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Chapter 1

Introduction

This thesis is concerned with the approximate solution of linear operator equations

Ax = b (1.1)

by two specific classes of projection methods: the minimal residual (MR) and orthogonal
residual (OR) methods. The right hand side b and the unknown x lie in a Hilbert space
H with inner product (·, ·) and associated norm ‖ · ‖, and A : H → H is a bounded
and invertible operator. Both methods can be viewed as subspace correction methods in
the sense that an approximate solution of (1.1) is sought by adding a correction c from a
finite-dimensional correction space C to a given initial approximation x0. The corrections
are determined by imposing constraints on the residual vector r = b − A(x0 + c), the
number of which coincides with the dimension of C .

The MR approximation x MR relative to the correction space C is defined by

‖b − Ax MR‖ = min
c∈C
‖b − A(x0 + c)‖ = min

c∈C
‖r0 − Ac‖, (1.2)

where r0 = b − Ax0 is the residual of the initial approximation. In other words, the
residual of the MR method is simply the error of the best approximation to r0 from the
space W := AC , the image of the correction space under A. For this reason we shall call
W the approximation space. As is well known, the unique solution cMR to this problem
of best approximation is such that AcMR = PW r0, where PW : H → W denotes the
orthogonal projection onto W , and the MR residual rMR := r0 − AcMR is characterized
by the constraint

rMR ⊥ W .

The OR approximation is obtained by imposing, in place of (1.2), the constraint

rOR ⊥ V , (1.3)

where V is a suitable test space. In this case, r0 is being approximated by P V
W r0, where

P V
W : H → W is the oblique projection onto W orthogonal to V . In contrast with the

MR approximation, the OR approximation need not exist for all choices of C and V .
These approaches of approximating elements of a large space from a smaller, more

manageable one is encountered throughout applied mathematics and numerical analysis,

1



2 Chapter 1: Introduction

and such Galerkin or Least-Squares approximations as the OR and MR approximations
above e.g. constitute fundamental frameworks for the approximate solution of boundary
value problems (see for instance Aubin (1972), Brezzi & Fortin (1991) or Kress (1989)).

Our primary concern here is the solution of finite dimensional operator equations,
i.e., linear systems of equations. We choose an abstract, possibly infinite dimensional
setting, at least initially, for two reasons. First, for the algorithms to be considered, it
makes no essential difference whether or not the underlying spaces have finite dimension.
Second, the dimension of the correction spaces C to be used in practical applications is
always much smaller than that of the space H , so, in comparison, dim H may as well be
infinite. Furthermore, a large class of linear systems arises from discretization of operators
between infinite dimensional spaces, in which case a sequence of problems corresponding
to a sequence of discretization parameters is the natural object of study, and the later
elements of such a sequence inherit many important properties of the infinite-dimensional
problem under approximation.

By far the most widely used type of correction spaces for linear systems are Krylov
spaces, which are subspaces spanned by successive powers of A applied to a fixed starting
vector, in this case the initial residual. Historically, this predominance is explained by
the ease with which such spaces can be generated using only matrix-vector products with
A, particularly when A can be represented as a sparse or structured matrix, or when the
action of A on a vector can be implemented as a specialized subroutine which is more
efficient than standard matrix-vector multiplication.

The success of Krylov subspace methods as general-purpose iterative solution methods
began with a paper by Reid (1971), in which the conjugate gradient method, a projec-
tion method for solving symmetric positive definite problems which had been introduced
and analyzed much earlier by Hestenes & Stiefel (1952), is proposed as an iterative so-
lution method for solving well-conditioned linear systems. Other key developments such
as preconditioning and the extension of the conjugate gradient method to indefinite and
nonsymmetric problems led to a surge of interest in and publications on Krylov subspace
methods. Except for some special cases, and these will be described in the following,
there is no a priori reason to expect Krylov subspaces to contain particularly good ap-
proximations to the solution of (1.1). Moreover, many Krylov subspace methods incur
computational work which grows as the iteration proceeds, so that slow convergence can
be doubly problematic. For this reason, the basic formulations of Krylov subspace meth-
ods are often modified to make them less expensive, resulting in truncated or restarted
formulations, which, however, often converge less rapidly and less reliably than their un-
modified counterparts. Several approaches have been recently proposed to enhance the
approximation qualities of Krylov spaces, mainly with the goal of compensating for the
deterioration due to truncation or restarting.

In this thesis we propose a new approach to deriving Krylov subspace methods based
on the well-known basic scheme of MR and OR approximations. This approach has the
advantage of simplicity and generality: we can express the basic idea independently of
any linear systems as an approximation scheme in a Hilbert space H based on orthogonal
and oblique projection onto a finite dimensional subspace W . By considering this scheme
on a nested sequence of subspaces {Wm}, a simple assumption relating the test space
Vm of the oblique projections with Wm already allows one to derive the basic relations
on Krylov subspace MR and OR methods for solving (1.1). A key role is played by
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the angles between the spaces Wm and Vm. Moreover, upon introducing bases, abstract
counterparts of well known Krylov subspace methods result as the basic alternatives for
formulating these projection methods depending on the choice of bases. Specialization of
this abstract approach to solving operator equations and to Krylov spaces yields the well-
known Krylov subspace methods and their recent generalizations. We believe that this
framework offers a natural setting in which to derive and relate the many methods which
have been proposed in the past 50 years. Furthermore, as we demonstrate in Chapter 6,
the angles formulation offers a new approach for generating error and residual bounds for
MR and OR methods.

The thesis is organized as follows: Chapter 2 presents the abstract framework of MR
and OR methods as approximation schemes in a Hilbert space. In Chapter 3 we formulate
the MR and OR methods for solving equations and obtain known methods for general
correction spaces such as FGMRES and GCR. We then derive formulations for successive
MR approximations on two spaces and how to relax orthogonality constraints in an opti-
mal way. Chapter 4 further specializes to Krylov spaces, and we discuss the implications
of the polynomial representation which these spaces possess and give an overview of the
development of the most important methods beginning with their ancestor, the conjugate
gradient method. We conclude the chapter on Krylov subspace methods with a look at
short recurrences, the role of the inner product and how Krylov spaces are modified by
preconditioning. Chapter 5 treats truncated and restarted MR methods. After some
results on possible strategies for augmenting Krylov spaces we study and compare the
recently proposed methods of deflation by preconditioning, deflation by augmentation,
and optimal truncation. Chpater 6 treats error and convergence bounds for MR and OR
methods After a survey of the classical approaches for deriving bounds, we show how this
can be done using the angle formulation. We close with some consequences on equivalent
problems, for which MR and OR methods behave identically, and on the relevance of
singular values for convergence.
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Chapter 2

Projection Methods in Hilbert Space

As stated in the Introduction, the MR and OR approximations of the solution of (1.1)
can be viewed as approximations of the initial residual r0 = b −Ax0 by its orthogonal or
oblique projection, respectively, onto an approximation space W ⊂ H . In this chapter
we shall analyze these approximations without reference to any operator equation, only
with increasingly specific choices of approximation spaces W and test spaces V . More
specifically, Section 2.1 treats general spaces, followed by nested sequences of spaces in
Section 2.2, in which the test spaces V also have a specific dependence on W . Section 2.3
is concerned with the coordinate calculations necessary to compute MR and OR approx-
imations with regard to various convenient choices of bases of W and V . So as not to
lose sight of how these approximations fit into the equation-solving context, we shall re-
fer to the best approximation of an element r ∈ W as its MR approximation and its
approximation by oblique projection as its OR approximation.

2.1 Angles and Approximation

Given an arbitrary finite dimensional subspace W ⊂ H and an element r ∈ H , we
define its MR approximation wMR as the best approximation of r from W and denote by
dMR the associated approximation error:

wMR := PW r , dMR := r −wMR = (I − PW )r ⊥ W .

The distance between r and its best approximation PW r in W can be described in terms
of angles between vectors and subspaces of H . The angle ](x ,y) between two nonzero
vectors x ,y ∈H is defined by the relation

cos](x ,y) :=
|(x ,y)|
‖x‖ ‖y‖

,

which, in view of the Cauchy-Schwarz inequality, uniquely determines ](x ,y) as a number
in [0, π/2]. We note here that the natural definition of the angle would replace the
modulus in the numerator by its real part; our definition, however, is more appropriate
for comparing subspaces (see also the discussion of this issue in Davis & Kahan (1970,
p. 9)). Similarly, we define the angle between a nonzero vector x ∈ H and a subspace

5



6 Chapter 2: Projection Methods in Hilbert Space

U ⊂H , U 6= {0}, by

](x ,U ) := inf
06=u∈U

](x ,u), i.e., cos](x ,U ) = sup
06=u∈U

cos](x ,u). (2.1)

Correspondingly, the sine of this angle is sin](x ,U ) =
√

1− cos2](x ,U ).
The angle between a vector and a subspace may be expressed in terms of the orthogonal

projection onto that space, as shown in the following Lemma.

Lemma 2.1.1. Let U be a finite dimensional subspace of H and denote by PU the
orthogonal projection onto U . For each x ∈H there holds

](x ,U ) = ](x , PU x ) (2.2)

and, as a consequence,

‖PU x‖ = ‖x‖ cos](x ,U ), (2.3)

‖(I − PU )x‖ = ‖x‖ sin](x ,U ). (2.4)

Proof. For any u ∈ U , we have |(x ,u)| = |(PU x ,u)| ≤ ‖PU x‖ ‖u‖, and therefore, for
u 6= 0,

|(x ,u)|
‖x‖‖u‖

≤ ‖PU x‖
‖x‖

=
|(PU x , PU x )|
‖x‖‖PU x‖

=
|(x , PU x )|
‖x‖‖PU x‖

,

from which (2.2) follows after taking suprema. Equation (2.3) is merely a reformulation
of (2.2), and (2.4) follows from ‖x‖2 = ‖PU x‖2 + ‖(I − PU )x‖2.

In light of this fact, the distance between r and and its MR approximation wMR may
be expressed as

‖dMR‖ = ‖r −wMR‖ = ‖(I − PW )r‖ = ‖r‖ sin](r ,W ). (2.5)

To define the OR approximation in this abstract setting we require a further finite di-
mensional subspace V ⊂H to formulate the orthogonality constraint. The OR approxi-
mation wOR ∈ W of r is then defined by the requirement that it satisfy the orthogonality
or Galerkin condition

wOR ∈ W , r −wOR ⊥ V . (2.6)

Of course, since choosing V = W yields the MR approximation, the latter is just a
special case of the OR approximation. We choose nonetheless to distinguish the two,
both for historical reasons and for ease of exposition. Existence and uniqueness of wOR

are summarized in

Proposition 2.1.2. If V and W are subspaces of the Hilbert space H and r ∈H , then:

1. There exists w ∈ W such that r −w ⊥ V if and only if r ∈ W + V ⊥.

2. Such a w is unique if and only if W ∩ V ⊥ = {0}.
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Thus, a unique OR approximation is defined whenever H = W ⊕ V ⊥. In this case
wOR is the oblique projection of r onto W orthogonal to V (or, equivalently, along V ⊥),
which we denote by P V

W : H → W , and wOR is characterized by

wOR = P V
W r , dOR = r −wOR = (I − P V

W )r ⊥ V .

When it exists, the oblique projection P V
W , coincides with the Moore-Penrose pseu-

doinverse (PV PW )+ of PV PW (cf. Wedin (1983)). This is established in the following two
lemmas, the first of which describes the mapping properties of (PV PW )+.

Lemma 2.1.3. Given two finite dimensional subspaces V and W of the Hilbert space
H , let S := (PV PW )+ denote the Moore-Penrose pseudoinverse of the product of the
orthogonal projections onto W and V . Then S is a projection and there holds

R(S) = W ∩ (V + W ⊥) (2.7)

N (S) = V ⊥ + (W ⊥ ∩ V ). (2.8)

Proof. The proof of the projection property S2 = S follows along the lines of Greville
(1974, Theorem 1). First, since P := PV PW has finite rank, its Moore-Penrose pseudoin-
verse P+ = S exists and satisfies R(P+) = R(P ∗)—the asterisk denoting the Hilbert
space adjoint—, from which it follows that

R(S) ⊂ R(PW ), R(S∗) ⊂ R(PV ),

and hence, by the idempotency of PV and PW , there holds

PW S = S, SPV = S,

which together imply S2 = SPV PW S = P+PP+ = P+ = S.
Since R(S) = R((PV PW )∗) = R(PW PV ) and analogously for the null space, it is

sufficient to show (2.7) and (2.8) for the operator PW PV in place of S. To derive (2.7),
note that w ∈ W lies in R(PW PV ) if and only if there exists v ∈ V such that v = w +w⊥
for some w⊥ ∈ W ⊥, which in turn is equivalent with w ∈ W ∩ (V + W ⊥). To see (2.8),
note that any x ∈ H may be written as x = (w + w⊥) + v⊥ with w ∈ W , w⊥ ∈ W ⊥,
v⊥ ∈ V ⊥, and w + w⊥ ∈ V . Thus, x ∈ N (PW PV ) if and only if w = 0 or, equivalently,
x ∈ V ⊥ + (W ⊥ ∩ V ).

Lemma 2.1.4. Given two finite dimensional subspaces V and W of the Hilbert space H
such that H = W ⊕ V ⊥, the oblique projection P V

W onto W orthogonal to V is given by

P V
W = (PV PW )+. (2.9)

Proof. By the previous lemma, S is a projection and, in view of V + W ⊥ = (V ⊥ ∩W )⊥,
W ⊥ ∩ V = (W + V ⊥)⊥, and H = W ⊕ V ⊥, its range is W and its null space is V ⊥,
which characterizes it as P V

W .

Remark 2.1.5. We note that, while the left hand side of (2.9) exists only under the con-
dition H = W ⊕ V ⊥, the right hand side is always defined. Thus, (PV PW )+r can be
viewed as a natural way of defining a generalized OR approximation in those cases where
this direct sum condition fails to hold. This situation, in which the Galerkin condition
(2.6) fails to specify a unique approximation, is referred to as a Galerkin breakdown in
the literature on Krylov subspace methods.
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As is to be expected, the error dOR = r − P V
W r depends on the angles between the

subspaces V and W , which we introduce as follows (cf. Golub & van Loan (1989)): Given
two finite dimensional subspaces V and W of H , let m := min(dim V , dim W ). The
canonical angles {θj}mj=1 between V and W are defined recursively by

cos θj := max
06=v∈V

max
06=w∈W

|(v ,w)|
‖v‖ ‖w‖

=:
|(vj,wj)|
‖vj‖ ‖wj‖

subject to v ⊥ v1, . . . , vj−1 and w ⊥ w1, . . . ,wj−1. We further define the angle between
the spaces V and W as the largest of the canonical angles

](V ,W ) := θm.

Remark 2.1.6. If PV PW =
∑m

j=1 σj(·,wj)vj is a singular value decomposition of PV PW ,
then the variational characterization of the singular values,

σj(PV PW ) = max
v∈V ,w∈W

|(PV PW w , v)|
‖w‖ ‖v‖

=:
|(PV PW wj, vj)|
‖wj‖ ‖vj‖

subject to v ⊥ v1, . . . vj−1, w ⊥ w1, . . . ,wj−1 for j = 1, . . . ,m (cf. Björck & Golub
(1973)), shows immediately that cos θj = σj. Furthermore, we note that, given any two
orthonormal bases {vj}dim V

j=1 and {wj}dim W
j=1 of V and W , then the cosines of the canonical

angles are the singular values of the matrix of inner products [(vj,wk)]j=1,...,dim V ,k=1...,dim W

(see for instance Chatelin (1993, p. 5)) or Björck & Golub (1973)).

Remark 2.1.7. As a consequence of Remark 2.1.6, we see that S = (PV PW )+ can be
written as

S =
m∑
j=1

σ+
j (·, vj)wj with σ+

j :=

{
1/σj if σj > 0,

0 otherwise.

In particular, we have

R(S) = span{wj : σj > 0}, N (S) = span{vj : σj > 0}⊥.

Thus R(S) = W if and only if dim(W ) = m and σj > 0 for all j = 1, . . . ,m. Similarly,
N (S) = V ⊥ if and only if dim(V ) = m and σj > 0 for all j = 1, . . . ,m. Consequently,
the oblique projection P V

W exists if and only if dim(V ) = dim(W ) and ](V ,W ) < π/2.

Remark 2.1.8. For completeness, we note that the sine of the angle between two equidi-
mensional subspaces V and W is also given by sin](V ,W ) = ‖PV − PW ‖ (cf. Chatelin
(1993)), hence an equivalent characterization of the existence of the oblique projection is
sin](V ,W ) = ‖PV − PW ‖ < 1.

Besides the relative position of the spaces V and W , the error of the OR approximation
also depends on the position of r with respect to V and W . In this generality, all we can
do to bound the OR approximation error is determine the norm of the complementary
projection I − P V

W . For simplicity, since H = W ⊕ V ⊥ for finite dimensional V and W
implies dim V = dim W , we assume that both spaces have the same dimension m <∞.
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Lemma 2.1.9. Given two m-dimensional subspaces V ,W ⊂H of the Hilbert space H
such that H = W ⊕ V ⊥, let P V

W : H → W denote the oblique projection onto W
orthogonal to V . Then there holds

‖I − P V
W ‖ =

1

cos](V ,W )
. (2.10)

Proof. The proof follows from the fact that ‖P‖ = ‖I − P‖ for any projection operator
P 6= O,P 6= I in a Hilbert space (see Kato (1960)). Thus,

‖I − (PV PW )+‖ = ‖(PV PW )+‖ = σmax

(
(PV PW )+

)
=

1

σmin(PV PW )

and the assertion follows from Remark 2.1.6.

Without further assumptions on r and the spaces V and W , all we can say about the
error of the OR approximation is

‖dOR‖ = ‖r −wOR‖ = ‖(I − P V
W )r‖ ≤ ‖r‖

cos](V ,W )
.

As an immediate consequence, noting that

dOR = (I − P V
W )r = (I − P V

W )(r −w) ∀w ∈ W ,

we obtain

‖dOR‖ ≤ ‖I − P V
W ‖ inf

w∈W
‖r −w‖ = ‖I − P V

W ‖ ‖dMR‖,

an estimate usually referred to as Céa’s Lemma in the context of variational discretization
methods (see for example Brenner & Scott (1994, Theorem 2.8.2)). Together with (2.10),
this implies

cos](V ,W )‖dOR‖ ≤ ‖dMR‖ ≤ ‖dOR‖.

Notes and Remarks

The angles between two subspaces of Rn were treated systematically as early as 1875 in a
paper by Jordan (1875). Abstract treatments of the separation of a pair of subspaces in
the context of the perturbation of eigenspaces may be found in Riesz & Sz.-Nagy (1955,
Section 136) and Kato (1980, Sections 1.4.6 and 1.6.8). The related concept of direct
rotation between two subspaces was introduced by Davis (Davis 1963, Davis 1965) and
further developed to study eigenvector perturbations in the celebrated paper by Davis
& Kahan (1970). The direct rotation was also a key step in the development of the
CS decomposition by Stewart (1977), which has since become an increasingly popular
matrix analysis tool, see Paige & Wei (1994) for a survey. The computation of the angles
between subspaces using the singular value decomposition was introduced by Björck &
Golub (1973). Lemma 2.1.9 was shown by Saad (1982).
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2.2 Projections onto Nested Subspaces

Since until now nothing further was assumed to relate V , W and r , we were only able to
bound the error of the OR approximation in terms of the largest canonical angle between
the spaces V and W . We will obtain more interesting results in this section by selecting a
specific space V which differs only slightly from W . This choice, however, is still general
enough to contain all Krylov subspace methods. Moreover, we now consider the MR and
OR approximations on nested sequences of subspaces, which is the setting in which these
approximations are used in practical algorithms.

2.2.1 MR Approximations on Nested Subspaces

Consider a sequence of nested subspaces

{0} = W0 ⊆ W1 ⊆ · · · ⊆ Wm−1 ⊆ Wm ⊆ · · · (2.11)

of H and assume for simplicity that dim Wm = m. Throughout this section, {w1, . . . ,wm}
will always denote an orthonormal basis of Wm such that {w1, . . . ,wm−1} forms a basis
of Wm−1.

In terms of such a basis, the MR approximation, i.e., the best approximation of r ∈H
from Wm, can be expressed as the truncated Fourier expansion

wMR
m = PWmr =

m∑
j=1

(r ,wj)wj,

so that the norm of the associated approximation error dMR
m = r −wMR

m is given by

‖dMR
m ‖2 = ‖(I − PWm)r‖2 = ‖r‖2 −

m∑
j=1

|(r ,wj)|2. (2.12)

To relate the approximations on successive spaces, we note that for every m ≥ 1 there
holds

wMR
m =

m∑
j=1

(r ,wj)wj = wMR
m−1 + (r ,wm)wm = wMR

m−1 + PWmdMR
m−1.

It follows that dMR
m = dMR

m−1 − PWmdMR
m−1 = (I − PWm)dMR

m−1 and, since dMR
m ⊥ PWmdMR

m−1 ∈
Wm,

‖dMR
m ‖2 = ‖dMR

m−1‖2 − ‖PWmdMR
m−1‖2 = ‖dMR

m−1‖2 − |(r ,wm)|2. (2.13)

Relation (2.13) shows that no improvement is obtained in the MR approximation in step
m whenever the direction in which Wm−1 is enlarged is orthogonal to r . In other words,

‖dMR
m ‖ < ‖dMR

m−1‖ if and only if (r ,wm) 6= 0. (2.14)

To express successive approximation errors in terms of angles, we note that dMR
m = (I −

PWm)dMR
m−1 together with (2.4) yields

‖dMR
m ‖ = ‖(I − PWm)dMR

m−1‖ = sm ‖dMR
m−1‖, (2.15)
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where sm := sin](dMR
m−1,Wm). Note that the sine sm is also given by (cf. (2.5))

sm =
‖dMR

m ‖
‖dMR

m−1‖
=
‖(I − PWm)r‖
‖(I − PWm−1)r‖

=
sin](r ,Wm)

sin](r ,Wm−1)
, (2.16)

i.e., sm is the sine of the angle between the previous approximation error and Wm or,
equivalently, the quotient of the sines of the angles between r and the current and previous
approximation spaces. In order for the last three terms in (2.16) to make sense, we assume
that r 6∈ Wm−1; otherwise, the approximation problem is solved exactly in the space Wm−1

and the larger spaces no longer contribute toward improving the approximation.
In view of (2.13), the corresponding cosine is given by

cm :=
√

1− s2
m =

√
1− ‖d

MR
m ‖2

‖dMR
m−1‖2

=
|(r ,wm)|
‖dMR

m−1‖
(2.17)

and we see that an equivalent statement of (2.14) is

‖dMR
m ‖ < ‖dMR

m−1‖ if and only if cm 6= 0. (2.18)

An obvious induction applied to (2.15) leads to the error formula

‖dMR
m ‖ = s1s2 · · · sm ‖r‖, (2.19)

which shows that the sequence of approximations will converge to r if and only if the
product of sines tends to zero. Moreover, whenever the numbers sm themselves tend to
zero the convergence of the approximations is superlinear.

2.2.2 OR Approximations on Nested Subspaces

To define the OR approximations with respect to the nested sequence of spaces {Wm}m≥0,
we fix the sequence {Vm}m≥1 of test spaces which define the orthogonality condition (2.6)
by setting

Vm := span{r}+ Wm−1, m = 1, 2, . . . . (2.20)

Since the m-th OR and MR approximations lie in Wm, the corresponding approximation
errors lie in Vm+1 as defined by (2.20). For this reason we shall refer to {Vm}m≥1 as the
sequence of error spaces.

We first investigate the question of when the OR approximation is well-defined. In view
of Remark 2.1.7, this amounts to checking whether the largest canonical angle between
Vm and Wm is strictly less than π/2. As a consequence of the special choice (2.20) of Vm,
it turns out that this angle is simply that between dMR

m−1 and Wm:

Theorem 2.2.1. If the spaces Vm and Wm are related as in (2.20), then the largest canon-
ical angle between them is given by

](Vm,Wm) = ](dMR
m−1,Wm), (2.21)

while the remaining m− 1 canonical angles between Vm and Wm are zero.
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Proof. Noting that {w1, . . . ,wm−1, ŵm} with ŵm = dMR
m−1/‖dMR

m−1‖ is an orthonormal basis
of Vm, we obtain the cosine of the largest canonical angle as the smallest singular value
of the matrix of inner products

(w1,w1) . . . (wm−1,w1) (wm,w1)
...

...
...

(w1,wm−1) . . . (wm−1,wm−1) (wm,wm−1)
(w1, ŵm) . . . (wm−1, ŵm) (wm, ŵm)

 =

[
Im−1 0

0 (wm,r)

‖dMR
m−1‖

]

(cf. Remark 2.1.6). We see that the smallest singular value is |(wm, r)|/‖dMR
m−1‖ = cm (cf.

(2.17)) and that all remaining singular values are equal to one.

As an immediate consequence of Theorem 2.2.1, we obtain the following characteriza-
tion of when the oblique projection is defined for our special choice of Vm:

Corollary 2.2.2. The OR approximation of arbitrary r ∈H with respect to the sequence
of spaces Vm and Wm as given by (2.11) and (2.20) is uniquely defined if and only if
(r ,wm) 6= 0, i.e., if and only if the MR approximation improves as Wm−1is enlarged to
Wm.

Thus, the degenerate case, in which the oblique projection P Vm
Wm

is not uniquely defined
for all h ∈H is characterized by cm = 0.

For the OR approximation it is not necessary for P Vm
Wm

to be uniquely defined for all
h ∈ H , merely for r occurring in the definition (2.20) of Vm. As shown next, these two
requirements are equivalent.

Theorem 2.2.3. The OR approximation P Vm
Wm

r is uniquely determined if and only if
cm 6= 0.

Proof. Sufficiency of cm = 0 follows from Theorem 2.2.1. To see that uniqueness of the OR
approximation implies cm = 0, assume that w , w̃ ∈ Wm such that both r −w ⊥ Vm and
r− w̃ ⊥ Vm. This implies that also w− w̃ ⊥ Vm and, from the orthogonal decomposition
Vm = Wm−1⊕span{dMR

m−1}, we see that w−w̃ is only guaranteed to be zero if dMR
m−1 6⊥ Wm,

i.e., if cm 6= 0. To see that existence of the OR approximation implies cm 6= 0, note that
the former is equivalent with r ∈ Wm+V ⊥m = (W ⊥

m ∩Vm)⊥. The orthogonal decomposition
of Vm shows that the space in parentheses is trivial—i.e., the OR approximation exists—
unless dMR

m−1 ⊥ Wm, which means cm = 0.

In summary, the OR approximation P Vm
Wm

r , with Vm defined as in (2.20), fails to exist
if and only if cm = 0, which, as the preceding section has shown, coincides with the
situation in which the associated MR approximation makes no progress when extending
Wm−1 to Wm. We therefore tacitly assume (r ,wm) 6= 0 whenever referring to the OR
approximation of index m.

In many algorithms such as GMRES it is convenient to work also with orthonormal
bases {v1, . . . , vm} of Vm, m = 1, 2, . . . , i.e., vm is a unit vector in Vm ∩ V ⊥m−1. The
following result relates ](r ,wm) with ](vm+1,wm).
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Lemma 2.2.4. If the subspaces Vm and Wm are related by (2.20) and {v1, . . . , vm} and
{w1, . . . ,wm} are orthonormal bases of Vm and Wm, respectively, then there holds

|(vm+1,wm)| = sm.

In the degenerate case (r ,wm) = 0, the vectors vm+1 and wm must be collinear.

Proof. From vm+1 ∈ span{r ,w1, . . . ,wm} ∩ span{r ,w1, . . . ,wm−1}⊥ we conclude vm+1 ∈
span{dMR

m ,wm} and the assertion follows from the remaining requirements ‖vm+1‖ = 1
and vm+1 ⊥ r : Using the notation from the proof of Theorem 2.2.1, we set ŵm+1 :=
dMR
m /‖dMR

m ‖ and note that {ŵm,wm} form an orthonormal basis of span{dMR
m ,wm},

hence vm+1 = αŵm + βwm for some coefficients α, β ∈ C. Since (dMR
m , r) = ‖dMR

m ‖2,
orthogonality of vm+1 and r yields

0 = (vm+1, r) =
α

‖dMR
m ‖

(dMR
m , r) + β(wm, r) = α‖dMR

m ‖+ β(wm, r).

The requirement that vm+1 have unit norm now gives

|β|2 =

(
1 +
|(wm, r)|2

‖dMR
m ‖2

)−1

=
‖dMR

m ‖2

‖dMR
m ‖2 + |(wm, r)|2

=
‖dMR

m ‖2

‖dMR
m−1‖2

= s2
m.

Since dMR
m ⊥ wm, we now obtain |(vm+1,wm)| = |β| = sm.

When (r ,wm) = 0, this implies |(vm+1,wm)| = 1, i.e., |(vm+1,wm)| = ‖vm+1‖ ‖wm‖
which means that these two vectors are collinear.

2.2.3 Relations Between Nested MR and OR Approximations

Recall that r ∈ Wm−1 implies that the MR approximation with respect to Wm−1 solves
the approximation problem exactly. The same is then true for the OR approximation,
since r ∈ Wm−1 implies r −wOR

m−1 ∈ Wm−1 ∩ V ⊥m−1 = {0}, so that the OR approximation
solves the problem exactly whenever the MR approximation does. In other words, the
assumption r 6∈ Wm−1 is equivalent with saying that both dMR

m−1 and dOR
m−1 are not yet

zero.
If we define w̃m := |(wm, r)|/(r ,wm)ŵm, where ŵm = dMR

m−1/‖dMR
m−1‖, then (wm, w̃m) =

cm (cf. the proof of Theorem 2.2.1). Consequently, the sets {w1, . . . ,wm−1, w̃m/cm} and
{w1, . . . ,wm} form a pair of biorthonormal bases of Vm and Wm. This fact allows us to
express the oblique projection which determines the OR approximation as the singular
value expansion

P Vm
Wm

=
m−1∑
j=1

(·,wj)wj +
1

cm
(·, w̃m)wm, (2.22)

from which we derive the following expression for the difference of the OR and MR
approximations:

wOR
m −wMR

m = (P Vm
Wm
− PWm)r =

[
c−1
m (r , w̃m)− (r ,wm)

]
wm

=
‖dMR

m−1‖2 − |(r ,wm)|2

(wm, r)
wm =

‖dMR
m ‖2

(wm, r)
wm.

(2.23)
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In other words, since the spaces Vm and Wm are so closely related, the projection P Vm
Wm

is
simply a rank-one modification of PWm , and this is the essential ingredient of the proof of
the following familiar relations:

Theorem 2.2.5. Given an arbitrary element r ∈ H , a nested sequence of subspaces
Wm ⊂ H of dimension m (cf. (2.11)) and a corresponding sequence of error spaces Vm
as defined by (2.20), then the MR and OR approximations of r with respect to Wm and
Vm satisfy

‖dMR
m ‖ = sm‖dMR

m−1‖, (2.24)

‖dMR
m ‖ = s1s2 . . . sm‖r‖, (2.25)

‖dMR
m ‖ = cm‖dOR

m ‖, (2.26)

‖dOR
m ‖ = s1s2 · · · sm‖r‖/cm, (2.27)

where sm = sin](dMR
m−1,Wm) and cm = cos](dMR

m−1,Wm).

Proof. Identities (2.24) and (2.25) are merely restatements of (2.16) and (2.19) which
have already been proven. Next, from (2.23) there follows

dMR
m − dOR

m = wOR
m −wMR

m ∈ span{wm}, (2.28)

and

wOR
m = wMR

m +
‖dMR

m ‖2

(wm, r)
wm = wMR

m−1 +
‖dMR

m−1‖2

(wm, r)
wm, (2.29)

where we have used (2.13) for the last equality. Since dMR
m ⊥ wm, the Pythagorean

identity and (2.13) yield

‖dOR
m ‖2 =

(
1 +

‖dMR
m ‖2

|(wm, r)|2

)
‖dMR

m ‖2 =
‖dMR

m−1‖2

|(wm, r)|2
‖dMR

m ‖2,

which, in view of (2.17), gives the error formula

‖dOR
m ‖ =

‖dMR
m−1‖ ‖dMR

m ‖
|(wm, r)|

=
1

cm
‖dMR

m ‖

for the OR approximation, establishing (2.26) and (2.27).

In addition to the norm identities contained in Theorem 2.2.5, it is also possible to relate
the MR and OR approximations and their errors, as the next theorem shows.
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Theorem 2.2.6. Under the assumptions of Theorem 2.2.5, the MR and OR approxima-
tions and errors satisfy

wMR
m = s2

mwMR
m−1 + c2

mwOR
m , (2.30)

dMR
m = s2

mdMR
m−1 + c2

mdOR
m , (2.31)

1

‖dMR
m ‖2

wMR
m =

m∑
j=0

1

‖dOR
j ‖2

wOR
j , (2.32)

1

‖dMR
m ‖2

dMR
m =

m∑
j=0

1

‖dOR
j ‖2

dOR
j , (2.33)

1

‖dMR
m ‖2

=
m∑
j=0

1

‖dOR
j ‖2

=
1

‖dMR
m−1‖2

+
1

‖dOR
m ‖2

, (2.34)

Proof. From (2.29) and hMR
m − hMR

m−1 = (r ,wm)wm we obtain

wOR
m = wMR

m +
‖dMR

m ‖2

(wm, r)

1

(r ,wm)
(wMR

m −wMR
m−1)

= wMR
m +

‖dMR
m ‖2

‖dMR
m−1‖2

‖dMR
m−1‖2

|(r ,wm)|2
(wMR

m −wMR
m−1)

= wMR
m +

s2
m

c2
m

(wMR
m −wMR

m−1)

(cf. (2.24) and (2.17)), which implies the relationship (2.30) between the OR and MR
approximations and, by way of s2

m+c2
m = 1, the corresponding relationship (2.31) between

their errors.
Repeated application of these two formulas leads to

wMR
m =

m∑
j=0

τ 2
m,jw

OR
j and dMR

m =
m∑
j=0

τ 2
m,jd

OR
j ,

where τm,0 := s1s2 . . . sm and τm,j := cjsj+1 . . . sm (1 ≤ j ≤ m). Using (2.24) and (2.26)
this can be simplified to

τm,j = cj
‖dMR

j+1‖
‖dMR

j ‖
‖dMR

j+2‖
‖dMR

j+1‖
· · · ‖d

MR
m ‖

‖dMR
m−1‖

= cj
‖dMR

m ‖
‖dMR

j ‖
=
‖dMR

m ‖
‖dOR

j ‖

and we obtain (2.32) as well as (2.33). Finally, since the errors dOR
j are orthogonal, we

have

1

‖dMR
m ‖2

=
m∑
j=0

1

‖dOR
j ‖2

=
m−1∑
j=0

1

‖dOR
j ‖2

+
1

‖dOR
m ‖2

=
1

‖dMR
m−1‖2

+
1

‖dOR
m ‖2

,

which proves (2.34). Strictly speaking, this proves

1

‖dMR
m ‖2

=
1

‖dMR
m−1‖2

+
1

‖dOR
m ‖2
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only under the assumption that all OR approximations hOR
1 , . . . ,hOR

m exist. But this last
equation is merely a reformulation of the Pythagorean identity,

1 = s2
m + c2

m =
‖dMR

m ‖2

‖dMR
m−1‖2

+
‖dMR

m ‖2

‖dOR
m ‖2

(cf. (2.24) and (2.26)), requiring only the existence of wOR
m (besides r 6∈ Wm).

Corollary 2.2.7. In view of

sm =
‖dMR

m ‖
‖dMR

m−1‖
, i.e., cm =

√
1− ‖d

MR
m ‖2

‖dMR
m−1‖2

,

an angle-free formulation of (2.26), (2.30) and (2.31) reads

‖dMR
m ‖ =

√
1− ‖d

MR
m ‖2

‖dMR
m−1‖2

‖dOR
m ‖,

wMR
m = wOR

m +
‖dMR

m ‖2

‖dMR
m−1‖2

(wMR
m−1 −wOR

m ),

dMR
m = dOR

m +
‖dMR

m ‖2

‖dMR
m−1‖2

(dMR
m−1 − dOR

m ).

Of course, the first of these identities, or its reformulation

‖dOR
m ‖ =

(
1− ‖d

MR
m ‖2

‖dMR
m−1‖2

)−1/2

‖dMR
m ‖,

only makes sense if wOR
m is defined, which is equivalent to ‖dMR

m ‖ < ‖dMR
m−1‖. When-

ever ‖dMR
m ‖ ≈ ‖dMR

m−1‖ then the factor (1 − ‖dMR
m ‖2/‖dMR

m−1‖2)−1/2 will be large and,
consequently, ‖dOR

m ‖ � ‖dMR
m ‖. Conversely, if the MR approximation makes consider-

able progress in step m then (1 − ‖dMR
m ‖2/‖dMR

m−1‖2)−1/2 ≈ 1 and ‖dOR
m ‖ ≈ ‖dMR

m ‖. In
the context of Krylov subspace methods, this observation is sometimes referred to as
the peak/plateau-phenomenon of OR/MR approximations (see e.g. Cullum & Greenbaum
(1996)).

Remark 2.2.8. We conclude this section by reconsidering the issue of the Galerkin break-
down (see Remark 2.1.5) for the case of approximation from nested subspaces. Using
the biorthonormal bases introduced in (2.22), we obtain the singular value expansion of
PVmPWm as

PVmPWm =
m−1∑
j=1

(·,wj)wj + cm(·,wm)w̃m. (2.35)

In Remark 2.1.5 we noted that the natural generalization of the OR approximation in
the case of a Galerkin breakdown (cm = 0) is given by wOR

m := (PVmPWm)+r . With the
singular value expansion (2.35) this leads to simply wOR

m = wMR
m−1 = wMR

m .
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2.2.4 Smoothing Algorithms

A smoothing algorithm transforms a given sequence {hm} ⊂ Wm of approximations to r

into a new sequence {ĥm} ⊂ Wm, according to

ĥm := (1− αm)ĥm−1 + αmhm, i.e., d̂m = (1− αm)d̂m−1 + αmdm, (2.36)

(m = 1, 2, . . . , ĥ0 := h0 = 0). The intention is that the approximation errors of the trans-
formed sequence should decrease “more smoothly” than those associated with the original
sequence. Ideally, we would like to have ĥm = wMR

m , and we shall discuss two smoothing
procedures which achieve this goal when applied to the sequence of OR approximations.

In minimal residual smoothing (Weiss (1994), Zhou & Walker (1994), Gutknecht (1997,
Section 17)) the parameter αm in (2.36) is chosen to minimize the norm of the error

d̂m = d̂m−1 − αm(d̂m−1 − dm) as a function of αm. In other words, this determines the

best approximation αm(d̂m−1 − dm) to d̂m−1 from span{d̂m−1 − dm}, which is obtained
for

αMR
m :=

(d̂m−1, d̂m−1 − dm)

‖d̂m−1 − dm‖2
.

In an alternative smoothing procedure known as quasi-minimal residual smoothing (Zhou
& Walker (1994), Gutknecht (1997, Section 17)) the parameter αm is chosen as

αQMR
m :=

τ 2
m

‖dm‖2
with τm such that

1

τ 2
m

=
1

τ 2
m−1

+
1

‖dm‖2
, τ0 = ‖r‖.

It is easy to see by induction that

τ 2
m =

1∑m
j=0 1/‖dj‖2

, i.e., αQMR
m =

1/‖dm‖2∑m
j=0 1/‖dj‖2

,

and therefore

ĥm =

∑m
j=0 hj/‖dj‖2∑m
j=0 1/‖dj‖2

as well as d̂m =

∑m
j=0 dj/‖dj‖2∑m
j=0 1/‖dj‖2

.

