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1. Introduction

The design of an experiment aims at an efficient choice of the experimental conditions in
order to optimize the performance of the statistical inference which will be based on the
observations to be obtained. Schwabe (1996, page 1)

In practice, it is seldom possible to observe every potential datum of some study variable
associated with a phenomenon that varies over a continuous (or even a large finite) spatial
domain. Typically, an inference about the study variable may be made from a very small
subset of potential data. Thus, an important task of statistics is an optimization of a par-
ticular data-collecting procedure. This procedure is called experimental design or sampling
plan (network).

In the spatial context, the interest is typically in the prediction of (some function of) the
study variable at multiple unsampled sites. An optimal experimental design usually refers
to the choice of locations at which to sample in order to achieve optimality according to a
given criterion (e.g., minimize average mean square prediction error, where the average is
taken over multiple prediction locations). In practice, optimal experimental designs may
be extremely difficult to achieve. On the other hand, good, although suboptimal, designs
may be relatively easy to obtain and these designs, at least, should be sought.

Two directions in the theoretical statistics related to these problems can be found in
literature, namely, the so-called sampling theory (see e.g. Aldworth and Cressie (1999))
and the theory of optimal experimental design (Pukelsheim, 1993). They have been devel-
oped separately, though with a considerable theoretical overlap. For problems which are
motivated by geostatistics (Chilès and Delfiner, 1999) this overlap is more apparent.

Given an observation site, it is rather usual that there are several information sources
available. For instance, in environmental monitoring, it is possible to obtain information
about the amount of lead, zinc, sulphur or other pollutants from one soil sample. In this
sense, it is a multivariate problem. In such a situation, the question formulation is not only
where to observe, but also which component(s) should be observed, since not all observed
components contribute equally to the predictor. Another issue is that any observation (and
the following analysis) is associated with costs (financial, material or environmental). This
thesis is an attempt to provide a solution to a particular multivariate design problem
which is motivated by the following application areas.

In science and engineering, there are situations where gradient information on a stochas-
tic quantity is directly measurable. Sometimes, direct measurements of a study variable
are associated with very big costs or it is even impossible, but derivatives can be obtained
relatively easily. One example is the geophysical determination of gravity anomalies using
the Eötvös torsion balance (Jordan et al., 1967). These measurements are important for
exploration of deposits. A detailed listing of applications in earth science, where deriva-
tives are available is given in Jäkel (1997). As a more general and modern notion the
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1. Introduction

so-called satellite gradiometry should be mentioned (Freeden, 1999). Differentiable models
and gradients are of certain importance in meteorology (Daley, 1996).

Finally, another differently motivated area are so-called computer experiments (see Koehler
and Owen (1996) and Sacks et al. (1989) for overview). Computer modeling of physical
or behavioral systems has become an important tool in many fields of research and also in
manufacturing. Many of considered systems are so complex, that physical experimentation
is too time consuming or too expensive. Consequently, experimenters have turned to simu-
lations of these systems. Typically, simulators help to describe the relationship between the
model, the production process and the real system (or final product). Equally important
are the effects of uncontrollable variation in the production process parameters to the end
products. Here, computer experiments can be seen as a kind of sensitivity analysis.

Many simulators need to solve differential equations and can provide the gradient of the
response at a design point with little or no additional cost. For a listing of applications,
which includes problems from semiconductor industry, nuclear research and physics, see
Koehler and Owen (1996); Sacks et al. (1989) and Currin et al. (1991).

There are only a few references considering optimal design for derivatives. Some of
them are motivated by a series of papers (Sacks and Ylvisaker, 1966, 1968, 1970) and they
investigate large samples in an asymptotic optimal sense (Benhenni and Cambanis, 1992).
In this context, the inclusion of derivative information means that a stochastic process is
observed at a certain point simultaneously with all mean square derivatives of the process up
to a certain order. This is the case for example of papers related to computer experiments
(see Koehler and Owen (1996); Mitchell et al. (1994) and Morris et al. (1993) inter alia),
where this limitation arises from problem specifics. This restriction is not necessary in the
earth science and it is left in Holtmann (2001) where links to spline approximation theory,
regression and prediction problems are established. Some numerical results are presented
in Albrecht (1998).

For a good understanding of design problems in general, it is necessary to conceive what
their essential properties are. They are a space of design parameters, which should be
set optimally according to an objective function, and a model of described reality.

The concept adopted in this work arises from stochastics. The observations are supposed
to be realizations of a mean square differentiable random field or realizations of its
derivative fields. A focus is put to second order characteristics of the field, which is described
by a known covariance function. The first order characteristic, i.e. the mean, is supposed
to be known or equivalently equal to zero. This setup is sufficient for using the so-called
simple kriging predictor. Throughout this thesis, the prediction is regarded with respect
to the underlying (non-derivative) random field. The space of design parameters to be set
can typically be observation coordinates in Euclidian space.

The objective function exclusively considered here is the so-called imse-update. This
criterion is derived from the well known integrated mean square error (imse), which has
been widely used (see for example Sacks et al. (1989) and Barnes (1989)) because it is
intuitively appealing. Basically, one seeks a design that does ’best’ on the average, where
’best’ is measured by the mean square error of a linear predictor. Let us also note that the
imse criterion often appears in a rather different context (cf. e.g. Khuri and Cornell (1996)
and Biedermann and Dette (2001)).

In geostatistics, the covariance function is never a priori known. Typically, after some
data are collected, the so-called model fitting is done. This means that some parameter-
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ized covariance function (family) is chosen and its parameters are estimated from data.
The present work is an attempt to explain how the choice of a covariance function
influences the quality of information obtained from derivatives of diverse order.

The problem can be also formulated in another way. Can a careless choice of a covariance
function lead (in the context of derivative observations) to an erroneous or over-optimistic
inference? This question formulation is, in particular, inspired by the work of Stein (1999).
However, the way it is solved here, is rather far from that of Stein (1999). Finally, the
question is, what are simple rules of thumb which lead to an efficient design.

This thesis is organized as follows. Chapter 2 provides a basic introduction to the
terminology. For good understanding, the notion of mean square differentiability of a
random field is essential (Section 2.1.4). Lemma 2.2, formulated in this section, is of a
certain importance too, since it is used later on many times. Section 2.2 gives an orientation
in a hierarchy of prediction problems. One of them is the topic of this work. Section 2.3
provides very briefly some links to other design problems.

Chapter 3 summarizes some properties of covariance functions. A focus is put to mean
square differentiability and spectral properties of covariance functions. The chapter follows
with a detailed overview of some examples of (families of) covariance functions. Attention
is paid to the Matérn class, which has recently been recommended (Stein, 1999) for its flexi-
bility and other reasonable properties. Some formulas, which are used later, are stated here.
In particular, the formulas for the variances of derivative random fields under the Matérn,
the Gaussian and the J-Bessel model are relevant to the further considerations. Lemmata
3.1 and 3.3 provide simplifications of formulas for differentiation of the Matérn and the
J-Bessel class. Proofs are more or less technical and they are postponed to Appendix A.

Chapters 4 and 5 contain the main results of this thesis. Unlike to Chapter 4, where
the reasoning is carried out theoretically, in Chapter 5, an empirical investigation is mainly
made, however, with a lot of important links to the previous results

In Chapter 4, a certain class of designs is studied, namely, designs with vanishing
inter-site correlations. The aim of the first part of this chapter is purposely not to
construct an optimal design (it can be seen that these designs are in most cases not good),
but to obtain some notion about the information, which a particular derivative observation
can serve in some general sense. As already said, as a measure of this information, the
imse-update criterion is used and this criterion should be maximized. Further, covariance
functions and their L2-properties are a very essence of the discussed approach.

The imse-update depends both on a particular design and on a covariance function of the
study random field. This dependence is typically very complex. Due to an asymptotic, it
disappears dependence on the design, i.e. all limiting desing (given number and derivative
grades) are mutually equivalent.

Thus, can the (limiting) imse-update be bigger for derivative observations of higher
order than for lower ones? Theorem 5 and connected claims are a survey of this problem.
Basically, both positive and negative answers can turn out and the solution is closely
connected to a particular covariance function of the random field under study. Although
the case, where the J-Bessel class is considered, is likely not of practical importance, the
opposite is hopefully true for the Matérn class. For the later class and for the Gaussian
covariance function, it is shown that the (limiting) imse-update decreases rapidly to zero
as the order of derivative increases. These results can be used for establishing the efficiency
of designs, which consist of diverse derivative observations or as a comparison between
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1. Introduction

several designs. In this context, the J-Bessel class can be seen as a counterpart of the
Matérn class. It is an example for the fact that covariance functions allow a large variety
of possibilities and their proper choice is of great importance in modeling.

The main focus of the second part of Chapter 4 is an investigation of the problem whether
the (limiting) imse-update can be improved by a suitable combination of observations
of distinct derivative random fields in one site. It is shown that correlated pairs of
derivatives outperform the other discussed possibilities.

In Chapter 5, the asymptotic setup is left and designs are examined empirically. At first,
an alternative analytical formula for imse-update is given, which is further substantiated
for the case of two observations. Attention is paid to the Gaussian covariance function and
some numerical case studies are investigated.

On the basis of some evidence, well constructed regular grids are proposed to be an
efficient solution of the design problem for derivatives (at least for Gaussian-like or Matérn-
like covariance functions). Finally, an analogous comparison of efficiency as in Theorem
5 is given in this chapter but for optimally constructed regular grids. This chapter is
supplemented with many plots and tables which support the argumentation.

The Appendix consists of three parts. In the first part, the postponed proofs can be
found. In the second part, the problem of conditional simulation using derivatives is
solved. This section is not directly related to design problems and therefore it was post-
poned to Appendix B. Note that, although simulations are of a great interest in geostatis-
tics, simultaneous (conditional) simulation of multiple derivative fields was not explicitely
formulated in the literature. The third part of the appendix supplements Chapter 5 with
figures related to the Matérn and the J-Bessel class.

The presented work offers a rather specialized view to an optimal design problem and it
attempts to contribute to the current discussion of the geostatistical modeling. It remains,
of course, a lot of open problems and many questions with unsatisfactory answers. Chapter
5 points out some effects, which can be verified on an empirical basis but a rigorous ma-
thematical proof is missing. A further investigations in this area is surely a great challenge
for the future research.
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2. Basic definitions

2.1. Random processes and fields

Suppose an observer has collected certain data, for example, pollution levels in an area. The
problem is now, how to model the observed reality. There are certainly many approaches
to the problem. The approach adopted here assumes the observations to be a realization
of a parent random function.

In this chapter, random processes and random fields will be introduced and a simple
classification of random fields will be summarized. The goal of this chapter is to define
mean square properties of random fields, above all mean square differentiability. The
chapter continues with a hierarchy of prediction problems. The last section provides a
short overview of other design problems.

Let us recall some definitions from the theory of stochastic functions. For more details see
Yaglom (1987a); Skorokhod (1996); Todorovic (1992) and Gikhman and Skorokhod (1996).

2.1.1. Definitions

A probability space is a triple (Ω,A,P), where Ω is a certain nonempty set called set of
elementary events, A is a collection of subsets of Ω forming σ-algebra and P is a probability
measure on A. Sets from A are referred to as random events and P(A) is the probability
of A ∈ A.

Each measurable function ζ : Ω → R is said to be a random variable. This means that
{ω : ζ(ω) < t} ∈ A for all t ∈ R. A measurable vector acting from Ω and having values in
Rm is said to be a random vector.

A random function is a mapping

Z : Ω ×D → R, D ⊂ Rd,

such that for every x = (x1, . . . , xd)T from the domain set D the function Z(·,x) is a
random variable. On the other hand, for a given ω ∈ Ω we refer to Z(ω, ·) as a realization
of the random function Z. It is customary to denote a random function by Z(x) and a
realization by lowercase z(x).

It is common to distinguish the following cases. If d = 1 and d > 1, we speak about
a random process or about a random field respectively. The one-dimensional case corre-
sponds typically to temporal phenomena. The cases of higher dimensions are frequent in
geostatistics or environmental science and they correspond to spatial (or spatial-temporal)
observations.

Sometimes, it can be profitable to consider complex valued random functions, which are
defined as

Z(x) = Z1(x) + iZ2(x), x ∈ D,

where Z1 and Z2 are real valued random functions.
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2. Basic definitions

The basic characteristics of random processes are finite dimensional distribution func-
tions, i.e. probabilities

Fx1,x2,...,xn(t1, t2, . . . , tn) = P(Z(x1) < t1, Z(x2) < t2, . . . , Z(xn) < tn), (2.1)

which are defined for all n ∈ N, and for all x1,x2, . . .xn ∈ D.
If an n-dimensional distribution function Fx1,...,xn(t1, . . . , tn) can be written as

Fx1,...,xn(t1, . . . , tn) =
∫ t1

−∞
. . .

∫ tn

−∞
px1,...,xn(t′1, . . . , t

′
n)dt′1, . . . , dt

′
n

for all n ∈ N, px1,...,xn(t′1, . . . , t′n) is referred to as an n-dimensional probability density.
In natural sciences as well as in finance we usually have several information sources

which can be observed simultaneously. For instance in meteorology an observer can obtain
information about temperature, atmospheric pressure, wind velocity, concentration of ozone
etc. All the observations could be realized at the same time or time interval at a certain
place. Similarly, a broker possesses information about prices of different shares, contracts
or their composite indices. Thus, it is useful to generalize the above concept and we can
define a multivariate random function, that is a mapping

Z : Ω ×D → Rm, D ⊂ Rd,

such that for every x ∈ D the mapping Z(·,x) is a random vector.

2.1.2. Moments of random processes and fields

In practice, it is usually very complicated to get a complete description of a (multivariate)
random function by means of probability distribution functions. A theoretical determi-
nation of a probability distribution function is possible only in rare cases as for instance
for Gaussian fields. For this reasons, it is common to restrict oneself to the relatively
simple characteristics of probability distribution functions. The most important numerical
characteristics of distribution functions are their moments.

Mean function Mean function m(x) (trend or drift) is a basic characteristic, which de-
scribes a systematic variation of the random function Z. It is simply the expected value of
the random variable Z(x)

m(x) := EZ(x) =
∫

R

t dFx(t).

Covariance function Covariance function C(x,y) describes a stochastic variation or local
deviations from the mean. It is defined as

C(x,y) = cov(Z(x), Z(y)) := E{(Z(x) −m(x))(Z(y) −m(y))} (2.2)
= EZ(x)Z(y) −m(x)m(y).

It follows immediately from (2.2) that covariance functions are symmetric, i.e.

C(x,y) = C(y,x). (2.3)

6



2.1. Random processes and fields

A covariance function normalized by the standard deviations C(x,x)1/2 and C(y,y)1/2

c(x,y) :=
C(x,y)

C(x,x)1/2C(y,y)1/2
(2.4)

is called correlation function. The definition (2.2) implies that the variance function
C(x,x) = var(Z(x)) is everywhere non-negative. In the following, it will be assumed
that C(x,x) is in fact strictly positive, in order to assure the correlation function (2.4)
corresponding to a given covariance function is well defined.

Covariance and variance matrix, positive definiteness Mean function and covariance
function are defined using appropriate random variables. Analogously, for random vectors
X and Y , we define covariance matrix of X and Y

cov(X,Y T ) = E{(X − EX)(Y − EY )T },

where the expected value of a random matrix (vector) is just a matrix (vector) of expected
values. If X = Y we refer cov(X,XT ) to as covariance matrix of X, var(X).

A real symmetric (n × n)-matrix A is said to be positive semi-definite if λT Aλ ≥ 0 for
all real (n × 1)-vectors λ. This matrix is termed as positive definite if λT Aλ > 0 for all
real (n×1)-vectors λ �= 0. Note that if matrix A is positive definite, it follows immediately
that A is invertible and A−1 is also positive definite. The family of all positive definite and
positive semi-definite (n × n)-matrices will be denoted by PDn and PSDn, respectively.

Note that, since
0 ≤ var(λT X) = λT var(X)λ

for any random vector X = (X1, . . . ,Xn)T , such that cov(Xi,Xj) < ∞, i, j ∈ {1, . . . , n}
and for all (n×1)-real vectors λ, covariance matrix var(X) is at least positive semi-definite.

General moments General moment functions are given for the sake of completeness by
the following equation

µj1j2...jn(x1,x2, . . .xn) := EZ(x1)j1Z(x2)j2 . . . Z(xn)jn .

Therefore, a mean function is the first moment of Z(·) and a covariance function is the
centered second moment of Z(·). The exclusive topic of the thesis will be properties of
random fields considering only the first two moments.

Gaussian random fields There are a couple of arguments that this restriction is reason-
able. An important class of random fields are Gaussian random fields, which are cha-
racterized by the property that all finite dimensional probability densities are multivariate
Gaussian, i.e., it holds for all n ∈ N

px1,...,xn(t) =
1

(2π)n/2(detΣ)1/2
exp
(
− 1

2
(t −m(x))T Σ−1(t −m(x))

)
,

where t and x denote (t1, . . . , tn)T and (x1, . . . ,xn)T for short. Σ is n×n-matrix with ele-
ments Σij = C(xi,xj), i, j ∈ {1, . . . , n}. Therefore, a Gaussian random field is completely
determined by its mean and its covariance function.
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2. Basic definitions

Random fields of the second order A random variable ζ is termed to be of the second
order if E |ζ|2 < ∞. A random field Z is said to be of the second order if Z(x) is of the
second order for all x ∈ D.

All random processes and fields considered in the following text are of the second order.

2.1.3. Stationarity and isotropy

Even if we confine ourselves only to the simplest quantities like a mean and a covariance
function, a statistical inference from data about the quantities can be very difficult. A
common simplifying assumption is that the underlying probabilistic structure remains the
same or similar in some sense in different parts of the domain set D.

Stationarity

A random field is said to be stationary in the strong sense if all its finite dimensional
distribution functions are translation invariant, i.e.,

Fx1+h,x2+h,...,xn+h(t1, t2, . . . , tn) = Fx1,x2,...,xn(t1, t2, . . . , tn)

for all h,x1, . . .xn ∈ D, such that h + xi ∈ D (i = 1, . . . , n), for all t1, t2 . . . , tn ∈ R and
for all n ∈ N. As a rule, stationary random fields are always considered on the whole Rd.

A random field Z of the second order is called stationary (in the wide sense), if the mean
function EZ(x) is identically constant for all x ∈ D and if the covariance function C is
translation invariant, i.e.,

C(x,y) = C(x + h,x + h), for all x,y,h ∈ D.

Translation invariant functions defined on Rd×Rd can be represented by a function K(·),
which is defined on Rd as follows. Given the translation invariant function C(x,y), define
K(x) := C(0,x). Then

K(y − x) = C(0,y − x) = C(x,y), for all x,y ∈ Rd.

If the function C(·, ·) is moreover covariance function, its representative K(·) is usually
called covariance function, too. Observe that

K(0) = var(Z(x)), for all x ∈ Rd,

whenever K(·) is a covariance function of a stationary random field Z. Further, in this
case, K(·) is also an even function with respect to each of its arguments by virtue of the
symmetry property (2.3).

Isotropy

A second order random field Z is called isotropic (in the wide sense), if the mean func-
tion EZ(x) is identically constant for all x ∈ D and the covariance function are rotation
invariant, i.e.,

C(x,y) = C(Hx,Hy), for all x,y ∈ D,
where H is an orthogonal d× d-matrix, i.e. HHT = HT H = I.

Isotropy means that there is no reason to distinguish between one direction from another
for a random field under consideration.

8



2.1. Random processes and fields

Covariance function C(x,y), x,y ∈ Rd, of a stationary and isotropic random field de-

pends on x and y only through the Euclidean norm ||y−x|| :=
√∑d

i=1(yi − xi)2. Therefore,
a function ϕ : [0,∞) → R exists such that

C(x,y) = K(y − x) = ϕ(||y − x||), for all x,y ∈ Rd

(see Gaspari and Cohn (1999)). However, it is usually convenient to define ϕ on the whole
R as its even extension, i.e. ϕ(−t) := ϕ(t), t ∈ [0,∞).

The class of all functions ϕ : [0,∞) → R, which are covariance functions of a stationary
and isotropic random field on Rd will be denoted as Φd.

Anisotropy

If a random field is not isotropic, it is said to be anisotropic. In nature, isotropic random
fields can be quite rare and a detection of a potential anisotropy from data is an important
statistical task. Nevertheless, anisotropy is in many cases modeled as a linear transforma-
tion of coordinates. Precisely, Z exhibits a geometric anisotropy, if there exist an invertible
matrix V such that Z(V x) is isotropic. For instance, in R2 the matrix V transforms any
ellipse to a circle (cf. Chilès and Delfiner (1999) or Journel and Huijbregts (1978) for other
types of anisotropy). In this text, only isotropic random fields are considered.

2.1.4. Mean square continuity and differentiability

In this section some important properties of random processes will be summarized. The
section provides simple classification of processes based only on a mean and a covariance
function. The major goal is to introduce mean square differentiable processes, which are of
the main interest throughout the thesis. Here, we restrict ourselves only to the definition
and basic properties, examples are widely discussed in Chapter 3.

Convergence in the mean square sense

A sequence {ζn}∞n=1 of random variables of the second order is said to converge in the mean
square sense to a random variable ζ if

lim
n→∞E(ζn − ζ)2 = 0. (2.5)

We use the notation l.i.m.
n→∞ ζn = ζ.

A sequence of random fields {Zn}∞n=1 of second order is said to converge to a random
field Z if

l.i.m.
n→∞ Zn(x) = Z(x), for all x ∈ D.

It means that a convergence of a process in the mean square sense is defined as a convergence
of corresponding random variables in the same sense. It holds, (cf. Yaglom (1987a, p.64))
that l.i.m.

n→∞ Zn(x) = Z(x) if and only if

lim
n,m→∞E(Zn(x) − Zm(x))2 = 0, (2.6)

which is further equivalent to limn,m→∞ EZn(x)Zm(x) <∞.

9



2. Basic definitions

Mean square continuity

A random field Z(x) is said to be mean square continuous if its mean m(x) and its co-
variance function C(x,y) are continuous with respect to all components of x and x,y
respectively. Note that if a stationary random field is mean square continuous in the ori-
gin, it is mean square continuous everywhere. If a stationary random field is not mean
square continuous in the origin, it is not mean square continuous in any point of Rd.

Note that mean square continuity of the field Z does not mean that all its realizations
z(·) are continuous. It can easily be found examples of mean square continuous random
processes whose realizations have discontinuities. On the other hand, for processes, which
are not mean square continuous, it is possible to construct their infinitely differentiable
realizations (cf. Yaglom (1987a)).

Mean square differentiability

Definition 1 A process Z(·) is said to be mean square differentiable at a point x if a
random variable Z(1)(x) exists, such that E |Z(1)(x)|2 <∞ and

lim
h→0

E
(
Z(x+ h) − Z(x)

h
− Z(1)(x)

)2

= 0. (2.7)

By the virtue of (2.5), (2.7) can be rewritten as

l.i.m.
h→0

Z(x+ h) − Z(x)
h

= Z(1)(x).

Lemma 2.1 In order that a process Z be mean square differentiable on an interval [a, b],
it is necessary and sufficient that the derivatives

d

dx
m(x),

∂

∂x
C(x, y),

∂C(x, y)
∂x∂y

=
∂C(x, y)
∂y∂x

exist for all x, y ∈ [a, b]. It is sufficient if the derivative of the mean function d
dxm(x) and

the limit
lim

h,δ→0

C(x+ h, x+ δ) − C(x, x+ δ) − C(x+ h, x) +C(x, x)
hδ

exist for all x ∈ [a, b].

Proof : Let Z(1)(x) exist for all x ∈ [a, b]. Then

EZ(1)(x) = lim
h→0

E
Z(x+ h) − Z(x)

h
= lim

h→0

m(x+ h) −m(x)
h

=
d

dx
m(x). (2.8)

In (2.8), the first equation is a consequence of the Schwarz inequality. Hence, the derivative
m(1)(x) := d

dxm(x) exists. Therefore, the zero mean process

Z0(x) = Z(x) −m(x)

is differentiable. In the same manner, it can be shown that

cov(Z(1)(x), Z(y)) = EZ(1)
0 (x)Z0(y) =

∂

∂x
C(x, y)

cov(Z(x), Z(1)(y)) = EZ0(x)Z
(1)
0 (y) =

∂

∂y
C(x, y) (2.9)

cov(Z(1)(x), Z(1)(y)) = EZ(1)
0 (x)Z(1)

0 (y) =
∂C(x, y)
∂x∂y

=
∂C(x, y)
∂y∂x

10



2.1. Random processes and fields

On the other hand, to prove sufficiency, it suffices (by means of claim (2.6)) to show that
the limit

lim
δ,h→0

E{Z(t+ h) − Z(t)
h

Z(t+ δ) − Z(t)
δ

}

exists. This limit can be re-written as

lim
δ,h→0

E
{Z0(t+ h) − Z0(t) + [m(t+ h) −m(t)]

h

Z0(t+ δ) − Z0(t) + [m(t+ δ) −m(t)]
δ

}
,

where Z0(t) = Z(t) −m(t). This is further equal to

lim
δ,h→0

C(t+ h, t+ δ) − C(t+ h, t) − C(t, t+ δ) + C(t, t)
hδ

+
[
d

dt
m(t)

]2
,

and this limit exists by the assumed conditions. �

The derivatives of higher order are defined simply by induction: Z(2)(x) is the mean
square derivative of Z(1)(x) and Z(k)(x) is the derivative of Z(k−1)(x), k ≥ 2. In order that
a process Z(·) has the nth mean square derivative, it is necessary and sufficient that the
derivatives

dk

dxk
m(x),

∂k+l

∂xk∂yl
C(x, y),

exist for all k, l ≤ n. Analogously to (2.8) and (2.9) in the proof of Lemma 2.1, the mean
function of the kth derivative process Z(k) is given by

EZ(k)(x) = m(k)(x) =
dk

dxk
m(x).

The cross-covariance function between Z(k)(x) and Z(l)(y) is determined by

cov(Z(k)(x), Z(l)(y)) = CZ(k)Z(l)(x, y) =
∂k+lC(x, y)
∂xk∂yl

.

