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Introduction

K3-surfaces are special two-dimensional holomorphic symplectic manifolds. They come equip-
ped with a symplectic form ω, which is unique up to a scalar factor, and their symmetries are
naturally partitioned into symplectic and nonsymplectic transformations. An important class of
K3-surfaces consists of those possessing an antisymplectic involution, i.e., a holomorphic involution
σ such that σ∗ω = −ω.

K3-surfaces with antisymplectic involution occur classically as branched double covers of the
projective plane, or more generally of Del Pezzo surfaces. This construction is a prominent source
of examples and plays a significant role in the classification of log Del Pezzo surfaces of index
two (see the works of Alexeev and Nikulin e.g. in [AN06] and the classification by Nakayama
[Nak07]). Moduli spaces of K3-surfaces with antisymplectic involution are studied by Yoshikawa
in [Yos04], [Yos07], and lead to new developments in the area of automorphic forms.

In this monograph we study K3-surfaces with antisymplectic involution from the point of view
of symmetry. On a K3-surface X with antisymplectic involution it is natural the consider those
holomorphic symmetries of X compatible with the given structure (X, ω, σ). These are symplectic
automorphisms of X commuting with σ.

Given a finite group G one wishes to understand if it can act in the above fashion on a K3-surface
X with antisymplectic involution σ. If this is the case, i.e., if there exists a holomorphic action of
G on X such that g∗ω = ω and g ◦ σ = σ ◦ g for all g ∈ G, then the structure of G can yield strong
constraints on the geometry of X. More precisely, if the group G has rich structure or large order,
it is possible to obtain a precise description of X. This can be considered the guiding classification
problem of this monograph.

In Chapter 3 we derive a classification of K3-surfaces with antisymplectic involution centralized
by a group of symplectic automorphisms of order greater than or equal to 96. We prove (cf.
Theorem 3.25):

Theorem 1. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic invo-
lution σ such that Fix(σ) 6= ∅. If |G| > 96, then X/σ is a Del Pezzo surface and Fix(σ) is a smooth
connected curve C with g(C) ≥ 3.

By a theorem due to Mukai [Muk88] finite groups of symplectic transformations on K3-surfaces
are characterized by the existence of a certain embedding into a particular Mathieu group and
are subgroups of eleven specified finite groups of maximal symplectic symmetry. This result
naturally limits our considerations and has led us to consider the above classification problem for
a group G from this list of eleven Mukai groups.

Theorem 1 above can be refined to obtain a complete classification of K3-surfaces with a sym-
plectic action of a Mukai group centralized by an antisymplectic involution with fixed points (cf.
Theorem 4.1).
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8 Introduction

Theorem 2. Let G be a Mukai group acting on a K3-surface X by symplectic transformations. Let σ be an
antisymplectic involution on X centralizing G with FixX(σ) 6= ∅. Then the pair (X, G) can be found in
Table 4.1.

In addition to a number of examples presented by Mukai we find new examples of K3-surfaces
with maximal symplectic symmetry as equivariant double covers of Del Pezzo surfaces.

It should be emphasized that the description of K3-surfaces with given symmetry does however
not necessary rely on the size of the group or its maximality and a classification can also be ob-
tained for rather small subgroups of the Mukai groups. In order to illustrate that the approach
does rather depend on the structure of the group, we prove a classification of K3-surfaces with a
symplectic action of the group C3 n C7 centralized by an antisymplectic involution in Chapter 5.
The surfaces with this given symmetry are characterized as double covers of P2 branched along
invariant sextics in a precisely described one-dimensional familyM (Theorem 5.4).

Theorem 3. The K3-surfaces with a symplectic action of G = C3 n C7 centralized by an antisymplectic
involution σ are parametrized by the spaceM of equivalence classes of sextic branch curves in P2.

The group C3 n C7 is a subgroup of the simple group L2(7) of order 168 which is among the
Mukai groups. The actions of L2(7) on K3-surfaces have been studied by Oguiso and Zhang
[OZ02] in an a priori more general setup. Namely, they consider finite groups containing L2(7)
as a proper subgroup and obtain lattice theoretic classification results using the Torelli theorem.
Since a finite group containing L2(7) as a proper subgroup posseses, in the cases considered, an
antisymplectic involution centralizing L2(7), we can apply Theorem 4.1 and improve the existing
result (cf. Theorem 6.1).

All classification results summarized above are proved by applying the following general strat-
egy.

The quotient of a K3-surface by an antisymplectic involution σ with fixed points centralized by a
finite group G is a rational G-surface Y. We apply an equivariant version of the minimal model
program respecting finite symmetry groups to the surface Y. Chapter 2 is dedicated to a detailed
derivation of this method, a brief outline of which can also be found in the book of Kollár and
Mori ([KM98] Example 2.18, see also Section 2.3 in [Mor82]). In the setup of rational surfaces it
leads to the well-known classification of G-minimal rational surfaces ([Man67], [Isk80]).

Equivariant Mori reduction and the theory of G-minimal models have applications in various dif-
ferent context and can also be generalized to higher dimensions. Initiated by Bayle and Beauville
in [BB00], the methods have been employed in the classification of subgroups of the Cremona
group Bir(P2) of the plane for example by Beauville and Blanc ([Bea07], [BB04], [Bla06]), [Bla07],
etc.), de Fernex [dF04], Dolgachev and Iskovskikh [DI06], and Zhang [Zha01].

The equivariant minimal model Ymin of Y is obtained from Y by a finite number of blow-downs of
(-1)-curves. Since individual (-1)-curves are not necessarily invariant, each reduction step blows
down a number of disjoint (-1)-curves. The surface Ymin is, in all cases considered, a Del Pezzo
surface.

Using detailed knowledge of the equivariant reduction map Y → Ymin, the shape of the invariant
set FixX(σ), and the equivariant geometry of Del Pezzo surfaces, we classify Y, Ymin and FixX(σ)
and can describe X as an equivariant double cover of a possibly blown-up Del Pezzo surface.
Besides the book of Manin, [Man74], our analysis relies, to a certain extend, on Dolgachev’s dis-
cussion of automorphism groups of Del Pezzo surfaces in [Dol08], Chapter 10.
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In addition to classification, this method yields a multitude of new examples of K3-surfaces with
given symmetry and a more geometric understanding of existing examples. It should be re-
marked that a number of these arise when the reduction Y → Ymin is nontrivial.

In the last two chapters we present two different generalizations of our classification strategy for
K3-surfaces with antisymplectic involution.

One of our starting points has been the study of K3-surfaces with L2(7)-symmetry by Oguiso
and Zhang mentioned above. Apart from a classification result for K3-surfaces with an action
the group L2(7) × C4, they also show that there does not exist a K3-surface with an action of a
the group L2(7)× C3. We give an independent proof of this result in Chapter 6. Assuming the
existence of such a surface and following the strategy above, we consider the quotient by the
nonsymplectic action of C3 and apply the equivariant minimal model program to its desingular-
ization. Combining this with additional geometric consideration we reach a contradiction.

In the last chapter we consider K3-surfaces X with an action of a finite group G̃ which contains an
antisymplectic involution σ but is not of the form G̃symp × 〈σ〉. Since the action of G̃symp does not
descend to the quotient X/σ we need to restrict our considerations to the centralizer of σ inside
G̃. This strategy is exemplified for a finite group Ã6 characterized by the short exact sequence
{id} → A6 → Ã6 → C4 → {id}. In analogy to the L2(7)-case, the action of Ã6 on K3-surfaces
has been studied by Keum, Oguiso, and Zhang ([KOZ05], [KOZ07]), and a characterization of
X using lattice theory and the Torelli theorem has been derived. Since the existing realization
of X does however not reveal its equivariant geometry, we reconsider the problem and, though
lacking the ultimate classification, find families of K3-surfaces with D16-symmetry, in which the
Ã6-surface is to be found, as branched double covers. These families are of independent interest
and should be studied further. In particular, it remains to find criteria to identify the Ã6-surface
inside these families. Possible approaches are outlined at the end of Chapter 7.

Since none of our results depends on the Torelli theorem, our approach to the classification prob-
lem allows generalization to fields of appropriate positive characteristic. This possible direction
of further research was proposed to the author by Prof. Keiji Oguiso. Another potential further
development would be the adaptation of the methods involved in the present work to related
questions in higher dimensions.
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1 Finite group actions on K3-surfaces

This chapter is devoted to a brief introduction to finite groups actions on K3-surfaces and presents
a number of basic, well-known results: We consider quotients of K3-surfaces by finite groups of
symplectic or nonsymplectic automorphisms. It is shown that the quotient of a K3-surface by a
finite group of symplectic automorphisms is a K3-surface, whereas the quotient by a finite group
containing nonsymplectic transformations is either rational or an Enriques surface. Our attention
concerning nonsymplectic automorphisms is then focussed on antisymplectic involutions and
the description of their fixed point set. The chapter concludes with Mukai’s classification of finite
groups of symplectic automorphisms on K3-surfaces and a discussion of basic examples.

1.1 Basic notation and definitions

Let X be a n-dimensional compact complex manifold. We denote byOX the sheaf of holomorphic
functions on X and by KX its canonical line bundle. The ith Betti number of X is the rank of the
free part of Hi(X) and denoted by bi(X).

A surface is a compact connected complex manifold of complex dimension two. A curve on a
surface X is an irreducible 1-dimensional closed subspace of X. The (arithmetic) genus of a curve
C is denoted by g(C) .

Definition 1.1. A K3-surface is a surface X with trivial canonical bundle KX and b1(X) = 0.

Note that a K3-surface is equivalently characterized if the condition b1(X) = 0 is replaced by
q(X) = dimCH1(X,OX) = 0 or π1(X) = {id}, i.e., X is simply-connected. Examples of K3-
surfaces arise as Kummer surfaces, quartic surfaces in P3 or double coverings of P2 branched
along smooth curves of degree six.

Let X be a K3-surface. Triviality of KX is equivalent to the existence of a nowhere vanishing
holomorphic 2-form ω on X. Any 2-form on X can be expressed as a complex multiple of ω.
We will therefore mostly refer to ω (or ωX) as ”the” holomorphic 2-form on X . We denote by
AutO(X) = Aut(X) the group of holomorphic automorphisms of X and consider a (finite) sub-
group G ↪→ Aut(X). If the context is clear, the abstract finite group G is identified with its image

13



14 Chapter 1. Finite group actions on K3-surfaces

in Aut(X). The group G is referred to as a transformation group, symmetry group or automor-
phism group of X. Note that our considerations are independent of the question whether the
group Aut(X) is finite or not. The order of G is denoted by |G|.
Definition 1.2. The action of G on X is called symplectic if ω is G-invariant, i.e., g∗ω = ω for all
g ∈ G.

For a finite group G < Aut(X) we denote by Gsymp the subgroup of symplectic transformations
in G . This group is the kernel of the homomorphism χ : G → C∗ defined by the action of G on the
space of holomorphic 2-forms Ω2(X) ∼= Cω. It follows that G fits into the short exact sequence

{id} → Gsymp → G → Cn → {id}

for some cyclic group Cn. If both Gsymp and Cn ∼= G/Gsymp are nontrivial, then G is called a
symmetry group of mixed type .

1.2 Quotients of K3-surfaces

Let X be a surface and let G < Aut(X) be a finite subgroup of the group of holomorphic automor-
phisms of X. The orbit space X/G carries the structure of a reduced, irreducible, normal complex
space of dimension 2 where the sheaf of holomorphic functions is given by the sheaf G-invariant
functions on X. In many cases, the quotient is a singular space. The map X → X/G is referred to
as a quotient map or a covering (map).

For reduced, irreducible complex spaces X, Y of dimension 2 a proper holomorphic map f : X →
Y is called bimeromorphic if there exist proper analytic subsets A ⊂ X and B ⊂ Y such that f :
X\A → Y\B is biholomorphic. A holomorphic, bimeromorphic map f : X → Y with X smooth
is a resolution of singularities of Y .

Definition 1.3. A resolution of singularities f : X → Y is called minimal if it does not contract any
(-1)-curves, i.e., there is no curve E ⊂ X with E ∼= P1 and E2 = −1 such that f (E) = {point}.

Every normal surface Y admits a minimal resolution of singularities f : X → Y which is uniquely
determined by Y. In particular, this resolution is equivariant.

1.2.1 Quotients by finite groups of symplectic transformations

In the study and classification of finite groups of symplectic transformations on K3-surfaces, the
following well-known result has proved to be very useful (see e.g. [Nik80])

Theorem 1.4. Let X be a K3-surface, G be a finite group of automorphisms of X and f : Y → X/G be the
minimal resolution of X/G. Then Y is a K3-surface if and only if G acts by symplectic transformations.

For the reader’s convenience we give a detailed proof of this theorem. We begin with the follow-
ing lemma.

Lemma 1.5. Let X be a simply-connected surface, G be a finite group of automorphisms and f : Y → X/G
be an arbitrary resolution of singularities of X/G. Then b1(Y) = 0.
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Proof. We denote by π1(Y) the fundamental group of Y and by [γ] ∈ π1(Y) the homotopy equi-
valence class of a closed continuous path γ. The first Betti number is the rank of the free part
of

H1(Y) = π1(Y)/[π1(Y), π1(Y)].

We show that for each [γ] ∈ π1(Y) there exists N ∈ N such that [γ]N = 0, i.e., γN is homotopic
to zero for some N ∈N . It then follows that H1(Y) is a torsion group and b1(Y) = 0.

Let C ⊂ X/G be the union of branch curves of the covering q : X → X/G, let P ⊂ X/G be the set
of isolated singularities of X/G, and E ⊂ Y be the exceptional locus of f . Let γ : [0, 1] → Y be a
closed path in Y. By choosing a path homotopic to γ which does not intersect E∪ f−1(C) we may
assume without loss of generality that γ ∩ (E ∪ f−1(C)) = ∅.

The path γ is mapped to a closed path in (X/G)\(C∪ P) which we denote also by γ. The quotient
q : X → X/G is unbranched outside C ∪ P and we can lift γ to a path γ̃ in X. Let γ̃(0) = x ∈ X,
then γ̃(1) = g.x for some g ∈ G. Since G is a finite group, it follows that γ̃N is closed for some
N ∈N.

As X is simply-connected, we know that also X\q−1(P) is simply-connected. So γ̃N is homotopic
to zero in X\q−1(P). We can map the corresponding homotopy to (X/G)\P and conclude that
γN is homotopic to zero in (X/G)\P. It follows that γN is homotopic to zero in Y\E and therefore
in Y.

Proof of Theorem 1.4. We let E ⊂ Y denote the exceptional locus of the map f : Y → X/G. If Y
is a K3-surface, let ωY denote the nowhere vanishing holomorphic 2-form on Y. Let (X/G)reg

denote the regular part of X/G. Since f |Y\E : Y\E → (X/G)reg is biholomorphic, this defines a
holomorphic 2-form ω(X/G)reg on (X/G)reg. Pulling this form back to X, we obtain a G-invariant
holomorphic 2-form on π−1((X/G)reg) = X\{p1, . . . pk}. This extends to a nonzero, i.e., not
identically zero, G-invariant holomorphic 2-form on X. In particular, any holomorphic 2-form on
X is G-invariant and the action of G is by symplectic transformations.

Conversely, if G acts by symplectic transformations on X, then ωX defines a nowhere vanishing
holomorphic 2-form on (X/G)reg and on Y\E . Our aim is to show that it extends to a nowhere
vanishing holomorphic 2-form on Y. In combination with Lemma 1.5 this yields that Y is a K3-
surface.

Locally at p ∈ X the action of Gp can be linearized. I.e., there exist a neighbourhood of p in X
which is Gp-equivariantly isomorphic to a neighbourhood of 0 ∈ C2 with a linear action of Gp. A
neighbourhood of π(p) ∈ X/G is isomorphic to a neighbourhood of the origin in C2/Γ for some
finite subgroup Γ < SL(2, C). In particular, the points with nontrivial isotropy are isolated. The
singularities of X/G are called simple singularities, Kleinian singularities, Du Val singularities or
rational double points. Following [Sha94] IV.4.3, we sketch an argument which yields the desired
extension result.

Let X ×(X/G) Y = {(x, y) ∈ X × Y |π(x) = f (y)} and let N be its normalization. Consider the
diagram

X

π

��

N
pXoo

pY

��
X/G Y.

f
oo

We let ωX denote the nowhere vanishing holomorphic 2-form on X. Its pullback p∗XωX defines a
nowhere vanishing holomorphic 2-form on Nreg. Simultaneously, we consider the meromorphic
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2-form ωY on Y obtained by pulling back the 2-form on X/G induced by the G-invariant 2-form
ωX . By contruction, the pullback p∗YωY coincides with the pullback p∗XωX on Nreg.

Consider the finite holomorphic map pY|Nreg : Nreg → pY(Nreg) ⊂ Y. Since p∗YωY is holomorphic
on Nreg, one checks (by a calculation in local coordinates) that ωY is holomorphic on pY(Nreg) =
Y\{y1, . . . yk} and consequently extends to a holomorphic 2-form on Y. Since p∗XωX = p∗YωY is
nowhere vanishing on Nreg, it follows that ωY defines a global, nowhere vanishing holomorphic
2-form on Y.

Remark 1.6. Let g be a symplectic automorphism of finite order on a K3-surface X. Since K3-
surfaces are simply-connected, the covering X → X/〈g〉 can never be unbranched. It follows that
g must have fixed points.

Using Theorem 1.4 we give an outline of Nikulin’s classification of finite Abelian groups of sym-
plectic transformations on a K3-surface [Nik80]. Let Cp be a cyclic group of prime order acting
on a K3-surface X by symplectic transformations and Y be the minimal desingularization of the
quotient X/Cp.

Notice that by adjunction the self-intersection number of a curve D of genus g(D) on a K3-surface
is given by D2 = 2g(D)− 2. In particular, if D is smooth, then D2 = −e(D).

The exceptional locus of the map Y → X/G is a union of (-2)-curves and one can calculate their
contribution to the topological Euler characteristic e(Y) in relation to e(X/Cp). Let np denote the
number of fixed point of Cp on X. Then

24 = e(X) = p · e(X/G)− np

24 = e(Y) = e(X/G) + np · p.

Combining these formulas gives np = 24/(p + 1). For a general finite Abelian group G acting
symplectically on a K3-surface X, one needs to consider all possible isotropy groups Gx for x ∈ X.
By linearization, Gx < SL2(C). Since G is Abelian, it follows that Gx is cyclic and an analoguous
formula relating the Euler characteristic of X, X/G, and Y can be derived. A case by case study
then yields Nikulin’s classification. In particular, we emphasize the following remark.

Remark 1.7. If g ∈ Aut(X) is a symplectic automorphism of finite order n(g) on a K3-surface X,
then n(g) is bounded by eight and the number of fixed points of g is given by the following table:

n(g) 2 3 4 5 6 7 8
|FixX(g)| 8 6 4 4 2 3 2

Table 1.1: Fixed points of symplectic automorphisms on K3-surfaces

1.2.2 Quotients by finite groups of nonsymplectic transformations

In this subsection we consider the quotient of a K3-surface X by a finite group G such that G 6=
Gsymp, i.e., there exists g ∈ G such that g∗ω 6= ω. We prove
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Theorem 1.8. Let X be a K3-surface and let G < Aut(X) be a finite group such that g∗ω 6= ω for some
g ∈ G. Then either

- X/G is rational, i.e., bimeromorphically equivalent to P2, or

- the minimal desingularisation of X/G is a minimal Enriques surface and

G/Gsymp ∼= C2.

In this case, π : X → X/G is unbranched if and only if Gsymp = {id}.

Before giving the proof, we establish the necessary notation and state two useful lemmata. We
denote by π : X → X/G the quotient map. This map can be ramified at isolated points and along
curves. Let P = {p1, . . . , pn} denote the set of singularities of X/G. For simplicity, the denote the
correspondig subset π−1(P) of X also by P. Outside P, the map π is ramified along curves Ci of
ramification order ci + 1. We write C = ∑ ciCi.

Let r : Y → X/G denote a minimal resolution of singularities of X/G. The exceptional locus of r
in Y is denoted by D. As Y is not necessarily a minimal surface, we denote by p : Y → Ymin the
sucessive blow-down of (-1)-curves. The union of exceptional curves of p is denoted by E.

C ⊂ X ⊃ P

π
��

π(C) ⊂ X/G ⊃ P D ⊂ Y ⊃ E
roo

p
��

Ymin

The following two lemmata (cf. e.g. [BHPVdV04] I.16 and Thm. I.9.1) will be useful in order to
relate the canonical bundles of the spaces X, (X/G)reg, Y and Ymin. For a divisor D on a manifold
X we denote by OX(D) the line bundle associated to D .

Lemma 1.9. Let X, Y be surfaces and let ϕ : X → Y be a surjective finite proper holomorphic map ramified
along a curve C in X of ramification order k. Then

KX = ϕ∗(KY)⊗OX(C)⊗(k−1).

More generally, if π is ramified along a ramification divisor R = ∑i riRi, where Ri is an irreducible curve
and ri + 1 is the ramification order of π along Ri, then

KX = π∗(KY)⊗OX(R).

Lemma 1.10. Let X be a surface and let b : X → Y be the blow-down of a (-1)-curve E ⊂ X. Then

KX = b∗(KY)⊗OX(E).

We present a proof of Theorem 1.8 using the Enriques Kodaira classification of surfaces.

Proof of Theorem 1.8. The Kodaira dimension of the K3-surface X is kod(X) = 0. The Kodaira
dimension of X/G, which is defined as the Kodaira dimension of some resolution of X/G, is less
than or equal to the Kodaira dimension of X. (c.f. Theorem 6.10 in [Uen75]),

0 = kod(X) ≥ kod(X/G) = kod(Y) = kod(Ymin) ∈ {0,−∞}.
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By Lemma 1.5, the first Betti number of Y and Ymin is zero. If kod(Y) = −∞, then Y is a smooth
rational surface. If kod(Y) = kod(Ymin) = 0, then, since Y is not a K3-surface by Theorem 1.4, it
follows that Ymin is an Enriques surface.

If Ymin is an Enriques surface, then K⊗2
Ymin

is trivial. Let s ∈ Γ(Ymin,K⊗2
Ymin

) be a nowhere vanishing
section. Consecutive application of Lemma 1.10 yields the following formula

K⊗2
Y = (p∗KYmin)

⊗2 ⊗OY(E)⊗2 = p∗(K⊗2
Ymin

)⊗OY(E)⊗2.

Let e ∈ Γ(Y,OY(E)⊗2) and write s̃ = p∗(s) · e. This global section of K⊗2
Y vanishes along E and

is nowhere vanishing outside E. By restricting s̃ to Y\D we obtain a section of K⊗2
Y\D. Since π is

biholomorphic outside D, we can map the restricted section to (X/G)\P = (X/G)reg and obtain
a section ŝ of K⊗2

(X/G)reg
. Note that ŝ is not the zero-section. If E 6= ∅, i.e., Y is not minimal, let

E1 ⊂ E be a (-1)-curve. The minimality of the resolution r : Y → X/G implies E1 * D. It follows
that ŝ vanishes along the image of E1 in (X/G)reg

We may now apply Lemma 1.9 to the map π|X\P to see

K⊗2
X\P = (π∗K(X/G)reg)

⊗2 ⊗OX\P(C)⊗2

= π∗(K⊗2
(X/G)reg

)⊗OX\P(C)⊗2.

Let c ∈ Γ(X\P,OX\P(C))⊗2. Then t := π∗ ŝ · c ∈ Γ(X\P,K⊗2
X\P) is not the zero-section but vanishes

along C and along the preimage of the zeroes of ŝ.

Now t extends to a holomorphic section t̃ ∈ Γ(X,K⊗2
X ). Since X is K3, it follows that both KX and

K⊗2
X are trivial and t̃ must be nowhere vanishing. Consequently, both E and C must be empty.

It follows that the map π is at worst branched at points P (not along curves) and the minimal
resolution Y of X/G is a minimal surface.

P ⊂ X

π

��
P ⊂ X/G Y ⊃ D

roo

The section t̃ on X is G-invariant by construction. Let ω be a nonzero section of the trivial bundle
KX such that t̃ = ω2. The action of G on X is nonsymplectic, therefore ω is not invariant but t̃ is.
Hence G acts on ω by multiplication with {1,−1} and G/Gsymp ∼= C2.

If π : X → X/G is unbranched, it follows that FixX(g) = ∅ for all g ∈ G\{id}. Since symplectic
automorphisms of finite order necessarily have fixed points, this implies Gsymp = {id}.
Conversely, if G is isomorphic to C2, it remains to show that the set P = {p1, . . . , pn} is empty.
Our argument uses the Euler characteristic e of X, X/G, and Y. By chosing a triangulation of X/G
such that all points pi lie on vertices we calculate 24 = e(X) = 2e(X/G)− n. Blowing up the C2-
quotient singularities of X/G we obtain 12 = e(Y) = e(X/G) + n. This implies e(X/G) = 12 and
n = 0 and completes the proof of the theorem.

1.3 Antisymplectic involutions on K3-surfaces

As a special case of the theorem above we consider the quotient of a K3-surface X by an invo-
lution σ ∈ Aut(X) which acts on the 2-form ω by multiplication by −1 and is therefore called
antisymplectic involution.
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Proposition 1.11. Let π : X → X/σ be the quotient of a K3-surface by an antisymplectic involution σ.
If FixX(σ) 6= ∅, then FixX(σ) is a disjoint union of smooth curves and X/σ is a smooth rational surface.
Furthermore, FixX(σ) = ∅ if and only if X/σ is an Enriques surfaces.

Proof. If FixX(σ) 6= ∅, then Theorem 1.8 and linearization of the σ-action at its fixed points yields
the proposition. If FixX(σ) = ∅, then X → X/σ is unbranched and kod(X) = kod(X/G). It
follows that X/G is an Enriques surface.

In order to sketch Nikulin’s description of the fixed point set of an antisymplectic involution we
summarize some information about the Picard lattice of a K3-surface.

1.3.1 Picard lattices of K3-surfaces

Let X be a complex manifold. The Picard group of X is the group of isomorphism classes of line
bundles on X and denoted by Pic(X). It is isomorphic to H1(X,O∗X). Let ZX denote the constant
sheaf on X corresponding to Z, then the exponential sequence 0 → ZX → OX → O∗X → 0
induces a map

δ : H1(X,O∗X)→ H2(X, Z).

Its kernel is the identity component Pic0(X) of the Picard group. The quotient Pic(X)/Pic0(X)
is isomorphic to a subgroup of H2(X, Z) and referred to as the Néron-Severi group NS(X) of X .
On the space H2(X, Z) there is the natural intersection or cupproduct pairing. The rank of the
Néron-Severi group of X is denoted by ρ(X) and referred to as the Picard number of X

If X is a K3-surface, then H1(X,OX) = {0} and Pic(X) is isomorphic to NS(X). In particular, the
Picard group carries the structure of a lattice, the Picard lattice of X, and is regarded as a sublattice
of H2(X, Z), which is known to have signature (3, 19) (cf. VIII.3 in [BHPVdV04]).