The last formula for ĥm reveals the strategy behind quasi-minimal residual smooth-
ing: ĥm is a weighted sum of all previous approximations h0,h1, . . . ,hm with weights
(1/‖dk‖2)/(

∑m
j=0(1/‖dj‖2)) which are (relatively) large if hk approximates r well, and

(relatively) small whenever hk is a poor approximation of r .
In general, i.e., for an arbitrary sequence {hm} ⊂ Wm, minimal and quasi-minimal

residual smoothing will generate different “smoothed” approximations ĥm. In the case of
hm = wOR

m , however, the two schemes are equivalent:

Proposition 2.2.9. If either the minimal residual or the quasi-minimal residual smooth-
ing algorithm is applied to the sequence of OR approximations {wOR

m } for an element
r ∈ H with respect to the sequence of approximation spaces {Wm} and error spaces
{Vm}, then the resulting smoothed sequence consists of the MR approximations wMR

m for
r and the associated smoothing parameters are αMR

m = αQMR
m = c2

m.
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Proof. An induction shows that minimal residual smoothing applied to hm = wOR
m yields

ĥm = wMR
m and that, in this case, αMR

m = c2
m: The assertion is trivial for m = 1. Assuming

ĥm−1 = wMR
m−1 for some m ≥ 2, we see from (2.29)

d̂m−1 − dm = dMR
m−1 − dOR

m =
‖dMR

m−1‖2

(wm, r)
wm

and consequently, noting that dMR
m−1 = dMR

m + (r ,wm)wm and dMR
m ⊥ wm,

(d̂m−1, d̂m−1 − dm) =

(
(r ,wm)wm,

‖dMR
m−1‖2

(wm, r)
wm

)
= ‖dMR

m−1‖2.

From (2.17) and (2.30) it then follows that

αMR
m = ‖dMR

m−1‖2 |(wm, r)|2

‖dMR
m−1‖4

=
|(wm, r)|2

‖dMR
m−1‖2

= c2
m and ŵm = wMR

m .

The analogous assertion for quasi-minimal residual smoothing follows, with (2.32) and
(2.33), immediately from the orthogonality of the error vectors dOR

m .

It should not come as a surprise that, in our setting, a one-dimensional minimization
procedure like minimal residual smoothing produces the best approximation wMR

m , which
is the global optimum on Wm. Recall that wOR

m is already “nearly optimal” and needs to
be corrected only in the direction of wm.

Notes and Remarks

The relations given in Theorem 2.2.5, Theorem 2.2.6 and Corollary 2.2.7 have been de-
rived, rederived and generalized many times in the literature on Krylov subspace methods
for solving linear systems of equations, see for example Paige & Saunders (1975), Weiss
(1990), Brown (1991), Freund & Nachtigal (1991), Freund (1993), Gutknecht (1993a),
and Cullum & Greenbaum (1996). We emphasize here that these results are a direct con-
sequence of the orthogonal and oblique projection methods with the test space defined
by (2.20), and therefore hold for any approximation method based on these projections.
In particular, they are neither restricted to Krylov subspace methods, nor even to solving
linear operator equations.

The characterization of the parameters cm and sm occurring in these results as angles
between the spaces Vm and Wm as well as the expression of the oblique projection as the
singular value expansion (2.22) are due to Eiermann & Ernst (1998).

The smoothing transformations of Section 2.2.4 were introduced by Schönauer (1987)
to obtain a smoothly converging sequence of approximations and residuals associated
with a linear system (1.1) when certain Lanczos-based iterative solvers are used, which
are known to often produce approximations with wildly oscillating curves of residual
norms. As the approximations are linear functions of the residuals, these are obtained as
the linear combinations of previous approximations using the same coefficients as for the
residuals. It was shown by Weiss (1994) that the iterates/residuals of the QMR iterative
method of Freund & Nachtigal (1991) can be obtained by applying the MR smoothing
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procedure to those of the biconjugate gradient method. QMR smoothing was introduced
by Walker (1995). See also Gutknecht (1993a) and Gutknecht (1997, Section 17). Again,
these two smoothing transforms work in the very general setting of Chapter 2, and the
fact that the orthogonal projection associated with the MR approximation is a rank-one
modification of the oblique projection associated with the OR approximation is the key
to the simple proof of Proposition 2.2.9.

2.3 Working with Coordinates

The implementation of the MR and OR approximations on nested subspaces described
in the previous sections only become applicable for computations once suitable bases are
chosen for the subspaces involved. For the MR approximation the most obvious choice
is to use an ascending basis of the approximation spaces Wm and, in view of (2.22), this
basis is also the most practical for OR approximation, and this is briefly mentioned in
Section 2.3.1. When these methods are used for the approximate solution of operator
equations, however, many important methods—among these the class of Krylov subspace
methods—become more efficient and stable when formulated in terms of a (nested) basis
of the error spaces Vm, and this is treated in Section 2.3.2 Another distinction is whether
or not the bases are kept orthogonal. There are important cases where it is worthwhile to
give up the stability that comes with orthogonal bases for the economy afforded by certain
formulations which use non-orthogonal bases, and these are the subject of Section 2.3.3.

We shall see that the resulting coordinate formulations of Sections 2.3.2 and 2.3.3 are
identical to those of familiar Krylov subspace methods, which shows that, not only are
the latter specializations of these general approximation schemes to Krylov spaces, but
that even the coordinate calculations are the same for the general case.

2.3.1 Using an Orthonormal Basis of Wm

Let the vectors {wm}m≥1 form a nested sequence of orthonormal bases for the sequence of
approximation spaces {Wm}m≥0, i.e., let the vectors {w1, . . . ,wm} form an orthonormal
basis of Wm for each m ≥ 1. In this case each w ∈ Wm possesses the unique representation
w = Wmy , in which Wm denotes the row vector Wm := [w1, . . . ,wm] and y ∈ Cm
is the coordinate vector of w with respect to this basis. The characterization dMR

m =
r −WmyMR

m ⊥ Wm then immediately determines the coordinate vector yMR
m of wMR

m as

yMR
m = [(r ,w1), . . . , (r ,wm)]>. (2.37)

The coordinate vector yOR
m of the corresponding OR approximation wOR

m is given by

yOR
m = [(r ,w1), . . . , (r ,wm−1), ‖dMR

m−1‖2/(wm, r)]> (2.38)

since wOR
m = wMR

m−1 + ‖dMR
m−1‖2/(wm, r)wm (cf. (2.29)).

2.3.2 Using an Orthonormal Basis of Vm

We now drop the orthogonality requirement on the vectors wj, assuming only that, for
each m, {w1, . . . ,wm} forms a basis of Wm. In the same manner, let {v1, . . . , vm+1} form
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a basis of the corresponding error space Vm+1. Since Wm ⊆ span{r} + Wm = Vm+1, we
may represent each wk as a linear combination of v1, . . . , vk+1,

wk =
k+1∑
j=1

ηj,kvj, k = 1, . . . ,m,

or, employing the more compact row vector notation Wm = [w1, . . . ,wm] and Vm :=
[v1, . . . , vm], m = 1, 2, . . . ,

Wm = Vm+1H̃m = VmHm + [0, . . . ,0, ηm+1,mvm+1], (2.39)

where H̃m =: [ηj,k] ∈ C(m+1)×m is an upper Hessenberg matrix and Hm := [Im 0]H̃m is the

square matrix obtained by omitting the last row of H̃m. Note that, as long as r 6∈ Wm,
i.e., wm 6∈ Vm, we have ηm+1,m 6= 0, which implies rank(H̃m) = m. If r ∈ Wm for some
index m, we set

L := min{m : r ∈ Wm} (2.40)

to be the smallest such index and observe that VL+1 = VL = span{v1, . . . , vL}, i.e.,

WL = VLHL, implying rank(HL) = rank(H̃L) = L. If such an index does not exist, we
set L = ∞. To avoid cumbersome notation we shall restrict our attention to the case
L <∞, which is the most relevant for practical applications. We note, however, that all
our conclusions equally apply in the general case.

In the equation-solving algorithms to be discussed in the remaining chapters, the
Hessenberg matrix introduced in (2.39) becomes the representation of the operator A in
(1.1) on subspaces of H , usually of low dimension. As we see here, this matrix also occurs
naturally in this abstract setting as the link between the approximation space Wm and
the error space Vm+1.

The Orthogonalization Process

For a given sequence {wj}j≥1, an orthonormal sequence of vectors {vj}j≥1 may be con-
structed recursively starting with v1 := r/‖r‖ and, in view of Vm+1 = Vm + span{wm},
successively orthogonalizing each wm against the previously generated v1, . . . , vm:

v1 := r/β, β := ‖r‖,

vm+1 :=
(I − PVm)wm

‖(I − PVm)wm‖
, m = 1, 2, . . . , L− 1.

(2.41)

Of course, this is nothing but the Gram-Schmidt orthogonalization procedure applied to
the basis {r ,w1, . . . ,wm−1} of Vm, and hence in this case the entries in the resulting
Hessenberg matrix (2.39) are given by

ηj,m = (wm, vj), j = 1, . . . ,m+ 1, m ≥ 1. (2.42)

We also note that

ηm+1,m = (wm, vm+1) = ‖(I − PVm)wm‖ ≥ 0 (2.43)
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with equality holding if and only if wm ∈ Vm or, equivalently, r ∈ Wm, i.e., m = L.
We now turn to the determination of the coordinate vectors of the MR and OR ap-

proximations with respect to the basis {w1, . . . ,wm}. In the sequel we will use uj to

denote the j-th unit coordinate vector in Cm, and, whenever this adds clarity, write u
(m)
j

to specify the dimension of the underlying space.

Lemma 2.3.1. The coordinate vector yMR
m ∈ Cm of the MR approximation wMR

m with
respect to the basis {w1, . . . ,wm} is the solution of the least-squares problem

‖βu
(m+1)
1 − H̃my‖2 → min

y∈Cm
, (2.44)

whereas the coordinate vector yOR
m of the OR approximation solves the linear system of

equations

Hmy = βu
(m)
1 . (2.45)

In short,

yMR
m = βH̃+

mu
(m+1)
1 and yOR

m = βH−1
m u

(m)
1 ,

where H̃+
m = (H̃H

m H̃m)−1H̃H
m is the Moore-Penrose pseudoinverse of H̃m.

Proof. The assertions of the lemma become obvious once the relevant quantities are
represented in terms of the orthonormal basis {v1, . . . , vm+1} of Vm+1. The vector r

to be approximated possesses the coordinate vector βu
(m+1)
1 and the approximation

space Wm = span{w1, . . . ,wm} is represented by the span of the columns of H̃m. In
other words, if w ∈ Wm has the coordinate vector y with respect to {w1, . . . ,wm},
then d = r − w ∈ Vm+1 has the coordinate vector βu

(m+1)
1 − H̃my with respect to

{v1, . . . , vm+1}. More formally, for any w = Wmy ∈ Wm (y ∈ Cm), there holds

r −w = r −Wmy = βv1 − Vm+1H̃my = Vm+1(βu
(m+1)
1 − H̃my).

As the vectors {v1, . . . , vm+1} are orthonormal, it follows that

‖r −w‖ = ‖βu
(m+1)
1 − H̃my‖2

(‖ · ‖2 denoting the Euclidean norm in Cm+1). Similarly, r − w ⊥ Vm if and only if the

first m coefficients of βu
(m+1)
1 − H̃my vanish, i.e., if βu

(m)
1 −Hmy = 0.

Remark 2.3.2. To determine yOR
m using Lemma 2.3.1 we must of course assume that the

linear system Hmy = βu1 is solvable. But this is equivalent to our previous character-
ization of the existence of wOR

m , namely with cm = cos](dMR
m−1,Wm) 6= 0 (cf. (2.18) and

Corollary 2.2.2), which can be seen as follows: First, note that u
(m)
1 together with the

first m − 1 column vectors of Hm form a basis of Cm as long as m ≤ L (since ηj+1,j 6= 0
for j = 1, 2, . . . , L− 1). This implies that Hmy = βu1 is consistent, i.e., u1 ∈ range(Hm),
if and only if Hm is nonsingular.

Next, recall from Remark 2.1.6 that cm equals the smallest singular value of the matrix
[(vj, ŵk)]j,k=1,2,... ,m, where {ŵ1, ŵ2, . . . , ŵm} is any orthonormal basis of Wm. We select
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such an orthonormal basis and represent its elements as linear combinations in the original
basis {w1,w2, . . . ,wm}. In our row vector notation, this leads to a nonsingular matrix
T ∈ Cm×m with [ŵ1, ŵ2, . . . , ŵm] = [w1,w2, . . . ,wm]T . Now,

[(vj, ŵk)] = [(vj,wk)]T = HH
mT

and, consequently, the smallest singular value of [(vj, ŵk)] is positive if and only if Hm is
nonsingular.

Remark 2.3.3. In view of (2.39) and the result of Lemma 2.3.1, the approximations wMR
m

and wOR
m and their associated errors possess the following representations in terms of the

basis {v1, . . . , vm+1}:

wMR
m = Vm+1H̃mH̃

+
mβu1, dMR

m = Vm+1

(
Im+1 − H̃mH̃

+
m

)
βu1,

wOR
m = Vm+1H̃mH

−1
m βu1, dOR

m = Vm+1

([
Im
0

]
− H̃mH

−1
m

)
βu1.

(2.46)

The last identity shows that the coordinate vector of dOR
m has a particularly simple form:

Introducing the notation H−1
m =

[
η

[−1]
j,k

]
, we obtain for m < L,

dOR
m = βVm+1

(
u

(m+1)
1 − H̃mH

−1
m u

(m)
1

)
= βVm+1

(
Im+1 − H̃m[H−1

m 0 ]
)

u
(m+1)
1

= βVm+1

[
0

−ηm+1,m η
[−1]
m,1

]
= −βηm+1,m η

[−1]
m,1 vm+1.

The matrix Im+1 − H̃m[H−1
m 0 ] represents I − P Vm

Wm
restricted to Vm+1 with respect to

the orthonormal basis {v1, . . . , vm+1}. The following lemma, which was recently obtained
by Hochbruck and Lubich (Hochbruck & Lubich 1998), provides a simpler expression for
this projection.

Lemma 2.3.4. If ŵm+1 ∈ Vm+1∩W ⊥
m is defined by the condition (vm+1, ŵm+1) = 1, then

for all v ∈ Vm+1 there holds

(I − P Vm
Wm

)v = (v , ŵm+1)vm+1. (2.47)

Moreover, the coordinate vector ŷm+1 of ŵm+1 with respect to {v1, . . . , vm+1} has the form

ŷm+1 =

[
gm
1

]
, where gm solves HH

mgm = −ηm+1,mum.

Proof. In Vm+1, the projection I − P Vm
Wm

is characterized by the two properties

(I − P Vm
Wm

)v = v ∀v ∈ Vm+1 ∩ V ⊥m = span{vm+1},
(I − P Vm

Wm
)v = 0 ∀v ∈ Vm+1 ∩Wm,

i.e., it is the oblique projection onto Vm+1 ∩V ⊥m orthogonal to Vm+1 ∩W ⊥
m , both of which

are one-dimensional spaces of which {vm+1} and {ŵm+1} are biorthonormal bases. Thus,
(2.47) is the singular value expansion of I − P Vm

Wm
restricted to Vm+1.
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To obtain the coordinate vector ŷm+1, note first that the condition (vm+1, ŵm+1) = 1
implies that its last component is equal to one. Next, ŵm+1 ⊥ Wm translates to ŷm+1 ∈
N (H̃H

m ), since the columns of H̃m span the coordinate space of Wm. Denoting by gm ∈ Cm
the first m components of ŷm+1 and recalling that ηm+1,m > 0, we obtain

0 = H̃H
m ŷm+1 =

[
HH
m ηm+1,mum

] [gm
1

]
= HH

mgm + ηm+1,mum.

The representation (2.47) can be used to obtain another expression for the OR ap-
proximation error as follows: by virtue of the inclusion Wm−1 ⊂ Wm, an arbitrary
vector w ∈ Wm−1 must lie in the nullspace of I − P Vm

Wm
. Furthermore, the difference

r − w ∈ span{r} + Wm−1 = Vm has a representation r − w = Vmz with z ∈ Cm. It
follows that

dOR
m = (I − P Vm

Wm
)r = (I − P Vm

Wm
)(r −w)

= (r −w , ŵm)vm+1 =

(
Vm+1

[
z
0

]
, Vm+1

[
gm
1

])
vm+1

= (gHm z )vm+1,

(2.48)

and therefore ‖dOR
m ‖ = |gHm z | ≤ ‖gm‖2‖z‖2 with equality holding if and only if g and z

are collinear. At the same time, as gm is fixed, equality must occur when ‖z‖2 = ‖r −w‖
is minimized among all w ∈ Wm−1, which is the case for w = wMR

m−1. As a result,
‖dOR

m ‖ = ‖gm‖2‖dMR
m−1‖ which, in view of (2.24) and (2.26), implies ‖gm‖2 = sm/cm, an

identity which could also have been derived directly from the definition of gm.

Angles and the QR-factorization of H̃m

The least-squares problem (2.44) can be solved with the help of a QR decomposition of

the Hessenberg matrix H̃m,

H̃m = Qm

[
Rm

0

]
, (2.49)

where Qm ∈ C(m+1)×(m+1) is unitary (QH
mQm = Im+1) and Rm ∈ Cm×m is upper triangular.

Substituting this QR factorization in (2.44) yields

min
y∈Cm

‖βu1 − H̃my‖2 = min
y∈Cm

∥∥∥∥Qm

(
βQH

mu1 −
[
Rm

0

]
y

)∥∥∥∥
2

= min
y∈Cm

∥∥∥∥βQH
mu1 −

[
Rm

0

]
y

∥∥∥∥
2

= min
y∈Cm

∥∥∥∥∥
[
βQ̃H

mu1 −Rmy

βq
(m)
1,m+1

]∥∥∥∥∥
2

,

where

Q̃m := Qm

[
Im
0

]
∈ C(m+1)×m (2.50)
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denotes the first m columns of Qm. Since H̃m has full rank, Rm is nonsingular and
the solution of the above least-squares problem is yMR

m = βR−1
m Q̃H

mu1. The associated

least-squares error is given by ‖dMR
m ‖ = β|q(m)

1,m+1|.
The following theorem links the angles between r and Wm as well as those between

the spaces Vm and Wm with quantities appearing in the first row of the matrix Qm:

Theorem 2.3.5. If, for m = 1, . . . , L, Qm = [q
(m)
j,k ]m+1

j,k=1 ∈ C(m+1)×(m+1) is the unitary

matrix in the QR decomposition (2.49) of the Hessenberg matrix H̃m in (2.39), then there
holds

sin](r ,Wm) =
∣∣∣q(m)

1.m+1

∣∣∣ , (2.51)

sin](dMR
m−1,Wm) = sin](Vm,Wm) =

∣∣∣q(m)
1,m+1/q

(m−1)
1,m

∣∣∣ . (2.52)

Proof. As mentioned earlier (cf. the proof of Lemma 2.3.1) the vector r possesses the

coordinates βu
(m+1)
1 with respect to the orthonormal basis {v1, . . . vm+1} of Vm+1, whereas

Wm is represented by R(H̃m) ⊂ Cm+1. This implies

](r ,Wm) = ]2(βu1,R(H̃m)) = ]2(u1,R(H̃m)),

where the index 2 indicates that the last two angles are defined with respect to the
Euclidean inner product on Cm+1.

The vectors [v1, . . . vm+1]Qm form an alternate orthonormal basis of Vm+1, with respect
to which r possesses the coordinate vector βQH

mu1 ∈ Cm+1, a multiple of the first column

of QH
m. The vectors in Wm are represented by QH

mH̃my =
[
Rmy

0

]
(y ∈ Cm), a subspace of

C
m+1 which we identify with Cm because it consists of those vectors of Cm+1 whose last

component equals zero. Consequently, there holds

](r ,Wm) = ]2(βQH
mu1,C

m) = ]2(QH
mu1,C

m)

which, in view of (2.4), proves assertion (2.51). Formula (2.52) follows directly from (2.16)
and (2.21).

The matrix Qm is usually constructed as a product of Givens rotations such that

QH
m = Gm

[
Gm−1 0

0 1

] [
Gm−2 0

0 I2

]
· · ·
[
G1 0
0 Im−1

]
(2.53)

where, for k = 1, 2, . . . ,m,

Gk :=

Ik−1 0 0
0 c̃k s̃ke

−iϕk

0 −s̃keiϕk c̃k

 , c̃k, s̃k ≥ 0, c̃2
k + s̃2

k = 1, ϕk ∈ R, (2.54)

is chosen to introduce a zero in the k-th subdiagonal position in the process of unitarily
transforming H̃m to upper triangular form. The details of the m-th rotation are as follows:
Suppose we have constructed G1, . . . , Gm−2, Gm−1 such that[

Gm−1 0
0 1

] [
Gm−2 0

0 I2

]
· · ·
[
G1 0
0 Im−1

]
H̃m =

Rm−1 r
0 τ
0 ηm+1,m

 . (2.55)
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For later use we rewrite this identity as[
QH
m−1 0
0 1

] [
Hm

0 · · · 0 ηm+1,m

]
=

Rm−1 r
0 τ
0 ηm+1,m

 . (2.56)

We now set

c̃m :=
|τ |√

|τ |2 + η2
m+1,m

, s̃m :=
ηm+1,m√
|τ |2 + η2

m+1,m

,

ϕm := arg(ηm+1,m)− arg(τ) = − arg(τ)

(2.57)

(recall ηm+1,m ≥ 0) and verify by a simple calculation thatIm−1 0 0
0 c̃m s̃me

−iϕm

0 −s̃meiϕm c̃m

Rm−1 r
0 τ
0 ηm+1,m

 =

Rm−1 r
0 ρ
0 0


with ρ =

√
|τ |2 + η2

m+1,m e
−iϕm .

To see that the quantities s̃m and c̃m are indeed the sines and cosines of the an-
gles ](dMR

m−1,Wm) = ](Vm,Wm), note that q
(m)
1,m+1 = −s̃me−iϕmq(m−1)

1,m , which, with Theo-
rem 2.3.5, yields

sm = ](dMR
m−1,Wm) = |q(m)

1,m+1/q
(m−1)
1,m | = s̃m.

The Paige-Saunders Basis

The alternate orthonormal basis of Vm+1 which occurred in the proof of Theorem 2.3.5
turns out to be extremely useful when describing the MR and OR approximations. We
therefore introduce the notation˜̂

V m+1 := [v̂
(m+1)
1 , . . . , v̂

(m+1)
m+1 ] := Vm+1Qm

for this basis and, since it was first employed by Paige & Saunders (1975), refer to it
as the Paige-Saunders basis. This notation for the Paige-Saunders basis vectors is not
entirely appropriate, since all but the last do not change with the index m, as shown in
the following proposition.

Proposition 2.3.6. There holds[
v̂

(m+1)
1 , . . . , v̂

(m+1)
m+1

]
≡ [v̂1, . . . , v̂m, ṽm+1],

where ṽ1 = v1, and, for m = 1, . . . , L− 1,

v̂m = cmṽm + sme
iϕmvm+1, (2.58)

ṽm+1 = −sme−iϕm ṽm + cmvm+1. (2.59)

The vectors {v̂1, . . . , v̂m, ṽm+1} form an orthonormal basis of Vm+1 whose first m vectors
{v̂1, . . . , v̂m} form an orthonormal basis of Wm. In addition, there holds

wMR
m = β

˜̂
V m+1

[
Q̃H
mu

(m+1)
1

0

]
and dMR

m = β
˜̂
V m+1

[
0

q
(m)
1,m+1

]
. (2.60)
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Proof. To prove the first assertion we observe

˜̂
V m+1 = Vm+1Qm = [Vm, vm+1]

[
Qm−1 0

0 1

]
GH
m

=

[˜̂
V m, vm+1

]Im−1 0 0
0 cm −sme−iϕm
0 sme

iϕm cm

 .
That the first m elements of

˜̂
V m+1 form a basis of the approximation space Wm follows

from

Wm = Vm+1H̃m = Vm+1Qm

[
Rm

0

]
= [v̂1, . . . , v̂m]Rm. (2.61)

The discussion following (2.49) revealed that the coordinate vector of wMR
m with respect to

{w1, . . . ,wm} is yMR
m = βR−1

m Q̃H
mu

(m+1)
1 , and this, together with (2.61) implies (2.60).

Remark 2.3.7. We conclude from (2.59) that the vector ŵm+1 introduced in Lemma 2.3.4
is given by ṽm+1/cm. An equivalent formulation of (2.47) therefore reads

(I − P Vm
Wm

)v =
(v , ṽm+1)

cm
vm+1 for all v ∈ Vm+1.

The following proposition summarizes the coordinate representations of the MR and
OR errors with respect to the two orthonormal bases of Vm+1.

Proposition 2.3.8. The MR and OR approximation errors satisfy:

dMR
m = β q

(m)
1,m+1ṽm+1 = β

m∏
j=1

(
−sjeiϕj

)
ṽm+1,

dOR
m = −β sm

cm
eiϕmq

(m−1)
1,m vm+1 =

β

cm

m∏
j=1

(
−sjeiϕj

)
vm+1,

dMR
m−1 − dOR

m =
β

cm
q

(m−1)
1,m v̂m =

β

cm

m−1∏
j=1

(
−sjeiϕj

)
v̂m.

Proof. The recursive definition (2.53), (2.54) of Qm allows us to express its entries q
(m)
1,k

explicitly in terms of the Givens parameters as

q
(m)
1,k = ck

k−1∏
j=1

(
−sje−iϕj

)
, 1 ≤ k ≤ m, q

(m)
1,m+1 =

m∏
j=1

(
−sje−iϕj

)
. (2.62)

This, together with (2.60), proves the first identity.

Next, we recall from Remark 2.3.3 that dOR
m = −βηm+1,m η

[−1]
m,1 vm+1. To eliminate

η
[−1]
m,1 from this relation, we note that the matrix Hm possesses the QR decomposition (cf.

(2.56))

QH
m−1Hm =

[
Rm−1 r

0 τ

]
, i.e., H−1

m =

[
R−1
m−1 r̃
0 1/τ

]
QH
m−1,
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which implies η
[−1]
m,1 = q

(m−1)
1,m /τ . Since ηm+1,m/τ = eiϕmsm/cm (cf. (2.57)) we conclude

η
[−1]
m,1 ηm+1,m = q

(m−1)
m,1 eiφmsm/cm. This proves the second identity.

The desired representation of dMR
m−1 − dOR

m now follows from (2.58).

We note that all relations contained in Theorems 2.2.5 and 2.2.6 which link the MR
and OR approaches can just as well be obtained by manipulating the error representations
of Proposition 2.3.8. Indeed, this is essentially how these relations have previously been
proven in the literature. The main difference to the approach taken in Chapter 2.2 is that
the sines and cosines which occur in these relations are usually taken to be those from
the Givens rotations needed to construct the QR decomposition of H̃m. By identifying
these parameters as the sines and cosines of ](Vm,Wm), these are seen to express intrinsic
relations between these spaces rather than being mere artifacts of the algorithm.

The utility of the Paige-Saunders basis
˜̂
V m+1 lies in the fact that its first m elements

Vm+1Q̃m, which we denote for future reference by

V̂m := [v̂1, . . . , v̂m], (2.63)

constitute an orthonormal basis of the approximation space Wm, in terms of which the
best approximation wMR

m of r from Wm is given by the truncated Fourier expansion
wMR
m =

∑m
j=1(r , v̂j)v̂j. On the other hand, introducing the notation V ∗m+1r to denote the

column vector [(r , v1), . . . , (r , vm+1)]> ∈ Cm+1, we also have

wMR
m = Vm+1Q̃mQ̃

H
mV

∗
m+1r = βV̂mQ̃

H
mu

(m+1)
1 = β

m∑
j=1

q
(m)
1,j v̂j. (2.64)

When the termination index m = L is reached, we have WL = VLHL = VLQL−1RL, and
we thus conclude that the Fourier coefficients of r with respect to the Paige-Saunders
basis at step L are given by

(r , v̂j) = q
(L−1)
1,j = q

(j)
1,j, j = 1, . . . , L,

where we have set q
(L)
1,L := q

(L−1)
1,L . For future reference, we observe that, in view of (2.62),

the vector of Fourier coefficients zm := V̂ ∗mr = Q̃H
mu

(m+1)
1 of r with respect to {v̂1, . . . , v̂m}

satisfies the recurrence

zm =

[
zm−1

cmζm

]
, ζm = q

(m−1)
1,m = −sm−1e

iϕm−1ζm−1, m = 2, . . . , L, (2.65)

with z1 = [c1], ζ1 = −s1e
iϕ1 .

The transformation which takes the vectors {v1, . . . , vm} to {v̂1, . . . , v̂m} has a simple
geometric description: by Proposition 2.3.6, it consists of two plane rotations for each
basis vector except v1 and vL, which each undergo only one rotation. Beginning with
the orthonormal basis {v1, v2} of V2 = span{r} + W1, W1 = span{w1}, the first rotation
occurs in the plane spanned by v1 and v2 and is such that v1 is rotated so as to be
collinear with w1. The intermediate vector ṽ2 results from applying this same rotation
to v2. In the next step, applying the first rotation to the orthonormal basis {v1, v2, v3}
of V3 = span{r} + W2 yields the orthonormal vectors {v̂1, ṽ2, v3}. Since v̂1 spans W1,
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there must exist a vector v̂2 ∈ span{ṽ2, v3} such that W2 = span{v̂1, v̂2}, and the second
rotation is chosen as that in the plane spanned by ṽ2 and v3 which takes ṽ2 into v̂2,
and ṽ3 is the result of its action on v3. This process continues in this manner up to the
termination index m = L, for which r ∈ WL = VL, and we see that {v̂1 . . . , v̂L−1, ṽL}
must span WL, and thus we set v̂L := ṽL.

2.3.3 Using Arbitrary Bases of Wm and Vm

For practical computations it is desirable that the matrices H̃m have small bandwidth. If
H̃m has only k nonvanishing diagonals, namely the ones with indices −1, 0, 1, . . . , k − 2
(we follow the standard notation according to which a diagonal has index k if its entries
ηj,` are characterized by `−j = k), then only k diagonals of the upper triangular matrices
Rm are nonzero, namely those with indices k = 0, 1, . . . , k − 1. This follows easily from
the fact that Qm has upper Hessenberg form. The banded structure of the matrices
Rm can then be used to derive k-term recurrence formulas for the coordinate vectors
ym in terms of ym−1,ym−2, . . . ,ym−k+1 and for the approximations w

MR/OR
m in terms

of w
MR/OR
m−1 ,w

MR/OR
m−2 , . . . ,w

MR/OR
m−k+1 . (This statement applies to both the MR and the OR

approach.) The most important consequence of this observation is that, at each step, only
the k previous approximations (or, in other implementations, the last k basis vectors) need
to be stored, which means that storage requirements do not increase withm. If we insist on
choosing v1, . . . , vL to be orthogonal vectors, then the Hessenberg matrices will generally
not have banded form. The main motivation for doing without an orthonormal basis of
Vm is therefore to constrain the bandwidth of Hm in order to keep storage requirements
low.

A Basis-dependent Inner Product

As explained at the beginning of Section 2.3.2, no orthogonality conditions are required
to derive the fundamental relationship (2.39)

Wm = Vm+1H̃m = VmHm + [0, . . . ,0, ηm+1,mvm+1].

In this section we require only that v1, v2, . . . be linearly independent, so that {v1, . . . , vm}
constitutes a basis of Vm for each m = 1, 2, . . . , L. Just as before, the j-th column of the
upper Hessenberg matrix H̃m ∈ C(m+1)×m contains the coefficients of wj ∈ Wj ⊂ Vm+1

with respect to the basis vectors v1, . . . , vm+1. The difference is that, since now the
vectors vj need not be orthogonal, these coefficients can no longer be expressed in terms
of the inner product with which H was originally endowed. We shall see below, however,
that the familiar inner product representation does indeed still hold, but with respect
to a different inner product. As in the proof of Lemma 2.3.1 we see that, for each
w = Wmy ∈ Wm (y ∈ Cm), the associated error is represented by

d = r −w = r −Wmy = βv1 − Vm+1H̃my = Vm+1(βu1 − H̃my).

Minimizing the norm of d among all w ∈ Wm leads, as before, to the least squares problem

min
y∈Cm

∥∥∥Vm+1

(
βu1 − H̃my

)∥∥∥ = min
y∈Cm

‖βu1 − H̃my‖v , (2.66)
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in which ‖ ·‖v denotes the norm induced on the coordinate space with respect to the basis
VL by the inner product (·, ·) given on H . More precisely, if we set for y , z ∈ CL,

(y , z )v := (VLy , VLz ) = zHMy , where M := [(vj, vk)] ∈ CL×L, (2.67)

then (·, ·)v is an inner product on CL and induces a norm, namely ‖ · ‖v := (·, ·)1/2
v , on

C
L.

At this point one could proceed as in the algorithms which use an orthogonal basis,
the only difference being that all inner products in the coordinate space now require
knowledge of the Gram matrix M . In particular, the Givens rotations and the matrices
Qm in the QR factorizations (2.49) must now be unitary with respect to the inner product
(·, ·)v , i.e., they must satisfy QH

mMmQm = Im, where Mm ∈ C(m+1)×(m+1) is the (m+ 1)-st
leading principal submatrix of M . The submatrices Mm, however, cannot be computed
unless all basis vectors v1, v2, . . . , vm+1 are available, regardless of whether these may
obey short recurrences. Unfortunately, this is precisely what we sought to avoid by giving
up the orthogonality of the vectors vj.

Quasi-Minimal Approximations

An alternative was proposed by Freund (1992b): Rather than solving the minimization
problem (2.66), we instead solve

min
y∈Cm

‖βu1 − H̃my‖2,

and, if yQMR
m ∈ Cm denotes the unique solution to this least-squares problem, regard

wQMR
m := WmyQMR

m

as an approximation of r . Using the terminology introduced by Freund, we refer to this
approach as the quasi-minimal residual (QMR) approximation. In the context of Krylov

subspace methods the vector sQMR
m := βu1 − H̃myQMR

m ∈ Cm+1 is usually called the
quasi-residual of wQMR

m .
We note that, instead of changing the inner product in the coordinate space from

(·, ·)v to the Euclidean inner product, one could equivalently have replaced the given
inner product (·, ·) on VL ⊆H by

(u , v)V = (VLx , VLy)V =: yHx for all u = VLx , v = VLy ∈ VL (2.68)

and proceeded as in the MR algorithm of Section 2.3.2. The basis vectors {v1, . . . , vL}
are orthonormal with respect to the new inner product (·, ·)V thus defined, and this is its
essential feature.

The assertions in the remainder of this section rest on the following basic identities for
the new inner product which are direct consequences of its definition: for all coordinate
vectors x ,y ∈ CL, there holds

(VLx , VLy)V = (VLx , VLM
−1y) = (VLM

−1x , VLy) = (VLM
−1/2x , VLM

−1/2y),

(VLx , VLy) = (VLx , VLMy)V = (VLMx , VLy)V = (VLM
1/2x , VLM

1/2y)V .
(2.69)

As a consequence, we obtain for instance
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Theorem 2.3.9. The QMR iterates are the MR iterates with respect to the inner product
(·, ·)V :

‖dQMR
m ‖V = ‖r −wQMR

m ‖V = min
w∈Wm

‖r −w‖V .

With regard to the original norm on H , the QMR errors may be bounded in terms of the
MR errors as

‖dMR
m ‖ ≤ ‖dQMR

m ‖ ≤
√
κ2(Mm) ‖dMR

m ‖, (2.70)

in which κ2(Mm) denotes the (Euclidean) condition number of the (Hermitian positive
definite) matrix Mm. Moreover, we have

‖dQMR
m ‖ ≤

√
λmax(Mm) ‖sQMR

m ‖.

Proof. The minimization property in the new norm is by construction, and the first in-
equality in (2.70) is the minimization property of MR in the original norm. The second
inequality follows when we recall that, by (2.69), for u = Vm+1x , x ∈ Cm+1, we have

‖u‖2 = (Vm+1x , Vm+1x ) = xHMmx and ‖u‖2
V = (Vm+1x , Vm+1x )V = xHx ,

and therefore λmin(Mm) ≤ ‖u‖2/‖u‖2
V ≤ λmax(Mm). This, along with the optimality

properties of MR and QMR in their respective norms now yields the chain of inequalities

‖dQMR
m ‖2 ≤ λmax(Mm)‖dQMR

m ‖2
V ≤ λmax(Mm)‖dMR

m ‖2
V

≤ λmax(Mm)

λmin(Mm)
‖dMR

m ‖2 ≤ λmax(Mm)

λmin(Mm)
‖dQMR

m ‖2.

Similarly, for the last assertion,

‖dQMR
m ‖2 = (Vm+1s

QMR
m , Vm+1s

QMR
m ) = [sQMR

m ]HMmsQMR
m ≤ λmax(Mm)‖sQMR

m ‖2.

In view of (2.70) the deviation of the QMR approach from the MR approach is bounded
by the condition numbers κ2(Mm), i.e., by the ratio of the extreme eigenvalues of Mm. The
largest eigenvalue λmax(Mm) is easily controlled: this merely requires choosing the basis
vectors vm to have unit length—i.e., ‖vm‖ = 1 for all m—to guarantee λmax(Mm) ≤ m+1.
(Note that λmax(Mm) ≤ ‖Mm‖F := [

∑m+1
j,k=1(vj, vk)

2]1/2 ≤ [
∑m+1

j,k=1 ‖vj‖ ‖vk)‖]1/2.) The
crucial point is to construct the basis Vm in such a way that λmin(Mm) does not approach
zero (or does so only slowly).

Another immediate consequence of (2.69) is the following characterization of the QMR
approximation as an oblique projection with respect to the original inner product.

Proposition 2.3.10. The error vectors of the QMR approach satisfy

dQMR
m ⊥ Um,

where Um := {v = Vm+1y : y = M−1
m H̃mz for some z ∈ Cm} is an m-dimensional

subspace of Vm+1 (for m = L there holds UL = VL) and orthogonality is understood with
respect to the original inner product (·, ·) on H . Consequently,

dQMR
m =

(
I − PUm

Wm

)
r ,

where PUm
Wm

denotes the oblique projection onto Wm orthogonal to Um.



2.3: Working with Coordinates 31

Proof. Since the QMR approximations are merely the MR approximations with respect
to (·, ·)V , their errors dQMR

m ∈ Vm+1 are characterized by

dQMR
m ⊥V Wm.

From this observation and (2.69) the proof easily follows.

An equally simple alternative proof notes that dQMR
m = Vm+1

(
βu1− H̃myQMR

m

)
, where

yQMR
m solves the least-squares problem ‖βu1 − H̃my‖2 → min. In other words, βu1 −
H̃myQMR

m ⊥ R(H̃m), or equivalently, βu1 − H̃myQMR
m ⊥v M

−1R(H̃m).

Note that the orthogonal complement of Um is given by U ⊥
m = span{dQMR

m }+V ⊥m+1,

i.e., U ⊥
m ⊕ Vm = H , which ensures that the oblique projection PUm

Wm
exists.

