP International Federation for Infor-

mation Processing
IIOP Internet Inter-ORB Protocol
IN Intelligent Networks
IN-NG IN Next Generation
IOR Interoperable Object Reference
IP Internet Protocol
iPCSS intelligent Personal Communication

Support System
IPTel IP Telephony
IrDA Infrared Data Association
ISO International Standardization Or-

ganization
IT Information Technology
ITU International Telecommunication

Unit
IVR Interactive Voice Response

J2EE Java 2 Platform, Enterprise Edition
JAR Java Archive
JDMK Java Distributed Management Kit
JMX Java Management Extension
JNDI Java Naming and Directory Inter-

face
JTC Joint Technical Committee

KQML Knowledge Query and Manipula-

tion Language

LCMS Lifecycle and Configuration Man-

agement Service
LDAP Lightweight Directory Access Pro-

tocol
LF Line Feed

MAMA Middleware and Application Man-

agement Architecture
MDA Model Driven Architecture
MGCP Media Gateway Control Protocol
MIB Management Information Base
MO Managed Object
MOF Managed Object Format
MOF Meta Object Facility

NELS Notification, Event, and Log Ser-

vice
NGOSS Next Generation Operation System

Support
NRIM Network Resource Information

Model
NVL Name-Value List

OCR Optical Character Recognition
ODL Object Definition Language
ODP Open Distributed Processing
OKS Offene Kommunikationssysteme

(Open Communication Systems)
OMG Object Management Group
ORB Object Request Broker
OSA Open Service Access
OSI Open Systems Interconnection

P2P Peer-to-Peer
PC Personal Computer

Acronyms

Middleware and Application Management Architecture 183

PDA Personal Digital Assistant
PDU Protocol Data Unit
PHP PHP Hypertext Preprocessor
POSIX Portable Operating System Inter-

face

QoS Quality of Service

RCS Revision Control System
RDN Relative Distinguished Name
RFC Request for Comment
RMI Remote Method Invocation
RM-ODP Reference Model for Open Distrib-

uted Processing
RM-OSI Reference Model for Open System

Interconnection
RPC Remote Procedure Call
RSA Rivest, Shamir, and Adleman

SAP Service Access Point
SAX Simple API for XML
SDK Software Development Kit
SDO Super Distributed Object
SGML Standard Generalized Markup Lan-

guage
SIG Special Interest Group
SIT Specification Information Tree
SLA Service Level Agreement
SMI Structure of Management Informa-

tion
SMIng Structure of Management Informa-

tion Next Generation (SNMP)
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Pro-

tocol
SOAP Simple Object Access Protocol
SSL Secure Socket Layer
STD Standard Document

TCP Transmission Control Protocol
TID Transaction Identifier
TINA Telecommunication Information

Networking Architecture

TINA-C Telecommunication Information
Networking Architecture Consor-
tium

TM Forum TeleManagement Forum
TMN Telecommunication Management

Network
TOM Telecom Operations Map
TTS Text To Speech

UDDI Universal Description, Discovery

and Integration
UML Unified Modeling Language
UMS Unified Messaging System
UMTS Universal Mobile Telecommunica-

tion System
UPnP Universal Plug and Play
URI Uniform Resource Identifier
URL Uniform Resource Locator
UUID Universally Unified Identifier

VHE Virtual Home Environment
VM Virtual Machine

W3C World Wide Web Consortium
WBEM Web-Based Enterprise Management
WG Working Group
WS Web Services
WS-I Web Services Interoperability Or-

ganization
WWW World Wide Web

xADL eXchange ADL
XAMAV XML ADL MAMA Visualization

tool
xDD eXchange Data Definition
XML eXtensible Markup Language
XSL eXtensible Stylesheet Language
XSLT eXtensible Stylesheet Language

Transformation

yacc Yet Another Compiler Compiler
yp Yellow Pages

Acronyms

Middleware and Application Management Architecture 184

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 185

Appendix A
Conventions in this Document

This appendix describes the conventions that have been applied to this document. Most conventions are
taken from international standards or industry standards. Further explanations and in-depth descriptions
of the used conventions can be found in the referenced documents.

A.1 Typographical Conventions

Specifications given in a formal syntax and code examples are presented in the following form:

interface CodeExample {
 action showIt([IN] string param1, [IN, OUT] param2);
}

An italic format is used to identify terms that are specific to the described topic. Terms given in a bold
format are emphasized to indicate that they form an important part of the described topic.

A.2 Keywords that indicate Requirement Levels

In the Internet standard documents, IETF1 RFCs2, it is current practice to indicate the requirement level.
[IETF-RFC2119] defines those words and describes the way they should be interpreted by IETF stan-
dards. These definitions have been applied to this document. The following list is taken from [IETF-
RFC2119]:
1. MUST – This word, or the terms “REQUIRED” or “SHALL”, mean that the definition is an absolute

requirement of the specification.
2. MUST NOT – This phrase, or the phrase “SHALL NOT”, mean that the definition is an absolute

prohibition of the specification.
3. SHOULD – This word, or the adjective “RECOMMENDED”, mean that there may exist valid rea-

sons in particular circumstances to ignore a particular item, but the full implications must be under-
stood and carefully weighed before choosing a different course.

4. SHOULD NOT – This phrase, or the phrase “NOT RECOMMENDED” mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or even useful,
but the full implications should be understood and the case carefully weighed before implementing
any behavior described with this label.

5. MAY – This word, or the adjective “OPTIONAL”, means that an item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because the vendor
feels that it enhances the product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate with another imple-
mentation that does include the option, though perhaps with reduced functionality. In the same vein,
an implementation that does include a particular option MUST be prepared to interoperate with an-
other implementation that does not include the option (except, of course, for the feature the option
provides.)

1 Internet Engineering Task Force
2 Request For Comment

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 186

A.3 Languages and Symbol Tables for Grammar Specifications

This document contains specifications of grammars that are presented in the Extended Backus-Naur Form
(EBNF), the Augmented Backus-Naur Form (ABNF), and using symbols of the ANother Tool for Lan-
guage Recognition (ANTLR). Specifications from the OMG3 are presented in their original form, which
is similar to EBNF. If not specified otherwise, all grammars are given in EBNF.

A.3.1 Extended Backus-Naur Form

EBNF is a meta-language and an ISO4 standard described in [ISO14977]. A good introduction to EBNF
can be found in [Scowen93]. Table A-1 shows the basic symbols and their meaning.

EBNF Operator Meaning

unquoted words Non-terminal symbol

" ... " Terminal symbol

‘...’ Terminal symbol

(...) Brackets to group symbols (it is obvious convenience to use brackets in
their ordinary mathematical sense)

[...] Optional symbols (the enclosed symbols may occur zero or one time)

{ ... } Symbols repeated zero or more times (repetition)

{ ... }- Symbols repeated one or more times

= in Defining symbol

; post Rule terminator

| in Alternative

, in Concatenation

- in Except

* in Occurrences of

(* ... *) Comment

? ... ? Special sequence

Table A-1: EBNF Symbols [Scowen93]

The following exceptions are made for every EBNF specification in this document.
• The original comment symbols (“(*” and “*)”) are not used. Comments are similar to C++ single

line comments. Each comment starts with “//” and ends automatically at the end of the line.
• The concatenation symbol is not used. The concatenation of symbols is expressed by white spaces.

A.3.2 ANTLR Symbols

The parser implemented for the Application Definition Language (ADL) is based on ANTLR. Although
this tool accepts EBNF grammars, there are some differences between the symbols of EBNF presented in
the last section and ANTLR symbols. Therefore, Table A-2 shows the ANTLR symbols.

3 Object Management Group
4 International Standardization Organization

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 187

Symbol Description Symbol Description

(...) Subrule | Alternative operator

(...)* Closure subrule .. Range operator

(...)+ Positive closure subrule ~ Not operator

(...)? Optional . Wildcard

{ ... } Semantic action = Assignment operator

[...] Rule arguments : Label operator, rule start

{ ... }? Semantic predicate ; Rule end (termination symbol)

(...)=> Syntactic predicate < ... > Element options

Table A-2: ANTLR Symbols [ANTLR-Man]

A.3.3 EBNF used for OMG IDL Specifications

Symbol Description

::= Is defined to be

| Alternative

<text> Nonterminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times.

+ The preceding syntactic unit can be repeated one or more times.

{} The enclosed syntactic units are grouped as a single syntactic unit.

[] The enclosed syntactic units are optional – may occur zero or more times.