If X is an algebraic K3-surface, i.e., the transcendence degree of the field of meromorphic functions
on X equals 2, then Pic(X) is a nondegenerate lattice of signature (1, ρ− 1) (cf. §3.2 in [Nik80]).

1.3.2 The fixed point set of an antisymplectic involution

We can now present Nikulin’s classification of the fixed point set of an antisymplectic involution
on a K3-surface [Nik83].

Theorem 1.12. The fixed point set of an antisymplectic involution σ on a K3-surface X is one of the
following three types:

1.) Fix(σ) = Dg ∪
n⋃

i=1

Ri, 2.) Fix(σ) = D1 ∪ D′1, 3.) Fix(σ) = ∅,

where Dg denotes a smooth curve of genus g ≥ 0 and
⋃n

i=1 Ri is a possibly empty union of smooth disjoint
rational curves. In case 2.), D1 and D′1 denote disjoint elliptic curves.

Proof. Assume there exists a curve Dg of genus g ≥ 2 in Fix(σ). By adjunction, this curve has
positive self-intersection. We claim that each curve D in Fix(σ) disjoint from Dg is rational.

First note that the existence of an antisymplectic automorphism on X implies that X is algebraic
(cf. Thm. 3.1 in [Nik80]) and therefore Pic(X) is a nondegenerate lattice of signature (1, ρ− 1).



20 Chapter 1. Finite group actions on K3-surfaces

If D is elliptic, then D2 = 0, D2
g > 0 and D ·Dg = 0 is contrary to the fact that Pic(X) has signature

(1, ρ− 1). If D is of genus ≥ 2, then D2 > 0 and we obtain the same contradiction.

Now assume that there exists an elliptic curve D1 in Fix(σ). By the considerations above, there
may not be curves of genus ≥ 2 in Fix(σ). If there are no further elliptic curves in Fix(σ), we are
in case 1) of the classification. If there is another elliptic curve D′1 in Fix(σ), this has to be linearly
equivalent to D1, as otherwise the intersection form of Pic(X) would degenerate on the span of
D1 and D′1. The linear system of D1 defines an elliptic fibration X → P1. The induced action of
σ on the base may not be trivial since this would force σ to act trivially in a neighbourhood of D1
in X. It follows that the induced action of σ on P1 has precisely two fixed points and that Fix(σ)
contains no other curves than D1 and D′1. This completes the proof of the theorem.

1.4 Finite groups of symplectic automorphisms

In preparation for stating Mukai’s classification of finite groups of symplectic automorphisms on
K3-surfaces we present his list [Muk88] of symplectic actions of finite groups G on K3-surfaces
X. It is an important source of examples, many of these will occur in our later discussion. For the
sake of brevity, at this point we do not introduce the notation of groups used in this table.

G |G| K3-surface X

1 L2(7) 168 {x3
1x2 + x3

2x3 + x3
3x1 + x4

4 = 0} ⊂ P3

2 A6 360 {∑6
i=1 xi = ∑6

i=1 x2
1 = ∑6

i=1 x3
i = 0} ⊂ P5

3 S5 120 {∑5
i=1 xi = ∑6

i=1 x2
1 = ∑5

i=1 x3
i = 0} ⊂ P5

4 M20 960 {x4
1 + x4

2 + x4
3 + x4

4 + 12x1x2x3x4 = 0} ⊂ P3

5 F384 384 {x4
1 + x4

2 + x4
3 + x4

4 = 0} ⊂ P3

6 A4,4 288 {x2
1 + x2

2 + x2
3 =
√

3x2
4}∩

{x2
1 + ωx2

2 + ω2x2
3 =
√

3x2
5}∩

{x2
1 + ω2x2

2 + ωx2
3 =
√

3x2
6} ⊂ P5

7 T192 192 {x4
1 + x4

2 + x4
3 + x4

4 − 2
√−3(x2

1x2
2 + x2

3x2
4 = 0} ⊂ P3

8 H192 192 {x2
1 + x2

3 + x2
5 = x2

2 + x2
4 + x2

6}∩
{x2

1 + x2
4 = x2

2 + x2
5 = x2

3 + x2
6} ⊂ P5

9 N72 72 {x3
1 + x3

2 + x3
3 + x3

4 = x1x2 + x3x4 + x2
5 = 0} ⊂ P4

10 M9 72 Double cover of P2 branched along

{x6
1 + y6

2 + x6
3 − 10(x3

1x3
2 + x3

2x3
3 + x3

3x3
1) = 0}

11 T48 48 Double cover of P2 branched along

{x1x2(x4
1 − x4

2) + x6
3 = 0}

Table 1.2: Finite groups of symplectic automorphisms on K3-surfaces

The following theorem (Theorem 0.6 in [Muk88]) characterizes finite groups of symplectic auto-
morphisms on K3-surfaces.
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Theorem 1.13. A finite group G has an effective sympletic actions on a K3-surface if and only if it is
isomorphic to a subgroup of one of the eleven groups in Table 1.2.

The ”only if”-implication of this theorem follows from the list of eleven examples summarized in
Table 1.2. This list of examples is, however, far from being exhaustive. It is therefore desirable to
find further examples of K3-surfaces where the groups from this list occur and describe or classify
these surfaces with maximal symplectic symmetry..

Definition 1.14. By Proposition 8.8 in [Muk88] there are no subgroup relations among the eleven
groups in Mukai’s list. Therefore, the groups are maximal finite groups of symplectic transformations.
We refer to the groups in this list also as Mukai groups.

1.4.1 Examples of K3-surfaces with symplectic symmetry

We conclude this chapter by presenting two typical examples of K3-surface with symplectic sym-
metry.

Example 1.15. The group L2(7) = PSL(2, F7) = GL3(F2) is a simple group of order 168. It is
generated by the three projective transformations α, β, γ of P1(F7) given by

α(x) = x + 1; β(x) = 2x; γ(x) = −x−1.

In terms of these generators, we define a three-dimensional representation of L2(7) by

α 7→
ξ 0 0

0 ξ2 0
0 0 ξ4

 ; β 7→
0 0 1

1 0 0
0 1 0

 ; γ 7→ −1√−7

a b c
b c a
c a b


where ξ = e

2πi
7 , a = ξ2 − ξ5, b = ξ − ξ6, c = ξ4 − ξ3, and

√−7 = ξ + ξ2 + ξ4 − ξ3 − ξ5 − ξ6.
Klein’s quartic curve

CKlein = {x1x3
2 + x2x3

3 + x3x3
1 = 0} ⊂ P2

is invariant with respect to induced action of L2(7) on P2. Mukai’s example of a K3-surface with
symplectic L2(7)-symmetry is the smooth quartic hypersurface in P3 defined by

XKM = {x1x3
2 + x2x3

3 + x3x3
1 + x4

4 = 0} ⊂ P3,

where the action of L2(7) is defined to be trivial on the coordinate x4 and defined as above on
x1, x2, x3. Since L2(7) is a simple group, it follows that the action is effective and symplectic. The
surface XKM is called the Klein-Mukai surface. By construction, it is a cyclic degree four cover of P2
branched along Klein’s quartic curve. In fact, there is an action of the group L2(7)× C4 on XKM,
where the action of C4 is by nonsymplectic transformations. The Klein-Mukai surface will play
an important role in Sections 5.4 and 5.5.

Cyclic coverings

Since many examples of K3-surfaces are constructed as double covers we discuss the construction
of branched cyclic covers with emphasis on group actions induced on the covering space.

Let Y be a surface such that Picard group of Y has no torsion, i.e., there does not exist a nontrivial
line bundle E on Y such that E⊗n is trivial for some n ∈N.
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Let B be an effective and reduced divisor on Y and suppose there exists a line bundle L on Y such
that OY(B) = L⊗n and a section s ∈ Γ(Y, L⊗n) whose zero-divisor is B. Let p : L → L⊗n denote
the bundle homomorphism mapping each element (y, z) ∈ L for y ∈ Y to (y, zn) ∈ L⊗n. The
preimage X = p−1(Im(s)) of the image of s is an analytic subspace of L. The bundle projection
L→ Y restricted to X defines surjective holomorphic map X → Y of degree n.

X ⊂ L
p //

��

L⊗n ⊃ Im(s)

��
Y

id
// Y

s

ZZ

Since Pic(Y) is torsion free, the line bundle L is uniquely determined by B. It follows than X is
uniquely determined and we refer to X as the cyclic degree n covering of Y branched along B.
We note that X is normal and irreducible. It is smooth if the divisor B is smooth. (cf. I.17 in
[BHPVdV04])

Let G be a finite group in Aut(Y) and assume that the divisor B is invariant, i.e., gB = B for all
g ∈ G. Then the pull-back bundle g∗L⊗n is isomorphic to L⊗n. We consider the group BAut(L⊗n)
of bundle maps of L⊗n and the homomorphism BAut(L⊗n)→ Aut(Y) mapping each bundle map
to the corresponding automorphism of the base. Its kernel is isomorphic to C∗. The observation
g∗L⊗n ∼= L⊗n implies that the group G is contained in the image of BAut(L⊗n) in Aut(Y).

By assumption, the zero set of the section s is G-invariant. The bundle map induced by g∗ maps
the section s to a multiple χ(g)s of s for some character χ : G → C∗. It follows that the bundle
map g̃ induced by χ(g)−1g∗ stabilizes the section. The group G̃ = {g̃ | g ∈ G} ⊂ BAut(L⊗n) is
isomorphic to G and stabilizes Im(s) ⊂ L⊗n.

In order to define a corresponding action on X, first observe that g∗L ∼= L for all g ∈ G. This
follows from the observation that g∗L⊗ L−1 is a torsion bundle and the assumption that Pic(Y)
has no torsion. As above, we deduce that the group G is contained in the image of BAut(L) in
Aut(Y). Let G be the preimage of G in BAut(L). Then G is a central C∗-extension of G,

{id} → C∗ → G → G → {id}.
The map p : L → L⊗n induces a homomorphism p∗ : BAut(L) → BAut(L⊗n). Its kernel is
isomorphic to Cn < C∗ and we consider the preimage H = p−1∗ (G̃) in BAut(L). The group
H < G is a central Cn-extension of G̃ ∼= G,

{id} → Cn → H → G → {id}.
By construction, the subset X ⊂ L is invariant with respect to H. This discussion proves the
following proposition.

Proposition 1.16. Let Y by a surface such that Pic(Y) is torsion free and G < Aut(Y) be a finite group.
If B ⊂ Y is an effective, reduced, G-invariant divisor defined by a section s ∈ Γ(Y, L⊗n) for some line
bundle L, then the cyclic degree n covering X of Y branched along B carries the induced action of a central
Cn-extension H of G such that the covering map π : X → Y is equivariant.

Example 1.17 (Double covers). For any finite subgroup G < PSL(3, C) and any G-invariant
smooth curve C ⊂ P2 of degree six, the double cover X of P2 branched along C is a K3-surface
with an induced action of a degree two central extension of the group G. Many interesting ex-
amples (no. 10 and 11 in Mukai’s table) can be contructed this way. For example, the Hessian of
Klein’s curve Hess(CKlein) is an L2(7)-invariant sextic curve and the double cover of P2 branched
along Hess(CKlein) is a K3-surface with a symplectic action of L2(7) centralized by the antisym-
plectic covering involution (cf. Section 5.5).



2 Equivariant Mori reduction

This chapter deals with a detailed discussion of Example 2.18 in [KM98] (see also Section 2.3
in [Mor82]) and introduces a minimal model program for surfaces respecting finite groups of
symmetries. Given a projective algebraic surface X with G-action, in analogy to the usual min-
imal model program, one obtains from X a G-minimal model XG-min by a finite number of G-
equivariant blow-downs, each contracting a finite number of disjoint (-1)-curves. The surface
XG-min is either a conic bundle over a smooth curve, a Del Pezzo surface or has nef canonical
bundle. The case G ∼= C2 is also discussed in [BB00], the case G ∼= Cp for p prime in [dF04]. As
indicated in the introduction, applications can be found throughout the literature.

2.1 The cone of curves and the cone theorem

Throughout this chapter we let X be a smooth projective algebraic surface and let Pic(X) denote
the group of isomorphism classes of line bundles on X.

Definition 2.1. A divisor on X is a formal linear combination of irreducible curves D = ∑ aiCi
with ai ∈ Z. A 1-cycle on X is a formal linear combination of irreducible curves C = ∑ biCi with
bi ∈ R. A 1-cycle is effective if bi ≥ 0 for all i.

We define a pairing Pic(X) × {divisors} → Z by (L, D) 7→ L · D = deg(L|D). Extending by
linearity, this defines a pairing Pic(X)×{1-cycles} → R. We use this notation for the intersection
number also for pairs of divisors C and D and write C · D = deg(OX(D)|C). Two 1-cycles C, C′
are called numerically equivalent if L · C = L · C′ for all L ∈ Pic(X). We write C ≡ C′. The
numerical equivalence class of a 1-cycle C is denoted by [C]. The space of all 1-cycles with real
coefficients modulo numerical equivalence is a real vector space denoted by N1(X). Note that
N1(X) is finite-dimensional.

Remark 2.2. Let L be a line bundle on X and let L−1 denote its dual bundle. Then L−1 ·C = −L ·C
for all [C] ∈ N1(X). We therefore write L−1 = −L in the following.

Definition 2.3. A line bundle L is called nef if L · C ≥ 0 for all irreducible curves C.

We set
NE(X) = {∑ ai[Ci] | Ci ⊂ X irreducible curve, 0 ≤ ai ∈ R} ⊂ N1(X).

23
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The closure NE(X) of NE(X) in N1(X) is called Kleiman-Mori cone or cone of curves on X.

For a line bundle L, we write NE(X)L≥0 = {[C] ∈ N1(X) | L · C ≥ 0} ∩ NE(X). Analogously, we
define NE(X)L≤0, NE(X)L>0, and NE(X)L<0.

Using this notation we phrase Kleiman’s ampleness criterion (cf. Theorem 1.18 in [KM98])

Theorem 2.4. A line bundle L on X is ample if and only if NE(X)L>0 = NE(X)\{0}.
Definition 2.5. Let V be a finite-dimensional real vector space . A subset N ⊂ V is called cone if
0 ∈ N and N is closed under multiplication by positive real numbers. A subcone M ⊂ N is called
extremal if u, v ∈ N satisfy u, v ∈ M whenever u + v ∈ M. An extremal subcone is also referred to
as an extremal face. A 1-dimensional extremal face is called extremal ray. For subsets A, B ⊂ V we
define A + B := {a + b | a ∈ A, b ∈ B}.

The cone of curves NE(X) is a convex cone in N1(X) and the following cone theorem, which is
stated here only for surfaces, describes its geometry (cf. Theorem 1.24 in [KM98]).

Theorem 2.6. Let X be a smooth projective surface and let KX denote the canonical line bundle on X.
There are countably many rational curves Ci ∈ X such that 0 < −KX · Ci ≤ dim(X) + 1 and

NE(X) = NE(X)KX≥0 + ∑
i

R≥0[Ci].

For any ε > 0 and any ample line bundle L

NE(X) = NE(X)(KX+εL)≥0 + ∑
finite

R≥0[Ci].

2.2 Surfaces with group action and the cone of invariant curves

Let X be a smooth projective surface and let G < AutO(X) be a group of holomorphic transfor-
mations of X. We consider the induced action on the space of 1-cycles on X. For g ∈ G and an
irreducible curve Ci we denote by gCi the image of Ci under g. For a 1-cycle C = ∑ aiCi we define
gC = ∑ ai(gCi). This defines a G-action on the space of 1-cycles.

Lemma 2.7. Let C1, C2 be 1-cycles and C1 ≡ C2. Then gC1 ≡ gC2 for any g ∈ G.

Proof. The 1-cycle gC1 is numerically equivalent to gC2 if and only if L · (gC1) = L · (gC2) for all
L ∈ Pic(X). For g ∈ G and L ∈ Pic(X) let g∗L denote the pullback of L by g. The claim above is
equivalent to ((g−1)∗L) · (gC1) = ((g−1)∗L) · (gC2) for all L ∈ Pic(X). Now

((g−1)∗L) · (gC1) = deg((g−1)∗L|gC1) = deg(L|C1) = L · C1 = L · C2 = (g−1)∗L(gC2)

for all L ∈ Pic(X).

This lemma allows us to define a G-action on N1(X) by setting g[C] := [gC] and extending by
linearity. We write N1(X)G = {[C] ∈ N1(X) | [C] = [gC] for all g ∈ G}, the set of invariant
1-cycles modulo numerical equivalence. This space is a linear subspace of N1(X).

Since the cone NE(X) is a G-invariant set it follows that its closure NE(X) is G-invariant. The
subset of invariant elements in NE(X) is denoted by NE(X)G.
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Remark 2.8. NE(X)G = NE(X) ∩ N1(X)G = NE(X) ∩ N1(X)G.

The subcone NE(X)G of NE(X) is seen to inherit the geometric properties of NE(X) established
by the cone theorem. Note however that the extremal rays of NE(X)G are in general neither
extremal in NE(X) (cf. Figure 2.1) nor generated by classes of curves but by classes of 1-cycles.
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(a) The cone of curves and its extremal rays
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N
G

1
(X)

G-extremal ray KX < 0

KX > 0

(b) The cone of curves and the invariant subspace
N1(X)G . Their intersection NE(X)G has a new ex-
tremal ray.

Figure 2.1: The extremal rays of NE(X)G are not extremal in NE(X)

Definition 2.9. The extremal rays of NE(X)G are called G-extremal rays .

Lemma 2.10. Let G be a finite group and let R be a G-extremal ray with KX · R < 0. Then there exists a
rational curve C0 such that R is generated by the class of the 1-cycle C = ∑g∈G gC0.

Proof. Consider an G-extremal ray R = R≥0[E] where [E] ∈ NE(X)G ⊂ NE(X). By the cone
theorem (Theorem 2.6) it can be written as [E] = [∑i aiCi] + [F], where KX · F ≥ 0, ai ≥ 0 and
Ci are rational curves. Let |G| denote the order of G and let [GF] = G[F] = ∑g∈G g[F]. Since
g[E] = [E] for all g ∈ G we can write

|G|[E] = ∑
g∈G

g[E] = ∑
g∈G

([∑
i

aigCi] + g[F]) = ∑
i

aiG[Ci] + G[F].

The element [∑ ai(GCi)] + [GF] of the extremal ray R≥0[E] is decomposed as the sum of two
elements in NE(X)G. Since R is extremal in NE(X)G both must lie in R = R≥0[E] .

Consider [GF] ∈ R. Since g∗KX ≡ KX for all g ∈ G, we obtain

KX · (GF) = ∑
g∈G
KX · (gF) = ∑

g∈G
(g∗KX) · F = |G|KX · F ≥ 0.

Since KX · R < 0 by assumption this implies [F] = 0 and R≥0[E] = R≥0[∑ ai(GCi)]. Again using
the fact that R is extremal in NE(X)G, we conclude that each summand of [∑ ai(GCi)] must be
contained in R = R≥0[E] and the extremal ray R≥0[E] is therefore generated by [GCi] for some Ci
chosen such that [GCi] 6= 0. This completes the proof of the lemma.
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2.3 The contraction theorem and minimal models of surfaces

In this section, we state the contraction theorem for smooth projective surfaces. The proof of
this theorem can be found e.g. in [KM98] and needs to be modified slightly in order to give an
equivariant contraction theorem in the next section.

Definition 2.11. Let X be a smooth projective surface and let F ⊂ NE(X) be an extremal face. A
morphism contF : X → Z is called the contraction of F if

• (contF)∗OX = OZ and

• contF(C) = {point} for an irreducible curve C ⊂ X if and only if [C] ∈ F.

The following result is known as the contraction theorem (cf. Theorem 1.28 in [KM98]).

Theorem 2.12. Let X be a smooth projective surface and R ⊂ NE(X) an extremal ray such thatKX · R <

0. Then the contraction morphism contR : X → Z exists and is one of the following types:

1. Z is a smooth surface and X is obtained from Z by blowing up a point.

2. Z is a smooth curve and contR : X → Z is a minimal ruled surface over Z.

3. Z is a point and −KX is ample.

The contraction theorem leads to the minimal model program for surfaces: Starting from X, if KX
is not nef, i.e, there exists an irreducible curve C such thatKXC < 0, then NE(X)KX<0 is nonempty
and there exists an extremal ray R which can be contracted. The contraction morphisms either
gives a new surface Z (in case 1) or provides a structure theorem for X which is then either a
minimal ruled surface over a smooth curve (case 2) or isomorphic to P2 (case 3). Note that the
contraction theorem as stated above only implies −KX ample in case 3. It can be shown that X
is in fact P2. This is omitted here since the statement does not transfer to the equivariant setup.
In case 1, we can repeat the procedure if KZ is not nef. Since the Picard number drops with each
blow down, this process terminates after a finite number of steps. The surface obtained from X at
the end of this program is called a minimal model of X.

Remark 2.13. Let E be a (-1)-curve on X. If C is any irreducible curve on X, then E · C < 0 if
and only if C = E. It follows that NE(X) = span(R≥0[E], NE(X)E≥0). Now E2 = −1 implies
E 6∈ NE(X)E≥0 and E is seen to generate an extremal ray in NE(X). By adjunction, KX · E < 0.
The contraction of the extremal ray R = R≥0[E] is precisely the contraction of the (-1)-curve E.
Conversely, each extremal contraction of type 1 above is the contraction of a (-1)-curve generating
the extremal ray R.

2.4 Equivariant contraction theorem and G-minimal models

We state and prove an equivariant contraction theorem for smooth projective surfaces with finite
groups of symmetries. Most steps in the proof are carried out in analogy to the proof of the
standard contraction theorem.
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Definition 2.14. Let G be a finite group, let X be a smooth projective surface with G-action and
let R ⊂ NE(X)G be G-extremal ray. A morphism contG

R : X → Z is called the G-equivariant
contraction of R if

• contG
R is equivariant with respect to G

• (contG
R)∗OX = OZ and

• contR(C) = {point} for an irreducible curve C ⊂ X if and only if [GC] ∈ R.

Theorem 2.15. Let G be a finite group, let X be a smooth projective surface with G-action and let R be
a G-extremal ray with KX · R < 0. Then R can be spanned by the class of C = ∑g∈G gC0 for a rational
curve C0, the equivariant contraction morphism contG

R : X → Z exists and is one of the following three
types:

1. C2 < 0 and gC0 are smooth disjoint (-1)-curves. The map contG
R : X → Z is the equivariant blow

down of the disjoint union
⋃

g∈G gC0.

2. C2 = 0 and any connected component of C is either irreducible or the union of two (-1)-curves
intersecting transversally at a single point. The map contG

R : X → Z defines an equivariant conic
bundle over a smooth curve .

3. C2 > 0 , N1(X)G = R and K−1
X is ample, i.e., X is a Del Pezzo surface. The map contG

R : X → Z
is constant, Z is a point.

Proof. Let R be a G-extremal ray with KX · R < 0. It follows from Lemma 2.10 that the ray R can
be spanned by a 1-cycle of the form C = GC0 for a rational curve C0. Let n = |GC0| and write
C = ∑n

i=1 Ci where the Ci correspond to gC0 for some g ∈ G. We distinguish three cases according
to the sign of the self-intersection of C.

The case C2 < 0

We write 0 > C2 = ∑i C2
i + ∑i 6=j Ci · Cj. Since Ci are effective curves we know Ci · Cj ≥ 0 for all

i 6= j. Since all curves Ci have the same negative self-intersection and by assumption, KX · C =
∑i KX · Ci = n(KX · Ci) < 0 the adjunction formula reads 2g(Ci) − 2 = −2 = KX · Ci + C2

i .
Consequently, KX · Ci = −1 and C2

i = −1. It remains to show that all Ci are disjoint. We assume
the contrary and without loss of generality C1 ∩ C2 6= ∅. Now gC1 ∩ gC2 6= ∅ for all g ∈ G and
∑i 6=j Ci · Cj ≥ n. This is however contrary to 0 > C2 = ∑i C2

i + ∑i 6=j Ci · Cj = −n + ∑i 6=j Ci · Cj.

We let contG
R : X → Z be the blow-down of

⋃
g∈G gC0 which is equivariant with respect to

the induced action on Z and fulfills (contG
R)∗OX = OZ. If D is an irreducible curve such that

contG
R(D) = {point}, then D = gC0 for some g ∈ G. In particular, GD = GC0 = C and [GD] ∈ R.

Conversely, if [GD] ∈ R for some irreducible curve D, then [GD] = λ[C] for some λ ∈ R≥0. Now
(GD) · C = λC2 < 0. It follows that D is an irreducible component of C.

The case C2 > 0

This case is treated in precisely the same way as the corresponding case in the standard contrac-
tion theorem. Our aim is to show that [C] is in the interior of NE(X)G. This is a consequence of
the following lemma.

Lemma 2.16. Let X be a projective surface and let L be an ample line bundle on X. Then the set Q =
{[E] ∈ N1(X) | E2 > 0} has two connected components Q+ = {[E] ∈ Q |L · E > 0} and Q− = {[E] ∈
Q |L · E < 0}. Moreover, Q+ ⊂ NE(X).
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This result follows from the Hodge Index Theorem (cf. Theorem IV.2.14 in [BHPVdV04]) and the
fact, that E2 > 0 implies that either E or −E is effective. For a proof of this lemma, we refer the
reader to Corollary 1.21 in [KM98].

We consider an effective cycle C = ∑ Ci with C2 > 0. By the above lemma, [C] is contained in
Q+ which is an open subset of N1(X) contained in NE(X). It follows that [C] lies in the interior
of NE(X). The G-extremal ray R = R≥0[C] can only lie in the interior if NE(X)G = R. By
assumption KX · R < 0, so that KX is negative on NE(X)G\{0} and therefore on NE(X)\{0}.
The anticanonical bundle K−1

X is ample by Kleiman ampleness criterion and X is a Del Pezzo
surface.

We can define a constant map contG
R mapping X to a point Z which is the equivariant contraction

of R = NE(X) in the sense of Definition 2.14.

The case C2 = 0

Our aim is to show that for some m > 0 the linear system |mC| defines a conic bundle structure
on X. The argument is seperated into a number of lemmata. For the convenience of the reader, we
include also the proofs of well-known preparatory lemmata which do not involve group actions.
Recall that O(D) denotes the line bundle associated to the divisor D on X.

Lemma 2.17. H2(X,O(mC)) = 0 for m� 0.

Proof. By Serre’s duality (cf. Theorem I.5.3 in [BHPVdV04])

h2(X,O(mC)) = h0(O(−mC)⊗KX).