Quasi-Orthogonal Approximations

Next, we briefly describe the analogue of the OR approach for the case of a non-orthogonal
basis. Instead of seeking y ∈ Cm such that

0 = (Vm+1[βu1 − H̃my ], vj) = (βu1 − H̃my ,uj)v . j = 1, 2, . . . ,m,

which would lead to r −Wmy ⊥ Vm, i.e., to a proper OR approximation, we determine
yQOR
m ∈ Cm such that

0 = (βu1 − H̃myQOR
m ,uj)2, j = 1, 2, . . . ,m, i.e., HmyQOR

m = βu1, (2.71)

provided Hm is nonsingular. The corresponding approximants to r are then defined by
wQOR
m = WmyQOR

m . In terms of the inner product (·, ·)V on VL they are characterized by

dQOR
m = r −wQOR

m ⊥V Vm,

i.e., as the OR iterates with respect to (·, ·)V . As the analogue to Proposition 2.3.10 we
obtain

Proposition 2.3.11. The errors of the QOR approximants satisfy

dQOR
m ⊥ Tm,

where Tm := {v = Vm+1y ∈ Vm+1 : y = M−1
m [z T 0]T with z ∈ Cm} is an m-dimensional

subspace of Vm+1 (for m = L there holds TL = VL) and orthogonality is understood with
respect to the original inner product (·, ·) on H . Consequently,

dQOR
m =

(
I − PTm

Wm

)
r ,

where PTm
Wm

denotes the oblique projection onto Wm orthogonal to Tm.

We know from Remark 2.3.2 that Hm being nonsingular is equivalent Wm⊕V ⊥Vm = H .
But since, for every u ∈H , u ⊥V Vm if and only if u ⊥ Tm, the oblique projection PTm

Wm
exists if Hm is nonsingular.
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Recall that the QMR and QOR approximations are the MR and OR approxima-
tions, respectively, obtained when replacing the original inner product (·, ·) by the basis-
dependent inner product (·, ·)V . This simple observation implies that the assertions of the
preceding sections, particularly those of Theorem 2.2.5 and Propositions 2.2.9, 2.3.8, are
valid for any pair of QMR/QOR methods. Note, however, that when formulating these
results for QMR/QOR methods, each occurrence of the original norm must be replaced
by the ‖ · ‖V -norm and that angles are understood to be defined with respect to (·, ·)V .

As an example, we mention that

wQMR
m = ŝ2

mwQMR
m−1 + ĉ2

mwQOR
m ,

where

ŝm := sin]V (dQMR
m−1 ,Wm), ĉm := cos]V (dQMR

m−1 ,Wm)

and ]V (dQMR
m−1 ,Wm) denotes the angle between dQMR

m−1 and Wm with respect to (·, ·)V .
The preceding analysis might lead one to believe that the QMR approximations will

move steadily farther away from the MR approximation at each step. The following
observation due to Stewart (1998) shows that this is not necessarily the case, but that the
QMR approximation may under certain conditions recover, regardless of how far it may
have deviated from the (optimal) MR approximation in earlier steps.

Proposition 2.3.12. There holds wQMR
m = wMR

m if and only if ṽm+1 ⊥ Wm, and there
holds wQOR

m = wOR
m if and only if vm+1 ⊥ Vm.

Proof. By Proposition 2.3.6, we have Wm = span{v̂1, . . . , v̂m} and dQMR
m ∈ span{ṽm+1}.

Since dQMR
m = dMR

m if and only if dQMR
m ⊥ Wm, the first assertion is proven. The analogous

assertion for the QOR approximation follows from dQOR
m ∈ span{vm+1}, hence wQOR ⊥

Vm if and only if vm+1 ⊥ Vm.

Smoothing Procedures Revisited

Next, we comment on the effect of applying the smoothing procedures introduced in
Section 3, namely minimal and quasi-minimal residual smoothing, to the QOR approxi-
mations. We first note that they are no longer equivalent: More precisely, if we define

αMR
m :=

(dQMR
m−1 ,d

QMR
m−1 − dQOR

m )

‖dQMR
m−1 − dQOR

m ‖2
(2.72)

then, in general, wQMR
m 6= (1 − αMR

m )wQMR
m−1 + αMR

m wQOR
m because the formula (2.72) for

the smoothing parameter αMR
m was derived in order that the errors of the smoothed ap-

proximations solve a local approximation problem with respect to the inner product (·, ·),
which is different from the inner product (·, ·)V which characterizes the QMR and QOR
approximations. Minimal residual smoothing therefore does not lead from QOR to QMR.

It is an easy consequence of Remark 2.3.3 that the situation is different if we apply
QMR smoothing: If we set

αQMR
m =

1/‖dQOR
m ‖2

V∑m
j=0 1/‖dQOR

j ‖2
V

,
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then wQMR
m = (1 − αQMR

m )wQMR
m−1 + αQMR

m wQOR
m does indeed hold (cf. Proposition 2.2.9).

But since dQOR
m = γvm+1 for some γ ∈ C, we have ‖dQOR

m ‖V = |γ| = ‖dQOR
m ‖/‖vm+1‖,

and consequently

αQMR
m =

‖vm+1‖2/‖dQOR
m ‖2∑m

j=0 ‖vj+1‖2/‖dQOR
j ‖2

.

If we again make the common assumption that the basis vectors vj have unit length
(‖vj‖ = 1 for all j), then

αQMR
m =

1/‖dQOR
m ‖2∑m

j=0 1/‖dQOR
j ‖2

,

and the QMR and QOR approximants are related by exactly the formulas which hold for
a proper MR/OR pair, namely:

wQMR
m =

∑m
j=0 wQOR

j /‖dQOR
j ‖2∑m

j=0 1/‖dQOR
j ‖2

and dQMR
m =

∑m
j=0 dQOR

j /‖dQOR
j ‖2∑m

j=0 1/‖dQOR
j ‖2

.

QMR smoothing applied to CGS and Bi-CGSTAB is discussed in Walker (1995). For
smoothing techniques applied to the general class of Lanczos-type product methods, see
Ressel & Gutknecht (1996).

2.4 Every Method is an MR and an OR Method

In Section 2.3.3 we saw how the QMR and QOR approximations can be reinterpreted as
MR and OR approximations with respect to the basis-dependent inner product (·, ·)V .
It turns out that an analogous interpretation is possible for any reasonable sequence
of approximations {wm} to a given r ∈ H , namely both as an MR and as an OR
approximation.

In this section {Wm}Lm=0 denotes any sequence of nested spaces with dim Wm = m
(in particular, W0 = {0}), and {Vm}Lm=1 denotes the associated sequence of error spaces
Vm = span{r}+ Wm−1 with respect to r ∈H .

Theorem 2.4.1. Assume {hm}Lm=0 is a sequence of approximations to r ∈H such that
hm ∈ Wm and hL = r . Then there exists an inner product (·, ·)V on VL = WL such that

‖r − hm‖V = min
w∈Wm

‖r −w‖V , m = 1, 2, . . . , L− 1,

if and only if hm ∈ Wm−1 implies hm = hm−1 for m = 1, 2, . . . , L− 1 or, in other words,
if and only if

either hm ∈ Wm \Wm−1 or hm = hm−1, m = 1, 2, . . . , L− 1. (2.73)

Proof. If the vectors {hm}L−1
m=1 are the best approximations to r from Wm with respect

to some inner product (·, ·)V , then whenever hm happens to lie also in Wm−1, hm must
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also be the best approximation to r from Wm−1, whereby hm = hm−1, which proves the
necessity of (2.73).

Conversely, assuming that (2.73) is satisfied, we write

r = (h1 − h0) + (h2 − h1) + · · ·+ (hL − hL−1)

and construct a basis {w1, . . .wL} of WL by setting

wm :=

{
hm − hm−1, if hm ∈ Wm \Wm−1,

an arbitrary vector from Wm \Wm−1, if hm = hm−1.

Note that, for each m, {w1, . . .wm} is a basis of Wm. We further define the “Fourier
coefficients” αm by

αm :=

{
1, if hm ∈ Wm \Wm−1,

0, if hm = hm−1,
m = 1, . . . , L,

so that r = α1w1 + α2w2 + · · ·αLwL and

hm = α1w1 + α2w2 + · · ·+ αmwm, m = 1, . . . , L,

i.e., hm is nothing but the truncated “Fourier expansion” of r . Defining the inner product
(·, ·)V such that {w1, . . .wL} are orthonormal then leads to the desired conclusion.

The next theorem establishes the analogous result for the OR (or, more precisely, the
QOR) approximation.

Theorem 2.4.2. If {hm}Lm=1 is a sequence of approximations to r ∈H such that hm ∈
Wm and hL = r , then an inner product (·, ·)Ṽ on VL = WL such that

r − hm ⊥Ṽ Vm, m = 1, 2, . . . , L− 1,

exists if and only if hm ∈ Wm \Wm−1 for m = 1, 2, . . . , L− 1.

Proof. Assume that, for all m = 1, 2, . . . , L−1, the vectors hm are the OR approximations
to r from Wm with respect to some inner product (·, ·)Ṽ . If now, for some m, hm ∈ Wm−1,
then dm := r − hm ∈ span{r} + Wm−1 = Vm, i.e., dm ∈ Vm ∩ V ⊥m = {0}, which implies
hm = r . But this is impossible unless r ∈ Wm, i.e., m = L, and we have thus established
that hm ∈ Wm \Wm−1 for m = 1, . . . , L− 1.

Conversely, since hm ∈ Wm \ Wm−1 implies dm ∈ Vm+1 \ Vm for m = 1, . . . , L −
1, we see that {d0,d1, . . .dL−1} (d0 = r) is a basis of VL such that, for every m =
1, . . . , L − 1, {d0,d1, . . .dm−1} is a basis of Vm. Defining the inner product (·, ·)Ṽ such
that {d0, . . .dL−1} is an orthogonal basis of VL leads to the desired conclusion.

We have formulated these two theorems for the case of a sequence terminating with
hL = r , as this is the situation when solving linear equations in finite dimensions by MR
and OR approximation based on Krylov spaces, at least in the absence of rounding errors.
When the sequence of approximations does not terminate, we may proceed analogously as
in Theorem 2.4.1 with the difference that the inner product is then defined on the union
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of all error spaces Vm and we need not have convergence of the approximations to r in
the norm induced by this inner product. Similar considerations apply for a formulation
of Theorem 2.4.2 for a nonterminating sequence of approximations.

We conclude that, by allowing the inner product to vary, the concept of MR and
OR approximations becomes sufficiently general to include any reasonable sequence of
approximations.

Of course, these results are of a rather academic nature since an application in which
the linear system arises often comes with a natural norm to be minimized in the iteration.
However, these results show that the MR/OR framework really does include all reasonable
approximation schemes and that methods should not be compared on the grounds of
whether they minimize a norm, but whether this norm is appropriate for the problem.
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Chapter 3

Solving Equations with Projection
Methods

In this chapter we apply the results of Chapter 2 to the solution of linear equations (1.1).
The three basic types or orthonormal bases used in the MR/OR approximations lead to
equation-solving methods for general correction spaces. Sections 3.3 and 3.4 discuss MR
approximation with respect to the direct sum of two correction spaces, which orthogonality
relations this involves, and how these orthogonality relations may be relaxed in an optimal
manner.

3.1 Basic Setting

We now return to our original problem of approximating the solution of the operator
equation (1.1). The methods we shall consider for this purpose belong to the class of
subspace correction methods, which, starting from an initial approximation x0 of the so-
lution of (1.1), determine corrections c to x0 which are chosen from a sequence of nested
correction spaces

{0} = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cm ⊂ Cm+1 ⊂ · · · ⊂H ,

leading to approximate solutions of the form xm = x0+cm, cm ∈ Cm. Methods of this kind
abound in applied mathematics; as a familiar example we mention the class of additive
multilevel methods for approximating the solution of an elliptic boundary value problem,
in which the correction spaces Cm are nested finite element subspaces of a function space
H known to contain the solution (see, e.g., Xu (1992)). Unless stated otherwise, we shall
only consider correction spaces for which dim Cm = m.

In the methods to be considered, the determination of the correction is based on
conditions imposed on the residual rm = b−Axm of an approximation xm to the solution
of (1.1). In particular, and this is the natural connection to the abstract formulation
in Chapter 2, these methods can be viewed as methods which approximate the initial
residual r0 = b − Ax0 from the sequence of subspaces

Wm = ACm, m = 0, 1, . . . , (3.1)

i.e., from the images of the correction spaces under the operator A.
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38 Chapter 3: Solving Equations with Projection Methods

Since A is assumed invertible, the identification (3.1) in case of the MR approximation
leads to

‖r0 −wMR
m ‖ = min

w∈Wm=ACm
‖r0 −w‖ = min

c∈Cm
‖r0 − Ac‖ = min

c∈Cm
‖b − A(x0 + c)‖,

so that the MR approximation selects that correction in Cm which minimizes the residual.
Analogously, for the OR approximation, with cOR

m defined by AcOR
m = wOR

m ,

Vm ⊥ r0 −wOR
m = r0 − AcOR

m = b − A(x0 + cOR
m ),

where now, in view of (3.1),

Vm = span{r0}+ ACm. (3.2)

The OR approximation thus selects corrections whose residuals are orthogonal to the
space Vm. The identification Wm = ACm also identifies approximation errors for r0 with
the corresponding residuals with respect to (1.1). For this reason, it is more appropriate
in this equation-solving context to refer to the error spaces Vm as residual spaces.

Of course, upon setting (3.1), all results of Chapter 2 carry over to the equation-solving
context. Reformulating each result would be rather tedious, so we restrict ourselves
to a few crucial issues. First, the termination index L defined in (2.40) can now be
characterized as

L = min{m : r0 ∈ ACm} = min{m : b = A(x0 + c), c ∈ Cm}
= min{m : A−1b ∈ x0 + Cm}.

(3.3)

Second, the relations between MR and OR errors given in Theorem 2.2.5, Theo-
rem 2.2.6 and Corollary 2.2.7 translate to relations between MR and OR residuals by
identifying dMR

m = rMR
m and dOR

m = rOR
m . The analogous expression to (2.30) follows for

the approximations x MR
m ,x OR

m ∈ Cm as a result of rm = b − Axm and since s2
m + c2

m = 1:

x MR
m = s2

mx MR
m−1 + c2

mx OR
m . (3.4)

In the same manner, the MR and QMR smoothing transformations given in Section 2.2.4
also carry over from residuals to approximations. For later use, we note that setting
W = ACm in (2.5) yields

‖rMR
m ‖ = sin](r0, ACm)‖r0‖. (3.5)

The angle-free expressions of (3.4) from Corollary 2.2.7 become

‖rMR
m ‖ =

√
1− ‖r

MR
m ‖2

‖rMR
m−1‖2

‖rOR
m ‖,

x OR
m =

‖rMR
m−1‖2

‖rMR
m−1‖2 − ‖rMR

m ‖2
x MR
m − ‖rMR

m ‖2

‖rMR
m−1‖2 − ‖rMR

m ‖2
x MR
m−1.

As can be seen from the last two equations, the OR approximation and residual can
easily be computed from the corresponding MR quantities. Moreover, since the MR
quantities can always be computed in a stable fashion, this is the preferable way to
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compute these quantities. (An exception is, of course, the Hermitian positive definite
case, in which the OR quantities may be computed stably and at lower expense than the
MR counterparts by the classical method of conjugate gradients, cf. Section 4.4.)

Finally, we reformulate the characterizations of a Galerkin breakdown as discussed for
the abstract setting in Remarks 2.1.5 and 2.2.8.

Proposition 3.1.1. For every m = 1, 2, . . . , L − 1, the following four statements are
equivalent:

(a) The OR approximation x OR
m (i.e., P Vm

Wm
) does not exist.

(b) The MR approximation makes no progress, i.e., rMR
m = rMR

m−1.
(c) The Hessenberg matrix Hm of (2.39) is singular.
(d) ϕm = ](rMR

m−1, ACm) = π/2 (equivalently, sinϕm = 1 or cosϕm = 0).

3.2 Algorithms for General Correction Spaces

In this section we formulate the basic coordinate representations presented in Section 2.3
as algorithms for solving (1.1) and thereby arrive at the most important algorithms based
on projection methods. Since the remainder of this thesis is concerned primarily with
MR methods, we shall restrict ourselves to MR algorithms and only indicate whenever an
algorithm can also be used to compute OR approximations with minor modifications.

The methods we discuss below were originally presented in the literature in the guise of
Krylov subspace methods, which are MR and OR methods in which the correction space
Cm is the mth Krylov space with respect to A and r0, and we discuss this most investigated
case in Chapter 4. We choose to first reformulate these algorithms for general correction
spaces not only because this is the canonical formulation of the abstract MR and OR
methods of Chapter 2 for solving operator equations, entailing no added complication
versus the Krylov subspace case, but also because in recent work attention has shifted to
correction spaces other than Krylov spaces, and it is therefore of practical relevance to
investigate this situation as well.

As the MR approximation computes the best approximation of r0 from Wm = ACm,
its implementation requires the (explicit or implicit) construction of orthonormal bases
of the approximation spaces Wm. The most direct approach is, given a basis Cm =
[c1, c2, . . . , cm] of Cm, to construct an orthonormal basis of Wm by orthonormalizing the
images Acj and then proceed as in Section 2.3.1. Because the spaces are nested, the
orthogonalization results in a QR decomposition

ACm = WmRm (3.6)

with a triangular matrix Rm ∈ Cm×m and a set of orthonormal vectors Wm = [w1, . . . ,wm]
which form a basis of Wm. The MR approximation x MR

m of the solution of (1.1) with
respect to Cm is given by x MR

m = x0 + CmyMR
m with a coefficient vector yMR

m ∈ Cm. By
(2.37), the coefficient vector of PWmr0 with respect to {w1, . . . ,wm} is W ∗

mr0, hence we
must have ACmyMR

m = WmW
∗
mr0, which, in view of (3.6), leads to yMR

m = R−1
m W ∗

mr0. If no
Galerkin breakdown occurs at this step, i.e., if (r0,wm) 6= 0, then the OR approximation
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x OR
m = x0 + CmyOR

m may be computed following (2.38) by solving

RmyOR
m =


(r0,w1)

...
(r0,wm−1)

‖rMR
m−1‖2/(wm, r0)

 , (3.7)

or by using (3.4) and noting cm = |(wm, r0)|/‖rMR
m−1‖, sm =

√
1− c2

m.
The main computational expense of this algorithm lies in the orthogonalization pro-

cess and the solution of a triangular system whenever the approximations are desired.
Although it appears to be the most straightforward implementation, this method was
only recently proposed for computing MR approximations by Walker & Zhou (1994). We
summarize m steps of the Walker-Zhou algorithm in Algorithm 3.2.1. Of course, the

Algorithm 3.2.1 The algorithm of Walker and Zhou for general correction spaces.

1 r0 := b − Ax0

2 for j := 1 to m
3 Select cj ∈ Cj \ Cj−1, ŵ := Acj
4 for i = 1 to j − 1
5 ri,j := (ŵ ,wi)
6 ŵ := ŵ − ri,jwi

7 end
8 rj,j := ‖ŵ‖
9 wj := ŵ/rj,j

10 end
11 yMR

m := R−1
m W ∗

mr0

12 x MR
m := x0 + CmyMR

m

13 rMR
m = WmW

∗
mr0

14 If desired, compute yOR
m , x OR

m and rOR
m using (3.7) or (3.4)

residual and its norm may also be updated as

rm = rm−1 − (r0,wm)wm, ‖rm‖2 = ‖rm−1‖2 − |(r0,wm)|2, m = 1, 2, . . . ,

in which (r0,wm) may be replaced by (rm−1,wm) by orthogonality.

Remark 3.2.1. This is the first occasion where we have given an algorithm for an or-
thogonalization process (as opposed to the abstract formulation (2.41)), in this case or-
thogonalizing the image Acj against w1, . . . ,wj−1. Different mathematically equivalent
formulations of the orthogonalization process, such as the Gram-Schmidt, modified Gram-
Schmidt or Householder orthogonalization algorithms, each possibly combined with vari-
ous reorthogonalization schemes (see e.g. Golub & van Loan (1996)) can differ markedly
in the presence of roundoff error. Investigations into the effect of the orthogonalization
on the finite-precision behavior of MR methods have been carried out by Greenbaum and
Strakos and their co-workers (see Rozložńık & Strakoš (1996) and Greenbaum, Rozložńık
& Strakoš (1997)). Their results show that the modified Gram-Schmidt process seems to
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be the best compromise between efficiency and accuracy, in the sense that loss of orthog-
onality due to roundoff does not affect convergence until the residual norm has reached
its final accuracy. For this reason, we will formulate orthogonalizations in the modified
Gram-Schmidt form when formulating algorithms.

Since the image of the MR correction cMR
m under A is the best approximation WmW

∗
mr0

of r0 from Wm, we conclude that

cMR
m = A−1WmW

∗
mr0 = CmW

∗
mr0

if the basis Cm consists of the pre-images under A of the orthonormal basis vectors Wm of
Wm. Such a pair of bases is generated by an algorithm known as the generalized conjugate
residual (GCR) method, which was introduced as a Krylov subspace method by Eisenstat,
Elman & Schultz (1983). In this case the coefficient vector yMR

m of the MR correction
with respect to Cm consists simply of the Fourier coefficients W ∗

mr0, i.e., no triangular
system needs to be solved. The corresponding OR coefficient vector is obtained, again in
view of (2.38), by

yOR
m = [(r0,w1), . . . , (r0,wm−1), ‖rMR

m−1‖2/(wm, r0)]>. (3.8)

The associated residual vectors may be formed by using the same coefficient vectors,
but with respect to the orthonormal basis Wm. The GCR algorithm, which is listed as
Algorithm 3.2.2, belongs to the vast lineage of generalizations of the conjugate gradient
and conjugate residual methods of Hestenes & Stiefel (1952), and we refer to Section 4.4
for a brief survey of this family of Krylov subspace methods.

Algorithm 3.2.2 GCR for general correction spaces.

1 r0 := b − Ax0

2 for j := 1 to m
3 Select ĉ ∈ Cj \ Cj−1, ŵ := Aĉ
4 for i := 1 to j − 1
5 ĉ := ĉ − (ŵ ,wi)ci
6 ŵ := ŵ − (ŵ ,wi)wi

7 end
8 wj := ŵ/‖ŵ‖
9 cj := ĉ/‖ŵ‖

10 end
11 yMR

m = W ∗
mr0

12 x MR
m := x0 + CmyMR

m = x MR
m−1 + (r0,wm)cm

13 rMR
m := r0 −WmyMR

m = rMR
m−1 − (r0,wm)wm

14 If desired, compute yOR
m , x OR

m and rOR
m using (3.8)

A third fundamental algorithmic approach, which has become the most popular for
computing MR approximations, relies on an orthonormal basis of the residual space, and
thus allows us to apply the results of Section 2.3.2. Its Krylov subspace counterparts were
introduced by Paige & Saunders (1975) for selfadjoint A and by Saad & Schultz (1986)
for the general, nonselfadjoint case. The latter, general form is known as the generalized
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minimum residual method (GMRES). Subsequently, Saad (1993) introduced a variant of
GMRES for general correction spaces in order to accommodate variable preconditioners,
and introduced the name flexible GMRES (FGMRES) for the resulting algorithm, which
is listed as Algorithm 3.2.3. A typical application of FGMRES is the use of GMRES in
conjunction with a preconditioner which can vary from step to step. Such an example
can be found in Elman, Ernst & O’Leary (1999).

The point of departure in FGMRES is the (in general not orthogonal) basis Cm of Cm,
the image Wm = ACm of which is a basis of Wm. FGMRES then proceeds to compute
an orthonormal basis Vm+1 of the residual space Vm+1 = span{r0}+ Wm, resulting in the
decomposition

ACm = Vm+1H̃m, (3.9)

which is relation (2.39) with Wm = ACm as the basis of the approximation space Wm.
Due to its similarity with an Arnoldi decomposition (Arnoldi 1951), which results when
Cm = Vm, we shall refer to (3.9) as an Arnoldi-type decomposition. The orthogonalization

process is the same as (2.41), and, in view of (2.42) and (2.43), the entries ηj,m of H̃m are

ηj,m = (Acm, vj), j = 1, . . . ,m+ 1, m ≥ 1, (3.10)

where ηm+1,m ≥ 0. With the QR-decomposition (2.49) and Q̃m defined in (2.50), we also
have (cf. (2.61) and (2.63))

ACm = Vm+1Q̃mRm = V̂mRm. (3.11)

Since the coefficient vectors of the MR and OR corrections with respect to Cm are those
of the associated residual approximations with respect to the basis Wm = ACm, their
computation proceeds exactly as in Section 2.3.2. Therefore, we obtain x MR

m = x0 +
CmyMR

m and x OR
m = x0 +CmyOR

m , where yMR
m and yOR

m solve (2.44) and (2.45), respectively.

To relate FGMRES to the Walker-Zhou variant of MR, note that V̂mRm is a QR-
factorization of the form (3.6). Similarly, the orthonormal basis V̂m of Wm plays the role
of Wm in GCR, and the second basis occurring in GCR—i.e., the pre-image of Wm under
A—is given by A−1V̂m = CmR

−1
m .

We thus conclude that GCR and the Walker-Zhou variant of MR both generate a
subset of the quantities produced in FGMRES. As we will see in Chapter 4, when Cm

is a sequence of Krylov spaces FGMRES possesses the additional advantage that only
one basis needs to be generated and stored. Finally, we note that these three algorithms
compute identical approximations only under the assumption of exact arithmetic, but
will generally differ with regard to their stability in the presence of roundoff error. A
thorough comparison along these lines is carried out by Rozložńık & Strakoš (1996),
where theoretical and numerical comparisons of variants of these three algorithms in the
Krylov subspace case favor the GMRES algorithm. Aside from stability issues, the choice
between these algorithms should be based on efficiency considerations, since, especially
when combined with inner iterations, one or the other may be more convenient.

We conclude this section with an algorithmic formulation for the case treated in Sec-
tion 2.3.3 in which none of the bases used is orthogonal with regard to the given inner
product (·, ·) on H : the generic QMR/QOR algorithm for solving operator equations,
listed as Algorithm 3.2.4.
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Algorithm 3.2.3 GMRES for a general correction space (FGMRES).

1 r0 := b − Ax0, β := ‖r0‖, v1 := r0/β
2 for j := 1 to m
3 Select cj ∈ Cj \ Cj−1,w := Acj
4 for i = 1 to j
5 hi,j := (w , vi)
6 w := w − hi,jvi
7 end
8 hj+1,j := ‖w‖
9 vj+1 := w/hj+1,j

10 end

11 Compute yMR
m to minimize ‖βu

(m+1)
1 − H̃my‖

12 Compute yOR
m to solve Hmy = βu

(m)
1

13 x MR
m := x0 + CmyMR

m

14 x OR
m := x0 + CmyOR

m

We observe that the only difference to the FGMRES algorithm is that the correspond-
ing construction of the Arnoldi-type decomposition (3.9) no longer proceeds by successive
orthogonalization of the vectors r0, Ac1, . . . , Acm with respect to (·, ·), but that any set of

vectors v1, . . . , vm+1 and unreduced Hessenberg matrix H̃m satisfying (3.9) is permitted.
In particular, as observed in Section 2.3.3, the calculations in the coordinate space, i.e.,
the updated QR factorization of H̃m by Givens rotations as well as the solution of the
least-squares problem and Galerkin equation are the same as in the FGMRES algorithm.
Of course, it should be mentioned that all the difficulty now lies in the generation of a
suitable Arnoldi-type factorization (3.9), i.e., one for which the matrices H̃m have a small
bandwidth and for which the resulting basis-dependent inner product (·, ·)V (cf. (2.68)) is
close to the original inner product (·, ·) or some other inner product appropriate for the
underlying operator equation. Currently the only general purpose method of this type is
the original method to use this approach, the Krylov subspace QMR method of Freund &
Nachtigal (1991), which employs the look-ahead Lanczos process (see Gutknecht (1992),
Gutknecht (1994)) for this purpose.

Algorithm 3.2.4 Generic QMR algorithm for a general correction space.

1 r0 := b − Ax0, β := ‖r0‖, v1 := r0/β
2 for j := 1 to m
3 Select cj ∈ Cj \ Cj−1,w := Acj
4 Determine vj+1, {hi,j}j+1

i=1 such that Acj =
∑j+1

i=1 hi,jvi
5 end

6 Compute yQMR
m to minimize ‖βu

(m+1)
1 − H̃my‖2

7 Compute yQOR
m to solve Hmy = βu

(m)
1

8 x QMR
m := x0 + CmyQMR

m

9 x QOR
m := x0 + CmyQOR

m
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3.3 Multiple Subspace Correction

Various recently developed enhancements of the basic MR and OR schemes presented
above are based on introducing additional subspace corrections besides those associated
with the stepwise increasing correction spaces. Existing approaches include generating
such auxiliary projections from spectral information on the operator A gained during the
iteration process or from additional inner iteration or restart cycles. In addition, time
and storage constraints often make it necessary to form these projections only approx-
imately, while at the same time keeping this approximation as effective as possible. In
order to better describe and compare these new developments, we first formulate the basic
projection steps required to combine two subspace corrections. Again, such a combina-
tion of two or more subspace corrections is a commonly used device in other areas of
numerical analysis, e.g. in the field of additive Schwarz methods for solving boundary
value problems, in which the different correction spaces correspond to finite-dimensional
spaces of functions with support on subdomains of the original domain (which can also
be interpreted as a block-Jacobi method). In the following Section 3.4, we then discuss
how subspace information may be quantified in order to construct effective approximate
projections.

Consider an initial approximation x0 to the solution of (1.1) for which we seek the
MR approximation x0 + c with c selected from the correction space C . We assume C
to be the direct sum C = C1 ⊕ C2 of two spaces C1 and C2, and our goal is to obtain
the MR approximation as the result of two separate projection steps involving C1 and C2,
respectively. This task is equivalent to finding the best approximation w = Ac ∈ W =
AC = W1 ⊕W2 to r0, where Wj := ACj, j = 1, 2.

If, in a first step, we obtain the best approximation w1 = PW1r0 in W1, then the
best approximation in W is obtained by introducing the orthogonal complement Z :=
W ∩W ⊥

1 of W1 in W , in terms of which W has the direct and orthogonal decomposition
W = W1 ⊕Z . The global best approximation is now given by

w := PW r0 = (PW1 + PZ )r0 = PW1r0 + PZ (I − PW1)r0. (3.12)

The last expression shows that the contribution from the second projection consists of
the orthogonal projection onto Z of the error (I − PW1)r0 of the first approximation.

Expressing all spaces in terms of C1 and C2 and noting that Z = (I − PAC1)AC2, we
conclude that the correction c associated with the residual approximation w satisfies

Ac = w = PAC1r0 + P(I−PAC1
)AC2(I − PAC1)r0.

The global correction is thus of the form c = c1 + d , where

Ac1 = PAC1r0 (3.13)

Ad = P(I−PAC1
)AC2(I − PAC1)r0. (3.14)

The solution c1 of (3.13) is simply the MR solution of the equation Ac = r0 with respect
to the correction space C1. To obtain a useful representation of d , we note that the right
hand side of (3.14) may be viewed as the MR approximation with respect to C2 of the
equation

(I − PAC1)Ac = (I − PAC1)r0. (3.15)
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Lemma 3.3.1. The operator (I − PAC1)A restricted to C2 is a bijection from C2 to Z .

Proof. The assertion follows by showing that the operator in question is one-to-one: (I −
PAC1)Ac̃ = 0 for c̃ ∈ C2 implies Ac̃ ∈ AC1 ∩ AC2 = {0}.

The solution d of (3.14) yielding the second component of the combined correction
c may thus be obtained by first determining the MR solution c2 of (3.15) and then
evaluating

d = A−1(I − PAC1)Ac2 = c2 − A−1PAC1Ac2. (3.16)

Lemma 3.3.2. The operator P := A−1(I −PAC1)A restricted to C2 is the oblique projec-
tion onto A−1Z along C1.

Proof. The projection property follows immediately upon squaring P . Since A is non-
singular, N (P ) = A−1W1 = C1 and R(P ) = A−1(AC1)⊥. Restricted to C2, the range
reduces to the preimage under A of the orthogonal complement of AC1 with respect to
AC2, i.e., A−1Z .

At first glance, the evaluation of d as given in (3.16) appears to require a multiplication
by A as well as the solution of another equation involving A with a right hand side from
AC1, in addition to the computation of the two projections. In fact, we show how d
can be calculated inexpensively using quantities generated in the course of the two MR
approximation steps.

Assume C1 has dimension m and that Algorithm 3.2.3 (FGMRES) has been employed
to obtain the MR approximation to the solution of Ac = r0 with respect to C1. If
C

(1)
m = [c

(1)
1 , . . . , c

(1)
m ] denotes a basis of C1, then, besides the MR approximation c1, which

has the coordinate representation c1 = C
(1)
m y1 with y1 ∈ Cm, FGMRES also constructs

the Arnoldi-type decomposition (3.9), which we write here as AC
(1)
m = V

(1)
m+1H̃

(1)
m . The

QR decomposition H̃
(1)
m = Q̃

(1)
m R

(1)
m (cf. (2.49),(2.50)) makes available the Paige-Saunders

basis V̂
(1)
m (cf. (2.63)), which forms an orthonormal basis of AC1. Note also that, in view

of relation (3.11), there holds

A−1V̂ (1)
m = C(1)

m R−1
m . (3.17)

The orthogonal projection PAC1 may be expressed in terms of V̂
(1)
m as V̂

(1)
m

[
V̂

(1)
m

]∗
, and,

denoting the residual of the first MR approximation by r1 := r0 − Ac1, equation (3.15)
may be written (

I − V̂ (1)
m

[
V̂ (1)
m

]∗)
Ac = r1.

Applying Algorithm 3.2.3 to equation (3.15) using the basis C
(2)
k = [c

(2)
1 , . . . , c

(2)
k ] of the

k-dimensional correction space C2 thus produces the decomposition(
I − V̂ (1)

m

[
V̂ (1)
m

]∗)
AC

(2)
k = V

(2)
k+1H̃

(2)
k (3.18)
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as well as the MR approximation c2 = C
(2)
k y2, y2 ∈ Ck. The solution d of (3.14) as given

in (3.16) can now be expressed as

d = c2 − A−1PAC1Ac2 = C
(2)
k y2 − A−1V̂ (1)

m

[
V̂ (1)
m

]∗
AC

(2)
k y2

= C
(2)
k y2 − C(1)

m

[
R(1)
m

]−1([
V̂ (1)
m

]∗
AC

(2)
k

)
y2,

which shows that the action of A−1 in (3.16) is effected by the inverse of the (small)

triangular matrix R
(1)
m . We further observe that the evaluation of Ac2 in (3.16) is accom-

plished through the m × k matrix
[
V̂

(1)
m

]∗
AC

(2)
k , which is available at no extra cost as a

by-product of the orthogonalization process carried out in the second MR step to obtain
(3.18). In fact, (3.17) and (3.18) can be combined to yield the global decomposition

A
[
C

(1)
m C

(2)
k

]
=
[
V̂

(1)
m V

(2)
k+1

] [
R

(1)
m

[
V̂

(1)
m

]∗
AC

(2)
k

O H̃
(2)
k

]
(3.19)

with respect to C . We summarize the coordinate representation of these two successive
projections in

Theorem 3.3.3. The MR approximation of the solution of Ac = r0 with respect to the
correction space C = C1 ⊕ C2 is given by

c = C(1)
m y1 + C

(2)
k y2 + C(1)

m

[
R(1)
m

]−1([
V̂ (1)
m

]∗
AC

(2)
k

)
y2,

where the coefficient vectors y1 ∈ Cm and y2 ∈ Ck satisfy the least-squares problems∥∥∥‖r0‖u (m+1)
1 − H̃(1)

m y
∥∥∥→ min

y∈Cm
,

∥∥∥‖r1‖u (k+1)
1 − H̃(2)

k y
∥∥∥→ min

y∈Ck

and the matrices C
(1)
m , C

(2)
k , V̂

(1)
m , R

(1)
m , H̃

(1)
m , and H̃

(2)
k as well as the vector r1 are defined

above.

Remark 3.3.4. The decomposition (3.19) is a slight modification of the standard Arnoldi-
type decomposition (3.9), which, translated to the present context, would have the form

A
[
C

(1)
m C

(2)
k

]
=
[
V

(1)
m+1 V

(2)
k

]
H̃m+k, H̃m+k =

[
H̃

(1)
m Hm+1,k

O R̃k

]
(3.20)

with an upper Hessenberg matrix H̃m+k ∈ C(m+k+1)×(m+k) composed of the submatrices
Hm+1,k ∈ C(m+1)×k, the upper triangular matrix R̃k ∈ Ck×k and the upper Hessenberg

matrix H̃
(1)
m ∈ C(m+1)×m associated with the Arnoldi decomposition of A with respect to

C
(1)
m . The modified decomposition (3.19) is obtained from (3.20) by substituting the QR

decomposition (2.49) and introducing the Paige and Saunders basis (2.63), which also
reveals the relations

V
(2)
k+1 =

[
ṽm+1 V

(2)
k

]
and

[
Hm+1,k

R̃k

]
=

[[
V̂

(1)
m

]∗
AC

(2)
k

H̃
(2)
k

]
.

(Note that the last equation contains two different block partitionings of the (m+k+1)×k
matrices: that on the left is split into an (m+ 1)× k and a k × k block, while the blocks
on the right are of dimension m× k and (k + 1)× k, respectively.)
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3.4 Incomplete Orthogonalization

The MR approximation applied to equation (3.15) in effect maintains orthogonality of
the basis vectors of the residual space V2 against W1 = AC1. Computationally, this
is manifested in the generation of the m × k matrix

[
V̂

(1)
m

]∗
AC

(2)
k in the course of the

orthogonalization process (cf. (3.19)). In order to reduce the cost of both the storage of

V̂
(1)
m and the work involved in the orthogonalization, we now consider performing the MR

approximation to the solution of (3.15) only approximately in the sense that orthogonality
is maintained only against a subspace of W1 of fixed dimension. When faced with the
choice of such a subspace against which one can afford to maintain orthogonality, one
possible criterion is to select that space which results in the greatest reduction of the
residual norm after the second MR approximation. Such an approach was proposed by
de Sturler (1996), and will be further described in Section 5.4.4.

As in Section 3.3, consider the MR approximation with respect to the correction space
C = C1 ⊕ C2. The global MR approximation (3.12) consists of an MR approximation
with respect to C1 followed by a second projection involving the orthogonal complement
Z := (I − PW1)W2 of W1 = AC1 with respect to W2 = AC2. The simplest approach
of completely omitting the orthogonalization involved in constructing PZ results in the
combined approximation

w̃ := PW1r0 + PW2(I − PW1)r0,

in place of (3.12). This is the standard way of restarting an MR algorithm. Besides the
two extremes of complete orthogonalization against W1 or none at all, it is also possible

to orthogonalize against only a subspace W̃1 ⊂ W1 of dimension ` < m, which brings up

the problem of determining W̃1 such that, if orthogonality of the residual space V2 of the

second MR approximation is maintained against W̃1, this results in the smallest residual
norm over all `-dimensional subspaces of W1.

The solution of this problem is greatly facilitated by a judicious choice of bases: Let
W

(1)
m = [w

(1)
1 , . . . ,w

(1)
m ] and W

(2)
k = [w

(2)
1 , . . . ,w

(2)
k ] denote biorthogonal orthonormal

bases of W1 and W2 ordered such that the (diagonal) m × k matrix Γ :=
[
W

(1)
m

]∗
W

(2)
k

has nonincreasing nonnegative entries γ1, . . . , γmin{m,k}. The numbers γj are the cosines
of the canonical angles between the spaces W1 and W2 (cf. (Stewart 1998, Chapter 4.5))
and therefore lie between zero and one. In addition, the assumption C1 ∩C2 = {0} along
with the nonsingularity of A implies W1 ∩W2 = {0} and therefore each γj is strictly less
than one.