Differentiability in Rd

The concept of the mean square differentiability of processes generalizes straightforward to
the higher dimensions. Nevertheless, unlike the univariate case, where only one derivative
process Z(1)(t) exists for Z(0)(t), in Rd there are d random fields, which play the role of the
first derivatives. Precisely, we have to consider the following random fields or the d-variate
random field (see. definition p. 6)

∂

∂x1
Z(x),

∂

∂x2
Z(x), . . . ,

∂

∂xd
Z(x), x = (x1, . . . , xd)T , (2.10)

which are the mean square derivatives in the direction of axes. Sometimes, we use to refer to
(2.10) as gradient random field. Further, there are d2 second mean square derivative fields
in Rd, d3 third derivative fields etc. Generally, for a multi-index n = (n1, . . . , nd) ∈ Nd

0, we
can define the mean square nth derivative Z(n) of Z

Z(n)(x) =
∂|n|

∂xn1
1 . . . ∂xnd

d

Z(x) (2.11)

11



2. Basic definitions

where |n| = n1 + n2 + . . . + nd. If Z(n) exists, the field Z is called n-times mean square
differentiable. Similarly as in R1, the mean function of the derivative process Z(n)(x) is
given by

EZ(n)(x) =
∂|n|

∂xn1
1 . . . ∂xnd

d

m(x) (2.12)

and the covariance function of the derivative random fields Z(k)(x) and Z(l)(y) is given by

cov(Z(k)(x), Z(l)(y)) =
∂|k+l|

∂xk1
1 . . . ∂xkd

d ∂y
l1
1 . . . ∂y

ld
d

C(x,y). (2.13)

The sum k+l is defined elementwise.
Clearly, a random field Z(x) is n-times differentiable, if and only if the derivatives

∂|k|

∂xk1
1 . . . ∂xkd

d

m(x),
∂|k+l|

∂xk1
1 . . . ∂xkd

d ∂y
l1
1 . . . ∂y

ld
d

C(x,y),

exist for all multi-indices k = (k1, . . . , kd) and l = (l1, . . . , ld), such that ki ≤ ni, li ≤ ni for
all i ∈ {1, . . . , d}.

If the random field Z is stationary and K(·) is the stationary representative of C(·, ·),
the equation (2.13) obviously shorten to

cov(Z(k)(x), Z(l)(y)) = KZ(k),Z(l)(h) = (−1)|k|
∂|k+l|

∂hk1+l1
1 . . . ∂hkd+ld

d

K(h), (2.14)

where h = y − x. Particularly, it holds

var(Z(k)(x)) = var(Z(k)(0)) = (−1)|k|
∂2|k|

∂h2k1
1 . . . ∂h2kd

d

K(h)

∣∣∣∣∣
||h||=0

. (2.15)

Let us note that under the stationarity of Z, it follows from (2.14) that

cov(Z(k)(x), Z(l)(y)) = (−1)|k+l| cov(Z(k)(y), Z(l)(x)).

If the n-times differentiable random field Z is moreover isotropic, Z(n) exists for any
permutation of n. In this case, Z is termed to be an |n|-times differentiable random field.

From the text above it clear that we must be careful when speaking about observations
of derivative random fields. For instance, we have to distinguish if all the first partial
derivatives are to be observed or only one of them.

Definition 2 A multi-index k = (k1, . . . , kn) ∈ Nd
0 is called even if all k1, . . . , kn are even.

The multi-index k is called odd if any of the integers k1, . . . , kn is odd.

Lemma 2.2 Let Z be a stationary, isotropic, n-times differentiable random field on Rd

and let k = (k1, . . . , kd) and l = (l1 . . . , ld) be multi-indices, such that |k|, |l| ≤ n. Then

cov(Z(k)(x), Z(l)(x)) = 0, x ∈ Rd,

if k + l is odd.

The proof of Lemma 2.2 can be found in Appendix A on the page 83. Note, that the
proof formalizes the very fact that an odd derivative of an even function is an odd function
in R and it extends this claim to higher dimensions. Note that the claim can not be
conversed under given prerequisites. This can be seen from the fact that any function,
which is constant in R is a covariance function. Note that Lemma 2.2 also holds under the
geometric anisotropy (see page 9).
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2.2. Linear prediction and design

2.2. Linear prediction and design

In the opening of Chapter 2, we have considered that an observer (meteorologist or mining
engineer) has collected some spatial distributed data (temperature levels resp. pollutions
levels in the soil in different parts of a region). His or her main task is typically to suggest
some assessment of a quantity in the locations, where the observations of the quantity
were not realized. We speak about a prediction of the quantity. Here, the prediction does
not mean a prediction of a behavior in the future, but a reconstruction of the quantity in
different parts of the space, where it is not known precisely.

Design

Let us denote by
Vn = {xi : i = 1 . . . n} ∈ Vn ⊂ X ⊂ D (2.16)

a set of locations, where a realization z(x) of a random field Z(x) has been observed.
The set X is referred to as an observation area. In the context of Section 2.3, the set Vn

is called (discrete) n-points experimental design and it is an element of the set Vn of all
discrete n-points experimental designs. The integer n ∈ N in (2.16) is called size of the
design Vn.

There are some other issues considered in geostatistics. Typically, data are sampled
not only at single points of X, but they always involve a support of a positive volume.
The reader can take, for instance, a core drill or a soil sample of a certain diameter into
consideration. This aspects are always application dependent and they are not considered
here, i.e. observation locations will always be in the idealized form (2.16).

In the following, we will not distinguish the (uppercase) parent random field and its
particular (lowercase) realization. It is clear that probabilistic calculations involve the
random field and all numerical estimates involve the realization. Thus, let us denote by

Z = (Z(x1), . . . , Z(xn))T

the observed particular data, or precisely, the random vector we have observed at the points
given by the design Vn.

Later in Chapter 4, observations of multivariate random fields will be regarded. Specifi-
cally, we will consider derivative random fields. In this case, we call also the set

Vn = {(xi,ki) : i = 1 . . . n} ∈ Vn ⊂ X ⊂ D (2.17)

n-points experimental design. The notations (2.17) means that the random field Zki
should

be observed at the location xi. In the case of derivative random fields, (2.17) means that
the random field Z(ki) has to be observed at the location xi. The observed random vector

Z = (Zk1(xi), . . . , Zkn(xn))T resp. Z = (Z(k1)(xi), . . . , Z(kn)(xn))T (2.18)

is called data. A design is called regular if cov(Z,ZT ) is regular.
Without going to details, let us note that the aim of an experiment planning is to find a

design that performs efficiently or optimally in some pre-defined sense. To preconceive what
will follow, the reader can observe that different settings of the optimization problem are
possible under the definition (2.17). Basically, if a set of multi-indices {k1, . . . ,kn} is given,
we can look for the optimal locations {x1, . . . ,xn}. On the other hand, it is possible that
the locations {x1, . . . ,xn} are given and the task is to find corresponding an optimal set
of multi-indices {k1, . . . ,kn}. Of course, design conditions can be formulated so, that both
the locations {x1, . . . ,xn} and the multi-indices {k1, . . . ,kn} should be chosen optimally.
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2. Basic definitions

Structure of random fields

It is often reasonable to split the observed random field into several components. The first
part is deterministic and it is given in a form of a functional relationship. Typically, it
represents a macro-structure of the observed phenomenon, i.e. it is a natural law, which is
known in some sense.

The second part represents variations from this law, i.e. it is a micro-structure of the
observed random fields. There could be also a natural law behind this component, but this
law is unknown. Therefore, the second part is modeled as a zero mean random field. Since
the kind of randomness is closely related to the nature of the study quantity, the modeling
of its stochastic structure is of the main interest.

Nevertheless, sometimes it is necessary to consider an additional source of uncertainty
which arises from a particular observation mechanism. It is called measurement error
or (white) noise and it is supposed to be an independent identically distributed (i.i.d.)
zero mean random variable ε(x) of the second order. The noise ε(x), as emphasized, can
depend on the location x. Thus, the random field Z(x) can be split into a sum of three
components, the mean function m(x), the zero mean random field S(x) representing the
smooth or noiseless version of Z(x) and the noise ε(x) :

Z(x) = m(x) + S(x) + ε(x), for x ∈ D. (2.19)

The stochastic components S(x) and ε(x) are supposed to be independent.
Apart from that, since the main focus of the thesis is an investigation of differentiable

random fields, a direct incorporation of the measurement error ε(·) into the model is not
correct. The random field Z would no longer be mean square continuous and therefore not
mean square differentiable.

Prediction error

Let us denote by p(x0;Z) an arbitrary predictor of Z at the point x0 ∈ D from data Z.
The difference

Z(x0) − p(x0;Z) (2.20)

is referred to as the prediction error of p(x0;Z) and

E{Z(x0) − p(x0;Z)}2

is called mean square error (mse) of p(x0;Z). We say that the predictor p(x0;Z) is unbiased
if

E p(x0;Z) = EZ(x0) = m(x0). (2.21)

Note that (2.21) can be rewritten as E{p(x0;Z) − Z(x0)} = 0, so p(x0;Z) is unbiased if
and only if its expected prediction error equals zero.

The main focus of the presented work is a survey of mean square error properties, con-
sidering not only prediction at a single location but rather prediction over an (possibly very
large) prediction area denoted by W . We define the integrated mean square error over the
area W (imseW ) as

imseW =
∫

W
mse(x)dx, (2.22)

14



2.2. Linear prediction and design

where dx = dx1 . . . dxd denotes a volume element of Rd. Similarly, we can also consider the
maximal mean square error over the area W (mmseW ), which is defined as

mmseW = sup
x∈W

mse(x). (2.23)

Note that Cressie (1991) modifies (2.22) and (2.23) by including weight function in the
integral and behind the sup operator. He gives as an example of weights which focus
attention on sub-regions whose mean and variance exceed some given threshold.

2.2.1. Simple hierarchy of prediction problems

In prediction problems, the following alternative states of knowledge can be considered.

1. All finite dimensional distribution functions (2.1) of Z(·) are known.

2. Only the mean m(x) and covariance function C(x,y) of Z(x) are known.

3. The covariance function C(x,y) of Z(x) is known, but its mean function m(x) is
supposed to be in the linear form

m(x) =
p∑

i=1

βifi(x) = f(x)T β, (2.24)

where f = (f1, . . . , fp)T is a known vector of the so-called regression functions and
β = (β1, . . . , βp)T are unknown parameters.

4. The only knowledge is that m(x) is assumed to be in the same form as in the third
state, but the covariance function C(x,y) of Z(x) is supposed to be a known function
of an unknown parameter θ = (θ1, . . . , θr)T , whose values are restricted to a known
set Θ.

5. A nonparametric setup for m(x) and C(x,y) can be assumed.

2.2.2. Best prediction

Suppose that we know all finite dimensional distribution functions of an unobservable ran-
dom variable Z(x0), whose realization is to predict. The predictor will be based on the
observable random vector Z. A possible predictor is the conditional expectation

p(x0;Z) = E(Z(x0)|Z). (2.25)

It is well known that E(Z(x0)|Z) has the minimal mean square error among all predictors.
A predictor which minimizes mse is referred to as the best predictor. Note that the predictor
(2.25) is unbiased. The mse of predictor (2.25) is

mseE(Z(x0)|Z) = var
{
Z(x0) − E(Z(x0)|Z)

}
= E(var(Z(x0)|Z)).
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2.2.3. Best linear prediction

Suppose that Z has mean function m(x) and covariance function C(x,y), which are known,
but we have no further knowledge of the finite dimensional distribution functions. There-
fore, the conditional mean E(Z(x0)|Z) is generally not determinable from the available
information. One possibility and a very frequent approach used in geostatistics is to con-
sider a predictor which is a linear function of the observations

pL(x0;Z) =
n∑

i=1

λiZ(xi) + λ0 = λT Z + λ0, (2.26)

where λ = (λ1, . . . , λn)T . The coefficients λi are chosen in some optimal way to obtain
desirable properties of the predictor (2.26). The mean square prediction error is equal

E(Z(x0)−p(x0;Z))2 = {m(x0)−λ0−λT m}2 + C(x0,x0)−2λT c + λTΣλ, (2.27)

where m = EZ and c = cov(Z, Z(x0)) and Σ = cov(Z,ZT ). The equation (2.27) means
that the mse of the linear predictor (2.26) is just the squared mean of the prediction error
plus its variance. It can be seen that, for any choice of λ, the square mean term can be
set to zero by taking λ0 = m(x0) − λT m. Suppose further that Σ is invertible. It is well
known (cf. e.g. Stein (1999); Cressie (1991) or Rao (1973)) that the second term reaches
its minimum if

λ = Σ−1c. (2.28)

The condition on λ0 goes to
λ0 = m(x0) − cTΣ−1m. (2.29)

The best linear predictor (BLP) is therefore equal to

p∗L(x0;Z) = m(x0) + cTΣ−1(Z − m) (2.30)

and its mean square error equals

mse p∗L(x0;Z) = C(x0,x0) − cTΣ−1c. (2.31)

Let us emphasize that both c and Σ directly depend on the design Vn. Moreover, inverting
of Σ usually leads to a very complex dependence, where every entry in Σ−1 is a function
of the whole design Vn.

Note that the best linear predictor is usually called simple kriging in literature related
to geostatistics or to spatial prediction (Chilès and Delfiner, 1999; Cressie, 1991; Journel
and Huijbregts, 1978; Deutsch and Journel, 1992; Stein, 1999). The name origins from
G. Matheron, who named this method after South African mining engineer D. G. Krige,
who proposed the method for estimation of ore deposits. The system of linear equations
(2.28) and (2.29) is called kriging system.

It is very significant property of the mean square prediction error (2.31) that it does not
depend on the particular collected data. The mse (2.31) is merely function of the location
of the predicted variable and the design Vn. This observation is a starting point for a
formulation of a design problem as discussed later in Section 2.3.
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2.2.4. Best linear unbiased prediction

Suppose the third state of knowledge (see page 15), i.e.

EZ(x) = f(x)T β.

Let us denote F = (f(x1), . . . ,f(xn))T for xi ∈ Vn (i.e. F is (n× p)-matrix). Further, let
Σ be a covariance matrix and c vector of covariances defined the same way as in Section
2.2.3 and let Σ be regular. If β were known, we could use the BLP

p∗L(x0;Z) = f(x0)T β + cTΣ−1(Z − Fβ) (2.32)

for estimating of Z(x0). Nevertheless, β is supposed to be unknown, then it is natural to
substitute β in (2.32) by an estimator. One possibility is to use generalized least squares
estimator of β,

β̂ = (F TΣ−1F )−1F TΣ−1Z, (2.33)

where F is supposed to be of full rank. It is well known (see for instance Rao (1973) or
Rao and Toutenburg (1995)) that β̂ is the best linear unbiased estimator (BLUE) of β,
i.e. covariance matrix of β̂

var(β̂) = (F TΣ−1F )−1 (2.34)

is minimal (in sense of partial ordering of positive definite matrices). Note that the predictor
(2.32) with β replaced by its estimate (2.33) is linear and unbiased. We denote this predictor
as p∗LU (x0;Z). The predictor is referred to as the best linear unbiased predictor (BLUP).

An alternative but equivalent approach how to obtain the BLUP, is to minimize the
mean square prediction error among all predictors of the linear form (2.26) subject to the
unbiasedness constraint, i.e.

E(λ0 + λT Z) = EZ(x0) = f(x0)T β, for all β ∈ Rp.

This explains the used terminology. The minimization of the mse leads to the same result
and it can be seen that the mse of the BLUP is

mse p∗LU(x0;Z) = C(x0,x0) − cTΣ−1c + ||m(x0) − F TΣ−1c||2
var(β̂)

,

where ||v||A denotes norm defined by ||v||2A = vT Av for an (n×n)-positive definite matrix
A and v ∈ Rn, n ∈ N. The variance matrix var β̂ is given in (2.34) and since Σ is supposed
to be regular and F of the full rank, var β̂ is positive definite.

2.2.5. Components of prediction error

Now, let us consider the fourth state of knowledge. Let p(x0;Z) be an arbitrary predictor
of Z(x0). As noted by Harville (1985), the prediction error (2.20) can be decomposed into
four components in accordance with the hierarchy given on the page 15:

Z(x0) − p(x0;Z)=
[
Z(x0) − E(Z(x0)|Z)

]
(inherent term)

+
[
E(Z(x0)|Z) − p∗L(x0;Z)

]
(unknown distributions)

+
[
p∗L(x0;Z) − p∗LU (x0;Z)

]
(unknown mean)

+
[
p∗LU (x0;Z) − p(x0;Z)

]
.

(unknown covariance function)
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The first component represent an error that can not be avoided even if we would know all
finite dimensional distribution functions of Z. The second, third and fourth components
represents errors that can be attributed to losses of information incurred in passing succes-
sively from the first state of knowledge to second, from the second state to the third and
from the third state to the fourth, under consideration that linear predictors have been
chosen.

In Harville (1985), it is shown in more general setting that the first three components are
mutually uncorrelated and conditions under that the fourth component is uncorrelated with
the other are given in this paper. Further, he discussed an approximation of the fourth
component when the unknown parameters of covariance function model are estimated.
This approach was later revisited in Harville and Jeske (1992) and Zimmerman and Cressie
(1992) and recently further developed by Abt (1999).

The previous section gives a basic view to the problem of spatial prediction. The practical
problems are usually more complicated since they are liable to many application specific
constraints. In the cited geostatistical literature, many additional conditions are considered,
as for instance solution of the kriging problem under inequalities, problem of support and
many other.

Let us note to the terminology that the best linear unbiased prediction is also called
ordinary kriging if p = 1 and f1(x) ≡ 1 and universal kriging in the general case (2.24).

Note that all kriging predictors are unbiased and moreover they interpolate given data.
Note that for construction of kriging predictors the assumption of stationarity and isotropy
is not necessary. As long as the first and second moment is known, kriging can be used.

2.2.6. Cokriging and using gradient information

As already discussed, the information available on the study natural phenomenon is rarely
limited to values of a single variable over a set of sample points. The concept of kriging
can be straightforward generalized to handle multivariate problems. The multivariate best
(linear, unbiased) predictor are sometimes referred to as cokriging. Despite an increased
complexity, which is due to the notation involving multiple indices over covariables, there is
only a little novelty from the theoretical point of view. Formally, it suffices to pool all the
random variables representing data into a single Hilbert space and project the predicted
variables onto that space.

A sufficient condition for construction of simple cokriging predictor is knowledge of co-
variances between all observed random variables and covariances between observed and
predicted variables (Chilès and Delfiner, 1999; Cressie, 1991).

In case of universal cokriging, i.e. when trends of covariables under study need to be
considered, the situation is not further more complicated. We must just consider particular
functional dependencies between variables.

From the previous, it clear that there is no problem when incorporating mean square
derivatives of a random field into prediction. The mean and covariance function of mean
square derivatives are just appropriate ordinary derivatives of mean or covariance function
(Section 2.1.4) and therefore the functional dependencies are easily available.

Consider an observable vector of random variables Z = (Z(k1)(x1), . . . , Z(kn)(xn))T ,
where Z(ki)(xi) is assumed to be the kith (partial) mean square derivative of the random
field Z (see (2.11)). Let us denote m = EZ, Σ = cov(Z,ZT ) and let m(x0) = EZ(k0)(x0).
Let us recall that m, m(x0) and Σ are defined as appropriate partial derivatives of mean and
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covariance function of Z (see (2.12) and (2.13)). The BLP of the value of the random field
Z(k0) at location x0 remains formally the same as in case with non-derivate observations
and it is given by (2.30).

An analogous situation is when considering the BLUP (for prediction Z(k0) at the loca-
tion x0). Also the BLUE β̂ of β is given by (2.33), where

F = (f (k1)(x1), . . . ,f (kn)(xn))T ∈ Rn×p.

Examples of an explicite formulation of kriging equations for derivative observations can
be found in Röttig (1996) and Albrecht (1998).

2.3. Optimal design

In the previous section, we have discussed a few very basic possibilities for a prediction of an
unknown value (depending on different states of knowledge about the observed response Z)
available to a practitioner after he or she collected data. On the other hand, the objective
of an experiment is usually known before the data are sampled. Therefore, it is natural to
do an active step already before collecting data and adapt the data-collecting procedure to
a particular problem if possible. The aim is loosely speaking to obtain ”optimal” data for
possibly (but not necessary) ”optimal” procedure.

A rather general characterization of design problems is summarized according to Fedorov
(1996) in the next five assumptions.

1. There are design parameters, i.e. variables x ∈ X ⊂ Rd, which may be controlled.
Usually, d = 2, and in the observing station problem, x = (x1, . . . , xd)T are coordi-
nates of stations and X is a region where these stations may be allocated.

2. There exists a model describing the observed response(s) or dependent variables(s)
Z. More specifically, x and Z are linked together by a model, which may contain
some stochastic components.

3. An experimenter or a practitioner can formulate the quantitative objective function.

4. Once a station or sensor is allocated, the response Z can be observed either con-
tinuously or according to any given time schedule without any additional significant
expense.

5. Observations made at different sites may be correlated.

If Assumptions 4 and 5 are not considered, such a design problem is referred to as standard
design problem. This problem was extensively discussed (see for instance Pukelsheim (1993);
Pázman (1986) and Bandemer (1977)) and the theory is very compact and well developed.

Assumption 4 is related to quite usual case in that the aim is to ensure continuous
monitoring of a data generating process or to allow for point prediction of present or
future states of nature. Environmental monitoring, meteorology and seismology are most
typical areas where this assumption is addressed. This assumption related more to time
dependent observations is, however, not considered here at all and we concentrate only to
spatial meaning of prediction.

Assumption 3 is the point, where the design theory splits in many directions. The
following section gives a very rough overview about possible objective functions.
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2.3.1. Design criteria

Following Müller (2001), the main construction principle for a well designed experimen-
tal plan is as follows. Asserting hypothesis-testing or parameter estimation as the aim of
the experiment, the task remains to take a (possibly given) number of measurements in
a way, that either the power of the test or precision of the estimate is maximized. Addi-
tional requirements such as the unbiasedness of the statistical method, restrictions on the
experimental conditions (e.g. on a certain experimental region, etc.) usually enter as
side-conditions of the optimization problem.

Design criteria for parameter estimation

The main stream of the design theory literature assumes the third state of knowledge (see
page 15) to be the model mentioned in Assumption 2. The aim is to suggest a design which
leads to an effective estimation of the unknown vector of parameters β.

Suppose the standard design problem, i.e.,

Z(x) = f(x)T β + ε

where ε is a zero-mean i.i.d. variable with var(ε) = σ2. How can the goodness of an
estimator of β be measured and compared? How can the information a particular design
serves be described? The key to the problem are the so-called information matrices.

As the observation are uncorrelated, the least squares estimator of β

β̂ = (F T F )−1FZ

coincides with the best linear unbiased estimator of β. The covariance matrix of this
estimator is

var(β̂) = σ2(F T F )−1. (2.35)

The problem is how to choose an discrete design (2.16) (or (2.17)) which minimizes (a
suitable functional of) cov β̂. As ε is i.i.d., repeated observations of Z can be considered
at a particular design point. Thus design (2.16) can be re-written as

Vn =
{ xi

ri

}N

i=1
or more often as Vn =

{ xi

pi

}N

i=1
,

where ri (pi) stands for (relative) number of repetitions of measurements at the location
xi. It means that

∑N
i=1 ri = n and pi = ri/n. Instead of (2.35), it is more convenient,

nevertheless equivalent, to consider the information matrix

M (Vn) =
1
n

FF T =
N∑

i=1

pif(xi)f(xi)T ,

where heteroscedascity due to the repeated observations is taken into account. Note that
a design defined this way is a probability measure on the set X.
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Ordering of designs

The aim is to maximize the matrix M(Vn) in some sense. We can use the so-called Loewner
ordering <L of positive definite matrices. We write A <L B if B − A is positive definite,
for A,B ∈ PDn. It means, the Loewner ordering is a semi-ordering with respect to the
definition of positive definiteness. Note that another type of ordering (Schur ordering) is
discussed in Pázman (1986, Chapter 3). The so-called Kiefer ordering is introduced by
Pukelsheim (1993).

The design V 1
n is said to be (uniformly) better than the design V 2

n (write V 2
n < V 1

n ) if
M(V 2

n ) <L M(V 1
n ). However, since the Loewner ordering is unfortunately only a semi-

ordering, non-comparable matrices (and therefore non-comparable designs) can be easily
found. Thus, we have to introduce a suitable scalar functional Ψ on the space of positive
definite matrices to arrive at a complete ordering of candidate designs.

The reasonable condition such a functional Ψ must fulfill is monotony with the Loewner
ordering, i.e.,

if A <L B then Ψ(A) < Ψ(B). (2.36)

The functional with the property (2.36) is referred to as optimality criterion. Subsequently,
the design

V ∗
n = arg min

Vn∈Vn

Ψ(M (Vn)) (2.37)

is called Ψ−optimal.
Let us mention the most important optimality criteria. In the following, W ⊂ Rd denotes

the so-called prediction area, i.e. the set for which the estimation of trend is required.
Furthermore, λmax(A) stands for the maximal eigenvalue of the matrix A.

D-optimality, i.e., Ψ(M (Vn)) = detM−1(Vn),
A-optimality, i.e., Ψ(M (Vn)) = tr M−1(Vn),
E-optimality, i.e., Ψ(M (Vn)) = λmax(M−1(Vn))
G-optimality, i.e., Ψ(M (Vn)) = sup

x∈W
f(x)T M−1(Vn)f(x),

I-optimality, i.e., Ψ(M (Vn)) =
∫

W
f(x)T M−1(Vn)f(x)dx,

C-optimality, i.e., Ψ(M (Vn)) = cT M−1(Vn)c, c ∈ Rp.

The criteria above have an intuitive interpretation. For instance, if ε is Gaussian and given
a confidence level α, a D-optimal design minimizes the volume of the confidence ellipsoid
for β (see e.g. Pázman (1986) and Müller (2001) for further interpretation details on the
other criteria).

Approximative design

The previous paragraph provides a basic view to the standard optimal design problem.
However, the approach has many lacks. One of them is that discrete designs are not closed
to some simple operations. Clearly, the sum of two particular n−points discrete designs
can, for instance, be a 2n-points discrete design. Therefore, the concept has been further
generalized and the so-called approximative design has been introduced. An approximative
design is a probability measure ξ with supporting set belonging to X. The information
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matrix is defined as
M(ξ) =

∫
X

f(x)f(x)T ξ(dx).

This formulation has many advantages. It can be seen that the space of information
matrices forms a convex set and information matrices depend linearly on design points.
If the optimality criteria are convex (and fortunately many criteria are convex), some
general theorems from the theory of optimization can be used. In the design theory, the
equivalence theorem of Whittle and the theorem of Kiefer and Wolfowitz became famous
(see e.g. Näther (1985); Pukelsheim (1993) and Fedorov (1996)).