Since C is an effective divisor on X, it follows that h0(O(−mC)⊗KX) = 0 for m� 0.

Lemma 2.18. For m� 0 the dimension h0(X,O(mC)) of H0(X,O(mC)) is at least two.

Proof. Let m be such that h2(X,O(mC)) = 0. For a line bundle L on X we denote by χ(L) =
∑i(−1)ihi(X, L) the Euler characteristic of L. Using the theorem of Riemann-Roch (cf. Theorem
V.1.6 in [Har77]),

h0(X,O(mC)) ≥ h0(X,O(mC))− h1(X,O(mC))

= h0(X,O(mC))− h1(X,O(mC)) + h2(X,O(mC))

= χ(O(mC))

= χ(O) +
1
2
(O(mC)⊗K−1

X ) · (mC)

C2=0= χ(O)− m
2
KX · C.

Now KXC < 0 implies the desired behaviour of h0(X,O(mC)).

For a divisor D on X we denote by |D| the complete linear system of D, i.e., the set of all effective
divisors linearly equivalent to D. A point p ∈ X is called a base point of |D| if p ∈ support(C) for
all C ∈ |D|.
Lemma 2.19. There exists m′ > 0 such that the linear system |m′C| is base point free.
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Proof. We first exclude a positive dimensional set of base points. Let m be chosen such that
h0(X,O(mC)) ≥ 2. We denote by B the fixed part of the linear system |mC|, i.e., the biggest divisor
B such that each D ∈ |mC| can be decomposed as D = B + ED for some effective divisor ED. The
support of B is the union of all positive dimensional components of the set of base points of |mC|.
We assume that B is nonempty. The choice of m guarantees that |mC| is not fixed, i.e., there exists
D ∈ |mC| with D 6= B. Since supp(B) ⊂ {s = 0} for all s ∈ Γ(X,O(mC)), each irreducible com-
ponent of supp(B) is an irreducible component of C and G-invariance of C implies G-invariance
of the fixed part of |mC|. It follows that B = m0C for some m0 < m. Decomposing |mC| into the
fixed part B = m0C and the remaining free part |(m−m0)C| shows that some multiple |m′C| for
m′ > 0 has no fixed components. The linear system |m′C| has no isolated base points since these
would correspond to isolated points of intersection of divisors linearly equivalent to m′C. Such
intersections are excluded by C2 = 0.

We consider the base point free linear system |m′C| and the induced morphism

ϕ = ϕ|m′C| :X → ϕ(X) ⊂ P(Γ(X,O(m′C))∗)

x 7→ {s ∈ Γ(X,O(m′C)) | s(x) = 0}

Since C is G-invariant, it follows that ϕ is an equivariant map with respect to action of G on
P(Γ(X,O(m′C))∗) induced by pullback of sections.

Let us study the fibers of ϕ. Let z be a linear hyperplane in Γ(X,O(m′C)). By definition, ϕ−1(z) =⋂
s∈z(s)0 where (s)0 denotes the zero set of the section s. Since (s)0 is linearly equivalent to m′C

and C2 = 0, the intersection
⋂

s∈z(s)0 does not consist of isolated points but all (s)0 with s ∈ z
have a common component. In particular, each fiber is one-dimensional.

Let f : X → Z be the Stein factorization of ϕ : X → ϕ(X). The space Z is normal and 1-
dimensional, i.e., Z is a smooth curve. Note that there is a G-action on the smooth curve Z such
that f is equivariant.

Lemma 2.20. The map f : X → Z defines an equivariant conic bundle, i.e., an equivariant fibration with
general fiber isomorphic to P1.

Proof. Let F be a smooth fiber of f . By construction, F is a component of (s)0 for some s ∈
Γ(X,O(m′C)). We can find an effective 1-cycle D such that (s)0 = F + D. Averaging over the
group G we obtain ∑g∈G gF + ∑g∈G gD = ∑g∈G g(s)0. Recalling (s)0 ∼ m′C and [C] ∈ NE(X)G

we deduce
[ ∑
g∈G

gF + ∑
g∈G

gD] = [ ∑
g∈G

g(s)0] = m′[ ∑
g∈G

gC] = m|G|[C]

showing that [∑g∈G gF + ∑g∈G gD] in contained in the G-extremal ray generated by [C]. Now by
the definition of extremality [∑g∈G gF] = λ[C] ∈ R>0[C] and therefore KX · (∑g∈G gF) < 0. This
implies KX F < 0.

In order to determine the self-intersection of F, we first observe (∑g∈G gF)2 = λ2C2 = 0. Since
F is a fiber of a G-equivariant fibration, we know that ∑g∈G gF = kF + kF1 + · · · + kFl where
F, F1, . . . Fl are distinct fibers of f and k ∈N>0. Now 0 = (∑g∈G gF)2 = (l + 1)k2F2 shows F2 = 0.
The adjunction formula then implies g(F) = 0 and F is isomorphic to P1.

The map contG
R := f is equivariant and fulfills f∗OX = OZ by Stein’s factorization theorem. Let

D be an irreducible curve in X such that f maps D to a point, i.e., D is contained in a fiber of f .
Going through the same arguments as above one checks that [GD] ∈ R. Conversely, if D is an
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irreducible curve in X such that [GD] ∈ R it follows that (GD) · C = 0. If D is not contracted by
f , then f (D) = Z and D meets every fiber of f . In particular, D ·C > 0, a contradiction. It follows
that D must be contracted by f .

This completes the proof of the equivariant contraction theorem.

The singular fibers of the conic bundle in case 2 of the theorem above are characterized by the
following lemma.

Lemma 2.21. Let R = R>0[C] be a KX-negative G-extremal ray with C2 = 0. Let contG
R := f : X → Z

be the equivariant contraction of R defining a conic bundle structure on X. Then every singular fiber of f
is a union of two (-1)-curves intersecting transversally.

Proof. Let F be a singular fiber of f . The same argument as in the previous lemma yields that
KX · F < 0 and F2 = 0. Since F is connected, adjunction implies that the arithmetic genus of
F is zero and KX · F = −2. It follows from the assumption on F being singular that F must be
reducible. Let F = ∑ Fi be the decomposition into irreducible components. Now g(F) = 0 implies
g(Fi) = 0 for all i.

We apply the same argument as above to the component Fi of F: after averaging over G we
deduce that GFi is in the G-extremal ray R and KX · Fi < 0. Since −2 = KX · F = ∑KX · Fi, we
may conclude that F = F1 + F2 and F2

i = −1. The desired result follows.

G-minimal models of surfaces

Let X be a surface with G-action such that KX is not nef, i.e., NE(X)KX<0 is nonempty.

Lemma 2.22. There exists a G-extremal ray R such that KX · R < 0.

Proof. Let [C] ∈ NE(X)KX<0 6= ∅ and consider [GC] ∈ NE(X)G. The G-orbit or G-average of a
KX-negative effective curve is again KX-negative. It follows that NE(X)G

KX<0 is nonempty. Let L
be a G-invariant ample line bundle on X. By the cone theorem, for any ε > 0

NE(X)G = NE(X)G
(KX+εL)≥0 + ∑

finite
R≥0G[Ci].

where KX · Ci < 0 for all i. Since NE(X)G
KX<0 is nonempty, we may choose ε > 0 such that

NE(X)G 6= NE(X)G
(KX+εL)≥0. If the ray R1 = R≥0G[C1] is not extremal in NE(X)G, then its

generator G[C1] can be decomposed as a sum of elements of NE(X)G not contained in R1. It
follows that

NE(X)G = NE(X)G
(KX+εL)≥0 + ∑

i 6=1
finite

R≥0G[Ci],

i.e., the ray R1 is superfluous in the formula. By assumption NE(X)G 6= NE(X)G
(KX+εL)≥0 and

we may therefore not remove all rays Ri from the formula and at least one ray Ri = R≥0G[Ci] is
G-extremal.

We apply the equivariant contraction theorem to X: In case 1 we obtain from X a new surface
Z by blowing down a G-orbit of disjoint (-1)-curves. There is a canonically defined holomorphic
G-action on Z such that the blow-down is equivariant. If KZ is not nef, we repeat the procedure
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which will stop after a finite number of steps. In case 2 we obtain an equivariant conic bundle
structure on X. In case 3 we conclude that X is a Del Pezzo surface with G-action. We call the
G-surface obtained from X at the end of this procedure a G-minimal model of X .

As a special case, we consider a rational surface X with G-action. Since the canonical bundle KX
of a rational surface X is never nef (cf. Theorem VI.2.1 in [BHPVdV04]), a G-minimal model of
X is an equivariant conic bundle over Z or a Del Pezzo surface with G-action. Note that the base
curve Z must be rational: if Z is not rational, one finds nonzero holomorphic one-forms on Z.
Pulling these back to X gives rise to nonzero holomorphic one-forms on the rational surface X, a
contradiction.

This proves the well-known classification of G-minimal models of rational surfaces (cf. [Man67],
[Isk80]). Although this classification does classically not rely on Mori theory, the proof given
above is based on Mori’s approach. We therefore refer to an equivariant reduction Y → Ymin as
an equivariant Mori reduction.

In the following chapters we will apply the equivariant minimal model program to quotients of
K3-surfaces by nonsymplectic automorphisms.





3 Centralizers of antisymplectic
involutions

This chapter is dedicated to a rough classification of K3-surfaces with antisymplectic involutions
centralized by large groups of symplectic transformations (Theorem 3.25).

We consider a K3-surface X with an action of a finite group G × C2 < Aut(X) and assume that
the action of G is by symplectic transformations whereas C2 is generated by an antisymplectic
involution σ centralizing G. Furthermore, we assume that FixX(σ) 6= ∅. Let π : X → X/σ = Y
denote the quotient map. The quotient surface Y is a smooth rational G-surface to which we apply
the equivariant minimal model program developed in the previous chapter. A G-minimal model
of Y can either be a Del Pezzo surface or an equivariant conic bundle over P1. In the later case,
the possibilities for G are limited by the classification of finite groups with an effective action on
P1

Remark 3.1. The classification of finite subgroups of SU(2, C) (or SO(3, R)) yields the following
list of finite groups with an effective action on P1:

• cyclic groups Cn

• dihedral groups D2n

• the tetrahedral group T12
∼= A4

• the octahedral group O24
∼= S4

• the icosahedral group I60 ∼= A5

If G is any finite group acting on a space X, we refer to the number of elements in an orbit G.x =
{g.x | g ∈ G} as the length of the G-orbit G.x. Note that the length of a T12-orbit in P1 is at least
four, the length of an O24-orbit in P1 is at least six, and the length of an I60-orbit in P1 is at least
twelve.

Lemma 3.2. If a G-minimal model Ymin of Y is an equivariant conic bundle, then |G| ≤ 96.

Proof. Let ϕ : Ymin → P1 be an equivariant conic bundle structure on Ymin. By definition, the
general fiber of ϕ is isomorphic to P1. We consider the induced action of G on the base P1. If this

33



34 Chapter 3. Centralizers of antisymplectic involutions

action is effective, then G is among the groups specified in the remark above. Since the maximal
order of an element in G is eight (cf. Remark 1.7), it follows that the order G is bounded by 60.

If the action of G on the base P1 is not effective, every element n of the ineffectivity N < G has
two fixed points in the general fiber. This gives rise to a positive-dimensional n-fixed point set in
Ymin and Y. A symplectic automorphism however has only isolated fixed points. It follows that
the action of n on X coincides with the action of σ on π−1(FixY(N)). In particular, the order of n
is two. Since N acts effectively on the general fiber, it follows that N is isomorphic to either C2 or
C2 × C2.

If G/N is isomorphic to the icosahedral group I60 = A5, then G fits into the exact sequence
1 → N → G → A5 → 1 for N = C2 or C2 × C2. Let η be an element of order five inside A5. One
can find an element ξ of order five in G which is mapped to η. Since neither C2 nor C2 × C2 has
automorphisms of order five it follows that ξ centralizes the normal subgroup N. In particular,
there is a subgroup C2 × C5 ∼= C10 in G which is contrary to the assumption that G is a group of
symplectic transformations and therefore its elements have order at most eight.

If G/N is cyclic or dihedral, we again use the fact that the order of elements in G is bounded by 8
and conclude |G/N| ≤ 16. It follows that the maximal possible order of G/N is 24. Using |N| ≤ 4
we obtain |G| ≤ 96.

If |G| > 96, the lemma above allows us to restrict our classification to the case where a G-minimal
model Ymin of Y is a Del Pezzo surface. The next section is devoted to a brief introduction to Del
Pezzo surfaces and their automorphisms groups.

3.1 Del Pezzo surfaces

A Del Pezzo surface is a smooth surface Z such that the anticanonical bundle K−1
Z = OZ(−KZ) is

ample. The self-intersection number of the canonical divisor d := K2
Z is referred to as the degree of

the Del Pezzo surface and 1 ≤ d ≤ 9 (cf. Theorem 24.3 in [Man74]).

Example 3.3. Let Z = { f3 = 0} ⊂ P3 be a smooth cubic surface. The anticanonical bundle K−1
Z

of Z is given by the restriction of the hyperplane bundle OP3(1) to Z and therefore ample.

As a consequence of the adjunction formula, an irreducible curve with negative self-intersection
on a Del Pezzo surface is a (-1)-curve. The following theorem (cf. Theorem 24.4 in [Man74]) gives
a classification of Del Pezzo surfaces according to their degree.

Theorem 3.4. Let Z be a Del Pezzo surface of degree d.

• If d = 9, then Z is isomorphic to P2.

• If d = 8, then Z is isomorphic to either P1 ×P1 or the blow-up of P2 in one point.

• If 1 ≤ d ≤ 7, then Z is isomorphic to the blow-up of P2 in 9− d points in general position, i.e., no
three points lie on one line and no six points lie on one conic.

In our later considerations of Del Pezzo surfaces Table 3.1 below (cf. Theorem 26.2 in [Man74])
specifying the number of (-1)-curves on a Del Pezzo surface of degree d will be very useful.
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degree d 1 2 3 4 5 6 7
number of (-1)-curves 240 56 27 16 10 6 3

Table 3.1: (-1)-curves on Del Pezzo surfaces

Example 3.5. Let Z be a Del Pezzo surface of degree 5. It follows from the theorem above that
Z is isomorphic to the blow-up of P2 in four points p1, . . . , p4 in general position. We denote by
Ei the preimage of pi is Z. Let Lij denote the line in P2 joining pi and pj and note that there are
precisely six lines of this type. The proper transform of Lij is a (-1)-curve in Z. We have thereby
specified all ten (-1)-curves in Z. Their incidence graph is known as the Petersen graph .

The following theorem summarizes properties of the anticanonical map, i.e., the map associated
to the linear system | − KZ| of the anticanonical divisor (Theorem 24.5 in [Man74] and Theorem
8.3.2 in [Dol08])

Theorem 3.6. Let Z be a Del Pezzo surface of degree d. If d ≥ 3, then K−1
Z is very ample and the

anticanonical map is a holomorphic embedding of Z into Pd such that the image of Z in Pd is of degree d.

If d = 2, then the anticanonical map is a holomorphic degree two cover ϕ : Z → P2 branched along a
smooth quartic curve.

If d = 1, then the linear system | − KZ| has exactly one base point p. Let Z′ → Z be the blow-up of p.
Then the pull-back of −KZ to Z′ defines an elliptic fibration f : Z′ → P1. The linear system | − 2KZ|
defines a finite map of degree two onto a quadric cone Q in P3. Its branch locus is given by the intersection
of Q with a cubic surface.

Our understanding of Del Pezzo surfaces as surfaces obtained by blowing-up points in P2 in
general position or as degree d subvarieties of Pd enables us the decide whether certain finite
groups G can occur as subgroups of the automorphisms group Aut(Z) of a Del Pezzo surface Z.

Example 3.7. Consider the semi-direct product G = C3 n C7 where the action of C3 on C7 is
defined by the embedding of C3 into Aut(C7) ∼= C6. The group G is a maximal subgroup of the
simple group L2(7) which is discussed below. Let Z be a Del Pezzo surface of degree d with an
effective action of G. Since G does not admit a two-dimensional representation, it follows that G
does not have fixed points in Z. In particular, d 6= 1. For the same reason, Z is not the blow-up
of P2 in one or two points. Since there is no nontrivial homomorphisms G → C2 and no injective
homomorphism G → PSL(2, C) it follows that G 6↪→ Aut(P1×P1) = (PSL2(C)× PSL2(C))oC2.

In many cases it can be useful to consider possible actions of a finite group G on the union of
(-1)-curves on a Del Pezzo surfaces.

Example 3.8. We consider G = L2(7), the simple group of order 168. Its maximal subgroups are
C3 n C7 and S4. Assume G acts effectively on a Del Pezzo surface Z of degree d. Since L2(7) does
not stabilize any smooth rational curve, the G-orbit of a (-1)-curve E ⊂ Z consists of 7, 8, 14, 24 or
more curves. It now follows from Table 3.1 that d 6= 3, 5, 6.

If d = 4, then the union of (-1)-curves on Z would consist of two G-orbits of length 8. In particular,
StabG(E) ∼= C3 n C7 for any (-1)-curve E ⊂ Z. Blowing down E to a point p ∈ Z′ induces an
action of C3nC7 on Z′ fixing p. Since C3nC7 does not admit a two-dimensional representation, it
follows that the normal subgroup C7 acts trivially on Z′ and therefore on Z. This is a contradiction.

Using the result of the previous example, it follows that Z is either a Del Pezzo surface of degree
2 or isomorphic to P2. Both cases will play a role in our discussion of K3-surfaces with an action
of L2(7).
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Example 3.9. Let be the Del Pezzo surface obtained by blowing up one point p in P2. Then its
automorphims group is the subgroup of Aut(P2) fixing the point p. Similarly, if Z is the Del
Pezzo surface obtained by blowing up two points p, q in P2, then Aut(Z) = G o C2 where G
is the subgroup of Aut(P2) fixing the two points p, q and C2 acts by switching the exceptional
curves Ep, Eq.

In the previous chapter we have shown that Del Pezzo surfaces can occur as equivariant minimal
models. It should be remarked that the blow-up of P2 in one or two points is never equivariantly
minimal: Let Z be the surface obtained by blowing up one or two points in P2. Then Z contains
an Aut(Z)-invariant (-1)-curve, namely the curve Ep in the first case and the proper transform of
the line joining p and q in the second case. This curve can always be blown down equivariantly.
Using the language of equivariant Mori theory introduced in the previous chapter, the Aut(Z)-
invariant (-1)-curve spans a Aut(Z)-extremal ray R of the cone of invariant curves NE(X)Aut(Z)

with KZ · R < 0. Its contraction defines an Aut(Z)-equivariant map to P2. In particular, Z is not
equivariantly minimal.

Remark 3.10. A complete classification of automorphisms groups of Del Pezzo surfaces can be
found in [Dol08].

3.2 Branch curves and Mori fibers

We return to the initial setup where X is a K3-surface with an action of G × 〈σ〉 and π : X →
X/σ = Y denotes the quotient map, and fix an equivariant Mori reduction M : Y → Ymin.

A rational curve E ⊂ Y is called a Mori fiber if it is contracted in some step of the equivariant Mori
reduction Y → Ymin. The set of all Mori fibers is denoted by E . Its cardinality |E | is denoted by m.
We let n denote the total number of rational curves in FixX(σ).

Lemma 3.11. The total number m of Mori fibers in Y is bounded by m ≤ n + 12− e(Ymin) ≤ n + 9.

Proof. Recall that FixX(σ) is a disjoint union of smooth curves. We choose a triangulation of
FixX(σ) and extend it to a triangulation of the surface X. The topological Euler characteristic of
the double cover is

e(X) = 24 = 2e(Y)− ∑
C⊂FixX(σ)

e(C)

= 2e(Y)− ∑
C⊂FixX(σ)

(2− 2g(C))

= 2e(Y)− 2n + ∑
C⊂FixX(σ)

g(C)≥1

(2g(C)− 2)

≥ 2e(Y)− 2n

= 2(e(Ymin) + m)− 2n

This yields m ≤ n + 12− e(Ymin), and e(Ymin) ≥ 3 completes the proof of the lemma.

Let R := FixX(σ) ⊂ X denote the ramification locus of π and let B := π(R) ⊂ Y be its branch
locus. In the following, we repeatedly use the fact that for a finite proper surjective holomorphic
map of complex manifolds (spaces) π : X → Y of degree d, the intersection number of pullback
divisors fulfills (π∗D1 · π∗D2) = d(D1 · D2).
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Lemma 3.12. Let E ∈ E be a Mori fiber such that E 6⊂ B and |E ∩ B| ≥ 2 or E · B ≥ 3. Then E2 = −1
and π−1(E) is a smooth rational curve in X. Furthermore, E · B = |E ∩ B| = 2.

Proof. Let k < 0 denote self-intersection number of E. By the remark above, the divisor π−1(E) =
π∗E has self-intersection 2k. Assume that π−1(E) is reducible and let Ẽ1, Ẽ2 denote its irre-
ducible components. They are rational and therefore, by adjunction on the K3-surface X, have
self-intersection number −2. Write

0 > 2k = (π−1(E))2 = Ẽ2
1 + Ẽ2

2 + 2(Ẽ1 · Ẽ2) = −4 + 2(Ẽ1 · Ẽ2).

Since Ẽ1 and Ẽ2 intersect at points in the preimage of E∩ B, we obtain Ẽ1 · Ẽ2 ≥ 2, a contradiction.
It follows that π−1(E) is irreducible. Consequently, k = −1 and π−1(E) is a smooth rational curve
with two σ-fixed points .

Remark 3.13. Let E ∈ E be a Mori fiber.

• If E ⊂ B, then E is the image of a rational curve in X and E2 = −4. (cf. Corollary 3.16
below).

• If E 6⊂ B and π−1(E) is irreducible, then 2E2 = (π−1(E))2 < 0. Adjunction on X implies
that (π−1(E))2 = −2 and that π−1(E) is a smooth rational curve in X. The action of σ has
two fixed points on π−1(E) and the restricted degree two map π|π−1(E) : π−1(E) → E is
necessarily branched, i.e., E ∩ B 6= ∅.

• If E 6⊂ B and π−1(E) = Ẽ1 + Ẽ2 is reducible, then

2E2 = Ẽ2
1︸︷︷︸

≥−2

+ 2(Ẽ1 · Ẽ2)︸ ︷︷ ︸
≥0

+ Ẽ2
2︸︷︷︸

≥−2

≥ −4.

In particular, E2 ∈ {−1,−2}.
– If E2 = −1, then Ẽ1 · Ẽ2 = 1 and E ∩ B 6= ∅.

– If E2 = −2, then Ẽ1 · Ẽ2 = 0 and E ∩ B = ∅.

In summary, a Mori fiber E 6⊂ B has self-intersection -1 if and only if E ∩ B 6= ∅ and self-
intersection -2 if and only if E ∩ B = ∅. A Mori fiber E has self-intersection -4 if and only if
E ⊂ B.

More generally, any (-1)-curve E on Y meets B in either one or two points. If |E ∩ B| = 1, then
π−1(E) = E1 ∪ E2 is reducible. If |E ∩ B| = 2, then π−1(E) is irreducible and meets FixX(σ) =
R = π−1(B) in two points.

Proposition 3.14. Every Mori fiber E ∈ E , E 6⊂ B meets the branch locus B in at most two points. If E
and B are tangent at p, then E ∩ B = {p} and (E · B)p = 2.

Proof. Let E ∈ E , E 6⊂ B and assume |E ∩ B| ≥ 2 or E · B ≥ 3. Then by the lemma above,
Ẽ = π−1(E) is a smooth rational curve in X. Since Ẽ 6⊂ FixX(σ), the involution σ has exactly two
fixed points on Ẽ showing |E ∩ B| = 2. It remains to show that the intersection is transversal.

To see this, let NẼ denote the normal bundle of Ẽ in X. We consider the induced action of σ on
NẼ by a bundle automorphism. Using an equivariant tubular neighbourhood theorem we may
equivariantly identify a neighbourhood of Ẽ in X with NẼ via a C∞-diffeomorphism. The σ-fixed
point curves intersecting Ẽ map to curves of σ-fixed points in NẼ intersecting the zero-section
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and vice versa. Let D be a curve of σ-fixed point in NẼ. If D is not a fiber of NẼ, it follows that
σ stabilizes all fibers intersecting D and the induced action of σ on the base must be trivial, a
contradiction. It follows that the σ-fixed point curves correspond to fibers of NẼ, and E and B
meet transversally.

By negation of the implication above, if E and B are tangent at p, then |E ∩ B| = 1 and E · B =
2.

3.2.1 Rational branch curves

In this section we find conditions on G, in particular conditions on the order of G, guaranteeing
the absence of rational curves in FixX(σ).

Lemma 3.15. Let π : X → Y be a cyclic degree two cover of surfaces and let C ⊂ X be a smooth curve
contained in the ramification locus of π. Then the image of C in Y has self-intersection (π(C))2 = 2C2.

Proof. We recall that the intersection of pullback divisors fulfills π∗D1 · π∗D2 = 2(D1 ·D2). In the
setup of the lemma, (π∗π(C))2 = 2(π(C))2. Now π∗π(C) ∼ 2C implies the desired result.

Note that the lemma above can also be proved by considering the normal bundle NC of C and the
induced action of σ on it. The normal bundle Nπ(C) is isomorphic to N2

C. Since the self-intersection
of a curve is the degree of the normal bundle restricted to the curve, the formula follows.

Corollary 3.16. Let X be a K3-surface and let π : X → Y be a cyclic degree two cover. Then a rational
branch curve of π has self-intersection -4.

Proof. Let C be a rational curve on the K3-surface X. Then by adjunction C2 = −2 and the image
π(C) in Y is a (-4)-curve by Lemma 3.15 above.

On a Del Pezzo surface a curve with negative self-intersection necessarily has self-intersection -1.
So if Ymin is a Del Pezzo surface, all rational branch curves of π, which have self-intersection -4
by Corollary 3.16, need to be modified by the Mori reduction when passing to Ymin and therefore
have nonempty intersection with the union of Mori fibers.

An important tool in the study of rational branch curves is provided by the following lemma
which describes the behaviour of self-intersection numbers under monoidal transformations.

Lemma 3.17. Let X̃ and X be smooth projective surfaces and let b : X̃ → X be the blow-down of a (-1)-
curve E ⊂ X̃. For a curve B ⊂ X̃ having no common component with E the self-intersection of its image
in X is given by

b(B)2 = B2 + (E · B)2.

Proof. We may choose an ample divisor H in X with p 6∈ supp(H) and D linearly equivalent to
b(B) + H such that p 6∈ supp(D). Since b is biholomorphic away from p, we know

(b(B) + H)2 = D2 = (b∗D)2 = (b∗((b(B) + H))2.