An orthogonal basis of Z is given by Ẑk :=
(
I − W

(1)
m

[
W

(1)
m

]∗)
W

(2)
k , and we set

Ẑ∗kẐk = I − Γ∗Γ =: Σ2 ∈ Ck×k, where Σ = diag(σ1, . . . , σk) with

σj =

{√
1− γ2

j , 1 ≤ j ≤ min{k,m}
1, otherwise,

in view of which Zk := ẐkΣ
−1 is an orthonormal basis of Z . Denoting Zk = [z1, . . . , zk],

the following theorem expresses the effect of complete orthogonalization versus none at
all:
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Theorem 3.4.1. In the notation introduced above and with r1 := (I−PW1)r0, there holds

(PW2 − PZ )r1 =

min{k,m}∑
j=1

(r1, zj)γj(σjw
(1)
j − γjzj), (3.21)

‖(PW2 − PZ )r1‖2 =

min{k,m}∑
j=1

γ2
j |(r1, zj)|2. (3.22)

Proof. Taking note of r1 ⊥ W1 and W
(2)
k = ZkΣ +W

(1)
m Γ, we obtain

(PW2 − PZ )r1 =
(
W

(2)
k

[
W

(2)
k

]∗
− ZkZ∗k

)
r1

=
(

(ZkΣ +W (1)
m Γ)(ZkΣ +W (1)

m Γ)
∗ − ZkZ∗k

)
r1

= (W (1)
m ΓΣ− ZkΓHΓ)Z∗kr1,

which is a reformulation of (3.21). Taking norms and noting W1 ⊥ Z as well as γ2
j +σ2

j = 1
yields (3.22):

‖(PW2 − PZ )r1‖2 = (Z∗r1)∗(ΣΓHΓΣ + (ΓHΓ)2)(Z∗r1) = ‖ΓZ∗r1‖2
2.

We see that the difference between the two projection depends on the Z -components
of the approximation error r1 remaining after the first projection weighted by the corre-
sponding cosines γj of the canonical angles between W1 and W2. Whenever γj = 0, the
projection onto W2 would already have produced the correct component in the direction
zj, whereas in case γj = 1 the associated basis vectors w

(1)
j and w

(2)
j are collinear and

PW2 would have yielded no component in direction zj.

To consider the case of incomplete orthogonalization, let W̃1 ⊂ W1 with dim W̃1 = ` <

m. By orthogonalizing the basis of W2 against W̃1, we construct the orthogonal projection

onto Z̃ := (W̃1 ⊕ W2) ∩ W̃ ⊥
1 , which, applied to r1, yields the difference between PW1r0

and best approximation of r0 in W̃1 ⊕W2.

Theorem 3.4.2. Of all `-dimensional subspaces W̃1 ⊂ W1, that which minimizes ‖(PZ̃ −
PZ )(I − PW1)r0‖ over all r0 ∈H is given by W̃1 = span{w (1)

1 , . . . ,w
(1)
` }, and results in

‖(PZ̃ − PZ )(I − PW1)r0‖ = ‖(PZ̃ − PZ )r1‖ =

min{k,m}∑
j=`+1

γ2
j |(r1, zj)|2. (3.23)

Proof. Any orthonormal basis W̃
(1)
` = [w̃1, . . . , w̃`] of W̃1 has the form W̃

(1)
` = W

(1)
m Q1

with a matrix Q1 ∈ Cm×` consisting of the first ` columns of a unitary m × m matrix

Q = [Q1 Q2]. We obtain a basis of Z̃ by orthogonalizing W
(2)
k against W̃

(1)
` :

Ẑ` : =
(
I − W̃ (1)

`

[
W̃

(1)
`

]∗)
W

(2)
k = W

(2)
k −W

(1)
m Q1Q

H
1 Γ

= (ZkΣ +W
(2)
k Γ)−W (1)

m Q1Q
H
1 Γ = ZkΣ +W (1)

m (I −Q1Q
H
1 )Γ

= ZkΣ +W (1)
m Q2Q

H
2 Γ.
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Because of 0 ≤ γj < 1 the Hermitian matrix

Ẑ∗` Ẑ` = Σ2 + Γ∗Q2Q
H
2 Γ = I − Γ∗Q1Q

H
1 Γ =: S2

is positive definite and therefore possesses a square root S, by means of which we obtain

an orthonormal basis of Z̃ as Z` := Ẑ`S
−1. Again recalling r1 ⊥ W1, we obtain for the

difference of the two projections

(PZ̃ − PZ )r1 = (Z`Z
∗
` − ZkZ∗k)r1

=
(
Zk(ΣS

−2Σ− I) +W (1)
m (Q2Q

H
2 ΓS−2Σ)

)
Z∗kr1.

(3.24)

From the definition of S2, we have

ΣS−2Σ = (Σ−1S2Σ−1)−1 = (I + Σ−1ΓHQ2Q
H
2 ΓΣ−1)−1 =: (I +MMH)−1,

with M = Σ−1ΓHQ2. We thus obtain

ΣS−2Σ− I = (I +MMH)−1 − I = −MMH(I +MMH)−1

as well as Q2Q
H
2 ΓS−2Σ = Q2M

H(I +MMH)−1, which we insert in (3.24) to obtain

‖(PZ̃ − PZ )r1‖2 = (Z∗kr1)
[
(I +MMH)−1MMH

]
(Z∗kr1). (3.25)

This expression is minimized for all r1—hence also for all r0—by choosing Q1 to minimize
the largest eigenvalue of the Hermitian matrix (I +MMH)−1MMH or, equivalently, that
of MMH = Σ−1ΓH(I − Q1Q

H
1 )ΓΣ−1. The entries γj/σj of the m × k diagonal matrix

ΓΣ−1 are nonincreasing, hence the minimum occurs for

Q1 =

[
I`
O

]
and the assertion follows by inserting the resulting choice of M in (3.25).
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Chapter 4

Krylov Subspace Methods

The overwhelming majority of subspace correction methods for solving linear systems of
equations employ correction spaces of a particularly simple structure. These spaces are
known as Krylov spaces (or Krylov subspaces) and are defined by

Km := Km(A, v) := span{v , Av , . . . , Am−1v}, v ∈H . (4.1)

In other words, Km consist of all polynomials in A of a degree at most m − 1 applied
to a fixed vector v , which in the sequel will always be the initial residual r0 = b − Ax0.
The name refers to a method introduced by Krylov (1931) for determining divisors of the
minimal polynomial of an operator for the purpose of computing eigenvalues, in which
such spaces were used (see also Householder (1964, Section 6.1)). In this chapter we
survey some of the ramifications of this choice. Section 4.1 collects some advantages of
using Krylov spaces, and Section 4.2 specializes the results of Chapter 2 to Krylov spaces.
Section 4.3 discusses the close link between a Krylov space and an associated ring of
polynomials and derives the polynomials which correspond to the MR and OR residual
vectors, the zeros of which are harmonic Ritz values and Ritz values, respectively, of A
with respect to the Krylov space. This section closes with a brief derivation of Sorensen’s
implicitly restarted Arnoldi method (Sorensen 1992) as a device for manipulating Krylov
spaces and their Arnoldi factorizations. Section 4.4 attempts to sketch the development
of Krylov subspace MR and OR methods since the introduction of the conjugate gradient
method in Hestenes & Stiefel (1952). Finally, Section 4.5 contains a brief discussion of
short recurrence formulas for Krylov subspace methods.

4.1 Why Krylov Subspaces?

Using (shifted) Krylov spaces to construct approximate solutions to linear equations is as
old as stationary iterative methods (cf. Varga (1999)): given a splitting A = M −N with
M nonsingular, the induced stationary iteration

xm = Txm−1 + c, m = 1, 2, . . . (4.2)

with T = M−1N and c = M−1b generates the approximations

xm = x0 + (I + T + · · ·+ Tm−1)r0 ∈ x0 + Km(T, r0).

51
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One way of viewing Krylov subspace MR and OR methods is as a more clever strategy
for choosing the approximations in x0 + Km or, which is the same, as techniques which
accelerate the basic stationary iterative method (4.2). This was the motivation in Varga
(1999), where the term semi-iterative methods is used for this approach. Even earlier,
Chebyshev polynomials were used to accelerate stationary iterations in the case when the
splitting leads to a Hermitian positive definite matrix T (Shortley 1953). As we shall
see, a subtle difference between such stationary iterations and Krylov subspace MR and
OR methods is that the latter terminate with the exact solution whenever the Krylov
space becomes A-invariant, which is not the case for stationary methods or those based
on Chebyshev polynomials.

One regard in which (4.1) is a reasonable choice for a correction space is that it enables
the successive generation of the sequence of correction spaces {Cm} using only multipli-
cation of vectors by A, an operation which is inexpensive whenever A is represented by a
sparse or structured matrix or when the action of A can be implemented efficiently with-
out reference to a matrix representation. Moreover, note that Cm = Km(A, r0) results in
the residual space (cf. (3.2))

Vm+1 = span{r0}+ ACm = span{r0}+ AKm = Km+1,

i.e., the residual space Vm+1 of index m + 1 coincides with the correction space Cm+1 of
the next iteration, obviating the need to store two sets of basis vectors in Algorithm 3.2.1
and Algorithm 3.2.3, as we shall see in Section 4.2.1. This effectively halves the storage
requirements of these algorithms, which in the Krylov subspace case are known as the
GMRES algorithm of Saad & Schultz (1986) and Walker and Zhou’s “simpler GMRES”
(Walker & Zhou 1994), versus the GCR variant. In the Krylov subspace case, the Gram-
Schmidt orthogonalization procedure (2.41) is known as the Arnoldi process (Arnoldi
1951), and the resulting Arnoldi-type decomposition (3.9) becomes the proper Arnoldi
decomposition

AVm = Vm+1H̃m = VmHm + ηm+1,mvm+1u
>
m, (4.3)

with the entries of the Hessenberg matrix H̃m given by (cf. (2.42), (3.10))

ηj,m = (Avm, vj), j = 1, . . . ,m+ 1, m ≥ 1. (4.4)

This identifies Hm as the orthogonal section of A onto Km, i.e., it represents the linear
map AKm := PKmA|Km : Km → Km with respect to the basis Vm. We also note that the
characterization of the termination index L (cf. (2.40) and (3.3)) now becomes

L = min{m : Km(A, r0) = Km+1(A, r0)} = min{m : A−1r0 ∈ Km(A, r0)}. (4.5)

In particular, L is the index of the smallest A-invariant Krylov subspace with initial
vector r0. This fact can sometimes exploited, e.g. when equations with a nearby operator
Ã can be solved inexpensively and Ã − A has low rank, since then Ã can be used as a
preconditioner, resulting in a system with L = rank(Ã− A).

Whether or not Krylov spaces are well suited as correction spaces will, as shown before,
depend on the behavior of the angles ](Km, AKm) as m approaches∞. There are classes
of problems for which this behavior is very favorable. An example where the angles
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actually tend to zero, which, in view of (2.25), implies superlinear convergence of the
MR and OR approximants, is given by second-kind Fredholm equations (cf. Eiermann &
Ernst (1998, Theorem 6.12)). On the other hand, there are matrix problems of dimension
n for which ](Km, AKm) = π/2 (m = 1, 2, . . . , n − 1), i.e., no Krylov subspace method
is able to improve the initial residual until the very last step. The convergence properties
of Krylov subspace methods will be discussed in more detail in Chapter 6.

Finally, the theoretical investigation of Krylov subspace methods is greatly facilitated
due to a close connection between a Krylov space and an associated space of polynomials,
as discussed in Section 4.3 below. When A belongs to the class of normal operators, this
polynomial description reduces the question of convergence of Krylov subspace methods
to one of best approximation by polynomials in the complex plane.

4.2 MR and OR Approximations from Krylov Sub-

spaces

In this section we specialize the abstract results of Chapter 2 to Krylov subspace MR and
OR methods and point out the simplifications which result.

4.2.1 Krylov Subspace Methods Based on Orthonormal Bases

Following the MR approach, we now seek approximate solutions x MR
m = x0 + cMR

m of (1.1)
with cMR

m ∈ Km(A, r0) such that

‖rMR
m ‖ = ‖b − Ax MR

m ‖ = ‖r0 − AcMR
m ‖ = min

c∈Km(A,r0)
‖r0 − Ac‖ (4.6)

(m = 1, 2, . . . , L). Recall that AcMR
m is the best approximation to r0 from the space

Wm = AKm(A, r0) and that, in the parlance of Chapter 2, rMR
m = r0 − AcMR

m is the
associated approximation error.

As for the OR approach, we now seek approximate solutions x OR
m = x0 + cOR

m with
cOR
m ∈ Km(A, r0) such that

rOR
m = b − Ax OR

m = r0 − AcOR
m ⊥ Km(A, r0). (4.7)

In the terminology of Section 2.2, AcOR
m is the OR approximation to r0 from Wm with

error rOR
m . As mentioned above, the test spaces defining the orthogonality conditions

coincide with the Krylov spaces Vm = Km(A, r0).
We first turn to the question of existence of the two approximate solutions (cf. Corol-

lary 2.2.2) and express the residual norms in terms of the angles

ϕm := ] (Km(A, r0), AKm(A, r0)) (4.8)

between the subspaces Km(A, r0) and AKm(A, r0) (cf. Theorem 2.2.5). As in Chapter 2,
we denote the associated sines and cosines by sm = sinϕm and cm = cosϕm, and we
recall that these coincide with the Givens parameters which occur in the updated QR-
factorization of the Hessenberg matrix H̃m (cf. Theorem 2.3.5 and the discussion that
follows). Note that ϕm = 0 if and only if m = L.
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Corollary 4.2.1. The MR approximation x MR
m ∈ x0 + Km(A, r0) defined by (4.6) exists

for every m = 1, 2, . . . , L. The associated residual vector satisfies

‖rMR
m ‖ = ‖rMR

m−1‖sm = ‖r0‖
m∏
j=1

sj.

In particular, this implies ‖rMR
0 ‖ ≥ ‖rMR

1 ‖ ≥ · · · ≥ ‖rMR
L−1‖ > ‖rMR

L ‖ = 0. For m =
1, 2, . . . , L, the OR approximation x OR

m ∈ x0 + Km(A, r0) defined by (4.7) exists if and
only if ϕm 6= π/2. In this case the associated residual vector satisfies

‖rOR
m ‖ =

‖rMR
m ‖
cm

=
‖r0‖

∏m
j=1sj

cm
.

In particular, x OR
L exists and there holds x OR

L = x MR
L = A−1b.

Since sinϕm = 1 and cosϕm = 0 are equivalent statements, we see again that x OR
m

exists if and only if ‖rMR
m−1‖ > ‖rMR

m ‖.
In Chapter 2 we saw that the existence of the OR approximation at step m requires

that ](Vm,Wm) < π/2 (cf. Remark 2.1.7), or equivalently, that the direction in which
Wm−1 is extended to Wm not be orthogonal to span{r0}. As long as arbitrary expanding
sequences are allowed as correction spaces as in Chapter 3, no condition on A can exclude
the possibility of the OR approximation failing to exist: choosing e.g. as a new basis
vector cm of the correction space the pre-image under A of any vector orthogonal to r0

will lead to this situation in step m. When Cm is a Krylov space, however, there is a
convenient criterion.

Theorem 4.2.2. The OR approximation for the solution of (1.1) with respect to the
sequence of Krylov spaces Km(A, r0) exists for all initial residuals r0 if and only if the
field of values

W (A) :=

{
(Av , v)

(v , v)
: 0 6= v ∈H

}
(4.9)

of A does not include the origin.

Proof. By Theorem 2.2.3, existence and uniqueness of the OR approximation is equivalent
with cm 6= 0, where cm = cos](Vm,Wm). In the present situation, using (2.21) and (2.1),
this becomes

cm = cos](Km, AKm) = cos](rMR
m−1, AKm) = sup

v∈Km

cos](rMR
m−1, Av)

≥ cos](rMR
m−1, ArMR

m−1) =
|(rMR

m−1, ArMR
m−1)|

‖rMR
m−1‖ ‖ArMR

m−1‖
,

where we have made use of the fact that rMR
m−1 ∈ Km. Consequently, if 0 6∈ W (A) this

implies cm 6= 0 for all m. Conversely, if A is such that the OR approximation exists for
all m and for all initial residuals, (Av , v) = 0 for v 6= 0 would imply non-existence of the
first OR approximation if one were to start with r0 = v , a contradiction.
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The next following lemma, which we will make use of in Section 6.2.3, is due to Moret
(1997) and gives a bound on sm = |(vm+1,wm)| (cf. Lemma 2.2.4) for the case when Vm
is a Krylov space:

Lemma 4.2.3. Let {vm} be the Arnoldi basis defined by (4.3) and (4.4) with respect to
r0 ∈ H and A : H → H , where we assume A is bounded and possesses a bounded
inverse. In addition, let {wj}j≥1 denote an orthonormal system such that {w1, . . . ,wm}
is an orthonormal basis of Wm. Then there holds

|(vm+1,wm)| ≤ ‖A−1‖ (vm+1, Avm).

Proof. Since A−1wm ∈ Vm, we have A−1wm = PVmA
−1wm and thus w = APVmA

−1wm.
We can therefore write (vm+1,wm) = (vm+1, APVmA

−1wm). Moreover, since Avj ∈ Vm ⊥
vm+1 for 1 ≤ j ≤ m− 1, we have

|(vm+1, APVmA
−1wm)| = |(vm+1,

m∑
j=1

(A−1wm, vj)Avj)| = |(vm+1, (A
−1wm, vm)Avm)|

= |(A−1wm, vm)(vm+1, Avm)| ≤ ‖A−1‖ (Avm, vm+1).

Note that the modulus in |(Avm, vm+1)| can be omitted since (Avm, vm+1) = ‖(I −
PVm)Avm‖ ≥ 0.

We next turn to the question of how x MR
m and x OR

m and their associated residual vectors
are related (cf. (2.30), (2.31) and Corollary 2.2.7).

Corollary 4.2.4. With the angle ϕm as defined by (4.8) and associated sine and cosine
sm and cm there holds

x MR
m = s2

mx MR
m−1 + c2

mx OR
m , rMR

m = s2
mrMR

m−1 + c2
mrOR

m

for m = 1, 2, . . . , L, provided x OR
m exists, i.e., that ϕm 6= π/2. Equivalently, we have

‖rMR
m ‖ =

√
1− ‖r

MR
m ‖

‖rMR
m−1‖

‖rOR
m ‖,

x MR
m = x OR

m +
‖rMR

m ‖
‖rMR

m−1‖
(
x MR
m−1 − x OR

m

)
.

Of course, not only (2.30) and (2.31) but every relation presented in Section 2 can
be translated to the Krylov subspace setting. This applies in particular to the results of
Proposition 2.2.9 on minimal and quasi-minimal residual smoothing.

The identities contained in Corollaries 4.2.1 and 4.2.4 are not new and may be found
e.g. in the papers of Brown (1991), Freund (1992b), Gutknecht (1993a), and Cullum &
Greenbaum (1996). In these works, however, the sines and cosines result from the Givens
rotations needed to construct a QR decomposition of the Hessenberg matrix analogous to
(2.39) in the course of a specific algorithm for computing the MR and OR approximations.
Section 2.3, specifically Theorem 2.3.5, reveals the more fundamental significance of these
rotation angles, namely as the angles between the subspaces Km(A, r0) and AKm(A, r0).
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We now turn to algorithms for computing MR approximations in the Krylov subspace
case by specializing the three basic algorithms introduced in Chapter 3. We note that this
by no means covers the multitude of Krylov subspace methods which have been proposed
for non-Hermitian problems. A brief survey of the historically important methods is given
in Section 4.4.

One step of the Walker and Zhou algorithm (Algorithm 3.2.1) consists of enlarging
the correction space Cm by adding a new basis vector and then orthogonalizing its im-
age against the previously generated orthonormal basis of Wm = ACm, resulting in the
decomposition (3.6). In the Krylov subspace case we have

Cm = Km(A, r0), Wm = AKm(A, r0) = Km(A,Ar0),

and therefore the next correction space is Cm+1 = span{r0}+ Wm. An obvious candidate
for cm+1 is thus wm, resulting in the basis Cm+1 = [r0,w1, . . . ,wm] for the correction
space, so that no separate basis of Cm is necessary. We summarize the Walker-Zhou MR
algorithm for Krylov spaces in Algorithm 4.2.1. As in Algorithm 3.2.1, the residuals may

Algorithm 4.2.1 The Walker-Zhou MR algorithm for Krylov spaces.

1 x0 given, r0 := b − Ax0

2 w1 = Ar0/‖Ar0‖, r1,1 = ‖Ar0‖
3 for j := 2 to m
4 ŵ = Awm−1

5 for i = 1 to j − 1
6 ri,j := (ŵ ,wi)
7 ŵ := ŵ − ri,jwi

8 end
9 rj,j := ‖ŵ‖

10 wj := ŵ/rj,j
11 end
12 yMR

m := R−1
m W ∗

mr0

13 x MR
m := x0 + [r0,w1, . . . ,wm−1]yMR

m

14 rMR
m := WmW

∗
mr0

15 If desired, compute yOR
m , x OR

m and rOR
m using (3.7) or (3.4)

also be updated from step to step.
For the GCR algorithm for Krylov spaces (cf. Algorithm 3.2.2), different ways of

extending the bases Cm and Wm have been proposed in the literature. The older variant,
introduced in Eisenstat et al. (1983), generates in step m the new basis vector wm by
orthogonalizing Arm−1 against the previously generated orthonormal basis of Wm−1, while
simultaneously updating rm−1 to obtain cm = A−1wm. This approach, which is given in
Algorithm 4.2.2, has the drawback that it fails to extend the Krylov space whenever two
consecutive MR approximations coincide. For this reason, Eisenstat et al. (1983) state
that the algorithm should only be used for linear systems where A is positive real, which
means that its Hermitian part (A + A∗)/2 is positive definite. By Theorem 4.2.2, we
see that the algorithm may in fact be used provided 0 6∈ W (A), a slightly more general
criterion.
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Algorithm 4.2.2 GCR for Krylov spaces.

1 r0 := b − Ax0

2 for j := 1 to m
3 ĉ := rj−1, ŵ := Aĉj
4 for i := 1 to j − 1
5 ĉ := ĉ − (ŵ ,wi)ci
6 ŵ := ŵ − (ŵ ,wi)wi

7 end
8 wj := ŵ/‖ŵ‖
9 cj := ĉ/‖ŵ‖

10 end
11 yMR

m = W ∗
mr0

12 x MR
m := x0 + CmyMR

m = x MR
m−1 + (r0,wm)cm

13 rMR
m := r0 −WmyMR

m = rMR
m−1 − (r0,wm)wm

14 If desired, compute yOR
m , x OR

m and rOR
m using (3.8)

An easy remedy for this deficiency is to extend the basis Wm−1 by instead orthogonal-
izing Awm−1 against Wm−1, which results in the Arnoldi process for Wm = Km(A,Ar0)
for generating the wm-sequence, while the cm-sequence is again maintained such that
Acm = wm. The resulting algorithm is identical with Algorithm 4.2.2 except that line 3
reads ĉj = wj−1, ŵj = Aĉj. This is pointed out in Rozložńık & Strakoš (1996), where
many equivalent MR implementations are also compared with regard to their numerical
stability. As we shall see in Section 4.4, the former GCR-variant is an ORTHOMIN-type
method, while the latter is of the type ORTHODIR.

The GMRES algorithm for Krylov spaces (cf. Algorithm 3.2.3), introduced in Saad &
Schultz (1986), generates the Arnoldi factorization (4.3) (cf. (2.39) and (3.9)) and a re-

cursively updated QR-factorization of the Hessenberg matrix H̃m. As in the Walker-Zhou
algorithm, only one sequence of basis vectors needs to be generated and stored. These
form an orthonormal basis of Km(A, r0). An orthonormal basis of Wm = AKm(A, r0)
is implicitly available in the form of the Paige-Saunders basis (cf. Section 2.3.2). The
GMRES algorithm is given in Algorithm 4.2.3. GMRES actually refers specifically to
the MR approximation; when the OR approximation is computed based on the Arnoldi
factorization as in Algorithm 4.2.3 it is known as the full orthogonalization method (FOM)
(Saad 1981) or as Arnoldi’s method for solving linear systems.

4.2.2 Krylov Subspace Methods Based on Non-Orthogonal
Bases

The previous section showed how several well-known Krylov subspace algorithms for the
iterative solution of (1.1) which use an orthogonal basis of Vm = Km(A, r0) result from
specializing the basic algorithms of Chapters 2 and 3 to Krylov subspaces as correction
spaces. In the same manner, we show in this section how Krylov subspace methods such
as QMR/BCG and TFQMR/CGS, which use a non-orthogonal basis of the Krylov space,
naturally fit into the framework of MR/OR approximations based on non-orthogonal bases
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Algorithm 4.2.3 GMRES and FOM for Krylov spaces.

1 r0 := b − Ax0, β := ‖r0‖, v1 := r0/β
2 for j := 1 to m
3 w := Avm
4 for i = 1 to j
5 hi,j := (w , vi)
6 w := w − hi,jvi
7 end
8 hj+1,j := ‖w‖
9 vj+1 := w/hj+1,j

10 end

11 Compute yMR
m to minimize ‖βu

(m+1)
1 − H̃my‖

12 Compute yOR
m to solve Hmy = βu

(m)
1

13 x MR
m := x0 + VmyMR

m

14 x OR
m := x0 + VmyOR

m

discussed in Section 2.3.3.
To this end, let v1, v2, . . . , vL ∈ H be any set of linearly independent vectors such

that {v1, v2, . . . , vm} form a basis of Vm = Km(A, r0) for m = 1, . . . , L (in particular,
r0 = βv1 for some 0 6= β ∈ C). This basis leads naturally to a (quasi)-minimal residual
as well as to a (quasi-) orthogonal residual method. Since, for every 1 ≤ m ≤ L, Avm ∈
span{v1, v2, . . . , vm+1}, where we set vL+1 = 0, there exists an upper Hessenberg matrix

H̃m ∈ C(m+1)×m such that—just as in (2.39) and in (4.3)—

AVm = VmHm + [0, . . . ,0, ηm+1,mvm+1] = Vm+1H̃m. (4.10)

Just as in the Arnoldi decomposition (4.3) in the case of an orthogonal basis, the m-

th column of H̃m contains the coefficients of Avm ∈ Km+1(A, r0) with respect to the
basis vectors v1, . . . , vm+1. We are thus in the situation of Section 2.3.3, with Vm =
Km(A, r0) and Wm = AVm. Defining the auxiliary inner products (·, ·)V on VL and (·, ·)v

on the coordinate space CL as in (2.68) and (2.67), respectively, we obtain the QMR
approximation

x QMR
m := x0 + VmyQMR

m = x0 + vQMR
m

of the solution A−1b by requiring that AvQMR
m be the MR approximation to r0 with

respect to the inner product (·, ·)V . Just as in Section 2.3.3, the coefficient vector yQMR
m ∈

C
m is characterized as the unique solution of the least-squares problem (2.44). Merely

translating Theorems 2.3.9 and 2.3.10 to Krylov subspace notation, we obtain

Theorem 4.2.5. The QMR iterates are the MR iterates with respect to the inner product
(·, ·)V :

‖b − Ax QMR
m ‖V = min

x∈x0+Km(A,r0)
‖b − Ax‖V . (4.11)
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In terms of the original norm in H , the MR and QMR residuals may be bounded by

‖rMR
m ‖ ≤ ‖rQMR

m ‖ ≤
√
κ2(Mm) ‖rMR

m ‖, (4.12)

in which κ2(Mm) denotes the (Euclidean) condition number of the (Hermitian positive
definite) matrix Mm.

Theorem 4.2.6. The residual vectors of the QMR iterates are characterized by

rQMR
m ⊥ Um,

where Um = {v = Vm+1y ∈ Km+1(A, r0) : y = M−1
m H̃mz with z ∈ Cm} is an m-

dimensional subspace of Km+1(A, r0) (for m = L, there holds UL = KL(A, r0)) and
orthogonality is understood with respect to the original inner product (·, ·) on H . Conse-
quently,

rQMR
m =

(
I − PUm

Wm

)
r0,

where PUm
Wm

denotes the oblique projection onto Wm = AKm(A, r0) orthogonal to Um.

Again drawing from the abstract results in Section 2.3.3, the corresponding QOR
approximations in the Krylov subspace case are defined by

x QOR
m = x0 + VmyQOR

m ,

where the coordinate vector yQOR
m ∈ Cm is determined by

0 = (βu1 − H̃myQOR
m ,uj)2 (j = 1, 2, . . . ,m), i.e., HmyQOR

m = βu1 (4.13)

under the usual assumption that Hm is nonsingular. In terms of the inner product (·, ·)V
on KL(A, r0) the QOR approximations are characterized by

rQOR
m = b − Ax QOR

m ⊥V Km(A, r0),

i.e., the QOR iterates are the OR iterates with respect to the inner product (·, ·)V . Simi-
larly to Theorem 2.3.10 there holds

Theorem 4.2.7. The residual vectors of the QOR iterates satisfy

rQOR
m ⊥ Tm,

where Tm = {v = Vm+1y ∈ Km+1(A, r0) : y = M−1
m [z T 0]T with z ∈ Cm} is an

m-dimensional subspace of Km+1(A, r0) (for m = L, there holds TL = KL(A, r0)) and
orthogonality is understood with respect to the original inner product (·, ·) on H . Conse-
quently,

rQOR
m =

(
I − PTm

Wm

)
r0,

where PTm
Wm

denotes the oblique projection onto Wm = AKm(A, r0) orthogonal to Tm.
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The QMR and QOR iterates being identified as MR and OR iterates with respect to
the inner product (·, ·)V implies that the assertions of Corollaries 4.2.1 and 4.2.4 are valid
for any pair of QMR/QOR methods. The crucial angles ϕm of (4.8), however, are now
defined with respect to (·, ·)V .

The motivation for using non-orthogonal bases comes from the potential savings in
storage and computation when using algorithms for generating a basis of Km(A, r0) which
lead to a Hessenberg matrix in relation (4.10) with a small number of bands. A tridiag-
onal Hessenberg matrix can be achieved using the non-Hermitian Lanczos process. The
non-Hermitian variant of the Lanczos process is almost as economical as its Hermitian
counterpart, requiring in addition the generation of a basis of a Krylov space with respect
to the adjoint A∗ and thus storage for several additional vectors and, what can be expen-
sive, multiplication by A∗ at each step. The result are two biorthogonal, in general not
orthogonal, bases. The non-Hermitian Lanczos process may break down before the Krylov
space becomes stationary, and in finite arithmetic this leads to numerical instabilities in
the case on near-breakdowns. This problem is addressed by so-called look-ahead tech-
niques for the non-Hermitian Lanczos process (cf. Freund, Gutknecht & Nachtigal (1993),
Gutknecht (1997) and the references therein), which result in a pair of block-biorthogonal
bases and a Hessenberg matrix which is as close to tridiagonal form as possible while
maintaining stability.

Remark 4.2.8. We have mentioned that Krylov subspace QMR/QOR methods have the
advantage of being able to work with an arbitrary basis of the Krylov space, in particular
also with a non-orthogonal basis. As the bounds (4.12) show, how close the QMR iterates
come to also minimizing the residual in the original norm depends on the Euclidean
condition number of the Gram matrices Mm, i.e., on the largest and smallest singular
value of Vm = [v1, . . . , vm] (interpreted as an operator from C

m to Km(A, r0)). The
largest singular value of Vm is bounded by

√
m if the basis vectors are normalized with

respect to the original norm. When the look-ahead Lanczos algorithm is used to generate
the basis, bounds on the smallest singular value may be obtained depending on the look-
ahead strategy being followed.

Example: QMR/BCG and TFQMR/CGS

We now consider two particular examples of Krylov subspace QMR/QOR algorithms, the
QMR method of Freund & Nachtigal (1991) and the TFQMR and CGS methods due
to Freund (Freund 1993, Freund 1994) and Sonneveld (1989), respectively. As another
QMR/QOR pair, we mention the QMRBICGSTAB method of Chan, Gallopoulos, Si-
moncini, Szeto & Tong (1994) and BICGSTAB developed by van der Vorst (1992) and
Gutknecht (1993b).

The QMR algorithm of Freund and Nachtigal proceeds exactly as described above,
with the basis of the Krylov space generated by the look-ahead Lanczos algorithm. The
QOR counterpart of Freund and Nachtigal’s QMR is the BCG algorithm, the iterates of
which are characterized by

x BCG ∈ x0 + Km(A, r0), rBCG
m ⊥ Km(A∗, r̃0).

The algorithm proceeds by generating a basis of the Krylov space Km(A∗, r̃0), where r̃0 is
an arbitrary starting vector, simultaneously with a basis Vm of Km(A, r0) in such a way
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that these two bases are biorthogonal. If y ∈ Cm denotes the coefficient vector of the
BCG approximation with respect to Vm, then the biorthogonality requirement implies

rBCG
m = Vm+1(βu1 − H̃my) ⊥ Km(A∗, r̃0)

⇔ rBCG
m ⊥V Vm

⇔ Hmy = βu1.

The last equality identifies x BCG as the m-th QOR iterate.
To treat the TFQMR/CGS pair, recall that the residual of any Krylov subspace ap-

proximation can be expressed as rm = φm(A)r0 in terms of a polynomial φm of degree m
satisfying φm(0) = 1. Sonneveld (1989) defined the CGS iterate x CGS

m ∈ x0 + K2m(A, r0)
such that

rCGS
m = [φm(A)]2r0, where rBCG

m = φm(A)r0.

It is shown in Freund (1993) that x CGS
m = x0 + Y2mz2m for a coefficient vector z2m ∈ C2m,

where K2m(A, r0) = span{y1, . . . ,y2m}. Moreover, there exists a sequence {wn} such that
r0 = βw1 and

AYn = Wn+1H̃n, n = 1, . . . , 2L.

In terms of this sequence, there holds

rCGS
m = W2m+1

(
βu1 − H̃2mz2m

)
,

where H2mz2m = βu1, i.e.,

rCGS
m ⊥W span{w1, . . . ,w2m} = AK2m(A, r0),

which identifies CGS as an OR method. The corresponding MR method is Freund’s
transpose-free QMR method TFQMR (cf. Freund (1993),Freund (1994)), the iterates of
which are defined as

x TFQMR
n = x0 + Ynzn, n = 1, . . . , 2L,

where the coefficient vector zn ∈ Cn solves the least-squares problem

‖βu1 − H̃nzn‖2 → min
z∈Cn

.

In other words,

‖rTFQMR
n ‖W = min

x∈x0+Kn(A,r0)
‖b − Ax‖W .

Comparison of Residuals

The availability of a sequence of vectors {ṽj}j≥1 which is biorthogonal to the Krylov basis
{vj} permits a convenient representation of the QOR residual via (2.48). If

(vj, ṽk) = δjkdj, j, k = 1, . . . , L,
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and if both sequences are normalized to one, then, since the MR-residual at step m − 1
lies in Wm−1 ⊂ Vm, we have rMR

m−1 =
∑m

j=1(rMR
m−1, ṽj/dj)vj. Inserting r − w = rMR

m−1 in
(2.48) then yields

rQOR
m = (rMR

m−1, ŵm+1)V vm+1 = vm+1

m∑
j=1

gj

dj
(rMR
m−1, ṽj)vj,

which, after taking norms and applying the Cauchy-Schwarz inequality, becomes

‖rQOR
m ‖ ≤ ‖rMR

m−1‖
m∑
j=1

|gj|
|dj|

.

This bound is a slightly improved version of a bound by Hochbruck & Lubich (1998).

4.3 The Polynomial Structure

As easily verified, the m-dimensional Krylov space with respect to the operator A and
initial vector r0 may be represented as

Km(A, r0) = {q(A)r0 : q ∈Pm−1} m = 1, 2, . . . ,

where Pm denotes the space of all complex polynomials of degree at most m. The linear
map

Pm−1 3 q 7→ q(A)r0 ∈ Km(A, r0)

is thus always surjective but fails to be an isomorphism if and only if there exists a nonzero
polynomial q ∈ Pm−1 with q(A)r0 = 0. If such a polynomial exists (e.g., if A has finite
rank) then there also exists a (unique) monic polynomial c = cA,r0 of minimal degree with
c(A)r0 = 0 which is usually called the minimal polynomial of r0 with respect to A. It is
easy to see that the degree of c equals the smallest integer m such that Km = Km+1 and
thus coincides with the index L introduced in (2.40) (cf. also (3.3) and (4.5)),

L = min{m ∈ N0 : Km = Km+1} = min{m ∈ N0 : A−1r0 ∈ Km}
= min{deg q : q monic and q(A)r0 = 0}.

(4.14)

In other words, Pm−1 and Km are isomorphic linear spaces if and only if m ≤ L.
The positive semidefinite sesquilinear form

(p, q) := (p(A)r0, q(A)r0) (p, q ∈P∞ := ∪m≥0Pm) (4.15)

is therefore positive definite when restricted to PL−1 and thus defines an inner product on
this space. We will use the same notation (·, ·) for this inner product as for its counterpart
on H , as well as for derived quantities such as its induced norm ‖ · ‖ := (·, ·)1/2 and the
orthogonality relation ⊥.

Since every vector x ∈ x0 + Km is of the form x = x0 + qm−1(A)r0 for some qm−1 ∈
Pm−1, the corresponding residual r = b − Ax can be written as

r = r0 − Aqm−1(A)r0 = pm(A)r0, where pm(ζ) := 1− ζqm−1(ζ) ∈Pm.
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Note that the residual polynomial pm satisfies the normalization condition pm(0) = 1.
Later in this section we will characterize the residual polynomials which belong to the
OR and MR iterates as well as their zeros.

First, however, we provide three lemmata for later use. The first recalls a well-known
(see, e.g., Paige, Parlett & van der Vorst (1995)) consequence of the Arnoldi decomposition
AVm = VmHm + ηm+1,mvm+1u

>
m of A (see (4.3)), the second states the conditions under

which a Krylov space can have A-invariant subspaces. The third lemma shows that the
orthogonal complement of a Krylov space with respect to an A-invariant subspace is itself
a Krylov space.

Lemma 4.3.1. For every polynomial q(ζ) = αmζ
m + · · ·+ α1ζ + α0 ∈Pm, there holds

q(A)r0 = β Vmq(Hm)u1 + αm β

m∏
j=1

ηj+1,j vm+1,

where u1 ∈ Cm denotes the first unit vector. In particular, q(A)r0 = β Vmq(Hm)u1 for
every q ∈Pm−1.

Proof. It is sufficient to prove the assertion for the monomials ζk (k = 0, 1, . . . ,m). We
have

r0 = β Vmu1,

Ar0 = βAVmu1 = β VmHmu1 + β ηm+1,mvm+1u
>
mu1 = β VmHmu1

and by induction, for k < m,

Akr0 = AAk−1r0 = βAVmH
k−1
m u1

= β VmH
k
mu1 + β ηm+1,mvm+1u

>
mH

k−1
m u1 = β VmH

k
mu1.

The last equality is a consequence of the upper Hessenberg structure of Hm which implies
that Hk−1

m u1 lies in the span of the first k unit vectors, i.e., u>mH
k−1
m u1 = 0 if k < m.

Finally, for k = m, there follows

Amr0 = βAVmH
m−1
m u1 = β VmH

m
mu1 + β ηm+1,mvm+1u

>
mH

m−1
m u1

= β VmH
m
mu1 + β η

(m−1)
m,1 ηm+1,mvm+1,

where η
(m−1)
m,1 denotes the (m, 1)-entry of Hm−1

m which is the product of the subdiagonal
entries of Hm.