In practice, construction of an optimal design is usually done iteratively. Starting from
an initial design, this design is improved in every iteration. There is a huge amount of liter-
ature, where the convergence of iterative procedures is discussed and a lot of modifications
supposed. Let us cite Pázman (1986) and Bandemer (1977) inter alia. The whole concept
of the standard design problem was generalized by Pukelsheim (1993).

Design criteria for parameter estimation - correlated observations

Suppose the following linear model (cf. (2.19))

Z(x) = f(x)T β + S(x), x ∈ D.

The covariance function C(·, ·) of S(·) is supposed to be mean square continuous. The aim
of a candidate design is the best possible estimation of the unknown vector of parameters
β.

Similarly to the previous section, we can take the best linear unbiased estimator of
β, which is given by the equation (2.33). The variance (2.34) of the estimator (2.33) is
a reasonable criterion of optimality. Note that the continuity of the covariance function
C(·, ·) immediately avoids repeated observations, since Σ in (2.34) is assumed to be regular.

We can of course compare designs by means of the Loewner ordering. Unfortunately, in-
formation matrices M(Vn) = (var β̂)−1 are no longer linear in the design points. Moreover,
the dependence on the particular design is usually very complex due to the inverse of the
covariance matrix in (2.34). We can formally define optimality criteria as in the previous
section and we can consider the following optimization problem

V ∗
n = arg min

Vn∈Vn

Ψ(M(Vn)),

which has not too much common with (2.37) besides the notation. For instance, convexity
of Ψ is not very helpful anymore. In the most studies, authors try to imitate the iterative
construction methods mentioned in the previous section. An example of this heuristic
procedures was proposed by Brimkulov (see Näther (1985); Müller (2001) and Fedorov
(1996)). Unfortunately, there is no proof of convergence of this algorithm.

Another approach to the optimal design for the BLUE (the so-called method of perturbed
covariance matrices) was developed by Müller (2001) and recently further adapted for
prediction by Holtmann (2001).

Design criteria for prediction

If the goal is a prediction of a random field at a given number of points, it is trivial that
the optimal design (without restriction on the number of support points) is realized when
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observations of the field are taken exactly at the sites of interests. However, the number
of observations is typically much less than number of locations where is to predict. The
prediction area can be even a continuous set. In the case of prediction, design criteria can
be based on the mean square error of a particular predictor. The optimality of a design
can be taken in regard to the value of (2.22) or (2.23).

It can be seen that an exhaustive search over all potential designs is unfeasible. If
the number of points of interest is not large some heuristic exchange algorithms (Barnes,
1989; Gao et al., 1996) or fast cooling can be used (Sacks and Schiller, 1988). Relative
performance of the kriging predictor on regular triangular, hexagonal and square grids is
investigated by Yfantis et al. (1987).

2.3.2. Analytical form of optimal designs for some covariance functions

One of the rare cases, where the explicite form of the optimal design is known, is due to
Abt (1992). He studied Gaussian processes in the interval W = [0, 1] with three possible
covariance functions, namely, the linear covariance function

Cl(x, y) = 1 − (1 − ρ)|x− y|, 0 < ρ < 1,

covariance function of the Brownian motion

Cm(x, y) = min(x, y)

and the Brownian bridge
Cb(x, y) = min(x, y) − xy.

He considered ordinary and simple kriging model and found the exact optimal designs
regarding to the D-criterion, integrated mean square error and maximum mean square error.
These optimality criteria are denoted here as mmseok, mmsesk, imseok, and imsesk with an
obvious interpretation. Note that only the linear covariance function is the stationary one
and none of them is differentiable.

The proofs are purely analytical and they are enabled because of the unique structure of
the covariance matrix, which inverse is in a tridiagonal form with a possible entry in the
lower left and upper right corner.

For n ≥ 2, let Vn be a discrete n-points design (2.16) with 0 ≤ x1 < x2 < . . . < xn ≤ 1.
The optimal choice of xi is summarized in the following table.

- Cl Cm Cb

D (i− 1)/(n − 1) i/n i/(n + 1)
mmseok (4i− 3)/(4n − 2) (4i − 3)/(4n − 2) ∗
imseok (3i− 2)/(3n − 1) (3i − 2)/(3n − 1) ∗
mmsesk - 4i/(4n + 1) i/(n + 1)
imsesk - 3i/(3i + 1) i/(n + 1)

Table 2.1.: Discrete optimal designs for some covariance functions.

Considering the Brownian bridge, it can be shown that any design satisfying 0 < x1 <
. . . < xn < 1 and xi − xi−1 = 1/n for i = 2, . . . , n is optimal with respect to the imseok as
well as to the mmseok criterion. This is denoted as ” ∗ ” in Table 2.1.
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For the linear covariance function Cl, Abt (1992) states that optimal designs with respect
to the both imseok and mmseok criterion are equispaced in the interval [0, 1], but the
difference between design points depends basically on t1, which cannot be found explicitely.
This is denoted as ” − ” in Table 2.1.
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3. More about covariance functions

Covariance functions play a crucial role in the analysis of random fields. For purposes of
modeling, it is important that a variety of covariance functions with different additional
properties is available. Unfortunately, especially many books written mainly for an applied
audience discuss only a few covariance function models even if a lot of other ones are known
for many years.

Being far from complete, let us first recall some necessary and sufficient conditions, which
help to decide whether some candidate function is or is not a covariance function. The
chapter follows with a more detailed listing of properties of some examples of differentiable
covariance functions.

3.1. Properties and construction of covariance functions

3.1.1. Characterization of covariance functions

Let Z be a real second order random field. Its covariance function C has the property that

0 ≤
n∑

i=1

n∑
j=1

aiC(xi,xj)aj (3.1)

for all n ∈ N and for any x1, . . . ,xn ∈ Rd and a1, . . . , an ∈ R. This can easily be seen
from var{∑n

i=1 aiZ(xi)} which is equal to the right side of (3.1). A function satisfying
(3.1) is said to be positive semidefinite. The condition (3.1) is necessary and sufficient for
the existence of a second order random field with the covariance function C. The necessity
is already noted above. The sufficiency follows by showing that for a given C a Gaussian
random field exists with this covariance function.

Suppose Z is a second order stationary random field on Rd with a covariance function
C. Then C must satisfy

C(0) ≥ 0,
C(x) = C(−x) and

|C(x)| ≤ C(0).

3.1.2. Spectral representation

In this section, a representation of second order stationary and isotropic random fields by
means of the Stieltjes-Fourier integral will be given. Spectral methods are a powerful tool
for studying random fields and they simplify the derivation of many formulae as it will
be seen later. In Fourier analysis, it is more natural to consider complex-valued functions
rather than restricting oneself to real-valued functions. Thus, let us suppose that Z is a
complex valued second order stationary random field on Rd with a covariance function C.
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Bochner’s theorem

Theorem 1 (Bochner) A continuous function C : Rd → C is positive definite if, and
only if it can be expressed in the form

C(x) =
∫

Rd

exp (iωT x)F(dω), (3.2)

where F is a non-negative finite measure (cf. e.g. Stein (1999) or Gikhman and Skorokhod
(1996)).

In the equation (3.2), dω = dω1 . . . dωd denotes a volume element of the d-dimensional
space Rd. The prerequisite that F is a non-negative finite measure means that F(∆) is
a non-negative functional on the d-dimensional set ∆ determined, in particular, for all
d-dimensional intervals ∆ = (∆1, . . . ,∆d). Since F is a finite measure, it must hold

F(∆1 ∪ ∆2) = F(∆1) + F(∆2), for all disjoint Borel sets ∆1,∆2,

and
F(Rd) <∞.

Following Yaglom (1987a, p.329), the equation (3.2) can be re-written as

C(x) =
∫

Rd

exp (iωT x)dF(ω), (3.3)

where F(ω) is a non-negative bounded nondecreasing function, which is continuous every-
where on the left. The function F(ω) in (3.3) is called spectral distribution function of the
stationary random field Z. If spectral distribution function F(·) is absolutely continuous,
the function f(ω) defined by

F(u) =
∫ u

−∞
f(ω)dω

is called the spectral density. We can write

C(x) =
∫

Rd

exp (iωT x)f(ω)dω.

This means that C(x) is the Fourier transform F of f(ω), Ff = C. If the covariance
function C is absolutely integrable on the Rd, i.e.

∫
Rd |C(x)|dx <∞, we have the inversion

formula
f(ω) =

1
(2π)d

∫
Rd

exp (−iωT x)C(x)dx.

It means, f(ω) is the inverse Fourier transform F−1 of the covariance function C(x),
F−1C = f.

Bochner’s theorem for isotropic random fields

If a second order stationary random fields is also isotropic then the equation (3.3) has
a special form. Note that the isotropy of a covariance function implies the isotropy of its
spectral density, i.e. f(ω) = f(ω), for ω = ||ω||. It is shown e.g. in Gikhman and Skorokhod
(1996) by a straightforward computation that the following theorem holds.
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Theorem 2 A real function C(r), (0 ≤ r < ∞) is a continuous isotropic covariance
function of a random field on Rd (d ≥ 2), if and only if it can be represented as

C(r) = 2(d−2)/2 Γ(d/2)
∫ ∞

0
(ur)−(d−2)/2 J(d−2)/2(ur)dG(u), for all r ∈ [0,∞), (3.4)

where G(u) is a nondecreasing function bounded on [0,∞) and G(0) = 0. Here, Jν(·) stands
for the Bessel function of the first kind of the order ν.

The right side of equation (3.4) is also known as the Hankel transform of the order (d−2)/2
of G. Let us note that the integrand in (3.4) is itself a covariance function (cf. Section 3.2.3).
From Theorem 2, it also follows that any isotropic covariance function can be expressed
as a scale mixture of certain (the so-called J-Bessel) covariance functions. Particularly, for
d = 2, the formula (3.4) has the following simple form

C(r) =
∫ ∞

0
J0(ur)dG(u),

and for d = 3

C(r) = 2
∫ ∞

0

sin(ur)
ur

dG(u).

Lower bounds

As a consequence, Theorem 2 yields the following statements about lower bounds of a
covariance function (see Yaglom (1987a)). If C(·) is a continuous isotropic correlation
function on Rd then

d = 1 : C ≥ inf
s≥0

cos(s) = −1,

d = 2 : C ≥ inf
s≥0

J0(s) ≈ −0.40276,

d = 3 : C ≥ inf
s≥0

sin(s)
s

≈ −0.21723.

Plancherel theorem

For a function f : Rd → R, let us denote by f ∈ Lp(Rd) the fact that

||f ||p :=
( ∫

Rd

|f(x)|pdx
)1/p

<∞.

We will mainly use absolutely integrable functions, i.e. functions from L1(Rd), and square
integrable functions, i.e. functions that are elements of L2(Rd). Note that since Rd is not
finite, L1(Rd) � L2(Rd) and also L2(Rd) � L1(Rd).

In the next chapter, the following classical result from the spectral analysis will be used
(cf. e.g. Kuttler (1998)).

Theorem 3 (Plancherel) For f ∈ L2(Rd) ∩ L1(Rd), it holds

||f ||22 = (2π)−d ||Ff ||22 = (2π)d ||F−1f ||22.
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Convolution theorem

Let f, g ∈ L1(Rd). Define the convolution f ∗ g : Rd → R as

f ∗ g(x) =
∫

Rd

f(x − y)g(y)dy, x ∈ Rd.

The function f ∗ g is an element of L1(Rd) and ||f ∗ g||1 ≤ ||f ||1||g||1.
Theorem 4 Let f, g ∈ L1(Rd). Then

F (f ∗ g)(x) = Ff(x)Fg(x) and
F−1(f ∗ g)(x) = (2π)d F−1f(x)F−1g(x)

for almost every x ∈ Rd. If moreover F−1(f ∗ g) ∈ L1(Rd) then

f ∗ g = (2π)dF (F−1fF−1g) almost everywhere. (3.5)

Analogous claims and its generalizations can be found in e.g. Kuttler (1998).

3.1.3. Construction of covariance functions

Fourier transform of a non-negative function From the Bochner’s theorem, it follows im-
mediately that the Fourier transform (3.3) of any non-negative function is positive definite.
The Bochner’s theorem is therefore often used as a criterion for positive definiteness.

Rescaling Rescaling of the domain C(x) = C(αx) is a trivial transformation on the space
of covariance functions. The parameter α controls the so-called range of the covariance
function. Anyway, if changing the scale and considering diverse derivative fields, some care
is needed. A change of the scale of a underlying fields means also a change of the variance for
a particular derivative field. In Section 3.2, exact dependencies of the variance of derivative
fields on the scale parameter are given for some particular examples of covariance functions.

Adding and multiplying Any linear linear combination of positive definite functions with
non-negative scalars ai yields a positive definite function. The product of two real-valued
positive definite functions is positive definite.

Reduction of dimensionality A valid model C for a stationary isotropic random field in
Rd is valid also in Rd−1.

Pointwise limit If C1, C2, . . . are positive definite and if the sequence Cn converges point-
wise to a function C as n→ ∞, then C is positive definite. This follows directly from the
definition of positive definite functions (3.1).

Turning band The turning band operator transforms a stationary isotropic correlation
function Cd valid in Rd, d ≥ 3, into

Cd−2(t) = Cd(t) + (d− 2)−1h
∂

∂t
Cd(t),

which is valid in Rd−2 (Gneiting, 2000). Further, Cd ∈ Φd, if and only if Cd−2 ∈ Φd−2.
Recall from Section 2.1.3, that Φd is a class of covariance functions of a stationary and
isotropic random field on Rd.
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3.1.4. Random fields and differentiability

For a covariance functions C of a sufficiently differentiable stationary random field with a
spectral density f, it is easy to see that

∂|k|

∂xk1
1 . . . ∂xkd

d

C(x) =
∫

Rd

(iω1)k1 . . . (iωd)kd exp (iωT x)f(ω)dω (3.6)

=:
∫

Rd

exp (iωT x) f (k)(ω)dω.

Note that from this spectral formulation, it can be seen that the operator of differentiation
can be interpreted as a high-pass filter. The frequencies near zero get small weights in
comparison to high frequencies.

If Z is moreover isotropic, it follows immediately from (2.15) and (3.6) that

var(Z(k)) =
∫

Rd

ω2k1
1 . . . ω2kd

d f(ω)dω. (3.7)

The last equation will be used several times in this section and it will be applied on
some examples of covariance functions. Although the equation (2.15) can be directly used
for establishing the variance of Z(k), such a calculation is sometimes very tedious. This
calculation is typically straightforward using equation (3.7), at least for the given examples.

Differentiability and the property to be a covariance function on a space of higher di-
mension has an interesting consequence. If C(·) is a covariance function of a stationary and
isotropic random field on Rd, which is n times mean square differentiable (it means C(·) is
2n times differentiable at origin), then C has 2n+ (d− 1)/2� continuous derivatives away
from the origin. Here, ”x�” stands for the greatest integer less or equal to x (see Yaglom
(1987a) and Gneiting (1999b)).

3.2. Examples of covariance functions

In the following paragraphs, several examples of (classes of) covariance functions will be
introduced. The significant properties, especially differentiability will be discussed. Ex-
plicite formulas of derivatives of the covariance functions are given in a short form. Some
formulas are later used in Chapter 4. The listing of the covariance functions presented here
is of course not complete. Here, we restrict ourselves only to some differentiable models.
Some other covariance functions can be found e.g. in Yaglom (1987a); Chilès and Delfiner
(1999).

3.2.1. Matérn class

Perhaps the most important family of covariance functions is the class introduced by
Matérn, whose work appeared in 1960 even though some particular cases of this class
were suggested before. Until now, it is known under various names. The class is called
the K-Bessel model (Chilès and Delfiner, 1999), the autoregressive model (Gaspari and
Cohn, 1999), the von Kármán or the Whittle-Matérn model (Gneiting, 1999a). The class
was successfully used in many fields including meteorology (Handcock and Wallis, 1994),
oceanography, hydrology etc. (see Chilès and Delfiner (1999); Stein (1999) and Gneiting
(1999a) for further references). Recently, properties of the Matérn class were investigated
by Stein (1999) who also recommended it for use.
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3. More about covariance functions

Definition The Matérn covariance function Kν(r) in the basic form can be defined by the
following equation

Kν(r) = φ(αr)νKν(αr), r ≥ 0, φ > 0, α > 0, ν > 0, (3.8)

where Kν(·) is the modified Bessel function of the second kind of the order ν.

Spectral density The Matérn class can be equivalently introduced by its d-dimensional
spectral density

f(ω) =
φ 2ν−1Γ(ν + d

2)α2ν

πd/2(α2 + ω2)ν+d/2
, ω = ||ω||. (3.9)

Since the function f(ω) is positive for all ω ∈ R, its Fourier transform given by (3.8) (cf.
e.g. Yaglom (1987a)) is positive definite. In (3.9), Γ(·) denotes the gamma function and
|| · || is the Eucleidean norm in Rd..

Differentiability From the spectral representation follows that Z is m times mean square
differentiable if and only if ν > m, since

∫∞
−∞ ω2mf(ω)dω <∞ if and only if ν > m.

Further important properties The Matérn covariance function owes its popularity to its
flexibility, since its behavior near the origin is like r2ν if ν is not an integer and and like
r2ν log(r) if ν is an integer (Stein, 1999).

Special cases If ν = n + 1
2 , n ∈ N, then Kν(r) can be written by means of elementary

functions (see Gradstein and Ryshik (1981a) f. 8.468).

Kn+ 1
2
(r) = φ

√
π

2
e−αr

n∑
k=0

(n+ k)!
k!(n − k)!2k

(αr)n−k.

Moreover, if n = 0, we have the well known exponential covariance function

K 1
2
(r) = Ce−αr, C > 0,

which is often used in geostatistical applications (Chilès and Delfiner, 1999; Cressie, 1991).

Suitable parameterization The form of the Matérn covariance function given in (3.8)
seems sometimes not suitable because the function becomes flatter as ν increases. In Hand-
cock and Wallis (1994), the authors recommend an alternative parameterization, which is
very useful because of its clear and intuitive interpretation.

For η = (σ2, ν, ρ), ν > 0, ρ > 0, they set

Kη(r) =
σ2

2ν−1Γ(ν)

(
2ν1/2r

ρ

)ν

Kν

(
2ν1/2r

ρ

)
, r ≥ 0. (3.10)

The parameter ν controls differentiability or local behavior of the underlying process Z as
before, σ2 is simply the variance of Z(x) and ρ can be interpreted as effective or practical
range of an isotropic covariance function considered in geostatistical literature (Chilès and
Delfiner, 1999; Cressie, 1991). Another remarkable fact is that the parameterization (3.10)
does not depend on the dimension d.
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3.2. Examples of covariance functions

Derivatives of Matérn class covariance functions in R Derivatives of the Matérn class
covariance functions can be calculated directly using formulas for the nth derivatives of
product

du

dzu
(zνKν(z)) =

u∑
i=0

(
u

i

)
du−i

dzu−i
zν · d

i

dzi
Kν(z),

rules for derivatives of composite functions (see Gradstein and Ryshik (1981b) f. 0.42 and
0.43) and applying an iterative formula for differentiation of the Bessel Kν function

di

dzi
Kν(z) =

(−1)i

2i

i∑
j=0

(
i

j

)
Kν−i+2j(z)

given here for convenience (see Prudnikov et al. (1990)). Thus, for ν� ≥ k, ν� ≥ l, where
k, l ∈ N and for |t2 − t1| = r > 0, using formulas above, can be shown that

cov(Z(k)(t1), Z(l)(t2)) = (−1)k
dk+l

drk+l
Kν(r)

= (−1)kφ αk+l dk+l

dzk+l
(zνKν(z)) [αr]

= (−1)kφ αk+l


k+l∑

i=0

i∑
j=0

(
k+l
i

)(
i

j

)
(−1)i

2i

dk+l−i

dzk+l−i
zν · Kν−i+2j(z)


 [αr]

= (−1)kφ
k+l∑
i=0

i∑
j=0

(
k+l
i

)(
i

j

)
(−1)i

2i
αν+i Γ(ν + 1)

Γ(ν−k−l+i+1)
rν−k−l+iKν−i+2j(αr) (3.11)

Another formula For some calculations or for the implementation in computer routines,
the formula (3.11) does not need be a good one. From the equation

d

dr
[(αr)νKν−k(αr)] = −α [(αr)νKν−k−1(αr) − k(αr)ν−1Kν−k(αr)

]
,

which is a trivial consequence of differential formulae for the Bessel functions, (see Gradstein
and Ryshik (1981a), formula 8.486.14) and by its recursive application, the following more
comprehensive formula can be found

du

dru
[(αr)νKν(αr)] = αu

�u
2
�∑

i=0

Ci(αr)ν−iKν−u+i(αr).

The coefficient Ci does not depend on ν for all i ∈ {0, . . . , u
2 �} and, in particular, C0 =

(−1)u. Their exact form is given by the following lemma.

Lemma 3.1

du

dru
[rνKν(r)] =

�u
2
�∑

i=0

(−1)u+i

(u
2 �
i

)
(2u+1

2 � − 1)!!
(2u+1

2 �−1−2i)!!
rν−iKν−u+i(r) (3.12)
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3. More about covariance functions

or equivalently

du

dru
[rνKν(r)] =

u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−1−2i)!!
rν−iKν−u+i(r), for u even,

du

dru
[rνKν(r)] =

u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u− 2i)!!
rν−iKν−u+i(r), for u odd.

Proof : By induction over u. For the exact implementation see Appendix A.2. �

Thus, for ν� ≥ k, ν� ≥ l, where k, l ∈ N and for |t2 − t1| = r > 0, using the formulas
above, we have an alternative formula for the computation of covariances of derivatives
under the Matérn model

cov(Z(k)(t1), Z(l)(t2)) = (−1)k
dk+l

drk+l
Kν(r)

= (−1)lφαk+l

�k+l
2

�∑
i=0

(−1)i
(k+l

2 �
i

)
(2k+l+1

2 � − 1)!!
(2k+l+1

2 �−1−2i)!!
(αr)ν−iKν−k−l+i(αr)

Covariance of derivatives in the origin An important question is, what is the covariance
of two derivative random fields, which are observed at the same location. In particular,
what is the variance of a derivative random field. To calculate easy values of a derivative
of the Matérn covariance function in the origin the equation (3.6) can be used. From the
spectral representation of the Matérn class covariance function and using formula 3.251.11
in Gradstein and Ryshik (1981b), we obtain after some algebraic operations (see Appendix
A.4, page 90)

cov(Z(k)(x), Z(l)(x)) = (−1)|k|
∂|k+l|

∂xk1+l1
1 . . . ∂xkd+ld

d

Kν(x)
∣∣∣∣
x=0

=

=

{
(−1)

|l|−|k|
2 φ2ν−1π−

d
2α|k+l|Γ(ν− |k+l|

2 )
∏d

j=1 Γ(kj+lj
2 + 1

2 ), if k+l is even,
0, if k+l is odd,

(3.13)

for k = (k1, . . . , kd) and l = (l1, . . . , ld) multi-indices, such that ν� ≥ |k|, ν� ≥ |l|.

Variance of derivative random field in Rd By setting k = l in (3.13) we get the variance
of Z(k)

var(Z(k)(x)) = φ
2ν−1α2|k|

πd/2
Γ(ν − |k|)

d∏
i=1

Γ(ki +
1
2
). (3.14)

Notice from (3.14) the dependence of var(Z(k)(x)) on the scale parameter α and also

lim
ν→|k|

var(Z(k)(x)) = ∞.
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(a) The covariance function of the underlying
process. The parameters values ν are 10, 2.5,
1, 0.5 and 0.2 (from top).
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(b) The cross-covariance function of the original
process and its 1st derivative for ν = 1.2 (solid),
ν = 1.5 (dashed), ν = 2.5 (dash-dot) and ν =
10 (dotted line).
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(c) The covariance function of the 1st derivative
process for ν = 1.2 (solid), ν = 1.5 (dashed),
ν = 2.5 (dash-dot) and ν = 10 (dotted line).
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(d) The cross-covariance function of the 1st and
the 2nd derivative process for ν = 2.2 (solid),
ν = 2.5 (dashed), ν = 3.5 (dash-dot) and ν =
10 (dotted line).

Figure 3.1.: Plots of Matérn class covariance functions and its derivatives under the param-
eterization (3.10). In all cases, ρ = 1 and σ2 = 1.

Implementation notes Although effective subroutines, which calculate all kinds of the
Bessel functions are available and they are a standard part of many mathematical pack-
ages, some numerical problems could appear, when computing the Matérn class covariance
function near origin. The Bessel K−function diverges in the origin. Thus, for small values
of r, the formulas like (3.11) and (3.13) could be numerically very unstable when using this
standard subroutines. This could happen more often for higher derivatives. I would rec-
ommend to check the behavior of the functions for a particular data set before used (or to
define a trash-hold value, under which the distances are set equal zero). Another possibility
is to approximate the Matérn model near origin by another stable formula. In particular,
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3. More about covariance functions

it explains also why the equation (3.13) is given separately from (3.11) and (3.12).

3.2.2. Gaussian covariance function

An infinitely differentiable covariance function is the Gaussian covariance function

K(h) = σ2e−α2||h||2. (3.15)

Some authors call the model squared exponential (Handcock and Wallis, 1994), maybe to
weaken its seemingly importance associated with the personality of C. F. Gauss. Actually,
the model plays no central role in geostatistics. The parameter σ2 is simply the variance of
the underlying process, the parameter α is linked with geostatistical (or practical) range.
Following Chilès and Delfiner (1999), the value of the range is about 1.73/

√
α.

The Gaussian covariance function can be seen as the limiting case of the Matérn class
for ν → ∞. The Gaussian model can be defined in the space Rd for arbitrary d ∈ N.

The Gaussian model has been used in some studies in geostatistics (e.g. Röttig (1996);
Albrecht (1998)), but today it is already considered as not suitable because of its big
regularity. The predictor based on this covariance function typically underestimates the
prediction error as shown in Stein (1999) and it is usually more tolerant to a misspecification
of covariance function model than other models. Moreover, as the model is infinitely
differentiable, it is not suitable for modeling of physical processes (Stein, 1999).

However, since the Gaussian covariance function belongs to the Matérn class, some at-
tention is paid to this model in Chapter 5. The reason is not to recommend the Gaussian
model for data analysis, but to seek for analogies to the Matérn class which can be used
for a construction of an optimal design.