Using (b∗H)2 = H2 and b∗(b(B)) · b∗H = b(B) · H we find b(B)2 = (b∗B)2. Now b∗B = B + µE
where µ denotes the multiplicity of the point p ∈ b(B). This multiplicity equals the intersection
multiplicity E · B. Therefore,

b(B)2 = (b∗B)2 = (B + µE)2 = B2 + 2µ2 − µ2 = B2 + µ2.

and the lemma follows.
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We denote by C the set of rational branch curves of π. The total number |C| of these curves is
denoted by n. The union of all Mori fibers not contained in the branch locus B is denoted by

⋃
Ei.

Let C≥k = {C ∈ C | |C ∩⋃ Ei| ≥ k} be the set of those rational branch curves C which meet
⋃

Ei in
at least k distinct points and let |C≥k| = rk. We let E≥k denote the set of Mori fibers E 6⊂ B which
intersect some C in C≥k and define

Pk = {(p, E) | p ∈ C ∩ E, E ∈ E≥k, C ∈ C≥k} ⊆ Y× E≥k

and the projection map prk : Pk → E≥k mapping (p, E) to E. This map is surjective by definition
of E≥k and its fibers consist of ≤ 2 points by Proposition 3.14. Using |Pk| ≥ krk we see

|E≥k| ≥ k
2

rk. (3.1)

Let N be the largest positive integer such that C≥N = C, i.e., each rational ramification curve is
intersected at least N times by Mori fibers. A curve C ∈ C which is intersected precisely N times
by Mori fibers is referred to as a minimizing curve. In the following, let C be a minimizing curve
and let H = StabG(C) < G be the stabilizer of C in G.

Remark 3.18. The index of H in G is bounded by n = rN .

Bounds for n

A smooth rational curve on a K3-surface has self-intersection -2 and all curves in FixX(σ) are
disjoint. Therefore, the rational curves in FixX(σ) generate a sublattice of Pic(X) of signature
(0, n). It follows immediately that n ≤ 19.

A sharper bound n ≤ 16 for the number of disjoint (-2)-curves on a K3-surface has been obtained
by Nikulin [Nik76] and the following optimal bound in our setup is due to Zhang [Zha98], Theo-
rem 3.

Proposition 3.19. The total number of connected curves in the fixed point set of an antisymplectic invo-
lution on a K3-surface is bounded by 10.

Corollary 3.20. The number n of rational curves in FixX(σ) is at most 10. If n = 10, then FixX(σ) is a
union of rational curves.

In the following, we use Zhang’s bound n ≤ 10. Note, however, that all results can likewise be
obtained by using the weakest bound n ≤ 19.

For N ≥ 4 Zhang’s bound can be sharpened using the notion of Mori fibers and minimizing
curves.

Lemma 3.21. N
2 n ≤ n + 12− e(Ymin) ≤ n + 9.

Proof. Using Lemma 3.2 and inequality (3.1) N
2 n = N

2 rN ≤ |E≥N | ≤ |E | ≤ n + 12− e(Ymin) ≤
n + 9.

In the following we consider the stabilizer H of a minimizing curve C and using the above bounds
for n, we obtain bounds for |G|.
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A bound for |G|

Proposition 3.22. Let X be a K3-surface with an action of a finite group G × 〈σ〉 such that G <

Autsymp(X) and σ is an antisymplectic involution with fixed points. If |G| > 108, then FixX(σ) contains
no rational curves.

Proof. Assume that FixX(σ) contains rational curves and consider a minimizing curve C ⊂ B
and its stabilizer StabG(C) =: H. Since a symplectic automorphism on X does not admit a one-
dimensional set of fixed points, it follows that the action of H on C is effective and H is among the
groups discussed in Remark 3.1. We recall the possible lengths of H-orbits in C: the length of an
orbit of a dihedral group is at least two, the length of a T12-orbit in P1 is at least four, the length
of an O24-orbit in P1 is at least six, and the length of an I60-orbit in P1 is at least twelve.

Let Ymin be a G-minimal model of X/σ = Y. Recall that by Lemma 3.2 Ymin is a Del Pezzo surface.
Each rational branch curve is a (-4)-curve in Y. Since its image in Ymin has self-intersection ≥ −1,
it must intersect Mori fibers.

• If N = 1, i.e., the rational curve C meets the union of Mori fibers in exactly one point p, then
p is a fixed point of the H-action on C. In particular, H is a cyclic group Ck. By Remark 1.7
k ≤ 8. Since the index of H in G is bounded by n ≤ 10, it follows that |G| ≤ 80.

• If N = 2, then H is either a cyclic or a dihedral group. By Proposition 3.10 in [Muk88]
the maximal order of a dihedral group of symplectic automorphisms on a K3-surface is 12.
We first assume H ∼= D2m and that the G-orbit G.C of the rational branch curve C has the
maximal length n = |G.C| = 10, i.e., B = G · C. Each curve in G · C meets the union
of Mori fibers in precisely two points forming an D2m-orbit. If a Mori fiber EC meets the
curve C twice, then it follows from Proposition 3.14 that E meets no other curve in B. The
contraction of E transforms C into a singular curve of self-intersection zero. The Del Pezzo
surface Ymin does however not admit a curve of this type. It follows, that E meets a Mori
fiber E′ which is contracted in a later step of the Mori reduction and meets no other Mori
fiber than E′. The described configuration GE ∪ GE′ requires a total number of at least 20
Mori fibers and therefore contradicts Lemma 3.2. If C meets two distinct Mori fibers E1, E2,
each of these two can meet at most one further curve in B. The contraction of E1 and E2
transforms C into a (-2)-curve. As above, the existence of further Mori fibers meeting Ei
follows. Again, by invariance, the total number of Mori fibers exceeds 20, a contradiction.
It follows that either H is cyclic or |G.C| ≤ 9. Both imply |G| ≤ 108.

• If N = 3, let S = {p1, p2, p3} be the points of intersection of C with the union
⋃

Ei of Mori
fibers. The set S is H-invariant. It follows that H is either trivial or isomorphic to C2, C3 or
D6 and that |G| ≤ 60

• If N = 4, it follows from Lemma 3.21 that n ≤ 9. Now |H| ≤ 12 implies |G| ≤ 108. The
bound for the order of H is attained by the tetrahedral group T12. If the group G does not
contain a tetrahedral group, then |H| ≤ 8 and |G| ≤ 72.

• If N = 5, the largest possible group acting on C such that there is an invariant subset of
cardinality 5 is the dihedral group D10. Since 3.21 implies n ≤ 6, we conclude |G| ≤ 60.

• If N = 6, then n ≤ 4 and |H| ≤ 24 implies |G| ≤ 96. This bound is attained if and only if
H ∼= O24. If there is no octahedral group in G, then |H| ≤ 12 and |G| ≤ 48.
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• If N ≥ 12, then n = 1 and H = G. The maximal order 60 is attained by the icosahedral
group.

• If 6 < N < 12, we combine n ≤ 4 and |H| ≤ 24 to obtain |G| ≤ 96. If H is not the octahedral
group, then |H| ≤ 16 and |G| ≤ 64.

The case by case discussion shows that the existence of a rational curve in B implies |G| ≤ 108
and the proposition follows.

Remark 3.23. If the group G under consideration does not contain certain subgroups (such as
large dihedral groups or T12, O24 or I60) then the condition |G| > 108 in the proposition above can
be improved and non-existence of rational ramification curves also follows for smaller G.

3.2.2 Elliptic branch curves

The aim of this section is to find conditions on the order of G which allow us to exclude elliptic
curves in FixX(σ). We prove:

Proposition 3.24. Let X be a K3-surface with an action of a finite group G × 〈σ〉 such that G <

Autsymp(X) and σ is an antisymplectic involution with fixed points. If |G| > 108, then FixX(σ) contains
neither rational nor elliptic ramification curves.

Proof. By the previous proposition FixX(σ) contains no rational curves. It follows from Nikulin’s
description of FixX(σ) (cf. Theorem 1.12) that it is either a single curve of genus g ≥ 1 or the
disjoint union of two elliptic curves.

Let T ⊂ B be an elliptic branch curve and let H := StabG(T). If H 6= G, then H has index two
in G. The action of H on T is effective. The automorphism group Aut(T) of T is a semidirect
product Ln T, where L is a linear cyclic group of order at most 6. We consider the projection
prL : Aut(T) → L and let λ ∈ PrL(H) be a generating root of unity. We consider T as a quotient
C/Γ and choose h ∈ H with h(z) = λz + ω and t ∈ T such that ω + (1 − λ)t = 0. After
conjugation with the translation z 7→ z + t the group H < Aut(T) inherits the semidirect product
structure of Aut(T), i.e.,

H = (H ∩ L)n (H ∩ T).

We refer to this decomposition as the normal form of H. By Lemma 3.2 a G-minimal model of Y
is a Del Pezzo surface and therefore does not admit elliptic curves with self-intersection zero. It
follows that T meets the union

⋃
Ei of Mori fibers. Let E be a Mori fiber meeting T. By Proposition

3.14 |T ∩ E| ∈ {1, 2}. The stabilzer of E in H is denoted by StabH(E). Since the total number of
Mori fibers is bounded by 9 (cf. Lemma 3.2), the index of StabH(E) in H is bounded by 9.

If T ∩ E = {p}, then StabH(E) is a cyclic group of order less than or equal to six. It follows that
|G| ≤ 6 · 9 · 2 = 108.

If T ∩ E = {p1, p2}, then B ∩ E = T ∩ E and the stabilizer StabG(E) of E in G is contained in H. If
both points p1, p2 are fixed by StabG(E), then |StabG(E)| ≤ 6. If p1, p2 form a StabG(E)-orbit, then
in the normal form |StabG(E) ∩ T| = 2. It follows that StabG(E) is either C2 or D4 = C2 × C2. The
index of StabG(E) in G is bounded by 9 and |G| ≤ 54.

In summary, the existence of an elliptic curve in B implies |G| ≤ 108 and the proposition follows.
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3.3 Rough classification

With the preparations of the previous sections we may now turn to a classification result for K3-
surfaces with antisymplectic involution centralized by a large group.

Theorem 3.25. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic
involution σ such that Fix(σ) 6= ∅. If |G| > 96, then Y is a G-minimal Del Pezzo surface and there are
no rational or elliptic curves in Fix(σ). In particular, Fix(σ) is a single smooth curve C with g(C) ≥ 3
and π(C) ∼ −2KY, where KY denotes the canonical divisor on Y.

Proof. The group G is a subgroup of one of the eleven groups on Mukai’s list [Muk88] (cf. Theo-
rem 1.13 and Table 1.2). The orders of these Mukai groups are 48, 72, 120, 168, 192, 288, 360, 384,
960. None of these groups can have a subgroup G with 96 < |G| < 120. In particular, the order of
G is at least 120.

We may therefore apply the results of the previous two sections and conclude that π : X → Y is
branched along a single smooth curve C of general type. Its genus g(C) must be ≥ 3 by Hurwitz’
formula. It remains to show that Y is G-minimal.

Assume the contrary and let E ⊂ Y be a Mori fiber with E2 = −1. As before we let B ⊂ Y denote
the branch locus of π : X → Y. By Remark 3.13 E ∩ B 6= ∅. It follows that |E ∩ B| ∈ {1, 2}. Let
StabG(E) denote the stabilizer of E in G.

If π−1(E) is reducible its two irreducible components meet transversally in one point correspond-
ing to {p} = E∩ B. The curve E is tangent to B at p and we consider the linearization of the action
of StabG(E) at p. If the action of StabG(E) on E is not effective, the linearization of the ineffectivity
I < StabG(E) yields a trivial action of I on the tangent line of B at p. It follows that the action of I
is trivial in a neighbourhood of π−1(p) ∈ R = π−1(B). This is contrary to the assumption that G
acts symplectically on X. Consequently, the action of StabG(E) on E is effective and in particular,
StabG(E) is a cyclic group.

If π−1(E) is irreducible, then it is a smooth rational curve with an effective action of StabG(E). It
follows that StabG(E) is either cyclic or dihedral. The largest dihedral group with a symplectic
action on a K3-surface is D12 (Proposition 3.10 in [Muk88]).

We conclude that the order of StabG(E) is bounded 12 and the index of GE in G is > 9. By Lemma
3.2 the total number m of Mori fibers however satifies m ≤ 9. This contradiction shows that Y is
G-minimal and, in particular, a Del Pezzo surface.

Remark 3.26. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic
involution σ with FixX(σ) 6= ∅ and let E be a (-1)-curve on Y = X/σ. Then the argument above
can be applied to see that the stabilizer of E in G is cyclic or dihedral and therefore has order at
most 12.

In the following chapter, the classification above is applied and extended to the case where G is a
maximal group of symplectic transformations on a K3-surface.



4 Mukai groups centralized by
antisymplectic involutions

In this chapter we consider K3-surfaces with a symplectic action of one of the eleven groups from
Mukai’s list (Table 1.2) and assume that it is centralized by an antisymplectic involution. We
prove the following classification result.

Theorem 4.1. Let G be a Mukai group acting on a K3-surface X by symplectic transformations and σ be
an antisymplectic involution on X centralizing G with FixX(σ) 6= ∅. Then the pair (X, G) is in Table 4.1
below. In particular, for groups G numbered 4-8 on Mukai’s list, there does not exist a K3-surface with an
action of G× C2 with the properties above.

G |G| K3-surface X

1a L2(7) 168 {x3
1x2 + x3

2x3 + x3
3x1 + x4

4 = 0} ⊂ P3

1b L2(7) 168 Double cover of P2 branched along

{x5
1x2 + x5

3x1 + x5
2x3 − 5x2

1x2
2x2

3 = 0}
2 A6 360 Double cover of P2 branched along

{10x3
1x3

2 + 9x5
1x3 + 9x3

2x3
3 − 45x2

1x2
2x2

3 − 135x1x2x4
3 + 27x6

3 = 0}
3a S5 120 {∑5

i=1 xi = ∑6
i=1 x2

1 = ∑5
i=1 x3

i = 0} ⊂ P5

3b S5 120 Double cover of P2 branched along

{FS5 = 0}
9 N72 72 {x3

1 + x3
2 + x3

3 + x3
4 = x1x2 + x3x4 + x2

5 = 0} ⊂ P4

10 M9 72 Double cover of P2 branched along

{x6
1 + y6

2 + x6
3 − 10(x3

1x3
2 + x3

2x3
3 + x3

3x3
1) = 0}

11a T48 48 Double cover of P2 branched along

{x1x2(x4
1 − x4

2) + x6
3 = 0}

11b T48 48 Double cover of {x0x1(x4
0 − x4

1) + x3
2 + x2

3 = 0} ⊂ P(1, 1, 2, 3)

branched along {x2 = 0}

Table 4.1: K3-surfaces with G× C2-symmetry

43
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The polynomial FS5 in case 3b) is given by

2(x4yz + xy4z + xyz4)− 2(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4)

+2(x3y3 + x3z3 + y3z3) + x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3 − 6x2y2z2.

Remark 4.2. The examples 1a, 3a, 9, 10, and 11a appaer in Mukai’s list, the remaining cases 1b, 2,
3b, and 11b provide additional examples of K3-surfaces with maximal symplectic symmetry.

For the proof of this theorem we consider each group separately and apply the following general
strategy.

For a K3-surface X with G× C2-symmetry we consider the quotient Y = X/C2 and a G-minimal
model Ymin of the rational surface Y. We show that Ymin is a Del Pezzo surface and investigate
which Del Pezzo surfaces admit an action of the group G.

It is then essential to study the branch locus B of the covering X → Y. As a first step, we exclude
rational and elliptic curves in B. In order to exclude rational branch curves, we study their images
in Ymin and their intersection with the union of Mori fibers.

We then deduce that B consists of a single curve of genus≥ 2 with an effective action of the group
G. The possible genera of B are restricted by the nature of the group G and the Riemann-Hurwitz
formula for the quotient of B by an appropriate normal subgroup N of G. The equations of B or
X given in Table 4.1 are derived using invariant theory.

Throughout the remainder of this chapter, the Euler characteristic formula

24 = e(X) = 2e(Ymin) + 2m− 2n + (2g− 2)︸ ︷︷ ︸
if non-rational

branch curve exists

is exploited various times. Here m denotes the total number of Mori contractions of the reduction
Y → Ymin, the total number of rational branch curves is denoted by n and g is the genus of a
non-rational branch curve.

All classification results are up to equivariant equivalence:

Definition 4.3. Let (X1, σ1) and (X2, σ2) be K3-surfaces with antisymplectic involution and let G
be a finite group acting on X1 and X2 by

αi : G → Autsymp(Xi),

such that αi(g) ◦ σi = σi ◦ αi(g) for i = 1, 2 and all g ∈ G. Then the surfaces (X1, σ1) and (X2, σ2)
are considered equivariantly equivalent if there exist a biholomorphic map ϕ : X1 → X2 and a
group automorphism ψ ∈ Aut(G) such that

α2(g)ϕ(x) = ϕ(α1(ψ(g))x) and σ2(ϕ(x)) = ϕ(σ1(x)).

for all x ∈ X1 and all g ∈ G.

More generally, two surfaces Y1 and Y2, without additional structure such as a symplectic form or
an involution, with actions of a finite group G

αi : G → Aut(Yi)

are considered equivariantly equivalent if there exist a biholomorphic map ϕ : Y1 → Y2 and a
group automorphism ψ ∈ Aut(G) such that

α2(g)ϕ(y) = ϕ(α1(ψ(g))y)

for all y ∈ Y1 and all g ∈ G.
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This notion differs from the notion of equivalence in representation theory. Two non-equivalent
linear represenations of a group G can induce equivalent actions on the projective plane if they
differ by an outer automorphism of the group.

Remark 4.4. If two K3-surfaces (X1, σ1) and (X2, σ2) are G-equivariantly equivalent, then the
quotient surfaces Xi/σi are equivariantly equivalent with respect to the induced action of G.

Conversely, let Y be a rational surface with two action of a finite group G which are equivalent
in the above sense and let ϕ ∈ Aut(Y) be the isomorphims identifying these two actions. We
consider a smooth G-invariant curve B linearly equivalent to −2KY and the K3-surfaces XB and
Xϕ(B) obtained as double covers branched along B and ϕ(B) equipped with their respective anti-
symplectic covering involution.

Note that XB and Xϕ(B) are constructed as subsets of the anticanonical line bundle where the
involution σ is canonically defined. The induced biholomorphic map ϕX : XB → Xϕ(B) fulfills
σ ◦ ϕX = ϕX ◦ σ by construction.

If all elements of the group G can be lifted to symplectic transformations on XB and Xϕ(B), then
the central degree two extensions E of G acting on XB, Xϕ(B), respectively, split as E = Esymp×C2
with Esymp = G. In this case the group G acts by symplectic transformations on XB and Xϕ(B)
and these are G-equivariantly equivalent in strong sense introduced above. This follows from the
assumption that the corresponding G-actions on the base Y are equivalent and the fact that for
each g ∈ G ⊂ Aut(Y) there is only one choice of symplectic lifting g̃ ∈ Aut(XB) and Aut(Xϕ(B)).

In the following sections we will go through the lists of Mukai groups and for each group we
prove the classification claimed in Theorem 4.1.

4.1 The group L2(7)

Let G ∼= L2(7) be the finite simple group of order 168. If G acts on a K3-surface X, then the
kernels of the homomorphism G → Aut(X) and the homomorphism G → Ω2(X) are trivial and
the action is effective and symplectic. Let σ be an antisymplectic involution on X centralizing G.
Since G has an element of order seven which is known to have exactly three fixed points p1, p2, p3
and σ acts on this set of three points, we know that FixX(σ) 6= ∅. By Theorem 3.25, the K3-surface
X is a double cover of a Del Pezzo surface Y. Our study of Del Pezzo surfaces with an action of
L2(7) in Example 3.8 has revealed that Y is either P2 or a Del Pezzo surface of degree 2. In the first
case, π : X → Y is branched along a curve of genus 10, in the second case π is branched along a
curve of genus 3. Section 5.5 in the next chapter is devoted to an inspection of K3-surfaces with
an action of L2(7)× C2 and a precise classification result in the setup above will be obtained. The
pair (X, G) is equivariantly isomorphic to either the surface 1a) or 1b).

4.2 The group A6

Let G ∼= A6 be the alternating group degree 6. Ii is a simple group and if it acts on a K3-surface X,
then this action effective and symplectic. Let σ be an antisymplectic involution on X centralizing
G and assume that FixX(σ) 6= ∅. By Theorem 3.25, the K3-surface X is a double cover of a Del
Pezzo surface Y with an effective action of A6.

Lemma 4.5. The Del Pezzo surface Y is isomorphic to P2 with a uniquely determined action of A6 given
by a nontrivial central extension V = 3.A6 of degree three known as Valentiner’s group.
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Proof. We go through the list of Del Pezzo surfaces.

• If Y has degree one, then | − KY| has precisely one base point which would have to be an
A6-fixed point. This is contrary to the fact that A6 has no faithful two-dimensional repre-
sentation.

• We recall that the stabilizer of a (-1)-curve E in Y is either cyclic or dihedral (Remark 3.26).
In particular, its order is at most 12 and therefore its index in A6 is at least 30. Using Table
3.1 we see that Y can not be a Del Pezzo surface of degree 2,3,4,5,6.

• Since the blow-up of P2 in one point is never G-minimal, it remains to exclude Y ∼= P1 ×
P1. Assume there is an action of A6 on P1 × P1. Since A6 has no subgroups of index
two, it follows that A6 < PSL(2, C) × PSL(2, C) and both canonical projections are A6-
equivariant. Since A6 has neither an effective action on P1 nor nontrivial normal subgroups
of ineffectivity, it follows that A6 acts trvially on Y.

It follows that Y ∼= P2. The action of A6 on P2 is given by a degree three central extension of
A6. Since A6 has no faithful three-dimensional representation, this extension is nontrivial and
isomorphic the unique nontrivial degree three extension V = 3.A6 known as Valentiner’s group.
Up to equivariant equivalence, there is a unique action of A6 on P2. This follows from the clas-
sification of finite subgroup of SL3(C) (cf. [MBD16], [Bli17], and [YY93]) and can also be derived
as follows: An action of A6 on P2 is given by a threedimensional projective representation. We
wish to show that any two actions induced by ρ1, ρ2 are equivalent. We restrict the projective
representations ρ1 and ρ2 to the subgroup A5. The restricted representations are linear and after
a change of coordinates ρ1(A5) = ρ2(A5) ⊂ SL3(C). We fix a subgroup A4 in A5 and consider
its normalizer N in A6. The groups N and A4 generate the full group A6 and it suffices to prove
that ρ1(N) = ρ2(N). This is shown by considering an explicit three-dimensional representation
of A4 < A5 and the normalizer N of A4 inside PSL3(C). The group A4 has index two in N and
therefore N = ρ1(N) = ρ2(N)..

The covering X → Y is branched along an invariant curve C of degree six. This curve is defined
by an invariant polynomial FA6 of degree six, which is unique by Molien’s formula. Its explicit
equation is derived in [Cra99]. In appropriately chosen coordinates,

FA6(x1, x2, x3) = 10x3
1x3

2 + 9x5
1x3 + 9x3

2x3
3 − 45x2

1x2
2x2

3 − 135x1x2x4
3 + 27x6

3.

If a K3-surface with A6 × C2-symmetry exists, then it must be the double cover of P2 branched
along {FA6 = 0}.
The action of A6 on P2 induces an action of a central degree two extension of E on the double
cover branched along {FA6 = 0},

{id} → C2 → E→ A6 → {id}.

Let Esymp 6= E be the normal subgroup of symplectic automorphisms in E. Since A6 is simple,
it follows that Esymp is mapped surjectively to A6 and Esymp ∼= A6. In particular, the group E
splits as Esymp×C2 where C2 is generated by the antisymplectic covering involution. This proves
the existence of a unique K3-surface with A6 × C2-symmetry. We refer to this K3-surface as the
Valentiner surface.
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4.3 The group S5

In this section we study K3-surfaces with an symplectic action of the symmetric group S5 central-
ized by an antisymplectic involution.

Let X be a K3-surface with a symplectic action of G = S5 and let σ denote an antisymplectic
involution centralizing G. We assume that FixX(σ) 6= ∅. We may apply Theorem 3.25 which
yields that X/σ = Y is a G-minimal Del Pezzo surface and π : X → Y is branched along a smooth
connected curve B of genus

g(B) = 13− e(Y).

We will see in the following that only very few Del Pezzo surfaces admit an effective action of S5
or a smooth S5-invariant curve of appropriate genus.

Lemma 4.6. The degree d(Y) of the Del Pezzo surface Y is either three or five.

Proof. We prove the statement by excluding Del Pezzo surfaces of degree 6= 3, 5.

• Assume Y ∼= P2. Then G = S5 is acting effectively on P2, i.e., S5 ↪→ PSL3(C). Let G̃ denote
the preimage of G in SL3(C). Since A5 has no nontrivial central extension of degree three,
it follows that the preimage of A5 < S5 in G̃ splits as Ã5 = A5 × C3. It has index two in G̃
and therefore is a normal subgroup of G̃. Let g ∈ S5 be any transposition and pick g̃ in its
preimage with g̃2 = id. Now g̃ and A5 generate a copy of S5 in SL3(C). The action of S5
is given by a three-dimensional representation. The irreducible representations of S5 have
dimensions 1, 4, 5 or 6 and it follows that there is no faithful three-dimensional represenation
of S5 and therefore no effective S5-action on P2.

• Assume that Y is isomorphic to P1×P1. We investigate the action of S5 = A5oC2 and note
that A5 is a simple group. The automorphism group Aut(Y) is given by

(PSL2(C)× PSL2(C))o C2.

It follows that A5 < PSL2(C)×PSL2(C), and the action of A5 respects the product structure,
i.e, the canonical projections onto the factors are A5-equivariant. If A5 acts trivially on one
of the factors, then the generator τ of the outer C2 stabilizes this factor because A5 must
act nontrivially on the second factor. It follows that S5 stablizes the second factor which is
impossible since there is no effective action of S5 on P1. It follows that A5 acts effectively on
both factors and τ exchanges them. We consider an element λ of order five in A5 and chose
coordinates on P1 ×P1 such that λ acts by

([z1 : z2], [w1 : w2]) 7→ ([ξz1 : z2], [ξaw1 : w2])

for some a ∈ {1, 2, 3, 4} and ξ5 = 1. The automorphism λ has four fixed points

p1 = ([1 : 0], [1 : 0]), p2 = ([1 : 0], [0 : 1]), p3 = ([0 : 1], [1 : 0]), p4 = ([0 : 1], [0 : 1]).