Lemma 4.3.2. A Krylov space Km(A, r0) contains an A-invariant subspace if and only
if it is itself A-invariant.

Proof. If U ⊂ Km(A, r0) is A-invariant, it must contain an eigenvector z of A. As an
element of Km, z has a representation z = qm−1(A)r0 in terms of a nonzero polynomial
qm−1 of degree at most m− 1. Moreover, if λ denotes the eigenvalue of A associated with
z and p(ζ) := (ζ − λ)qm−1(ζ), then p(A)r0 = 0 and hence the degree of the minimal
polynomial cA,r0 of r0 with respect to A is at most m. Consequently L = deg cA,r0 ≤ m
and Km is A-invariant (cf. (4.14)).
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Lemma 4.3.3. Let U be an A-invariant subspace, T = U ⊥ its orthogonal complement
and set AT := PT APT . Then there holds for m = 1, 2, . . .

PT Km(A, r0) = Km(PT A,PT r0) = Km(AT , PT r0) and

PT AKm(A, r0) = PT AKm(PT A,PT r0) = AT Km(AT , PT r0).

Proof. We have PT APU = O, because U is A-invariant, and therefore

PT A = PT APU + PT APT = PT APT .

Now an obvious induction shows that for k = 1, 2, . . .

PT A
kr0 = [PT A]kr0 = [PT APT ]kr0

which proves the assertions.

Concerning the notation used in Lemma 4.3.3 we remark that so far AT has denoted
the orthogonal section PT A|T of A onto T . We henceforth identify PT APT with AT

since PT APT = PT A|T on T and PT APT = O on T ⊥.

4.3.1 OR Residual Polynomials

We first investigate the residual polynomials pOR
m associated with the OR approach: rOR

m =
pOR
m (A)r0. The condition rOR

m ⊥ Km translates to pOR
m ⊥Pm−1, i.e., pOR

m is an orthogonal
polynomial of degree m, normalized to satisfy pOR

m (0) = 1. This also follows from the
fact that rOR

m is a scalar multiple of vm+1, the last element of the orthonormal basis
{v1, . . . , vm, vm+1} of Km+1 (cf. Remark 2.3.3): The basis vector vm+1 ∈ Km+1 \Km has
the form vm+1 = vm(A)r0 for some polynomial vm of exact degree m, and pOR

m must be a
scalar multiple of vm. Next, vm+1 ⊥ Km, i.e., vm ⊥Pm−1, and ‖vm+1‖ = ‖vm‖ = 1 show
that vm is an orthogonal polynomial of degree m normalized with respect to the inner
product (4.15). The OR residual polynomial is pOR

m = vm/vm(0), a normalization which
is of course only possible if vm does not vanish at the origin.

The close relation of vm to the characteristic polynomial of the Hessenberg matrix
Hm will show that vm(0) = 0 is equivalent to Hm being singular: We know that vm+1 =
vm(A)r0 spans the one-dimensional space Km+1 ∩K ⊥

m . If, on the other hand, hm(ζ) :=
det(ζI −Hm) ∈ Pm denotes the characteristic polynomial of Hm, then by Lemma 4.3.1
and the Cayley-Hamilton theorem

(
hm(A)r0, vk

)
= β

(
Vmhm(Hm)u1, vk

)
+ β

m∏
j=1

ηj+1,j (vm+1, vk) = 0 (4.16)

(k = 1, 2, . . . ,m). In other words, v = hm(A)r0 belongs to Km+1 ∩K ⊥
m and is therefore

a scalar multiple of vm+1. We have thus shown that the polynomials vm and hm can differ
only by a scalar factor. We summarize these observations in

Proposition 4.3.4. The characteristic polynomial hm of the Hessenberg matrix Hm is the
(unique) monic orthogonal polynomial of degree m with respect to the inner product (4.15).
The mth OR iterate exists if and only if hm(0) 6= 0 and, in this case, the corresponding
residual polynomial is given by pOR

m = hm/hm(0).
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We next consider the zeros of pOR
m or, equivalently, the eigenvalues of the matrix

Hm = [(Avj, vk)]1≤j,k≤m, the orthogonal section AKm of A onto Km. Its eigenvalues θj,

Hmyj = θjyj with yj ∈ Cm, ‖yj‖2 = 1, (4.17)

are called the Ritz values of A (with respect to Km), while zj := Vmyj are the associated
Ritz vectors.

As the eigenvalues of the nonderogatory matrix Hm, Ritz values have geometric
multiplicity one. In case θj has algebraic multiplicity kj > 1, we denote by y

(0)
j =

yj,y
(1)
j , . . . ,y

(kj−1)
j the principal vectors of Hm which belong to the eigenvalue θj, so that

Hmy
(`)
j = θjy

(`)
j + y

(`−1)
j (` = 1, . . . , kj − 1)

and define z
(0)
j := Vmy

(0)
j and z

(`)
j := Vmy

(`)
j as the associated Ritz vectors.

Although all our conclusions remain valid in this more general case, we will assume
in the remaining sections that Hm has m distinct eigenvalues to avoid the (notational)
complication of introducing principal vectors.

The Ritz vectors constitute a basis of Km, and their residual vectors with regard to
the eigenvalue problem (4.17) are given by

Azj − θjzj = AVmyj − θjVmyj

= VmHmyj + ηm+1,mvm+1u
>
myj − θjVmyj

= ηm+1(u>myj)vm+1.

(4.18)

This implies Azj − θjzj ⊥ Km, which is the commonly used definition of Ritz values and
Ritz vectors. We also see that (A − θjI)zj ∈ span{vm+1} = span{hm(A)r0} for every
eigenvalue θj of Hm. As an element of Km, each Ritz vector zj can be represented as
zj = zj(A)r0 with a polynomial zj ∈Pm−1. Equation (4.18) now implies (ζ − θj)zj(ζ) =
τjhm(ζ) with τj ∈ C \ {0}, which we express as

zj(ζ) = τj
h(ζ)

ζ − θj
.

Proposition 4.3.5. Let

hm(ζ) =
J∏
j=1

(ζ − θj)kj (θi 6= θj for i 6= j)

denote the characteristic polynomial of Hm. The Ritz vectors z
(`)
j (` = 0, . . . , kj − 1) of A

with respect to Km(A, r0) have the form

z
(`)
j = z

(`)
j (A)r0, where z

(`)
j (ζ) = hm(ζ)

∑̀
i=0

τj,i
(ζ − θj)i+1

is a polynomial of exact degree m− 1. Moreover, there holds

(A− θjI)`+1z
(`)
j ∈ span{vm+1} = span{hm(A)r0} = span{rOR

m },

where the last equality assumes that the m-th OR iterate is defined.
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Remark 4.3.6. We note that there is also a best approximation property associated with
the monic orthogonal polynomials {hm}: If we write hm(ζ) = ζm − qm−1(ζ) with qm−1 ∈
Pm−1, then hm ⊥Pm−1 implies

Amr0 − qm−1(A)r0 ⊥ Km(A, r0) = A−1Km(A−1, Amr0),

i.e., qm−1(A)r0 is the best approximation to Amr0 from the space Km(A−1, Amr0), which
reveals a connection between m OR steps and m MR steps with A and r0 replaced by
A−1 and Am, respectively, which we shall make use of in the next section to determine
the zeros of the MR residual polynomials.

4.3.2 MR Residual Polynomials

We now turn to the investigation of the residual polynomials pMR
m associated with the MR

residuals rMR
m = pMR

m (A)r0. Obviously, these polynomials possess the following minimiza-
tion property:

‖pMR
m ‖ = min{‖p‖ : deg p ≤ m, p(0) = 1}.

The condition rMR
m ⊥ AKm translates into pMR

m ⊥ ζPm−1 from which we first deduce
the reproducing property (4.19) below of the MR residual polynomials: For any q(ζ) =
q(0) +

∑m
j=1 αjζ

j ∈Pm, there holds

(q, pMR
m ) = (q(0), pMR

m ) +

(
ζ

m∑
j=1

αjζ
j−1, pMR

m

)
= q(0) (1, pMR

m ),

and, because this identity is valid for q = pMR
m , i.e., ‖pMR

m ‖2 = pMR
m (0)(1, pMR

m ) = (1, pMR
m ),

(q, pMR
m ) = q(0) ‖pMR

m ‖2 for all q ∈Pm. (4.19)

(Had we normalized the polynomials pMR
m by ‖pMR

m ‖ = 1 instead, this reproducing property
would have the more familiar form (q, pMR

m ) = q(0) for all q.) The (Fourier) coefficients of
pMR
m with respect to the orthonormal basis {v0, v1, . . . , vm} of Pm are thus given by

(pMR
m , vj) = vj(0) ‖pMR

m ‖2

which, in view of ‖pMR
m ‖2 =

∑m
j=0 |vj(0)|2‖pMR

m ‖4, leads to the expansion

pMR
m (ζ) =

∑m
j=0 vj(0) vj(ζ)∑m
j=0 |vj(0)|2

. (4.20)

(note that the denominator
∑m

j=0 |vj(0)|2 ≥ |v0(0)|2 is always positive since v0 is a

nonzero constant). Moreover, if the OR residual polynomials pOR
j = vj/vj(0) exist for

j = 0, 1, . . . ,m, we have, since ‖pOR
j ‖ = 1/|vj(0)|,

vj(0)vj(ζ) = |vj(0)|2pOR
j (ζ) =

pOR
j (ζ)

‖pOR
j ‖2

.
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Combined with (4.20), this yields

pMR
m

‖pMR
m ‖2

=
m∑
j=1

pOR
j

‖pOR
j ‖2

,

which is the polynomial analogue of (2.33).
Furthermore, the representation (4.20) shows that, since the polynomials vj are of

exact degree j, pMR
m will have degree m if and only if vm(0) 6= 0, i.e., if the OR polynomial

of degree m exists. Otherwise pMR
m = pMR

m−1 = · · · = pMR
k and deg pMR

m = k, if k is the largest
index less than m for which vk(0) 6= 0. The MR residual polynomial pMR

m coinciding with
pMR
m−1 or the orthogonal polynomial vm vanishing at the origin are two further equivalent

characterizations of a Galerkin breakdown in step m of the Krylov subspace OR iteration.
To characterize the zeros of the MR residual polynomials in an analogous manner to

those of the OR residual polynomials, we begin by identifying them as the eigenvalues of
an orthogonal section of A−1 onto the Krylov space

Km(A−1, Amr0) = span{Amr0, A
m−1r0, . . . , Ar0} = AKm(A, r0).

We denote the associated Arnoldi decomposition by

A−1Wm = Wm+1G̃m = WmGm + γm+1,mwm+1u
>
m,

in which G̃m = [γj,k] ∈ C(m+1)×m is an upper Hessenberg matrix, Gm the associated square

Hessenberg matrix obtained by deleting the last row of G̃m and Wm+1 =
[
w1 . . . wm+1

]
is an orthonormal basis of Km+1(A−1, Amr0) = Km+1(A, r0). If we invoke Lemma 4.3.1
applied to this Arnoldi decomposition, we obtain

q(A−1)Amr0 = Wmq(Gm)βmu>1 + αmβm

m∏
j=1

γj+1,jwm+1

for any polynomial q(ζ) = αmζ
m + · · ·+ α1ζ + α0 ∈Pm, where βm = ‖Amr0‖. Denoting

by gm the characteristic polynomial of Gm, we conclude just as in (4.16) that

(gm(A−1)Amr0,wk) = 0, k = 1, . . . ,m

and that w := gm(A−1)Amr0 belongs to

Km+1(A−1, Amr0) ∩Km(A−1, Amr0)⊥ = Km+1(A, r0) ∩ (AKm(A, r0))⊥ .

By virtue of its inclusion in the latter space, we conclude that the vector w is a scalar
multiple of the MR residual vector rMR

m . Moreover, we observe that ĝm(ζ) := gm(ζ−1)ζm

is a polynomial in ζ of degree at most m, which is sometimes denoted as the reversed
polynomial of gm since it is obtained from gm by reversing the order of the coefficients.
Since w = ĝm(A)r0 and rMR

m = pMR
m (A)r0 are collinear, the same is true for the associated

polynomials. Furthermore, since the characteristic polynomial gm is monic, it follows that
ĝm has value one at zero, and therefore that ĝm coincides with pMR

m . The desired zeros
of pMR

m thus coincide with those of ĝm, which are easily seen to be the reciprocals of the
zeros of gm, which in turn are the eigenvalues of Gm. Since this matrix is not readily
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available, we instead derive a matrix which is similar to Gm and therefore has the same
characteristic polynomial.

Departing from AVm = V̂mRm (cf. (3.11)), where V̂m denotes the Paige and Saunders

basis of AKm(A, r0) and Rm is the triangular factor from the QR-factorization of H̃m, we
obtain

A−1V̂m = VmR
−1
m = Vm+1

[
R−1
m

0

]
= Vm+1Q

H
mQm

[
R−1
m

0

]
=
[
V̂m ṽm+1

]
Qm

[
R−1
m

0

]
=:
[
V̂m ṽm+1

]
F̃m

= V̂mFm + ṽm+1f
>
m , with F̃m partitioned as F̃m =

[
Fm
f >m

]
.

(4.21)

We note that both V̂m and Wm are orthonormal bases of the same space AKm, which
implies a relation of the form V̂m = WmT with a unitary matrix T ∈ Cm×m. Therefore,

Fm = [(A−1v̂j, v̂k)]1≤j,k≤m = THGmT

which identifies the matrix Fm as similar to Gm. The zeros θ̃j of pMR
m are therefore the

reciprocals of the eigenvalues of Fm, determined by

1

θ̃j
ŷj = Fmŷj =

[
Im 0

]
Qm

[
R−1
m

0

]
ŷj

=
[
Im 0

]
Qm

[
Im
0

]
R−1
m ŷj =: Q̂mR

−1
m ŷj,

or, equivalently, as solution of the generalized eigenvalue problem

Rmŷj = θ̃jQ̂mŷj.

The matrix Q̂m is obtained by deleting the last row and column of Qm, which, by (2.53)
and (2.54), yields

Q̂m =

[
Im−1 0

0 cm

]
Gm−1

[
Gm−2 0

0 1

]
· · ·
[
G1 O
O Im−2

]
.

Equation (4.21) shows that Fm represents the orthogonal section of A−1 onto AKm

with respect to V̂m. Its eigenvalues 1/θ̃j are therefore the Ritz values of A−1 with respect
to this space, and thus satisfy

0 = V̂ ∗m

(
A−1V̂mŷj −

1

θ̃j
V̂mŷj

)
= V̂ ∗m

(
A−1ẑj −

1

θ̃j
ẑj

)
with Ritz vectors ẑj := V̂mŷj, which, upon multiplication by θ̃j, substituting A−1V̂m =
VmR

−1
m and multiplication by RH

m, becomes

0 = RH
mV̂

∗
m

(
AVmR

−1
m ŷj − θ̃jVmR−1

m ŷj

)
= (AVm)∗

(
Az̃j − θ̃j z̃j

)
, (4.22)
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where z̃j := Vmỹj := VmR
−1
m ŷj = A−1ẑj. Vectors z̃j and numbers θ̃j which satisfy the

previous equation are called harmonic Ritz vectors and values with respect to A and Km

(cf. Paige et al. (1995)). A better known characterization of these quantities is

(AVm)∗Vmỹj =
1

θ̃j
(AVm)∗AVmỹj i.e., HH

m ỹj =
1

θ̃j
H̃H
m H̃mỹj.

That this formulation gives rise to the same set of eigenvalues can be seen from the
similarity transformation

(H̃H
m H̃m)−1HH

m =
[
R−1
m 0

]
Qm

[
Im
0

]
= R−1

m

[
Im 0

]
Qm

[
R−1
m

0

]
Rm = R−1

m FmRm.

The harmonic Ritz vectors lie in Km and, in view of (4.22), satisfy

(A− θ̃jI)z̃j ⊥ AKm.

In other words, (A − θ̃jI)z̃j ∈ Km+1 ∩ (AKm)⊥ = span{rMR
m } and therefore, if the

polynomials z̃j ∈Pm−1 are defined by z̃j = z̃j(A)r0, there holds

z̃j(ζ) = τj
pMR
m (ζ)

ζ − θ̃j
= τj

ĝm(ζ)

ζ − θ̃j
(4.23)

for some normalization factor τj 6= 0.

Remark 4.3.7. Polynomials which possess the reproducing property (4.19) are called ker-
nel polynomials. Their role in Krylov subspace methods was first explored by Stiefel
(1958) in the Hermitian case and later extended to the non-Hermitian case by Freund
(Freund 1992b, Freund 1992a). See also Manteuffel & Otto (1994).

4.3.3 The Implicitly Restarted Arnoldi Process

When manipulating Krylov subspaces, the following fundamental task often arises: given
a Krylov space Km(A, v1) which is not A-invariant, along with the associated Arnoldi
factorization

AVm = VmHm + ηm+1,mvm+1u
>
m (ηm+1,m 6= 0) (4.24)

and given an arbitrary vector v ∈ Km−1(A, v1), generate the Arnoldi factorization asso-
ciated with Kp(A, v) with p as large as possible without performing additional multipli-
cations with A. The technique which accomplishes this task is known as the implicitly
restarted Arnoldi (IRA) process and is due to Sorensen (1992).

As a member of Km−1, v has the representation v = qk−1(A)v1 with qk−1 of exact
degree k − 1, 1 ≤ k < m. In other words, v ∈ Kk \Kk−1. We will show that p = m− k
is maximal and the resulting Arnoldi factorization has the form

AV̌p = V̌pȞp + η̌p+1,pv̌p+1u
>
p (4.25)
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with v̌1 = v/‖v‖. That p = m − k holds should not come as a surprise because the
construction of the factorization (4.24) requires m multiplications by A, whereas v can
be computed by only k − 1 matrix-vector products. Exactly p + 1 = m − k + 1, i.e.,
the number of the ‘remaining’ multiplications by A are needed to establish (4.25) in the
conventional way.

We assume that the polynomial qk−1 is given in factored form

qk−1(ζ) =
k−1∏
j=1

(ζ − θj)

as this is how it will arise in our applications. It is obviously sufficient to show how
the decomposition (4.25) can be established in the case k = 2, i.e., if v = (A − θI)v1.
Polynomials of higher degree can then be handled by repeated application of the procedure
below.

Each step of the IRA method is based on one step of the shifted QR algorithm.
Following Sorensen (1992, p. 363), we begin by subtracting θVm on both sides of the
Arnoldi decomposition (4.24)

(A− θI)Vm = Vm(Hm − θI) + ηm+1,mvm+1u
>
m,

then form the QR factorization of Hm − θI,

(A− θI)Vm = VmQR + ηm+1,mvm+1u
>
m, (4.26)

multiply by Q from the right,

(A− θI)VmQ = (VmQ)(RQ) + ηm+1,mvm+1u
>
mQ,

and add θVmQ on both sides to obtain

A(VmQ) = (VmQ)(RQ + θI) + ηm+1,mvm+1u
>
mQ. (4.27)

We rewrite (4.27) to introduce some extra notation:

A
[
v̌1 . . . v̌m−1 v+

m

]
=
[
v̌1 . . . v̌m−1 v+

m

] [ Ȟm−1 ∗
η+u>m−1 ∗

]
+ ηm+1,mvm+1

[
0 . . . 0 qm,m−1 qm,m

]
where we have made use of the fact that

RQ + θI =

[
Ȟm−1 ∗
η+u>m−1 ∗

]
∈ Cm×m

is again an upper Hessenberg matrix due to the upper Hessenberg form of Q. We note in
passing that, in case θ happens to be an eigenvalue of Hm (and only then), the last row
of R is zero (and only the last row since Hm is nonderogatory) and therefore η+ = 0.

We now omit the last column in (4.27), giving

A
[
v̌1 . . . v̌m−1

]
=
[
v̌1 . . . v̌m−1

]
Ȟm−1

+ (η+v+
m + ηm+1,mqm,m−1vm+1)u>m−1,

which, setting η̌m,m−1 := ‖η+v+
m + ηm+1,mqm,m−1vm+1‖, becomes

AV̌m−1 = V̌m−1Ȟm−1 + η̌m,m−1v̌mu>m−1. (4.28)
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Theorem 4.3.8. With the notation introduced above, the decomposition (4.28) is an
Arnoldi factorization of A with respect to the Krylov space Km−1(A, (A− θI)v1).

Proof. Since Q is unitary, it follows that the elements of V̌m−1 =
[
v̌1 . . . v̌m−1

]
are

orthonormal as the first m− 1 elements of VmQ. Next, the vector

v̌m = (η+v+
m + ηm+1,mqm,m−1vm+1)/η̌m,m−1

has unit norm and is orthogonal to v̌1, . . . , v̌m−1 since v+
m, as the last element VmQ, is

orthogonal to the previous elements v̌1, . . . , v̌m−1 and since vm+1 is orthogonal to Vm and
hence also to VmQ. That the new first basis vector v̌1 is a multiple of (A−θI)v1 follows by
equating the first vector on both sides of (4.26). It remains to show that the Hessenberg
matrix Ȟm−1 is unreduced. If, say, η̌k+1,k = 0 for some k < m this would imply that
Kk(A, v̌1) is a proper A-invariant subspace of Km(A, v1), which, in view of Lemma 4.3.2,
contradicts the assumption ηm+1,m 6= 0.

As mentioned previously, the decomposition (4.25) involving a new starting vector
v̌1 = qk−1(A)v1 is effected by k − 1 steps of the procedure outlined above. For later use,
we note that the associated Krylov space is given by

Kp(A, v̌1) = {r(A)qk−1(A)v1 : r ∈Pp−1} ⊂ Kp+k−1(A, v1).

4.4 The Conjugate Gradient Method and its Descen-

dants

The ancestor of all Krylov subspace methods is the conjugate gradient method of Hestenes
& Stiefel (1952), which in our terminology is the OR method for solving (1.1) when A
is selfadjoint and positive definite. As we shall see below, these additional assumptions
permit the approximations to be generated at substantially less expense than in the
gerneral case.

Since it is fair to say that all subsequently developed Krylov subspace methods can be
seen as attempts to generalize CG to broader classes of operator equations, we provide
in this section a brief overview of the most important developments, highlighting in the
process some of the algorithms proposed along the way. Upon its introduction in the early
1950s, CG was viewed as a direct solution method, terminating in a finite number of steps
and, in contrast with factorization procedures, working only with the original matrix A.
As such, however, it was found lacking, since the finite termination property is usually
destroyed by roundoff error, and, despite some activity in the field of optimization, the
CG method was discarded as a solution approach for linear equations. The rekindling of
interest in CG as an equation-solver is usually attributed to Reid (1971), which points
out that CG offers many advantages over other solvers when applied to large, sparse
and reasonably well-conditioned systems of equations, providing a sufficiently accurate
approximation after a number of steps which is usually much smaller than the dimension
of the system. In 1975, a major innovation was achieved by Concus, Golub and O’Leary,
who showed how what is now called preconditioning can be incorporated into the CG
algorithm, making CG an effective solver also for less well-conditioned problems such as
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those resulting from the discretization of second or fourth-order elliptic boundary value
problems, whenever a suitable preconditioner can be found. The point of view taken in
these early papers, however, was that of CG being used to accelerate a given stationary
iteration, in which the splitting operator plays the role of the preconditioner. Around
the same time, Paige and Saunders proposed their algorithms SYMMLQ and MINRES1,
which constitute the first stable Krylov subspace methods for solving Hermitian indefinite
systems. The methods of Paige and Saunders employ the (Hermitian) Lanczos process to
generate an orthogonal basis of the Krylov space and generate the approximations using a
QR factorization of the associated tridiagonal matrix. This is exactly the approach used
many years later in the state-of-the-art Krylov solvers for general non-Hermitian problems,
namely GMRES (Saad & Schultz 1986) and QMR (Freund & Nachtigal 1991). Another
line of research in the early 1980s attempted to generalize the error-minimizing property
of CG, and this led to methods known as ORTHOMIN, ORTHODIR and ORTHORES.
The first of these, ORTHOMIN, was first proposed by Vinsome (1976) in a conference
on oil reservoir simulation. These methods were later proposed by (Young & Jea 1980)
as three canonical meta-algorithms for generalizing CG to non-Hermitian problems, and
subsequently analyzed by many researchers, among them Elman (1982), Eisenstat et al.
(1983), Young & Jea (1980), Faber & Manteuffel (1984), Faber & Manteuffel (1987),
Joubert & Young (1987), and Ashby & Gutknecht (1993).

We proceed by first restricting A to be Hermitian, resulting in a version of MR/OR
with short recurrences, in which each new basis vector of the Krylov space is generated
using only its two predecessors. We then add the further assumption of positive definite-
ness and derive the CG algorithm as well as its MR counterpart, which is known as the
conjugate residual (CR) method. We then derive the methods known as ORTHOMIN,
ORTHORES and ORTHODIR.

4.4.1 The Hermitian Case

Under the additional assumption A = A∗, the entries of the square Hessenberg matrix
Hm (cf. (2.39),(4.3)) satisfy

ηj,i = (Avi, vj) = (vi, Avj) = (Avj, vi) = ηi,j

i.e., Hm is Hermitian, which for a Hessenberg matrix means tridiagonal. Moreover, since
the subdiagonal elements of Hm are nonnegative, the Hermitian tridiagonal matrix Hm

contains only real entries, suggesting the simpler notation

H̃m =



γ1 δ2 0 . . . 0

δ2 γ2 δ3
. . .

...

0 δ3
. . . . . . 0

...
. . . . . . . . . δm

0 . . . 0 δm γm
0 . . . 0 δm+1


, m = 1, . . . L, (δL+1 = 0). (4.29)

1More precisely, MINRES computes the MR approximations with respect to the Euclidean inner
product and the associated OR approximations when they exist. SYMMLQ minimizes the error over
the slightly different shifted Krylov space x0 + Km(A,Ar0), a scheme which only works in the Hermitian
case.
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The resulting version of the Arnoldi-process for selfadjoint A is known as the (Hermitian)
Lanczos process (Lanczos 1950, Lanczos 1952) and is summarized in Algorithm 4.4.1.

Algorithm 4.4.1 The Hermitian Lanczos algorithm.

1 r0 given, δ1 = ‖r0‖, v1 = r0/δ1, v0 = 0
2 for m = 1, 2, . . .
3 γm = (Avm, vm)
4 v̂m+1 = Avm − γmvm − δmvm−1

5 δm+1 = ‖v̂m+1‖
6 vm+1 = v̂m+1/δm+1

7 end

The practical consequence of the tridiagonal form of H̃m is that the orthogonaliza-
tion of Avj against Vj, j = 1, . . . L, entails only inner products and linear combinations
involving the two previous basis vectors, hence earlier basis vectors need not be stored.
The Hermitian case thus allows the orthogonalization procedure for generating the basis
of Km(A, r0) to be carried out with a constant amount of work and storage per step.

There are several equivalent formulations of the Lanczos process (see Gutknecht (1997)
for a discussion of the more general non-Hermitian Lanczos process). In particular, in the
literature on Krylov subspace methods for Hermitian positive definite systems the variant
given in Algorithm 4.4.2, in which the basis vectors remain unnormalized, is often used.

Algorithm 4.4.2 The unnormalized Hermitian Lanczos process.

1 r0 given, v̌1 = r0, δ̌1 = 0, v̌0 = 0
2 for m = 1, 2, . . .
3 γ̌m = (Av̌m, v̌m)/(v̌m, v̌m)

4 δ̌m = (Av̌m, v̌m−1)/(v̌m−1, v̌m−1)

5 v̌m+1 = Av̌m − γ̌mv̌m − δ̌mv̌m−1

6 end

As is easily verified, the quantities of the two algorithms are related by

v̌m = πmvm, γ̌m = γm, δ̌m =
πm−1

πm
δm, m = 1, 2, . . .

where πm := δ1δ2 · · · δm.

GMRES for Hermitian Systems: MINRES

Since H̃m is a real matrix, its QR-factors (2.49) may also be chosen real, hence no phase

factors occur in the Givens parameters (2.57). The tridiagonal form of H̃m leads to a
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triangular factor Rm containing only three nonvanishing diagonals

H̃m = Qm

[
Rm

0

]
, Rm =



r1,1 r1,2 r1,3 0 . . . 0

0 r2,2 r2,3
. . . . . .

...

r3,3
. . . . . . 0
. . . . . . rm−2,m

...
. . . . . . rm−1,m

0 . . . 0 rm,m


. (4.30)

As a result, the entries of the triangular factor have the following simple expressions in
terms of the entries of H̃m and the trigonometric quantities cm and sm defined in (2.57).

Proposition 4.4.1. The nonzero entries of the triangular factor Rm in (4.30) for the
case of Hermitian A are given by

rj−2,j = sj−2δj, j ≥ 3,

rj−1,j =

{
c1δ2 + s1γ2, j = 2,

cj−1cj−2δj + sj−2γj, j ≥ 3,

rj,j = (r̃2
j,j + δ2

j+1)1/2, j ≥ 1, r̃j,j =


γ1, j = 1,

−s1δ2 + c1γ2, j = 2,

−sj−1cj−2δj + cj−1γj, j ≥ 3.

In order to take advantage of the short recurrences for the basis vectors it is necessary
to develop recurrence formulas also for the iterates and residuals which do not involve basis
vectors no longer needed in the basis generation. We shall derive such update formulas
for the GMRES algorithm, resulting in an algorithm known as MINRES (see also (Paige
& Saunders 1975, Fischer 1996)).

The coefficient vector yMR
m of the MR approximation x MR

m = x0 + VmyMR
m satisfies

RmyMR
m = βQ̃H

mu
(m+1)
1 = βzm,

(cf. (2.65)), hence x MR
m = x0 + βVmR

−1
m zm, which, upon setting Pm = [p1, . . . ,pm] :=

VmR
−1
m , yields the update formula

x MR
m = x MR

m−1 + βcmζmpm.

Because the update of the approximation is in the direction of pm, the vectors Pm are
called direction vectors. Comparing coefficients in Vm = PmRm, we see that the direction
vectors obey the recurrence formulas

p1 = r−1
1,1v1

p2 = r−1
2,2(v2 − r1,2p1)

pm = r−1
m,m(vm − rm−1,mpm−1 − rm−2,mpm−2), m ≥ 3.

In view of APm = AVmR
−1
m = V̂mRmR

−1
m = V̂m. the residual may be expressed as

rMR
m = rMR

m−1 − βcmζmv̂m.
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Usually, however, it is sufficient to compute the residual norm, which is updated as
‖rMR

m ‖ = sm‖rMR
m−1‖ (cf. (2.24). This concludes the update formulas for the MINRES

algorithm. The corresponding OR quantities may be computed using (3.4), (2.31) and
(2.26).

GCR for Hermitian Systems

As in the GMRES algorithm, GCR (cf. Algorithm 4.2.2) undergoes considerable simpli-
fication when A is Hermitian. First, in view of the identity

Arm−1 = µm,mwm +
m−1∑
j=1

µj,mwj,

where we have set µm,m := ‖ŵm‖ and µj,m := (Arm−1,wj), j = 1, . . . ,m− 1, we write all
these equations up to step m in vector form as

A
[
r0, . . . , rm−1

]
= [w1, . . . ,wm]

µ1,1 · · · µ1,m

. . .
...

µm,m

 . (4.31)

The MR condition states that rm ⊥ Wm = ACm, and if A = A∗ this is equivalent with
Arm ⊥ Cm. Moreover, in the Krylov space case Cm = Km(A, r0), we also have

Arm ⊥ Km(A, r0) ⊃ AKm−1(A, r0) = span{w1, . . . ,wm−1}.

But this implies that µj,m = 0 for j = 1, . . . ,m− 1, and (4.31) simplifies to

A
[
r0, . . . , rm−1

]
=
[
w1, . . . ,wm

]
Bm (4.32)

with the bidiagonal matrix

Bm =


µ1 ν2

µ2
. . .
. . . νm

µm

 , µj := µj,j, νj := µj−1,j, j = 1, . . . ,m.

This results in the decomposition ACm = Wm with an orthonormal basis Wm of the
approximation space Wm = AKm(A, r0) with pre-images Cm = [r0, . . . , rm−1]B−1

m . Alter-
natively, we may write this relation in unnormalized form as

A
[
r0, . . . , rm−1

]
=
[
w̃1, . . . , w̃m

]
B̃m, B̃m = D−1

m Bm, Dm = diag(µ1, . . . , µm).

As a consequence of the orthonormality of the wj and the decomposition (4.32), the
Hermitian matrix [r0, . . . , rm−1]∗A[r0, . . . , rm−1] is upper triangular, hence diagonal, im-
plying that the residuals are orthogonal with respect to the sesquilinear form associated
with A, which is also referred to as being A-conjugate. We define

ρj := (Arj, rj), j = 0, . . . ,m− 1.
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As a result, we obtain the following update formulas, in which we use the unnormalized
bases W̃m = WmDm and C̃m := CmDm in place of Wm and Cm:

w̃m = Arm−1 −
(Arm−1, w̃m−1)

µ2
m−1

w̃m−1

c̃m = rm−1 −
(Arm−1, w̃m−1)

µ2
m−1

c̃m−1

rm = rm−1 −
(r0, w̃m)

µ2
m

w̃m

xm = xm−1 −
(r0, w̃m)

µ2
m

c̃m

Three further observations now result in the Hermitian GCR algorithm: first, from

(rm−1,wm) = (r0 −
m−1∑
j=1

(r0,wj)wj,wm) = (r0,wm)

we conclude (r0, w̃m) = (rm−1, w̃m). Next, from the update formula for w̃m we obtain

(rm−1, w̃m) = (rm−1, Arm−1)− (Arm−1,wm−1)(rm−1,wm−1) = (Arm−1, rm−1) = ρm−1

since rm−1 ⊥ Wm−1. Finally, we note

(Arm−1, rm−1) = (Arm−1, rm−2)− (rm−2,wm−1)(Arm−1,wm−1)

in which the first term on the right vanishes due to the A-conjugacy of the residuals,
yielding

(Arm−1, w̃m−1) =
−µ2

m−1

(rm−2, w̃m−1)
(Arm−1, rm−1) = −µ2

m−1

(Arm−1, rm−1)

(Arm−2, rm−2)
= −µm−1

ρm−1

ρm−2

.

Incorporating these results into the update formulas, we obtain the Hermitian GCR
algorithm summarized in Algorithm 4.4.1.

Each step of the Hermitian GCR algorithm requires one matrix-vector multiplication,
two inner products and four vector updates. The storage requirements consist of the five
vectors w̃m, c̃m, Arm, rm and xm.

The associated OR approximations can be computed from the MR approximations as
usual. As mentioned in Section 4.2.1, this version of GCR will not break down prematurely
for any r0 only if 0 6∈ W (A), which for Hermitian matrices means that they be positive
or negative definite. Otherwise the only safe algorithm is MINRES. For positive definite
problems the conjugate gradient methods discussed in the following section offer more
efficient schemes for computing OR approximations.

4.4.2 The Hermitian Positive Definite Case

When A is positive definite in addition to being Hermitian, this implies that its field of
values does not contain the origin, and therefore the OR approximation exists in each
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Algorithm 4.4.3 The Hermitian GCR algorithm.

1 x0 given, r0 = b − Ax0

2 w̃0 = 0, c̃0 = 0, ρ0 = 0, ρ−1 = 1
3 for j = 1, 2 . . .
4 w̃m = Arm−1 + ρm−1

ρm−2
w̃m−1

5 µ2
m = (w̃m, w̃m)

6 c̃m = rm−1 + ρm−1

ρm−2
c̃m−1

7 rm = rm−1 − ρm−1

µ2
m

w̃m

8 ρm = (Arm, rm)
9 xm = xm−1 + ρm−1

µ2
m

c̃m
10 end

iteration and can be computed stably without first computing the associated MR approx-
imation.

Even more importantly, the fact that A is Hermitian and positive definite implies that
all powers As, s ∈ R, of A induce an inner product (As·, ·) with associated norm ‖ · ‖As .
This immediately permits new interpretations of the OR property: First, since

rm ⊥ Km(A, r0)⇔ rm ⊥A−1 AKm(A, r0),

we can say that the OR approximation minimizes the residual in the A−1-norm, i.e., it is
the MR method with respect to the A−1-inner product. By analogous reasoning, the OR
approximation minimizes a natural norm of the error em := A−1b − xm = A−1rm as seen
from

rm = Aem ⊥ Km(A, r0)⇔ em ⊥A Km(A, r0),

i.e., the OR approximation also minimizes the error in the A-norm over all correction
vectors in Km(A, r0). When the operator A is associated with a symmetric positive
definite sesquilinear form arising from the variational formulation of an elliptic boundary
value problem (as e.g. in the Galerkin finite element method) then the A-norm is known
as the energy norm. In particular, in case of the Galerkin finite element method the OR
approximation minimizes the energy norm of the error in the discrete solution over the
Krylov space in the same fashion as the Galerkin approximation minimizes the error with
respect to the continuous solution over the finite element space.

We shall require a third form of the Hermitian Lanczos process which underlies the
most commonly used implementation of the conjugate gradient method. Since the (real)

matrix Hm = [Im 0]H̃m in (4.29) is symmetric and positive definite, H̃m possesses the

factorization H̃m = L̃mDmL
>
m (see (Golub & van Loan 1996, pp. 135)) with the unit lower

triangular matrix

L̃m =


1
λ2 1

. . . . . .

λm 1
λm+1

 ∈ R(m+1)×m,
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a diagonal matrix Dm = diag(µ1, . . . , µm) and Lm = [Im 0] L̃m. Comparing coefficients
yields the relations

µ1 = γ1, µm+1 = γm+1 − µmλ2
m+1, m = 1, 2, . . . , (4.33)

λm+1 = δm+1/µm, m = 1, 2, . . . . (4.34)

Defining the new vector sequence Pm := [p1, . . . ,pm] by Pm = VmL
−>
m now permits us

to split the Lanczos decomposition AVm = Vm+1H̃m into a pair of coupled two-term
recurrences

APm = Vm+1L̃mDm, PmL
>
m = Vm, m = 1, 2, . . . . (4.35)

From

P ∗mAPm = L−1
m V ∗mAVmL

−>
m = L−1

m HmL
−>
m = L−1

m (LmDmL
>
m)L−>m = Dm,

we observe that the vectors pj are A-orthogonal and µj = (Apj,pj) > 0. Comparing
δm+1vm+1 = Avm− γmvm− δmvm−1 (cf. Algorithm 4.4.1) with the first of the recurrences
in (4.35), we find that

Apm = µmvm + δm+1vm+1,

where we have used (4.34), and thus conclude

δm+1vm+1 = Apm − µmvm, δm+1 = ‖Avm − µmvm‖, m = 1, 2 . . . .

This yields the coupled two-term Hermitian Lanczos algorithm summarized in Algo-
rithm 4.4.2.

Algorithm 4.4.4 The coupled two-term Hermitian Lanczos algorithm.