Spectral density The spectral representation can also derived from the spectral represen-
tation of the Matérn class as ν → ∞. The limit yields (see Stein (1999))

f(ω) =
σ2

(2
√
πα)d

exp
(− ω2

4α2

)
, ω = ||ω||. (3.16)

Derivatives of the Gaussian covariance function in R1

Lemma 3.2 It holds

dn

dhn
e−α2h2

= (−1)n e−α2h2
αnn!

�n
2
�∑

k=0

(−1)k
1

(n− 2k)!k!
(2αh)n−2k (3.17)

= (−1)n e−α2h2
αnHn(αh), (3.18)

where Hn(·) stands for the Hermite polynomial of the nth order.

Proof : The equation (3.17) can be obtained by induction (cf. formula 0.432.2 in Gradstein
and Ryshik (1981b)). The following equation (3.18) can be directly derived from the
definition of the Hermite polynomial of the nth order (see e.g. Gradstein and Ryshik
(1981a) formula 8.950). �
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3.2. Examples of covariance functions

Derivatives of the Gaussian covariance function in Rd The generalization of Lemma 3.2
to higher dimensions is trivial, since the Gaussian model is separable. A covariance function
C : Rd → R is called separable if

C(h) =
d∏

i=1

Ci(hi), (3.19)

where hi is the ith component of the vector h ∈ Rd and Ci(·) is a covariance functions in
R1 for all i ∈ {1, . . . , d}.

From (3.19) it follows that

∂|n|

∂hn1
1 ∂hn2

2 . . . ∂hnd
d

exp(−α2||h||2) =
d∏

i=1

dni

dhni
i

exp(−α2h2
i )

= (−1)|n| exp(−α2||h||2) α|n|
d∏

i=1

Hni(αhi), (3.20)

where |n| ≡ n1 + n2 + . . .+ nd and || · || is the Euclidean norm on Rd.

Variance of derivative random field in Rd It follows from (3.20) and from the properties
of the Hermite polynomials that

cov(Z(k)(x), Z(l)(x)) = (−1)
|l|−|k|

2 σ2 α|k+l|
d∏

i=1

(ki + li)!
((ki + li)/2)!

(3.21)

and therefore

var(Z(k)(x)) = σ2 α2|k|
d∏

i=1

(2ki)!
ki!

. (3.22)

3.2.3. J-Bessel class

Definition Previous examples of covariance functions are valid on Euclidean space of any
dimension and therefore they must be positive everywhere (cf. inequalities in Yaglom
(1987a, p. 356)). Covariance functions, which exist only on spaces of certain dimension,
can generally change their sign. This is the case of the following isotropic and differentiable
class. The J-Bessel class (Chilès and Delfiner, 1999, p. 93) or simply the Bessel class on
Rd is defined as follows

Kν(r) = φ (αr)−νJν(αr) ν ≥ (d− 2)/2, φ > 0, α > 0, r ≥ 0. (3.23)

Here, Jν stands for the Bessel function of the first kind of the order ν. This model is very
regular and probably only of theoretical interest. The differentiability is shown later in
the text. If ν = (d − 2)/2, the model is positive definite since it is the Hankel transform
(3.4) of the spectral distribution function G with the unit mass concentrated on one point
u = α. For an arbitrary ν ≥ (d− 2)/2, the positive definiteness is shown in Yaglom (1987a,
p. 367). Since the spectral density (3.24) of the model is everywhere nonnegative, the
function (3.23) is positive definite.
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3. More about covariance functions

Spectral density The d-dimensional spectral density of the J-Bessel class is

f(ω) =

{
φ(α2−ω2)ν−d/2

2νπd/2α2νΓ(ν+1−(d/2))
for ω = ||ω|| < α

0 otherwise.
(3.24)

Special cases For some particular values of parameter ν, we have covariance functions
that are known also under another names.

For ν = −1
2 (i.e. the model is valid in R1 only), the equation (3.23) reduces to the cosine

covariance function
K− 1

2
(r) = φ cos(αr).

For ν = 1
2 , we obtain the cardinal-sine model

K 1
2
(r) = φ(αr)−1 sin(αr).

The cardinal sine model is a valid covariance function in R3, whence in all spaces of lower
dimension, but not in R4.

Covariance of the derivative random field Z(k) Analogously to the Matérn class, the
covariance of the two derivative random field, which are observed at the same location can
be calculated using spectral representation. This demonstrates that the J-Bessel class is
infinitely differentiable simultaneously. Using for instance the formula 2.2.4.8 in Prudnikov
et al. (1996), one gets after some algebraic operations

cov(Z(k)(x), Z(l)(x)) = (−1)|k|
∂|k+l|

∂xk1+l1
1 . . . ∂xkd+ld

d

Kν(x)
∣∣∣∣
x=0

=

=


(−1)

|l|−|k|
2 φπ−

d
2

α|k+l|

2νΓ(ν+ |k+l|
2

+1)

∏d
i=1 Γ

(
ki+li

2 + 1
2

)
if k+l is even

0 if k+l is odd
(3.25)

for arbitrary multi-indices k, l ∈ Nd
0 and ν ≥ −1

2 . Thus, the kth derivative random field
Z(k) always exists for all k and its variance equals

var(Z(k)(x)) = φα2|k| 2−ν π−
d
2

1
Γ
(
ν + |k| + 1

) d∏
i=1

Γ
(
ki +

1
2
)

(3.26)

Derivatives of J-Bessel class covariance function in R Similarly to the Matérn class, we
have two equivalent forms for calculation of derivatives of the J-Bessel model. At first, the
direct way uses formulas for the nth derivatives of a product

du

dzu

(
z−νJν(z)

)
=

u∑
i=0

(
u

i

)
du−i

dzu−i
z−ν · d

i

dzi
Jν(z),

rules for derivatives of a composite function (see Gradstein and Ryshik (1981b) f. 0.42 and
0.43) and an iterative formula for differentiation of the Jν -function (see e.g. Prudnikov
et al. (1990))

di

dzi
Jν(z) =

1
2i

i∑
j=0

(−1)j
(
i

j

)
Jν−i+2j(z).
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3.2. Examples of covariance functions

Thus, for |t2 − t1| = r > 0, u = k + l, from formulas above follows that

cov(Z(k)(t1), Z(l)(t2)) = (−1)k
dk+l

drk+l
Kν(r)

= (−1)kφαk+l dk+l

dzk+l

(
z−νJν(z)

)
[αr]

= (−1)kφαk+l


 u∑

i=0

i∑
j=0

(
k+l
i

)(
i

j

)
(−1)j

2i

dk+l−i

dzk+l−i
z−ν · Jν−i+2j(z)


 [αr]

= (−1)kφ
k+l∑
i=0

i∑
j=0

(
k+l
i

)(
i

j

)
(−1)j

2i
α−(ν−i)Oi r

−(ν+k+l−i) Jν−i+2j(αr) (3.27)

where

Oi =
k+l−i−1∏

m=0

−(ν+m), for ν ≥ −1
2

or Oi =
Γ(−ν + 1)

Γ(−ν−k−l+i+1)
, for ν ≥ −1

2
, ν ∈ R \ N0.

A more elegant formulation for derivatives of the J-Bessel covariance function is given by
the following lemma (cf. also Lemma 3.1 with an analogous statement about the Matérn
class).

Lemma 3.3

du

dru

[
r−νJν(r)

]
=

�u
2
�∑

i=0

(−1)u+i

(u
2 �
i

)
(2u+1

2 � − 1)!!
(2u+1

2 �−1−2i)!!
r−(ν+i)Jν+u−i(r)

or equivalently

du

dru

[
r−νJν(r)

]
=

u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
r−(ν+i)Jν+u−i(r), for u even

du

dru

[
r−νJν(r)

]
=

u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i)!!
r−(ν+i)Jν+u−i(r), for u odd.

Proof : By induction for u even and odd (see Appendix A.3). �
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Figure 3.2.: Plots of the J-Bessel class covariance function (3.23) for φ = 1 and α = 1.
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3.2.4. Differentiable covariance functions with compact support

For many applications, a compact support can be a reasonable property of a covariance
function, for mainly computational reasons. Typically, vanishing correlations beyond a cut-
off distance can reduce computational burden of kriging. It also enable the use of efficient
sparse matrix techniques. Finally, the setup discussed in the next chapter can be used in a
non-limiting sense considering covariance fuctions with compact support.

Exchange based algorithms are used in optimal design problems, where the number of
observations is given (Aspie and Barnes, 1990; Gao et al., 1996). These algorithms can be
the only way how to explore the behavior of complex (costs related) criteria. Assuming
compact support of a covariance function, the kriging predictor changes only locally when
one observation is picked up or put in a design. Thus, compact support is highly desirable
in this case. Another point is that stochastic simulation of random fields can be proceeded
faster.

Recently, big effort was put in a survey of compactly supported covariance functions (see
Wendland (1995); Gaspari and Cohn (1999); Gneiting (1999a) and Gneiting (2000) among
others). It was shown that these covariance functions have a similar degree of flexibility as
for instance the Matérn class.

Transformations on the class of compactly supported covariance functions

The subsequent constructions rely on transformations between classes Φd. Recall from
Section 2.1.3 (page 9) that Φd is the class of covariance functions of a stationary and
isotropic random field. The first operator, the so-called descente, is defined as

Iϕ(t) =
∫ ∞

t
uϕ(u)du/

∫ ∞

0
uϕ(u)du t ≥ 0. (3.28)

The second one, the so-called montée is given by

Dϕ(t) =

{
1, t = 0
ϕ′(t)/(tϕ′′(0)), t > 0.

Both operators obviously preserve compact support. It was shown by Gneiting (2000) that
if ϕ is an element of Φd, d ≥ 3 and uϕ(u) ∈ L1([0,∞)), then Iϕ is an element of Φd−2.
Further, if ϕ ∈ Φd, d ≥ 3 and ϕ′′(0) exists, then Dϕ is an element of Φd+2. Under mild
conditions, I and D are the inverse operators (see Wendland (1995), where also links to
the Fourier transform and to the convolution are established).

Wendland’s construction

Now, let us review the construction of covariance functions, which was investigated in
Wendland (1995) and introduced in statistical literature by Gneiting (1999a). The starting
point was the result that the truncated power function

ψν,0(t) = (1 − t)ν+ =

{
(1 − t)ν , 0 ≤ t ≤ 1
0, t ≥ 1

is an element of Φd if and only if ν ≥ d+1
2 (see Wendland (1995) and references therein).

In the next step, he defines

ψν,k(t) = Ikψν,0(t), k = 0, 1, 2, . . .
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3. More about covariance functions

by repeated application of (3.28) to the truncated power function. By the claim above,
ψν,k(t) belongs to Φd if and only if ν ≥ d+1

2 + k. Furthermore, ψν,k(t) is 2k-times differ-
entiable at zero, positive and strictly decreasing on its support. In Wendland (1995), the
main focus was put on the case when ν is an integer, it means ψν,k is a polynomial on its
support. It shown there that this polynomial is of the minimal degree for a given order of
differentiability.

Particularly, the first two correlation functions are

ψν,1(t) =
(
1 + (ν + 1)t

)
(1 − t)ν+1

+ ,

which is an element of Φd if and only if ν ≥ d+3
2 and

ψν,2(t) =
(
1 + (ν + 2)t+

1
3
((ν + 2)2 − 1)t2

)
(1 − t)ν+2

+ ,

which is an element of Φd if and only if ν ≥ d+5
2 . These functions are twice and 4-times

differentiable, respectively.
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4. A comparison of designs with derivatives

The aim of this chapter is to obtain a notion about the quality of information that obser-
vations of derivatives can serve. The main focus lies on demonstrating the influence of the
choice of a covariance function on the efficiency of designs when using derivatives, rather
than on finding an optimal solution of a design problem. A theorem and some consequences
are stated in a d-dimensional setting and discussed. The given results are closely related
to the imse-criterion for the simple kriging predictor (2.30).

Before we begin with the survey related to the imse, let us mention the following motiva-
tion example. The example is just a very simple evidence for the fact that observations of
derivatives are sometimes of more interest than direct observations of the field to predict.
Some other examples can be found in Näther and Šimák (2001).

Example 4.1 Let a zero mean process Z(x) has the Gaussian covariance function (3.15).
Consider the simple kriging predictor (2.30) of Z(x0) based on only one observation of Z
at x, where x has to be chosen from the interval X = (−∞, T ], x0 > T . Let us denote this
predictor as p∗L(Z(x0);Z(x)). Using the notation in (2.30), mse p∗L(Z(x0);Z(x)) becomes
minimal if and only if

cTΣ−1c = (CZ(x, x0))2 = σ2 exp(−2α2(x0 − x)2)

is maximized, i.e. if and only if x = T . Hence, V1 = {T} is the best one-point design for
prediction of Z(x0) regarding to the mean square error.

Now, for comparison, let us consider the predictor (2.30) of Z(x0) based on one ob-
servation of Z(1) at x′ ∈ X. Let us denote this predictor as p∗L(Z(x0);Z(1)(x′)). Now,
mse p∗L(Z(x0);Z(1)(x′)) is minimized if and only if

cTΣ−1c =
(CZ(1),Z(x′, x0))2

var(Z(1)(x′))
= σ2 2α2(x0 − x′)2 exp(−2α2(x0 − x′)2) (4.1)

is maximized, which is satisfied for x0 − x′ = 1/(α
√

2). Hence, the best location for
observing the first derivative of Z(x) is at x′ = x0 − 1/(α

√
2).

Compare both predictors at the same observation point x = x′ by the following ratio

mse p∗L(Z(x0);Z(x))
mse p∗L(Z(x0);Z(1)(x))

=
1 − exp(−2α2(x0−x)2)

1−2α2(x0−x)2 exp(−2α2(x0−x)2) =
1−e−t

1−te−t
=: r(t) (4.2)

where t := 2α2(x0 − x)2. For t > 1, we have r(t) > 1, i.e. observing the derivative leads
to a smaller mean square error than observing the original process. Assume long range
prediction in the sense that 1/(α

√
2) < x0−T . Then t∗ := 2α2(x0−T )2 > 1 and r(t∗) > 1.

Thus, optimal observing of Z at x = T leads to larger mean square error than observing
the first derivative Z(1) at the same point.
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4. A comparison of designs with derivatives

Note that in the case of short range prediction, i.e. 1/(
√

2α) > x0 − T , we have t∗ < 1
and observing Z at x = T is always better than observing Z(1). Note that if T = x0 and
x′ is chosen such that x′ = T , then (4.1) is equal to zero. It means that (unlike to the
observation of Z) the observation of Z(1) is totally uninformative at the prediction point.
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Figure 4.1.: On the left: Plots of mse p∗L(Z(x0);Z(x)) (solid) and mse p∗L(Z(x0);Z(1)(x′))
(dashed line). On the right: Plot of (4.2) for σ2 = 1, α = 1 and h = x− x0.

4.1. Imse-update and update ratio

Imse-update

Let us recall the definition of the integrated mean square error for the simple kriging
predictor. This means, we automatically assume the second state of knowledge (see page
15). Using the notation (2.31) the imse-criterion is given as

imseW =
∫

W

(
C(x0,x0) − cTΣ−1c

)
dx0, W ⊂ Rd. (4.3)

The aim of optimal planning is to find a design V ∗
n , so that V ∗

n minimizes (4.3). It is obvious
that minimizing (4.3) is equivalent to maximizing the imse-update for prediction area W ,
i.e.

UW (Vn) =
∫

W
cTΣ−1cdx0. (4.4)

Let us assume that the prediction area W is very large with respect to the range of
covariance function and we approximate (4.4) as integral over the whole Rd

U(Vn) =
∫

Rd

cTΣ−1c dx0, (4.5)

if the integral exists. An intuitive justification for the approximation is as follows. If the
prediction region W is large enough, the given observations will be uncorrelated (as in case
of covariance function with compact support) or effectively uncorrelated with the points on
the border of W and then the approximation can be accepted. The approximation U(Vn)
will be simply referred to as (total) imse-update. Note that the imse-update is just the
variance of the simple kriging predictor integrated over Rd.
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Update ratio

Let us consider two experimental designs (2.17) of the same size, i.e. with the same num-
ber of design points. The question is, which of these designs should be preferred and,
particularly, what is the efficiency or performance of the better one comparing to the worse
one.

Consider for instance the situation that an observer has several different measurement
instruments which can be used at a particular site, but an application of one of them
excludes the further use of the other measurements at the site. Suppose that the locations
for the future measurement are already pre-defined. The observer faces the problem, which
of the particular measurements should be preferred, to obtain the maximal information
from the experiment.

As a criterion of efficiency we can take the update ratio, i.e. the fraction

R =
U(V 1

n )
U(V 2

n )
,

where U(V 1
n ) and U(V 2

n ) are imse-updates for some designs V 1
n and V 2

n , respectively. It is
clear that if R > 1 (resp. R < 1) the design V 1

n (resp. V 2
n ) should be preferred. If R = 1

the designs are equivalent with respect to the imse-update.
It is also clear that using the update ratio does not lead to an optimal design in the usual

sense. The update ratio is just a natural criterion for a comparison of designs. They can,
however, be non-optimal. Applying the update ratio to some given set of designs, we get
an answer to the question which of these designs performs best. Nevertheless, we do not
get an answer to the question whether there exists a design outside from this set, which is
better than the designs we have restricted to.

In the following, we compare regular designs (see (2.18)) based on observations of deriva-
tive random fields of diverse order. For purposes which will later be clear, let us refer to the
correlations between observations, which were realized at different locations, as inter-site
correlations. We will consider sequences of designs for which absolute values of correla-
tions between observations become small. These designs will be referred to as designs with
vanishing inter-site correlations.

Note that the strategy, i.e. to place observations so that they are correlated as little as
possible, can be rather reasonable. Let us assume a positive covariance function as for in-
stance a covariance function from the Matérn class. Let us suppose designs that consists of
observations of the non-derivative random field only. Minimizing correlations between ob-
servations leads to the optimal design with respect to imse-update. However, differentiation
of random fields introduces negative values of correlation and, therefore, for designs based
on derivative information, this strategy may not be the best one. Nevertheless, for the first
impression, it is quite instructive to consider designs with vanishing inter-site correlations.

Maximin design

Assuming positive covariance functions only, minimizing correlations between observations
means to maximize the (minimal) distance between observations in a design. This procedure
is also known as maximin design. Asymptotic properties of maximin designs are studied
e.g. in Johnson et al. (1990) and Mitchell et al. (1994) where the authors also assume
weak correlated designs. In the later paper, even observations of derivatives up to some
order were considered for so-called Hermitian data. This approach was recently generalized
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4. A comparison of designs with derivatives

by Holtmann (2001) for non-Hermitian data. Note that in the cited literature a finite
observation area is presumed. The bounds of the prediction area influences the form of
the optimal design (cf. also Abt (1992) for non-asymptotic designs). Maximin distance
designs, even for small sample problems, may be very difficult to construct, especially if
the design region is irregular. It is known, that several structurally different solutions (see
e.g. Müller (2001, page 75)) may exist.

4.2. Design with vanishing inter-site correlations

Let Z be a second order stationary isotropic random field on Rd and let k = (k1, . . . , kd)
and l = (l1, . . . , ld) be some multi-indices. Now, let us consider fields Z(k) and Z(l) where
Z(k) and Z(l) are kth and lth partial mean square derivative random fields of the underlying
random field Z, which is supposed to be differentiable sufficiently.

Let C be the covariance function of Z. We will compare n-points discrete designs V (k)

and V (l) where the former is based on n observations of Z(k) and the later consist of n
observations of Z(l). The subindex n was omitted for convenience since all what follows is
related to n-points designs.

Let us consider a sequence of designs
{
V

(k)
m

}∞
m=1

and their corresponding covariance

matrices
{
Σ(k)

m

}∞
m=1

, Σ(k)
m ∈ PDn. For a particular design V

(k)
m = {(xm

1 ,k), . . . , (xm
n ,k)}

the elements of the matrix Σ(k)
m are defined as

(Σ(k)
m )ij = cov(Z(k)(xm

i ), Z(k)(xm
j )), i, j ∈ {1, . . . , n}. (4.6)

Since we assume that the matrices Σ(k)
m are all positive definite, they are regular for all

m. Let us denote vk = var(Z(k)) and assume vanishing inter-site correlations for m → ∞.
It means that Σ(k)

m → vkIn as m → ∞, where In denotes the identity matrix and the
convergence is defined element-wise.

It is clear that
(
Σ(k)

m

)−1 → 1/vkIn as m → ∞. Since the eigenvalues of a matrix
are continuous functions of the matrix elements (cf. e.g. Schott (1997, theorem 3.12)),
particularly, the sequence λmin(Σ

(k)
m ) of the smallest eigenvalues of Σ(k)

m converges to vk.

From this follows that λmin(Σ
(k)
m ) is bounded by a positive constant K whenever m is

sufficient large:
cT
(
Σ(k)

m

)−1
c ≤ λmin(Σ(k)

m )cT c < KcT c. (4.7)

Let us suppose that C ∈ L1(Rd) ∩ L2(Rd) as well as all derivatives of C. In this case, the
function on the right side of (4.7) is in L1(Rd). Then using the dominated convergence
theorem (see e.g. Theorem 8.19 in Kuttler (1998)), Plancherel theorem (Theorem 3) and
(3.6), we obtain the following equality:

Lk := lim
Σ

(k)
m →vkIn

U(V (k)
m ) =

∫
Rd

lim
Σ

(k)
m →vkIn

cT
(
Σ(k)

m

)−1
c dx0 (4.8)

=
n

vk
||CZ(k)Z(0) ||22 (4.9)

= (2π)d
n

vk
||f (k)||22. (4.10)

The previous schema is a general basis of the proof of the following theorem.
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4.2. Design with vanishing inter-site correlations

Theorem 5 Let Z be a second order stationary isotropic random field on Rd with a co-
variance function C. Let us denote k = (k1, . . . , kd) and l = (l1, . . . , ld) multi-indices, such
that |k| ≤ |l|. Let {V (k)

m } and {V (l)
m } be sequences of n-points designs based on observations

of Z(k) and Z(l), respectively. Let {Σ(k)
m } and {Σ(l)

m } be sequences of covariance matrices,
defined by (4.6).

Then

Lk

Ll
= 2|l|−|k| (4.11)

Lk

Ll
=

|l|∏
i=|k|+1

(
2 +

2i+ d

2(ν − i)

)
for ν > |l| ≥ |k| (4.12)

Lk

Ll
=

|l|∏
i=|k|+1

(
2 − 2i+ d

2(ν + i)

)
for |l| ≥ |k| and ν >

d− 1
2

(4.13)

if the random field Z(x) has the Gaussian, Matérn or J-Bessel covariance function, re-
spectively.

Proof : We calculate directly the limit Lk using (4.10). This spectral form significantly
simplifies calculation. In the Gaussian case, using formula 3.461.2 in Gradstein and Ryshik
(1981b) and (3.22) it can be shown by direct calculation (see Appendix A, page 93), that

Lk = nσ2

(
1
α

√
π

2

)d

2−|k|. (4.14)

In the Matérn class case, the formula 3.251.11 in Gradstein and Ryshik (1981b) and (3.14)
gives

Lk = n φ 2ν−1

(
2
√
π

α

)d

B
(
ν +

d

2
, ν +

d

2

) Γ(2ν − |k| + d
2 )

Γ(ν − |k|) . (4.15)

See Appendix A (page 93) for the detailed calculation. Finally, for the J-Bessel class (where
condition ν > d−1

2 assures C(k) ∈ L1(Rd)∩L2(Rd)) using formula 3.251.1 in Gradstein and
Ryshik (1981b) and (3.26) we get

Lk = n φ 2−ν

(
2
√
π

α

)d Γ(2ν + 1 − d)
Γ2(ν + 1 − d

2)
Γ(ν + |k| + 1)

Γ(2ν + 1 + |k| − d
2)
. (4.16)

The detailed calculation is given in Appendix A on the page 94. The claim in Theorem 5
immediately follows from the integrals above. �

Note that the condition ν > |l| ≥ |k| in (4.12) assures that the random field Z is suffi-
ciently differentiable. On the other hand, the condition ν > d−1

2 in (4.13) assures that the
appropriate cross-covariance function is in L2(Rd) and in L1(Rd).

4.2.1. Gaussian covariance function vs. Matérn class

In his monograph, Stein (1999) criticizes the use of the Gaussian covariance function. He
demonstrates that using this covariance function typically leads to an underestimation
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4. A comparison of designs with derivatives

of the prediction error comparing with the Matérn class, in the case that the covariance
function model is misspecified. In this context, the Gaussian covariance function is said to
be optimistic.

Here, we have shown another aspect of the problem. Since

2|l|−|k| <
|l|∏

i=|k|+1

(
2 +

2i+ d

2(ν − i)

)

for finite ν > |l| ≥ |k|, it can be seen that the Gaussian covariance function remains
optimistic regarding to the Matérn class also if derivative random fields are considered.
More precisely, observing high derivatives comparing to lower ones of a field with the
Gaussian covariance function gives us more information than analogous observations of a
random field driven by a covariance function from the Matérn class. The problem is that
in practice the covariance function model is rarely known with great certainity. Therefore,
assuming the Gaussian covariance function to be the proper model (although the Matérn
class is the right one) leads to an over-weighting of the seeming importance of high derivative
observations. On the other hand, geostatisticians decide in some stage of statistical data
analysis for one parameterizable model and they proceed the so-called model fitting, i.e.
model parameter estimation. Theorem 5 points out the potential danger, which is hidden
in the prior choice of the Gaussian covariance function.

Note that the Gaussian model is the limiting case of the Matérn model as ν → ∞ and
also the fraction (4.12) converges to (4.11). In this light, the result of Theorem 5 is not
surprising. The Gaussian covariance function is the smoothest covariance function in the
Matérn class and therefore observation of derivative fields driven by the Gaussian covariance
function must be much more informative than observations of derivative fields under the
general Matérn class.