Since it lifts to a symplectic automorphism on the K3-surface X with four fixed points, all
fixed points must lie on the branch curve. The branch curve B ⊂ Y is a smooth invariant
curve linearly equivalent to −2KY and is therefore given by an S5-semi-invariant polyno-
mial f of bidegree (4, 4). Since f must be invariant with respect to the subgroup A5, it is
a linear combination of λ-invariant monomials of bidegree (4, 4). For each choice of a one
lists all λ-invariant monomials of bidegree (4, 4). For a = 1 these are

z1z3
2w4

1, z2
1z2

2w3
1w2, z3

1z2w2
1w2

2, z4
1w1w3

2, z4
2w4

2.
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Since f must vanish at p1 . . . p4, one sees that f may not contain z4
2w4

2. The remaining mono-
mials have a common component z1w1 such that f factorizes and C must be reducible, a
contradiction. The same argument can be carried out for each choice of a. It follows that the
action of S5 on P1 ×P1 does not admit irreducble curves of bidegree (4, 4). This eliminates
the case Y ∼= P1 ×P1.

• Again using the fact that the largest subgroup of S5 which can stabilize a (-1)-curve in Y is
the group D12 of index 10, it follows that the number of (-1)-curves in a G-orbit is at least 10.
A Del Pezzo surface of degree six has six (-1)-curves and therefore d(Y) 6= 6. A Del Pezzo
surface of degree four contains sixteen (-1)-curves. Since 16 does not divide the the order of
S5, the set of these curves is not a single G-orbit. As it cannot be the union of G-orbits either,
we conclude d(Y) 6= 4.

• If d(Y) = 2, then the anticanonical map defines an Aut(Y)-equivariant double cover of
P2. The induced action of S5 on P2 would have to be effective and therefore we obtain a
contradiction as in the case Y ∼= P2.

• If d(Y) = 1 then the anticanonical system | − KY| is known to have precisely one base point
which has to be fixed point of the action of S5. Since S5 has no faithful two-dimensional
representation, this is a contradiction.

Since we have considered all possible G-minimal Del Pezzo surfaces the proof of the lemma is
completed.

4.3.1 Double covers of Del Pezzo surfaces of degree three

The following example of a K3-surface X with an action of S5 × C2 such that X/σ is a Del Pezzo
surface of degree three can be found in Mukai’s list [Muk88] (cf. also Table 1.2).

Example 4.7. Let X be the K3-surface in P5 given by

5

∑
i=1

xi =
6

∑
i=1

x2
1 =

5

∑
i=1

x3
i = 0

and let S5 act on P5 by permuting the first five variables and by the character sgn on the last
variable. This induces an action on X.

The commutator subgroup S′5 = A5 < S5 acts by symplectic transformations. In order to show
that the full group acts symplectically, consider the transposition τ = (12) ∈ S5 acting on P5 by
[x1 : x2 : x3 : x4 : x5 : x6] 7→ [x2 : x1 : x3 : x4 : x5 : −x6]. One checks that the induced involution
on X has isolated fixed points and is therefore symplectic. It follows that S5 < Autsymp(X).

Let σ : P5 → P5 be the involution [x1 : x2 : x3 : x4 : x5 : x6] 7→ [x1 : x2 : x3 : x4 : x5 : −x6]. This
defines an involution on X with a positive-dimensional set of fixed point {x6 = 0} ∩X. Therefore
σ is an antisymplectic involution on X which centralizes the action of S5.

The quotient Y of X by σ is given by restricting then rational map [x1 : x2 : x3 : x4 : x5 : x6] 7→
[x1 : x2 : x3 : x4 : x5] to X. The surface Y is given by

{
5

∑
i=1

yi =
5

∑
i=1

y3
i = 0} ⊂ P4.

and is isomorphic to the Clebsch diagonal surface {z2
1z2 + z1z2

3 + z3z2
4 + z4z2

2 = 0} ⊂ P3 (cf.
Theorem 10.3.10 in [Dol08]), a Del Pezzo surface of degree three. The branch set B is given by
{∑5

i=1 y2
1 = 0} ∩Y ⊂ P4.
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By the following proposition, the example above is the unique K3-surface with S5×C2-symmetry
such that X/σ is a Del Pezzo surface of degree three.

Proposition 4.8. Let X be a K3-surface with a symplectic action of the group S5 centralized by an an-
tisymplectic involution σ. If Y = X/σ is a Del Pezzo surface of degree three, then X is equivariantly
isomorphic to Mukai’s S5-example {∑5

i=1 xi = ∑6
i=1 x2

1 = ∑5
i=1 x3

i = 0} ⊂ P5.

Proof. We consider the Aut(Y)-equivariant embedding of the Del Pezzo surface Y into P3 given
by the anticanonical map. Any automorphism of Y induced by an automorphism of the ambient
projective space.

It follows from the representation and invariant theory of the group S5 that a Del Pezzo surface of
degree three with an effective action of the group S5 is equivariantly isomorphic the Clebsch cubic
{z2

1z2 + z1z2
3 + z3z2

4 + z4z2
2 = 0} ⊂ P3 (cf. Theorems 10.3.9 and 10.3.10, Table 10.3 in [Dol08]).

The ramification curve B ⊂ Y is linearly equivalent to −2KY. We show that B is given by inter-
secting Y with a quadric in P3.

Applying the formula

h0(Y,O(−rKY)) = 1 +
1
2

r(r + 1)d(Y)

(cf. e.g. Lemma 8.3.1 in [Dol08]) to d = d(Y) = 3 and r = 2 we obtain h0(Y,O(−2KY)) = 10.
This is also the dimension of the space of sections of OP3(2) in P3 (homogeneous polynomials of
degree two in four variables). It follows that the restriction map

H0(P3,O(2))→ H0(Y,O(−2KY))

is surjective and B = Y ∩Q for some quadric Q = { f = 0} in P3.

Since B is an S5-invariant curve in Y, it follows that for each g ∈ S5 the intersection of gQ =
{ f ◦ g−1 = 0} with Y coincides with B. It follows that f |Y is a multiple of ( f ◦ g−1)|Y, i.e., there
exists a constant c ∈ C∗ such that ( f ◦ g−1)− c f vanishes identically on Y. Since Y is irreducible,
this implies f ◦ g−1 = c f . It follows that the polynomial f is an S5- semi-invariant and therefore
invariant with respect to the commutator subgroup A5.

We have previously noted that after a suitable linear change of coordinates the surface Y is given
by {∑5

i=1 yi = ∑5
i=1 y3

i = 0} ⊂ P4 where S5 acts by permutation. The action of any transposi-
tion on an S5-semi-invariant polynomial is given by multiplication by ±1. It follows that in the
coordinates [y1 : · · · : y5] the semi-invariant polynomial f is given by

a
5

∑
i=1

y2
i + b(

5

∑
i=1

yi)2 = 0

for some a, b ∈ C. Using the fact Y ⊂ {∑5
i=1 yi = 0} it follows that B is given by intersecting Y

with {∑5
i=1 y2

i = 0} and X is Mukai’s S5-example discussed in Example 4.7.

4.3.2 Double covers of Del Pezzo surfaces of degree five

A second class of candidates of K3-surfaces with S5 × C2-symmetry is given by double covers of
Del Pezzo surfaces of degree five.

Any two Del Pezzo surfaces of degree five are isomorphic and the automorphisms group of a Del
Pezzo surface Y of degree five is S5. The ten (-1)-curves on Y form a graph known as the Petersen
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graph. The Petersen graph has S5-symmetry and every symmetry of the abstract graph is induced
by a unique automorphism of the surface Y.

The following proposition classifies K3-surfaces with S5 × C2-symmetry which are double covers
of Del Pezzo surfaces of degree five.

Proposition 4.9. Let X be a K3-surface with a symplectic action of the group S5 centralized by an antisym-
plectic involution σ. If Y = X/σ is a Del Pezzo surface of degree five, then X is equivariantly isomorphic
to the minimal desingularization of the double cover of P2 branched along the sextic

{2(x4yz + xy4z + xyz4)− 2(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4) + 2(x3y3 + x3z3 + y3z3)

+ x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3 − 6x2y2z2 = 0}

Proof. Let B ⊂ Y denote the branch locus of the covering X → Y. The curve B is smooth, con-
nected, invariant with respect to the full automorphism group of Y and linearly equivalent to
−2KY.

The Del Pezzo surface Y is the blow-up of P2 in four points p1, p2, p3, p4 in general position. We
may choose coordinates [x : y : z] on P2 such that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1].

Let m : Y → P2 be the blow-down map and let Ei = m−1(pi). Consider the S4-action on P2 per-
muting the points {pi}. The isotropy at the point p1 is isomorphic to S3 and induces an effective
S3-action on E1.

Let E be any (-1)-curve on Y. By adjunction E · B = 2. Since Y contains precisely ten (-1)-curves
forming an S5-orbit, the group H = StabS5(E) has order 12 and all stabilizer groups of (-1)-curves
in Y are conjugate. It follows that the group H contains S3, which is acting effectively on E, and
therefore H is isomorphic to the dihedral group of order 12. The points of intersection B∩ E form
an H-invariant subset of E. Since H has no fixed points in E and precisely one orbit H.p = {p, q}
consisting of two elements, it follows that B meets E transversally in p and q.

In particular, each curve Ei meets B in two points and the image curve C = m(B) has nodes at
the four points pi. By Lemma 3.17, the self-intersection number of C is 20 + 4 · 4 = 36, so C is
a sextic curve. It is invariant with respect to the action of S4 given by permutation on p1, . . . p4.
For simplicity, we first only consider the action of S3 permuting p1, p2, p3 and conclude that C is
given by { f = ∑ ai fi = 0} as a linear combination of the following degree six polynomials

f1 = x6 + y6 + z6

f2 = x5y + x5z + xy5 + xz5 + y5z + yz6

f3 = x4yz + xy4z + xyz4

f4 = x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4

f5 = x3y3 + x3z3 + y3z3

f6 = x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3

f7 = x2y2z2

The fact that C passes through pi and is singular at pi yields a1 = a2 = 0 and

3a3 + 6a4 + 3a5 + 6a6 + a7 = 0.
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The two tangent lines of C at the node pi correspond to the unique Stab(Ei)-orbit of length two
in Ei. We consider the point p3 and the subgroup S3 < S4 stabilizing p3. The action of S3 on E3
is given by the linearized S3-action on the set of lines through p3. One checks that in local affine
coordinates (x, y) the unique orbit of length two corresponds to the line pair x2 − xy + y2 = 0.
Dehomogenizing f at p3, i.e., setting z = 1, we obtain the local equation fdehom of C at p3. The
polynomial fdehom modulo terms of order three or higher must be a multiple of x2 − xy + y2.
Therefore a3 = −a4.

Next we consider the intersection of C with the line L34 = {x = y} joining p3 and p4. We know
that f |L34 vanishes of order two at p3 and p4 and at one or two further points on L34.

Let L̃34 denote the proper transform of L34 inside the Del Pezzo surface Y. The curve L̃34 is a (-1)-
curve, hence its stabilizer StabG(L̃34) is isomorphic to D12 = S3 × C2. The factor C2 acts trivially
on L̃34. Since the intersection of L̃34 with B is StabG(L̃34) invariant, it follows that L̃34 ∩ B is the
unique S3-orbit a length two in L̃34.

We wish to transfer our determination of the unique S3-orbit of length two in E3 above to the
curve L̃34 using an automorphism of Y mapping E3 to L̃34. Consider the automorphism ϕ of Y
induced by the birational map of P2 given by

[x : y : z] 7→ [x(z− y) : z(x− y) : xz]

(cf. Theorem 10.2.2 in [Dol08]) and let ψ be the automorphism of Y induced by the permuta-
tion of the points p2 and p3 in P2. Then ψ ◦ ϕ is an automorphism of Y mapping E3 to L̃34.
If [X : Y] denote homogeneous coordinates on E3 induced by the affine coordinates (x, y) in
a neighbourhood of p3, then a point [X : Y] ∈ E3 is mapped to the point corresponding to
[X : X : X − Y] ∈ L34 ⊂ P2. It was derived above that the unique S3-orbit of length two in
E3 is given by X2 − XY + Y2 and it follows that the unique S3-orbit of length two in L̃34 corre-
sponds to the points [x : x : z] ∈ P2 fulfilling x2 − xz + z2 = 0.

Therefore, f |L34 is a multiple of polynomial given by x2(x− z)2(x2 − xz + z2). Comparing coeffi-
cients with f (x : x : z) yields

2a3 + 2a6 = 2a5 + 2a6

2a4 + a5 = 2a4 + a3

8a4 + 4a5 = 2a4 + 2a6 + a7

−6a4 − 3a5 = 2a5 + 2a6.

We conclude a3 = a5 = 2 = −a4, a6 = 1, and a7 = −6. So if X as in the lemma exists, it is the
double cover of Y branched along the proper transform of { f = 0} in Y, where

f (x, y, z) =2(x4yz + xy4z + xyz4)

− 2(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4)

+ 2(x3y3 + x3z3 + y3z3)

+ x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3

− 6x2y2z2.

In order to prove existence, let X be the minimal desingularisation of the double cover of P2
branched along { f = 0}. Then X is the double cover of the Del Pezzo surface Y of degree five
branched along the proper transform D of { f = 0} in Y. Since all automorphisms of Y are induced
by explicit biholomorphic or birational transformation of P2 one can check by direct computations
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that D is in fact invariant with respect to the action of Aut(Y) = S5. The covering involution σ is
antisymplectic.

On X there is an action of a central extension E of S5 by C2. Let Esymp be the subgroup of sym-
plectic automorphisms in E. Since E contains the antisymplectic covering involution Esymp 6= E.
The image N of Esymp in S5 is normal and therefore either N ∼= S5 or N ∼= A5.

If N ∼= A5 and |Esymp| = 60, then Esymp ∼= A5. Lifting any transposition from S5 to an element g
of order two in E, the group generated by g and Esymp inside E is isomorphic to S5. It follows that
E splits as S5 × C2 and E/Esymp ∼= C2 × C2. This is a contradiction.

If N ∼= A5 and |Esymp| = 120, then E = Esymp × C2, where the outer C2 is generated by the anti-
symplectic covering involution σ, and E/C2 = S5 implies that Esymp ∼= S5. This is contradictory
to the assumption N ∼= A5.

In the last remaining case N ∼= S5. Since Esymp 6= E, also Esymp ∼= S5 and E splits as Esymp × C2.
It follows that the action of S5 on Y induces an symplectic action of S5 on the double cover X
centralized by the antisymplectic covering involution. This completes the proof of the proposi-
tion.

4.3.3 Conclusion

We summarize our results of the previous subsections in the following theorem.

Theorem 4.10. Let X be a K3-surface with a symplectic action of the group S5 centralized by an antisym-
plectic involution σ with FixX(σ) 6= ∅. Then X is equivariantly isomorphic to either Mukai’s S5-example
or the minimal desingularization of the double cover of P2 branched along the sextic

{FS5(x1, x2, x3) =

2(x4yz + xy4z + xyz4)− 2(x4y2 + x4z2 + x2y4 + x2z4 + y4z2 + y2z4) + 2(x3y3 + x3z3 + y3z3)

+ x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3 − 6x2y2z2 = 0}.

4.4 The group M20 = C4
2 o A5

Proposition 4.11. There does not exist a K3-surface with a symplectic action of M20 centralized by an
antisymplectic involution σ with FixX(σ) 6= ∅.

Proof. Assume that a K3-surface X with these properties exists. Applying Theorem 3.25 we see
that X → Y is branched along a single M20-invariant smooth curve C on the Del Pezzo surface Y.
The curve C is neither rational nor elliptic. By Hurtwitz’ formula,

|Aut(C)| ≤ 84(g(C)− 1),

the genus of C must be at least twelve. Since C is linearly equivalent to −2KY, the adjunction
formula

2g(C)− 2 = (KY, C) + C2 = 2K2
Y

implies deg(Y) = K2
Y ≥ 11. This is a contradiction since the degree of a Del Pezzo surface is at

most nine.
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4.5 The group F384 = C4
2 o S4

Before we prove non-existence of K3-surfaces with F384 × C2-symmetry, we note the following
useful fact about S4-actions on Riemann surfaces.

Lemma 4.12. The group S4 does not admit an effective action on a Riemann surface of genus one or two.

Proof. The automorphism group of a Riemann surface T of genus one is of the form Aut(T) =
Ln T for L ∈ {C2, C4, C6}. We have seen before (cf. Proof of Proposition 3.24) that any subgroup
H of Aut(T) can be put into the form H = (H ∩ L)n (H ∩ T). The nontrivial normal subgroups
of S4 are A4 and C2 × C2. Since A4 is not Abelian and the quotient of S4 by S4 ∩ T = C2 × C2 is
not cyclic, we conclude that S4 is not a subgroup of Aut(T).

Assume that S4 acts effectively on a Riemann surface H of genus two. Note that H is hyperelliptic
and the quotient of H by the hyperelliptic involution is branched at six points. Since S4 has
no normal subgroup of order two, the induced action of S4 on the quotient P1 is effective and
therefore has precisely one orbit consisting of six points. The isotropy subgroup at these points
is isomorphic to C4. The isotropy group at the corresponding points in H must be isomorphic to
C4 × C2. Since this group is not cyclic, it cannot act effectively with fixed points on a Riemann
surface and we obtain a contradiction.

Proposition 4.13. There does not exists a K3-surface with a symplectic action of F384 centralized by an
antisymplectic involution σ with FixX(σ) 6= ∅.

Proof. As above, assume that a K3-surface X with these properties exists and apply Theorem 3.25
to see that X → Y is branched along a single F384-invariant smooth curve C on the Del Pezzo
surface Y. It follows from Hurwitz’ formula that the genus of C is at least 6.

We use the realization of F384 as a semi-direct product C2
4 o S4 (cf. [Muk88]) and consider the

quotient Q of the branch curve C by the normal subgroup N = C2
4 . On Q there is the induced

action of S4. It follows from the lemma above that Q is either rational or g(Q) > 2. In the second
case, if we apply the Riemann-Hurwitz formula to the covering C → Q, then

e(C) = 16e(Q)− branch point contributions ≤ −64

and g(C) ≥ 33. This contradicts the adjunction formula on the Del Pezzo surface Y and implies
that Q is a rational curve.

It follows from adjunction that K2
Y = g(C)− 1. Therefore, the degree of the Del Pezzo surface Y

is at least five. We consider the action of F384 on the configuration of (-1)-curves on Y and recall
that the order of a stabilizer of a (-1)-curve in Y is at most twelve (cf. Remark 3.26) and therefore
has index greater than or equal to 32 in G. It follows that Y is either P1 × P1 or P2. In the first
case, the canonical projections of P1×P1 are equivariant with respect to a subgroup of index two
in F384 and thereby contradict Lemma 3.2. Consequently, Y ∼= P2. In particular, g(C) = 10 and
e(C) = −18. It follows that the branch point contribution of the covering C → Q must be 50.
Since isotropy groups must be cyclic, the only possible isotropy subgroups of N = C2

4 at a point
in C are C2 and C4 and have index four or eight. The full branch point contribution must therefore
be a multiple of four. This contradiction yields the non-existence claimed.
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4.6 The group A4,4 = C4
2 o A3,3

By Sp,q for p + q = n we denote a subgroup Sp× Sq of Sn preserving a partition of the set {1, . . . , n}
into two subsets of cardinality p and q. The intersection of An with Sp.q is denoted by Ap,q.

Proposition 4.14. There does not exists a K3-surface with a symplectic action of A4,4 centralized by an
antisymplectic involution σ with FixX(σ) 6= ∅.

Proof. We again assume that a K3-surface with these properties exists. Applying Theorem 3.25 we
see that X → Y is branched along a single A4,4-invariant smooth curve C on the Del Pezzo surface
Y. The group A4,4 is a semi-direct product C4

2 o A3,3 (see e.g. [Muk88]). We consider the quotient
Q of C by the normal subgroup N ∼= C4

2 . On Q there is an action of A3,3. Since A3,3 contains the
subgroup C3×C3, which does not act on a rational curve, it follows that Q not rational. We apply
the Riemann-Hurwitz formula to the covering C → Q.

If Q is elliptic, then 2g(C) − 2 equals the branch point contribution of the covering C → Q.
As above, isotropy groups must be cyclic and the maximal possible isotropy group of the C4

2-
action on C is C2 and has index eight in C4

2 . Consequently, the branch point contribution at each
branch point is eight. Recall that any group H acting on the torus Q can be put into the form
H = (H ∩ L)n (H ∩ Q) for L ∈ {C2, C4, C6}. Since Q acts freely, the action of C3 × C3 < A3,3 on
the elliptic curve Q has orbits of length greater than or equal to three. Therefore, the total branch
point contribution must be greater than or equal to 24. In particular, g(C) = deg(Y) + 1 ≥ 13
contrary to deg(Y) ≤ 9.

If g(Q) ≥ 2, then g(C) ≥ 17 which is also contrary to deg(Y) ≤ 9

4.7 The groups T192 = (Q8 ∗Q8)o S3 and H192 = C4
2 oD12

By Q8 we denote the quaternion group {+1,−1, +I,−I, +J,−J, +K,−K} where I2 = J2 = K2 =
I JK = −1. The central product Q8 ∗ Q8 is defined as the quotient of Q8 × Q8 by the central
involution (−1,−1), i.e., Q8 ∗Q8 = (Q8 ×Q8)/(−1,−1).

Note that both groups T192 and H192 are semi-direct products C3
2 o S4 (cf. [Muk88]).

Proposition 4.15. For G = T192 or G = H192 there does not exists a K3-surface with a symplectic action
of G centralized by an antisymplectic involution σ with FixX(σ) 6= ∅.

Proof. Assume that a K3-surface with these properties exists. Applying Theorem 3.25 we see
that X → Y is branched along a single G-invariant smooth curve C on the Del Pezzo surface Y.
The genus of C is at least four by Hurwitz’ formula and therefore deg(Y) ≥ 3. We consider the
quotient Q of C by the normal subgroup N = C3

2 . By Lemma 4.12 the quotient Q is either rational
or g(Q) > 2. In the second case g(C) ≥ 19 and we obtain a contradiction to deg(Y) = g(C)− 1 ≤
9. It follows that Q is a rational curve.

We consider the action of G on the Del Pezzo surface Y of degree ≥ 3, in particular the induced
action on its configuration of (-1)-curves. By Remark 3.26 the stabilizer of a (-1)-curve in Y has in-
dex ≥ 16 in G and we may immediately exclude the cases deg(Y) = 3, 5, 6, 7. The automorphism
group of a Del Pezzo surface of degree four is C4

2 o Γ for Γ ∈ {C2, C4, S3, D10} (cf. [Dol08]). In
particular, the maximal possible order is 160 and therefore deg(Y) 6= 4.



4.8. The group N72 = C2
3 oD8 55

Assume that Y ∼= P1 ×P1. The canonical projection π1,2 : Y → P1 is equivariant with respect to
a subgroup H of G of index at most two. It follows that H fits into the exact sequences

{id} → I1 → H
(π1)∗→ H1 → {id}

{id} → I2 → H
(π2)∗→ H2 → {id}

where Ii
∼= C2 × C2 is the ineffectivity of the induced H-action on the base and Hi

∼= S4 (cf. proof
of Lemma 3.2). Since the action of G on P1 ×P1 is effective by assumption, it follows that I2 acts
effectively on π1(P1 ×P1). We find a set of four points in π1(P1 ×P1) with nontrivial isotropy
with respect to I2 ∼= C2 × C2. Since I2 is a normal subgroup of H, this set is H-invariant. The
action of H1

∼= S4 on π1(P1 ×P1) does however not admit invariant sets of cardinality four since
the minimal S4-orbit in P1 has length six.

We conclude that Y must be isomorphic to P2. It follows that g(C) = 10. Return to the covering
C → Q,

−18 = e(C) = 8 · e(Q)− branch point contributions.

Since Q is rational, the branch point contribution must 34. The possible isotropy of N = C3
2 at a

point in C is C2 and the full branch point contribution must be divisible by four. This contradiction
yields the desired non-existence.

4.8 The group N72 = C2
3 oD8

We let X be a K3-surface with a symplectic action of G = N72 centralized by an antisymplectic
involution σ with FixX(σ) 6= ∅. Note that in this case we may not apply Theorem 3.25 and
therefore begin by excluding that a G-minimal model of Y = X/σ is an equivariant conic bundle.

Lemma 4.16. A G-minimal model of Y is a Del Pezzo surface.

Proof. Assume the contrary and let Ymin be an equivariant conic bundle and a G-minimal model
of Y. We consider the induced action of G on the base B = P1 and denote by I C G the ineffectivity
of the G-action on B. Arguing as in the proof of Lemma 3.2, we see that I is trivial or isomorphic
to either C2 or C2×C2. In all cases the quotient G/I contains the subgroup C3×C3, which has no
effective action on the rational curve B.

As we will see, only very few Del Pezzo surfaces admit an effective action of the group N72. We
will explicitly use the group structure of N72 = C2

3 o D8: the action of D8 = C2 n (C2 × C2) =
〈α〉n (〈β〉 × 〈γ〉) = Aut(C3 × C3) on C3 × C3 is given by

α(a, b) = (b, a), β(a, b) = (a2, b), γ(a, b) = (a, b2).

As a first step we show:

Lemma 4.17. The degree of a Del Pezzo surface Ymin is at most four.

Proof. We exclude Del Pezzo surface of degree ≥ 5.

• A Del Pezzo surface of degree five has automorphims group S5 and N72 ≮ S5.
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• The automorphism group of a Del Pezzo surface of degree six is (C∗)2o (S3 × C2) (cf. The-
orem 10.2.1 in [Dol08]). Assume that N72 = C2

3 oD8 is contained in this group and consider
the intersection A = N72 ∩ (C∗)2. The quotient of N72 by A has order at most 12 and may
not contain a copy of C2

3 . Therefore, the order of A is at least six and A contains a copy of
C3. If |A| = 6, then A = C6 = C3 × C2 and C2 is central in N72. Using the group structure
of N72 specified above one finds that there is no copy of C2 in N72 centralizing C3 × C3 and
therefore C2 cannot be contained in the centre of N72. For every choice of C3 inside C3 × C3
there is precisely one element in {α, β, γ} acting trivially on it and the centralizer of C3 in-
side D8 is isomorphic to C2. If |A| > 6, then the centralizer of C3 in D8 has order greater
then 2, a contradiction.

• A Del Pezzo surface of degree seven is obtained by blowing-up to points p, q in P2. As was
mentioned before, such a surface is never G-minimal.

• If G acts on P1 × P1, then the canonical projections are equivariant with respect to a sub-
group H of index two in G. We consider one of these projections. The action of H induces
an effective action of H/I on the base P1. The group I is either trivial or isomorphic to C2
or C2 × C2. In all case we find an effective action of C2

3 on the base, a contradiction.

• It remains to exclude P2. If N72 acts on P2 we consider its embedding into PSL3(C), in
particular the realization of the subgroup C2

3 = 〈a〉 × 〈b〉 and its lifting to SL3(C).