1 v̂1 given, δ1 = ‖v̂1‖, v1 = v̂1/δ1, v0 = 0
2 p0 = 0, µ0 = 1
3 for m = 1, 2, . . .
4 pm = vm − δm/µm−1pm−1

5 µm = (Apm,pm)
6 v̂m+1 = Apm − µmvm
7 δm+1 = ‖v̂m+1‖
8 vm+1 = v̂m+1/δm+1

9 end

The Conjugate Gradient Algorithm

The coefficient vector ym ∈ Cm of the OR approximation xm = x0 +Vmym solves the sys-
tem V ∗mAVm = V ∗mr0 (cf. (2.45)), which suggests using the A-orthogonal direction vectors
pm to construct the solution instead. Setting xm = x0 +Pmzm, zm ∈ Cm, and noting that
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span{p1, . . . ,pm} = span{v1, . . . , vm} = Km(A, r0), we find that the coordinate vector
zm must satisfy

0 = P ∗m(r0 − APmzm), i.e., Dmzm = P ∗mr0,

hence the components {ζj}mj=1 of zm are given by ζj = (r0,pj)/(Apj,pj). In view of
rm = r0−APmzm, the A-orthogonality of the direction vectors yields (r0,pj) = (rj−1,pj),
and we may compute each new component ζj without storing r0.

Thus, setting v̂1 = r0 in the coupled two-term formulation of the Hermitian Lanczos
process (Algorithm 4.4.2) augmented with the updates

ζm = (rm−1,pm)/(Apm,pm), xm = xm−1 + ζmpm, rm = rm−1 − ζmApm (4.36)

in each step yields an implementation of the OR method. There is, however, still redun-
dancy in generating both the Lanczos vectors and the residuals, since for the OR method
these vectors are collinear. By suitably rescaling the direction vectors we may, to this
end, replace the update for pm in line 4 of Algorithm 4.4.2 by

pm = rm−1 + βm−1pm−1, m = 2, 3, . . . . (4.37)

Orthogonality of rm−1 against Km−1(A, r0) = span{p1, . . . ,pm−1} then implies that
(rm−1,pm) = (rm−1, rm−1) in the numerator of µm. To obtain an expression for βm−1

we form the inner product of (4.37) with Apm−1, which yields

0 = (rm−1, Apm−1) + βm−1(Apm−1,pm−1) =
(rm−1, rm−2 − rm−1)

ζm−1

+ βm−1(Apm−1,pm−1)

and, by orthogonality of the residuals,

βm =
(rm, rm)

(rm−1, rm−1)
, m = 1, 2 . . . .

These further simplifications now result in the most popular version of the conjugate gra-
dient method as proposed by Hestenes & Stiefel (1952), which is given in Algorithm 4.4.5,
in which we have, following convention, renamed the quantities ζm as αm. This algo-

Algorithm 4.4.5 CG with coupled two-term recurrences.

1 x0 given,r0 = b − Ax0,p1 = r0

2 for m = 1, 2, . . .
3 αm = (rm−1, rm−1)/(Apm,pm)
4 xm = xm−1 + αmpm
5 rm = rm−1 − αmApm
6 βm = (rm, rm)/(rm−1, rm−1)
7 pm+1 = rm + βmpm
8 end

rithm, which performs one matrix-vector multiplication, two inner products and three
vector updates in each step, requires the storage of the four vectors xm, rm,pm, and Apm.
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An alternative approach for implementing the conjugate gradient method is to have
the Lanczos process generate only the A-conjugate direction vectors to begin with. When
A is Hermitian and positive definite, this can be achieved by carrying out the Lanczos
process with the A-inner product in place of the original inner product (·, ·). Using
the unnormalized Lanczos process (Algorithm 4.4.2), this leads to Algorithm 4.4.6, the
conjugate gradient method based on a three-term recurrence for the direction vectors.
This algorithm is somewhat more expensive than the two-term variant, performing one

Algorithm 4.4.6 CG with three-term recurrence for the direction vectors.

1 x0 given,r0 = b − Ax0,p1 = r0

2 for m = 1, 2, . . .
3 αm = (rm−1,pm)/(Apm,pm)
4 xm = xm−1 + αmpm
5 rm = rm−1 − αmApm
6 γm = (Apm, Apm)/(Apm,pm)
7 δm = (Apm,pm−1)/(Apm−1,pm−1)
8 pm+1 = Apm − γmpm − δmpm−1

9 end

matrix-vector product, four inner products and three vector updates per step and requiring
the storage of xm, rm,pm,pm−1, and Apm

Remark 4.4.2. As is easily verified, running the Lanczos process with the A-inner product
generates a decomposition APm = Pm+1H̃

(1)
m , with H̃

(1)
m = L>m+1L̃mDm. This corresponds

to applying one step of Rutishauser’s LR-algorithm to the square tridiagonal matrix HL

associated with the termination index L. This is the key observation to relating the OR
iterates with respect to the scale of inner products (As·, ·), s = 0, 1, 2, . . . as discovered
by Gutknecht (1993a).

Finally, there is yet a third variant of the conjugate gradient method which is based
on a three-term recurrence for the iterates and residuals which is given below as Algo-
rithm, 4.4.7. This form was derived in Stiefel (1955) by using the three-term recurrence

Algorithm 4.4.7 CG with three-term recurrence for iterates and residuals.

1 x0 given, x−1 = x0, r0 = b − Ax0, r−1 = r0, e−1 = 0
2 for m = 1, 2, . . .
3 qk = (Ark, rk)/(rk, rk)− ek−1

4 rk+1 = rk + 1/qk [−Ark + ek−1(rk − rk−1)]
5 xk+1 = xk + 1/qk [rk + ek−1(xk − xk−1)]
6 ek = qk(rk+1, rk+1)/(rk, rk)
7 end

which generates the sequence of orthogonal polynomials associated with the inner product

(p, q) = (p(A)r0, q(A)r0)
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on the space of polynomials. For an up-to-date account of the connections between
orthogonal polynomials and Krylov subspace methods for Hermitian matrices, see the
recent monograph by Fischer (1996). This form of the conjugate gradient method was
also used in Rutishauser (1959), Reid (1971), Concus, Golub & O’Leary (1976), and
Concus & Golub (1976). In particular, Rutishauser (1959) emphasized how this form
reveals that CG belongs to the class of gradient methods, in which each correction vector
is chosen from the span of all previous residuals. As we have mentioned before, this span
coincides with the usual Krylov space unless a Galerkin breakdown occurs, which can be
excluded in the Hermitian positive definite case. Algorithm 4.4.7 requires storing xk−1,
xk, rk−1, rk, and Ark and performs one matrix-vector multiplication, two inner products
and two extended vector updates. It is thus roughly as expensive as Algorithm 4.4.6.

The Conjugate Residual Algorithm

Although the conjugate gradient method was by far the more popular method, an imple-
mentation of the MR method was already implicitly contained in the original Hestenes
and Stiefel paper (Hestenes & Stiefel 1952). The first formulations as a method in its
own right seems to be in Stiefel (1955), and later Rutishauser (1959). It has since then
come to be known as the conjugate residual (CR) method, and it is the predecessor of the
GCR method. The algorithm can be obtained by replacing the A-inner product in the
CG algorithm by the A2-inner product. In this case the error A−1b − xm minimizes the
A2-norm over Km(A, r0), which is equivalent with minimizing the original norm (·, ·)1/2

of the residual, hence this is the MR method with respect to the original inner product.
Making these substitutions in Algorithm 4.4.5 yields the conjugate residual method,

depicted in Algorithm 4.4.8. The last line in Algorithm 4.4.8 indicates that the vectors

Algorithm 4.4.8 The conjugate residual method.

1 x0 given,r0 = b − Ax0,p1 = r0

2 for m = 1, 2, . . .
3 αm = (Arm−1, rm−1)/(Apm, Apm)
4 xm = xm−1 + αmpm
5 rm = rm−1 − αmApm
6 βm = (Arm, rm)/(Arm−1, rm−1)
7 pm+1 = rm + βmpm
8 Apm+1 = Arm + βmApm
9 end

Apm can be updated using the vectors Arm and therefore do not incur an additional
matrix-vector multiplication per step. In addition, CR requires two inner products and
four vector updates in each iteration and the storage of the vectors xm, rm,pm, Apm
and Arm. This is one more update and one additional vector to be stored than in the
standard CG algorithm, hence, unless an application calls for the minimization of the
original norm, the CG method is to be preferred. Comparison with Algorithm 4.4.1,
derived by specializing the GCR method for Hermitian A, shows that the CR algorithm
is identical.
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We recall, however, that CR (and therefore Hermitian GCR) as well as the three
variants of CG we have discussed may all fail if A Hermitian but not positive definite.
In this case the only stable approach is the MINRES algorithm, which computes the
MR approximations and allows the stable generation of the OR approximations whenever
these exist.

4.4.3 The non-Hermitian Case

The attractive features of the conjugate gradient method are its short vector recurrence
and its norm minimization property, and from the late 1970s onward much research was
devoted to extending CG to non-Hermitian problems, until it was shown by Faber &
Manteuffel (1984) that full recurrences were essentially unavoidable when minimizing
with respect to a fixed norm, hence either one or the other property must be sacrificed
when A is non-Hermitian.

The earliest reference in this context is Vinsome (1976), in which ORTHOMIN, a
Krylov subspace method for non-Hermitian problems is proposed which features a full
recurrence which is truncated after a small number of terms. Young & Jea (1980) propose
an idealized generalized conjugate gradient method for non-Hermitian problems, which
selects approximations xm from x0 + Km(A, r0) such that the associated error em =
A−1b − xm satisfies the Galerkin condition

〈em, v〉 = 0 for all v ∈ Km(A, r0).

Here 〈·, ·〉 is an arbitrary sesquilinear form, which could be an inner product, in which case
the error vectors minimize the associated norm over the shifted Krylov space. Besides
ORTHOMIN, Young & Jea (1980) present two further algorithms ORTHODIR and OR-
THORES which implement their idealized generalized conjugate gradient method under
the general assumption that A is positive real with respect to 〈·, ·〉, i.e., that

〈Av , v〉 > 0 for all v ∈H .

In addition, ORTHOMIN and ORTHORES require that also 〈v , v〉 > 0 for all v ∈H .
Our emphasis in this section is the relation of these three algorithms to the three vari-

ants of CG and the situations in which they may break down before finding the solution.
To simplify matters, we restrict ourselves to the case when 〈·, ·〉 is an inner product. In
the more general case of an arbitrary sesquilinear form the concept of orthogonality must
be generalized to one-sided or semi-orthogonality, and the orthogonalization steps become
slightly more complicated.

The ORTHOMIN algorithm is given in Algorithm 4.4.9. We observe that, as in Algo-
rithm 4.4.5, the direction vectors {pm} in ORTHOMIN are obtained by orthogonalizing
the current residual against the previous direction vectors. In order for this procedure to
generate a basis of Km(A, r0), it is necessary that the residuals span the entire Krylov
space at each step, otherwise the algorithm stalls because the Krylov space cannot be
extended. This occurs whenever αm = 0, which, from lines 3 and 7 of Algorithm 4.4.9,
occurs whenever

0 = 〈em−1,pm〉 = 〈em−1, rm−1〉 = 〈em−1, Aem−1〉.
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Algorithm 4.4.9 The ORTHOMIN algorithm for an inner product.

1 x0 given,r0 = b − Ax0,p1 = r0

2 for m = 1, 2, . . .
3 αm = 〈em−1,pm〉/〈pm,pm〉
4 xm = xm−1 + αmpm
5 rm = rm−1 − αmApm
6 βm,j = 〈rm,pj〉/〈pj,pj〉, j = 1, . . . ,m
7 pm+1 = rm −

∑m
j=1 βm,jpj

8 end

By Theorem 4.2.2 this can be excluded for all initial residuals if and and only if 0 6∈ W (A),
where W (A) is understood to be the field of values of A with respect to 〈·, ·〉.

The algorithm ORTHODIR, given in Algorithm 4.4.10, computes the direction vec-
tors by multiplying the last with A and orthogonalizing against all previous ones, which
amounts to an unnormalized Arnoldi process. This way, an orthogonal basis of the Krylov
space is always obtained, and no restriction is required of A. We also note that OR-

Algorithm 4.4.10 ORTHODIR.

1 x0 given,r0 = b − Ax0,p1 = r0

2 for m = 1, 2, . . .
3 αm = 〈em−1,pm〉/〈pm,pm〉
4 xm = xm−1 + αmpm
5 rm = rm−1 − αmApm
6 βm,j = 〈Apm,pj〉/〈pj,pj〉, j = 1, . . . ,m
7 pm+1 = Apm −

∑m
j=1 βm,jpj

8 end

THOMIN is the straightforward generalization of the second variant of CG given in Al-
gorithm 4.4.6.

In the same manner, ORTHORES, given below in Algorithm 4.4.11, is the general-
ization of the third CG variant (Algorithm 4.4.7). Instead of explicitly generating an
orthogonal basis of Km(A, r0), ORTHORES generates the new approximation from pre-
vious approximation and the last residual in such a way that 〈em+1, rj〉 = 0 for j ≤ m.
Just as ORTHOMIN, ORTHORES can stall if the residuals fail to span the maximal
Krylov space, hence it must be required that A be definite with respect to 〈·, ·〉.

The formulation of these three algorithms are those given in Ashby & Gutknecht
(1993), and they correspond to those introduced in Young & Jea (1980) for the case that
the sesquilinear form is an inner product. Of course, the inner product must be chosen in
order that expressions like 〈em−1,pm〉, which contain the unknown error vector, can be
computed. The most popular choice (see e.g. (Elman 1982, Eisenstat et al. 1983, Saad
& Schultz 1985) is 〈u , v〉 := (Au , Av), in which case the error is A∗A-orthogonal to
Km, or equivalently, the residual is orthogonal to AKm with respect to the given inner
product (·, ·), resulting in the MR method with respect to this inner product. In this case
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Algorithm 4.4.11 ORTHORES.

1 x0 given,r0 = b − Ax0

2 for m = 0, 1, . . .

3 γm,j =
[
〈rm, rj〉 −

∑j−1
i=0 γm,i〈ei, rj〉

]
/〈ej, rj〉, j = 0, . . . ,m

4 σm =
(∑m

j=0 γm,j

)−1

, j = 0, . . . ,m

5 ρm,j = σmγm,j
6 xm+1 = σmrm +

∑m
j=0 ρm,jxj

7 rm+1 = −σmArm +
∑m

j=0 ρm,jrj
8 end

ORTHOMIN algorithm coincides with the GCR algorithm (Algorithm 4.2.2) for Krylov
spaces, and ORTHODIR with the modification of GCR which uses the Arnoldi basis
of Km(A,Ar0) and is therefore immune to premature termination. Here vectors Apm
form the orthogonal basis of AKm(A, r0); the vectors, however, are not normalized in
ORTHODIR. A stabilized version of this algorithm is discussed in Rozložńık & Strakoš
(1996).

A matrix formulation of ORTHOMIN, ORTHODIR and ORTHORES for the case of
a general inner product is given in Ashby & Gutknecht (1993).

These algorithms have been more or less abandoned in favor of GMRES, FOM and
their restarted variants (see Chapter 5), as well as QMR and other methods with short re-
currences. The advantage of GMRES lies in the fact that only the basis generated by the
Arnoldi process needs to be generated and stored, and that the algorithm does not termi-
nate prematurely when two residuals coincide, as does GCR. Numerical results contained
in Rozložńık & Strakoš (1996) indicate that ORTHOMIN can be made as numerically sta-
ble as GMRES provided the basis vectors are normalized and a stable orthogonalization
procedure such as modified Gram-Schmidt is used in place of the classical Gram-Schmidt
procedure used in the original formulation.

4.5 Inner Products and Short Recurrences

We have seen in Chapter 2 that computing MR and OR approximations requires the
construction of an orthogonal basis of the approximation or residual space, and that the
orthogonalization procedure requires storing and forming inner products with the entire
basis. In Section 2.3.3 we saw that an alternative is to settle for a possibly nonorthogonal
basis of the residual space, which leads to the QMR and QOR methods, which are MR
and OR methods with respect to an inner product depending on the basis.

For Krylov subspace methods this reduces to the task of constructing a basis of the
Krylov space. As mentioned in Section 4.2.2, the QMR and QOR methods use the look-
ahead Lanczos process for this purpose.

If, however, the MR and OR approximations are desired with respect to a fixed inner
product, then there is generally no alternative to the (full) Arnoldi process. The fact
that such an orthogonal basis can be generated with a three-term recursion when A
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is Hermitian raises the question of what class of matrices permits a shorter than full
recursion length in the Arnoldi process, and this question was answered by Faber &
Manteuffel (1984). In the remainder of this section we shall present the main ideas of this
result and relate these to our framework for MR and OR methods.

In the Arnoldi decomposition AVm = Vm+1H̃m the orthonormal basis vectors vm satisfy
the recursion

ηm+1,mvm+1 = Avm − ηm,mvm − · · · − η1,mv1, m = 1, 2, . . . , L− 1

(cf. (2.39), (2.42) and (4.3)) with ηj,m = (Avm, vj), j = 1, . . . ,m. Generating vm+1 thus
requires evaluating a recursion containing m + 1 terms, and for this recursion to reduce
contain to at most, say, s terms, one would have to guarantee (Avm, vj) = 0 for j <
m− (s− 2). A sufficient condition for this to happen is given by the following Lemma.

Lemma 4.5.1. If A is such that

A∗v ∈ Ks−1(A, v) for all v ∈H , (4.38)

then the Arnoldi process for A simplifies to an s-term recursion.

Proof. Under the given assumption, we have at step m of the Arnoldi process

(Avm, vj) = (vm, A
∗vj) = (vm, q(A)vj), with q ∈Ps−2.

From vj ∈ Kj(A, r0) we conclude q(A)vj ∈ Kj+s−2(A, r0), and therefore (vm, A
∗vj) = 0

for j + s− 2 < m, i.e., for j < m− (s− 2).

Lemma 4.5.2 shows that (4.38) is a rather strong requirement on A.

Lemma 4.5.2. Condition (4.38) is satisfied if and only if A is normal and A∗ = q(A)
for some q ∈Ps−2.

Proof. Only necessity needs to be shown. To this end, note first that A∗v = q(A)v
for all v ∈ H implies that eigenvectors of A are also eigenvectors of A∗, which is a
characterization of normality (see Horn & Johnson (1985, Section 2.5)). If d = d(A)
denotes the degree of the minimal polynomial of A, then A, as a normal matrix, possesses
d distinct eigenvalues {λj}dj=1. As is easily verified, the interpolating polynomial q ∈Pd−1

such that q(λj) = λj, j = 1, . . . , d, satisfies A∗ = q(A), and it remains to show that
d−1 ≤ s−2. This can be seen by considering any vector v which generates a Krylov space
with respect to A of maximal dimension d, in which case A∗v = q(A)v is a representation
of A∗v in terms of the linearly independent vectors v , Av , . . . , Ad−1v . Since the degree
of q is exactly d − 1, the coefficient of Ad−1v herein is nonzero. By (4.38) we also have
A∗v = q̃(A)v with q̃ ∈ Ps−2 and, if s − 2 < d − 1, this would imply that A∗v could be
represented without Ad−1v , a contradiction.

Besides the sufficient condition given in Lemma 4.5.2, it is clear that the Arnoldi
process reduces to at most an s-term recursion if the degree of the minimal polynomial
of A is at most s. Faber & Manteuffel (1984) show by way of a continuity argument that
these conditions are also necessary for an s-term Arnoldi procedure, and we cite their
important result in
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Theorem 4.5.3. The Arnoldi process for a matrix A ∈ Cn×n reduces to an s-step recur-
sion for all initial vectors if and only if either

(a) the minimal polynomial of A has degree at most s, or

(b) A∗ is a polynomial in A of degree at most s− 2.

It is interesting, in light of this result, to characterize the matrices for which a three-
term recursion exists as in the Hermitian case. By Theorem 4.5.3 and Lemma 4.5.2, it
is necessary that A be normal and A∗ be a linear polynomial in A. A simple calculation
(we refer to (Faber & Manteuffel 1984) or (Greenbaum et al. 1997, page 101)) shows this
implies the following three alternatives for A: either A is a multiple of the identity, or A
is Hermitian, or A is of the form

A = eiθ (αI +B) , θ ∈ [0, 2π), α ∈ R, B = −B∗.

This class of matrices is usually characterized as all normal matrices whose spectrum lies
on a line in the complex plane.

Thus, the generalizations of CG with three-term recurrences had already been discov-
ered by the time the Faber-Manteuffel result appeared: besides the methods for Hermitian
A, methods based on the Lanczos process for matrices of the type I + B with B skew-
Hermitian were proposed by Concus & Golub (1976) and Widlund (1978).

4.6 Inner Products and Preconditioning

Preconditioning refers to the practice of solving a modified but equivalent linear system
to (1.1) for which the iterative solution method converges more quickly. In practice MR
and OR methods are nearly always applied in combination with preconditioning, as the
extra effort this requires is usually outweighed by savings due to faster convergence. A
discussion of preconditioning strategies is beyond the scope of the present work (we refer
to the monographs Saad (1996) and Greenbaum (1997) and the references given there),
but we do point out in this section how the Krylov space structure as well as the norm
being minimized are affected by preconditioning.

In left preconditioning, the system is multiplied by a nonsingular operator M−1—M
being the preconditioner—yielding the equivalent preconditioned system

M−1Ax = M−1b. (4.39)

In right preconditioning, the change of variables x̂ := Mx leads to the preconditioned
system

AM−1x̂ = b. (4.40)

Particularly in the Hermitian case, preconditioning is often applied from both sides
using a factorization M = M1M2, resulting the preconditioned system

M−1
1 AM−1

2 x̂ = M−1
1 b, x̂ = M2x . (4.41)
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Proposition 4.6.1. When a Krylov subspace method is applied to one of the precondi-
tioned systems (4.39), (4.40) or (4.41), then the associated sequence of correction spaces
is

Cm = M−1Km(AM−1, r0) = Km(M−1A,M−1r0), m = 1, 2, . . . .

Proof. We consider the two-sided case: the initial residual of the preconditioned system
is r̂0 = M−1

1 r0. The approximation x̂m = M2xm thus lies in

x̂0 + Km(M−1
1 AM−1

2 ,M−1
1 r0)

= x̂0 + span{M−1
1 r0,M

−1
1 AM−1r0, . . . ,M

−1
1 (AM−1)m−1r0}.

(4.42)

Switching back to the original variable x = M−1
2 x̂ yields the assertion.

We now turn to the optimality properties of preconditioned Krylov subspace iterations.
Methods based on the Hermitian Lanczos process require that the preconditioned system
again be Hermitian, which can be achieved e.g. for M1 = M∗

2 , is sometimes referred to as
symmetric preconditioning. A typical example of this approach is the use of an incomplete
Cholesky factorization M = LL∗ ≈ A as the preconditioner and setting M1 = L and
M2 = L∗. Such a Hermitian splitting, however, is not always available, in particular when
the action of the preconditioner is given by some approximate solution algorithm such as
a multigrid cycle (see e.g. Hackbush (1985)). Another possibility is to change the inner
product in such a way that the preconditioned system becomes selfadjoint with respect
to the new inner product. If the latter is given by

(x ,y)B := (Bx ,y),

with a Hermitian operator B, then A is selfadjoint with respect to the B-inner product
if, and only if, it satisfies BA = (BA)∗, where the adjoint is understood with respect
to the original inner product (·, ·). For left preconditioning with M = M∗ this leads to
BM−1A = AM−1B, which is satisfied e.g. by choosing B = M . The analogous choice for
right preconditioning is B = M−1.

Both symmetric preconditioning and changing the inner product will generally cause
Krylov subspace algorithms to minimize different quantities than their unpreconditioned
counterparts. A notable exception is the conjugate gradient method. Recall that the
unpreconditioned variant minimizes ‖em‖A = ‖rm‖A−1 with the usual notation em =
x−xm and rm = b−Axm. For symmetric preconditioning with preconditioner M = QQ∗,
the preconditioned matrix becomes Â = Q−1AQ−∗ and the preconditioned quantities are
êm = Q∗em and r̂m = Q−1rm. Therefore, the symmetrically preconditioned conjugate
gradient method minimizes

(Âêm, êm) = (Q−1AQ−∗Q∗em, Q
∗em) = (Aem, em)

and

(Â−1r̂m, r̂m) = (Q∗A−1QQ−1rm, Q
−1rm) = (A−1rm, rm),

i.e., the same quantities regardless of which preconditioner is used. The same result is
obtained for left preconditioning using the inner product defined by B = M , i.e.,

(M−1Aem, em)M = (Aem, em), ((M−1A)−1r̂m, r̂m)M = (A−1rm, rm),
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and similarly for right preconditioning and the choice B = M−1.
In contrast, the quantity minimized by MR methods does depend on the precondi-

tioner. For symmetric preconditioning, these algorithms minimize

‖r̂m‖ = (Q−1rm, Q
−1rm)1/2 = (Q−∗Q−1rmrm)1/2 = ‖rm‖M−1

and for left preconditioning in the M -inner product, the corresponding quantity is

‖r̂m‖M = (MM−1r ,M−1r)1/2 = ‖rm‖M−1 .

The right preconditioned case with B = M−1 leads directly to the minimization of
‖rm‖M−1 . Thus, Hermitian formulations of the minimal residual method all minimize
the preconditioner-dependent quantity ‖rm‖M−1 .

In the non-Hermitian case, changing the inner product generally brings no advantage
for the following reasons: first, if A is non-Hermitian, then an effective preconditioner
M—whose inverse should approximate A−1—will generally be non-Hermitian as well,
and thus fail to define an inner product. An exception occurs in the real case when the
symmetric part of M is positive definite, in which case the inner product defined by M
coincides with that defined by its symmetric part. Moreover, finding an inner product in
terms of which the preconditioned matrix is selfadjoint is generally not feasible, so that a
modified inner product will in general not lead to short recurrences as in the Hermitian
case, but can at most affect the quantities being minimized.

For MR methods these quantities depend only on the preconditioning used from the
left: if the preconditioned matrix is Â = M−1

1 AM−1
2 , then the MR method minimizes the

preconditioned residual

‖r̂m‖ = (M−1
1 rm,M

−1
1 rm)1/2 = ‖rm‖(M1M∗1 )−1 .

As a consequence, unless this norm has some special relevance to the specific problem
being solved, preconditioning from the right is to be recommended for these algorithms,
since the resulting residuals are then minimal with respect to the original norm ‖ · ‖.

Methods using non-orthogonal bases such as those based on the non-Hermitian Lanc-
zos process minimize a norm which depends on the basis of the Krylov space generated
in the course of the algorithm (cf. (2.68)). Specifically, if the non-Hermitian Lanczos al-
gorithm applied to the preconditioned system yields the basis VL = [v1, . . . , vL] such that
M−1

1 AM−1
2 VL = VLHL with termination index L, then the quantity minimized at step m

is

‖M−1
1 rm‖V = ‖r̂m‖V = ‖VLsm‖V = ‖sm‖,

where sm is the coefficient vector of the preconditioned residual r̂m at step m with respect
to the basis VL.



Chapter 5

Truncated and Restarted Krylov
Subspace Methods

We have seen in Chapter 4 that, for Krylov subspace MR and OR methods with respect
to a given inner product norm, full recurrences involving orthogonalization against all
previously generated basis vectors cannot be circumvented. For many applications, in
particular discretizations of partial differential equations in three space dimensions, this
exceeds the capacities of even the most powerful current computing facilities. Therefore,
from the outset (cf. Vinsome (1976), Young & Jea (1980)), it has been suggested to run
methods requiring full recurrences in either a truncated or restarted fashion, in both of
which only a fixed maximal number m of basis vectors is stored.

In the truncated version each new basis vector is orthogonalized only against the m
previously generated basis vectors. This results in a truncated Arnoldi decomposition
AVm = Vm+1H̃m, in which the Hessenberg matrix H̃m is banded with only m+ 1 nonvan-
ishing diagonals, namely those with indices −1, 0, . . . ,m (cf. Section 2.3.3). This permits
the construction of (m + 1)-term update formulas for the approximations and residuals
(see, e.g., Saad (1996)). The basis vectors of Vm+1, however, are now only locally orthog-
onal, i.e., orthogonality of each vj is enforced only against vj−m, vj−m+1, . . . , vj+m. As
long as the basis vectors remain linearly independent—and this is so until the termina-
tion index L is reached, at which the Krylov space first becomes invariant—the resulting
truncated MR and OR methods fall into the category of QMR and QOR methods dis-
cussed in Sections 2.3.3 and 4.2.2. In contrast with the (look-ahead) Lanczos process used
in Freund and Nachtigal’s QMR algorithm (Freund & Nachtigal 1991), this method of
basis-generation using a truncated Arnoldi process is unable to detect the invariance of
the Krylov space, and the resulting methods are strictly speaking no longer MR or OR
methods once the iteration index exceeds L. This is, however, an academic distinction,
since Krylov spaces rarely become exactly invariant at index L due to roundoff, and L is
usually much larger than the number of iteration steps one is willing to carry out.

Alternatively, restarting refers to beginning the entire iteration process anew every m
steps of the full iteration, resulting in restart cycles consisting of m steps each, in which
the final approximation of each cycle serves as the initial approximation of the next.
Restarting seems to be the more widely used of these two shortcuts, possibly because it is
somewhat easier to implement, and we accordingly devote the most attention to restarted
methods in this chapter.

89
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Of course, truncating and restarting can severely impair the convergence behavior of
MR and OR methods. As a simple example, consider applying a restarted MR method
to the cyclic forward shift in n dimensions: if the initial residual is any unit coordinate
vector, the residual norm of the MR approximations remains identically one until the last
step. Restarting after any number m < n of steps will yield the same residual vector one
started out with, hence no progress is achieved. Although such exact stagnation is rare
in practice, it is often observed that the method suffers from near stagnation after the
first few restart cycles. The material of this section is an expanded version of Eiermann,
Ernst & Schneider (1999).

5.1 Stagnation of Restarted MR Methods

For a given sequence of correction spaces {Ck}k=1,2,... ,L, the MR method succeeds in
decreasing the initial residual after the first m steps if and only if PACmr0 6= 0. Conversely,
the initial residual vectors r0 for which the MR method makes no progress during the first
m steps, i.e., for which ‖rMR

m ‖ = ‖rMR
m−1‖ = · · · = ‖r0‖, are characterized by r0 ⊥ ACm.

There are several obvious and well-known equivalent descriptions of this situation, which
is commonly known as stagnation or stalling.

Proposition 5.1.1. The following statements are equivalent:

(a) ‖r0‖ = ‖rMR
1 ‖ = · · · = ‖rMR

m ‖, i.e. the MR method stagnates for the first m
steps.

(b) r0 ⊥ ACm.

(c) sin](r0, ACm) = 1.

(d) sin](rk−1, ACk) = 1 for all k = 1, 2, . . . ,m.

(e) The Hessenberg matrices Hk, k = 1, 2, . . . ,m, of (4.3) are singular.

(f) The first row of Hm is the zero vector.

The equivalence of (a), (b), (c), (d) and (e) is an immediate consequence of the results
of Chapter 2, together with

sin](r0, ACm) =
‖(I − PACm)r0‖

‖r0‖
=

m∏
k=1

sin](rk−1, ACk).

That the characterization (f) (which first appears in Strikwerda & Stodder (1995)) is
equivalent to (b) follows from the fact that the entries η1,k in the first row of Hm are given
by η1,k = (Ack, r0)/β (cf. (3.10) and (4.4)). One also could have noticed that any unre-
duced Hessenberg matrix Hm, whose leading principal submatrices Hk (k = 1, 2, . . . , k)
are all singular, must have a vanishing first row, hence (e) and (f) are equivalent.

In the context of Krylov subspace methods the statements of Proposition 5.1.1, or
rather their negations, are often used to characterize the convergence of the restarted MR
method (Eisenstat et al. 1983, Joubert 1994a, Saad 1996, Saad 1997b, Greenbaum 1997).
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5.2 General Augmentation Strategies

The problem of stagnation or near-stagnation discussed in the preceding section results
from a Krylov space which extends in the ‘wrong directions’ with regard to approximating
r0, and this calls for some device for enhancing these insufficient approximation properties.
The question of how to augment a given Krylov space with this goal in mind is the same
as that of how to extend any given correction space so as to yield a strong residual
reduction. In practice, this task usually arises in the following form: Given a correction
space C ⊂ H , select vectors a1, . . . ,ak such that the augmented correction space C̃ :=

C + span{a1, . . . ,ak} has better correction properties, or, what is the same, that W̃ =
AC + span{Aa1, . . . , Aak} contains a better approximation to r0. In view of (2.5) and
(3.1), we have ‖rMR‖ = sin](r0, AC )‖r0‖, hence the correction properties of C are
quantified by the angle ϕ := ](r0, AC ) between r0 and AC . C is optimal, i.e., rMR = 0
if and only if ϕ = 0. The worst case, in which the optimal correction from C is the null
vector (i.e., rMR = r0), occurs precisely for ϕ = π/2, hence r0 ⊥ AC , which is one of
the characterizations given in Proposition 5.1.1 for stalling. Before turning to some of
the methods proposed in the literature, we first address some general questions related to
this issue.

It has often been suggested, primarily in the context of Krylov subspace methods, that
it is a desirable goal that the correction space C be either nearly A-invariant or contain
a nearly A-invariant subspace, usually spanned by a few approximate eigenvectors of A.
Clearly, if a given correction space C which contains the initial residual r0—as do e.g.
all Krylov spaces—is exactly A-invariant, then ϕ = 0 and the MR approximation with
respect to C yields the exact solution. If only a subspace of C is A-invariant or nearly
so in the sense that its image under A lies at a small angle to an A-invariant subspace
U , Proposition 5.2.1 shows that the MR residual with respect to C then has a small
component in the direction of U .

Proposition 5.2.1. Given a correction space C , let U ⊂ C denote a subspace such that
sin](U , AU ) ≤ ε. Then the MR residual rMR with respect to C satisfies ‖PU rMR‖ ≤
ε‖r0‖.

Proof. The assertion follows from PU rMR = PU (I − PAC )r0 and ‖PU (I − PAC )‖ ≤
‖PU (I − PAU )‖ = sin](U , AU ) ≤ ε.

In particular, if C contains an exactly invariant subspace U , then the MR approxi-
mation removes the components of the initial residual in the direction of U completely.
Of course, this may be only of limited use if ‖(I −PU )rMR

0 ‖/‖r0‖ is large, i.e., if U does
not contain a good approximation of r0. In short, the existence of A-invariant subspaces
of C per se need not be beneficial.

In Lemma 4.3.2 we already proved that if C = Km(A, r0) is a Krylov subspace, then
it cannot contain an A-invariant subspace U unless Km(A, r0) is itself A-invariant, i.e.,
Km(A, r0) = KL(A, r0). Obviously, augmenting Km(A, r0) by span{Amr0, . . . , A

L−1r0}
leads to the new correction space KL(A, r0) which is A-invariant. We now show that
there is no ‘faster’ way to augment Km(A, r0) to an A-invariant space.

Proposition 5.2.2. Let C̃ be an A-invariant space which contains Km(A, r0). Then C̃
also contains KL(A, r0).
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Proof. By U0 := ∩{U : U is an A-invariant subspace with Km ⊆ U } we denote the
smallest A-invariant subspace which contains Km. By definition, U0 ⊆ KL. On the other
hand, since U0 contains r0 and is invariant under A, it must also contain Amr0 for very
m = 0, 1, . . . , i.e., KL ⊆ U0.

Proposition 5.2.2 should not lead to the conclusion that it is useless to augment a
Krylov subspace C = Km by an A-invariant subspace U . After all by Proposition 5.2.1,
the MR residual with respect to C̃ = C + U contains no component in the direction of
U .

We show next that the MR approximation with respect to a Krylov space augmented
by an invariant space coincides with the MR approximation with respect to another Krylov
subspace associated with a ‘smaller’ linear system.

Lemma 5.2.3. Let r̃MR denote the MR residual with respect to C̃ = Km(A, r0) + U ,
where U is an A-invariant subspace. Set further AU ⊥ := PU ⊥APU ⊥ and let rMR denote
the residual of the MR approximation for AU ⊥x = PU ⊥r0 with respect to the correction
space Km(AU ⊥ , PU ⊥r0) and a zero initial approximation. Then there holds

r̃MR = rMR or, equivalently, PU r̃MR = 0 and PU ⊥ r̃MR = rMR.

Proof. As in Section 3.3 we split the computation of r̃MR into two subtasks and write,
using that U is A-invariant,

r̃MR = (I − PU )r0 − PZ (I − PU )r0 = (I − PZ )PU ⊥r0,

where Z = (I − PU )AKm(A, r0) = PU ⊥AKm(A, r0) ⊆ U ⊥. This implies PU PZ = O,
and hence PU r̃MR = 0 (which we could also have deduced directly from Proposition 5.2.1).
By Lemma 4.3.3, PU ⊥AKm(A, r0) = AU ⊥Km(AU ⊥ , PU ⊥r0), and therefore

r̃MR = (I − PP
U⊥AKm(A,r0))PU ⊥r0 = (I − PA

U⊥Km(A
U⊥ ,PU⊥r0))PU ⊥r0,

which identifies r̃MR as the residual of the MR approximation for AU ⊥x = PU ⊥r0 with
respect to the Krylov space Km(AU ⊥ , PU ⊥r0).

In this sense, adding the invariant space U to a Krylov correction space eliminates the
space U from the problem and reduces the original equation (1.1) to one on the smaller
space U ⊥.

A different strategy for enriching correction spaces common to many inner-outer it-
eration schemes is based on the following trivial observation: Suppose that, for a given
correction space C and associated residual space V = span{r0} + AC , we are able to
solve the equation Ac = r for some r ∈ V . Such an r has a representation r = r0 −Ac̃
with c̃ ∈ C , and therefore, by virtue of

Ac = r = r0 − Ac̃ i.e., r0 = A(c + c̃),

we see that the augmented correction space C̃ = C + span{c} contains the exact correc-
tion. In practice, since solving Ac = r is generally as difficult as the original problem, one
applies an inexpensive approximate solution method to this auxiliary problem, yielding a



5.3: Restarted GMRES 93

vector c satisfying Ac = r + h for some h 6= 0 and consequently, ‖r̃MR‖ ≤ ‖h‖ for the

MR residual with respect to C̃ .
The FGMRES algorithm of Saad (1993), which we introduced in Section 3.2 as the

specialization of the abstract MR algorithm of Section 2.3.2 to solving equations with
general correction spaces, was originally introduced as a technique that enlarges the cor-
rection space at each step by an approximate solution of such a residual equation. In
Saad (1993), this is achieved by selecting the new correction direction cm+1 as the result
of a preconditioning step applied to the most recent basis vector vm+1 of the residual
space Vm+1, which may be viewed as an approximate solution of the equation Ac = vm+1.
In this regard, any (right) preconditioned Krylov subspace method can be interpreted
this way; the original motivation for FGMRES was, however, to allow for a different pre-
conditioner in each step, as a result of which the correction space is no longer a Krylov
space.

A similar approach is taken in the GMRESR (which stands for GMRES Recursive)
method of van der Vorst & Vuik (1994). In each step of GMRESR, the new correction
vector cm+1 is chosen as the approximate solution of the equation Ac = rm obtained
by a fixed number of GMRES steps, where rm is the residual of the MR approximation
using the current correction space Cm. This method was improved upon by de Sturler
(1996), who observed that, by enforcing orthogonality of the approximation space of the
inner GMRES iteration, one can obtain as a result of the inner GMRES iteration the
best approximation of r0 from the sum of the inner and outer approximation spaces as
described in Section 3.3.

5.3 Restarted GMRES

The most widely used restarted MR algorithm is GMRES(m), the restarted version of
GMRES (Saad & Schultz 1986) using a Krylov space of dimension at most m, which
is summarized below as Algorithm 5.3.1. One cycle of GMRES(m) for solving (1.1)
with initial residual r0 consists of generating the Krylov space Km(A, r0), forming the
MR approximation with respect to the correction space C = Km(A, r0) according to
Algorithm 4.2.3, and then repeating this process using the resulting residual as the initial
residual for the next cycle, until a stopping criterion is satisfied.