4.2.2. The critical role of the parameter ν in the Matérn model for an
estimation of the efficiency

Moreover, it can readily be seen from (4.15) that the parameter ν plays a critical role
for estimating the efficiency of designs, that use derivatives. Say, for instance, we want to
suggest a sufficiently large size nk of a design V (k)

nk based on observations of a kth derivative
random field such that imse-update U(V (k)

nk ) is at least the same as the imse-update U(V (0)
n0 )

of a design V (0)
v0 of a given size n0 based on field values. But as soon as ν gets close to |k|,

nk rapidly increases. It means Z(k) is close to the uninformative white noise.
This shows a possible danger even in the decision to use derivative observations. For

instance, it does not suffice to know that the observed field is k-times differentiable, if we
plan to observe a kth derivative field, k = |k|. If the field is driven by the Matérn class
(and this can be considered as a good assumption as discussed in Stein (1999)) and ν is
very close to |k|, observations of the kth derivative field are nearly uninformative. Clearly,
Γ(ν − |k|) → ∞ as ν → |k| in (4.15). Therefore, some lower bound for the smoothness
parameter ν have to be required for estimation of the efficiency of a particular design. In the
previous case, it suffices for instance that the observed field is (|k|+1)-times differentiable.

4.2.3. Discussion of the J-Bessel class

It can be immediately seen from Theorem 5 that the following statement holds.

46



4.2. Design with vanishing inter-site correlations

Consequence 4.1 Let Z(x) be a random field on Rd. If Z(x) has the J-Bessel covariance
function with parameter ν = d

2 then

Lk

Ll
= 1 for arbitrary k, l ∈ Nd

0. (4.17)

Moreover, if Z(x) has the J-Bessel covariance function and d−1
2 < ν < d

2

Lk

Ll1

<
Lk

Ll2

< 1 for |l1| > |l2| ≥ |k|.

The result for the J-Bessel class seems a little bit surprising. Since

|l|∏
i=|k|+1

(
2 − 2i+ d

2(ν + i)

)
< 2|l|−|k|

for finite |l| ≥ |k| and ν > 0, it can be seen that observations of high derivatives of a random
field with the J-Bessel class covariance function (for any ν) comparing to lower ones, are
even better than an analogous situation with the Gaussian covariance function. Further, in
any dimension, there exists a covariance function for which observations of derivatives of any
finite order are equivalent in the imse-update sense (see (4.17)). Moreover, if d−1

2 < ν < d
2

then Lk/Ll < 1. In this case observation of a derivative random field of any order gives us
a bigger imse-update than direct observations of the underlying random field.

Similarly to Section 4.2.1, it can be claimed that using the J-Bessel class leads likely
to an over-estimating of the imse-update for higher derivative observations. Thus, if it is
definitely not sure that the study random field is driven by the J-Bessel class, (and we
can never be sure of it making inference from a data set) due to its extreme regularity, an
application of this class is really questionable.

What is the significant property, which makes the J-Bessel class so different from the
Matérn class or from the Gaussian covariance function? It can be conjectured that the key
attribute is the compact support of the spectral density (3.24) of the J-Bessel class covari-
ance functions1. Recall (3.6) which suggests to interpret the operator of differentiation as a
high pass filter. Clearly, if the spectral density of a random field is positive everywhere, the
high (less informative) frequencies obtain bigger weights after differentiation. However, for
the interpolation, lower frequencies are of the main interest. On the other hand, a compact
support of the spectral density helps to keep the over-weighting of high frequencies under
control. Similarly, differentiable random fields with a narrow spectral density (although
not restricted to a finite domain) could possess similar properties.

Construction problems

A problem is, however, the construction of a design whose covariance matrix is (close to)
a diagonal matrix. In the Gaussian case as well as for the Matérn class, the covariance
function vanishes quite fast. Thus, we can easily construct a design for that the actual
(non-limiting) fraction approximates the limiting fraction in Theorem 5 rather well. Simul-
taneously, distances between observations do not increase much (cf. Chapter 5). Roughly
speaking, the distances could be a little bit bigger than the practical range of the correlation
function.

1I am grateful to Prof. Joachim Menz for this idea.
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The J-Bessel class covariance functions as well as their derivatives are alternating func-
tions, but the runs of these functions as the whole tend to zero very slowly (see Figure 3.2)
at least for small values of ν. The zeros of the functions are generally not a periodic sets. It
means that we can easily find a d+1-points designs (in Rd) with uncorrelated observations
as follows. The design points are vertexes of a regular polyhedron, i.e. join of any two
vertexes is equal to the edges in the polyhedron. For instance, regular triangle or regular
tetrahedron are examples for that in R2 and R3, respectively. The length of the edges have
to be equal to the distance between the origin and one of the zero points. Then, the designs
points will obviously be uncorrelated.

However, when constructing a general n-points design (n > d + 1), we have to set very
large distances between possibly (d+1)-observations-blocks to obtain ”nearly” uncorrelated
observations. For larger values of ν, the correlations under the J-Bessel model remain close
to zero provided that the distance from the origin is large enough.

4.2.4. Notes to Theorem 5

Let us give some comments on the meaning and on the applications of Theorem 5. First, let
us note that Theorem 5 gives no answer to the question whether the plans with vanishing
inter-site correlations are optimal or even good ones. The main focus lies rather on the
demonstration of possible effects, which are caused by the prior choice of a covariance
function, than on the efficiency of the plans. Theorem 5 can be seen as a discussion of
different covariance function models and it can be useful in the stage of modeling. If we
concentrate on the informations derivatives can serve, the Matérn class is here seen as the
most pessimistic one. It is in some sense the counterpart to the J-Bessel class, which is the
most optimistic one.

Another point could be that by means of the results of Theorem 5 a sequential planning
procedure could be accepted as reasonable approach. For instance, if observations of Z(k)

are more informative than Z(l), we should concentrate primarily on finding an optimal
design for the observations of Z(k). Once this smaller problem is solved, we can start
to think about how to improve the existing design with additional observations of less
informative Z(l). As a result, we could reduce the complexity of a particular design problem
this way.

4.2.5. Sensitivity of the imse-update on covariance function parameters

We can also ask, how the imse-update behaves when the parameters of a particular co-
variance function are misspecified. Misspecification of covariance model parameters and its
consequences was one of the central themes in Stein (1999). Here, we present just a simple
observation based on the formulae given in the proof of Theorem 5.

First, let us look at the scale parameter α. Given α, we denote the limiting imse-update
by Lk(α). For all mentioned covariance function models, it holds

Lk(α1)
Lk(α2)

=
(
α2

α1

)d

for any given k.
For the smoothness parameter ν in the Matérn model we have analogously,

Lk(ν1)
Lk(ν2)

= 2ν1−ν2
Γ(2ν1 − |k| + d

2)

Γ(2ν2 − |k| + d
2)

Γ(ν2 − |k|)
Γ(ν1 − |k|)

B(ν1 + d
2 , ν1 + d

2)

B(ν2 + d
2 , ν2 + d

2)
. (4.18)
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4.2. Design with vanishing inter-site correlations

The ratio (4.18) increases very fast whenever ν2 � ν1. The behavior of the fraction (4.18)
is reported on Figure 4.2.
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Figure 4.2.: Plots of the sensitivity of the limiting imse-update for the Matérn covariance
function (equation (4.18))

It can be seen from the comparison of Figures 4.2(a) and 4.2(b) that the precise knowledge
about the smoothness parameter ν is more important when using derivatives of higher order.

4.2.6. Generalized version of Theorem 5

When comparing designs, it is clear that there is no need to consider observations of only
one type and that the size of the designs to compare can be different. For instance, it
is possible to generalize Theorem 5 by assuming that designs consist of observations of
diverse derivative fields. The proof can be accomplish in the same way. Let us suppose
that a stationary and isotropic random field Z on Rd is sufficiently differentiable. Let us
denote {Vm}∞m=1 a sequence of designs in the form

Vm(n) =
{
(xm

1 ,k1), (xm
2 ,k2) . . . , (xm

n ,kn)
}
, (4.19)

where k1, . . . ,kn are d-dimensional multi-indices. Note that by the notation Vm(n), the fact
is emphasized that designs to compare using imse-update, can consist of different number
of observations. Suppose that the sequence {Vm}∞m=1 of designs fulfills the conditions of
the proof of Theorem 5, i.e. among others, that correlations between observations vanish
as m→ ∞. Let us define n = max{|k1|, . . . , |kn|} and denote by n|k| the number of multi-
indices k in (4.19) such that k = |k|. The corresponding formula for (4.14), (4.15) and
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(4.16) are

L(n) = σ2

(
1
α

√
π

2

)d n∑
k=0

n|k|2−k,

L(n) = φ 2ν−1

(
2
√
π

α

)d

B
(
ν +

d

2
, ν +

d

2

) n∑
k=0

n|k|
Γ(2ν − k + d

2 )
Γ(ν − k)

,

L(n) = φ 2−ν

(
2
√
π

α

)d Γ(2ν + 1 − d)
Γ2(ν + 1 − d

2 )

n∑
k=0

n|k|
Γ(ν + k + 1)

Γ(2ν + 1 + k − d
2)
,

respectively. Subsequently, we get the generalized version of formulae (4.11), (4.12) and
(4.13)

L(n1)
L(n2)

=
n1∑

k=0

n1|k|2−k

/ n2∑
k=0

n2|k|2−k, (4.20)

L(n1)
L(n2)

=
n1∑

k=0

n1|k|
Γ(2ν − k + d

2)
Γ(ν − k)

/ n2∑
k=0

n2|k|
Γ(2ν − k + d

2)
Γ(ν − k)

, ν > n1, n2, (4.21)

L(n1)
L(n2)

=
n1∑

k=0

n1|k| Γ(ν + k + 1)

Γ(2ν + 1 + k − d
2)

/ n2∑
k=0

n2|k| Γ(ν + k + 1)

Γ(2ν + 1 + k − d
2)
, ν >

d− 1
2

, (4.22)

respectively. The results are no longer as nice and instructive as in Theorem 5, which is
the reason why the theorem is stated in a less general setting.

Example 4.2 Consider a stationary, isotropic and differentiable random field Z on Rd.
Suppose that an observer can choose between two measurement tools. The first returns
observations of Z as output, the other one returns observations of the gradient random
field (2.10). Re-call, that the later means that the following d-variate random field

∇Z =
(

∂

∂x1
Z(x),

∂

∂x2
Z(x), . . . ,

∂

∂xd
Z(x)

)
, x = (x1, . . . , xd)T ,

is observed at a particular site. Note that, these observations are mutually uncorrelated,
since the field Z is isotropic (see Lemma 2.2). Consider again an n-points designs with van-
ishing inter-site correlations. Hence, Theorem 5 can be applied and it follows immediately
that the efficiency measured by the limiting imse-update ratio is equal

LZ

L∇Z
=

n 20

n d 2−1
=

2
d
,

LZ

L∇Z
=

2ν + d
2 − 1

d(ν − 1)
, ν > 1,

LZ

L∇Z
=

2ν + 1 − d
2

d(ν + 1)
, ν >

d− 1
2

,

for the Gaussian, Matérn and J-Bessel covariance function, respectively. Particularly, un-
correlated observations of Z and observations of gradients( ∂

∂x1
Z(x),

∂

∂x2
Z(x)

)
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4.3. Efficient multiple observation of derivatives

are equivalent under the Gaussian covariance function in R2. In this case, the limiting
imse-update ratio for a Matérn and J-Bessel class covariance function is

LZ

L∇Z
=

ν

ν − 1
, ν > 1,

LZ

L∇Z
=

ν

ν + 1
, ν >

1
2
,

respectively.

Example 4.3 The previous example can be extended for compound observations of the
field Z and the gradient field ∇Z. Suppose n simultaneous observations of Z and ∇Z
which should be compared with n observations of Z. Note that observations of Z and ∇Z
are uncorrelated if they are realized at the same site (see Lemma 2.2). From (4.20), (4.21)
and (4.22) we get

LZ+∇Z

LZ
=
(

1 +
d

2

)
,

LZ+∇Z

LZ
=

(
1 +

d(ν − 1)
(2ν − 1 + d

2)

)
, ν > 1,

LZ+∇Z

LZ
=

(
1 +

d(ν + 1)
(2ν + 1 − d

2)

)
, ν >

d− 1
2

,

for the Gaussian, the Matérn and the J-Bessel covariance function, respectively. Thus, we
have a formula for the relative efficiency of compound observations in the case that for
given observations of Z gradients are or are not available (compare Example 4.2). It it
clear that a number of analogous results can be obtained considering various settings.

4.3. Efficient multiple observation of derivatives

Examples 4.2 and 4.3 introduce a situation in which different random fields can be ob-
served at a particular location. We have profited from the fact that the fields are mutually
uncorrelated at the observation site. However, if two observations of different derivative
random fields are realized at the same location, they can be correlated. Correlations be-
tween observations which are realized at the same location are referred to as the intra-site
correlations. How does the total imse-update then look like? Should some combinations
of derivatives of certain order be preferred? Which one? This section is a survey of this
problem.

Let us suppose the design

V = {(x,k1), . . . , (x,kn)}, x ∈ Rd, (4.23)

where all multi-indices ki, i ∈ {1, . . . , n} are different from each other. Notice from (4.23)
that all random fields are observed at a single point simultaneously. The corresponding
random vector Z is

Z = (Z(k1)(x), . . . , Z(kn)(x))T . (4.24)
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4. A comparison of designs with derivatives

Denote

Σ = cov(Z,ZT ) =


 a11 . . . a1n

...
. . .

...
an1 . . . ann


, (4.25)

the covariance matrix of Z. Recall now some well known results and a notation from matrix
algebra (see e.g. Lütkepohl (1996)). The inverse Σ−1 of the matrix Σ is given by

Σ−1 =
1

detΣ
Σadj , Σadj = ΣadjT

=


 cof(a11) . . . cof(a1n)

...
. . .

...
cof(an1) . . . cof(ann)


,

where the matrix Σadj is called adjoint of Σ. The cofactor of aij , cof(aij), is defined as,

cof(aij) = (−1)i+j minor(aij),

where minor of aij is the determinant of the matrix Σ obtained by deleting the ith row
and jth column from Σ. Note that

detΣ =
n∑

i=1

aij cof(aij), for any j ∈ {1, . . . , n}. (4.26)

4.3.1. Decomposition of the imse-update

Lemma 4.1 Let Z be a stationary, isotropic and sufficiently differentiable random field on
Rd such that the design (4.23) is well defined. Let the first m multi-indices from the set
I = {k1, . . . ,kn} be even, m ≤ n. Let all other multi-indices from the set I be odd (see
Definition 2, page 12). Denote

Ve = {(x,k1), . . . , (x,km)} and Vo = {(x,km+1), . . . , (x,kn)}.

Then
U(Ve ∪ Vo) = U(Ve) + U(Vo).

Proof : Denote Ie = {k1, . . . ,km} and Io = {km+1, . . . ,kn}. The claim follows immedi-
ately from the fact that

cov(Z(i)(x), Z(j)(x)) = 0, for all i ∈ Ie and j ∈ Io

(see Lemma 2.2). It means that Σ can be written as a block matrix

Σ =
[

Σe 0
0 Σo

]
, (4.27)

where Σe and Σo are covariance matrices corresponding to the designs Ve and Vo, respec-
tively. �
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4.3. Efficient multiple observation of derivatives

Let us define a Boolean function e on the set of all multi-indices, e : Nd
0 → {0, 1}, d ∈ N

as follows. For a multi-index k

e(k) =

{
1 if k is even,
0 if k is odd.

The following claim derives from Lemma 2.2 and it is a supplement to Lemma 4.1.

Remark 4.1 For the covariance matrix (4.25) it holds

sgn(|aij |) = e(ki + kj) for all i, j ∈ {1, . . . , n}.

It means, that there is no zero entry in the matrix Σe in the proof of Lemma 4.1. Any
entry in Σe can be (up to a sign) interpreted as a variance of a derivative random field. On
the other hand, the matrix Σo can be sparse (see Examples 4.2 and 4.3). It means that
U(Vo) can be possibly re-written as a sum of imse-updates corresponding to a particular
decomposition of Vo. In particular, if d = 1 then there is no zero entry in the matrix Σo.

Denote c(x0) = (c1(x0), . . . , cn(x0))T , the vector of covariances between the design point
x and a prediction point x0 ∈ Rd. It means ci(x0) = cov(Z(ki)(x), Z(x0)), x0 ∈ Rd.

Lemma 4.2 Suppose that∫
Rd

ci(x0)cj(x0)dx0 = aijg(ki,kj), for all i, j ∈ {1, . . . , n}, (4.28)

where g : Nd
0 × Nd

0 → R. Under the notation given in the preceding paragraph it holds

U(V )=
n∑

i=1

g(ki,ki)−
n∑

i=1

i−1∑
j=1

aij cof(aij)
detΣ

[
g(ki,ki) − 2g(ki,kj) + g(kj,kj)

]
. (4.29)

Proof : Denote g(ki) := g(ki,ki) for short. Using (4.26) and (4.28), we get

U(V )=
∫

Rd

cT (x0)Σ−1c(x0)dx0 =
1

detΣ

n∑
i=1

n∑
j=1

cof(aij)
∫

Rd

ci(x0)cj(x0)dx0

=
1

detΣ

n∑
i=1

n∑
j=1

aij cof(aij)g(ki,kj)

=
n∑

i=1

∑n
j=1 aij cof(aij)g(ki,kj)+

∑n
j=1
j 
=i

aij cof(aij)g(ki)−
∑n

j=1
j 
=i

aij cof(aij)g(ki)∑n
j=1 aij cof(aij)

=
n∑

i=1

g(ki) +
n∑

i=1

n∑
j=1
j 
=i

aij cof(aij)
detΣ

[
g(ki,kj) − g(ki)

]
,

which is equal to (4.29) due to the symmetry of the elements over which is summed. �

53



4. A comparison of designs with derivatives

Let us note that
∑n

i=1 g(ki,ki) in (4.29) is equal to the limiting imse-update (4.8). Thus,
under the given condition the imse-update for the design (4.23) can be splitted into the
limiting imse-update and some other part. In the following section, we will discuss simple
cases, where Lemmata 4.1 and 4.2 can be used to decide between some designs.

Note that, if d = 1, the condition (4.28) is in no way restrictive. In the one-dimensional
case this assumption can be always adopted, though if it can be sometimes difficult to find
the particular explicite analytical form of the function g.

Examples with 2-points design

Denote by ⇔ the equivalence of designs with respect to the imse-update (4.5), i.e. for V
and V ′ discrete designs, V ⇔ V ′ if and only if U(V ) = U(V ′). Further, define the relation
< for discrete designs V and V ′ as follows: V < V ′ if and only if U(V ) < U(V ′). The
design V ′ is termed to be better than V with respect to the imse-update. Analogously, the
relation ≤ can be defined.

Consequence 4.2 Let Z be a stationary, isotropic and sufficiently differentiable random
field on Rd such that the random vector (4.24) is well defined. Let n and m from Lemma
4.1 be n = 4 and m = 2. (It means that four random fields Z(k1), Z(k2), Z(k3) and Z(k4)

can be observed, where the multi-indices in Ie = {k1,k2} are even and the multi-indices in
Io = {k3,k4} are odd.)

Let (4.28) hold and let

g(i, i) − 2g(i, j) + g(j, j) > 0, for all i, j ∈ Ie and for all i, j ∈ Io, i �= j. (4.30)

Let the observation area X consists of two points x,y ∈ Rd, x �= y, such that

cov(Z(i)(x), Z(j)(y)) = 0, for all i, j ∈ Ie ∪ Io.

If the multi-index k3 + k4 is even then there are two (structurally different) designs, which
are equivalent with respect to the imse-update and they are better than all other designs
under the given conditions. Otherwise, there are four (structurally different) designs, which
are equivalent with respect to the imse-update and they are better than all other designs.

Proof : Omitting the cases where only x changes with y (this is meant by structurally
different designs), the following configurations are possible:

Observation(s) at x Observation(s) at y

Design A: Z(k1) Z(k2), Z(k3), Z(k4)

Design A′: Z(k2) Z(k1), Z(k3), Z(k4)

Design B: Z(k3) Z(k1), Z(k2), Z(k4)

Design B′: Z(k4) Z(k1), Z(k2), Z(k3)

Design D: Z(k1), Z(k2) Z(k3), Z(k4)

Design C: Z(k1), Z(k3) Z(k2), Z(k4)

Design C ′: Z(k1), Z(k4) Z(k2), Z(k3)

Design D′: Z(k1), Z(k2), Z(k3) Z(k4)

Table 4.1.: Structurally different designs for two locations
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4.3. Efficient multiple observation of derivatives

Take into account the fact that observations of derivatives Z(k)(x) and Z(l)(x), x ∈ Rd

are uncorrelated, if k + l is odd. It means that the covariance matrix of any design is in
the form (4.27), where Σe and Σo are 2 × 2-covariance matrices. The covariance matrices
of above designs differ in the values of entries outside the diagonal, a12 and a34. Using
Lemma 4.1, (4.29) can be re-written as follows

U(Ve ∪ Vo) = U(Ve) + U(Vo)

=
4∑

i=1

g(ki) +
a2

12

detΣe

[
g(k1,k1) − 2g(k1,k2) + g(k2,k2)

]
+

a2
34

detΣo

[
g(k3,k3) − 2g(k3,k4) + g(k4,k4)

]
. (4.31)

It is easy to see that

A⇔ A′, B ⇔ B′, C ⇔ C ′ and D ⇔ D′. (4.32)

For instance, in the designs A and A′ there is a12 = 0 and a34 is the same in the both
designs. This can be seen from Table 4.1.

Note that if k3 + k4 is even then a34 can not be zero. Using (4.30), it can be seen from
(4.31) that a design maximizes U(V ) if both a12 and a34 are not null. This is true for the
designs D and D′ only. On the other hand, the designs C and C ′ are the worst ones, since
a12 = 0 and a34 = 0. It can be seen from (4.31) that the following relation between designs
holds:

D > B,A > C.

If k3 + k4 is odd then a34 = 0 in every case. It means that D ⇔ B and A⇔ C. Designs
D,D′, B,B′ are in this case equivalent and better than all other designs (which are also
equivalent with each other). �

Consequence 4.2 is an example for the fact that correlated observations can be more
efficient than uncorrelated observations. Moreover, the designs where all observations are
mutually uncorrelated appears to be the worst one. Note that the correlations between
observations at a particular location can be positive or negative. In the both cases some
(sub)optimality is reached. Note that, a relation between design B, A can not be established
under the given setup. Actually, both situations, B > A and A < B are possible. Note
also that if d = 1, the situation in that k3 + k4 is odd can not occur.

Example 4.4 Suppose a stationary stochastic process Z on R1 with the following covari-
ance function with the compact support [0, 1]:

ψ4,3(t) = σ2(1 − t)7+(21t3 + 19t2 + 7t+ 1), t ≥ 0

It follows from the theory given in Wendland (1996) that the function ψ4,3(t) is a covariance
function and it is 6 times continuously differentiable. (see Theorem 5.2 therein, cf. also
section 3.2.4). Note that the range (or support) of the function ψ4,3 can be easily changed
by a linear transformation of the parameter t.

Since ψ4,3 is 6 times differentiable, derivative observations of Z up to the third order can
be considered.
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Consider the following situation. Our experimental area consists of two points x ∈ R and
y ∈ R, such that |y − x| ≥ 1. We can observe processes Z(0), Z(1), Z(2) and Z(3) only once
and we can choose between these points x and y. The resulting design should be optimal
with respect to the imse-update.

It is obvious that these experimental conditions correspond to the prerequisites of Con-
sequence 4.2 for k1 = 0, k2 = 2, k3 = 1 and k4 = 3. We only need to check whether (4.30)
holds. This can be done by a straightforward but tedious calculation, thus, only the results
(resp. their numerical approximations) are presented. The values of the function g for all
combinations of indices, which are of interest, are: g(k1, k1)

.= 0.4161, g(k1, k2)
.= 0.2139,

g(k2, k2)
.= 0.1027, g(k3, k3)

.= 0.2129, g(k3, k4)
.= 0.1027, and g(k4, k4)

.= 0.0298. Thus, it
is obvious that (4.30) holds and therefore D and D′ are the best designs under the given
conditions.

The covariance matrix of the design D is

Σ =




1 −18 0 0
−18 1008 0 0

0 0 18 −1008
0 0 −1008 151200




An explicite evaluation of the imse-update in the particular cases yields

U(D) .= 0.8285, U(B) .= 0.8056, U(A) .= 0.7854, U(C) .= 0.7625.

Note that, although Consequence 4.2 is formulated for two design points (x and y)
only, the claim can be directly generalized to designs with more design points. Anyway,
this generalization is done in the next section in a slightly different context. The simple
example-like setup was chosen to avoid useless technicalities.

4.3.2. Multiple observations of derivatives for designs with vanishing inter-site
correlations

It clear that the necessary condition, which must be put on the covariance function of Z in
Consequence 4.2 is that it must have a compact support. Otherwise, the observations at
the points x and y will not be uncorrelated. To obtain similar claims as in Consequence
4.2 for covariance functions without compact support, an analogous setting as in the proof
of Theorem 5 has to be adopted.

Conditions for designs with vanishing inter-site correlations

Let a set of multi-indices I = {k1,k2,k3,k4} be given and let us assume that multi-indices
in the set Ie = {k1,k2} are even (see Definition 2, page 12). The multi-indices in the set
Io = {k3,k4} are supposed to be odd, I = Ie ∪ Io.

Let Z be a stationary, isotropic and sufficiently differentiable random field on Rd, such
that Z(k1), Z(k2), Z(k3), and Z(k4) are well defined. Let VM be the set of all sequences
{Vu}∞u=1 of regular designs (see (2.18))

V u = {(xu
1 , l1), . . . , (x

u
M , lM )}, xu

i ∈ Rd, li ∈ I, i ∈ {1, . . . ,M}, (4.33)

such that
lim

u→∞ cov(Z(li)(xu
i ), Z(lj)(xu

j )) = 0, (4.34)
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4.3. Efficient multiple observation of derivatives

for all i, j ∈ {1 . . . ,M}, i �= j, such that xu
i �= xu

j . Notice from (4.33) that only the locations
of the designs depends on n, and not the order of the derivatives. Note that the definition
(4.33) allows the design points xu

i , i ∈ {1, . . . ,M} need not to be different from each other.
Regularity of the designs assures that a particular pair (xu

i , li) appears in VM only once.
The condition (4.34) means that we avoid (in the limit) any inter-site correlations. On the
other hand, nonzero intra-site correlations are possible.

Let Σu be the covariance matrix corresponding to the design Vu and denote Σ =
limu→∞ Σu. The elements of Σ are denoted as in (4.25). Similarly, we can define Ve,u and
Vo,u, i.e. designs with even and odd multi-indices, respectively, such that Vu = Ve,u ∪ Vo,u.