Table A-3: EBNF used for OMG IDL Specifications [CORBA]

A.4 Graphical Notations

AsynchronousMessage() ProcedureMessage()

ReturnMessage()

{Constraint}

Comment
FlatMessage()

Association
NameObject 1 Object 5

Object 6

1:operation()

2:
op

er
at

io
n(

)

3:operation()

MultiObject

Object 1 Object 2 Object 3

Sequence Diagram Collaboration Diagram

Object Axis

Time
Axis

Figure A-1: Graphical Conventions – UML Sequence and Collaboration Diagram [OMG-UML]

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 188

System
Use Case 1

Use Case 2 Use Case 3

Use Case 4

Actor 1 Actor 2 State 1

State 2State 3

Initial State

Final State

/ call-action

/ Local Invocation

{Constraint}

State Chart DiagramUse Case Diagram

«uses»

«extends»

Figure A-2: Graphical Conventions – UML Use Case and State Chart Diagrams [OMG-UML]

Class Name
attribute
attribute : data_type
attribute : data_type = init_value
...

operation
operation (arg_list) : return_type

Class:

Aggregation and Composition:

Aggregation-Part Composition-Part

Assembly Class

Association Name
role-1 role-2

Binary Association:

Class-2Class-1

Qualified Association:

Association Name

role-1 role-2
Class-2Class-1 qualifier

Multiplicity of Associations:

Exactly oneClass

Many (zero or more)

Optional (zero or one)

Numerically specified1-2, 4

One or more1+

Class

Class

Class

Class

Generalization (Inheritance):

Subclass-1

Superclass

Subclass-2

Ternary Association:

Association Name

role-1 role-2
Class-2Class-1

Class-3
role-3

Figure A-3: Graphical Conventions – Information Modeling [OMG-UML]

binding object

flow end-point, sourceflow end-point, sink stream
flow

binding

Figure A-4: Graphical Conventions – Explicit Computational Binding [TINA-CMC]

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 189

client-server
relationship

operational
interface

stream
flow

stream
interface

object

contract

object
group

O1 O2

O4O3

Figure A-5: Graphical Conventions – Computational Modeling [TINA-CMC]

Control
Interface

Basic Engineering
Core Object

Interface
Object In

Interface
Object I1

Engineering Object

Computational Object

programming
language
interface

engineering
operational
interface

computational
operational
interface

Figure A-6: Graphical Conventions – Engineering Modeling [Eckert97]

O2O1

Channel
Control

Function

Cluster Cluster

Interface O2Interface O1

Stub

Binder

Protocol
Adapter

Channel
Control

Interface

Figure A-7: Graphical Conventions – Explicit Engineering Binding [TINA-EMC]

A.5 References

References in this document are constructed by the main authors name and the year of publication. For
documents that are produced by an organization, the reference contains the organizations acronym and an
abbreviation of the document title. Documents of project milestones are a combination of an acronym of
the project name and an acronym describing the deliverable number.

References from the World Wide Web (WWW) are accompanied with the Uniform Resource Locator
(URL) that points to the actual document in the WWW. Additionally, each WWW reference is provided
with information when the author of this document has last visited the related document. All referenced
documents from the WWW can be requested from the author.

Appendix A – Conventions in this Document

Middleware and Application Management Architecture 190

Appendix B – Application Definition Language

Middleware and Application Management Architecture 191

Appendix B
Application Definition Language

B.1 Lexical Conventions

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with dieresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case A diphthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with dieresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with dieresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Öö Upper/Lower-case O with dieresis

Vv Upper/Lower-case V Øø Upper/Lower-case O with oblique stroke

Ww Upper/Lower-case W Ùù Upper/Lower-case U with grave accent

Xx Upper/Lower-case X Úú Upper/Lower-case U with acute accent

Yy Upper/Lower-case Y Ûû Upper/Lower-case U with circumflex accent

Zz Upper/Lower-case Z Üü Upper/Lower-case U with dieresis

 ß Lower-case German sharp S

 ÿ Lowercase Y with dieresis

Table B-1: ADL Lexical Conventions – Alphabetic Characters [CORBA]

Appendix B – Application Definition Language

Middleware and Application Management Architecture 192

Char. Description Char. Description Char. Description

! exclamation point [left square bracket - soft hyphen

" double quote \ reverse solidus, backslash ® registered trade mark sign

number sign] right square bracket ¯ macron

$ dollar sign ^ circumflex ° ring above, degree sign

% percent sign _ low line, underscore ± plus-minus sign

& ampersand ` grave vulgar ² superscript two

´ apostrophe { left curly bracket ³ superscript three

(left parenthesis | vertical line ´ acute

) right parenthesis } right curly bracket µ micro

* asterisk ~ tilde ¶ pill crow

+ plus ¡ inverted exclamation mark · middle dot

, comma ¢ cent sign ¸ cedilla

- hyphen, minus sign £ pound sign ¹ superscript one

. period, full stop ¤ currency sign º masculine ordinal indicator

/ solidus, slash ¥ yen sign » right angle quotation mark

: colon ¦ broken bar ¼ vulgar fraction 1/4

; semicolon § section/paragraph sign ½ vulgar fraction 1/2

< less-than sign ¨ apostrophe ¾ vulgar fraction 3/4

= equals sign © copyright sign ¿ inverted question mark

> greater-than sign ª feminine ordinal indicator × multiplication sign

? question mark « left angle quotation mark ÷ division sign

@ commercial at ¬ not sign

Table B-2: ADL Lexical Conventions – Graphic Characters [CORBA]

Description Abbreviation ISO 646 Octal
Value

Description Abbreviation ISO 646 Octal
Value

alert BEL 007 Backspace BS 010

horizontal tab HT 011 newline NL, LF 012

vertical tab VT 013 form feed FF 014

carriage return CR 015

Table B-3: ADL Lexical Conventions – Formatting Characters [CORBA]

Char. Descr. Char. Descr. Char Descr. Char. Descr. Char. Descr.

0 zero 1 one 2 two 3 three 4 four

5 five 6 six 7 seven 8 eight 9 nine

Table B-4: ADL Lexical Conventions – Numeric Characters

Appendix B – Application Definition Language

Middleware and Application Management Architecture 193

Description Sequence Description Sequence Description Sequence

newline \n backslash \\ horizontal tab \t

question mark \? vertical tab \v single quote \`

backspace \b double quote \" carriage return \r

octal number \ooo form feed \f hexadecimal number \xhh

alert \a Unicode character \uhhhh

Table B-5: ADL Lexical Conventions – Escape Sequences [CORBA]

B.2 Keywords

action alterable attribute boolean char descr double FALSE

float interface long mandatory module NULL object octet

optional parameter qualifier required scope short string signed

struct TRUE type typedef unsigned void

Table B-6: ADL – Keywords

B.3 EBNF Grammar

The grammar of the Application Definition Language (ADL) was specified using the Extended Backus-
Naur Form (EBNF) following the rules described in Appendix A.3. For the realization of the parser with
ANother Tool for Language Recognition (ANTLR), this EBNF specification had been slightly rewritten
following the symbols that ANTLR accepts (cf. Appendix A.3.2). The definitions in the Appendix B.3.1
up to B.3.8 are presented in EBNF; the specifications in Appendix B.3.9 follow ANTLR symbol rules.

B.3.1 Specification and Definition

01 specification = {qualifier_def} {definition};
02 definition = [qualifier_list]
 (type_def SEMI | object SEMI | module SEMI);

B.3.2 Qualifier Definition

03 qualifier_def = qualifier_header qualifier_body SEMI;
04 qualifier_header = qualifier_literal identifier COLON;
05 qualifier_body = qualifier_type COMMA qualifier_alt COMMA
 qualifier_scope COMMA qualifier_descr;
06 qualifier_alt = alterable_literal LPAREN alterable RPAREN;
07 alterable = true_literal | false_literal;
08 qualifier_scope = scope_literal
 LPAREN scope_rank {COMMA scope_rank} RPAREN;
09 scope_rank = LBRACK element COMMA rank RBRACK
10 element = (module_literal | object_literal
 |interface_literal | action_literal
 |attribute_literal | parameter_literal);
11 rank = required_literal | mandatory_literal

Appendix B – Application Definition Language

Middleware and Application Management Architecture 194

 | optional_literal;
12 qualifier_descr = descr_literal LPAREN string_value RPAREN;
13 qualifier_type = type_literal LPAREN
 base_type_spec {array_declarator} default_value RPAREN;
14 default_value = ASSIGN constant_value;

B.3.3 Qualifier List

15 qualifier_list = LBRACK qualifier {COMMA qualifier} RBRACK;
16 qualifier = identifier [qualifier_param];
17 qualifier_param = LPAREN constant_value {COMMA constant_value} RPAREN;

B.3.4 Type Definition, Module, and Object

18 type_def = (typedef_literal type_spec | struct_type_spec);
19 type_spec = simple_type_spec identifier;
20 module = module_header LCURLY {definition} RCURLY;
21 module_header = module_literal identifier;
22 object = object_header LCURLY object_body RCURLY;
23 object_header = object_literal identifier [inheritance_spec];
24 object_body = {object_export};
25 object_export = [qualifier_list] (interface SEMI | type_def SEMI);
26 inheritance_spec = COLON scoped_name;
27 scoped_name = [[SCOPEOP] identifier {SCOPEOP identifier} SCOPEOP]
 identifier;