Algorithm 5.3.1 Restarted GMRES with restart length m (GMRES(m)).

1 x0 given, r0 := b − Ax0

2 while not converged do
3 perform m steps of GMRES, yielding xm and rm
4 x0 := xm, r0 := rm
5 end

In the terminology of Section 3.3, two consecutive cycles of GMRES(m) consist of two
MR approximations with respect to the correction spaces

C1 = Km(A, r0) and C2 = Km(A, rm),
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where rm denotes the residual of the MR approximation computed in the first cycle. In
the second cycle, no orthogonalization of the current residual space V2 against the approx-
imation space AC1 of the first cycle is performed, and thus, in general, the approximation
produced in the second cycle is no longer the MR approximation with respect to C1 + C2.
Besides this unoptimal approximation, it may also happen that the sum of the two cor-
rection spaces is not direct. In the extreme case of stagnation there holds rm = r0 after
the first cycle, so that the second cycle constructs the identical Krylov space (as do all
subsequent cycles), and no progress is made. The following proposition states a criterion
for two consecutive correction spaces to have a direct sum.

Proposition 5.3.1. For two consecutive cycles of GMRES(m) with initial residual r0,
there holds

Km(A, r0)⊕Km(A, rm) = K2m(A, r0) (5.1)

if and only if no Galerkin breakdown occurs in the last step of the first cycle.

Proof. By definition,

Km(A, rm) = {q(A) pMR
m (A)r0 : q ∈Pm−1}

where pMR
m denotes the MR polynomial of the last step of the first cycle, and this shows that

(5.1) holds if and only if pMR
m has degree m. The representation (4.20) of pMR

m shows that
this is equivalent with vm(0) 6= 0, which, by the second of the equivalent characterizations
given in Proposition 3.1.1, is the case if and only no Galerkin breakdown occurs in the
last step of the first cycle.

Proposition 5.3.1 shows that, unless a Galerkin breakdown occurs at the end of a
restart cycle, restarted GMRES selects its corrections from the same Krylov space as the
unrestarted scheme. This is in contrast to truncated Krylov subspace methods, which
always generate the full Krylov space KL(A, r0) unless the iteration is stopped before
step L.

If stagnation or near-stagnation is encountered in a restart cycle, a new suitable initial
residual is necessary to generate more useful search directions. Techniques by which this
may be accomplished include the “LSQR switch” of van der Vorst & Vuik (1994) or a
method based on a total least squares solution of the projected problem proposed by
Simoncini (1999).

Beyond some qualitative statements to be given in Section 6, there are still few quan-
titative results which describe the convergence behavior of GMRES(m). One of the more
common misconceptions regarding GMRES(m) is that a method with larger restart length
m1 applied to the same problem will converge at least as fast as the method with smaller
restart length m2 < m1. A simple counterexample1 is provided by the 3× 3 system

Ax = b, A =

1 0 0
1 1 0
0 1 1

 , b =

−1
1
1


1The author would like thank E. de Sturler for pointing out this phenomenon, reporting a similar

observation in the context of a discrete convection-diffusion problem.
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with initial guess x0 = 0. Two cycles of GMRES(2) applied to this example result in

a residual norm of ‖r (2)
4 ‖ = 4/15 = 0.26 . . . , whereas four cycles of GMRES(1), which

involve the same number of matrix-vector multiplications, yields ‖r (1)
4 ‖ = 0.057 . . . . The

gap between GMRES(1) and GMRES(2) widens further in subsequent iteration steps,

e.g., ‖r (1)
18 ‖2 = 1.6 . . . 10−12, whereas ‖r (2)

18 ‖2 = 3.9 . . . 10−5. Even more surprising in this

example is that ‖r (1)
10 ‖2 < ‖r (2)

20 ‖2, showing that ten cycles of GMRES(1) have reduced
the residual further than ten cycles of GMRES(2). By expanding this example to the
analogous matrix for higher dimensions n one can observe that GMRES(m) is ultimately
slower for this system than GMRES(m− 1) for m = 2, . . . , n− 1.

5.4 Acceleration Techniques

Since restarting usually results in slower convergence (or the loss thereof) much recent
work has been devoted to compensating for the loss of information that occurs upon
restarting by retaining a judiciously chosen part of previously generated spaces.

We distinguish two fundamental strategies in existing work: The first lies in identi-
fying a subspace U which slows convergence, approximating this space, and eliminating
its influence from the iteration process. We shall refer to such a procedure as deflation.
Such “problematic” subspaces are often identified as eigenspaces of A associated with
eigenvalues of small magnitude, but other spaces may sometimes be better suited. Ex-
amples of this approach are the augmentation method introduced in Morgan (1995) and
Morgan (1997) and analyzed by Saad (Saad 1997a, Saad 1997b) and Chapman & Saad
(1997). Another device for eliminating U from the iteration is to introduce a precondi-
tioner which inverts the orthogonal section of A onto U , as proposed by Erhel, Burrage &
Pohl (1996), Baglama, Calvetti, Golub & Reichel (1998) and, with certain modifications,
by Kharchenko & Yeremin (1995).

Rather than eliminating a certain subspace, a second fundamental strategy consists
in maintaining orthogonality to subspaces generated in earlier cycles. The essential or-
thogonality constraints may be determined by comparing angles between subspaces, and
the cost of the algorithm is controlled by maintaining orthogonality only against the most
important subspace of a given dimension. Such a strategy, which is closer in character to a
truncated MR method, is proposed by de Sturler (1999) and is discussed in Section 5.4.4.

5.4.1 Deflation by Augmentation

The first algorithm which attempts to improve the restarted GMRES method by augment-
ing the Krylov space is given in Morgan (1995). This approach selects a fixed number of
approximate eigenvectors of A to augment the Krylov space of the following cycle, which
can be motivated e.g. by the result of Lemma 5.2.3. Since the emphasis of this work
is on cases in which the eigenvalues close to the origin limit the convergence rate the
most—as is the case e.g. for the so-called model problem of the discrete Laplacian on the
unit cube—harmonic Ritz vectors are chosen as the eigenvector approximations, since, as
shown by (Morgan 1991), harmonic Ritz values tend to approximate eigenvalues close to
zero more accurately than classical Ritz values.
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Each step except the first consists of forming the MR approximation with respect
to a correction space C = C1 + C2 with C1 = Km(A, r0) and C2 = span{z̃1, . . . , z̃k}.
The vectors z̃1, . . . , z̃k are the harmonic Ritz vectors associated with the k harmonic Ritz
values θ̃1, . . . , θ̃k of A with respect to the previous correction space which are closest to the
origin. Since no eigenvector information is available in the first cycle, the first correction
space is chosen as simply C = Km+k(A, r0).

If k harmonic Ritz vectors are used to augment the Krylov space, one can save k
matrix-vector multiplications in the implementation of this approach. The key observation
is that the augmented space is itself a Krylov space. Morgan (1997) gave a somewhat
lengthy and cumbersome proof of this result, so we include a more concise proof below.

Consider the MR approximation with initial residual r0 with respect to the (m + k)-
dimensional Krylov space Km+k(A, r0). As shown in Section 4.3.2, the associated residual
vector has the representation

rMR
m+k = pMR

m+k(A)r0

where

pMR
m+k(ζ) =

m+k∏
j=1

(
1− ζ

θ̃j

)
.

Denote by qm the polynomial whose zeros are the harmonic Ritz values θ̃k+1, . . . , θ̃k+m,
i.e., those largest in modulus.

Theorem 5.4.1. The correction space C of Morgan’s method is itself a Krylov space,
namely

C = Km(A, rm+k) + span{z̃1, . . . , z̃k} = Km+k(A, qm(A)r0). (5.2)

Proof. The rightmost member of (5.2) can be represented as

Km+k(A, qm(A)r0) = {r(A)qm(A)r0 : r ∈Pm+k−1}.

On the other hand, by (4.23), the harmonic Ritz vectors possess the polynomial repre-
sentation z̃j = z̃j(A)r0 with

z̃j(ζ) =
pMR
m+k(ζ)

ζ − θ̃j
= qm(ζ)

k∏
`=1
` 6=j

(
1− ζ

θ̃`

)
,

whereas rMR
m+k = pMR

m+k(A)r0, with

pMR
m+k(ζ) = qm(ζ)

k∏
`=1

(
1− ζ

θ̃`

)
.

The polynomial representation of vectors in both components of the correction space
C of Morgan’s method thus possess the common factor qm, and therefore C may be
characterized as

C = {qm(A)q(A)r0 : q ∈ Q}
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where the polynomial space Q is given by

Q :=
k∏
`=1

(
1− ζ

θ̃`

)
Pm−1 + span

{ k∏
`=1
` 6=j

(
1− ζ

θ̃`

)
: j = 1 . . . , k

}

=
k∏
`=1

(
1− ζ

θ̃`

)
Pm−1 + Pk−1 = Pm+k−1,

where the second equality follows from the fact that θ̃1, . . . , θ̃k are distinct.

Equation (5.2) shows that C can be generated by first applying the IRA method to

Km+k(A, r0), using θ̃k+1, . . . , θ̃m+k as shifts, to obtain Kk(A, qm(A)r0). The space C is
then obtained after m further steps of the Arnoldi process. This approach is computa-
tionally less expensive in that k fewer matrix-vector multiplications with A are required.

As also noted by Morgan (1997), an analogous method can be used to augment the
Krylov space in conjunction with an OR iteration. In this case, however, Ritz values and
vectors must be used in place of harmonic Ritz values/vectors, as the Ritz values are the
zeros of the OR residual polynomial.

The above proof also shows that

span{z̃1, . . . , z̃k, r
MR
m+k} = Kk+1(A, qm(A)r0).

Rather than use the IRA method, one could also generate the augmented Krylov space
by first orthonormalizing the harmonic Ritz vectors, then orthonormalizing rMR

m+k against
these, and then generate the remainder of the space by the Arnoldi process. Since these
vectors all lie in the previous space Km+k(A, r0), of which an orthonormal basis is available
from the previous cycle, these orthonormalizations may be carried out in the coordinate
space. This modification is proposed by Morgan (1999), who ascribes improved stability
properties to this variant compared with using the IRA method.

5.4.2 Deflation by Preconditioning

The next class of methods also attempt to utilize spectral information gained in prior
restart cycles to accelerate convergence. Instead of augmenting the Krylov space, the same
information is used here to construct a sequence of preconditioners which can be improved
as more accurate spectral information becomes available. The first such approach was
introduced by Erhel et al. (1996).

To motivate this approach, assume U is an orthonormal basis of an A-invariant sub-
space U of dimension k, i.e.,

AU = UAU , AU ∈ Ck×k.

Note that AU is the specific representation of the orthogonal section AU with respect to
the basis U . Denoting by U⊥ an orthonormal basis of the orthogonal complement U ⊥,
we can represent the action of A as

A
[
U U⊥

]
=
[
U U⊥

] [AU U∗AU⊥
O U∗⊥AU⊥

]
.



98 Chapter 5: Truncated and Restarted Krylov Subspace Methods

Under the assumption that k is small, it is feasible solve systems involving AU directly,
and thus to precondition by M defined as

M
[
U U⊥

]
=
[
U U⊥

] [AU O
O In−k

]
(5.3)

at each step of the iteration. The resulting right-preconditioned operator is given by

AM−1
[
U U⊥

]
=
[
U U⊥

] [Ik U∗AU⊥
O U∗⊥AU⊥

]
, i.e., AM−1 = PU + APU ⊥ . (5.4)

We now compare this preconditioning scheme with Morgan’s method of augmenting
the Krylov space Km(A, r0) by the A-invariant subspace U .

Theorem 5.4.2. Let rMm denote the MR residual with respect to the correction space
U + Km(A, r0), where U is an A-invariant subspace, and let rEm denote the MR residual
with respect to the correction space Km(AM−1, r0) resulting from preconditioning A from
the right by M as defined in (5.3). Then there holds

0 = ‖PU rMm ‖ ≤ ‖PU rEm‖ and ‖PU ⊥rMm ‖ ≤ ‖PU ⊥rEm‖, (5.5)

and therefore ‖rMm ‖ ≤ ‖rEm‖. If, in addition, also U ⊥ is A-invariant, then, PU r0 = 0
implies rEm = rMm .

Proof. The left set of inequalities in (5.5) follow from PU rMm = 0, which is a restatement
of the fact that augmenting with an invariant subspace U eliminates U from the residual
(Lemma 5.2.3).

We next recall that AU ⊥ = PU ⊥APU ⊥ is the orthogonal section of A onto U ⊥ (cf. the
remark following Lemma 4.3.3). Since rEm = r0 − AM−1c, for some c ∈ Km(AM−1, r0)
we obtain using (5.4)

PU ⊥rEm = PU ⊥r0 − PU ⊥AM
−1c = PU ⊥r0 − PU⊥APU ⊥c = PU ⊥r0 − AU ⊥PU ⊥c.

Moreover, AM−1U = U together with Lemma 4.3.3 yield

PU ⊥c ∈ PU ⊥Km(AM−1, r0) = Km(PU ⊥AM
−1, PU ⊥r0) = Km(AU ⊥ , PU ⊥r0).

The last two statements show that PU ⊥rEm is of the form PU ⊥r0 − AU ⊥ c̃ with c̃ ∈
Km(AU ⊥ , PU ⊥r0). On the other hand, by Proposition 5.2.3, there holds

‖rMm ‖ = min
c∈Km(A

U⊥ ,PU⊥r0)
‖PU ⊥r0 − AU ⊥c‖,

i.e., ‖rMm ‖ minimizes all expressions of this form, yielding the right inequality of (5.5).

Next, assuming AU ⊥ = U ⊥, (5.4) implies AM−1r0 = AU ⊥r0 for r0 ∈ U ⊥, and
thus Km(AM−1, r0) = Km(AU ⊥ , PU ⊥r0), which shows that in this case both methods
minimize over the same subspace, hence rEm = rMm .
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We note that the assumption PU r0 = 0 is not restrictive, as this can be enforced by
adding the correction UA−1

U U∗r0 to x0 and the preconditioner is built upon the premise
that AU is easily invertible. However, since PU r0 = 0 by no means implies that PU rEm = 0
for m > 0, it cannot be guaranteed that ‖rEm‖ = ‖rMm ‖ even for such a special choice of
initial residual unless AU ⊥ = U ⊥. In the finite-dimensional case, the condition that U ⊥

be invariant whenever U is invariant—i.e., that all invariant spaces also reduce A—is a
characterization for A to be normal. Hence, these two approaches are equivalent when A
is normal and U is invariant.

The availability of an (exactly) A-invariant subspace U , on the other hand, is an as-
sumption that can rarely be satisfied in practice. For a non-invariant U one can nonethe-
less still define the preconditioner as in (5.3), where now AU is defined as AU := U∗AU ,
resulting in

AM−1
[
U U⊥

]
=
[
U U⊥

] [ I U∗AU⊥
U∗⊥AUA

−1
U U∗⊥AU⊥

]
,

based on the heuristic that U∗⊥AUA
−1
U will be small whenever U is nearly A-invariant.

In Erhel et al. (1996) such nearly A-invariant spaces are obtained as the span of selected
Ritz or harmonic Ritz vectors determined from Krylov spaces generated during previous
cycles.

Baglama et al. (1998) propose a similar algorithm, which preconditions by (5.3) from
the left, leading to the preconditioned operator

M−1A
[
U U⊥

]
=
[
U U⊥

] [ I A−1
U U∗AU⊥

O U∗⊥AU ⊥

]
,

or M−1A = PU + APU⊥ + (A−1 − I)PUAPU⊥ ,

where we have again assumed that we are in the idealizd case of anwhere U is exactly
A-invariant. The MR correction of the left-preconditioned system is the solution of the
minimization problem

‖M−1rBm‖ = min{‖M−1(r0 − AM−1c)‖ : c ∈ Km(AM−1, r0)}

(cf. Section 4.6).
From (5.3), it is evident that,

M−1 = A−1PU + P⊥U

and, consequently, if AU = U ,

PU⊥M
−1v = PU ⊥v , for all v .

These are the essential ingredients for showing that Proposition 5.4.2 holds in exactly
the same way with rEm in place of rBm . The construction of an approximately invariant
subspace U is accomplished by Baglama et al. (1998) by employing the IRA process (cf.
Section 4.3.3).

Kharchenko & Yeremin (1995) suggest another adaptive right preconditioner M̃ : After
each GMRES cycle the Ritz values and the corresponding left2 and right Ritz vectors of

2Left Ritz vectors are defined by A∗z̃j − θ̄j z̃j ⊥ Km and can be obtained from the left eigenvectors of
Hm.
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A with respect Km are extracted. The aim is to obtain a preconditioner such that the
extremal eigenvalues of A, which are approximated by the Ritz values, are translated to
one (or at least to a small cluster around one) in the transition from A to AM̃−1.

The extremal Ritz values are partitioned into, say, k subsets Θj of nearby Ritz values.
For each Θj, a rank-one transformation of the form I + vj ṽ

∗
j is constructed, where vj

and ṽj are linear combinations of the associated right and left Ritz vectors. These linear
combinations are chosen to translate simultaneously all Ritz values of Θj into a small
cluster around one, while satisfying certain stability criteria. One preconditioning step
now consists of successive multiplication by these rank-one matrices, i.e.,

M̃−1 = (I + v1ṽ
∗
1 ) · · · (I + vkṽ

∗
k ) = I + VkṼ

∗
k , Vk =

[
v1, . . . , vk

]
, Ṽk =

[
ṽ1 . . . ṽk

]
.

For the last equation we have made use of the fact that ṽ ∗j vi = 0 for i 6= j, since
all eigenvalues of Hm have geometric multiplicity one. Note that, if Θj has a small
diameter and the Ritz values contained in Θj are good approximations of eigenvalues
of A, then vj and ṽj are approximate right and left eigenvectors of A. Moreover, the
implementation described in Kharchenko & Yeremin (1995) ensures that the diagonal

matrix D := Ṽ ∗k Vk ∈ Ck×k is nonsingular.
To compare this approach with the preconditioners presented thus far, we choose

biorthonormal bases U and Ũ of U := span{v1, . . . , vk} and Ũ := span{ṽ1, . . . , ṽk} such
that U∗U = I, which are given e.g. by

U = VkS̃
−1 and Ũ := ṼkD

−H S̃H ,

with S̃ any matrix that satisfies V ∗k Vk = S̃H S̃. In this notation the preconditioner M̃ is
given by

M̃−1 = I + US̃DS̃−1Ũ∗ = I + USŨ∗, S := S̃DS̃−1.

We let U⊥ denote an orthonormal basis of U ⊥ and make the idealizing assumptions that

both U and Ũ are invariant with respect to A and A∗, respectively, i.e.,

AU = UAU and Ũ∗A = AU Ũ
∗,

and that the eigenvalues corresponding to U (respectively Ũ ) are translated exactly to 1.
Substituting this in the definition of the preconditioner, we obtain using the biorthonor-
mality of U and Ũ ,

M̃−1
[
U U⊥

]
=
[
U U⊥

] [I + S SŨ∗U⊥
O In−k

]
and

AM̃−1
[
U U⊥

]
=
[
U U⊥

] [AU(I + S) AUSŨ
∗U⊥ + U∗AU⊥

O U∗⊥AU⊥

]
.

In addition, our assumptions imply AU(I + S) = I, i.e., S = A−1
U − I and AUSŨ

∗ =

(I − AU)Ũ∗ = Ũ∗(I − A), resulting in

AM̃−1
[
U U⊥

]
=
[
U U⊥

] [ I Ũ∗(I − A)U⊥ + U∗AU⊥
O U∗⊥AU⊥

]
.

This leads to AM̃−1 = PU +P Ũ ⊥

U (I−A)PU ⊥+APU ⊥ as the analogue to (5.4), where P Ũ ⊥

U

denotes the oblique projection onto U along Ũ . Thus, in view of PU⊥AM̃
−1 = AU ⊥ , the

statement made in Theorem 5.4.2 holds also for this preconditioning approach.
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5.4.3 Inner Iteration

As mentioned at the end of Section 5.2, one strategy for generating a new correction vec-
tor to extend a given correction space C is to use approximate solutions of the residual
equation Ac = r , where r is the minimum residual with respect to the current correc-
tion space C . This strategy is followed in the GMRESR algorithms of van der Vorst &
Vuik (1994), which consists of the GCR algorithm for general correction spaces (Algo-
rithm 3.2.2) in which the new correction vector is obtained by applying an approximate
solution method to the residual equation (see Algorithm 5.4.1 below). Here cMR

m,k denotes

Algorithm 5.4.1 GMRESR.

1 r0 := b − Ax0

2 for k = 1, 2, . . .
3 perform m steps of GMRES applied to Ac = rk−1

4 ĉ := cMR
m,k, ŵ := AcMR

m,k

5 for i := 1 to k − 1
6 ĉ := ĉ − (ŵ ,wi)ci
7 ŵ := ŵ − (ŵ ,wi)wi

8 end
9 wk := ŵ/‖ŵ‖, ck := ĉ/‖ŵ‖

10 yMR
k = W ∗

k r0

11 x MR
k := x0 + Cky

MR
k = x MR

k−1 + (rk−1,wk)ck
12 rMR

k := r0 −Wky
MR
k = rMR

k−1 − (rk−1,wk)wk

13 end

the approximate solution of the residual equation Ac = rk−1 obtained by the m-step inner
GMRES iteration in the k-th outer iteration with initial approximation zero. Note that
ŵ does not require an extra matrix-vector multiplication as this quantity is constructed
in the inner GMRES iteration.

In case of stagnation in the inner GMRES iteration the resulting correction vector ĉ is
zero, hence an alternative choice is necessary: van der Vorst & Vuik (1994) suggest using
ĉ := A∗rk−1, which may be interpreted as the correction direction obtained from one step
of a Krylov subspace method applied to the normal equations A∗Ac = A∗rk−1, resulting
in the sequence of Krylov spaces Km(A∗A,A∗rk−1). One such method is due to Paige &
Saunders (1982) and known as LSQR, and for this reason this modification was dubbed
the LSQR switch.

We note that the same scheme for selecting new correction vectors can be used with
FGMRES (Algorithm 3.2.3), although when FGMRES was first proposed (Saad 1993)
the residual equation to be approximately solved was Ac = ck−1, where ck−1 is the most
recent basis vector of the correction space. In Vuik (1993) FGMRES and GMRESR is
compared and an example is given for which FGMRES breaks down before obtaining the
exact solution due to a new correction vector which lies in the current correction space.
We note that an analogous breakdown is possible for GMRESR.

An improvement of the GMRESR idea was given by de Sturler (1996), who proposed
keeping the approximation space of the inner GMRES iteration orthogonal to that of the
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outer iteration. The resulting algorithm is called GCRO to reflect the additional inner
orthogonalization, and is presented below as Algorithm 5.4.2.

Algorithm 5.4.2 GCRO.

1 r0 := b − Ax0,W0 := O
2 for k = 1, 2, . . .
3 perform m steps of GMRES applied to (I −Wk−1W

∗
k−1)Ac = rk−1

4 ĉ := cMR
m,k, ŵ = (I −Wk−1W

∗
k−1)Aĉ

5 for i := 1 to k − 1
6 ĉ := ĉ − (ŵ ,wi)ci
7 ŵ := ŵ − (ŵ ,wi)wi

8 end
9 xk := xk−1 + cMR

m,k − CkW ∗
kAcMR

m,k

10 rk := rMR
m,k

11 end

As in GMRESR, the quantities ĉ and ŵ are available at the end of the inner iteration
as the correction and residual approximation. The inner GMRES iteration of the GCRO
algorithm is an implementation of the abstract scheme of MR approximation on the sum
C = C1 ⊕ C2 of two correction spaces presented in Section 3.3. In this case, after k
outer steps, C1 is the span of the outer correction vectors c1, . . . , ck, while C2 is the
inner Krylov space Km((I−WkW

∗
k )A), rk). Since the inner iteration computes the global

MR approximation with respect to C1 + C2, the residual of the outer iteration coincides
with that of the inner iteration. The quantity on the right in the expression for the
outer iterate xk looks more expensive than it is: the inner correction cMR

m,k has the form
cMR
m,k = Vmy ,y ∈ Cm in terms of the Arnoldi basis Vm of the inner GMRES iteration.

Thus the term in question has the form Ck(W
∗
kAVm)y , of which the matrix in parentheses

is computed as part of the inner orthogonalization process and is therefore available at
no additional cost. (See also the discussion at the end of Section 3.3.)

As in GMRESR, other iteration methods besides GMRES are possible as inner itera-
tions, and de Sturler also considers BICGSTAB. The interpretation of the inner approx-
imation as an MR approximation over the inner and outer approximation spaces must
then, however, be modified. Moreover, it is also possible to use FGMRES for the outer
iteration, as follows immediately from the discussion in Section 3.3.

The discussion in Section 3.3 was based on the assumption that the sum C1 + C2

is direct. It is, however, conceivable that the inner Arnoldi process generates an inner
correction vector vj which happens to lie in the outer correction space C1. In this case
(I −WkW

∗
k )Avj = 0 and the Arnoldi process breaks down, in general without finding

the exact solution. That this is a rare occurrence is shown by de Sturler (1996): one can
show that all correction vector (inner and outer) lie in the Krylov space KL(A, r0) with
termination index L. Therefore such a breakdown is (assuming exact arithmetic) not
possible until the total number of inner iterations km exceeds L. De Sturler also suggests
possibilities for continuing the inner and outer iterations after such a breakdown.
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5.4.4 Optimal Truncation

The acceleration techniques of Sections 5.4.1 and 5.4.2 are based on restarting an MR
iteration once the correction space has reached a given dimension m, and they attempt to
compensate for the attendant loss of information by augmenting or preconditioning. The
methods discussed in this section are related to the former in that they also attempt to
retain information contained in the current correction space—in this case orthogonality
constraints—which is deemed most useful for convergence.

In place of restarting, the basic scheme underlying this class of methods is a truncated
MR iteration, in which, as soon as the correction space has reached a maximal dimension
m, only a subset of the most recent m basis vectors of the correction space is retained,
or equivalently, one or more of these basis vectors is periodically discarded during the
iteration. Such a scheme for selectively discarding subspaces rather than individual basis
vectors is proposed by de Sturler (1999) as a truncation scheme for his GCRO algorithm.
This selection process, however, does not rely on spectral or invariant subspace informa-
tion, but rather on angles between subspaces.

To discard a subspace of dimension `, de Sturler’s subspace selection scheme compares
two approximation spaces W1 and W2 associated with correction spaces C1 and C2. It
assumes the availability of an orthonormal basis W

(1)
m = [w

(1)
1 , . . . ,w

(1)
m ] of W1, an arbitrary

basis Ŵ
(2)
k = [ŵ

(2)
1 , . . . , ŵ

(2)
k ] of W2 as well as a factorization

(Ik −W (1)
m [W (1)

m ]∗)Ŵ
(2)
k = ZkR

with Zk = [z1, . . . , zk], Z
∗
kZk = Ik and R ∈ Ck×k nonsingular and upper triangular. After

computing the singular value decomposition(
[W (1)

m ]∗Ŵ
(2)
k

)(
Z∗kŴ

(2)
k

)−1
= XΞŶ H (5.6)

the subspace of W1 to be retained is chosen as that spanned by the vectors W
(1)
m

[
x1 · · · x`

]
,

where the vectors xj are the left singular vectors associated with the ` largest singular
values. The following proposition relates this choice to the results of Section 3.4.

Theorem 5.4.3. With the above notation under the assumption W1 ∩ W2 = {0}, the
singular values appearing in (5.6) are the cotangents of the canonical angles between the
spaces W1 and W2.

Proof. Let W
(2)
k denote an orthonormal basis of W2 such that Ŵ

(2)
k = W

(2)
k S with a

nonsingular matrix S ∈ Ck×k. Then the cosines of the canonical angles between W1

and W2 are the singular values of [W
(1)
m ]∗W

(2)
k , and we write the associated singular value

decomposition as [W
(1)
m ]∗W

(2)
k = XΓY H with a diagonal matrix Γ ∈ Rm×k and the unitary

matrices X ∈ Cm×m and Y ∈ Ck×k. From

ZkR =
(
Ik −W (1)

m [W (1)
m ]∗

)
Ŵ

(2)
k =

(
Ik − (W (1)

m X)(W (1)
m X)∗

)
(W

(2)
k Y )Y HS

=
[
(W

(2)
k Y )− (W (1)

m X)Γ
]
Y HS

we obtain Zk =
[
(W

(2)
k Y ) − (W

(1)
m X)Γ

]
Y HSR−1 and therefore, defining the diagonal

matrix Σ ∈ Rk×k by Ik − ΓHΓ = Σ2, there results

Ik = Z∗kZk = (SR−1)HY Σ2Y H(SR−1) = (ΣY HSR−1)HΣY HSR−1
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which reveals that the k × k matrix ΣY HSR−1 is also unitary. Note that, in view of
W1 ∩W2 = {0}, none of the cosines in Γ are one, hence Σ is nonsingular. Now, inserting

[W (1)
m ]∗Ŵ

(2)
k = [W (1)

m ]∗W
(2)
k S = XΓY HS

Z∗kŴ
(2)
k = (SR−1)HY

[
(W

(2)
k Y )∗ − ΓH(W (1)

m X)∗
]
W

(2)
k S = (SR−1)HY Σ2Y HS

can express the singular value decomposition (5.6) as(
[W (1)

m ]∗Ŵ
(2)
k

)(
Z∗kŴ

(2)
k

)−1
= X(ΓΣ−1)(ΣY HSR−1),

which reveals that its singular values are indeed the cotangents of the angles between W1

and W2.

The proof also shows that the left singular vectors of (5.6) coincide with those of

[W
(1)
m ]∗W

(2)
k , hence the selection scheme discards that subspace of W1 which lies at the

largest canonical angles with W2. As shown in Section 3.4, this choice yields the greatest

possible residual reduction when replacing the approximation space W1 + W2 by W̃1 + W2

with W̃1 a subspace of W1 of dimension dim W1 − k.
De Sturler applies this scheme to a GMRES cycle of length m in order to determine

which directions of the s-dimensional Krylov subspace Ks(A, r0), s < m, are most impor-
tant for convergence in the sense that, were one to maintain orthogonality against these
directions upon restarting after the first s steps, this would most accelerate the resid-
ual reduction. The subspaces to be compared are thus AKs(A, r0) and AKm−s(A, rs).
The subspace comparison in this case is particularly inexpensive, as both spaces lie in
Km(A, r0), for which the Arnoldi process has computed an orthonormal basis. Hence, the
angle computations can be performed in the coordinate space with respect to this basis,
and therefore involve only small matrices.

This idea is applied to the inner GMRES iteration of GCRO in order to identify a
subspace of the inner approximation space as important for convergence, and to select an
orthonormal basis of that subspace—rather than just the residual update as in GCRO—to
be added to the outer approximation space. Similarly, de Sturler uses this device in order
to truncate the outer approximation space by comparing the angles between inner the
and outer approximation spaces. For details of this truncated GCRO algorithm, known
as GCROT, we refer to (de Sturler 1999).



Chapter 6

Convergence

In this chapter we turn to the question of convergence of Krylov subspace MR and OR
methods for solving linear equations. In the finite-dimensional case convergence in a finite
number of steps is assured due to the finite termination property of MR and OR methods.
The interesting question here is how fast the errors or residuals decrease below a tolerance
sufficiently small for a specific application.

We begin with an overview of the standard techniques for deriving residual and error
bounds, which are based on eigenvalues, pseudoeigenvalues, or the field of values of A. We
then proceed to show how the angles formulation of Chapter 2 allows a simple derivation of
the most important bounds which have been derived in the literature, and give an example
where a bound on the angles allows us to obtain superlinear convergence. We conclude
with a discussion of matrices which generate the same MR and OR approximations and
the role of singular values.

6.1 Convergence Bounds Based on Polynomials

In Section 4.3 we saw that the residual of any approximate solution of (1.1) taken from
the shifted Krylov space x0 + Km(A, r0) has the representation

r = p(A)r0, p ∈Pm, p(0) = 1.

This link between residuals and polynomials has inspired the search for bounds on the
residual norm which are derived from analytic properties of the associated polynomials
as functions defined on the complex plane. The influence of the initial residual is usu-
ally suppressed in view of ‖p(A)r0‖ ≤ ‖p(A)‖ ‖r0‖, in which case the issue simplifies to
bounding ‖p(A)‖ for all p ∈Pm normalized by p(0) = 1. Since the error e := A−1b − x
possesses the identical representation e = p(A)e0 in terms of the initial error e0, bounding
‖p(A)‖ immediately also leads to bounds on the error reduction, although a polynomial
which makes ‖p(A)r0‖ small obviously need not do the same for ‖p(A)e0‖.

In this section we describe the residual bounds which can be derived from this poly-
nomial representation, restricting our considerations once more to MR approximations.
Although some of the results which follow can be extended to the general case where A
is a linear operator on a possibly infinite-dimensional Hilbert space H , we will assume
throughout this section that H is of finite dimension n, i.e., that A is a nonsingular
matrix in Cn×n. This, of course, implies the existence of a finite termination index L ≤ n.
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Nearly all polynomial bounds involve reducing the minimization of ‖p(A)‖ to a scalar
problem. The most popular is to employ the Jordan canonical form of A: if the charac-
teristic polynomial of A is given by cA(ζ) =

∏k
j=1(ζ − λj)nj and T is any similarity which

transforms A to its Jordan canonical form JA = T−1AT , then

‖p(A)‖ ≤ κ(T ) max
1≤j≤k

nj max
0≤`≤nj−1

|p(`)(λj)|
`!

, (6.1)

where κ(T ) := ‖T‖ ‖T−1‖ is the condition number of T , p(`) denotes the `th derivative
of p and the estimate ‖M‖ ≤ nmaxi,j |mi,j| has been used. We always assume that the
columns of T are chosen to have unit norm. Assuming A is diagonalizable, which we shall
do in the sequel without (essential) loss of generality, (6.1) simplifies to

‖p(A)‖ ≤ κ(T ) ‖p‖Λ(A), (6.2)

where Λ(A) is the spectrum of A and we shall denote by ‖f‖Ω the maximum of a continuous
function f on a compact set Ω ⊂ C.

Another approach makes use of the representation of p(A) as a contour integral (see
Kato (1980, Section I.5.6))

p(A) =
1

2πi

∫
Γ

p(ζ)(ζI − A)−1 dζ,

where Γ is a Jordan curve (or a collection of Jordan curves) which contains Λ(A) in its
interior. This approach has the advantage of readily generalizing to bounded operators
on an infinite dimensional space. Taking norms yields

‖p(A)‖ ≤ `(Γ)

2π
max
ζ∈Γ
‖(ζI − A)−1‖ ‖p‖Γ, (6.3)

where `(Γ) denotes the arc length of Γ.
A third approach for bounding ‖p(A)‖ based on the Schur decomposition of A may

be found in Golub & van Loan (1996, Chapter 11).
A vast simplification occurs when A is a normal, and hence unitarily similar to a

diagonal matrix: In this case κ(T ) = 1 and (6.2) further simplifies to

‖p(A)‖ = ‖p‖Λ(A). (6.4)

The quantity κ(T ) is actually a measure of how far A departs from normality—in particu-
lar, κ(T ) = 1 if and only if A is normal. In the normal case both the contour integral and
the Schur form bounds reduce to (6.4), whereas in the general case they contain measures
of the non-normality of A other than κ(T ).

6.1.1 Bounds Based on Eigenvalue Inclusion Sets

For the MR residual vectors (6.2) together with the minimization property of the MR
approximation result in

‖rMR
m ‖
‖r0‖

≤ κ(T ) ‖pMR
m ‖Λ(A) ≤ κ(T ) min

p∈Pm

p(0)=1

‖p‖Λ(A), m = 1, 2, . . . , L. (6.5)
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If A is normal, i.e., if κ(T ) = 1, the right hand side of (6.5) is a standard problem of
approximation theory: Among all polynomials p of degree at most m with p(0) = 1
determine p∗m which deviates least from zero on a compact subset Ω of the complex plane
(which in our case happens to be the discrete set Λ(A)), i.e.,

‖p∗m‖Ω = min
p∈Pm

p(0)=1

‖p‖Ω. (6.6)

This problem has a solution which is uniquely determined if 0 6∈ Ω and if the cardinality
of Ω exceeds the polynomial degree m. Asymptotically, the numbers ‖p∗m‖Ω behave as γm

as m→∞, and the number

γ := lim
m→∞

‖p∗m‖
1/m
Ω

is called the asymptotic convergence factor of Ω. It can be shown that γ < 1 if 0 6∈ Ω and
if Ω does not surround the origin. We observe that this asymptotic behavior implies that
bounds of this type lead to linear convergence rate bounds.

If A is normal it can be shown (Greenbaum & Trefethen 1994, Greenbaum & Gurvits
1994, Joubert 1994b) that the bound (6.5) is sharp in the sense that for any m, 1 ≤ m ≤ L,
there exists an initial residual r0, which may depend on m, such that equality is attained.
In this sense the convergence behavior of the MR method is completely determined by
the eigenvalue distribution of A when A is normal.

If A is nonnormal and κ(T ) is not too large, one can expect that this statement, in
essence, will still hold, although in this case (6.5) is no longer sharp, as counterexamples
by Faber, Joubert, Knill & Manteuffel (1996) and Toh (1997) demonstrate. Greenbaum
& Trefethen (1994) have shown that the (matrix) polynomial approximation problem of
minimizing ‖p(A)‖ subject to p(0) = 1 is also uniquely solvable in the general, nonnormal
case. An algorithm for computing these optimal polynomials is given by Toh & Trefethen
(1998).

An immediate consequence of (6.5) is that

‖rMR
m ‖
‖r0‖

≤ κ(T ) min
p∈Pm

p(0)=1

‖p‖Ω, m = 1, 2, . . . , L (6.7)

holds for any compact set Ω ⊂ C which contains the eigenvalues of A. This is the key
to most of the known bounds for MR methods with respect to Krylov spaces: Select
a compact set Ω, Λ(A) ⊆ Ω, and a suitable polynomial p ∈ Pm with p(0) = 1, then
κ(T )‖p‖Ω (or ‖p‖Ω in the normal case) is an upper bound for ‖rMR

m ‖/‖r0‖. Probably the
best known example is the standard estimate for the conjugate gradient method, which is
an OR method with respect to (·, ·) but an MR method with respect to the inner product
(·, ·)A−1 := (A−1·, ·) if A is Hermitian and positive definite. If ‖ · ‖A := (A·, ·)1/2 and
κ := λmax(A)/λmin(A) is the spectral condition number of A, then

‖x CG
m − A−1b‖A
‖x0 − A−1b‖A

=
‖rCG

m ‖A−1

‖r0‖A−1

≤ 2

(√
κ− 1√
κ+ 1

)m
.

This follows directly from (6.7) if the set Ω is chosen to be the smallest closed interval
[λmin(A), λmax(A)] which contains Λ(A) and p to be a suitably scaled and transformed
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Chebyshev polynomial of degree m. Analogous bounds are available for more complicated
spectral inclusion sets Ω ⊂ C, but this requires tools from conformal mapping and complex
approximation theory in order to bound ‖p∗m‖Ω of (6.6) (cf. Eiermann, Niethammer &
Varga (1985), Driscoll, Toh & Trefethen (1998)). As a more recent example we quote
from Liesen (1998) that, for Ω = Ω(φ) := {ζ = eiθ : φ/2 ≤ θ ≤ 2π − φ/2}, there holds

‖p∗m‖Ω ≤
4

γm − 1
, where γ :=

1

cos(φ/4)
. (6.8)

The determination of suitable spectral inclusion sets is a difficult task in itself. For
Krylov subspace methods, the same Krylov space used as the correction space for the
linear system may also be used as a Krylov projection method for finding approximate
eigenvalues, from which inclusion sets may then be constructed. This is the approach used
by so-called hybrid methods, in which spectral information is gathered in an initial phase
of a Krylov subspace iteration. Once this information is deemed sufficient—after, say, m
steps—a spectral inclusion set Ω is constructed and a residual polynomial p∗ which solves
(6.6) is used to generate further iterates which satisfy rm+j = (p(A))jrm. For examples
of hybrid methods see Nachtigal, Reichel & Trefethen (1992) and Starke & Varga (1993)
as well as the references therein.