Denote ci(x0) = limu→∞ cui (x0) = limu→∞ cov(Z(li)(xu
i ), Z(x0)) for a sequence of design

points {xu
i }∞u=1 and a prediction point x0. Suppose ci ∈ L2(Rd) for all i ∈ {1, . . . ,M}.

Using the dominated convergence theorem (see e.g. Theorem 8.19 in Kuttler (1998)) we
get an analogous claim as in Lemma 4.1 and 4.2.

Subsequently, let us suppose that each random field Z(k1), Z(k2), Z(k3) and Z(k4) can be
observed maximal N times and let N < M/4.

Subsequently, as in Consequence 4.2, if k3 + k4 is even, then two sets V̄ , ¯̄V ⊂ V M of
(structurally different) design sequences exist, such that

lim
u→∞U(Du) = lim

u→∞U(D′
u) > lim

u→∞U(Bu)

for all {Du}∞u=1 ∈ V̄ , {D′
u}∞u=1 ∈ ¯̄V and {Bu}∞u=1 ∈ VM − {V̄ ∪ ¯̄V }.

Similarly as in Consequence 4.2, if k3 + k4 is odd, four sets of (structurally different)
design sequences can be found.

The designs from the set V̄ are constructed so that Z(k1) and Z(k2) are observed together
in arbitrary N locations. Observations of random fields Z(k3) and Z(k4) are also put
together, but they are observed at the remaining locations, which are not occupied by
Z(k1) and Z(k2). It is a situation which corresponds to the design D in Table 4.1. Some
more specific description of the locations is not needed, since all designs have in the limit
the same (up to a permutation of rows and columns) covariance matrix.

The designs from the set ¯̄V are constructed in such a way that all random fields have
to be observed at each site up to the number of all possible observations N . This is a
situation, which corresponds to the design D′ in Table 4.1.

Note that we restrict ourselves to the claim about limiting designs. Thus, for some given
u ∈ N, the above relations between designs need not to be valid. However, the continuity
of the imse-update implies that the relations hold for a sufficiently large u too.

Example 4.5 Let a random field Z on Rd fulfill the above cited conditions and let Z be
driven by the Gaussian covariance function (3.15). Let multi-indices k1,k2,k3 and k4 be
given as in the preceding paragraph and let k3 + k4 be even. This is for instance achived
if d = 1.

For the simplicity, let us suppose that each particular Vu in (4.33) consists of two distinct
locations xu and yu only, where possibly several random fields can be observed. This is a
situation which is completely analogous to that one in Table 4.1.

We need to check whether (4.30) holds. Using (3.21) together with the result (A.54)
given in Appendix A.6.1, it can be shown that for any multi-indices k and l

g(k, l) =

{
σ2
(

1
α

√
π
2

)d2− |k+l|
2 , if e(k + l) = 1

0, otherwise.
(4.35)
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Thus, it can be easily seen that

g(k,k) − 2g(k, l) + g(l, l) = σ2

(
1
α

√
π

2

)d(
2−|k| − 2 · 2− |k+l|

2 + 2−|l|)
= σ2

(
1
α

√
π

2

)d(
2−

|k|
2 − 2−

|l|
2
)2 ≥ 0.

Therefore, the designs D and D′ are not worse than any other design (from the considered
class of designs). If moreover |k| �= |l|, these designs are always better (in the limiting sense
of the imse-update).

For instance, if d=1, k1 =0, k2 =2, k3 =1 and k4 =3, we get the following values of the
limiting imse-update L(·) for the designs denoted as in Table 4.1.

L(D) = b · 2 3
16
, L(A) = b · 2 1

16
, L(B) = b · 2, L(C) = b · 17

8
,

where b = σ2( 1
α

√
π
2 ).

We can consider higher derivatives as well. For example, if k1 = 1, k2 = 3, k3 = 2 and
k4 = 4, we get

L(D) = b · 1 9
32
, L(B) = b · 1 4

32
, L(A) = b · 1 3

32
, L(C) = b · 30

32
.

Note that the relation of designs A and B is converse in the above particular cases.

Example 4.6 Assume the same situation as in Example 4.5, but let us suppose a covari-
ance function from the Matérn class instead of the Gaussian covariance function. Using
(3.13) together with the result (A.57) stated in Appendix A.6.2, we get

g(k, l) = φ
2ν+d−1

π
d
2αd

B
(
ν+

d

2
, ν+

d

2
) Γ
(
2ν + d

2 − |k+l|
2

)
Γ
(
ν − |k+l|

2

)
for all multi-indices k and l such that e(k + l) = 1. Without loss of generality, consider
|k| ≥ |l|. Recalling (4.30), we need to check whether

Γ
(
2ν + d

2 − |k|)
Γ
(
ν − |k|) − 2

Γ
(
2ν + d

2 − |k+l|
2

)
Γ
(
ν − |k+l|

2

) +
Γ
(
2ν + d

2 − |l|)
Γ
(
ν − |l|) (4.36)

is positive (or nonnegative). Obviously, if |k| = |l| then the above term is equal to zero.
Denote k = |k| and l = |l|. Since e(k + l) = 1, we can write l = k− 2m, m ∈ N (the trivial
case m = 0 can be excluded). Define

β =
Γ
(
2ν + d

2 − k
)

Γ
(
ν − k

) .
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We can re-write (4.36) as follows

β

[
1 − 2

Γ(2ν+ d
2−k+m)

Γ(2ν + d
2 − k)

Γ(ν − k)
Γ(ν−k+m)

+
Γ(2ν+ d

2−k+2m)

Γ(2ν + d
2 − k)

Γ(ν − k)
Γ(ν−k+2m)

]
=

β

[
1 − 2

(2ν+ d
2−k+m−1)

(ν − k +m− 1)
. . .

(2ν+ d
2−k)

(ν − k)
+

(2ν+ d
2−k+2m− 1)

(ν − k + 2m− 1)
. . .

(2ν+ d
2−k)

(ν − k)

]
=

β

[
1 − 2

(
1+

ν+ d
2

ν−k+m−1

)
. . .
(
1+

ν+ d
2

ν−k
)

+
(
1+

ν+ d
2

ν−k+2m−1

)
. . .
(
1+

ν+ d
2

ν−k
)]

=

β


1+

(
1+

ν+ d
2

ν−k+m−1

)
. . .
(
1+

ν+ d
2

ν−k
)[(

1+
ν+ d

2

ν−k+2m−1︸ ︷︷ ︸
)
. . .
(

1+
ν+ d

2

ν−k+m︸ ︷︷ ︸
)
−2
] .

> 2 > 2

It can be seen that every term in the parentheses is bigger than 2 and therefore (4.36) > 0.
Subsequently, the designs D and D′ are not worse (in the limiting sense) than any other
design from the considered class of designs. If moreover |k| �= |l|, these designs are always
better than any other design. This hold for all values of the smoothness parameter ν for
which a particular Matérn covariance function is sufficiently differentiable.

Resume

In the first part of this chapter, it is assumed that there is only one observation at a
particular site. Otherwise, it is supposed that they are mutually uncorrelated. In the
second part, this assumption is weakened. The main focus here is to investigate whether
the (limiting) imse-update can be improved by a combination of observations of distinct
derivative random fields at one site. In the simplest version of the problem, we can ask:
do some pairs (triples etc.) of derivative random fields exist, which should be observed
together at one site, if possible? The observations at different sites are supposed to be
uncorrelated. Finally, it has been shown that correlated pairs of derivatives outperform the
other possibilities.

What is the main sense of this survey? Later on, it will be shown on some very simple
examples, that the space, where optimization to be proceeded, is very complex and it has
many local maxima. Moreover, the values of this maxima are typically close to each other
and passing from one maximum to another could be difficult. Therefore, without a good
approximation of the solution, the standard optimization numerical methods are usually
not successful in search of the optimum.

An application of the presented results consists in a reduction of the complexity of the
space of all possible solutions. Seeking for the optimum, we can restrict ourselves to some
suitable subspace of the space of all possible solutions. The suggested pairing could be such
a suitable restriction in some situations.

However, it will be shown later that this pairing is only of a minor importance if it
is possible to choose observation locations arbitrarily. Typically, by choosing the sample
locations properly, a bigger improvement of the imse-update can be achived. Anyway, for
such designs, the approach of vanishing inter-site correlations is not appropriate, since the
correlations between observations are large.
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5. An empirical survey of designs with
correlated observations

Until now, it was presumed that (derivative) observations at different sites are uncorrelated
(in the asymptotic sense, or due to a compact support or due to zero points of the study
covariance function). This setting allows to calculate the imse-update analytically in a
simple way. If this assumption is weakened, analytical results (if they are possible) can not
be understood easily, except some particular very simple cases.

In this chapter, we restrict ourselves mainly to particular analytical results in combination
with extensive numerical studies, which support the argumentation. The aim of this section
is to give some notion to the following question: Can the imse-update be improved by a
suitable choice of design points {x1, . . . ,xn}? The answer is as expected positive. Thus, the
further focus is to give at least some heuristic rules for a construction of efficient designs.

5.1. Imse-update and convolution

Let us consider a stationary, isotropic and sufficiently differentiable random field on Rd and
let Vn be a design in the form (2.17). The imse-update (4.5) can be written as follows

U(Vn) =
∫

Rd

cTΣ−1c dx0 =
∫

Rd

tr(Σ−1ccT )dx0. (5.1)

Since Σ−1 does not depend on x0 and the trace of a matrix is a linear operator of its
argument, we can write

U(Vn) = tr(Σ−1

∫
Rd

ccT dx0). (5.2)

Now, let us look more detailed at the elements of the n× n-matrix C∗ =
∫

Rd ccT dx0. Let
ci = cov(Z(ki)(xi), Z(x0)) =: cki0(x0−xi) and cj = cov(Z(kj)(xj), Z(x0)) =: ckj0(x0−xj)
be the ith and the jth element of the vector c. Since

ckj0(x0−xj) = cov(Z(kj)(xj), Z(x0)) = cov(Z(x0), Z(kj)(xj)) =: c0kj
(xj−x0),

we can write

C∗
ij =

∫
Rd

cicj dx0 =
∫

Rd

cki0(x0 − xi)ckj0(x0 − xj)dx0

=
∫

Rd

cki0(x0 − xi)c0kj
(xj − x0)dx0.

Denote h = xj − xi. Because of the stationarity of Z and since we integrate over Rd, we
can set xi = 0. Thus, we get

C∗
ij =

∫
Rd

cki0(x0)c0kj
(h − x0)dx0 = c0kj

∗ cki0(h). (5.3)
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An exact calculation of the convolution (5.3) for the Gaussian covariance function and for
covariance functions from the Matérn and the J-Bessel class can be found in Appendix
A (Sections A.6.1 – A.6.3). Note that in general the matrix C∗ depends on a particular
design.

5.2. Designs with only two observations

Let us suppose that Z(k) has been observed at the location x1. The task is to find a point
x2, where Z(l) should be observed, in order to maximize the imse-update (5.1). Denote
h = x2−x1 and the imse-update for the two observations as Uk,l(h). Denoting the elements
of the covariance matrix of this 2-points design as

Σ =
[

a b(h)
b(h) d

]
,

it can be seen that

Uk,l(h) =
d ||ck0||22 − 2b(h) c0l ∗ ck0(h) + a ||cl0||22

ad− b2(h)
. (5.4)

Note that only the integral in the middle of the above term depends on h.

5.2.1. Gaussian covariance function

If the covariance function of Z is Gaussian (3.15), the function (5.4) has the following form:

Uk,l(h) = β
Q 2−|k| − 2 exp(−3

2 α
2||h||2) 2−

|k+l|
2 Hα

kl(h) +Q 2−|l|

Q− exp(−2α2||h||2) ∏d
i=1H

2
ki+li

(αhi)
, (5.5)

where

β = σ2
( 1
α

√
π

2

)d
, Q =

d∏
i=1

(2ki)!
ki!

(2li)!
li!

, Hα
kl(h) =

d∏
i=1

Hki+li(αhi)Hki+li(
√

2
2
αhi).

Here, Hk stands for the Hermite polynomial of the order k (see e.g. Abramowitz and Stegun
(1972, Chapter 22)). The equation (5.5) follows from (A.53), (A.55) and (3.21).

Rather than the function (5.5), let us consider the following function

U ′
k,l(h) = Uk,l(h) − ||ck0||22

a
(5.6)

which is only a small modification of the original function. This modified objective function
(5.6) corresponds to the influence on the imse-update caused by the additional observation
of Z(l) only. It is clear that, for a given k, a maximization of Uk,l(h) and U ′

k,l(h) is
equivalent. Note that in the Gaussian case,

||ck0||22
a

= β 2−|k|

(cf. with (4.35)). Formulas, which are necessary to evaluate (5.4) and (5.6) for the Matérn
and the J-Bessel class, are provided in Appendix A (Sections A.6.2 and A.6.3) or in Chapter
3. In the following, only the case of the Gaussian covariance function will be discussed,
however, an analogous case studies can be done for the Matérn and the J-Bessel class. In
particular, Appendix C provides such examples.

62



5.2. Designs with only two observations

Evaluation of the modified imse-update for the Gaussian covariance function in R

For d = 1, plots of (5.6) for diverse k and l are given in Figures 5.1 – 5.4. In all graphs
some regularities can readily be seen. First, note that if the distance h is big enough, the
imse-update (5.6) is practically constant. The value of the constant can be easily derived
from Theorem 5. For a large h, it can readily be seen that as l increases the imse-update
decreases very fast. This is basically the claim of Theorem 5.

Figures 5.1(b), 5.1(d) and 5.1(f) show that, the imse-update (5.6) is (nearly) the same
for h = 0 and h � 0. This is clear since the corresponding observations are (nearly)
uncorrelated for h = 0 as well as for h� 0.

Notice from Figures 5.1(c), 5.1(e) 5.2(c) and 5.2(e), that, if k + l is an even number,
then the process Z(k) and Z(l) should be observed at the same location. The maximal
imse-update is achieved in this case (cf. also the results of Section 4.3).

In Figures 5.1(b), 5.1(d), 5.1(f), 5.2(b), 5.2(d) and 5.2(f), it can be seen that if k + l
is an odd number, the imse-update (5.6) has its maximum outside from the origin. It
is interesting that the maximum is reached in some distance, say h∗(k, l), and h∗(k, l) ≈
h∗(k, l′) for a given k and any l and l′, such that k + l and k + l′ is odd. The whole plots
(aside from the different scaling) look similar for l and l′, which are not too different.

Note that the situation is analogous for k > 1 (see Figures 5.3 and 5.4 among other). The
optimal values h∗(k, l) can be numerically estimated for diverse k and l using the standard
quasi-Newton method (Fletcher, 1991; Kosmol, 1993). These results are summarized in
Table 5.1. In this table, it can be observed for instance that if k = l, then h∗(k, k) decreases
as k increases etc.

Maybe the most significant feature, which can be seen on the plots of the imse-update
(5.6), is that the local maxima appears consecutively rather regularly. See for instance the
diagonal of Table 5.1 and 5.3. The values on the diagonal in Table 5.3 are nearly exactly
two times bigger than the corresponding values in Table 5.1. This seems to be the reason
why some well constructed regular grids perform significantly better than other ones. This
issue is discussed in Section 5.4.

Optimal pairs

Table 5.2 shows the value of the modified imse-update (5.6) in the numerical approximation
of the global optimum. The table is not symmetric, since the modified imse-update (5.6) is
not symmetric in k and l. This tables can be useful to decide which ”pairs” of derivatives
could be preferred. By a pair it is meant two observations which are mutually optimal
located. Let us consider the following very simple example where this idea will be sketched.

Example 5.1 Let us suppose that Z(0) and Z(2) have been observed once and we can
observe Z(4) additionally. The distance between observations sites of Z(0) and Z(2) let be
such that these observations can be considered as uncorrelated. The additional observations
of Z(4) (wherever it is located) will be correlated at most only with one of the previous
observations. This is achieved if the distance between Z(0) and Z(2) is sufficiently large.
The question is where the observation of Z(4) should be located.

Analogously to Section 4.3, it can be found that the worst case is if observation of
Z(4) is uncorrelated with both observations of Z(0) and Z(2). Therefore, it remains the
question with which observation should Z(4) be correlated (i.e. what is the optimal pair)
and subsequently in which distance.
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5. An empirical survey of designs with correlated observations

The answer can be found in the 5th column of Table 5.2. The gain of the imse-update
U ′

2,4(h
∗(2, 4)) observing Z(4) optimally correlated with Z(2) is nearly twice bigger than the

gain of imse-update U ′
0,4(h

∗(0, 4)) observing optimally Z(4) together with Z(0), namely,
0.274162 compared to 0.144425. According to Table 5.1, the optimal distance h∗(2, 4) is
equal to zero.

k l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
0 ∞ 0.560807 0 0.470808 0 0.416437 0
1 0.560807 1.057638 0.450014 0 0.400039 0 0.365590
2 0 0.450014 0.854591 0.388096 0 0.354898 0
3 0.470808 0 0.388096 0.742809 0.346816 0 0.322626
4 0 0.400039 0 0.346816 0.667800 0.316650 0
5 0.416437 0 0.354898 0 0.316650 0.612520 0.293314
6 0 0.365590 0 0.322626 0 0.293314 0.569422

Table 5.1.: Optimal distance h∗(k, l) of two observations in R1 (numerical approximation)
under the Gaussian model (3.15) (α = 1).

k l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
0 1.253314 0.835140 0.469993 0.248563 0.144425 0.072120 0.040812
1 1.461797 0.830408 0.609749 0.391661 0.225445 0.149321 0.081702
2 1.409978 0.923078 0.527314 0.396116 0.274162 0.165231 0.115968
3 1.345213 0.861653 0.552780 0.318295 0.242520 0.176247 0.109185
4 1.319407 0.773770 0.509159 0.320852 0.185932 0.143162 0.107707
5 1.286268 0.736812 0.439394 0.293746 0.182328 0.106172 0.082429
6 1.274544 0.688776 0.409714 0.246266 0.166456 0.102012 0.059623

Table 5.2.: Value of the modified imse-update (5.6) in the first optimum in R1, i.e.
U ′

k,l(h
∗(k, l))

Previous example does not mean that the imse-update U2,4 is bigger than U0,4, but just
that U ′

2,4(h
∗(2, 4)) > U ′

0,4(h
∗(0, 4)). These are improvements of the original criterion caused

by the additional observation of Z(4).
It can readily be seen from Table 5.2 that, if Z(2) is replaced by Z(3), the result will be

the same with the distinction that optimal location will differ, namely h∗(3, 4) .= 0.347. A
lot of analogous examples can be easily derived from the both tables.

Multiple maxima of imse-update and sensitivity of designs with derivatives

As k or l increases, multiple local maxima on the plots of the modified imse-update (5.6)
can be seen. There is typically only one which is significantly better than the other. This
maximum is always the closest one with respect to the origin. The distance corresponding
to the second local optimum and the values of (5.6) in this optimum are summarized in
Tables 5.3 and 5.4.

As a preview of difficulties, which we meet on the search of the optimal design, let us
take Figures 5.4(e) and 5.4(f). First, notice a lot of local maxima which do not differ much
from each other, but more important, observe the high sensitivity of the imse-update. If we
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over-estimate the distance for the global maximum only a little, then we can arrive at the
global minimum. This aspect makes generally the problem of optimal design for derivatives
very difficult. Although these effects are milder for lower derivatives, also here a similar
tendency can be observed. Note that this high sensitivity is obvious despite the fact that
we consider the Gaussian covariance function which is rather regular. In this context, it
should be also noted that the imse-update is a very mild criterion, which flattens extrema.
It can be conjectured that criteria based on the maximum mean square error (2.23) are
much more sensitive and a construction of an optimal design is very difficult.

k l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
0 - 0,∞ 1.076588 1.532784 0.899114 1.285173 0.792860
1 0,∞ ∞ 1.507190 0.865963 1.254993 0.772221 1.118308
2 1.076588 1.507190 1.902469 1.235527 0.750776 1.096047 0.689089
3 1.532784 0.865963 1.235527 1.586559 1.081422 0.673883 0.987978
4 0.899114 1.254993 0.750776 1.081422 1.399993 0.976596 0.617409
5 1.285173 0.772221 1.096047 0.673883 0.976596 1.270463 0.898662
6 0.792860 1.118308 0.689089 0.987978 0.617409 0.898662 1.172966

Table 5.3.: Second optimal distance of two observations in R1 under the Gaussian model
(3.15) (α = 1)

k/l l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
0 - 0.626657 0.391737 0.174817 0.112790 0.048442 0.031668
1 1.253314 0.626657 0.387584 0.303571 0.130523 0.107172 0.043911
2 1.331723 0.700913 0.341342 0.254392 0.209921 0.095644 0.084184
3 1.271466 0.773564 0.411056 0.199112 0.160010 0.134438 0.065013
4 1.287772 0.678848 0.444918 0.238342 0.116714 0.096769 0.081992
5 1.262590 0.694663 0.369806 0.251937 0.135935 0.067601 0.056820
6 1.265399 0.650985 0.377930 0.202094 0.140741 0.076403 0.038590

Table 5.4.: Value of the modified imse-update (5.6) in the second optimum, d = 1)

However, although we already know that derivatives of higher order improve the imse-
update criterion only very little, a good design can help use this minor information effi-
ciently. For instance, on Figure 5.2(f) the imse-update (5.6) for uncorrelated observations
is about 0.02. If we construct the appropriate design optimally, the resulting imse-update
(5.6) can be more than four times improved. Despite this improvement, as the order of
derivatives increases, the overall performance of the design, characterized by the limiting
imse-update, decreases geometrically.
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Figure 5.1.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α = 1 and σ2 = 1.
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Figure 5.2.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α = 1 and σ2 = 1.
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Figure 5.3.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α = 1 and σ2 = 1.
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Figure 5.4.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α = 1 and σ2 = 1.
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Relations between 2-points designs

Now, let us focus on Figures 5.5 – 5.7. Figure 5.5 is nothing else than all sub-figures of
the figure 5.1, which are put together. Similarly, Figure 5.6 and 5.7 for Figure 5.2 and 5.3,
respectively. It can be seen from Figure 5.5 that in a neighborhood of the origin (where
Z(0) is observed) the additional observation of Z(1) performs better than observation of
Z(0) observed at the same location. From Figure 5.6 an analogous situation can be seen.
Moreover, a small neighborhood of the origin exists, where even an observation of Z(3)

performs better than both Z(1) and Z(2). The same can be seen on Figure 5.7. On the
basis of the presented figures a lot of relations between diverse 2-points designs can be
established.

This could seem interesting in the connection to Theorem 5, but it can not be excepted
that this is true in a general case. Putting two observations of Z(0) close to each other
means actually to construct a bad design. Thus, it is no longer surprising that a good design
of two ’less informative’ observations can outperform a bad design of ’more informative’
observations. Here, ’less’ or ’more informative’ is considered by means of the limiting
imse-update. It can probably be constructed examples which consist of more than two
observations. However, if the observations are spread over a large experimental area so,
that correlations between the observations are small, the influence deduced from Theorem
5 will dominate. In this case, derivatives will be mostly much less informative than direct
observations of the field to predict.
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Figure 5.5.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α=1 and σ2 =1. Here, k=0, and l=0 (bold
solid line), l=1 (bold dashed line), l=2 (bold dash-dot line), l=3 (thin solid
line), l=4 (thin dashed line), l=5 (thin dash-dot line).
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Figure 5.6.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α=1 and σ2 =1. Here, k=1, and l=1 (bold
full line), l= 2 (bold dashed line), l= 3 (bold dash-dot line), l= 4 (thin solid
line), l=5 (thin dashed line), l=6 (thin dash-dot line).
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Figure 5.7.: Plots of the imse-update (5.6) for two observations Z(k)(0) and Z(l)(h) under
the Gaussian model (3.15) with α = 1 and σ2 = 1 and under the stationarity
assumption. Here, k = 1, and l = 1 (bold solid line), l = 2 (bold dashed line),
l = 3 (bold dash-dot line), l = 4 (thin solid line), l = 5 (thin dashed line), l = 6
(thin dash-dot line).

71



5. An empirical survey of designs with correlated observations

5.3. Designs with three observations

For designs with three observations, it is not difficult to apply (5.2) and evaluate the imse-
update criterion on a very fine grid. Without loss of generality, we can suppose that Z(k)

has been observed in the origin and then vary with distances h1 and h2 corresponding to
observations of Z(l) and Z(m). Since we have two grades of freedom, namely h1 and h2, the
results are 3-dimensional sceneries. I believe that it can be useful for engineers to visualize
such sceneries from different angles and using different visualization techniques. It can be
seen many effects that can be interpreted on the basis of experience with only 2-points
designs. Nevertheless, in the text, I have no possibility to rotate such figures and therefore
I restrict myself only to one example: k=1, l=1, m=1. The experimental area X is the
interval [−3, 3] and the criterion is the total imse-update (4.5). Figures 5.8 and 5.9 display
the surface and the contour plot regarding to this design.

In these figures, it can be seen that certain local optima can be achieved if the observations
are related pairwise optimally. This suboptimal solutions build something what can be
called ”ridges” in the surface. On the basis of symmetry, they can be observed in the
horizontal and vertical direction. On the other hand, we can also see configuration, which
are bad (some kind of ”valleys”), where two observations are pairwise non-optimally located.

However, the reader should be aware just to sum contributions to the imse-update pair-
wise. It can work good for some simple examples and it could be a good guess sometimes,
but it can be probably found examples where it mislead to wrong conclusions.

The main finding from this example is that the optimal (or nearly optimal) solution is
a design for which the observations are regularly spaced. The minimal distance between
any two observations is only slightly smaller than the optimal distance for 2-points design
(see Table 5.1). This is not too surprising because of the symmetry of the problem, how-
ever, similar result can be shown also for a 4-points design (when evaluating all possible
configurations on a fine grid).

A very similar situation can be seen for designs that consist of derivatives of higher
order, like k=2, l=2, m=2 etc. If the design consists of derivatives of diverse order, the
situation seems more complicated but in many cases similar tendencies can be observed. For
instance, the optimal distances between two observations of different order are close to the
corresponding optimal distance in Table 5.1. Some suboptimal regions which correspond
the second optimal distance can be seen too.
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5.3. Designs with three observations

Figure 5.8.: Surface plot: k = 1, l = 1, m = 1
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Figure 5.9.: Contour plot: k = 0, l = 1, m = 1
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5. An empirical survey of designs with correlated observations

5.4. Regular grids with derivatives

A regular grid in R1

V (k)
n (h) = {(x, k), (x + h, k), (x + 2h, k), . . . , (x+ (n− 1)h, k)} (5.7)

is clearly characterized by the number n ∈ N of derivative observations in the design (grid),
the order of the derivatives k ∈ N0, the location of the first observation x ∈ R and inter-
site distance h ∈ R. Clearly, generalizations to higher dimension, like square, hexagonal
and triangular grids in Rd etc., can be considered, but we concentrate here only to the
one-dimensional case. Since stationary processes are supposed and the criterion is the
imse-update, x can be chosen arbitrarily.