B.3.5 Interface, Attribute, Action, and Parameter

28 interface = interface_header LCURLY interface_body RCURLY;
29 interface_header = interface_literal identifier;
30 interface_body = {interface_export};
31 interface_export = [qualifier_list]
 (attribute SEMI | action SEMI | type_def SEMI);
32 attribute = attribute_header;
33 attribute_header = attribute_literal simple_type_spec identifier;
34 action = action_header
 LPAREN [param_decl {COMMA param_decl}] RPAREN;
35 action_header = action_type_spec identifier;
36 action_type_spec = simple_type_spec | void_literal;
37 param_decl = [qualifier_list] simple_type_spec identifier;

B.3.6 Basic Types

38 struct_type_spec = struct_literal identifier LCURLY {member}- RCURLY;
39 member = [qualifier_list] type_spec SEMI;

40 simple_type_spec = (scoped_name | base_type_spec) {array_declarator};
41 base_type_spec = (numeric_type | char_type | string_type
 |boolean_type | octet_type);
42 array_declarator = LBRACK RBRACK;

43 numeric_type = integer_type | floating_pt_type;
44 floating_pt_type = float_literal | [long_literal] double_literal;

Appendix B – Application Definition Language

Middleware and Application Management Architecture 195

45 integer_type = [unsigned_literal | signed_literal]
 (short_literal | (long_literal [long_literal]));
46 char_type = char_literal;
47 string_type = string_literal;
48 boolean_type = boolean_literal;
49 octet_type = octet_literal;

B.3.7 Literals and Keywords

50 module_literal = "module";
51 object_literal = "object";
52 interface_literal = "interface"
53 typedef_literal = "typedef";
54 action_literal = "action";
55 qualifier_literal = "qualifier";
56 scope_literal = "scope";
57 type_literal = "type";
58 attribute_literal = "attribute";
59 parameter_literal = "parameter";
60 descr_literal = "descr";
61 alterable_literal = "alterable";
62 required_literal = "required";
63 mandatory_literal = "mandatory";
64 optional_literal = "optional";

65 null_literal = "NULL";
66 true_literal = "TRUE";
67 false_literal = "FALSE";

68 void_literal = "void";
69 float_literal = "float";
70 double_literal = "double";
71 short_literal = "short";
72 long_literal = "long";
73 unsigned_literal = "unsigned";
74 signed_literal = "signed";

75 char_literal = "char";
76 string_literal = "string";

77 boolean_literal = "boolean";
78 octet_literal = "octet";
79 struct_literal = "struct";

80 constant_value = integer_value | char_value | string_value
 | boolean_value | binary_value | float_value;

B.3.8 Values

81 binary_value = BINARY;
82 integer_value = INT | OCTAL | HEX;
83 float_value = FLOAT;
84 char_value = CHAR_LITERAL;
85 string_value = strings {strings} | null_literal;
86 strings = STRING_LITERAL;
87 boolean_value = true_literal | false_literal;

Appendix B – Application Definition Language

Middleware and Application Management Architecture 196

B.3.9 Specifications for Lexicographic Analysis

SEMI = ';';
LPAREN = '(';
RPAREN = ')';
LBRACK = '[';
RBRACK = ']';
LCURLY = '{';
RCURLY = '}';
COLON = ':';
COMMA = ',';
ASSIGN = '=';
SCOPEOP = "::";
WS_ = (' ' | '\t' | '\n' | '\r');
PREPROC_DIRECTIVE = '#' (~'\n')* '\n';
SL_COMMENT = "//" (~'\n')* '\n';
ML_COMMENT = "/*"
 (STRING_LITERAL
 | CHAR_LITERAL | '\n' | '*' ~'/' | ~'*')*
 "*/";
CHAR_LITERAL = '\'' (ESC | ~'\'') '\'';
STRING_LITERAL = '"' (ESC | ~'"')* '"';
ESC = '\\' ('n' | 't' | 'v' | 'b' | 'r' | 'f' | 'a'
 | '\\'| '?' | '\''| '"'
 | ('0' | '1' | '2' | '3') (OCTDIGIT (OCTDIGIT)?)?
 | 'x' HEXDIGIT (HEXDIGIT)?
);
VOCAB = '\3'..'\377';
DIGIT = '0'..'9';
OCTDIGIT = '0'..'7';
HEXDIGIT = ('0'..'9' | 'a'..'f' | 'A'..'F');
BINARYDIGIT = ('0' | '1');
HEX = ("0x" | "0X") (HEXDIGIT)+;
BINARY = ("b" | "B") (BINARYDIGIT)+;
INT = (DIGIT)+ // base-10
 ['.' (DIGIT)* [('e' | 'E') ['+' | '-'] (DIGIT)+]
 |('e' | 'E') ['+' | '-'] (DIGIT)+
];
FLOAT = '.' (DIGIT)+ [('e' | 'E') ['+' | '-'] (DIGIT)+];
IDENT = ('a'..'z' | 'A'..'Z' | '_')
 ('a'..'z' | 'A'..'Z' | '_' | '0'..'9')*;

B.4 xADL

The Document Type Definition (DTD) for the eXchange ADL (xADL) was realized following the XML1
recommendations of the W3C2 [W3C-XML]. This DTD was the basis for the EBNF. For the realization
of the parser with ANTLR, this EBNF specification had been slightly rewritten following the symbols
that ANTLR accepts (cf. Appendix A.3.2). The definitions in the Appendix B.4.1 are given as XML
DTD, the specification in Appendix B.4.2 and B.4.3 are presented in EBNF.

1 eXtensible Markup Language
2 World Wide Web Consortium

Appendix B – Application Definition Language

Middleware and Application Management Architecture 197

B.4.1 Document Type Definition

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT collection (specification | module | object | qualifierdef
 |typedef | interface | attribute | action
 |parameter | member)*>
<!ELEMENT specification (qualifierdef*, (typedef | object | module)*)>
<!ATTLIST specification
 name CDATA #IMPLIED
 distinguished_name CDATA #IMPLIED
 uuid CDATA #IMPLIED>
<!ELEMENT qualifierdef (scope+, description)>
<!ATTLIST qualifierdef
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet) #REQUIRED
 array_dim CDATA #IMPLIED
 signed (false | true) #IMPLIED
 default_value CDATA #REQUIRED
 alterable (false | true) #REQUIRED>
<!ELEMENT module (qualifier*, (typedef | object | module)*)>
<!ATTLIST module
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED>
<!ELEMENT object (qualifier*, (interface | typedef)*)>
<!ATTLIST object
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 extends CDATA #IMPLIED>
<!ELEMENT interface (qualifier*, (attribute | action | typedef)*)>
<!ATTLIST interface
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED>
<!ELEMENT attribute (qualifier*)>
<!ATTLIST attribute
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 type CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet) #IMPLIED
 signed (false | true) #IMPLIED
 array_dim CDATA #IMPLIED>
<!ELEMENT action (qualifier*, parameter*)>
<!ATTLIST action
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 type CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet | void) #IMPLIED
 signed (false | true) #IMPLIED
 array_dim CDATA #IMPLIED>
<!ELEMENT parameter (qualifier*)>
<!ATTLIST parameter
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 type CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet) #IMPLIED
 signed (false | true) #IMPLIED
 array_dim CDATA #IMPLIED>
<!ELEMENT typedef (qualifier*, member*)>

Appendix B – Application Definition Language

Middleware and Application Management Architecture 198

<!ATTLIST typedef
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 type CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet | struct) #IMPLIED
 signed (false | true) #IMPLIED
 array_dim CDATA #IMPLIED>
<!ELEMENT qualifier (constant_value*)>
<!ATTLIST qualifier
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED>
<!ELEMENT scope EMPTY>
<!ATTLIST scope
 element (module | object | interface
 |attribute | action | parameter) #REQUIRED
 rank (optional | required | mandatory) #REQUIRED>
<!ELEMENT member (qualifier*)>
<!ATTLIST member
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 type CDATA #IMPLIED
 base_type (short | long | long_long | long_double | double
 |float | char | string | boolean | octet) #IMPLIED
 signed (false | true) #IMPLIED
 array_dim CDATA #IMPLIED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT constant_value (#PCDATA)>

B.4.2 EBNF Grammar

start = xmlstart doctype specification;
xmlstart = LT_ QUESTION oxml_literal
 {STRING_LITERAL ASSIGN STRING_LITERAL} QUESTION GT;
doctype = LT_ NOT odoctype_literal specification_literal
 IDENT STRING_LITERAL GT;
specification = LT_ specification_literal name GT
 {qualifierdef} {type_def | object | module}-
 LT_ DIV specification_literal GT;
qualifierdef = (LT_ qualifierdef_literal
 {name | d_name | base_type | array_dim
 |x_signed | default_value | alterable}
 GT) {scope | description}
 LT_ DIV qualifierdef_literal GT;
scope = LT_ scope_literal {element | rank} DIV GT
 {LT_ scope_literal {element | rank} DIV GT};
description = LT_ description_literal GT STRING_LITERAL
 LT_ DIV description_literal GT;
module = LT_ module_literal {name | d_name} GT
 [qualifier] {type_def | object | module}-
 LT_ DIV module_literal GT;
object = LT_ object_literal (name | d_name | extends_o)* GT
 [qualifier] {interface | type_def}
 LT_ DIV object_literal GT;
interface = LT_ interface_literal {name | d_name} GT
 [qualifier] {attribute | action | type_def}
 LT_ DIV interface_literal GT;
attribute = LT_ attribute_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT [qualifier] LT_ DIV attribute_literal GT;