We fix a preimage ã of a inside SL3(C) and may assume that ã is diagonal. Since the action
of a on P2 is induced by a symplectic action on X, it follows that a does not have a positive-
dimensional set of fixed point. In appropiately chosen coordinates

ã =

1 0 0
0 ξ 0
0 0 ξ2

 ,

where ξ is third root of unity. As a next step, we want to specify a preimage b̃ of b inside
SL3(C). Since a and b commute in PSL3(C), we know that

ãb̃ã−1b̃−1 = ξkidC3

for k ∈ {0, 1, 2}. Note that b̃ is not diagonal in the coordinates chosen above since this would
give rise to C2

3-fixed points in P2. As these correspond to C2
3-fixed points on the double cover

X → Y and a symplectic action of C2
3 ≮ SL2(C) on a K3-surface does not admit fixed points,

this is a contradiction. An explicit calculation yields

b̃ = b̃1 =

0 0 ∗
∗ 0 0
0 ∗ 0

 or b̃ = b̃2 =

0 ∗ 0
0 0 ∗
∗ 0 0

 .

We can introduce a change of coordinates commuting with ã such that

b̃ = b̃1 =

0 0 1
1 0 0
0 1 0

 or b̃ = b̃2 =

0 1 0
0 0 1
1 0 0

 .

Since b̃2
1 = b̃2, the two choices above correspond to the two choices of generators b and b2 of

〈b〉. We pick b̃ = b̃1.

The action of D8 on C2
3 is specified above and the element β ∈ D8 acts on C2

3 by a → a2 and
b→ b. There is no element T ∈ SL3(C) such that (projectively) TãT−1 = ã2 and Tb̃T−1 = b̃.
It follows that there is no action of N72 on P2.
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This completes the proof of the lemma.

As a next step, we study the possibility of rational curves in FixX(σ).

Lemma 4.18. There are no rational curves in FixX(σ).

Proof. Let n denote the total number of rational curves in FixX(σ) and recall n ≤ 10. If n 6= 0,
let C be a rational curve in the image of FixX(σ) in Y and let H = StabG(C) be its stabilzer. The
index of H in G is at most nine, therefore the order of H is at least eight. The action of H on C is
effective.

First note that G does not contain S4 = O24 as a subgroup. If this were the case, consider the
intersection S4 ∩ C2

3 and the quotient S4 → S4/(S4 ∩ C2
3) < D8. Since the only nontrivial normal

subgroups of S4 are A4 and C2 × C2, this leads to a contradiction.

Consequently, the order of H is at most twelve. In particular, n ≥ 6. Since C8 ≮ G, the group H is
not cyclic and any H-orbit on C consists of at least two points.

It follows from C2 = −4 that C must meet the union of Mori fibers and the union of Mori fibers
meets the curve C in at least two points. Recalling that each Mori fibers meets the branch locus
B in at most two points we see that at least n Mori fibers meeting B are required. However, no
configuration of n Mori fibers is sufficient to transform the curve C into a curve on a Del Pezzo
surface and further Mori fibers are required. By invariance, the total number m of Mori fibers
must be at least 2n.

Combining the Euler-characteristic formula

24 = 2e(Ymin) + 2m− 2n + 2g− 2︸ ︷︷ ︸
if non-rational

branch curve exists

with our observation deg(Ymin) ≤ 4, i.e., e(Ymin) ≥ 8 we see that n ≤ 4. However, it was shown
above, that if n 6= 0, then n ≥ 6. It follows that n = 0.

Proposition 4.19. The quotient surface Y is G-minimal and isomorphic to the Fermat cubic {x3
1 + x3

2 +
x3

3 + x3
4 = 0} ⊂ P3. Up to equivalence, there is a unique action of G on Y and the branch locus of X → Y

is given by {x1x2 + x3x4 = 0}. In particular, X is equivariantly isomorphic to Mukai’s N72-example.

Proof. We first show that the total number m of Mori fibers equals zero. By the Euler-characteristic
formula above, the number m is bounded by four. Using the fact that the maximal order of a
stabilizer group of a Mori fiber is twelve (cf. proof of Theorem 3.25) we see that Y must be G-
minimal.

In order to conclude that Y is the Fermat cubic we consult Dolgachev’s lists of automorphisms
groups of Del Pezzo surfaces of degree less than or equal to four ([Dol08] Section 10.2.2; Tables
10.3; 10,4; and 10.5): It follows immediately from the order of G that Y is not of degree two or
four. If G were a subgroup of an automorphism group of a Del Pezzo surface of degree one, it
would contain a central copy of C3. The group structure of N72 does however not allow this. After
excluding the cases deg(Y) ∈ {1, 2, 4} the result now follows from the uniqueness of the cubic
surface in P3 with an action of N72 (cf. Appendix A.1). The action of G on Y is induced by a
four-dimensional (projective) representation of G and the branch curve C ⊂ Y is the intersection
of Y with an invariant quadric (compare proof of Proposition 4.8).
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In the Appendix A.1 it is shown that there is a uniquely determined action of N72 on P3 and a
unique invariant quadric hypersurface {x1x2 + x3x4 = 0}. In particular, the branch curve in Y is
defined by {x1x2 + x3x4 = 0} ∩Y.

Mukai’s N72-example is defined by {x3
1 + x3

2 + x3
3 + x3

4 = x1x2 + x3x4 + x2
5 = 0} ⊂ P4. An anti-

symplectic involution centralizing the action of N72 is given by the map x5 7→ −x5. The quotient
of Mukai’s example by this involution is the Fermat cubic and the fixed point set of the involution
is given by {x1x2 + x3x4 = 0}.

4.9 The group M9 = C2
3 oQ8

Let G = M9 and let X be a K3-surface with a symplectic G-action centralized by the antisymplectic
involution σ such that FixX(σ) 6= ∅. We proceed in analogy to the case G = N72 above. Arguing
precisely as in the proof of Lemma 4.16 one shows.

Lemma 4.20. A G-minimal model of Y is a Del Pezzo surface.

We may exclude rational branch curves without studying configurations of Mori fibers.

Lemma 4.21. There are no rational curves in FixX(σ).

Proof. Let n be the total number of rational curves in FixX(σ). Assume n 6= 0, let C be a rational
curve in the image of FixX(σ) in Y and let H < G be its stabilizer. The action of H on C is effective.
We go through the list of finite groups with an effective action on a rational curve.

Since M9 is a group of symplectic transformations on a K3-surface, its element have order at most
eight. Clearly, A6 ≮ M9 and D10, D14, D16 ≮ M9. If S4 < M9 = C2

3 o Q8, then S4 ∩ C2
3 is a

normal subgroup of S4 and it is therefore trivial. Now S4 = S4/(S4 ∩C2
3) < M9/C2

3 = Q8 yields a
contradiction. The same argument can be carried out for A4, D8 and C8. If D12 < M9 = C2

3 oQ8,
then either D12 ∩ C2

3 = C3 and C2 × C2 = D12/C3 < M9/C2
3 = Q8 or D12 ∩ C2

3 = {id} and
D12 < Q8, both are impossible.

It follows that the subgroups of M9 admitting an effective action on a rational curve have index
greater than or equal to twelve. Therefore n ≥ 12, contrary to the bound n ≤ 10 obtained in
Corollary 3.20.

Proposition 4.22. The quotient surface Y is G-minimal and isomorphic to P2. Up to equivalence, there is
a unique action of G on Y and the branch locus of X → Y is given by {x6

1 + x6
2 + x6

3 − 10(x3
1x3

2 + x3
2x3

3 +
x3

3x3
1) = 0}. In particular, X is equivariantly isomorphic to Mukai’s M9-example.

Proof. We first check that Y is G-minimal. Again, we proceed as in the proof of Theorem 3.25 and
Lemma 4.21 above to see that the largest possible stablizer group of a Mori fiber is D6 < G. If Y
is not G-minimal, this implies that the total number of Mori fibers is ≥ 12, contradicting m ≤ 9.

Note that X → Y is not branched along one or two elliptic curves as this would imply e(Y) = 12
and contradict the fact that Y is a Del Pezzo surface.

Let D be the branch curve of X → Y and consider the quotient Q of D by the normal subgroup
N = C2

3 in G. On Q there is an action of Q8 implying that Q is not rational. We show that Q8 does
not act on an elliptic curve Q. If this were the case, consider the decomposition Q8 = (Q8 ∩Q)o
(Q8 ∩ L) where (Q8 ∩ L) is a nontrivial cyclic group. For any choice of generator of (Q8 ∩ L) the
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center {+1,−1} of Q8 is contained in (Q8 ∩ L). Let q : Q8 → Q8/(Q8 ∩ Q) ∼= Q8 ∩ L denote the
quotient homomorphism. The commutator subgroup Q′8 = {+1,−1} must be contained in the
kernel of q. This contradiction yields that Q8 does not act on an elliptic curve. It follows that the
genus of Q is at least two and the genus of D is at least ten. Adjunction on the Del Pezzo surface
Y now implies g = 10 and Y ∼= P2.

It is shown in Appendix A.2 that, up to natural equivalence, there is a unique action of M9 on the
projective plane. In suitably chosen coordinated the generators a, b of C2

3 are represented as

ã =

1 0 0
0 ξ 0
0 0 ξ2

 , b̃ =

0 1 0
0 0 1
1 0 0


and I, J ∈ Q8 are represented as

Ĩ =
1

ξ − ξ2

1 1 1
1 ξ ξ2

1 ξ2 ξ

 , J̃ =
1

ξ − ξ2

 1 ξ ξ

ξ2 ξ ξ2

ξ2 ξ2 ξ

 .

We study the action of M9 on then space of sextic curves. By restricting our consideration to
the subgroup C2

3 first, we see that a polynomial defining an invariant curve must be a linear
combination of the following polynomials:

f1 = x6
1 + x6

2 + x6
3;

f2 = x2
1x2

2x2
3;

f3 = x3
1x3

2 + x3
1x3

3 + x3
2x3

3;

f4 = x4
1x2x3 + x1x4

2x3 + x1x2x4
3.

Taking now the additional symmetries into account, we find three M9-invariant sextic curves,
namely

{ f1 − 10 f3 = x6
1 + x6

2 + x6
3 − 10(x3

1x3
2 + x3

2x3
3 + x3

3x3
1) = 0},

which is the example found by Mukai, and additionally

{ fa = f1 + (18− 3a) f2 + 2 f3 + a f4 = 0},

where a is a solution of the quadratic equation a2 − 6a + 36, i.e. a = −6ξ or a = −6ξ2. The
polynomial fa is invariant with respect to the action of M9 for a = −6ξ2 and semi-invariant if
a = −6ξ.

We wish to show that X is not the double cover of P2 branched along { fa = 0}. If this were the
case, consider the fixed point p = [0 : 1 : −1] of the automorphism I and note that fa(p) = 0.
So the π−1(p) consists of one point x ∈ X and we linearize the 〈I〉 × 〈σ〉 at x. In suitably chosen
coordintes the action of the symplectic automorphism I of order four is of the form (z, w) 7→
(iz,−iw). Since the action of σ commutes with I, the σ-quotient of X is locally given by

(z, w) 7→ (z2, w) or (z, w) 7→ (z, w2).

It follows that the action of I on Y is locally given by either(−1 0
0 −i

)
or

(
i 0
0 −1

)
.
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In particular, the local linearization of I at p has determinant 6= 1. By a direct computation using
the explicit form of Ĩ given above, in particular the facts that det( Ĩ) = 1 and Ĩv = v for [v] = p,
we obtain a contradiction.

This completes the proof of the proposition.

Remark 4.23. In the proof of the propostion above we have observed that an element of SL3(C)
does not necessarily lift to a symplectic transformation on the double cover of P2 branched along a
sextic given by an invariant polynomial. Mukai’s M9-example X is a double cover of P2 branched
along the sextic curve {x6

1 + x6
2 + x6

3 − 10(x3
1x3

2 + x3
2x3

3 + x3
3x3

1) = 0} and for this particular exam-
ple, the action of M9 does lift to a group of symplectic transformation as claimed by Mukai.

To see this consider the set {a, b, I, J} of generators of M9. Since a and b are commutators in
M9, they can be lifted to symplectic transformation a, b on X. For I, J consider the linearization
at the fixed point [0 : 1 : −1] and check that it has determinant one. Since [0 : 1 : −1] is not
contained in the branch set of the covering, its preimage in X consists of two points p1, p2. We
can lift I (J, respectively) to a transformation of X fixing both p1, p2 and a neighbourhood of p1 is
I-equivariantly isomorphic to a neighbourhood of [0 : 1 : −1] ∈ P2. In particular, the action of
the lifted element I (J, respectively) is symplectic. On X there is the action of a degree two central
extension E of M9,

{id} → C2 → E→ M9 → {id}.
The elements a, b, I, J generate a subgroup M̃9 of Esymp mapping onto M9. Since Esymp 6= E, the
order of M̃9 is 72 and it follows that M̃9 is isomorphic to M9. In particular E splits as Esymp × C2
with Esymp = M9.

4.10 The group T48 = Q8o S3

We let X be a K3-surface with an action of T48 × C2 where the action of G = T48 is symplectic and
the generator σ of C2 is antisymplectic and has fixed points. The action of S3 on Q8 is given as
follows: The element c of order three in S3 acts on Q8 by permuting I, J, K and an element d of
order two acts by exchanging I and J and mapping K to −K.

Lemma 4.24. A G-minimal model Ymin of Y is either P2, a Hirzebruch surface Σn with n > 2, or
e(Ymin) ≥ 9.

Proof. Let us first consider the case where Ymin is a Del Pezzo surface and go through the list of
possibilities.

• Let Ymin ∼= P1 ×P1. Since T48 acts on Ymin, both canonical projections are equivariant with
respect to the index two subgroup G′ = Q8 o C3. Since Q8 has no effective action on P1, it
follows that the subgroup Z = {+1,−1} < Q8 acts trivially on the base. Since this holds
with respect to both projections, the subgroup Z acts trivially on Ymin, a contradiction.

• Using the group structure of T48 one checks that the only nontrivial normal subgroup N of
T48 such that N ∩Q8 6= Q8 is the center Z = {+1,−1} of T48. It follows that T48 is neither a
subgroup of (C∗)2 o (S3 × C2) nor a subgroup of any of the automorphism groups C4

2 o Γ
for Γ ∈ {C2, C4, S3, D10} of a Del Pezzo surface of degree four. Furthermore, T48 ≮ S5. Thus
it follows that d(Ymin) 6= 4, 5, 6.
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So if Ymin is a Del Pezzo surface, then Ymin ∼= P2 or e(Ymin) ≥ 9 .

Let us now turn to the case where Ymin is an equivariant conic bundle. We first show that Ymin
is not a conic bundle with singular fibers. We assume the contrary and let p : Ymin → P1 be an
equivariant conic bundle with singular fibers. The center Z = {+1,−1} of G = T48 acts trivially
on the base an has two fixed points in the generic fiber. Let C1 and C2 denote the two curves of
Z-fixed points in Ymin. By Lemma 2.21 any singular fiber F is the union of two (-1)-curves F1, F2
meeting transversally in one point. We consider the action of Z on this union of curves. The group
Z does not act trivially on either component of F since linearization at a smooth point of F would
yield a trivial action of Z on Ymin. Consequently, it has either one or three fixed points on F. The
first is impossible since C1 and C2 intersect F in two points. It follows that Z stabilizes each curve
Fi. We linearize the action of Z at the point of intersection F1 ∩ F2. The intersection is transversal
and the action of Z is by −Id on TF1 ⊕ TF2 contradicting the fact the Z acts trivially on the base.
Thus Ymin is not a conic bundle with singular fibers.

If Ymin → P1 is a Hirzebruch surface Σn, then the action of T48 induces an effective action of S4
on the base P1.

The action of T48 on Σn stabilizes two disjoint sections E∞ and E0, the curves of Z-fixed points.
This is only possible if E2

0 = −E2
∞ = n. Removing the exceptional section E∞ from Σn, we obtain

the hyperplane bundle Hn of P1. Since T48 stabilizes the section E0, we chose this section to be
the zero section and conclude that the action of T48 on Hn is by bundle automorphisms.

If n = 2, then Hn is the anticanonical line bundle of P1 and the action of S4 on the base induces an
action of S4 on H2 by bundle automorphisms. It follows that T48 splits as S4×C2, a contradiction.
Thus, if Ymin is a Hirzebruch surface Σn, then n 6= 2.

Lemma 4.25. There are no rational curves in FixX(σ).

Proof. We let n denote the total number of rational curves in FixX(σ) and assume n > 0. Recall
n ≤ 10, let C be a rational curve in B = π(FixX(σ)) ⊂ Y and let H = StabG(C) < G be its
stabilizer group. The action of H on C is effective, the index of H in G is at most 8. Using the
quotient homomorphism T48 → T48/Q8 = S3 one checks that T48 does not contain O24 = S4 or
T12 = A4 as a subgroup. It follows that H is a cyclic or a dihedral group.

If H ∈ {C6, C8, D8}, then H and all conjugates of H in G contain the center Z = {+1,−1} of G.
It follows that Z has two fixed point on each curve gC for g ∈ G. Since there are six (or eight)
distinct curves gC in Y, it follows that Z has at least 12 fixed points in Y and in X. This contradicts
to assumption that Z < G acts symplectically on X and therefore has eight fixed points in the
K3-surface X.

It remains to study the cases H = D12 and H = D6 where n = 8 or n = 4.

We note that a Hirzebruch surface has precisely one curve with negative self-intersection and only
fibers have self-intersection zero. A Del Pezzo surface does not contains curves of self-intersection
less than −1. The rational branch curves must therefore meet the union of Mori fibers in Y.

The total number of Mori fibers is bounded by n + 9. We study the possible stabilizer subgroups
StabG(E) < G of Mori fibers. A Mori fiber E with self-intersection (-1) meets the branch locus B
in one or two points and its stabilizer is either cyclic or dihedral. If StabG(E) ∈ {C4, D8}, then
the points of intersection of E and B are fixed points of the center Z of G and we find too many
Z-fixed points on X.

Assume n = 4 and let R1, . . . R4 be the rational curves in B. We denote by R̃i their images in
Ymin. The total number m of Mori fibers is bounded by 12. We go through the list of possible
configurations:
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• If m = 4, there is no invariant configuration of Mori fibers such that the contraction maps
the four rational branch curves to a configuration on the Hirzebruch or Del Pezzo surface
Ymin.

• If m = 6, then StabG(E) = C8 and the points of intersection of E and B are Z-fixed. Since
Z has at most eight fixed points on B, it follows that each curve E meets B only once. The
images R̃i of the Ri contradict our observations about curves in Del Pezzo and Hirzebruch
surfaces.

• If m = 8 and all Mori fibers have self-intersection −1, then each Mori fiber meets
⋃

Ri in a
Z-fixed point. Since there at at most eight such points, it follows that each Mori fibers meets⋃

Ri only once and their contractions does not transform the curves Ri sufficiently.

• If m = 8 and only four Mori fibers have self-intersection −1, we consider the four Mori
fibers of the second reduction step. Each of these meets a Mori fiber E of the first step in
precisely one point. By invariance, this would have to be a fixed points of the stabilizer
StabG(E) = D12, a contradiction.

• If m = 12, then either e(Ymin) = 3 and there exist a branch curve Dg=2 of genus two or
e(Ymin) = 4 and B =

⋃
Ri. In the first case, Ymin ∼= P2 and twelve Mori fibers are not

sufficient to transform B = Dg=2 ∪ ⋃ Ri into a configuration of curves in the projective
plane. So Ymin = Σn for n > 2.

Since Z has two fixed points in each fiber of p : Σn → P1 the Z-action on Σn has two disjoint
curves of fixed points. As was remarked above, these curves are the exceptional section E∞

of self-intersection -n and a section E0 ∼ E∞ + nF of self-intersection n. Here F denotes a
fiber of p : Σn → P1. There is no automorphisms of Σn mapping E∞ to E0.

Each rational branch curve R̃i has two Z-fixed points. These are exchanged by an element
of StabG(Ri) and therefore both lie on either E∞ or E0, i.e., R̃i cannot have nontrivial in-
tersection with both E0 and E∞. By invariance all curves R̃i either meet E0 or E∞ and not
both.

Using the fact that ∑ R̃i is linearly equivalent to −2KΣn ∼ 4E∞ + (2n + 4)F we find that
R̃i · E∞ = 0 and n = 2, a contradiction to Lemma 4.24.

We have shown that all possible configurations in the case n 6= 4 lead to a contradiction. We now
turn to the case n = 8 and let R1, . . . R8 be the rational ramification curves. The total number of
Mori fibers is bounded by 16. Note that by invariance, the orbit of a Mori fiber meets

⋃
Ri in at

least 16 points or not at all. In particular, Mori fibers meeting Ri come in orbits of length ≥ 8. As
above, we go through the list of possible configurations.

• If m = 16, then the set of all Mori fibers consists of two orbits of length eight. If all 16 Mori
fibers meet B, then each meets B in one point and Ri is mapped to a (-2)-curve in Ymin. If
only eight Mori fibers meet B, then each of the eight Mori fibers of the second reduction step
meets one Mori fiber E of the first reduction step in one point. This point would have to be
a StabG(E)-fixed point. But if StabG(E) is cyclic, its fixed points coincide with the points
E ∩ B.

• If m = 12, then the set of all Mori fibers consists of a single G-orbit and each curve Ri
meets three distinct Mori fibers. Their contraction transforms Ri into a (-1)-curve on Ymin. It
follows that Ymin contains at least eight (-1)-curves and is a Del Pezzo surface of degree ≤ 5.
We have seen above that d(Ymin) 6= 4, 5 and therefore e(Ymin) ≥ 9. With m = 12 and n = 8,
this contradicts the Euler characteristic formula 24 = 2e(Ymin) + 2m− 2n + (2g− 2).
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• If m = 8 there is no invariant configuration of Mori fibers such that the contraction maps
the eight rational branch curves to a configuration on the Hirzebruch or Del Pezzo surface
Ymin

This completes the proof of the lemma.

Since there is an effective action of T48 on FixX(σ), it is neither an elliptic curve nor the union of
two elliptic curves. It follows that X → Y is branched along a single T48-invariant curve B with
g(B) ≥ 2.

Lemma 4.26. The genus of B is neither three nor four.

Proof. We consider the quotient Q = B/Z of the curve B by the center Z of G and apply the Euler
characteristic formula, e(B) = 2e(Q)− |FixB(Z)|. On Q there is an effective action of the group
G/Z = (C2 × C2)o C3 = S4. Using Lemma 4.12 we see that e(Q) ∈ {2,−4,−6,−8 . . . }.
If g(B) = 3, then e(B) = −4 and the only possibility is Q ∼= P1 and |FixB(Z)| = 8. In particular,
all Z-fixed points on X are contained in the curve B. Let A < G be the group generated by
I ∈ Q8 = {±1,±I,±J,±K}. The four fixed points of A in X are contained in FixX(Z) = FixB(Z)
and the quotient group A/Z ∼= C2 has four fixed points in Q. This is a contradiction.

If g(B) = 4, then e(B) = −6 and the only possibility is Q ∼= P1 and |FixB(Z)| = 10. This
contradicts the fact that Z has at most eight fixed points in B since it has precisely eight fixed
points in X.

In Lemma 4.24 we have reduced the classification to the cases e(Ymin) ∈ {3, 4, 9, 10, 11}. In the
following, we will exclude the cases e(Ymin) ∈ {4, 9, 10, } and describe the remaining cases more
precisely. Recall that the maximal possible stabilizer subgroup of a Mori fiber is D12, in particular,
m = 0 or m ≥ 4.

Lemma 4.27. If e(Ymin) = 3, then Ymin = Y = P2 and X → Y is branched along the curve {x1x2(x4
1 −

x4
2) + x6

3 = 0}. In particular, Y is equivariantly isomorphic to Mukai’s T48-example.

Proof. Let M : Y → P2 denote a Mori reduction of Y and let B ⊂ Y be the branch curve of the
covering X → Y. If Y = Ymin, then B = M(B) is a smooth sextic curve. If Y 6= Ymin, then the Euler
characteristic formula with m ∈ {4, 6, 8} shows that g(B) ∈ {2, 4, 6}. The case m = 6, g(B) = 4
has been excluded by the previous lemma.

If m = 4, then the stabilizer group of each Mori fiber is D12 and each Mori fiber meets B in two
points. Furthermore, since in this case g(B) = 6, the self-intersection of FixX(σ) in X equals ten
and therefore B2 = 20. The image M(B) of B in Ymin has self-intersection 20 + 4 · 4 = 36 and
follows to be an irreducible singular sextic.

If m = 8, then g(B) = 2 and B2 = 4. Since the self-intersection number M(B)2 must be a square,
one checks that all possible invariant configurations of Mori fibers yield M(B)2 = 36 and involve
Mori fibers meeting B is two points. In particular, M(B) is a singular sextic.

We study the action of T48 on the projective plane. As a first step, we may choose coordinates on
P2 such that the automorphism −1 ∈ Q8 < T48 is represented as

−̃1 =

−1 0 0
0 −1 0
0 0 1

 .
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We denote by V to the −1-eigenspace of this operator. For each element I, J, K there is a unique
choice Ĩ, J̃, K̃ in SL3(C) such that Ĩ2 = J̃2 = K̃2 = −̃1. One checks Ĩ J̃K̃ = −̃1. Therefore Ĩ, J̃, K̃
generate a subgroup of SL3(C) isomorphic to Q8. By construction Ĩ, J̃, K̃ stabilze the vector space
V. Up to isomorphisms, there is a unique faithful 2-dimensional representation of Q8 and it
follows that I, J, K are represented as

Ĩ =

−i 0 0
0 i 0
0 0 1

 , J̃ =

0 −1 0
1 0 0
0 0 1

 , K̃ =

0 i 0
i 0 0
0 0 1

 .

We recall that the action of S3 on Q8 is given as follows: The element c of order three in S3 acts on
Q8 by permuting I, J, K and an element d of order two acts by exchanging I and J and mapping

K to −K. With µ =
√

i
2 and ν = i√

2
it follows that the elements c and d are represented as

c̃ =

−iµ iµ 0
µ µ 0
0 0 1

 , d̃ =

−iν −ν 0
ν iν 0
0 0 −1

 .

In particular, there is a unique action of T48 on P2. In the following, we denote by [x1 : x2 : x3]
homogeneous coordintes such that the action of T48 is as above. Using the explicit form of the
T48-action and the fact that the commutator subgroup of T48 is Q8 o C3 one can check that any
invariant curve of degree six is of the form

Cλ = {x1x2(x4
1 − x4

2) + λx6
3 = 0}

In order to avoid this calculation, one can also argue that the polynomial x1x2(x4
1 − x4

2) is the
lowest order invariant of the octahedral group S4

∼= T48/Z.