Some extensive numerical case studies, which were done within the scope of this work,
shows that there is some evidence for the conjecture that regularly spaced observations of
derivatives of the same order could be nearly optimal designs. Let us refer to the following
paragraph just as sketch of realized case studies.

Numerical methods

Typically, results obtained using an adaptation of the fast cooling algorithm of Sacks and
Schiller (1988) leads for k ≥ 1 to configurations that are similar to a regular grid. (In the
reality these designs are rather far from the optimal ones.)

The quasi-Newton methods (Fletcher, 1991), when optimizing all locations simultane-
ously, return nearly regular grids, too. We will refer this method to qN(Rn−1) for short,
since the minimization proceeds in (n − 1)-dimensional space. Clearly, for a n-points de-
sign, one location can be fixed and it remains n− 1 sites to optimize. In simple cases, like
5-points designs, these methods are superior to them when we restrict ourselves only to reg-
ular grids. However, multiple start and a very good solution approximation are necessary
to obtain good results. Due to the discussed high sensitivity, it is a serious problem. For
bigger examples some numerical problems can appear (Zabinsky, 1998) and regular grids
seems to be more practical solution. The quasi-Newton method restricted to the family of
regular grids will be denoted as qN(Reg). This optimization proceeds in R only, since only
the optimal value for h is required.

Example 5.2 For instance, after several starts of the qN(R4) method, the following non-
regularly spaced solution for 5-points design of the first derivatives has been found

U(V5) = 4.10035939815226.

V
(1)
5 = (0, 1.04523377697851, 2.08507102139555, 3.12490825722185, 4.17014208577586).

The qN(Reg) has found a slightly worse solution:

U(V (1)
5 (h∗)) = 4.10023769349602 for the optimal distance h∗ = 1.04243575854999,

it means the design

V
(1)
5 (h∗)=(0, 1.04243575854999, 2.08487151709998, 3.12730727564997, 4.16974303419996).
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5.4. Regular grids with derivatives

The plots of the imse-update (4.5) for regular grids are presented in Figure 5.10. It can
be seen, that for the optimal value of h, the designs significantly outperform other ones.
The optimal value of the h depends on n and it shorten as n increases. The estimated
optimal distances h∗ are reported in Table 5.5. Table 5.6 gives values of the imse-update
(4.5) in this optimum. The first line of Table 5.6 is the degenerated case n = 1.

n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
2 1.0576376 0.8545911 0.7428092 0.6678002 0.6125201 0.5694222
3 1.0547248 0.8498840 0.7380173 0.6633214 0.6084289 0.5657049
4 1.0482275 0.8433451 0.7321835 0.6581949 0.6039120 0.5616937
5 1.0424358 0.8372434 0.7265776 0.6531787 0.5994373 0.5576928
6 1.0373001 0.8316147 0.7212908 0.6483774 0.5951125 0.5537896
7 1.0327716 0.8264487 0.7163357 0.6438178 0.5909610 0.5500213
8 1.0287509 0.8216894 0.7116852 0.6394909 0.5869936 0.5463964
9 1.0251556 0.8172876 0.7073114 0.6353810 0.5832013 0.5429147
10 1.0219185 0.8132000 0.7031877 0.6314730 0.5795748 0.5395715
12 1.0163156 0.8058309 0.6956029 0.6242048 0.5727828 0.5332787
15 1.0095584 0.7964125 0.6856249 0.6144963 0.5636256 0.5247362
20 1.0012605 0.7839620 0.6719093 0.6008939 0.5506745 0.5125437
30 0.9911218 0.7671941 0.6520078 0.5805576 0.5310839 0.4949739
40 0.9857393 0.7578321 0.6387049 0.5661452 0.5167842 0.4802243
60 0.9816624 0.7539208 0.6273366 0.5476248 0.4980717 0.4613469

Table 5.5.: The optimal distance h∗ of a regular grid in R1 for the Gaussian covariance
function (α = 1, σ2 = 1).

n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
1 0.626657 0.313329 0.156664 0.078332 0.039166 0.019583
2 1.457065 0.840643 0.474960 0.264264 0.145339 0.079206
3 2.324733 1.454331 0.891186 0.535993 0.317306 0.185345
4 3.209134 2.112792 1.368200 0.870388 0.544698 0.335905
5 4.100238 2.795761 1.884171 1.250129 0.816641 0.525720
6 4.994273 3.492977 2.425912 1.662919 1.123874 0.749060
7 5.889356 4.198572 2.985009 2.099998 1.458946 1.000560
8 6.784531 4.909026 3.555913 2.555076 1.816003 1.275546
9 7.679279 5.622118 4.134847 3.023564 2.190470 1.570069
10 8.573318 6.336409 4.719177 3.502077 2.578770 1.880845
12 10.358744 7.765085 5.897090 4.479696 3.386250 2.540799
15 13.029721 9.901488 7.671905 5.975249 4.647915 3.598822
20 17.463428 13.433647 10.620439 8.494665 6.818550 5.468202
30 26.279054 20.391302 16.431451 13.518818 11.235556 9.373333
40 35.049742 27.245186 22.133874 18.478064 15.650498 13.349062
60 52.526997 40.831109 33.342335 28.216358 24.376994 21.289246

Table 5.6.: The value of the imse-update U(V (k)
n (h∗)) for the regular grid V

(k)
n (h∗) in R1

with the corresponding h∗ from Table 5.5
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Figure 5.10.: Plots of the imse-update (4.5) for a regular grid V k
n (h) under the Gaussian

model (3.15) (α = 1, σ2 = 1). The number of observations (from the top) is
in all cases n = 20, 10, 5.
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5.4. Regular grids with derivatives

5.4.1. Relative imse-update

If the number of observations is not predefined, it is useful to define the relative (total)
imse-update

Urel(Vn) =
1
n
U(Vn) (5.8)

and compare designs with respect to this criterion. As usual, the aim is to maximize this
criterion. The plots of the relative imse-update Urel(V k

n (h∗)) for regular grids, given the
optimal choice h∗ (taken from Table 5.5), are presented in Figure 5.11. Note that h∗ is a
function of k and n. The relative imse-update Urel(V k

n (h∗)) increases rapidly in all cases
for small number of observations till some saturation is reached, where the criterion (5.8)
remains nearly constant. It is, however, not clear whether (5.8) is monotonous.

An explanation for these effects could be the fact that first (global) and second (next
local) optimum of the pair-wise computed imse-update Uk,k(h) and the other optima (if
they exist) are more or less regularly spaced (see Figures 5.1 – 5.4, Table 5.1 and Table
5.3). Designs reported in Table 5.5 seem to take advantage of this property. Optimally
constructed regular grids have observations located so, that they are efficiently related to
the nearest next observation but they are moreover very good related to the second next
observation etc. Figures 5.11 and 5.10 demonstrate unique power of these designs. It is
reasonable to expect that these designs can be further improved optimizing design points
on the border.

For higher derivatives, the saturated state is reached for bigger n than for lower deriva-
tives. This can be explained from the fact that higher derivatives have covariance function
with heavier tails. This issue is in particular discussed in Näther and Šimák (2001).

Note that the minimal eigenvalue of Σ (considered as a function of h) has a local minimum
close to h∗. This could be an alternative explanation of these effects.

5.4.2. Imse-update ratio for optimal regular grids

Consider the optimal choice of h in a regular grids and suppose that the number of obser-
vations in the design is large and the saturated state is reached. Now, we can ask what
is the relative performance of such designs for diverse derivatives. It means, the following
ratio is to examine:

Rk/l =
U(V k

n (h∗(n, k)))
U(V l

n(h∗(n, l)))
, (5.9)

for a large n ∈ N. For k = 0, the relative imse-update U(V k
n (h∗(n, k))) can be defined

using theoretical value of the limiting imse-update, since h∗(n, 0) → ∞. It means that
Urel(V 0

n (h∗(n, 0))) = 1
α

√
π
2

In the above equation, the dependence of h∗ on k (resp. l) is emphasized. Note that
analogous ratio is studied in Theorem 5 for designs with vanishing inter-site correlations.
It is interesting that (5.9) shows rather different behavior from the ratio in Theorem 5. Let
us give some examples

R1/0≈ 0.6969, R2/1≈0.7777, R3/2≈0.8205, R4/3≈0.8557, R5/4≈0.8791. (5.10)

Thus, although the derivatives of higher order are less informative comparing to the deriva-
tives of lower order (if they are designed optimally on a regular grid), the decrease of the
imse-update is much slower than in the case of designs with vanishing inter-site correla-
tions. Recall that for designs with vanishing inter-site correlations, all the above rates are
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5. An empirical survey of designs with correlated observations

equal to 1/2. Note also, that two generally non-optimal designs are compared in Theorem
5. In (5.10), such designs are compared which seems rather close to the optimal ones and
therefore (5.10) is perhaps of more interest. Notice that the ratio Rk+1/k increases as k
increases. It means that the difference of the relative performance between derivatives
decreases as the order of the derivatives becomes larger. Let us note that the values in
(5.10) can vary a little bit for different values of n. They are moreover very sensitive to the
estimated value of h∗(n, ·).

Here, as the reader can see, we have confined ourselves only to empirical results. From
the theoretical point of view, there are more questions than answers. A possible question
can be the limiting behavior of regular grids. For example, what are the values of

lim
n→∞h∗(n, k), lim

n→∞Urel(V k
n (h∗(n, k))), lim

k→∞
Rk+1/k

to mention the most obvious ones.

Note to a fast cooling algorithm

In the context of practical methods in the optimal design, a clone of the simulated annealing
was proposed by Sacks and Schiller (1988). In Sacks et al. (1989), this algorithm is cited and
it is noted that for larger problems the time taken for the annealing process to converge
to the optimum is too long. For continuous regions, the authors recommends standard
optimization methods (like the quasi-Newton method). Note that in Sacks and Schiller
(1988), this algorithm is used for optimization of designs on rather small grids of about 100
grid points.

Using the terminology of Winkler (1995), the algorithm of Sacks and Schiller (1988) can
be referred to as a fast cooling with some kind of re-heating mechanism. This algorithm is
characterized by several parameters with rather unclear meaning and there is practically no
reasonable answer how they should be chosen. However, the proper choice of parameters of
a particular algorithm is one of the most important problems in the stochastic relaxation,
since they have the critical influence to the convergence of this algorithm. Furthermore, for
algorithms like the one of Sacks and Schiller (1988) a proof of convergence is not known.

This algorithm was adopted by Albrecht (1998) for an optimal planing of gradients
(2.10) in [a, b]2 ⊂ R2. He used the maximum mean square error (2.23) as a criterion of
optimality. However, especially in the connection with the imse-update criterion, I would
not recommend the algorithm of Sacks & Schiller for several reasons. One of them is,
the absence of the theoretical background supporting this choice. Another point is the
structure of the space that need to be explored. It seems that the space of all solutions
contains many local minima which are close to each other by means of the criterion value,
but the transition from one to another is very unlikely. Typically, the algorithm reaches to
one state where all derivative observations build a design that is visually similar to a regular
grid, but the distances are not optimal. It means that the rough suboptimal structure of the
design has been found. The problem is just to optimize the ’parameters’ of this structure,
i.e. to find the optimal distances. Unfortunately, a transition to the state where they are
reached can be very difficult. In another words, two designs with a small distance in the
physical space (see e.g. the designs in Example 5.2) can have a big distance in the space
of all solutions by means of an annealing algorithm.

It seems that the problem of optimal design for covariance function models which allows
negative correlations between observations is of another nature and more complicated than
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5.4. Regular grids with derivatives

optimal design problem with non-negative covariance functions. The former is the case of
designs with derivative observations.

Finally, it is possible that some modifications of the annealing which uses a local gradient
information could give better results although I would not expect that they will be optimal
(see Robert and Casella (1999, Chapter 5) and Zabinsky (1998) for some tips).

5.4.3. Experimental conditions, heuristic rules and recommendations

Let us summarize some of the heuristic rules which can be implied from this text. Let us
emphasize that it is not easy to formulate these rules, since any change of experimental
conditions can lead to another recommendations. For instance, the assumption that designs
possess vanishing inter-site correlations seems to be rather strong. These designs constitute
certain class of problems and not all conclusions, which hold for these design, hold for other
ones. The influence of the change of the experimental conditions to the construction of the
optimal design is demonstrated on the following example.

Example 5.3 Suppose that stationary zero mean stochastic processes Z(0), Z(1), Z(2) and
Z(3) can be observed only once and Z(0) has the Gaussian covariance function (α = 1 and
σ2 = 1).

1. At first, let the observations area consists of points, which can be considered as
uncorrelated and suppose that at most one process can be observed in each locations.
It means, we have the setup of vanishing inter-site correlations (and with no intra-site
correlations) as discussed in the first part of Chapter 4. In this case, all design are
equivalent and the imse-update is

U1 = σ2 1
α

√
π

2
(20 + 2−1 + 2−2 + 2−3) .= 2.349964.

2. In the next step, multiple observations in a location are possible (i.e. intra-site cor-
relations are allowed), but the inter-site correlations vanish as in the previous case.
This setup is discussed in the second part of Chapter 4. In particular, the results of
Example 4.5 yields that the best design is of the type D or D′, i.e. that Z(0) and Z(2)

have to be observed together in one point and the same must be fulfilled for Z(1) and
Z(3). In this case, the imse-update is

U2 = σ2 1
α

√
π

2
2

3
16

.= 2.741625.

3. In the following, let us continue developing Example 4.5 and ask what happens if
the assumption of vanishing inter-site correlations will be left, but the designs will be
like in Table 4.1. It means, we restrict ourselves only to two observation locations,
however, unlike Example 4.5, we seek moreover for the optimal distance h = y − x.
The hope is that the design D remains the best and it can be further improved by
the optimal choice of h. The numerical results are summarized in Table 5.7.
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Design Observation(s) at x Observation(s) at y U(h∗) h∗= y−x
A Z(0) Z(1), Z(2), Z(3) 2.859401 0.844992
A′ Z(1) Z(0), Z(2), Z(3) 2.787016 0.545236
B Z(2) Z(0), Z(1), Z(3) 3.050484 0.354003
B′ Z(3) Z(0), Z(1), Z(2) 2.891803 0.288805
C Z(0), Z(1) Z(2), Z(3) 2.741625 0
D Z(0), Z(2) Z(1), Z(3) 3.087336 0.395845
C ′ Z(0), Z(3) Z(1), Z(2) 2.885402 0.291107

Table 5.7.: Optimal designs for two locations

The optimal design in this setting is denoted as D. It can be seen that additional
improvement of the design criteria has been achieved.

4. Finally, let us suppose that no constraints are put on the observation area. A numer-
ical solution of this problem has been found the following way. After an exhaustive
search over all possible configurations on a fine grid, an approximation of the optimal
design has been found. Subsequently, the quasi-Newton method qN(R3) yielded the
solution (5.11)

V4 = {(0, 0), (0.570657, 1), (1.029996, 2), (1.428088, 3)}. (5.11)

The corresponding imse-update is

U(V4)
.= 3.356293.

The example demonstrates that there is no golden rule, which can be used for all situation.
It can be seen that different conclusions can be drawn from each formulation of experimental
conditions. Passing from the most restrictive case to case with no restrictions, the structure
of the optimal design changes in every step. In particular, the design V4 is completely
different from the optimal design found in the previous case.

Some rules

However, some recommendations are briefly summarized in this paragraph. If the question
is basically what is the most informative part of a multivariate random field, a setup similar
to that in the proof of Theorem 5 can be used to establish some relations between the given
parts.

If the observations are only of one type (it can also be observations of a multivariate ran-
dom field) and the imse-update computed pairwise has a maxima not in the infinity, there
is a possibility that well constructed regular grid will be rather efficient. However, whether
it is true, it could also depend on the properties of the particular covariance function under
study and in the consequence on the fact, whether the maxima of the pairwise computed
imse-update are regularly spaced. If it is not true, some more complicated chains (or grids)
of observations could work better.

If the pairwise imse-update has a maxima in the infinity, the maximin design approach
seems to me the right way how to solve such a problem (see page 43 for some references).

If the number of observations is given for every type of observation, some kind of a
sequential procedure can be a good solution. This procedure should start with the most
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informative observations, find a good solutions for this smaller design problem and then
follow with the next most informative component etc. In this case, tables analogous to
Tables 5.1 - 5.4 could contain good hints, where to search a solution of every step of such
a sequential procedure.

Another approach can be to adopt an ”architecture” of a grid (like triangle or square grid)
and to assume that there exists an optimal distance between two connected observations
of certain type. Thus, the task remains to find the parameters of the grid, i.e. these
distances. This approach is similar to the case, where all observations are of one type and
we restrict ourselves only to regular grids, i.e. we have to find one parameter of a grid.
Here, the situation can be much more complicated since many types of observations can
be considered.

5.5. Further research

There are surely many possibilities how to continue research connected to the optimal
design of derivative observations. One of them is obviously another choice of the objective
function. In many application, other criteria can be more appropriate. The influence of a
finite prediction area and its shape to the design has not been studied in this work, although
it has big impact on the results.

However, in the context of this work, it can be interesting to adopt approach of perturbed
covariance matrices (Holtmann, 2001) and adapt this method to the imse-update criterion.
Because of the linear nature of the imse-update I think it is possible. Hopefully, it could
be a proper way how to throw light on some effects observed in this chapter.

Interesting task could be a comparison of designs proposed in this work with the method
suggested by Batsell et al. (1998). The method can be used for solving a problem of optimal
design with derivative observations too. Note that the prerequisites of cited method are
different from that assumed here. Specifically, we do not allow measurement error (see
(2.19)), which is necessary for the approach of Batsell et al. (1998).

Another direction could be a more detailed investigation of properties of different co-
variance functions by means of Theorem 5 and by means of this chapter. In particular, a
comparison of some classical covariance functions with the covariance functions proposed
by Wendland (1995); Gaspari and Cohn (1999) and Gneiting (2000) can be interesting.

It is reasonable to suppose that regular grids of derivatives will posses a similar (subop-
timal) behavior in Rd, d > 1, at least for Gaussian-like or Matérn-like covariance functions.
However, there are more possibilities in Rd how to construct regular grids. We can take
square, triangle, hexagonal grid or maybe some other problem-tailored one. A comparison
of these possibilities (see Yfantis et al. (1987) in another context), estimation of parameters
of the grids under diverse covariance functions etc. could surely be an important reference
material for engineers.
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5. An empirical survey of designs with correlated observations
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(b) k = 2

0 10 20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

n

U
re

l(V
nk (h

* ))

(c) k = 3
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(d) k = 4
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(e) k = 5
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Figure 5.11.: Plots of the relative imse-update Urel(V k
n (h∗)) under the Gaussian model

(3.15) (α = 1, σ2 = 1).
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A. Appendix (Proofs)

A.1. Proof of Lemma 2.2

Let us recall the lemma and denote by x� the biggest integer smaller than x ∈ R.

Lemma A.1 Let Z be a stationary, isotropic, n-times differentiable random field on Rd

and let k = (k1, . . . , kd) and l = (l1 . . . , ld) be multi-indices, such that |k|, |l| ≤ n. Then

cov(Z(k)(x), Z(l)(x)) = 0, x ∈ Rd,

if k + l is odd.

Proof : Consider a sufficiently differentiable univariate real function F : R → R and
denote

F (k)(h2) =
dk

dyk
F (y)

∣∣∣
y=h2

.

Thus, it holds (see Lemma A.2, page 83)

F (n)(h2) =
�n

2
�∑

i=0

n!
(n− 2i)!i!

(2h)n−2iF (n−i)(h2).

For multi-indices n = (n1, . . . , nd) and i = (i1, . . . , id), define

cni =
n1!

(n1−2i1)!i1!
n2!

(n2−2i2)!i2!
. . .

nd!
(nd−2id)!id!

It can readily be seen that it holds analogously

∂|n|

∂hn1
1 . . . ∂hnd

d

F (||h||2) =
�n1

2
�∑

i1=0

. . .

�nd
2
�∑

id=0

cni (2h1)n1−2i1 . . . (2hd)nd−2idF (|n|−|i|)(||h||2) (A.1)

Since Z is stationary and isotropic, its covariance function C can be represented by a
function F : [0,∞) → R such that C(x,y) = F (||x − y||2). Note that the cross-covariance
cov(Z(k)(x), Z(l)(y)) is (up to a sign) equal to (A.1) for n = k + l. Now, let j ∈ N be such
that ij is odd. Thus, the right side of (A.1) can be written as

2hj

�n1
2
�∑

i1=0

. . .

�nj−1

2
�∑

ij=0

. . .

�nd
2
�∑

id=0

cni (2h1)n1−2i1 . . . (2hj)nj−1−2ij . . . (2hd)nd−2idF (|n|−|i|)(||h||2),

which is equal to zero in the origin. �

Lemma A.2

F (n+1)(x2) :=
dn

dxn
F (x2) =

�n
2
�∑

i=0

n!
(n− 2i)!i!

(2x)n−2iF (n−i)(x2), n ∈ N. (A.2)
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A. Appendix (Proofs)

Proof : This lemma can be proved by induction, distinguishing the cases when n is even
and odd. For n = 0 and n = 1, the statement obviously holds.

Let us suppose that n is even, it means n
2 = n

2 � = n+1
2 �. Suppose that the claim (A.2)

holds. Applying induction step in (A.3), using standard rules for differentiation in (A.4)
and shifting the index i in the first sum of (A.5), (A.6) can be obtained. This equation can
be re-written as (A.7), which is the claim to prove for u+ 1 odd.

F (n+1)(x2) =
d

dx

�n
2
�∑

i=0

n!
(n−2i)!i!

(2x)n−2iF (n−i)(x2) (A.3)

=
d

dx

n
2
−1∑

i=0

n!
(n−2i)!i!

(2x)n−2iF (n−i)(x2) +
n!

(n/2)!
d

dx
F (n

2
)(x2)

=

n
2
−1∑

i=0

n!
(n− 2i)!i!

2(n− 2i)(2x)n−2i−1F (n−i)(x2) +

n
2
−1∑

i=0

n!
(n−2i)!i!

(2x)n−2i+1F (n+1−i)(x2) +
n!

(n/2)!
2xF (n

2
+1)(x2) (A.4)

=

n−2
2∑

i=0

2n!
(n− 2i− 1)!i!

(2x)n−2i−1F (n−i)(x2) +

n−2
2∑

i=0

n!
(n−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) +
n!

(n/2)!
2xF (n

2
+1)(x2) (A.5)

=

n
2∑

i=1

2i n!
(n+1−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) +

n
2∑

i=0

n!
(n−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) (A.6)

= (2x)n+1F (n+1)(x2) +

n
2∑

i=1

(n+ 1)!
(n+1−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) (A.7)

Let us suppose that n is odd, it means n
2 � = n−1

2 � = n−1
2 . Suppose that (A.2) holds for

this n. Application of the induction step in (A.8), using standard rules for differentiation
in the next equation and subsequently shifting the index i in the first sum yields (A.9).
Finally, (A.9) can be re-written as (A.10), which is the claim to prove for u+ 1 even.
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F (n+1)(x2)=
d

dx

n−1
2∑

i=0

n!
(n−2i)!i!

(2x)n−2iF (n−i)(x2) (A.8)

=

n−1
2∑

i=0

n!
(n−2i)!i!

[
2(n−2i)(2x)n−2i−1F (n−i)(x2) + (2x)n−2i+1F (n+1−i)(x2)

]

=

n−1
2∑

i=0

[
2n!

(n−1−2i)!i!
(2x)n−2i−1F (n−i)(x2) +

n!
(n−2i)!i!

(2x)n−2i+1F (n+1−i)(x2)
]

=

n−1
2∑

i=1

2i n!
(n+1−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) +
(n+ 1)!
(n+1

2 )!
F (n+1

2
)(x2) +

(2x)n+1F (n+1)(x2) +

n−1
2∑

i=1

n!
(n−2i)!i!

(2x)n−2i+1F (n+1−i)(x2) (A.9)

=

n+1
2∑

i=0

(n+ 1)!
(n+1−2i)!i!

(2x)n+1−2iF (n+1−i)(x2) (A.10)

�

A.2. Proof of Lemma 3.1

Lemma A.3 It holds

du

dru
[rνKν(r)] =

�u
2
�∑

i=0

(−1)u+i

(u
2 �
i

)
(2u+1

2 � − 1)!!
(2u+1

2 � − 1 − 2i)!!
rν−iKν−u+i(r), for u ∈ N

or equivalently

du

dru
[rνKν(r)] =

u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−1−2i)!!
rν−iKν−u+i(r), for u even (A.11)

du

dru
[rνKν(r)] =

u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u− 2i)!!
rν−iKν−u+i(r), for u odd. (A.12)

Proof : The proof can be carried out by the induction over u, distinguishing the cases
when u is even and odd. I show the second and the third equation, the first one is just a
comprehensive formulation of the claim for a general u ∈ N.

To shorten the notation, define fa
b = raKb(r), a, b ∈ R, omitting also argument r of the

function fa
b . Using the following well known rule for differentiation of the modified Bessel

functions

d

dz
[zνKν(z)] = −zνKν−1(z)
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(see Abramowitz and Stegun (1972), formula 9.6.28), the following simple equation can be
shown

d

dr
fa

b =
d

dr
[raKb(r)] =

d

dr
[r(a−b) · rbKb(r)]

= (−1)[raKb−1(r) − (a− b)ra−1Kb(r)]
= (−1)[fa

b−1 − (a− b)fa−1
b ]. (A.13)

Note that, it holds ( u
2

i−1

)
=

2i
u−2i+2

(u
2

i

)
for an even u ∈ N and therefore(u

2

i

)
(u− 1)!!

(u−1−2i)!!
+
( u

2

i−1

)
(u− 1)!!

(u+1−2i)!!
(u−2i+2) =

(u+ 1)!!
(u+1−2i)!!