Appendix B – Application Definition Language

Middleware and Application Management Architecture 199

action = LT_ action_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT [qualifier] [parameter {parameter}]
 LT_ DIV action_literal GT;
parameter = LT_ parameter_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT [qualifier] LT_ DIV parameter_literal GT;
type_def = LT_ typedef_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT {qualifier] {member} LT_ DIV typedef_literal GT;
member = LT_ member_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT [qualifier] LT_ DIV member_literal GT
 { LT_ member_literal
 {name | d_name | type | base_type | x_signed | array_dim}
 GT [qualifier] LT_ DIV member_literal GT
 };
qualifier = LT_ qualifier_literal {name | d_name} GT
 [constant_value {constant_value}]
 LT_ DIV qualifier_literal GT
 { LT_ qualifier_literal {name | d_name} GT
 [constant_value {constant_value}]
 LT_ DIV qualifier_literal GT
 };
constant_value = LT_ constantvalue_literal GT
 (integer_value | char_value | boolean_value
 |binary_value | float_value
 |STRING_LITERAL {STRING_LITERAL}
) LT_ DIV constantvalue_literal GT;

default_value = defaultvalue_literal ASSIGN STRING_LITERAL;
extends_o = extends_literal ASSIGN STRING_LITERAL;
element = element_literal ASSIGN STRING_LITERAL;
rank = rank_literal ASSIGN STRING_LITERAL;
alterable = alterable_literal ASSIGN STRING_LITERAL;
name = name_literal ASSIGN STRING_LITERAL;
type = type_literal ASSIGN STRING_LITERAL;
base_type = basetype_literal ASSIGN STRING_LITERAL;
x_signed = signed_literal ASSIGN STRING_LITERAL;
array_dim = arraydim_literal ASSIGN STRING_LITERAL;
d_name = distinguishedname_literal ASSIGN STRING_LITERAL;

specification_literal = "specification";
module_literal = "module";
object_literal = "object";
interface_literal = "interface";
typedef_literal = "typedef";
action_literal = "action";
qualifier_literal = "qualifier";
qualifierdef_literal = "qualifierdef";
scope_literal = "scope";
type_literal = "type";
attribute_literal = "attribute";
parameter_literal = "parameter";
description_literal = "description";
alterable_literal = "alterable";
required_literal = "required";
mandatory_literal = "mandatory";
optional_literal = "optional";
signed_literal = "signed";
name_literal = "name";
distinguishedname_literal = "distinguished_name";
basetype_literal = "base_type";

Appendix B – Application Definition Language

Middleware and Application Management Architecture 200

extends_literal = "extends";
arraydim_literal = "array_dim";
rank_literal = "rank";
element_literal = "element";
member_literal = "member";
constantvalue_literal = "constant_value";
defaultvalue_literal = "default_value";
null_literal = "null";
false_literal = "false";
true_literal = "true";
oxml_literal = "xml";
odoctype_literal = "DOCTYPE";

binary_value = BINARY;
integer_value = INT | OCTAL | HEX;
float_value = FLOAT;
char_value = CHAR_LITERAL;
strings = STRING_LITERAL;
boolean_value = true_literal | false_literal;

B.4.3 Specifications for Lexicographic Analysis

QUESTION = '?';
ASSIGN = '=';
LT_ = '<';
GT = '>';
DIV = '/';
WS_ = (' ' | '\t' | '\n' | '\r');
CHAR_LITERAL = '\'' (ESC | ~'\'') '\'';
COMMENT = "<!--" COMMENT_DATA "-->";
STRING_LITERAL = '"' (ESC | ~'"')* '"';
ESC = '\\' ('n' | 't' | 'v' | 'b' | 'r' | 'f' | 'a'
 | '\\'| '?' | '\''| '"'
 | ('0' | '1' | '2' | '3') (OCTDIGIT (OCTDIGIT)?)?
 | 'x' HEXDIGIT (HEXDIGIT)?
);
VOCAB = '\3'..'\377';
DIGIT = '0'..'9';
OCTDIGIT = '0'..'7';
HEXDIGIT = ('0'..'9' | 'a'..'f' | 'A'..'F');
BINARYDIGIT = ('0' | '1');
HEX = ("0x" | "0X") (HEXDIGIT)+;
BINARY = ("b" | "B") (BINARYDIGIT)+;
INT = (DIGIT)+ // base-10
 ['.' (DIGIT)* [('e' | 'E') ['+' | '-'] (DIGIT)+]
 |('e' | 'E') ['+' | '-'] (DIGIT)+
];
FLOAT = '.' (DIGIT)+ [('e' | 'E') ['+' | '-'] (DIGIT)+];

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 201

Appendix C
MAMA Specifications

This appendix contains the ADL1 definitions for a MAMA2 system. The definitions start with the skeleton,
which in fact is a file that includes all specifications. Except for the skeleton, the definitions contain no
descriptive qualifiers. Furthermore, the qualifiers SpecStatus and Status are only presented when they are
not used with their default values (“current” for SpecStatus and “required” for Status).

#include "qualifier_def.adl" // qualifier definitions

[Contact("Sven van der Meer, Wolfram Fritzsch, Mandeep Singh Multani"
 " [vdmeer|fritzsch|ricky]@cs.tu-berlin.de]"),
 Organization(" Technical University Berlin"),
 Description("The module MAMA contains all specifications of the Core Model"
 "including the MAMA protocol, the MAMA API, and the basic"
 "application services."
 "To improve the understanding of the specifications, the"
 "following naming conventions are applied:"
 "- module identifiers start with an 'm'"
 "- object identifiers start with an 'o'"
 "- interface identifiers start with an 'i'"
 "- attribute identifiers start with an 'a'"
 "- type definitions start with an 't'"
 "- structure identifiers start with an 's'"
 "- no special recommendations are given for actions and"
 " parameters."),
 Version(1), Revision(0), SpecStatus("current"), Status("required")]
module MAMA{

 #include "typedefs.adl" // start with the basic type definitions
 #include "protocol.adl" // the MAMA protocol, in form of an 'abstract'
 // object
 #include "api.adl" // the MAMA API, in form of an 'abstract' object
 #include "entity-mgmt.adl" // MAMA entity management, in form of an
 // 'abstract' object
 #include "dnss.adl" // Directory, Naming, and Specification Service
 #include "nels.adl" // Notification, Event, and Log Service
 #include "lcms.adl" // Lifecycle and Configuration Management Service

 #include "mgmt.adl" // Definitions for the construction of Management
 // Systems with MAMA
};

1 Application Definition Language
2 Middleware and Application Management Architecture

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 202

C.1 Core Model

C.1.1 Qualifiers

Qualifier Type Default Alterable Module Object Interface Action Attribute Parameter

Abstract boolean FALSE FALSE - Optional - - - -

ArrayType string bag FALSE - - - - Optional Optional

Behavior string NULL FALSE - Mandatory Mandatory Mandatory Optional -

BitMap string[] NULL FALSE - - - - Optional Optional

BitValues string[] NULL FALSE - - - - Optional Optional

Contact string NULL FALSE Mandatory - - - - -

Counter boolean FALSE FALSE - - - - Optional -

Description string NULL FALSE Mandatory Mandatory Mandatory Mandatory Mandatory -

DisplayHint string NULL TRUE - Optional Optional - Optional -

DisplayName string NULL TRUE - - - - Optional -

Group string NULL TRUE - Optional Optional Optional Optional -

History string NULL FALSE Optional - - - - -

In boolean TRUE FALSE - - - - - Optional

MaxLen long 1024 TRUE - - - - Optional Optional

MaxValue long 1024 TRUE - - - - Optional Optional

MinLen long 0 TRUE - - - - Optional Optional

MinValue long 0 TRUE - - - - Optional Optional

Organization string NULL FALSE Mandatory - - - - -

Out boolean FALSE TRUE - - - - - Optional

Owner string NULL TRUE - Optional Optional Optional Optional -

Permission octet 0755 TRUE - Optional Optional Optional Optional -

Quality string NULL FALSE - Optional Optional Optional - -

RegisteredAs string NULL FALSE Optional Optional Optional - - -

Revision integer 0 FALSE Mandatory Optional Optional - - -

SpecStatus string current FALSE Mandatory Mandatory Mandatory Mandatory Mandatory Optional

Status string optional FALSE Mandatory Mandatory Mandatory Mandatory Mandatory Optional