All bounds for ‖rMR
m ‖ described above, i.e., (6.5) and (6.7), are based on spectral

information available for A. There are, however, matrices which show that, in general,
the spectrum has no influence on MR convergence behavior. Indeed, Greenbaum, Strakoš
& Ptak (1996) show that for any nonincreasing finite sequence of positive real numbers
ρ0 ≥ ρ1 ≥ · · · ≥ ρn−1 and any choice of (not necessarily distinct) nonzero complex
numbers λ1, λ2, . . . , λn, one can construct a matrix A ∈ Cn×n and an initial residual r0

with Λ(A) = {λ1, λ2, . . . , λn} and ‖rMR
m ‖ = ρm (m = 0, 1, . . . , n − 1). We illustrate this

result by one of their striking examples: Any matrix A in Frobenius form,

A =


0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...

. . .
...

...
0 0 · · · 1 −αn−1

 ∈ Cn×n,

has ζn +αn−1ζ
n−1 + · · ·+α1ζ +α0 as its characteristic polynomial, so its eigenvalues can

be arbitrarily prescribed. If we choose b and r0 such that r0 = u1 is the first unit vector,
then, for m = 1, 2, . . . , n − 1, the approximation space AKm(A, r0) is the span of the
unit vectors u2,u3, . . . ,um. The best approximation to r0 from this space is obviously
the null vector leading to ‖r0‖ = ‖rMR

1 ‖ = · · · = ‖rMR
n−1‖ = 1 independently of the chosen

spectrum. In general it is therefore impossible to predict the convergence behavior of
the MR method (and of any other Krylov subspace method) on the basis of the eigen-
value distribution of A alone. Although this fact has been emphasized in several recent
papers it is still a widespread but nonetheless incorrect belief that spectral properties
of the coefficient matrix (i.e., without any additional assumptions on its departure from
normality) determine the speed of convergence of Krylov subspace methods. If A is far
from normal, i.e., if κ(T ) is huge, the bound (6.5), although still valid, becomes useless
because it vastly overestimates ‖rMR

m ‖/‖r0‖, which we know to be always less than one.
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The common interpretation of (6.5) in the sense that two matrices with identical spectra
produce a similar MR behavior is incorrect, as the above example vividly illustrates. A
systematic investigation of the class of matrices with identical MR behavior (given the
same r0) is undertaken by Greenbaum & Strakoš (1994). An example of a problem arising
in applications where the spectrum is misleading for the prediction of MR behavior may
be found in Ernst (2000).

6.1.2 Bounds Based on Pseudospectra

Pseudospectra were popularized by Trefethen (Trefethen 1990, Trefethen 1992) in the
early 1990s as a replacement for the concept of eigenvalues in situations where eigenvalues
are sensitive to perturbations, i.e., when eigenvectors are far from orthogonal, which is the
case for highly nonnormal matrices or operators. Given a value of the parameter ε ≥ 0,
the set of pseudoeigenvalues Λε(A) of A is defined by

Λε(A) = {λ ∈ C : λ ∈ Λ(A+ E), ‖E‖ ≤ ε},

or equivalently,

Λε(A) = {λ ∈ C : ‖(λI − A)−1‖ ≥ ε−1}.

The first definition shows that pseudoeigenvalues are eigenvalues of slight perturbations
of A. The second definition characterizes pseudoeigenvalues as all complex numbers λ for
which the norm of the resolvent (λI−A)−1—which for normal A is the reciprocal distance
of λ to Λ(A)—has at least the magnitude 1/ε.

Bounds for the residual reduction of MR Krylov subspace methods are obtained by
selecting the contour in (6.3) to be the boundary Γε of Λε(A), along which the resolvent

norm has the constant value ε−1, so that ‖p(A)‖ ≤ `(Γε)
2πε
‖p‖Γε . For the MR residual at

step m this results in the bound

‖rMR
m ‖
‖r0‖

≤ `(Γε)

2πε
‖pMR

m ‖Γε ≤
`(Γε)

2πε
min
p∈Pm

p(0)=1

‖p‖Γε .

The information resulting from the pseudospectral bounds indicates that, for nonnor-
mal matrices, in order for a residual polynomial to result in a large residual reduction, it
should be small not only on Λ(A) but also on the pseudospectral sets Λε(A) for suitable
values of ε. A strategy for choosing ε to result in the most useful pseudospectral bound
is proposed by Embree (1999).

Some drawbacks of pseudospectral bounds are that pseudospectral information is gen-
erally harder to come by than even spectral information, although much effort has recently
been devoted to the efficient computation of pseudospectra (see Trefethen (1999) and the
references therein). Moreover, there are examples where the pseudospectral bounds result
in a large overestimate of the residual reduction (Greenbaum & Strakoš 1994), such as
when nonnormality is restricted to a low dimensional reducing subspace.
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6.1.3 Bounds Based on the Field of Values

The field of values W (A) of a matrix—also known as the numerical range in operator
theory—defined in (4.9) has been used by Eiermann to derive bounds on the convergence
of iterative methods (Eiermann 1993, Eiermann 1996). W (A) is a convex set in the
complex plane which contains Λ(A), and for normal matrices it is the convex hull of
Λ(A). For nonnormal A, however, it may be much larger. A measure of the size of W (A)
is the numerical radius µ(A) := max{|ζ| : ζ ∈ W (A)}. The numerical radius is related to
the norm associated with the underlying inner product by 1

2
‖A‖ ≤ µ(A) ≤ ‖A‖. Further

properties of the field of values may be found in the monograph of Horn & Johnson (1991,
Chapter 1).

Eigenvalue-based bounds such as (6.2) rely on the fact that the eigenvalues of p(A)
are related to those of A via the spectral mapping theorem. An analogous mapping
theorem for the field of values, however, fails to hold. Recently, Eiermann (1996) was
able to exploit a mapping theorem due to Kato (1965) which holds for convex sets. This
result applies to a special sequence of polynomials associated with a set Ω ⊂ C whose
complement with respect to the extended plane is simply connected, its Faber polynomials
(Faber 1903, Faber 1920).

Theorem 6.1.1. If {fm}∞m=0 denotes the sequence of Faber polynomials of the field of
values W (A) of a matrix A ∈ Cn×n, then the numerical radius µ(fm(A)) satisfies

µ(fm(A)) ≤ ‖fm‖W (A). (6.9)

The crucial point of this result is that it relates the field of values of fm(A) to the size
of the polynomial fm on the set W (A). To use Faber polynomials for estimating the con-
vergence rate of Krylov subspace methods, we turn to the normalized Faber polynomials
f̂m(z) := fm(z)/fm(0), which are admissible as residual polynomials. We must therefore
require fm(0) 6= 0, which is assured if we assume 0 6∈ W (A). The asymptotic behavior
of these polynomials as m → ∞ is well-understood: the normalized Faber polynomials
{f̂m} of a convex bounded set 0 6∈ Ω ⊂ C satisfy ‖f̂m‖Ω ≤ cmγ

m with 0 < γ < 1 and
cm < 2/(1 − γm), where γ is the asymptotic convergence factor of Ω. The Faber poly-
nomials thus approximately solve the polynomial approximation problem (6.6) in such a
way that the norms of the scaled polynomials have the same m-th root asymptotics as
the exact solution sequence {p∗m}, which makes them interesting in this context since they
provide a tight upper bound.

For the mth MR residual polynomial pMR
m we have

‖rMR
m ‖ = ‖pMR

m (A)r0‖ ≤ ‖f̂m(A)r0‖ ≤ ‖f̂m(A)‖‖r0‖.

Theorem 6.1.1 together with the asymptotic properties of the normalized Faber polyno-
mials thus yields the bound

‖rMR
m ‖2

‖r0‖2

≤ ‖f̂m(A)‖2 ≤ 2µ(f̂m(A)) ≤ 2‖f̂m‖W (A) ≤ 2cmγ
m. (6.10)

Finally, we note that a residual bound may also be obtained by choosing a closed
contour Γ in (6.3) containing W (A) in its interior in the sense that δ := dist(Γ,W (A)) > 0
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(Eiermann 1989). Indeed, for any ζ ∈ Γ and ω = (Av , v) ∈ W (A), ‖v‖ = 1, we have by
the Cauchy-Schwarz inequality

δ ≤ |ζ − ω| = |((ζI − A)v , v)| ≤ ‖(ζI − A)v‖,

and consequently ‖(ζI−A)−1‖ ≤ δ−1. Proceeding as in the derivation of the pseudospec-
tral bound, we now obtain

‖rMR
m ‖
‖r0‖

≤ `(Γ)

2πδ
‖pMR

m ‖Γ ≤
`(Γ)

2πδ
min
p∈Pm

p(0)=1

‖p‖Γ.

6.1.4 Summary

The bounds in the previous sections are all based on polynomial approximation problems
on sets in the complex plane, and the differences lie in which sets are used, namely Λ(A),
Λε(A) or W (A). In the normal case the eigenvalue bounds tell all there is to know about
the MR convergence behavior for given A, whereas for nonnormal A, the bounds derived
from pseudospectra and the field of values try to compensate for the nonnormality by
using larger sets where the residual polynomial needs to be small. In this way they often
lead to tighter bounds than those based on eigenvalues because they do not explicitly
contain the condition number of the eigenvector matrix T . An investigation into the
relative strengths and weaknesses of these three types of bounds can be found in Embree
(1999).

It is an open question whether these is indeed a set in the complex plane on which a
given matrix A “lives” in the sense that solving a polynomial approximation problem on
this set will lead to sufficiently tight convergence bounds, or whether it is necessary to
include geometric information on the mapping properties of A in the general case.

Finally, we note that each of these approaches leads to upper bounds for the linear
convergence rate, where it is known that Krylov subspace methods often converge faster
than linear. Nevanlinna (1993) has proposed a qualitative theory for Krylov subspace
methods in the abstract setting of operators on a Banach space, in which the linear phase
of convergence is preceded by a sublinear phase and followed by a phase of superlinear
convergence.

6.2 Convergence Bounds Based on Angles

As we saw in Chapter 2, the entire convergence history of an MR or OR iteration is
contained in the sequence of angles between the spaces Vm and Wm, which for Krylov
subspace methods correspond to Km and AKm. These angles are thus the invariants
associated with the application of a Krylov subspace MR or OR method to the solution
of the equation (1.1). As such, they also reflect the influence of the initial residual, which
is suppressed in the polynomial bounds of Section 6.1.

In this section we shall apply the results of the abstract theory of Chapter 2 to recover
some well-known residual and error bounds for Krylov subspace MR and OR approxima-
tions in Sections 6.2.1 and 6.2.2. In essence, this amounts to relating properties of A to
the rate of decay of the sines of the angles arising in the iteration. In Section 6.2.3 this is
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done for operator equations where the operator is a compact perturbation of the identity
to show that, under mild assumptions, Krylov subspace MR and OR methods converge
superlinearly. In Section 6.2.4 we derive the class of all Krylov subspace iterations which
possess the same invariants and then draw some conclusions regarding which quantities
can and cannot have an influence on the convergence rate.

6.2.1 Residual Bounds

By (2.5), the residual norm of the MR approximation of the solution of (1.1) with respect
to the initial guess x0 ∈H and the space V ⊂H is given by ‖r‖ = ‖r0‖ sin](r0, AV ),
i.e., the factor by which the residual is reduced is given by the sine of the smallest angle
formed by r0 and the image of a vector v ∈ V under A. When we add the assumption of
Section 2.2 that r0 ∈ V we can bound this factor as follows:

‖r‖2

‖r0‖2
= 1− cos2](r0, AV ) = 1− sup

v∈V

|(r0, Av)|2

‖r0‖2 ‖Av‖2

≤ 1− |(r0, Ar0)|2

‖r0‖2 ‖Ar0‖2
= 1−

∣∣∣∣(Ar0, r0)

(r0, r0)

∣∣∣∣ ∣∣∣∣ (r0, Ar0)

(Ar0, Ar0)

∣∣∣∣
≤ 1− inf

v∈V

∣∣∣∣(Av , v)

(v , v)

∣∣∣∣ inf
w∈AV

∣∣∣∣(A−1w ,w)

(w ,w)

∣∣∣∣
= 1− inf{|z| : z ∈ W (A|V )} · inf{|z| : z ∈ W (A−1

|AV )}
≤ 1− inf{|z| : z ∈ W (A)} · inf{|z| : z ∈ W (A−1)}
=: 1− ν(A)ν(A−1).

where W (A) (cf. (4.9) and Section 6.1.3) denotes the field of values of A and we have
assumed that A is invertible. We have shown

Theorem 6.2.1. The residual r of the MR approximation to the solution of (1.1) on the
subspace V ⊂H with initial residual r0 ∈ V satisfies

‖r‖
‖r0‖

≤
√

1− ν(A)ν(A−1) (6.11)

with ν(A) defined above.

Of course, the bound (6.11) only yields a reduction provided 0 6∈ W (A), which also
implies 0 6∈ W (A−1) (cf. Horn & Johnson (1991, p. 66)).

If Vm is a sequence of Krylov spaces, we obtain

Corollary 6.2.2. The MR residual with index m satisfies

‖rMR
m ‖
‖r0‖

≤
m∏
j=1

√
1− νj(A)ν̃j(A−1) (6.12)

where the quantities νj(A) and ν̃j(A
−1) are defined as

νj(A) := inf{|z| : z ∈ W (A|Vj∩W ⊥j−1
)} and

ν̃j(A
−1) := inf{|z| : z ∈ W (A−1

|A(Vj∩W ⊥j−1)
)}.



6.2: Convergence Bounds Based on Angles 113

Proof. From (2.25), the fact that sj = sin](rMR
j−1 , AVj) and rMR

j−1 ∈ Vj∩W ⊥
j−1, we conclude

‖rMR
m ‖
‖r0‖

=
m∏
j=1

sj =
m∏
j=1

sin](rMR
j−1 , AVj) =

m∏
j=1

(
1− sup

v∈Vj

|(rMR
j−1 , Av)|2

‖rMR
j−1‖2 ‖Av‖2

)1/2

≤
m∏
j=1

(
1−

|(rMR
j−1 , ArMR

j−1)|2

‖rMR
j−1‖2 ‖ArMR

j−1‖2

)1/2

=
m∏
j=1

(
1−

∣∣∣∣∣(ArMR
j−1 , r

MR
j−1)

(rMR
j−1 , r

MR
j−1)

∣∣∣∣∣
∣∣∣∣∣ (rMR

j−1 , ArMR
j−1)

(ArMR
j−1 , ArMR

j−1)

∣∣∣∣∣
)1/2

≤
m∏
j=1

(
1− νj(A)ν̃j(A

−1)
)1/2

.

Noting that νj(A) ≥ ν(A) and ν̃j(A
−1) ≥ ν(A−1), we obtain the simpler bound given

in

Corollary 6.2.3. The MR residual with index m satisfies

‖rMR
m ‖
‖r0‖

≤
(
1− ν(A)ν(A−1)

)m/2
. (6.13)

If A is a positive real operator, i.e., if its Hermitian part H := (A+ A∗)/2 is positive
definite, then ν(A) = λmin(H) and

ν(A−1) = inf
v∈H

(A−1v , v)

(v , v)
= inf

w∈H

(w , Aw)

(w ,w)

(w ,w)

(Aw , Aw)
≥ λmin(H)

‖A‖2
,

in view of which Corollary 6.2.3 yields a bound first given by Elman (1982):

‖rm‖
‖r0‖

≤
(

1− λmin(H)2

λmax(ATA)

)m/2
.

Remark 6.2.4. If, in the derivation of the residual bound (6.11), one makes the slightly
cruder estimate

‖r‖2

‖r0‖2
≤ 1− |(r0, Ar0)|2

‖r0‖2 ‖Ar0‖2
≤ 1− inf

r0∈H

|(r0, Ar0)|2

‖r0‖2 ‖Ar0‖2
=: sin2(γ(A)),

where γ(A) is the largest angle between a nonzero vector v ∈H and its image Av . One
thus obtains a bound sinm γ(A) on the residual reduction after m steps. The angle γ(A)
was introduced by Wielandt (1996) in 1967. See also Gustafson & Rao (1996).
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6.2.2 Error Bounds

When solving an equation (1.1) approximately using successive iterates xm, the residual
rm = b − Axm may be the only computable indication of the progress of the solution
process. The quantity of primary interest, however, is usually he error em = x − xm =
A−1rm.

For Krylov subspace methods, we have xm ∈ x0 + Km, so that em = e0 − c for
some correction c ∈ Km. Of course, the best one could to is to select this correction
as the best approximation to e0 from Km = Km(A, r0) = AKm(A, e0). This would
correspond to computing the MR approximation of e0 with respect to the sequence of
approximation spaces Wm = AKm(A, e0), a process which would require knowledge of
the initial error and hence the solution x . The relation between residuals and errors,
however, allows us to bound the error of the MR approximation with respect to this best
possible approximation:

Lemma 6.2.5. The error eMR
m of the MR approximation satisfies

‖eMR
m ‖ ≤ κ(A) inf

v∈Vm
‖e0 − v‖ (6.14)

where κ(A) = ‖A‖ ‖A−1‖ denotes the condition number of A.

Proof. With Vm = Km(r0, A) and Wm = AVm, there holds

‖rMR
m ‖ = min

w∈Wm
‖r0 −w‖ = min

v∈Vm
‖A(e0 − v)‖ ≤ ‖A‖ min

v∈Vm
‖e0 − v‖,

and thus the assertion follows from ‖eMR
m ‖ = ‖A−1rMR

m ‖ ≤ ‖A−1‖ ‖rMR
m ‖.

Thus, the error of the MR approximation is within the condition number of A of the error
of the best approximation to e0 from the Krylov space. In view of the relation (2.26),
this translates to the following bound for the OR error:

‖eOR
m ‖ ≤

κ(A)

cm
inf

v∈Vm
‖e0 − v‖. (6.15)

However, a stronger bound can be obtained if the field of values of A is bounded away
from the origin:

Theorem 6.2.6. If inf{|z| : z ∈ W (A)} ≥ α for some α > 0, then the OR error satisfies

‖eOR
m ‖
‖e0‖

≤ ‖A‖
α

inf
v∈Vm

‖e0 − v‖.

Proof. From the characterization of the OR approximation we have eOR
m = e0 − v for

some v ∈ Km(r0, A) subject to

rOR
m = AeOR ⊥ Km(r0, A) ⇔ eOR

m ⊥ A∗Km(r0, A).

This means that the OR error is obtained as the error of an OR approximation of e0 from
the space Km(r0, A) orthogonal to A∗Km(r0, A). Thus, with Vm = Km(r0, A), the results
on the norm of an oblique projection give

‖eOR‖
‖e0‖

≤ ‖I − PA∗Vm
Vm

‖ =
1

cos](Vm, A∗Vm)
.
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We bound the cosine of the largest canonical angle between Vm and A∗Vm by

cos2](Vm, A
∗Vm) = sup

u∈Vm

sup
v∈Vm

|(u , A∗v)|2

‖u‖2 ‖A∗v‖2

≥ sup
u∈Vm

|(u , A∗u)|2

‖u‖2 ‖A∗u‖2
= sup

u∈Vm

(Au ,u)

(u ,u)

(A∗u ,u)

(A∗u , A∗u)

≥ inf
v∈Vm

∣∣∣∣(Au ,u)

(u ,u)

∣∣∣∣ inf
v∈Vm

∣∣∣∣ (A∗u ,u)

(A∗u , A∗u)

∣∣∣∣ ≥ α2

‖A‖2

An important class of operators consists of those with a positive definite Hermitian
part H := (A+A∗)/2. These operators are sometimes referred to as positive real. In this
case the inner product (H·, ·) induced by H defines a norm on H . The next theorem,
which is due to Starke (1994), shows that the OR error measured in this norm is optimal
up to a factor which depends on the skew-Hermitian part S := (A− A∗)/2.

Theorem 6.2.7. If A is positive real with Hermitian and skew-Hermitian parts H and
S, then the OR error satisfies

‖eOR
m ‖H ≤

(
1 + ρ(H−1S)

)
inf

v∈Vm
‖e0 − v‖H ,

where ρ(H−1S) denotes the spectral radius of H−1S.

Proof. Since rOR
m = AeOR

m ⊥ Vm, we have, noting (Hv , v) = Re(Av , v) and (Sv , v) =
Im(Av , v) for v ∈ Vm,

‖eOR
m ‖2

H = (HeOR
m , eOR

m )

≤ |(AeOR
m , eOR

m )| = |(AeOR
m , e0)| = |(AeOR

m , e0 − v)|

for arbitrary v ∈ Vm, and therefore

‖eOR
m ‖2

H ≤ |(HeOR
m , e0 − v) + (SeOR

m , eo − v)|.

The first term is bounded by ‖e0 − v‖H‖eOR
m ‖H , and for the second term we obtain

|(SeOR
m , eo − v)| = |(H1/2H−1/2SH−1/2H1/2eOR

m , e0 − v)|
≤ ‖H−1/2SH−1/2H1/2eOR

m ‖‖e0 − v‖H
≤ ‖H−1/2SH−1/2‖‖eOR

m ‖H‖e0 − v‖H
= ρ(H−1S)‖eOR

m ‖H‖e0 − v‖H ,

which, together with the bound for the first term, yields the assertion.

An immediate consequence of Theorem 6.2.7 is that, for a Hermitian positive definite
operator A, the OR method, which simplifies to the well-known conjugate gradient method
in this case, yields the best approximation in the A-norm.

Remark 6.2.8. In view of the remark preceding Lemma 6.2.5 that the best approximation
of the initial error e0 from the Krylov space Km(A, r0) = AKm(A, e0) has the same
structure as the best approximation of r0 from AK (A, r0) with r0 replaced by e0, the
infimum in (6.14) and (6.15) may be bounded in an analogous manner to the MR residual
in Theorem 6.2.1 and Corollaries 6.2.2 and 6.2.3.
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6.2.3 An Application: Compact Operators

Many applications such as the solution of elliptic boundary value problems by the integral
equation method require the solution of second-kind Fredholm equations, i.e., operator
equations (1.1) in which A has the form A = λI + K with λ 6= 0 and K : H → H
a compact operator. The development of fast multiplication algorithms (cf. Greengard
& Rokhlin (1987), Hackbusch & Nowak (1989)) has made Krylov subspace methods at-
tractive as solution algorithms for discretizations of these problems, since they require
only applications of the (discrete) operator to vectors. Moreover, as shown by Moret
(1997) for GMRES and by Winther (1980) for CG, Krylov subspace methods converge
q-superlinearly for operator equations involving compact perturbations of (multiples of)
the identity.

The simple reason for this is that, for these operators, the sines sm of the angles
between the Krylov space Vm = Km and Wm = AKm converge to zero. To show this, we
recall a basic result on compact operators and orthonormal systems:

Theorem 6.2.9. Let K : H → H be a compact linear operator and {vm}m≥1 ⊂ H be
an orthonormal system. Then

lim
m→∞

(Kvm, vm+1) = 0.

Proof. See e.g. Ringrose (1971).

Corollary 6.2.10. Let A = λI + K with λ 6= 0 and K : H → H compact, let {vj}j≥1

denote the orthonormal system generated by the Arnoldi process applied to A and r0 ∈H ,
and let {wj}j≥1 be an orthonormal system such that {w1, . . . ,wm} is an orthonormal basis
of Wm = AVm. Then the sines sm of largest canonical angle between Vm and Wm form a
null sequence.

Proof. Lemmas 2.2.4 and 4.2.3 combined with (2.43) yield

|sm| = |(vm+1,wm)| ≤ (vm+1, Avm) ‖A−1‖ = (vm+1, Kvm) ‖A−1‖ → 0,

since A−1 is bounded whenever λ 6= 0.

In particular, since sm → 0 implies that |sm| 6= 1 for m sufficiently large, this means
that the OR approximation is always defined except for possibly a finite number of in-
dices. Moreover, as |sm| is bounded away from one, cm is accordingly bounded away
from zero, hence the relation (2.26) also implies the q-superlinear convergence of the OR
approximation. We summarize this result in the following theorem.

Theorem 6.2.11. Given K : H →H compact, 0 6= λ ∈ C and b ∈H , let x0 ∈H be
an initial guess at the solution of (1.1) with A = λI + K. Then the OR approximation
with respect to the spaces Vm = Km(r0, A) and Wm = AVm with initial residual vector
r0 = b − Ax0 exists for all sufficiently large indices. Moreover, the sequence of MR and
OR approximations converge q-superlinearly.

We remark that the rate of superlinear convergence may be quantified in terms of
the rate of decay of the singular values of K (Moret 1997). We also note that, in view
of (2.70), this result applies to all MR/OR pairs of Krylov subspace methods including
QMR/BCG given a bound on the conditioning of the basis of the Krylov space being used.
For bases generated by the look-ahead Lanczos method, such bounds are guaranteed e.g.
by the implementation given by Freund et al. (1993).
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6.2.4 Parameters Determining the Rate of Convergence

As stated in the introduction to Section 6.2, the invariants of the MR and OR processes
are the angles between the spaces Km and AKm. Furthermore, Theorem 2.3.5 and the en-
suing discussion revealed that the sines and cosines of these angles appear explicitly as the
parameters of the Givens rotations in the recursive construction of the QR-factorizations
(2.49) of the Hessenberg matrices H̃m relating the bases Wm and Vm+1 of the approxi-
mation space and the residual space in (2.39), which was the abstract counterpart of the
Arnoldi decomposition

AVm = Vm+1H̃m = Vm+1Qm

[
Rm

0

]
, m = 1, . . . , L. (6.16)

As a consequence, all convergence information up to step m is contained in the unitary
matrix Qm.

MR-equivalent matrices

From relation (6.16), we conclude that there exists a family of matrices Ã which produce
the identical MR/OR residual sequence for the given initial residual r0.

Proposition 6.2.12. For A ∈ Cn×n and r0 ∈ Cn, denote by L the termination index
(4.5), and by

AVL = VLQL−1RL = V̂LRL (6.17)

the Arnoldi decomposition (6.16) in the last step m = L. Let further R̃L be any nonsin-

gular upper triangular matrix and define Ã ∈ Cn×n by

ÃVL = VLQL−1R̃L = V̂LR̃L. (6.18)

Then A and Ã are “MR-equivalent” in the sense that the MR method produces identical
residual vectors rMR

m for both systems Ax = b and Ãx = b̃ provided the starting vectors

x0 and x̃0 are chosen such that b − Ax0 = b̃ − Ãx̃0.

Proof. The assertion follows immediately since both matrices produce the same sequence
of approximation spaces.

Remark 6.2.13. We note that, by the same reasoning, A and Ã are also OR-equivalent.

The family of matrices (6.18) is actually a complete parameterization of all matrices
which are MR-equivalent to A with regard to r0.

Proposition 6.2.14. If (6.17) denotes the Arnoldi factorization in the last step m = L
of the MR process, then (6.18) contains all matrices which are MR-equivalent to A with

respect to r0 if R̃ is allowed to vary over all nonsingular upper triangular L×L matrices.

Proof. Ã is MR-equivalent to A with respect to r0 if and only if both generate the same
sequence of approximation spaces, i.e.,

AKm(A, r0) = ÃKm(Ã, r0), m = 1, . . . L.
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In view of

Km(A, r0) = span{r0}+ AKm−1(A, r0) = span{r0}+ ÃKm−1(Ã, r0) = Km(Ã, r0),

which holds for m = 2, . . . , L (the assertion is trivial for m = 1), this implies that
both matrices also generate the same sequence of Krylov spaces, which possess the same
ascending orthonormal basis VL. Hence all possible factorizations of the type given in
(6.18) result from varying the nonsingular upper triangular matrix R̃.

A particularly simple representative of this family of MR-equivalent matrices is ob-
tained by setting R̃ to be the identity, resulting in the decomposition ÃVL = VLQL−1.
If VL = KL is a proper subspace of H , Ã may be made unique by extending it to be
the identity on the complementary space. This means that, with r0 as initial vector, the
isometry QL−1 generates the same sequence of Krylov spaces, approximation spaces and
associated angles as obtained with A, hence the identical sequence of MR—and, when
these exist, OR—residual vectors result. Since QL−1 is in particular a normal matrix, its
MR-behavior is determined by its eigenvalues, which lie on the unit circle, and application
of (6.5) yields

‖rMR
m ‖
‖r0‖

≤ min
p∈Pm

p(0)=1

‖p‖Λ(QL−1). (6.19)

The class of MR-equivalent matrices was first considered by Greenbaum & Strakoš
(1994), who give a slightly different parameterization: If WL denotes the ascending basis
of the sequence of approximation spaces Wm = AKm, then an analogous Arnoldi decom-
position AWL = WLH

(1)
L exists for WL, and it is shown there that the MR-equivalent

matrices are given by

ÃWL = WLR̃H
(1)
L (6.20)

with any nonsingular upper triangular R̃ ∈ CL×L. To relate this characterization to (6.18),
note that the (essentially unique) ascending orthonormal basis of the approximation space
is given by WL = VLQL−1, resulting in

AWL = AVLQL−1 = VLHLQL−1 = VLQL−1RLQL−1 = WLH
(1)
m ,

which shows that H
(1)
L = RLQL−1 may be obtained from HL by one step of the QR

algorithm. Finally, Greenbaum and Strakoš give yet another parameterization

ÃWL = WLR̂ĤL, (6.21)

where R̂ again varies over all nonsingular upper triangular matrices and the Hessenberg
matrix ĤL has the particularly simple structure

ĤL =
[
u2 . . . uL z

]
, z =

−1

(r0,wL)


−1

(r0,w1)
...

(r0,wL−1)

 ,
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where WL = [w1, . . . ,wL]. This follows from the fact that [r0,w1, . . . ,wL−1]ĤL = WL and

that, for any MR-equivalent matrix Ã, Ã[r0,w1, . . . ,wL−1] = WLR̂ for some nonsingular

upper triangular matrix R̂. By selecting R̃ and R̂ as the inverse of the R-factor in an RQ-
factorization of the Hessenberg matrices in (6.20) and (6.21), respectively, Greenbaum and
Strakoš also obtain unitary matrices which are MR-equivalent with A. As noted there, it
is not surprising that any MR behavior may be observed for a unitary matrix, since the
two extremes, namely stagnation until the last step (cyclic shift) and convergence in one
step (the identity) are both obtained for unitary matrices.

Recent work along these lines by Liesen (1998) attempts to use MR-equivalent unitary
matrices in order to “extrapolate” the convergence rate of an MR iteration at later stages
from information available in earlier phases of the iteration. Using a unitary matrix Qm

which is MR-equivalent to the given system up to step m, Liesen uses bounds of the
type (6.19) to determine the current linear convergence rate, which is then viewed as an
indicator of the convergence rate to be expected during the remainder of the iteration.
The spectral inclusion set in this case is the smallest segment of the unit circle containing
the eigenvalues of Qm, the asymptotic convergence rate of which is given by (6.8).

Its is, however, clear that this approach works only under additional assumptions
since, in general, Qm need not contain any information about the progress of the MR
iteration beyond step m. It is not difficult to show that a given initial sequence of
residual norms ‖r0‖ ≥ · · · ≥ ‖rMR

m ‖ can be complemented e.g., in such a way that
‖rMR

m ‖ = ‖rMR
m+1‖ = . . . = ‖rMR

n−1‖, i.e., that the iteration stagnates from step m + 1 until
step n− 1.

Finally, we mention another recent approach which seeks more easily analyzable op-
erators to bound the MR convergence rate for a given system: Huhtanen & Nevanlinna
(1998) propose decomposing A into the sum of a normal operator and one of minimal rank,
and argue that often the normal component determines the MR convergence behavior.

Singular Values

To conclude this section, we turn to the role that singular values play in the context
of the convergence of the MR method. It has often been suggested in the literature
that analyzing the singular values of either A or its projections Hm and H̃m may reveal
information on the convergence of GMRES. As shown above in the case of eigenvalues,
we now show that singular value information alone says nothing about convergence.

Proposition 6.2.15. To a given linear system of equations (1.1), there is a linear system

with coefficient matrix Ã for which GMRES exhibits the identical convergence history, and
for which Ã has arbitrarily prescribed singular values.

Proof. Denote by L the termination index of A with respect to the given system as defined
in (4.14). For any Krylov subspace method applied to the this system, only the L singular
values of AKL(A,r0) are noticeable, hence A can be defined arbitrarily on KL(A, r0)⊥. To

prescribe the singular values of AKL(A,r0), denote by R̃L an upper triangular L×L matrix

R̃L possessing L arbitrary singular values. With V̂L denoting the Paige-Saunders basis
(cf. Proposition 2.3.6), the matrix Ã by ÃV̂L = V̂LR̃L clearly possesses the same set of

singular values and, by Proposition 6.2.12, Ã is “MR-equivalent” to A.
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By the same technique, we can prescribe, for fixed m, the singular values of H̃m since,
in view of (2.49) these coincide with those of Rm.

For the singular values of the square Hessenberg matrices Hm there is a slight compli-
cation. From (2.53) and (2.55) we see that a QR-factorization of Hm is given by

Hm = QH
m−1

[
Rm−1 r

0 τ

]
The mth plane rotation is determined so that the vector [τ ηm+1,m]> is rotated to the
vector [rm,m 0]>, where rm,m is the entry in the (m,m)-position of Rm. This implies that
τ = cmrm,m. Thus, if we prescribe Rm to be a diagonal matrix, then the singular values of
Hm are given by |r1,1|, . . . , |rm−1,m−1|, cm|rm,m| and thus can be selected arbitrarily. The
only exception occurs when cm = 0, i.e., Hm is singular and clearly only m − 1 singular
values can be chosen freely.

We remark that the same proof shows that neither the singular values of A nor those
of H̃m or Hm have any influence on the convergence behavior of an OR method.

6.3 Convergence Criteria for Restarted MR Methods

Since practical limitations often require that MR methods be restarted (cf. Chapter 5),
his brings up the question of what can be said about the convergence of restarted MR
methods. Unfortunately, there are as of yet few satisfactory results.

We mention two convergence characterizations, which follow immediately from (b)
and (c) in Proposition 5.1.1, respectively. We denote by MR(m) the MR iteration with
cycle length m when not referring to a specific algorithm, such as GMRES(m).

Theorem 6.3.1. The MR(m) iteration converges for any initial residual r0 (or equiva-
lently, for any right-hand side b and any starting vector x0) if and only if

0 6∈ Wm(A) := { [(Av , v), (A2v , v), . . . , (Amv , v)]> : ‖v‖ = 1} ⊂ Cm.

An equivalent condition is

µm(A) := max
‖v‖=1

sin](v , AKm(A, v)) < 1.

The first characterization is due to Faber et al. (1996), who used the set Wm(A) ⊂ Cm
to construct a matrix A for which

max
‖v‖=1

min
p∈Pm, p(0)=1

‖p(A)v‖ < min
p∈Pm, p(0)=1

max
‖v‖=1

‖p(A)v‖,

which shows that there exist linear systems (1.1) for which the least effective reduction of
the initial residual by m steps of MR over all possible initial vectors is strictly less than
that of the best polynomial iterative method using a fixed polynomial of degree m.

The set Wm(A) ⊂ Cm is sometimes referred to as the generalized field of values of A
because, for m = 1, it reduces to the ordinary field of values of A,

W1(A) = W (A) = {(Av , v) : ‖v‖ = 1} ⊂ C.
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Many properties of the field of values W (A) of A are known, the most prominent among
them being that W (A) is convex for any bounded linear operator A. For m > 1, Wm(A) is
much less understood (Faber et al. (1996) show, e.g., that Wm(A) is convex for nonsingular
normal matrices as well as for upper triangular Toeplitz matrices, but also a matrix
A ∈ R4×4 is constructed for which W3(A) fails to be convex).

Theorem 6.3.1 leads to an upper bound for the reduction of the residual by, say, j
cycles of MR(m):

‖rjm‖ ≤ µm(A)‖r(j−1)m‖ ≤ · · · ≤ µm(A)j‖r0‖. (6.22)

However, this estimate has no practical value since, particularly for m > 1, there is no
known way of computing or bounding µk(A) with acceptable computational cost. The
distance between 0 and Wm(A) gives rise to another upper bound for the norm of the
residuals generated by MR(m), (cf. (Faber et al. 1996, Theorem 2.9)) but, as with (6.22),
its practical relevance is questionable as well.

In the case of m = 1, we obtain directly from Theorem 6.2.1

µ1(A)2 = 1−min{|ω| : ω ∈ W (A)} · inf{|ω| : ω ∈ W (A−1)}.

Similar manipulations are the basis of many (if not all) existing residual bounds for
MR(1), as can be found in e.g. (Eisenstat et al. 1983, Joubert 1994a, Saad 1996, Saad
1997b, Greenbaum 1997).

We finally mention that Theorem 6.3.1 immediately implies a sufficient condition for
the convergence of MR(m) which is sometimes easier to check:

Corollary 6.3.2. If at least one of the m fields of values W1(A), W1(A2), . . . ,W1(Am)
of A, A2, . . . , Am, respectively, does not contain the origin, then MR(m) converges to
the solution of (1.1) for any right-hand side b and any starting vector x0.

Since the (ordinary) field of values is always convex, it does not contain the origin
if and only if it is contained in a half-plane Υ ⊂ C with 0 6∈ Υ. The assumption of
Corollary 6.3.2 is therefore known as the half-plane condition. Easy consequences of it are
for instance that MR(1) converges for any positive definite (negative definite) selfadjoint
linear operator A, but also for those which possess a positive definite selfadjoint part
(A+A∗)/2. In addition, MR(2) converges for any nonsingular operator A which is either
selfadjoint or skew-selfadjoint (because W1(A2) is then contained in the right or left half-
plane, respectively). Further results along these lines are contained, e.g., in Strikwerda &
Stodder (1995).

Theorem 6.3.1 shows that, in the case of m = 1, the half-plane condition (which
reduces then to 0 6∈ W (A)) is not only sufficient but also necessary for the convergence
of MR(1) (for any initial residual vector). The following example shows this is no longer
true if m > 1. The field of values of the matrix

A =

1 γ 0
0 1 γ
0 0 1

 , γ > 0,

is the closed disk of radius γ/
√

2 centered at one, i.e., MR(1) is guaranteed to converge if
and only if γ <

√
2. It is easy to see that the smallest eigenvalue θ(γ) of the symmetric
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matrix (A2 + A2>)/2 is a monotonically decreasing function of γ with a zero at
√

6/3 =
0.81 . . . , i.e., 0 6∈ W (A2) if and only if γ <

√
6/3. Corollary 6.3.2 therefore ensures

the convergence of MR(2) for γ <
√

2 = 1.41 . . . . Using a technique of Strikwerda and
Stodder (Strikwerda & Stodder 1995, Theorem 4.1) to determine the smallest value of γ
for which null vector is contained in W2(A) for this particular example, one can, however,
show that MR(2) converges (for any r0) if and only if γ < 2

√
6/3 = 1.63 . . . .
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