The curve Cλ is smooth and it follows that Y = Ymin. We may adjust the coordinates equivariantly
such that λ = 1 and find that our surface X is precisely Mukai’s T48-example.

Remark 4.28. As claimed by Mukai, the action of T48 on P2 does indeed lift to a symplectic action
of T48 on the double cover of P2 branched along the invariant curve {x1x2(x4

1− x4
2)+ x6

3 = 0}. The
elements of the commutator subgroup can be lifted to symplectic transformation on the double
cover X.

The remaining generator d is an involution fixing the point [0 : 0 : 1]. Any involution τ with a
fixed point p outside the branch locus can be lifted to a symplectic involution on the double cover
X as follows:

The linearized action of τ at p has determinant±1. We consider the lifting τ̃ of τ fixing both points
in the preimage of p. Its linearization coincides with the linearization on the base and therefore
also has determinant ±1. In particular, τ̃ is an involution. It follows that either τ̃ or the second
choice of a lifting στ̃ acts symplectically on X.

The group generated by all lifted automorphisms is either isomorphic to T48 or to the full central
extension E

{id} → C2 → E→ T48 → {id}
acting on the double cover. Since Esymp 6= E the later is impossible it follows that E splits as
Esymp × C2 with Esymp = T48.

Finally, we return to the remaining possibilities e(Ymin) ∈ {4, 9, 10, 11}.
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Lemma 4.29. e(Ymin) 6∈ {4, 9, 10}.

Proof. Recalling that the genus of the branch curve B is neither three nor four and that m is either
zero or≥ 4, we may exclude e(Ymin) = 9, 10 using the Euler characteristic formula 12 = e(Ymin) +
m + g − 1. It remains to consider the case Ymin = Σn with n > 2 and we claim that this is
impossible.

Let M = Y → Ymin = Σn denote a (possibly trivial) Mori reduction of Y. The image M(B) of B
in Σn is linearly equivalent to −2KΣn . Now M(B) · E∞ = 2(2− n) < 0 and it follows that M(B)
contains the rational curve E∞. This is a contradiction since B does not contain any rational curves
by Lemma 4.25.

In the last remaining case, i.e., e(Ymin) = 11, the quotient surface Y is a G-minimal Del Pezzo
surface of degree 1. Consulting [Dol08], Table 10.5, we find that Y is a hypersurface in weighted
projective space P(1, 1, 2, 3) defined by the degree six equation

x0x1(x4
0 − x4

1) + x3
2 + x2

3.

This follows from the invariant theory of the group S4
∼= T48/Z and fact that Y is a double cover

of a quadric cone Q in P3 branched along the intersection of Q with a cubic hypersurface (cf.
Theorem 3.6).

The linear system of the anticanonical divisor KY has precisely one base point p. In coordinates
[x0 : x1 : x2 : x3] this point is given as [0 : 0 : 1 : i]. It is fixed by the action of T48. The linearization
of T48 at p is given by the unique faithful 2-dimensional represention of T48. This represention has
implicitly been discussed above as a subrepresentation V of the three-dimensional representation
of T48. It follows that there is a unique action of T48 on Y. The branch curve B is linearly equivalent
to −2KY, i.e., B = {s = 0} for a section s ∈ Γ(Y,O(−2KY)) which is either invariant or semi-
invariant.

By an adjunction formula for hypersurfaces in weighted projective space O(−2KY)) = OY(2).
The four-dimensional space of sections Γ(Y,O(−2KY)) is generated by the weighted homoge-
neous polynomials x2

0, x2
1, x0x1, x2. We consider the map Y → P(Γ(Y,O(−2KY))∗) associated to

| − 2KY|. Since this map is equivariant with respect to Aut(Y), the fixed point p is mapped to a
fixed point in P(Γ(Y,O(−2KY))∗). It follows that the section corresponding to the homogeneous
polynomial x2 is invariant or semi-invariant with respect to T48. It is the only section ofO(−2KY)
with this property since the representation of T48 on the span of x2

0, x2
1, x0x1 is irreducible.

The curve B ⊂ Y defined by s = 0 is connected and has arithmetic genus 2. Since T48 acts
effectively on B and does not act on P1 or a torus, it follows that B is nonsingular.

It remains to check that the action of T48 on Y lifts to a group of symplectic transformation on
the double cover X branched along B. First note that B does not contain the base point p. For
I, J, K, c ∈ T48 we we choose liftings I, J, K, c ∈ Aut(X) fixing both points in π−1(p) = {p1, p2}.
The linearization of I, J, K, c at p1 is the same as the linearization at p and in particular has de-
terminant one. By the general considerations in Remark 4.28 the involution d can be lifted to
a symplectic involution on X. The symplectic liftings of I, J, K, c, d generate a subgroup G̃ of
Aut(X) which is isomorphic to either T48 or to the central degree two extension of T48 acting on
X. In analogy to Remarks 4.23 and 4.28 we conclude that G̃ ∼= T48 and the action of T48 on Y
induces a symplectic action of T48 on the double cover X.

This completes the classification of K3-surfaces with T48 × C2-symmetry. We have shown:
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Theorem 4.30. Let X be a K3-surface with a symplectic action of the group T48 centralized by an antisym-
plectic involution σ with FixX(σ) 6= ∅. Then X is equivariantly isomorphic either to Mukai’s T48-example
or to the double cover of

{x0x1(x4
0 − x4

1) + x3
2 + x2

3 = 0} ⊂ P(1, 1, 2, 3)

branched along {x2 = 0}
Remark 4.31. The automorphism group of the Del Pezzo surface Y = {x0x1(x4

0 − x4
1) + x3

2 + x2
3 =

0} ⊂ P(1, 1, 2, 3) is the trivial central extension C3 × T48. By contruction, the curve B = {s = 0} is
invariant with respect to the full automorphism group. The double cover X of Y branched along
B carries the action of a finite group G̃ of order 2 · 3 · 48 = 288 containing T48 < G̃symp. Since T48
is a maximal group of symplectic transformations, we find T48 = G̃symp and therefore

{id} → T48 → G̃ → C6 → {id}.

In analogy to the proof of Claim 2.1 in [OZ02], one can check that 288 is the maximal order of
a finite group H acting on a K3-surface with T48 < Hsymp. It follows that G̃ is maximal finite
subgroup of Aut(X). For an arbitrary finite group H acting on a K3-surface with {id} → T48 →
H → C6 → {id}, there need however not exist an involution in H centralizing T48.



5 K3-surfaces with an antisymplectic
involution centralizing C3n C7

In this chapter it is illustrated that a classification of K3-surfaces with antisymplectic involution σ

can be carried out even even if the centralizer G of σ inside the group of symplectic transforma-
tions is relatively small, i.e., well below the bound 96 obtianed in Theorem 3.25, and not among
the maximal groups of symplectic transformations. We consider the group G = C3 n C7, which
is a subgroup of L2(7). The principles presented in Chapter 3 can be transferred to this group G
and yield a description of K3-surfaces with G× 〈σ〉-symmetry. Using this, we deduce the classi-
fication K3-surfaces with an action of L2(7)× C2 announced in Section 4.1. The results presented
in this chapter have appeared in [FH08].

To begin with, we present a family of K3-surfaces with G× 〈σ〉-symmetry.

Example 5.1. We consider the action of G on P2 given by one of its three-dimensional representa-
tions. After a suitable change of coordinates, the action of the commutator subgroup G′ = C7 < G
is given by

[z0 : z1 : z2] 7→ [λz0 : λ2z1 : λ4z2]

for λ = exp( 2πi
7 ) and C3 is generated by the permutation

[z0 : z1 : z2] 7→ [z2 : z0 : z1].

The vector space of G-invariant homogeneous polynomials of degree six is the span of P1 = z2
0z2

1z2
2

and P2 = z5
0z1 + z5

2z0 + z5
1z2.

The family P(V) of curves defined by polynomials in V contains exactly four singular curves,
namely the curve defined by z2

0z2
1z2

2 and those defined by 3z2
0z2

1z2
2 − ζk(z5

0z1 + z5
2z0 + z5

1z2), where
ζ is a nontrivial third root of unity, k = 1, 2, 3. We let Σ = P(V)\{z2

0z2
1z2

2 = 0}.
The double cover of P2 branched along a curve C ∈ Σ is a K3-surface (singular K3-surface if C is
singular) with an action of G×C2 where C2 acts nonsymplectically. It follows that Σ parametrizes
a family of K3-surface with G× C2-symmetry.

Remark 5.2. Let us consider the cyclic group Γ of order three generated by the transformation
[z0 : z1 : z2] 7→ [z0 : ζz1 : ζ2z2] and its induced action on the space Σ. One finds that the three
irreducible singular G-invariant curves form a Γ-orbit. Furthermore, if two curves C1, C2 ∈ Σ are
equivalent with respect to the action of Γ, then the corresponding K3-surfaces are equivariantly
isomorphic (see Section 5.3.2 for a detailed discussion).

67
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Remark 5.3. The singular curve Csing ⊂ P2 defined by 3z2
0z2

1z2
2 − (z5

0z1 + z5
2z0 + z5

1z2) has exactly
seven singular points p1, . . . p7 forming an G-orbit. Since they are in general position (cf. Proposi-
tion 5.15), the blow up of P2 in these points defines a Del Pezzo surface YKlein of degree two with
an action of G. It is seen to be the double cover of P2 branched along Klein’s quartic curve

CKlein := {z0z3
1 + z1z3

2 + z2z3
0 = 0}.

The proper transform B of Csing in YKlein is a smooth G-invariant curve. It is a normalization of
Csing and has genus three by the genus formula. The curve B coincides with the preimage of CKlein
in YKlein. The minimal resolution X̃sing of the singular surface Xsing defined as the double cover
of P2 branched along Csing is a K3-surface with an action of G. By construction, it is the double
cover of YKlein branched along B. In particular, X̃sing is the degree four cyclic cover of P2 branched
along CKlein and known as the Klein-Mukai-surface XKM (cf. Example 1.15).

Notation. In the following, the notion of “G× C2-symmetry” abbreviates a symplectic action of
G centralized an antisymplectic action of C2.

In this chapter we will show that the space M = Σ/Γ parametrizes K3-surfaces with G × C2-
symmetry up to equivariant equivalence. More precisely, we prove:

Theorem 5.4. The K3-surfaces with a symplectic action of G = C3nC7 centralized by an antisymplectic
involution σ are parametrized by the spaceM = Σ/Γ of equivalence classes of sextic branch curves in P2.
The Klein-Mukai-surface occurs as the minimal desingularization of the double cover branched along the
unique singular curve inM.

Inside the familyM one finds two K3-surfaces with a symplectic action of the larger group L2(7)
centralized by an antisymplectic involution.

Theorem 5.5. There are exactly two K3-surfaces with an action of the group L2(7) centralized by an
antisymplectic involution. These are the Klein-Mukai-surface XKM and the double cover of P2 branched
along the curve Hess(CKlein) = {z5

0z1 + z5
2z0 + z5

1z2 − 5z2
0z2

1z2
2 = 0}.

5.1 Branch curves and Mori fibers

Let X be a K3 surface with an symplectic action of G = C3 n C7 centralized by the antisymplectic
involution σ. We consider the quotient π : X → X/σ = Y. Since the action of G′ has precisely
three fixed points in X and σ acts on this point set, we know that FixX(σ) is not empty. It follows
that Y is a smooth rational surface with an effective action of the group G to which we apply
the equivariant minimal model program. The following lemma excludes the possibility that a
G-minimal model is a conic bundle. The argument resembles that in the proof of Lemma 3.2.

Lemma 5.6. A G-minimal model of Y is a Del Pezzo surface.

Proof. Assume the contrary and let Ymin → P1 be a G-equivariant conic bundle. Since G has no
effective action on the base, there must be a nontrivial normal subgroup acting trivially on the
base. This subgroup must be G′. The action of G′ on the generic fiber has two fixed points and
gives rise to a positive-dimensional G′-fixed point set in Ymin and Y. Since the action of G′ on Y is
induced by a symplectic action of G′ on X, this is a contradiction.

Remark 5.7. Since G has no subgroup of index two, the above proof also shows that Ymin 6∼=
P1 ×P1.
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In analogy to the procedure of the previous chapter we exclude rational and elliptic ramification
curves and show that π is branched along a single curve of genus greater than or equal to three.

Proposition 5.8. The set FixX(σ) consists of a single curve C and g(C) ≥ 3.

Proof. We let {x1, x2, x3} = FixX(G′). Since G has no faithful two-dimensional representation,
it has no fixed points in X an therefore acts transitively on {x1, x2, x3}. It follows that the cen-
tral involution σ, which fixes at at least one point xi, fixes all three points by invariance. Now
{x1, x2, x3} ⊂ FixX(σ) implies that G′ has precisely three fixed points in Y. Let Ci denote the
connected component of FixX(σ) containing xi. Since G acts on the set {C1, C2, C3}, it follows that
either C1 = C2 = C3 or no two of them coincide.

In the later case, it follows from Theorem 1.12 that at least two curves C1, C2 are rational. The
action of G′ on a rational curves Ci has two fixed points. We therefore find at least five G′-fixed
points in X contradicting |FixX(G′)| = 3.

It follows that all three points x1, x2, x3 lie on one G-invariant connected component C of FixX(σ).
The action of G on C is effective and it follows that C is not rational.

If g(C) = 1, then an effective action of G on C would force G′ to act by translations on C, in
particular freely, a contradiction.

If g(C) = 2, then C is hyperelliptic. The quotient C → P1 by the hyperellitic involution is Aut(C)-
equivariant and would induce an effective action of G on P1, a contradiction.

It follows that g(C) ≥ 3 and it remains to check that there are no rational ramification curves.

We let n denote the total number of rational curves in FixX(σ). Since G′ acts freely on the com-
plement of C in X, it follows that the number n must be a multiple of seven. Combining this
observation with the bound n ≤ 9 from Corollary 3.20 we conclude that n is either 0 or 7.

We suppose n = 7 and let m denote the total number of Mori contractions of a reduction Y →
Ymin. The Euler characeristic formula

13− g(C) = e(Ymin) + m− n

with n = 7, g(C) ≥ 3 and e(Ymin) ≥ 3 implies m ≤ 14.

Let us first check that no Mori fiber E coincides with a rational branch curve B. If this was the
case, then all seven rational branch curves coincide with Mori fibers. Rational branch curves have
self-intersection -4 by Corollary 3.16. Before they may by contracted, they need to be transformed
into (-1)-curves by earlier reduction steps. The remaining seven or less Mori contraction are not
sufficient to achieve this transformation. It follows that each rational branch curve is mapped to
a curve in Ymin and not to a point.

We now first consider the case m = 14. The Euler characteristic formula implies Ymin ∼= P2 and
g(C) = 3. Using our study of Mori fibers and branch curves in Section 3.2, in particular Remark
3.13 and Proposition 3.14, we see that no configuration of 14 Mori fibers is such that the images in
Ymin ∼= P2 of any two rational branch curves have nonempty intersection. It follows that m ≤ 13.

Let R1, . . . , R7 ⊂ Y denote the rational branch curves. Each curve Ri has self-intersection -4 and
therefore has nontrivial intersection with at least one Mori fiber. Let E1 be a Mori fiber meeting
R1, let H ∼= C3 be the stabilizer of R1 in G and let I be the stabilizer of E1 in G. Since m ≤ 13 the
group I is nontrivial. If I does not stabilize R1, then E1 meets the branch locus in at least three
points. This is contrary to Proposition 3.14. It follows that I = H. If E1 meets any other rational
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branch curve R2, then it meets all curves in the H-orbit through R2. Since H acts freely on the
set {R2, . . . , R7}, it follows that E1 meets three more branch curves. This is again contradictory to
Proposition 3.14.

Since m ≤ 13 it follows that each rational branch curve meets exactly one Mori fiber. Their
intersection can be one of the following three types:

1. Ei ∩ Ri = {p1, p2} or

2. Ei ∩ Ri = {p} and (Ei, Ri)p = 2 or

3. Ei ∩ Ri = {p} and (Ei, Ri)p = 1.

In all three cases the contraction of Ei alone does not transform the curve Ri into a curve on a Del
Pezzo surface. So further reduction steps are needed and require the existence of Mori fibers Fi
disjoint from

⋃
Ri. Each Fi is a (-2)-curve meeting

⋃
Ei transversally in one point and the total

number of Mori fibers exceeds our bound 13.

This contradiction yields n = 0 and the proof of the proposition is completed.

5.2 Classification of the quotient surface Y

We now turn to a classification of the quotient surface Y.

Proposition 5.9. The surface Y is either G-minimal or the blow up of P2 in seven singularities of an
irreducible G-invariant sextic..

Proof. Since n = 0, the Euler characteristic formula yields m ≤ 7. The fact that G acts on the set
of Mori fibers implies that m ∈ {0, 3, 6, 7}. If m ∈ {3, 6}, then G′ stabilizes every Mori fiber, and
consequently it has more then three fixed points, a contradiction. Thus we must only consider the
case m = 7.

In this case the set of Mori fibers is a G-orbit and it follows that every Mori fiber has self-inter-
section -1 and therefore has nonempty intersection with π(C) by Remark 3.13.

As before, the Euler characteristic formula implies that g(C) = 3 and Ymin = P2 and adjunction in
X shows that (π(C))2 = 8 in Y. The fact that π(C) has nonempty intersection with seven different
Mori fibers implies that its image D in Ymin has self-intersection either 15 = 8 + 7 or 36 = 8 + 4 · 7.
Since the first is impossible it follows that E · π(C) = 2 for all Mori fibers E and the G-invariant
irreducible sextic D has seven singular points corresponding to the images of E in P2.

Corollary 5.10. If Y is not G-minimal, then X is the minimal desingularization of a double cover of P2
branched along an irreducible G-invariant sextic with seven singular points.

We conclude this section with a classification of possible G-minimal models of Y.

Proposition 5.11. The surface Ymin is either a Del Pezzo surface of degree two or P2.

Proof. The case Ymin = P1 ×P1 is excluded by Example 3.7 and also by Remark 5.7.

Thus Ymin = Yd is a Del Pezzo surface of degree d = 1, . . . , 9 which is a blowup of P2 in 9− d
points.
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If Ymin = Y1 the anticanonical map has exactly one base point. This point has to be G-fixed and
since G has no faithful two-dimensional representations, this case does not occur.

It remains to eliminate d = 8, . . . , 3. In these cases the sets S of (-1)-curves consist of 1, 2, 6, 10,
16 or 27 elements, respectively (cf. Table 3.1). The G-orbits in S consist of 1, 3, 7 or 21 curves and
there must be orbits of length three or one. If G stablizes a curve in S , then its contraction gives
rise to a two-dimensional representation of G which does not exist. If G has an orbit consisting of
three curves, then G′ stabilizes each of the curves in this orbit. Thus G′ has at least six fixed points
in Ymin and in Y. This contradicts the fact that |FixY(G′)| = 3.

5.3 Fine classification - Computation of invariants

We have reduced the classification of K3-surfaces with G×C2-symmetry to the study of equivari-
ant double covers of rational surfaces Y branched along a single invariant curve of genus g ≥ 3.
Here Y is either P2, the blow-up of P2 in seven singular points of an irreducible G-invariant sextic,
or a Del Pezzo surface of degree two.

5.3.1 The case Y = Ymin = P2

An effective action of G on P2 is given by an injective homomorphisms G → PSL3(C). There
are two central degree three extension of G, the trivial extension and C9 n C7. A study of their
three-dimensional representation reveals that in both cases the action of G on P2 is given by an
irreducible representation G ↪→ SL3(C). There are two isomorphism classes of irreducible 3-
dimensional representations. Since these differ by a group automorphism and the corresponding
actions on P2 are therefore equivalent, we may assume that in appropriately chosen coordinates
a generator of G′ acts by

[z0 : z1 : z2] 7→ [λz0, λ2, z1, λ4z2], (5.1)

where λ = exp 2πi
7 and a generator of C3 acts by the cyclic permutation τ which is defined by

[z0 : z1 : z2] 7→ [z2 : z0 : z1]. (5.2)

A homogeneous polynomial defining an invariant curve must be a G-semi-invariant with G′ act-
ing with eigenvalue one. The G′-invariant monomials of degree six are

C[z0, z1, z2]G
′

(6) = Span{z2
0z2

1z2
2, z5

0z1, z5
2z0, z5

1z2} .

Letting P1 = z2
0z2

1z2
2 and P2 = z5

0z1 + z5
2z0 + z5

1z2, it follows that

C[z0, z1, z2]G(6) = Span{P1, P2} =: V .

There are two G-semi-invariants which are not invariant, namely z5
0z1 + ζz5

2z0 + ζ2z5
1z2 for ζ3 = 1

but ζ 6= 1. By direct computation one checks that the curves defined by these polynomials are
smooth and that in both cases all τ-fixed points in P2 lie on them. Thus, τ has only three fixed
points on the K3-surface X obtained as a double cover and therefore does not act symplectically
(cf. Table 1.1). Consequently, G does not lift to an action by symplectic transformations on the K3-
surfaces defined by these two curves. Hence it is enough to consider ramified covers X → Y = P2,
where the branch curves are defined by invariant polynomials f ∈ V.
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We wish to determine which polynomials Pα,β = αP1 + βP2 define singular curves. Since Fix(τ) =
{[1 : ζ : ζ2] | ζ3 = 1}, the curves which contain τ-fixed points are defined by condition α +
3ζβ = 0. Let CP1 = {P1 = 0} and let Cζ be the curve defined by Pα,β for α + 3ζβ = 0. A direct
computation shows that Cζ is singular at the point [1 : ζ : ζ2]. We let Σreg be the complement of
this set of four curves, Σreg = P(V)\{CP1 ; Cζ | ζ3 = 1}.
Lemma 5.12. A curve C ∈ P(V) is smooth if and only if C ∈ Σreg.

Proof. Let C ∈ Σreg. Since τ has no fixed points in C by definition and every subgroup of order
three in G is conjugate to 〈τ〉, it follows that any G-orbit G.p through a point p ∈ C has length
three or 21.

The only subgroup of order seven in G is the commutator group G′. So the G-orbits of length
three are the orbits of the G′-fixed points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. One checks by direct
computation that every C ∈ Σreg is smooth at these three points.

An irreducible curve of degree six has at most ten singular points by the genus formula. Suppose
that C is singular at some point q. Then it is singular at each of the 21 points in G.q and C must
be reducible. Considering the G-action on the space of irreducible components of C yields a
contradiction and it follows that C is smooth.

For any curve C ∈ Σreg the double cover of P2 branched along C is a K3-surface XC with an
action of a degree two central extension of G. By the following lemma, this action is always of the
desired type.

Lemma 5.13. For every C ∈ Σreg the K3-surface XC carries an action of the group G× 〈σ〉. The group
G acts by symplectic transformations on XC and σ denotes the covering involution.

Proof. It follows from the group structure of G that the central degree two extension of G acting
on XC splits as G×C2. The factor C2 is by construction generated by the covering involution σ. It
remains to check that G acts symplectically. As the commutator subgroup G′ acts symplectically
it is sufficient to check whether τ lifts to a symplectic automorphism. Consider the τ-fixed point
p = [1 : 1 : 1] and check that the linearization of τ at p is in SL(2, C). Since p is not contained
in C, it follows that the linearization of τ at a corresponding fixed point in XC is also in SL(2, C).
Consequently, the group G acts by symplectic transformations on XC.

5.3.2 Equivariant equivalence

We wish to describe the space of K3-surfaces with G× C2-symmetry modulo equivariant equiv-
alence. For this, we study the family of K3-surfaces parametrized by the family of branch curves
Σreg. Consider the cyclic group Γ of order three in PGL(3, C) generated by

[z0 : z1 : z2] 7→ [z0 : ζz1 : ζ2z2]

for ζ = exp( 2πi
3 ). The group Γ acts on Σreg and by the following proposition the induced equiva-

lence relation is precisely equivariant equivalence formulated in Definition 4.3.

Proposition 5.14. Two K3-surfaces XC1 and XC2 for C1, C2 ∈ Σreg are equivariantly equivalent if and
only if C1 = γC2 for some γ ∈ Γ, i.e., the quotient Σreg/Γ parametrizes equivariant equivalence classes of
K3-surfaces XC for C ∈ Σreg.
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Proof. If two K3-surfaces XC1 and XC2 for C1, C2 ∈ Σreg are equivariantly equivalent, then the
isomorphism XC1 → XC2 induces an automorphism of P2 mapping C1 to C2.

Let C ∈ Σreg and for T ∈ SL3(C) assume that T(C) ∈ Σreg. We consider the group span S of
TGT−1 and G. By Lemma 5.13, the group G acts by symplectic transformations on XC and XT(C).
We argue precisely as in the proof of this lemma to see that TGT−1 also acts symplectically on
the K3-surface XT(C). It follows that S is acting as a group of symplectic transformations on this
K3-surface.

If S = G, then T normalizes G. The normalizer N of G in PGL3(C) is the product Γ× G and it
follows that gT is contained in Γ for some g ∈ G and T(C) = gT(C) = γC.

Note that L2(7) is the only group in Mukai’s list which contains G. Therefore, S is a subgroup of
L2(7). The group G is a maximal subgroup of L2(7) and if S 6= G, then it follows that S = L2(7).
Any two subgroups of order 21 in L2(7) are conjugate. This implies the existence of s ∈ S = L2(7)
such that sTGT−1s−1 = G. Now sT ∈ N = Γ× G can be written as sT = γg for (γ, g) ∈ Γ× G.
By assumption, s stabilizes T(C) and T(C) = sT(C) = γg(C) = γC. This completes the proof of
the proposition.

5.3.3 The case Y 6= Ymin

Let us now consider the three singular irreducible curves in our family P(V). They are identified
by the action of Γ. Using Corollary 5.10 we see that if Y = X/σ is not G-minimal, then, up to
equivariant equivalence, the K3-surface X is the minimal desingularization of the double cover of
P2 branched along Cζ=1 = Csing and Y is the blow-up of P2 in the seven singular points of Csing.
These points are the G′-orbit of [1 : 1 : 1]. In the following propostion we prove that these are in
general position and therefore Y is a Del Pezzo surface.

Proposition 5.15. If Y is not minimal, then it is the Del Pezzo surface of degree two which arises by
blowing up the seven singular points p1, . . . , p7 on the curve Csing in P2. The corresponding map Y → P2
is G-equivariant and therefore a Mori reduction of Y.

Proof. We show that the points {p1, . . . , p7} = G′.[1 : 1 : 1] are in general position, i.e., no three
lie on one line and no six lie on one conic. It follows from direct computation that no three points
in G′.[1 : 1 : 1] lie on one line. If p1, . . . p6 lie on a conic Q, then g.p1, . . . , g.p6 lie on g.Q for
every g ∈ G. Since {p1, . . . , p7} is a G-invariant set, the conics Q and g.Q intersect in at least five
points and therefore coincide. It follows that Q is an invariant conic meeting Csing at its seven
singularities and (Q, Csing) ≥ 14 implies Q ⊂ Csing, a contradiction.