StepIndex long 1 FALSE - - - - Optional -

Units string NULL FALSE - - - - Optional Optional

Usage string NULL FALSE - Mandatory Mandatory Mandatory - -

ValueMap string[] NULL FALSE - - - - Optional Optional

Values string[] NULL FALSE - - - - Optional Optional

Version integer 0 FALSE Mandatory Mandatory Mandatory - - -

Wildcards boolean FALSE FALSE - - - - Optional Optional

xmlDTD string NULL TRUE - - Optional Optional Optional -

Table C-1: Core Model – Qualifier Matrix

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 203

qualifier Abstract: type(boolean = FALSE), alterable(FALSE),
 scope([object, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/abstract.php");

qualifier ArrayType: type(string = "bag"), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/arraytype.php");

qualifier Behavior: type(string = NULL), alterable(FALSE),
 scope([object, mandatory], [interface, mandatory],
 [action, mandatory], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/behavior.php");

qualifier BitMap: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/bitmap.php");

qualifier BitValues: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/bitvalues.php");

qualifier Contact: type(string = NULL), alterable(FALSE),
 scope([module, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/contact.php");

qualifier Counter: type(boolean = FALSE), alterable(FALSE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/counter.php");

qualifier Description: type(string = NULL), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, optional],
 [attribute, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/description.php");

qualifier DisplayHint: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/displayhint.php");

qualifier DisplayName: type(string = NULL), alterable(TRUE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/displayname.php");

qualifier Group: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/group.php");

qualifier History: type(string = NULL), alterable(FALSE),
 scope([module, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/history.php");

qualifier In: type(boolean = TRUE), alterable(FALSE),
 scope([parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/in.php");

qualifier MaxLen: type(unsigned long = 1024), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/maxlen.php");

qualifier MaxValue: type(signed long = 1024), alterable(TRUE),

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 204

 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/maxvalue.php");

qualifier MinLen: type(long = 0), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/minlen.php");

qualifier MinValue: type(long = 0), alterable(TRUE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/minvalue.php");

qualifier Organization: type(string = NULL), alterable(TRUE),
 scope([module, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/organization.php");

qualifier Out: type(boolean = FALSE), alterable(FALSE),
 scope([parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/out.php");

qualifier Owner: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/owner.php");

qualifier Permissions: type(octet = 0755), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional], [attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/permissions.php");

qualifier Quality: type(string = NULL), alterable(TRUE),
 scope([object, optional], [interface, optional],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/quality.php");

qualifier RegisteredAs: type(string = NULL), alterable(FALSE),
 scope([module, optional], [object, optional],
 [interface, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/registeredas.php");

qualifier Revision: type(short = 0), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/revision.php");

qualifier SpecStatus: type(string = "current"), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, mandatory],
 [attribute, mandatory], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/specstatus.php");

qualifier Status: type(string = "optional"), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory], [action, mandatory],
 [attribute, mandatory] , [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/status.php");

qualifier StepIndex: type(long = 1), alterable(FALSE),
 scope([attribute, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/stepindex.php");

qualifier Units: type(string = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/units.php");

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 205

qualifier Usage: type(string = NULL), alterable(FALSE),
 scope([object, mandatory], [interface, mandatory],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/usage.php");

qualifier ValueMap: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/valuemap.php");

qualifier Values: type(string[] = NULL), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/values.php");

qualifier Version: type(short = 0), alterable(FALSE),
 scope([module, mandatory], [object, mandatory],
 [interface, mandatory]),
 descr("http://www.vandermeer.de/mama/doc/q/version.php");

qualifier Wildcards: type(boolean = FALSE), alterable(FALSE),
 scope([attribute, optional], [parameter, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/wildcards.php");

qualifier xmlDTD: type(string = NULL), alterable(FALSE),
 scope([interface, optional], [attribute, optional],
 [action, optional]),
 descr("http://www.vandermeer.de/mama/doc/q/xmlDTD.php");

C.1.2 Recommended Values for the Qualifier Units

Recommended Values Recommended Values

Bits, KiloBits, MegaBits, GigaBits Bits per Second

Bytes, KiloBytes, MegaBytes, GigaBytes, Words,
DoubleWords, QuadWords

Cycles, Revolutions, Revolutions per Minute,
Revolutions per Second

Degrees C, Tenths of Degrees C, Hundredths of
Degrees C, (the same with Degrees F and Degrees
K), Color Temperature

Gauss, Gilberts, Henrys, MilliHenrys, Farads,
MilliFarads, MicroFarads, PicoFarads

Volts, MilliVolts, Tenths of MilliVolts, Amps,
MilliAmps, Tenths of MilliAmps, Watts, Milli-
WattHours

Minutes, Seconds, Tenths of Seconds, Hundredths
of Seconds, MicroSeconds, MilliSeconds, Nano-
Seconds

Joules, Coulombs, Newtons Lumen, Lux, Candelas

Pounds, Pounds per Square Inch Hours, Days, Weeks

Hertz, MegaHertz Pixels, Pixels per Inch

Counts per Inch Percent, Tenths of Percent, Hundredths of Percent

Meters, Centimeters, Millimeters, Cubic Meters,
Cubic Centimeters, Cubic Millimeters

Inches, Feet, Cubic Inches, Cubic Feet Ounces,
Liters, Fluid Ounces

Radians, Steradians, Degrees Gravities, Pounds, Foot-Pounds

Ohms, Siemens Moles, Becquerels, Parts per Million

Decibels, Tenths of Decibels Grays, Sieverts

Table C-2: Qualifiers – Recommended Values for Units [DMTF-CIM]

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 206

C.1.3 Type Definitions

 [ValueMap("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
 "12", "13", "18", "19"),
 Values("inconsistent", "char", "string", "boolean", "octet", "short",
 "ushort", "long", "ulong", "longlong", "ulonglong", "float",
 "double", "longdouble", "array", "struct")]
 typedef unsigned short tDataType;

 [ValueMap("0", "1", "2", "4"),
 Values("none", "read", "write", "exec")]
 typedef unsigned short tAccessFlag;

 struct sNamedValue{
 string name;
 string value;
 tDataType nvDataType;
 tAccessFlag nvAccessFlag;
 };
 typedef sNamedValue[] tNameValueList;

 [Description("URL according to RFC 1738]
 typedef string tURL;

 [ValueMap("0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
 "100", "101", "102"),
 Values("Specification", "Module", "Object", "Interface", "Attribute",
 "Action", "Parameter", "Qualifier", "Type Definition",
 "Qualifier Declaration", "DirectoryEntry",
 "DirectoryEntryInstance", , "DirectoryEntryAlias")]
 typedef short tElementType;

 [ValueMap("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
 "12"),
 Values("standard", "manager", "sub-manager", "agent", "sub-agent",
 "dynamic-mo", "static-mo", "gui", "nels", "nels-manager", "dnss"]
 typedef short tEntityType;

 typedef string tPath;

 [ValueMap("0", "100", "200", "300", "400"),
 Values("standard", "corba", "java", "jini", "upnp")]
 typedef short tMiddleware;

 [ValueMap("0", "200", "201", "300", "400", "500", "600", "700", "800"),
 Values("unspecified", "ADL", "xADL", "CORBA-IDL", "DCOM-IDL", "TINA-ODL",
 "JAVA", "SNMP-SMI", "OSI-GDMO")]
 typedef short tSpecLanguage;

 [ValueMap("0", "100", "200", "300"),
 Values("standard", "corba", "jini", "upnp")]
 typedef short tMiddlewareReference;

 [ValueMap("0", "100", "200", "300", "305", "400", "500", "600", "700",
 "706", "712"),
 Values("unknown", "FREEBSD", "IRIX", "LINUX", "LINUX-2.4", "MACOS",
 "NETBSD", "OPENBSD", "WIN32", "WINDOWS-NT", "WINDOWS-NT-5")]
 typedef short tOperatingSystem;

 [Status("required"),
 ValueMap("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"),
 Values("other", "unknown", "idle", "standby", "active", "busy", "powerUp",

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 207

 "powerDown", "maintenance", "jam")]
 typedef short tEntityStatus;

 struct sTime{
 [MinValue(0), MaxValue(23), StepIndex(1)]
 unsigned short hour;

 [MinValue(0), MaxValue(59), StepIndex(1)]
 unsigned short minute;

 [MinValue(0), MaxValue(60), StepIndex(1)]
 unsigned short second;

 [MinValue(0), MaxValue(9), StepIndex(1)]
 unsigned short secFrac;

 signed short numOffset;
 signed short offset;
 signed short partialTime;
 };

 struct sDate{
 [MinValue(1), MaxValue(12), StepIndex(1)]
 unsigned short month;

 [MinValue(1), MaxValue(31), StepIndex(1)]
 unsigned short day;

 [StepIndex(1)]
 signed short fullyear;
 };

 typedef string tTime;
 typedef string tDate;
 typedef string tTimeDate;