(u
2

i

)
. (A.14)

For u ∈ N odd, it holds(u−1
2

i

)
=
u+1−2i
u+ 1

(u+1
2

i

)
and

( u−1
2

i−1

)
=

2i
u+1

(u+1
2

i

)
. (A.15)

Now, the proof can be accomplished. For u = 0 and for u = 1 the statement holds
trivially. Let us suppose that u is even and (A.11) holds. Applying the induction step in
(A.16), using (A.13) in (A.17) and by shifting the index i in the second sum of (A.18),
(A.19) can be obtained. Finally, by applying (A.14), we get (A.20) which is the claim to
prove for u+1 odd.

du+1

dru+1
f ν

ν =
d

dr

[
du

dru
f ν

ν

]
=

d

dr

[ u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
f ν−i

ν−u+i

]
(A.16)

=

u
2∑

i=0

(−1)u+1+i

(u
2

i

)
(u− 1)!!

(u−1 −2i)!!

(
f ν−i

ν−u+i−1 − (u− 2i)f ν−i−1
ν−u+i

)
(A.17)

=(−1)u+1f ν
ν−(u+1) +

u
2∑

i=1

(−1)u+1+i

(u
2

i

)
(u− 1)!!

(u− 1−2i)!!
f ν−i

ν−u+i−1

+

u
2
−1∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−1−2i)!!
(u− 2i)f ν−i−1

ν−u+i (A.18)

=(−1)u+1f ν
ν−(u+1) +

u
2∑

i=1

(−1)u+1+i

(u
2

i

)
(u− 1)!!

(u−1−2i)!!
f ν−i

ν−u+i−1

+

u
2∑

i=1

(−1)u+1+i

( u
2

i−1

)
(u− 1)!!

(u+1−2i)!!
(u−2i+2)f ν−i

ν−(u+1)+i (A.19)

=(−1)u+1f ν
ν−(u+1) +

u
2∑

i=1

(−1)u+1+i

(u
2

i

)
(u+ 1)!!

(u+1−2i)!!
f ν−i

ν−(u+1)+i (A.20)

Let us suppose that u is odd and (A.12) holds. Applying the induction step in (A.21),
using (A.13) in (A.22) and by shifting the index i in the second sum of (A.23), (A.24) can
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be obtained. Finally, by applying (A.15), we get (A.25) which is the claim to prove for u+1
even.

du+1

dru+1
f ν

ν =
d

dr

[
du

dru
f ν

ν

]
=

d

dr

[ u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i)!!
f ν−i

ν−u+i

]
(A.21)

=

u−1
2∑

i=0

(−1)u+1+i

(u−1
2

i

)
u!!

(u−2i)!!

(
f ν−i

ν−u+i−1 − (u−2i)f ν−i−1
ν−u+i

)
(A.22)

=(−1)u+1f ν
ν−(u+1) +

u−1
2∑

i=1

(−1)u+1+i

(u−1
2

i

)
u!!

(u−2i)!!
f ν−i

ν−(u+1)+i

+

u−1
2

−1∑
i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i−2)!!
f ν−i−1

ν−u+i + (−1)u+ u−1
2 u!!f

ν−u+1
2

ν−u+1
2

(A.23)

=(−1)u+1f ν
ν−(u+1) +

u−1
2∑

i=1

(−1)u+1+i

(u−1
2

i

)
u!!

(u−2i)!!
f ν−i

ν−(u+1)+i

+

u−1
2∑

i=1

(−1)u+1+i

( u−1
2

i−1

)
u!!

(u−2i)!!
f ν−i

ν−(u+1)+i + (−1)
u+1

2 u!!f
ν−u+1

2

ν−u+1
2

(A.24)

=(−1)u+1f ν
ν−(u+1) +

u+1
2

−1∑
i=1

(−1)u+1+i

(u+1
2

i

)
u!!

(u−2i)!!
f ν−i

ν−(u+1)+i

+(−1)
u+1

2 u!!f
ν−u+1

2

ν−u+1
2

(A.25)

�

A.3. Proof of Lemma 3.3

Lemma A.4

du

dru

[
r−νJν(r)

]
=

�u
2
�∑

i=0

(−1)u+i

(u
2 �
i

)
(2u+1

2 � − 1)!!
(2u+1

2 �−1−2i)!!
r−(ν+i)Jν+u−i(r), for u ∈ N

or equivalently

du

dru

[
r−νJν(r)

]
=

u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
r−(ν+i)Jν+u−i(r), for u even (A.26)

du

dru

[
r−νJν(r)

]
=

u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i)!!
r−(ν+i)Jν+u−i(r), for u odd. (A.27)

Proof : The proof is nearly the same as for Lemma A.3 and it can be carried out by the
induction over u, distinguishing the cases when u is even and odd. The argumentation is
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the same. I show the second and third equation, the first one is just a more comprehensive
formulation of the claim for a general u ∈ N.

Denote fa
b = r−aJb(r), a, b ∈ R, suppressing also the argument r of the function fa

b for
short. Using the following well known rule for differentiation of the Bessel functions

d

dz
[z−νJν(z)] = −z−νJν+1(z)

(see Abramowitz and Stegun (1972), formula 9.1.30), the following simple equation can be
shown

d

dr
fa

b =
d

dr
[r−aJb(r)] =

d

dr
[r−(a−b)r−bJb(r)]

= (−1)[r−aJb+1(r) + (a− b)r−(a+1)Jb(r)]
= (−1)[fa

b+1 − (b− a)fa+1
b ]. (A.28)

Now, the proof can be accomplished. For u = 0 and for u = 1 the statement holds trivially.
Let us suppose that u is even and (A.26) holds. Applying the induction step in (A.29),
using (A.28) in (A.30) and by shifting the index i in the second sum of (A.31), (A.32) can
be obtained. Finally, applying (A.14), we get (A.33) which is the claim to prove for u+1
odd.

du+1

dzu+1
f ν

ν =
d

dz

[
du

dzu
f ν

ν

]
=

d

dz

[ u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
f ν+i

ν+u−i

]
(A.29)

=

u
2∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
(−1)

[
f ν+i

ν+u−i+1 − (u−2i)f ν+i+1
ν+u−i

]
(A.30)

= (−1)u+1f ν
ν+u+1 +

u
2∑

i=1

(−1)u+i+1

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
f ν+i

ν+u+1−i

+

u
2
−1∑

i=0

(−1)u+i

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
(u−2i)f ν+i+1

ν+u−i (A.31)

= (−1)u+1f ν
ν+u+1 +

u
2∑

i=1

(−1)u+i+1

(u
2

i

)
(u− 1)!!

(u−2i−1)!!
f ν+i

ν+u+1−i

+

u
2∑

i=1

(−1)u+i+1

( u
2

i−1

)
(u− 1)!!

(u−2i+1)!!
(u−2i+2)f ν+i

ν+u+1−i (A.32)

= (−1)u+1f ν
ν+u+1 +

u
2∑

i=1

(−1)u+i+1

(u
2

i

)
(u+ 1)!!

(u+1−2i)!!
f ν+i

ν+u+1−i. (A.33)

Let us suppose that u is odd and (A.27) holds. Applying the induction step in (A.34),
using the rule (A.28) in (A.35) and by shifting the index i in the second sum of (A.37),
(A.39) can be obtained. Finally, by applying (A.15), we get (A.40) which is the claim to
prove for u+1 even.
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du+1

dzu+1
f ν

ν =
d

dz

[
du

dzu
f ν

ν

]
=

d

dz

[ u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+u−i

]
(A.34)

=

u−1
2∑

i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i)!!
(−1)

[
f ν+i

ν+u−i+1 − (u−2i)f ν+i+1
ν+u−i

]
(A.35)

=(−1)u+1f ν
ν+u+1 +

u−1
2∑

i=1

(−1)u+i+1

(u−1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+u+1−i (A.36)

+

u−1
2

−1∑
i=0

(−1)u+i

(u−1
2

i

)
u!!

(u−2i−2)!!
f ν+i+1

ν+u−i + (−1)
u+1

2 u!!f
ν+ u+1

2

ν+ u+1
2

(A.37)

=(−1)u+1f ν
ν+u+1 +

u−1
2∑

i=1

(−1)u+i+1

(u−1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+u+1−i (A.38)

+

u−1
2∑

i=1

(−1)u+i+1

(u−1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+u+1−i + (−1)
u+1

2 u!!f
ν+ u+1

2

ν+ u+1
2

(A.39)

=(−1)u+1f ν
ν+u+1+

u−1
2∑

i=1

(−1)u+1+i

(u+1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+u+1−i+(−1)
u+1

2
+1u!!f

ν+ u+1
2

ν+ u+1
2

=

u+1
2∑

i=0

(−1)(u+1)+i

(u+1
2

i

)
u!!

(u−2i)!!
f ν+i

ν+(u+1)−i (A.40)

�
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A.4. Matérn class: proof of the equation (3.13)

Denote

Q = 2ν−1φΓ(ν +
d

2
)α2νπ−

d
2

in (3.9) and vkl = cov(Z(k)(x), Z(l)(x)) for short. Denote further dωn = dω1 . . . dωn

a volume element of the n-dimensional space Rn. Recall Lemma 2.2, which says that it
suffices to consider multi-indices k = (k1, . . . , kd), and l = (l1, . . . , ld), such that k+ l is
even. Use the equation (3.6) and obtain (A.41). Use formula 3.251.11 in Gradstein and
Ryshik (1981b) and get (A.42). Proceed the same step again (d−1) times and get (A.43),
which can be further re-written as (A.44). From properties of beta and gamma function,
get finally (A.45).
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A.5. J-Bessel class: proof of the equation (3.25)

Denote

Q =
φ

2νπ
d
2α2νΓ(ν + 1 − d

2)

in (3.24), vkl = cov(Z(k)(x), Z(l)(x)) for short. Denote further dωn = dω1 . . . dωn a volume
element of the n-dimensional space Rn. Recall Lemma 2.2, which implies that it suffices to
consider multi-indices k=(k1, . . . , kd), and l=(l1, . . . , ld), such that k+l is even. Use the
equation (3.6) and obtain (A.46). Use formula 3.251.1 in Gradstein and Ryshik (1981b)
or formula 2.2.4.8 in Prudnikov et al. (1996) and get (A.47). Proceed the same step again
(d− 1)-times and obtain (A.48). From properties of the beta and gamma function, (A.49)
can be obtained.
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A. Appendix (Proofs)

A.6. Matrix of convolutions

Let Z be a stationary, isotropic and sufficiently differentiable random field on Rd and let
f ∈ L1(Rd) be its spectral density. Denote

ck0(x) = cov(Z(k)(0), Z(0)(x))
c0l(h − x) = cov(Z(0)(x), Z(l)(h)) = cov(Z(l)(h), Z(0)(x)) = cl0(x − h)

For the convolution of this covariances, it holds (cf. (3.5))

c0l ∗ ck0(h) =
∫

Rd

c0l(h − x)ck0(x)dx

= (−1)|k|(2π)dF [(iω)k1+l1 . . . (iω)kd+ldf2(ω)](h) (A.50)

where in the equation (A.50) subsequently equations (2.14) and (3.6) are used. Finally,
assuming that (iω)k1+l1 . . . (iω)kd+ldf2(ω) ∈ L1(Rd), the Convolution theorem 4 (page 28)
is applied. The above assumption means in consequence that ck0 ∈ L2(Rd). Since k can
be also equal to zero multi-index, it means that f ∈ L2(Rd). (Note that under f and g in
the Theorem 4 the functions ck0, and c0l should be understood.)

Since ∫
Rd

c0l(h − x)ck0(x)dx =
∫

Rd

ck0(x)cl0(x − h)dx

we can easily calculate inner product 〈ck0, cl0〉

〈ck0, cl0〉 :=
∫

Rd

ck0(x)cl0(x)dx = ck0 ∗ c0l(0), (A.51)

and hence
||ck0||22 = 〈ck0, ck0〉.

Remark The product of the spectral densities of two Gaussian covariance functions is
again a spectral density of a Gaussian covariance function. The same holds for the Matérn
and the J-Bessel class too. In the following, this property is used to establish some formulas,
in particular, formulas for (A.51).

A.6.1. Gaussian covariance function

Denote (iω)k := (iω1)k1 . . . (iωd)kd for short. Apply (A.50) on the formula (3.16) for the
spectral density of the Gaussian covariance function. Further, the formulas (3.6) and (3.21)
yield

c0l ∗ ck0(h)=(−1)|k|(2π)d
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A.6. Matrix of convolutions

Recall (A.51). Using (2.14), (3.6) and (3.21) in (A.52), the following equation can be
obtained

〈ck0, cl0〉 = (−1)
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and hence

||ck0||22 = σ4
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. (A.55)

A.6.2. Matérn class

Using (A.50) and the formula (3.9) for the spectral density of the Matérn class covariance
function and formula (3.6), the following equation can be obtained
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If d = 1, Lemma 3.1 can be applied to (A.53) to get a more explicite formula. However, to
obtain the following formulae for the inner product, Lemma 3.1 is not necessary.

Using (2.14), (3.6) and (3.13) in (A.56), the following equation can be obtained
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and subsequently

||ck0||22 = φ2 1
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A.6.3. J-Bessel class

Using (A.50) on the formula (3.24) for the spectral density of the J-Bessel class covariance
function and formula (3.6), the following equation can be obtained

c0l ∗ ck0(h) = (−1)|k| (2π)d
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In one-dimensional case, Lemma 3.3 can be applied to obtain a more explicite formula.

Using (2.14), (3.6) and (3.25) in (A.59), the following equation can be obtained
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and therefore
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B. Appendix (Conditional simulation)

The following section introduces a conditional simulation method and it provides its formal
generalization to a simultaneous (conditional) simulation of a random field and its derivative
fields. There is only an indirect connection to the problem of optimal design and therefore
the section was postponed to the appendix.

Conditional simulation of random fields

It is quite typical in geostatistics that physical measurements are linked with big costs
(financial, material or environmental). Therefore, the amount of data available is sometimes
much lower than in other disciplines. If real data are not available, it is possible to simulate
them. Indeed, validating a method on data where the true values of parameters are known
should be an important part of establishing its worth.

Another point is, that in practice complex objectives are required which are difficult to
analyze. For instance, geostatisticians in oil prospection could be interested in whether two
oil-fields are connected or not.

Another problem could be to estimate the length of stratum across a profile which is
observed only at some locations. We can of course use the kriging predictor to interpolate
the data, but the result will be much smoother than the real curve. In consequence, we
would underestimate its the actual length. Simulations could deliver some insight which
scenarios are possible and how their probability distribution functions look like. Thus, if
the aim is to obtain some notion about the local structure of the study random field rather
than to predict data, simulation can be a useful tool.

Nowadays, simulation of random fields is extensively used in problems like connectivity,
fluid flow, transportation and migration of pollutants (see e.g. Chilès and Delfiner (1999)).

A non-conditional simulation of a random field Z is simply a realization of Z, randomly
selected from the set of all possible realizations. The random field Z(x) has infinitely
many realizations. Given some observations of the field, we can choose those realizations
which have at the sample points the same values as those observed. These realizations can
be considered to better represent the reality. In this case, we speak about a conditional
simulation.

In the following text, we restrict ourselves only to the simplest method for (conditional)
simulation using the Cholesky decomposition. It can be shown that in this case there is no
difficulty in incorporating observations of derivatives.

B.1. Cholesky decomposition

Recall that the spatial index of the random field under study Z(x) varies continuously over
some d-dimensional subspace D of Rd. On the other hand, a simulation of the field can be
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B. Appendix (Conditional simulation)

carried out only at discrete locations, denoted as G = {x1, . . . ,xn}. The locations might
be a dense regular grid over D or they may be irregularly spaced points in D.

Suppose that the second order random field has the mean m(x) and the covariance
function C(x,y) = cov(Z(x), Z(y)). Note that neither stationarity nor isotropy is required.
Let Z = (Z(x1), . . . , Z(xn))T be a vector of pairwise different random variables to be
simulated. Denote by m = (m(x1), . . . ,m(xn))T and Σ the vector of mean values and the
covariance matrix of Z, respectively. Recall that the entries of the matrix Σ are defined
by Σij = cov(Z(xi), Z(xj)) for i, j ∈ {1, . . . , n}.

Since Σ is a symmetric positive definite matrix, the Cholesky decomposition allows Σ to
be decomposed as

Σ = LLT , (B.1)

where L is a lower triangular matrix. Thus, we can simulate Z as

ZNS = m + Lε, (B.2)

where ε = (ε1, . . . , εn)T is a vector of uncorrelated zero mean random variables with the
unit variance. The resulting vector ZNS is a random selection from a distribution which
has the mean m and the covariance matrix Σ as required. Note that the decomposition
(B.1) needs to be done only once and can be reused for simulation of many realizations.

Usually, ε1, . . . , εn are i.i.d. Gaussian random variables. This implies that Z is multivari-
ate Gaussian. Some other generic models like lognormal, exp(Z(x)), or chi-square random
field, Z2(x), can be obtained directly by applying the corresponding transformation to the
simulated Gaussian data.

Note that the source of random variation is usually a pseudo-random number generator.
The choice of a good one for spatial simulation needs some care, especially for higher
dimensional data (see e.g. Robert and Casella (1999)).

B.1.1. Simulation of derivative fields

Since there is no restriction on the vector Z of the simulated random variables (except
that Z must be of the second order), simulation of derivative fields can be done with just
a formal modification in the algorithm.

Let Z = (Z(k1)(x1), . . . , Z(kn)(xn))T be a vector of the simulated random variables,
provided that they are well defined. By means of formulas (2.12) and (2.13), we define
m = (m(k1)(x1), . . . ,m(kn)(xn))T and Σij = cov(Z(ki)(xi), Z(kj)(xj)) for i, j ∈ {1, . . . , n}.
The procedure proceeds as above without further modifications.

Now, we can easily get correlated realizations of the underlying process and its derivatives
by setting e.g. Z = (Z(x1), . . . , Z(xn), Z(1)(x1), . . . , Z(1)(xn))T . Examples for a Matérn
class covariance function are given in Figures B.1 and B.2.

Note that the main problem of the applicability of non-conditional simulation based on
the Cholesky decomposition is, that for large sets G numerical problems turn out and
computing time can become excessive. This could particularly be overcome when using
covariance functions with a compact support, since nonzero entries in Σ will be reduced
and algorithms with better performance can be used. Other methods, which are based on
a separation of the domain into partially overlapping zones and further improvements of
the original algorithm, are reviewed in Chilès and Delfiner (1999, page 465).
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Figure B.1.: Non-conditional simulation of a stationary zero mean Gaussian process Z
(thick less varying line) with the Matérn covariance function and its first
derivative Z(1) (thin more varying line). The Matérn covariance function (pa-
rameterized by (3.10)) has parameters σ2 = 1, ρ = 1, ν = 2. The grid G
consists of 500 points. It means that Σ is 1000×1000-matrix. Note that the
simulated process Z(0) is the smoothest one (in the Matérn class) which is only
once differentiable.

B.2. Conditioning by kriging

In this section, a general method for the transformation of a non-conditional simulation
into a conditional one will be recalled. The principle is quite simple.

First, let us assume that we know how to construct a non-conditional simulation. Note
that it can be any method for non-conditional simulation and not necessary the one by
means of the Cholesky decomposition. Suppose that a random field Z has been observed
at the sample points V = {x′

1, . . . ,x
′
N}. Denote by Z(V ) the vector of observations of Z

at these sample points, Z(V )= (Z(x′
1), . . . , Z(x′

N ))T . Let us assume that we have a non-
conditional simulation ZNS independent of the sample data but with the same covariance
function as Z.

Conditioning means passing from ZNS to a conditional simulation ZCS that matches the
sample data. Let us begin with the following trivial decomposition which can be found in
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Figure B.2.: Non-conditional simulation of a stationary zero mean Gaussian process Z
(thick at least varying line) with the Matérn covariance function and its first
two derivatives. The medium line corresponds to Z(1); the thin highly varying
line corresponds to the second derivative process Z(2). The Matérn covariance
function (3.10) has the parameters σ2 = 1, ρ = 1, ν = 3. The grid G consists
of 500 points. It means that Σ is 1500×1500-matrix. Note that the simulated
process Z(0) is the smoothest one (in the Matérn class) which is only twice
differentiable.

Chilès and Delfiner (1999) and Cressie (1991)

Z(x) = p∗L(Z(x);Z(V )) +
[
Z(x) − p∗L(Z(x);Z(V ))

]
.

true value = simple kriging predictor + prediction error
(B.3)

Since Z(x) is not known for x �∈ V , the prediction error is not known. Note that

cov
(
p∗L(Z(x);Z(V )),

[
Z(x) − p∗L(Z(x);Z(V ))

])
= 0.

Similarly, we can also decompose ZNS

ZNS(x) = p∗L(ZNS(x);ZNS(V )) +
[
ZNS(x) − p∗L(ZNS(x);ZNS(V ))

]
. (B.4)

The predictor and the prediction error are orthogonal as in the previous case. Here, on
the other hand, the prediction error is known. Finally, define the conditional simulation by

98



B.2. Conditioning by kriging

replacing the prediction error in (B.3) with the prediction error from (B.4):

ZCS(x) = p∗L(Z(x);Z(V )) +
[
ZNS(x) − p∗L(ZNS(x);ZNS(V ))

]
.

true value = simple kriging + simulation of predition error
predictor

(B.5)

It can easily be seen that ZCS interpolates data at the sample points, since the simple
kriging is an exact interpolator. Moreover, it holds

cov(ZCS(x), ZCS(y)) = cov(ZNS(x), ZNS(y)) = cov(Z(x), Z(y)) (B.6)

as required.

B.2.1. Conditioning with derivative data

Since we already know how to simulate a random field and its derivatives simultaneously,
the conditional simulation, in case when derivative data are observed, can be used without
big modifications in the algorithm. Let us assume that data can be in the form Z(V ) =
(Z(k1)(x′

1), . . . , Z
(kN )(x′

N ))T whenever Z(V ) is well defined, i.e. if the random field Z is
differentiable sufficiently. To proceed conditional simulation correctly, we need to simulate
new data ZNS(V ), together with the random field Z at the grid points G. The vector Z
which is used for non-conditional simulation by means of the Cholesky decomposition (B.2)
is as follows

Z = (Z(x1), . . . , Z(xn)︸ ︷︷ ︸, Z(k1)(x′
1), . . . , Z

(kN )(x′
N )︸ ︷︷ ︸). (B.7)

(1) (2)

Simulating new data corresponding to (B.7), from the first part of these data values ZNS(x)
in (B.5) are taken. On the other hand, the second part is used in predictor as ZNS(V )
only. If V ⊂ G then all random variables which are common to the second and the
first part of (B.7) need to be eliminated from the second part to assure regularity of the
matrix Σ = cov(Z,ZT ). However, the simulated values from (1) which correspond to the
eliminated random variables in (2) need to be used for prediction.

Conditional simulations of a Gaussian process with the Matérn covariance function are
presented in Figure B.3. The characteristics of the process are the same as in Figure B.1.
On the original process (thin darker line) some observations have been proceeded, precisely
at the points 1, 5, 8, 9, 10, 15, 17. The circle � means an observation of the process Z(0); the
triangle � means an observation of the first derivative process Z(1), which was generated
simultaneously with Z(0) as described in the previous text. Finally, the asterisk ∗ means
that both the process and the first derivative process has been observed. The thick line
represents a conditional simulation with respect to the given observations.

Resume

Following Chilès and Delfiner (1999), conditional simulations are useful qualitatively, to
obtain realistic pictures of spatial variability. Quantitatively, they are a tool of choice to
evaluate the impact of spatial uncertainty on the results of complex procedures, such as
numerical modeling of dynamical systems or economic optimization of the exploitation of
natural resources.
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B. Appendix (Conditional simulation)

In this section, it was demonstrated that non-conditional simulation by means of the
Cholesky decomposition can be straightforward generalized for simultaneous simulation of
derivative fields. The same holds for the conditioning by the kriging, too. A question
remains, whether non-conditional simulation of derivative fields can be adapted also for
other simulation methods.
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B.2. Conditioning by kriging
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Figure B.3.: Three conditional simulation of a process (for a description see page 99)
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102



C. Appendix (Figures)

This chapter supplements the empirical results given in Chapter 5. It can be seen that the
plots of (5.4) for the Gaussian covariance function are analogous to (5.4) for the Matérn
class. Therefore, it can be conjectured that some optimally constructed regular grids per-
form very good for the Matérn class too.

On the other hand, the case of the J-Bessel class is more complicated. For larger ν (see
Figure 3.2), an analogy to the Gaussian covariance function can be seen (see Figures C.8
and C.9). For small values of ν, (5.4) strongly varies. Moreover, in some figures, some
effects can be observed, which have no analogy under the Gaussian model. In particular,
see Figures C.7(b) and C.7(f), and observe that the global maximum is not reached in the
origin.

The following plots are based on the results given in Appendix A.6.2 and A.6.3 together
with Lemmata 3.1 and 3.3.

103



C. Appendix (Figures)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h

U
k,

l
′

(h
)

(a) ν = 1.1, k = 0, l = 0

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h

U
k,

l
′

(h
)

(b) ν = 1.25, k = 0, l = 0

0 0.5 1 1.5 2 2.5 3
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

h

U
k,

l
′

(h
)

(c) ν = 1.1, k = 0, l = 1

0 0.5 1 1.5 2 2.5 3
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

h

U
k,

l
′

(h
)

(d) ν = 1.25, k = 0, l = 1

0 0.5 1 1.5 2 2.5 3
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

h

U
k,

l
′

(h
)

(e) ν = 1.1, k = 1, l = 1

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

h

U
k,

l
′

(h
)

(f) ν = 1.25, k = 1, l = 1

Figure C.1.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the Matérn model (3.10) with ρ = 1 and σ2 = 1.
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Figure C.2.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the Matérn model (3.10) with ρ = 1 and σ2 = 1.
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Figure C.3.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the Matérn model (3.10) with ν = 2.1, ρ = 1 and σ2 = 1.
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Figure C.4.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the Matérn model (3.10) with ν = 2.5, ρ = 1 and σ2 = 1.
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Figure C.5.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the Matérn model (3.10) with ν = 3, ρ = 1 and σ2 = 1.
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Figure C.6.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the J-Bessel model with ν = 1, φ = 1 and α = 1.
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Figure C.7.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the J-Bessel model (3.23) with ν = 1, φ = 1 and α = 1.
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Figure C.8.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the J-Bessel model (3.23) with ν = 5, φ = 1 and α = 1.
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Figure C.9.: Plots of the imse-update (5.4) for two observations Z(k)(0) and Z(l)(h) under
the J-Bessel model (3.23) with ν = 5, φ = 1 and α = 1.
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