 [ValueMap("0", "1", "2", "3"),
 Values("unspecified", "no-security", "object-authentication",
 "data-encryption")]
 typedef short tSecurityLevel;

 typedef string tUUID;

 [ValueMap("0", "1", "2", "3", "4", "5", "6"),
 Values("unknown", "Information", "Warning", "Error", "Exception",
 "Accounting", "Notification")]
 typedef unsigned short ticketCategory;

 struct sTicket {
 ticketCategory category;
 tTimeDate time;
 unsigned long ticketPriority;
 string ticketType;
 string ticketOriginator;
 string ticketDescription;
 tNameValueList optionalHeaderFields;
 tNameValueList filterableBody;
 tNameValueList anyThingElse;
 };

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 208

C.1.4 Generic Objects

 [Description("a general purpose object with an ADL interface to"
 "alter qualifiers that every other object with"
 "alterable qualifiers can inherite from"),
 Abstract, Version(1), Revision(1)]
 object oMamaCore{

 [Description("this interface MUST be inherited by all MAMA objects that"
 "are not specified 'abstract'"),
 Version(1), Revision(1)]
 interface iMamaCore{
 [Description("action to alter qualifiers on the object")]
 boolean changeQualifier([In] string name, [In] string value);

 [Description("action to get the complete specification of the object")]
 string getSpecification([Out] MAMA::tSpecLanguage language);
 };
 };

C.1.5 Entity Management

 object oEntityMgmt{
 struct sCompileTime{
 unsigned short NumberOfInterfaces;
 MAMA::tTime CompileTime;
 unsigned short Version;
 unsigned short Revision;
 string Cvs;
 MAMA::tEntityType Type;
 };

 struct sInstallation{
 MAMA::tPath PkgLocation;
 MAMA::tDate PkgDate;
 string PkgSerialNumber;
 string PkgProductName;
 string PkgVersion;
 string PkgManufacturer;
 };

 struct sLaunch{
 string launchUser;
 string launchParameters;
 string launchTime;
 };

 struct sRuntimeGeneral{
 string SupportContact;
 string PhysicalLocation;
 string ID;
 unsigned short Boots;
 MAMA::tTime Time;
 MAMA::tTime Uptime;
 MAMA::tTime LocalTime;
 MAMA::tOperatingSystem OS;
 MAMA::tMiddleware Middleware;
 string Host;
 MAMA::tEntityStatus Status;

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 209

 };

 struct sRuntimeConfigUrls{
 MAMA::tURL ConfigUrl;
 MAMA::tURL PersistentUrl;
 MAMA::tURL LogUrl;
 MAMA::tURL EventServerUrl;
 MAMA::tURL EntityUrl;
 };

 struct sRuntimeConfigFixed{
 unsigned short LogLevel;
 unsigned short DebugLevel;
 unsigned short MonitoringLevel;
 string SerialNumber;
 string Vendor;
 string Manufacturer;
 string ModelName;
 string LanguageEdition;
 };

 struct sRuntimeConfigVariable{
 unsigned short TransactionTimeout;
 string SecurityModel;
 MAMA::tSecurityLevel SecurityLevel;
 string OperationStatus;
 MAMA::tTime LastChange;
 };

 struct sRuntimeLog{
 MAMA::tTime LastRequestIn;
 MAMA::tTime LastRequestOut;
 MAMA::tTime LastResultIn;
 MAMA::tTime LastResultOut;
 MAMA::tTime RejectedRequestsIn;
 MAMA::tTime RejectedRequestsOut;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long RequestInCount;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long RequestOutCount;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long ResultInCount;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long ResultOutCount;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long RejectedRequestsInCount;

 [MinLen(0), MaxLen(1000000000), Counter, StepIndex(1)]
 unsigned long RejectedRequestsOutCount;
 };

 interface iEntityMgmt{
 [Permissions(0444)]
 attribute MAMA::oEntityMgmt::sCompileTime compileInformation;

 [Permissions(0444)]
 attribute MAMA::oEntityMgmt::sInstallation installInformation;

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 210

 [Permissions(0444)]
 attribute MAMA::oEntityMgmt::sLaunch launchInformation;

 [Permissions(0644)]
 attribute MAMA::oEntityMgmt::sRuntimeGeneral runtimeGeneralInformation;

 [Permissions(0644)]
 attribute MAMA::oEntityMgmt::sRuntimeConfigUrls configUrls;

 [Permissions(0444)]
 attribute MAMA::oEntityMgmt::sRuntimeConfigFixed configInformationFixed;

 [Permissions(0644)]
 attribute MAMA::oEntityMgmt::sRuntimeConfigVariable
 configInformationVariable;

 [Permissions(0444)]
 attribute MAMA::oEntityMgmt::sRuntimeLog logInformation;
 };
 };

C.2 Application Protocol

 [Abstract, Version(1), Revision(1)]
 object swProtocol{
 interface Protocol{
 typedef string tOperation;
 typedef MAMA::tPath[] tSeqObjectPath;

 MAMA::tNameValueList swAction([In] tOperation operation,
 [In] tSeqObjectPath addresses,
 [In] MAMA::tNameValueList parameters,
 [In] MAMA::tNameValueList options);
 };
 };

C.2.1 OMG IDL Specification

typedef unsigned short IDLDataType;
const IDLDataType IDL_DT_inconsistent = 0;
const IDLDataType IDL_DT_char = 1;
const IDLDataType IDL_DT_string = 2;
const IDLDataType IDL_DT_boolean = 3;
const IDLDataType IDL_DT_octet = 4;
const IDLDataType IDL_DT_short = 5;
const IDLDataType IDL_DT_ushort = 6;
const IDLDataType IDL_DT_long = 7;
const IDLDataType IDL_DT_ulong = 8;
const IDLDataType IDL_DT_longlong = 9;
const IDLDataType IDL_DT_ulonglong = 10;
const IDLDataType IDL_DT_float = 11;
const IDLDataType IDL_DT_double = 12;
const IDLDataType IDL_DT_longdouble = 13;
const IDLDataType IDL_DT_array = 18;
const IDLDataType IDL_DT_struct = 19;

typedef unsigned short IDLDataFlag;

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 211

const IDLDataFlag IDL_DF_none = 0;
const IDLDataFlag IDL_DF_read = 1;
const IDLDataFlag IDL_DF_write = 2;
const IDLDataFlag IDL_DF_exec = 4;

struct IDLNamedValue{
 string name;
 string value;
 IDLDataType vdatatype;
 IDLDataFlag vdataflag;
};
typedef sequence<IDLNamedValue> IDLSeqNamedValue;

typedef string IDLObjectPath;
typedef sequence<IDLObjectPath> IDLSeqObjectPath;

interface Management{
 IDLSeqNamedValue action(in IDLOperation operation,
 in IDLSeqObjectPath addresses,
 in IDLSeqNamedValue parameters,
 in IDLSeqNamedValue options);
};

C.3 Application Programming Interface

 [Abstract, Version(1), Revision(0)]
 object swAPI{

 [MinValue(1), MaxValue(9999), StepIndex(1)]
 typedef unsigned long swMaxErrors;

 typedef boolean swTransmiterror;
 typedef string swServerName;
 typedef string swObjectPtr;
 typedef string swOpName;
 typedef string swOpPtr;
 typedef string swOpDescr;
 typedef string swEventDescr;
 typedef string swEventNumber;

 [ValueMap("0", "1", "2", "3", "4", "5"),
 Values("other", "publisher", "publisherAndSubscriber", "subscriber",
 "subscriberAndPop", "SubscriberAndPush")]
 typedef short swEventServerFlags;

 typedef string[] tObjectPath;

 struct swArgStruct{
 swOpName opName;
 MAMA::tNameValueList addressList;
 MAMA::tNameValueList parametersList;
 MAMA::tNameValueList optionsList;
 };

 interface swAPI{
 short initEntity([In] MAMA::tMiddleware mwtype,
 [In] MAMA::swAPI::swMaxErrors maxerrors,
 [In] MAMA::swAPI::swTransmiterror transmiterror,
 [In] MAMA::swAPI::swServerName servername);

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 212

 short configureMiddleware([In] MAMA::swAPI::swObjectPtr ptr);

 short registerEvSrv([In] MAMA::swAPI::swEventServerFlags evflags);

 short deregisterEvSrv();

 short changeRegistrationEvSrv(
 [In] MAMA::swAPI::swEventServerFlags evflags);

 short performAction([In] MAMA::swAPI::swArgStruct arglist,
 [Out] MAMA::tNameValueList retarglist);

 short sendEvent([In] MAMA::swAPI::swEventDescr evdescr,
 [In] MAMA::swAPI::swEventNumber number);

 short addNewOperation([In] MAMA::swAPI::swOpName opname,
 [In] MAMA::swAPI::swOpPtr opptr,
 [In] MAMA::swAPI::swOpDescr opdescr);
 };

C.3.1 Standard Library

 interface swNamedValue{
 string Name();
 void changeName([In] string name);
 string Value();
 };

 interface swOptionsList{
 void changeNV([In] MAMA::sNamedValue nv);
 boolean concat([In] MAMA::tNameValueList oplist);
 boolean contains([In] string str);
 MAMA::tNameValueList current();
 unsigned long entries();
 boolean getNext([In] MAMA::sNamedValue nv);
 boolean getNextKey([In] string str);
 boolean insert([In] MAMA::sNamedValue nv);
 boolean next();
 boolean remove([In] string str);
 void reset();
 void showAll();
 };

 interface swOperationMap{
 boolean contains([In] MAMA::swAPI::swOpName strOP);
 string getNext();
 string getCurrent();
 string getCurrentDescription();
 void reset();
 void insert([In] string key, [In] MAMA::swAPI::swOpName strOp,
 [In] string description);
 unsigned long entries();
 void showAll();
 MAMA::sNamedValue list([In] MAMA::swAPI::swOpName operation);
 MAMA::tNameValueList listAll();
 };

 interface swObjectPath{
 string decrementPath();
 };

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 213

 interface swAddressList{
 unsigned long entries();
 MAMA::swAPI::tObjectPath getFirst();
 MAMA::swAPI::tObjectPath removeFirst();
 };

 interface swError{
 void setServerName([In] string ServerName);
 boolean setTransmitMode([In] boolean transmit);
 void newError([In] MAMA::sNamedValue nv);
 MAMA::sNamedValue lastError();
 MAMA::tNameValueList listErrors();
 void showErrors();
 void showLastError();
 boolean sendLastError([In] boolean transmit);
 };

C.3.2 Middleware Library

 interface CORBAServer{
 void shutdown();

 void visibile();
 boolean checkLocalExecution([In] MAMA::swAPI::swArgStruct actionargs);
 boolean checkForwardExecution([In] MAMA::swAPI::swArgStruct actionargs);
 MAMA::tNameValueList ForwardExecution(
 [In] MAMA::swAPI::swArgStruct actionargs);
 };

 interface CORBA{
 short Initiate([In] MAMA::swAPI::swObjectPtr ptr);
 short Action([In] MAMA::swAPI::swArgStruct ArgStruct,
 [In] MAMA::tNameValueList ReturnList);
 };
 };

C.4 Application Services

C.4.1 Directory Naming and Specification Service

C.4.1.1 eXchange Data Definition

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT collection (directoryEntryInstance*,
 directoryEntryAlias*,
 directoryEntry*)>
<!ELEMENT directoryEntry (directoryEntryInstance*,
 directoryEntryAlias*,
 directoryEntry*)>
<!ATTLIST directoryEntry
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED>
<!ELEMENT directoryEntryInstance EMPTY>
<!ATTLIST directoryEntryInstance

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 214

 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 reference CDATA #REQUIRED
 reference_type CDATA #REQUIRED
 object_distinguished_name CDATA #REQUIRED
 uuid CDATA #IMPLIED
 state CDATA #REQUIRED>
<!ELEMENT directoryEntryAlias EMPTY>
<!ATTLIST directoryEntryAlias
 name CDATA #REQUIRED
 distinguished_name CDATA #IMPLIED
 entry_instance_reference CDATA #REQUIRED
 uuid CDATA #IMPLIED>

C.4.1.2 DNSS Specifications

 [Version(1), Revision(0)]
 object oDNSS{
 typedef string tDN;
 typedef string tParentDN;
 typedef string tInstanceDN;
 typedef string tObjectDN;

 interface iDNSS{
 /* Operations for both models */
 MAMA::tUUID getUUID();

 string getAttributeValue([In] MAMA::oDNSS::tDN elementDN,
 [In] MAMA::tElementType entryType,
 [In] string attributeName);

 boolean setAttributeValue([In] MAMA::oDNSS::tDN entryDN,
 [In] MAMA::tElementType entryType,
 [In] string attributeName,
 [In] string[] attributeValue,
 [In] MAMA::tUUID uuid);

 /* Directory Model Operations */
 boolean deregister([In] MAMA::oDNSS::tDN instanceDN,
 [In] MAMA::tElementType entryType,
 [In] MAMA::tUUID uuid);

 string getAll();

 short getCount([In] MAMA::oDNSS::tParentDN parentDN,
 [In] MAMA::tElementType entryType,
 [In] boolean isRecursive);

 string getEntries([In] MAMA::oDNSS::tParentDN parentDN,
 [In] MAMA::tElementType entryType,
 [In] boolean isRecursive,
 [In] short fromIndex, [In] short toIndex);

 string getEntry([In] MAMA::oDNSS::tDN entryDN,
 [In] MAMA::tElementType entryType);

 string getObjectSpec([In] MAMA::oDNSS::tInstanceDN idname,
 [In] MAMA::tSpecLanguage formatType);

 string getInstanceIOR([In] MAMA::oDNSS::tInstanceDN idname);

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 215

 boolean modifyEntryName([In] MAMA::oDNSS::tInstanceDN oldEntryDN,
 [In] MAMA::tElementType entryType,
 [In] MAMA::oDNSS::tInstanceDN newEntryDN,
 [In] MAMA::tUUID uuid);

 boolean register([In] MAMA::oDNSS::tDN entryDN, [In] string ior,
 [In] MAMA::tMiddlewareReference referenceKind,
 [In] MAMA::oDNSS::tObjectDN odname,
 [In] MAMA::tUUID uuid);

 boolean registerAlias([In] MAMA::oDNSS::tDN aliasDN,
 [In] MAMA::oDNSS::tDN instanceDN,
 [In] MAMA::tUUID uuid);

 /* Specification Model Operations */
 boolean addSpecification([In] string specificationName,
 [In] string specification,
 [In] MAMA::tUUID uuid);

 boolean addToSpecification([In] string newElement,
 [In] MAMA::tElementType elementType,
 [In] MAMA::oDNSS::tParentDN parentDN,
 [In] MAMA::tUUID uuid);

 string getElement([In] MAMA::oDNSS::tDN elementDN,
 [In] MAMA::tElementType elementType,
 [In] MAMA::tSpecLanguage formatType,
 [In] boolean compact);

 string getElements([In] MAMA::oDNSS::tParentDN parentDN,
 [In] MAMA::tElementType elementType,
 [In] boolean isRecursive, [In] short fromIndex,
 [In] short toIndex,
 [In] MAMA::tSpecLanguage formatType,
 [In] boolean compact);

 string getElementsByValue([In] string attributeName,
 [In] string attributeValue,
 [In] MAMA::tElementType elementType,
 [In] short fromIndex, [In] short toIndex,
 [In] MAMA::tSpecLanguage formatType,
 [In] boolean compact);

 string getInstances([In] MAMA::oDNSS::tObjectDN objectDN);

 boolean remove([In] MAMA::oDNSS::tDN elementDN,
 [In] MAMA::tElementType elementType,
 [In] MAMA::tUUID uuid);
 };
 };

C.4.2 XAMAV CSS Specification

li.f.object, li.f.module, li.f.interface { color:red; font:18pt Helvetica;}
.f.object.name, .f.module.name, .f.interface.name, { color:black; font:18pt
Helvetica;}
.f.object.ext { color:red; font:12pt Helvetica;}
.f.object.ext.name { color:black; font:12pt Helvetica;}
.f.object.qual, .f.interface.qual, .f.module.qual { color:black; font:10pt

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 216

Helvetica;}
.f.object.qual.name, .f.interface.qual.name, .f.module.qual.name {
color:#990000; font:bold 12pt Helvetica;}
.f.object.cv, .f.module.cv, .f.interface.cv, { color:blue; font:italic 10pt
Helvetica;}
.f.object.cv.text, .f.module.cv.text, .f.interface.cv.text { color:black;
font:11pt Helvetica;}
li.f.typedef, li.f.attribute, li.f.action { col or:blue; font:18pt
Helvetica;}

/* typedef styles (filter)*/
.f.typedef { color:blue; font:italic 10pt Helvetica;}
.f.typedef.name { color:black; font:11pt Helvetica;}
.f.typedef.basetype, .f.typedef.type, .f.typedef.signed,
.f.typedef.array_dim { color:black; font:11pt Helvetica;}
.f.typedef.basetype.name, .f.typedef.type.name, .f.typedef.signed.name,
.f.typedef.array_dim.name { color:black; font:11pt Helvetica;}
.f.typedef.qual { color:black; font:10pt Helvetica;}
.f.typedef.qual.name { color:#990000; font:bold 12pt Helvetica;}
.f.typedef.cv { color:blue; font:italic 10pt Helvetica;}
.f.typedef.cv.text { color:black; font:11pt Helvetica;}

/* member styles (filter) */
.f.member { color:blue; font:italic 10pt Helvetica;}
.f.member.name { color:black; font:11pt Helvetica;}
.f.member.basetype, .f.member.type, .f.member.signed, .f.member.array_dim {
color:black; font:11pt Helvetica;}
.f.member.basetype.name, .f.member.type.name, .f.member.signed.name,
.f.member.array_dim.name { color:black; font:11pt Helv etica;}

/* parameter styles (filter) */
.f.parameter { color:blue; font:italic 10pt Helvetica;}
.f.parameter.name { color:black; font:11pt Helvetica;}
.f.parameter.basetype, .f.parameter.type, .f.parameter.signed,
.f.parameter.array_dim { color:black; f ont:11pt Helvetica;}
.f.parameter.basetype.name, .f.parameter.type.name,
.f.parameter.signed.name, .f.parameter.array_dim.name { color:black;
font:11pt Helvetica;}

/* action styles (filter) */
.f.action { color:blue; font:italic 10pt Helvetica;}
.f.action.name { color:black; font:11pt Helvetica;}
.f.action.basetype, .f.action.type, .f.action.signed, .f.action.array_dim {
color:black; font:11pt Helvetica;}
.f.action.basetype.name, .f.action.type.name, .f.action.signed.name,
.f.action.array_dim.name { color:black; font:11pt Helvetica;}
.f.action.qual { color:black; font:10pt Helvetica;}
.f.action.qual.name { color:#990000; font:bold 12pt Helvetica;}
.f.action.cv { color:blue; font:italic 10pt Helvetica;}
.f.action.cv.text { color:black; font:11pt Helvetica ;}

/* attribute styles (filter) */
.f.attribute { color:blue; font:italic 10pt Helvetica;}
.f.attribute.name { color:black; font:11pt Helvetica;}
.f.attribute.basetype, .f.attribute.type, .f.attribute.signed,
.f.attribute.array_dim { color:black; font:1 1pt Helvetica;}
.f.attribute.basetype.name, .f.attribute.type.name,
.f.attribute.signed.name, .f.attribute.array_dim.name { color:black;
font:11pt Helvetica;}
.f.attribute.qual { color:black; font:10pt Helvetica;}
.f.attribute.qual.name { color:#990000; f ont:bold 12pt Helvetica;}
.f.attribute.cv { color:blue; font:italic 10pt Helvetica;}
.f.attribute.cv.text { color:black; font:11pt Helvetica;}

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 217

/* general styles (core model)*/
li.cm.object, li.cm.module, li.cm.interface { color:green; font:18pt
Helvetica;}
li.cm.typedef, li.cm.attribute, li.cm.action, li.cm.qualifierdef {
color:green; font:18pt Helvetica;}
.cm.object.name, .cm.module.name, .cm.interface.name, { color:black;
font:18pt Helvetica;}
.cm.object.ext { color:green; font:12pt Helvetica;}
.cm.object.ext.name { color:black; font:12pt Helvetica;}
.cm.qual { color:black; font:10pt Helvetica;}
.cm.qual.name { color:green; font:bold 12pt Helvetica;}

/* qualifierdef styles (core model) */
.cm.qualifierdef { color:blue; font:italic 10pt Helvetica;}
.cm.qualifierdef.name { color:black; font:11pt Helvetica;}
.cm.qualifierdef.basetype, .cm.qualifierdef.signed,
.cm.qualifierdef.array_dim { color:green; font:11pt Helvetica;}
.cm.qualifierdef.basetype.name, .cm.qualifierdef.signed.name,
.cm.qualifierdef.array_dim.name { color:black; font:11pt Helvetica;}
.cm.qualifierdef.default_value, .cm.qualifierdef.alterable { color:green;
font:11pt Helvetica;}
.cm.qualifierdef.default_value.name, .cm.qualifierdef.alterable.name {
color:black; font:11pt Helvetica;}

/* typedef styles (core model)*/
.cm.typedef { color:green; font:italic 10pt Helvetica;}
.cm.typedef.name { color:black; font:11pt Helvetica;}
.cm.typedef.basetype, .cm.typedef.type, .cm.typedef.signed,
.cm.typedef.array_dim { color:green; font:11pt Helvetica; }
.cm.typedef.basetype.name, .cm.typedef.type.name, .cm.typedef.signed.name,
.cm.typedef.array_dim.name { color:black; font:11pt Helvetica;}

/* parameter styles (core model) */
.cm.parameter { color:green; font:italic 10pt Helvetica;}
.cm.parameter.name { color:black; font:11pt Helvetica;}
.cm.parameter.basetype, .cm.parameter.type, .cm.parameter.signed,
.cm.parameter.array_dim { color:green; font:11pt Helvetica;}
.cm.parameter.basetype.name, .cm.parameter.type.name,
.cm.parameter.signed.name, .cm.paramete r.array_dim.name { color:black;
font:11pt Helvetica;}

/* member styles (core model) */
.cm.member { color:green; font:italic 10pt Helvetica;}
.cm.member.name { color:black; font:11pt Helvetica;}
.cm.member.basetype, .cm.member.type, .cm.member.signed,
.cm.member.array_dim { color:green; font:11pt Helvetica;}
.cm.member.basetype.name, .cm.member.type.name, .cm.member.signed.name,
.cm.member.array_dim.name { color:black; font:11pt Helvetica;}

/* scope styles (core model) */
.cm.scope { color:green; font:italic 10pt Helvetica;}
.cm.scope.name { color:black; font:11pt Helvetica;}
.cm.scope.element { color:green; font:11pt Helvetica;}
.cm.scope.rank { color:black; font:11pt Helvetica;}

/* description styles (core model) */
.cm.description { color:green; font: 14pt Helvetica;}
.cm.description.text { color:black; font:11pt Helvetica;}

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 218

C.4.3 Notification Event and Log Service

 object oNELS{
 interface iNELS{
 struct nelsSubscription{
 [ValueMap("1", "2", "3", "4"),
 Values("Consumer", "Producer", "Subscriber", "Publisher")]
 short role;

 [ValueMap("1", "2"),
 Values("push", "pop")]
 short method;

 string channel;
 string objectClass;
 string objectInstance;
 MAMA::ticketCategory category;
 };

 boolean subscribe([In] nelsSubscription subscription,
 [In] MAMA::oDNSS::tInstanceDN name);

 boolean unSubscribe([In] nelsSubscription subscription,
 [In] MAMA::oDNSS::tInstanceDN name);

 string[] getChannels();
 boolean submitTicket([In] MAMA::sTicket ticket);
 void showTicket();
 };
 };

C.4.4 Lifecycle and Configuration Management Service

 module mLCMS{
 struct sInterface{
 MAMA::oDNSS::tInstanceDN instanceDN;
 string intReference;
 MAMA::tMiddlewareReference intReferenceType;
 MAMA::oDNSS::tDN interfaceSpec;
 };
 typedef sInterface[] interfaceList;

 struct sObject{
 MAMA::oDNSS::tInstanceDN objectDN;
 MAMA::oDNSS::tDN objectSpec;
 sInterface[] interfaces;
 };
 typedef sObject[] objectList;

C.4.4.1 Object Interface

 object oMamaObjectInit:MAMA::oMamaCore{
 interface iMamaObjectInit{
 boolean create();
 void init([In] MAMA::tNameValueList initParams);
 void terminate();
 void checkpoint();
 };

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 219

 };

C.4.4.2 Cluster Manager

 object oClusterManager{
 interface iClusterManagement{
 [Permissions("0444")]
 attribute MAMA::mLCMS::objectList objects;

 MAMA::oDNSS::tInstanceDN create(
 [In] MAMA::oDNSS::tInstanceDN instanceDN);

 void init([In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::tNameValueList initParams);

 void terminate([In] MAMA::oDNSS::tInstanceDN instanceDN);

 MAMA::mLCMS::interfaceList getIntRefs(
 [In] MAMA::oDNSS::tInstanceDN instanceDN);

 MAMA::mLCMS::interfaceList getAllIntRefs();

 MAMA::oDNSS::tDN selectIntRef(
 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::oDNSS::tDN interfaceType);
 };
 };

C.4.4.3 Capsule Manager

 object oCapsuleManager{
 interface iCapsuleManagement{
 boolean setType([In] MAMA::oDNSS::tDN elementDN);
 boolean delType([In] MAMA::oDNSS::tDN elementDN);
 MAMA::oDNSS::tDN getTypes();

 MAMA::mLCMS::sObject create([In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);

 void init([In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::tNameValueList initParams);

 void terminate([In] MAMA::oDNSS::tInstanceDN instanceDN);

 MAMA::mLCMS::interfaceList getIntRefs(
 [In] MAMA::oDNSS::tDN coType,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);

 MAMA::mLCMS::objectList getAllIntRefs(
 [In] MAMA::oDNSS::tDN coType,
 [In] MAMA::oDNSS::tInstanceDN instanceDN);

 MAMA::mLCMS::sInterface selectIntRef(
 [In] MAMA::oDNSS::tDN co_type,
 [In] MAMA::oDNSS::tInstanceDN instanceDN,
 [In] MAMA::oDNSS::tDN interfaceType);
 };
 };
 }; // LCMS

Appendix C – MAMA Specifications

Middleware and Application Management Architecture 220