5.4 Klein’s quartic and the Klein-Mukai surface

In this section we show that the Del Pezzo surface discussed in Proposition 5.15 above can be
realized as the double cover of P2 branched along Klein’s quartic curve.

Proposition 5.16. A Del Pezzo surface of degree two with an action of G is equivariantly isomorphic to
the double cover YKlein of P2 branched along Klein’s quartic curve.

Proof. Recall that the anticanonical map of a Del Pezzo surface Y of degree two defines a 2:1 map
to P2. This map is branched along a smooth curve of degree four and equivariant with respect to
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Aut(Y). We obtain an action of G on P2 stabilizing a smooth quartic. As before, we may choose
coordinates such that G is acting as in equations (5.1) and (5.2). Then

C[z0 : z1 : z2]G
′

(4) = Span{z3
0z2, z3

1z0, z3
2z1} .

is a direct sum of G-eigenspaces. The eigenspace of the eigenvalue ζ is spanned by the polynomial
Qζ := z3

0z2 + ζz3
2z1 + ζ2z3

1z0 with ζ being a third root of unity.

In order to take into account equivariant equivalence we consider the cyclic group Γ ⊂ SL3(C)
which is generated by the transformation γ, [z0 : z1 : z2] 7→ [z0 : ζz1 : ζ2z2]. The induced action
on C[z0 : z1 : z2]G

′
(4) is transitive on the G-eigenspaces spanned by the Qζ . Consequently, up to

equivariant equivalence, we may assume that Y → P2 is branched along Klein’s curve CKlein
which is defined by Q1.

Corollary 5.17. A Del Pezzo surface of degree two with an action of G is never G-minimal. Its Mori
reduction YKlein → P2 is precisely the map discussed in Proposition 5.15.

We summarize our observartions in the following proposition.

Proposition 5.18. If X is a K3-surface with a symplectic G-action centralized by an antisymplectic invo-
lution σ, then Ymin = P2. In all but one case X/σ = Y = Ymin. In the exceptional case Y = YKlein, the
Mori reduction Y → Ymin is the contraction of seven (-1)-curves to the singular points of Csing and the
branch set B of X → Y is the proper transform of CKlein in Y.

Proof. It remains to prove that B is the proper transform of CKlein in Y. Suppose that the branch
curve of X → Y is some other curve B̃ linearly equivalent to −2KY. Let I := B̃ ∩ B and note that
|I| ≤ B · B̃ = 4K2

Y = 8. Since G has no fixed points in B, it follows that |I| = 3 and that I is a
G-orbit. Thus the intersection multiplicities at the three points in B̃ ∩ B are the same. Since 3 does
not divide 8, this is a contradiction.

In order to complete the proof of Theorem 5.4 it remains to show that the action of G on YKlein lifts
to a group of symplectic transformation on the K3-surface X = XKM defined as a double cover of
YKlein branched along the proper transform of Csing.

Since G stabilizes CKlein and does not admit nontrivial central extensions of degree two, it lifts to
a subgroup of Aut(YKlein) and subsequently to a subgroup of Aut(X).

The covering involution YKlein → P2, lifts to a holomorphic transformation of X where we also
find the involution defining X → YKlein. These two transformations generate a group F of order
four. The elements of F all have a positive-dimensional fixed point set. It follows that F acts solely
by nonsymplectic transformations and is therefore isomorphic to C4. The full preimage of G in
Aut(X) splits as G× C4.

Since the commutator group G′ automatically acts by symplectic transformations, we must only
check that the lift of the cyclic permutation τ, [z0 : z1 : z2] 7→ [z2 : z0 : z1], acts symplectically. As
above, this follows from a linearization argument at a τ-fixed point not in CKlein.

In conclusion, up to equivalence there is a unique action of G by symplectic transformations on
the K3-surface XKM. It is centralized by a cyclic group of order four which acts faithfully on the
symplectic form.

The Klein-Mukai-surface is the only surface with G× C2-symmetry for which Y 6∼= P2. As in the
introduction of this chapter, we define Σ as the complement of CP1 in P(V). Then Σ = Σreg ∪
{Cζ | ζ3 = 1}. Using this notation the space

M = Σ/Γ
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parametrizes the space of K3-surfaces with G×C2-symmetry up to equivariant equivalence. This
completes the proof of Theorem 5.4.

5.5 The group L2(7) centralized by an antisymplectic involution

We consider the simple group of order 168. This group is PSL(2, F7) and usually denoted by
L2(7). It contains our group G = C3 n C7 as a subgroup. Since L2(7) is a simple group, if it acts
on a K3-surface, it automatically acts by symplectic transformations.

We wish to prove Theorem 5.5 stating that there are exactly two K3-surfaces with an action of
the group L2(7) centralized by an antisymplectic involution. These are the Klein-Mukai-surface
XKM and the double cover of P2 branched along the curve Hess(CKlein) = {z5

0z1 + z5
2z0 + z5

1z2 −
5z2

0z2
1z2

2 = 0}.
We have to check which elements of M have the symmetry of the larger group. The Klein-
Mukai-surface is known to have L2(7) × C4-symmetry (cf. Example 1.15). If X 6= XKM has
L2(7)-symmetry, then it follows from the considerations of the previous sections that X is an
L2(7)-equivariant double cover of P2 branched along a smooth L2(7)-invariant sextic curve. I.e.,
it remains to identify the surfaces with L2(7)-symmetry in the family parametrized by Σreg/Γ.

Lemma 5.19. The action of L2(7) on P2 is necessarily given by a three-dimensional represention.

Proof. The lemma follows from the fact that the group L2(7) does not admit nontrivial degree
three central extensions. This can be derived from the cohomology group H2(L2(7), C∗) ∼= C2
known as the Schur Multiplier.

There are two isomorphism classes of three-dimensional representations and these differ by an
outer automorphism. We may therefore consider the particular representation given in Example
1.15. One checks that the curve Hess(CKlein) is L2(7)-invariant. The maximal possible isotropy
group is C7 and each L2(7)-orbit in Hess(CKlein) consists of at least 21 elements. If there was
another L2(7)-invariant curve C in Σreg, then the invariant set C∩Hess(CKlein) consists of at most
36 points. This is a contradiction and it follows that Hess(CKlein) is the only L2(7)-invariant curve
in Σreg.

It remains to check that L2(7) lifts to a subgroup of Aut(XHess(CKlein)): On XHess(CKlein) we find an
action of a central degree two extension E of L2(7). Since E 6= Esymp and L2(7) is simple, the
subgroup of symplectic transformations inside E must be isomorphic to L2(7).

It follows that XKM and the double cover of P2 branched along Hess(CKlein) are the only examples
of K3-surfaces with L2(7)× C2 symmetry. This completes the proof of Theorem 5.5.

Remark 5.20. If we consider the quotient YKlein of XKM by the antisymplectic involution σ ∈ C4,
this surface was seen not to be minimal with respect to the action of C3 n C7. It is however
L2(7)-minimal as we cannot find a equivariant contraction morphism blowing down an orbit of
disjoint (-1)-curves in YKlein . Such an orbit would have to consists of seven Mori fibers. The only
subgroup of index seven is S4. A Mori fiber of self-intersection (-1) does however not admit an
action of the group S4 (cf. Proof of Theorem 3.25).





6 The simple group of order 168

In this chapter we consider finite groups containing L2(7), the simple group of order 168, and their
actions on K3-surfaces. Based on our considerations about L2(7)× C2-actions on K3-surfaces in
Section 5.5 we derive a classification result (Theorem 6.1). This gives a refinement of a lattice-
theoretic result due to Oguiso and Zhang [OZ02]. The main part of this chapter is dedicated to
proving the non-existence of K3-surfaces with an action of the group L2(7) × C3 (Theorem 6.3)
using equivariant Mori reduction.

6.1 Finite groups containing L2(7)

If H is a finite group acting on a K3-surface and L2(7) � H, then it follows from Mukai’s theorem
and the fact that L2(7) is simple, that H fits into the short exact sequence

1→ L2(7) = Hsymp → H → Cm → 1

for some m ∈ N. As it is noted by Oguiso and Zhang, Claim 2.1 in [OZ02], it follows from
Proposition 3.4 in [Muk88] that m ∈ {1, 2, 3, 4, 6}.
The action of H on L2(7) by conjugation defines a homomorphism H → Aut(L2(7)). Factorizing
by the group of inner automorphism of L2(7) we obtain a homomorphism

Cm ∼= H/L2(7)→ Out(L2(7)) ∼= C2.

If H is not the nontrivial semidirect product L2(7) o C2, this homomorphism has a nontrivial
kernel. In particular, we find a cyclic group Ck < Cm centralizing L2(7). If k is even, we may
apply our results on K3-surfaces with L2(7)× C2-symmetry from the previous chapter.

If m = 3, 6, then k = 3 or k = 6. These cases may be excluded as is shown in [OZ02], Added
in proof, Proposition 1. An independent proof of this fact, i.e., the non-existence of K3-surfaces
with L2(7)×C3 symmetry, using equivariant Mori theory, in particular the classification of L2(7)-
minimal models, is given below (Theorem 6.3).

We summarize our observations about K3-surfaces with L2(7)-symmetry in the following theo-
rem, which improves the classification result due to Oguiso and Zhang.

77
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Theorem 6.1. Let H be finite group acting on a K3-surface X with L2(7) � H. Then

• |H/L2(7)| ∈ {2, 4}.

• If |H/L2(7)| = 4, then H = L2(7)× C4 and X ∼= XKM.

• If |H/L2(7)| = 2 and H = L2(7)× C2, then either X ∼= XKM or X ∼= XHess(CKlein)

The first statement follows from the non-existence of K3-surfaces with L2(7)×C3-symmetry (The-
orem 6.3 below) and the third statement follows from Theorem 5.5. The remaining part ist covered
in the following lemma (cf. Main Theorem in [OZ02]).

Lemma 6.2. If X is a K3-surface with an action of a finite group containing the L2(7) as a subgroup of
index four, then X is the Klein-Mukai-surface.

Proof. We let X be a K3-surface and H be a finite subgroup of Aut(X) with L2(7) < H and
|H/L2(7)| = 4.

Since L2(7) is simple and a maximal group of symplectic transformations, it coincides with the
group of symplectic transformations in H. In particular, H/L2(7) = C4 and a group 〈σ〉 of order
two is contained in the kernel of the homomorphism H → Aut(L2(7)). It follows that we are in
the setting of Theorem 5.5 where Λ := H/〈σ〉 acts on Y = X/σ. If X 6= XKM, then Y = P2. This
possibility needs to be eliminated.

Let τ be any element of Λ which is not in L2(7) and let Γ = C3 n C7 < L2(7). Since any two
subgroups of order 21 in L2(7) are conjugate by an element of L2(7), it follows that there exists
h ∈ L2(7) with (hτ)Γ(hτ)−1 = Γ. Thus, the normalizer N(Γ) of Γ in Λ is a group of order 42 which
also normalizes the commutator subgroup Γ′ and therefore stabilizes its set F of fixed points.

Using coordinates [z0 : z1 : z2] of P2 as in Theorem 5.5 one checks by direct computation that
the only transformations in Stab(F) which stabilize the branch curve Hess(CKlein) are those in Γ
itself. This contradiction shows that Y 6= P2 and therefore X = XKM.

6.2 Non-existence of K3-surfaces with an action of L2(7)× C3

The method of equivariant Mori reduction can be applied to obtain both classification and non-
existence results. In the following, we exemplify a general approach to prove non-existence of K3-
surfaces with specified symmetry by considering the group L2(7)× C3 and give an independent
proof of the following observation of Oguiso and Zhang [OZ02]:

Theorem 6.3. There does not exist a K3-surface with an action of L2(7)× C3.

The remainder of this chapter is dedicated to the proof of this theorem.

6.2.1 Global structure

Let G ∼= L2(7), let D ∼= C3, and assume there exists a K3-surface X with a holomorphic action
of G × D. Since G is a simple group and a maximal group of symplectic transformations on a
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K3-surface, it follows that G acts symplectically whereas the action of D is nonsymplectic. We
obtain the following commuting diagram.

X

π

��

X̂

π̂
��

bXoo

X/D = Y Ŷ
bYoo

Mred
��

Ŷmin = Z

Here bX is the blow-up of the isolated D-fixed points in X. The singularities of X/D correspond to
isolated D-fixed points. Since the linearization of the D-action at an isolated fixed point is locally
of the form (z, w) 7→ (χz, χw) for some nontrivial character χ : D → C∗, each singularity of X/D
is resolved by a single blow-up. We let bY denote the simultanious blow-up of all singularities of
Y. We fix a G-Mori reduction Mred : Ŷ → Ŷmin = Z. All maps in the diagram are G-equivariant.
By Theorem 1.8, the surface Ŷ is rational. As conic bundles do not admit an action of G (cf. Lemma
5.6), we know that Ŷmin is a Del Pezzo surface . The following lemma specifies Z.

Lemma 6.4. The Del Pezzo surface Z is either P2 or a surface obtained from P2 by blowing up 7 points in
general position. In the later case, Z is a G-equivariant double cover of P2 branched along Klein’s quartic
curve. The action of G on P2 is given by a three-dimensional representation.

Proof. The first part of the lemma follows from our observations in Example 3.8, the last part has
been discussed in Lemma 5.19. If Z is a Del Pezzo surface of degree two, then the anticanonical
map realizes it as an equivariant double cover of P2 branched along a smooth quartic curve C.
We choose coordinates on P2 such that the action of G is given by the representation ρ of Example
1.15 (or its dual represenation ρ∗) and have already seen that Klein’s quartic curve

CKlein = {x1x3
2 + x2x3

3 + x3x3
1 = 0} ⊂ P2

is G-invariant. If C 6= CKlein, then C∩CKlein is a G-invariant subset of P2. Since the maximal cyclic
subgroup of G is of order seven, it follows that a G-orbit G.p for a point p ∈ C ∩ CKlein consists of
at least 24 elements. Since C ∩CKlein however consists of at most 16 points, this is a contradiction.
Therefore, C = CKlein and the lemma follows.

D-fixed points

The map π is in general ramified both at points and along curves. Let x be an isolated D-fixed
point in X. As was noted above, the isotropy representation of the nonsymplectic D-action at x in
local coordinates (z, w) is given by (z, w) 7→ (χz, χw) for some nontrivial character χ : D → C∗.
The action of D on the rational curve Ê obtained by blowing up x is trivial and therefore Ê is
contained in the ramification set FixX̂(D). Let {Êi} denote the set of (-1)-curves in X̂ obtained
from blowing up isolated D-fixed points in X and define Ei = π̂(Êi).

If C is a curve of D-fixed points in X, it follows that π̂ is ramified along b−1
X (C). Let {F̂j} denote

the set of all ramification curves of type b−1
X (C) and define Fj = π̂(F̂j). The map π̂ is a D-quotient

and ramified along curves
FixX̂(D) =

⋃
Êi ∪

⋃
F̂j.
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6.2.2 Mori contractions and C7-fixed points

Many aspects of the group theory of G can be well understood in term of its generators α, β, γ of
order 7,3,2, respectively. Since the action of G on P2 is given by a three-dimensional irreducible
representation, the action of G on Z is given explicitly in terms of α, β, γ. We let S = 〈α〉 ∼= C7 < G
be a cyclic subgroup of order seven in G.

The symplectic action of a cyclic group of order seven on an K3-surface has exactly three fixed
points. Since p1 = [1 : 0 : 0], p2 = [0 : 1 : 0] and p3 = [0 : 0 : 1] all lie on CKlein ⊂ P2, the action of
S on Z has exactly three fixed points.

Let FixŶ(S) =: {y1, . . . , yk} and let FixX̂(S) =: {x1, . . . , xl}. Since blowing-up an S-fixed point in
X replaces the fixed point by a rational curve with two S-fixed points in X̂, we find 3 ≤ k ≤ l ≤ 6.

Lemma 6.5. The fixed points of S in X̂ are contained in the D-ramification set, i.e., FixX̂(S) ⊂ FixX̂(D).

Proof. Since D centralizes S, the action of D stabilizes the S-fixed point set. We first show that
FixX(S) ⊂ FixX(D). Assume the contrary and let FixX(S) = {s1, s2, s3} be a D-orbit and π(si) =
y. Then y is a smooth point and fixed by the action of S on Y. There exists a neighbourhood of y in
Y which is biholomorphic to a neighbourhood of b−1

Y (y) = ỹ in Ŷ. By construction, ỹ ∈ FixŶ(S).
Since FixŶ(S) consists of at least three points, we let ˜̃y 6= ỹ be an additional S-fixed point on Ŷ. The
fibre π−1(bY( ˜̃y)) consists of one or three points and is disjoint from {s1, s2, s3}. Since the point ˜̃y is
a fixed point of S, we know that S ∼= C7 acts on the fiber π−1(bY( ˜̃y)) and is seen to fix it pointwise.
This is contrary to the fact that FixX(S) = {s1, s2, s3}. It follows that FixX(S) ⊂ FixX(D).

It remains to show the corresponding inclusion on X̂. If the points si do not coincide with isolated
D-fixed points, the statement follows since bX is equivariant and biholomorphic outside the iso-
lated D-fixed points. If si is an isolated D-fixed point, we have seen above that the action of D on
the blow-up of si is trivial. In particular, FixX̂(S) ⊂ FixX̂(D).

Excluding the case |FixŶ(S)| = 3

Lemma 6.6. If |FixŶ(S)| = 3, then FixŶ(S) ∩⋃ Ei = ∅.

Proof. Fixed points of S on a curve Êi always come in pairs: If the curve Êi contains a fixed point
of S, then the isotropy representation of S at the fixed point bX(Êi) in X defines an action of the
cyclic group S on the rational curve Êi with exactly two fixed points. If |FixŶ(S)| = |FixX̂(S)| = 3
and FixŶ(S) ∩⋃ Ei 6= ∅, then two of the S-fixed point lie on the same curve Êi and |FixX(S)| ≤ 2,
a contradiction.

Lemma 6.7. If |FixŶ(S)| = 3, then the set FixŶ(S) has empty intersection with the exceptional locus of
the full equivariant Mori reduction Mred : Ŷ → Z.

Proof. Let C be any exceptional curve of the Mori reduction and assume there is a fixed point of
S on C. As the point p obtained from blowing down C has to be a fixed point of S, it follows that
the curve C is S-invariant. In particular, we know that the action of S on C has exactly two fixed
points. Now blowing down C reduces the number of S-fixed point by 1. This contradicts the fact
that |FixZ(S)| = 3.
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Lemma 6.8. Let |FixŶ(S)| = 3 and let p ∈ FixZ(S). Then there exist local coordinates (u, v) at p and a
nontrivial character µ : S→ C∗ such that the action of S at p is locally given by either

(u, v) 7→ (µ3u, µ−1v) or (u, v) 7→ (µu, µ−3v).

Proof. On the K3-surface X the action of S at a fixed point is in local coordinates (z, w) given by
(z, w) 7→ (µz, µ−1w) for some nontrivial character µ : S→ C∗. Since FixŶ(S)∩⋃ Ei = ∅, the map
bX is biholomorphic in a neighbourhood of the fixed point. Recalling that FixX̂(S) is contained in
the ramification locus of π̂ (i.e., p ∈ FixX̂(D)) the action of D may be linearized at p. Since S and
D commute, the action of D is diagonal in the chosen local coordinates (z, w). We conclude that π̂

is locally of the form (z, w) 7→ (z3, w) or (z, w3). The action of S at a fixed point in Ŷ is defined by
(µ3, µ−1) or (µ, µ−3), respectively. By the lemma above, the fixpoints of S are not affected by the
Mori reduction. The map Mred is S-equivariant and locally biholomorphic in a neighbourhood of
a fixed point of S. The lemma follows.

Using our explicit knowledge of the G-action on Z we will show in the following that the lin-
earization of the action of S < G at a fixed point in the Del Pezzo surface Z is not of the type
described by the lemma above. We distinguish two cases when studying Z.

Let Z ∼= P2 and [x0 : x1 : x2] denote homogeneous coordinates on P2 such that the action of
S < G on P2 is given by [x0 : x1 : x2] 7→ [ζx0, ζ2x1, ζ4x2] where ζ is a 7th root of unity. Using
affine coordinates z = x1

x0
, w = x2

x0
we check that the action of S at p1 = [1 : 0 : 0] is locally given

by (z, w) 7→ (ζz, ζ3w). This contradicts Lemma 6.8.

Let Z
q→ P2 be the double cover of P2 branched along Klein’s quartic curve and let [x0 : x1 : x2]

denote homogeneous coordinates on P2. As above, using affine coordinates u = x1
x0

, v = x2
x0

we
check that the action of S in a neighbourhood of [1 : 0 : 0] is locally given by (u, v) 7→ (ζu, ζ3v).
The branch curve CKlein ⊂ P2 is defined by the equation u3 + uv3 + v. In new coordinates
(ũ(u, v), ṽ(u, v)) = (u, u3 + uv3 + v) the branch curve is defined by ṽ = 0 and the action of
S is given by (ũ, ṽ) 7→ (ζũ, ζ3ṽ). Consider the fixed point [1 : 0 : 0] ∈ P2 and its preim-
age p ∈ Z. At p, coordinates (z, w) can be chosen such that the covering map is locally given
by (z, w) 7→ (z, w2) = (ũ, ṽ). It follows that the action of S at p ∈ Z is locally given by
(z, w) 7→ (ζz, ζ5w). This is again contrary to Lemma 6.8.

In summary, if |FixŶ(S)| = 3, the action of S < G on the Del Pezzo surface Z cannot be induced
by a symplectic C7-action on the K3-surface X. This proves the following lemma.

Lemma 6.9. |FixŶ(S)| ≥ 4.

6.2.3 Lifting Klein’s quartic

The discussion of the previous section shows that there must be a step in the Mori reduction
where the blow-down of a (-1)-curve identifies two S-fixed points. Let z ∈ Z be a fixed point of
S. Then, by equivariance, all points in the G-orbit of z are obtained by blowing down (-1)-curves
in the process of Mori reduction. If Z ∼= P2, we denote by CKlein ⊂ Z Klein’s quartic curve.
If Z is the double cover of P2 branched along Klein’s curve, we abuse notation and denote by
CKlein the ramification curve in Z. In the later case CKlein is a G-invariant curve of genus 3 and
self-intersection 8 by Lemma 3.15.

Let z ∈ FixZ(S) ⊂ CKlein and consider the G-orbit G · z. By invariance, G · z ⊂ CKlein. The isotropy
group Gz must be cyclic and Gz = S implies |G · z| = 24. Let B denote the strict transform of
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CKlein in Ŷ. The curve B is a smooth G-invariant curve of genus 3 and meets at least 24 Mori
fibers. Applying Lemma 3.17 to Mred(B) = CKlein we obtain

B2 ≤ C2
Klein − 24 ≤ −8.

Lemma 6.10. The curve B does not coincide with any of the curves of type E or F. Its preimage B̂ :=
π̂−1(B) ⊂ X̂ is a cyclic degree three cover of B branched at B ∩ (

⋃
Ei ∪⋃ Fj).

Proof. The curves Ei ⊂ Ŷ are (-3)-curves whereas B has self-intersection less than or equal to −8.
Assume B = Fj for some j. Then B̂ is a curve of self-intersection less than or equal to −4 by
Lemma 3.15 which is mapped biholomorphically to the K3-surface X. We obtain a contradiction
since K3-surfaces do not admit curves of self-intersection less than −2.

Since FixZ(S) ⊂ CKlein there are three fixed points of S on B̂. From FixX̂(S) ⊂ FixX̂(D) it follows
that π̂|B̂ : B̂ → B is branched at three or more points. In particular, the curve B̂ is connected. In
the following, we will distinguish two cases: the curve B̂ being reducible or irreducible.

Case 1: The curve B̂ is reducible

The three irreducible components B̂i, i = 1, 2, 3 of B̂ are smooth curves which are mapped biholo-
morphically onto B. Since B is exceptional, the configuration of curves B̂ is also exceptional. It
follows that the intersection matrix (B̂i · B̂j)ij is negative definite. In the following we study the
intersection matrix of B̂ and will obtain a contradiction.

The restricted map bX : B̂i → bX(B̂i) is the normalization of bX(B̂i) and consequently the arith-
metic genus of bX(B̂i) is given by the formula (cf. II.11 in [BHPVdV04])

g(bX(B̂i)) = g(B̂i) + δ(bX(B̂i)),

where the number δ is computed as δ(bX(B̂i)) = ∑p∈bX(B̂i)
dimC(bX∗OB̂i

/ObX(B̂i)
)p. Note that

the sum can also be taken over the singular points p ∈ bX(B̂i) only, since smooth points do not
contribute to the sum. Since X is a K3-surface, the adjunction formula for bX(B̂i) reads

(bX(B̂i))2 = 2g(bX(B̂i))− 2 = 2g(B̂i) + 2δ(bX(B̂i))− 2.

By Lemma 3.17, the self-intersection number (bX(B̂i))2 can be expressed in terms of the self-
intersection B̂2

i and intersection multiplicities Ej · B̂i:

(bX(B̂i))2 = B̂2
i + ∑

j
(Êj · B̂i)2.

It follows that the self-intersection number of B̂i can be expressed as

B̂2
i = 2g(B̂i) + 2δ(bX(B̂i))− 2−∑

j
(Êj · B̂i)2. (6.1)

For simplicity, we first consider the case where B̂i has nontrivial intersection with only one curve
of type Ê. We refer to this curve as Ê. The general case then follows by addition over all curves
Êj, the number δ for the full contraction bX is the sum of all numbers δ obtained when blowing
down disjoint curves Êj stepwise.
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Estimating the number δ

Example 6.11. Let C = C1 ∪ C2 be a connected curve consisting of two irreducible components.
Then the arithmetic genus of C is calculated as g(C) = g(C1) + g(C2) + C1 · C2 − 1. The normal-
ization C̃ of C is given by the disjoint union of the normalizations C̃i of C1 and C2. In particular,
g(C̃) = g(C̃1) + g(C̃2)− 1, so that δ(C) = δ(C1) + δ(C2) + C1 · C2 (cf. II.11 in [BHPVdV04]).

Since the number δ is a sum of contributions δp at singular points p, we can calculate the num-
ber δp locally at each singularity where we decompose the germ of the curve as the union of
irreducible components and use a formula generalizing the example above. We refer to an irre-
ducible component of a curve germ realized in a open neighbourhood of the surface as a curve
segment.

In order to study the singularities of bX(B̂i) one needs to consider the points of intersection Ê∩ B̂i.
These points of intersection can be of different quality:

• Type m = 1: The intersection at b ∈ B̂i is transversal and the local intersection multiplicity
at b is equal to 1. A neighbourhood of b in B̂i is mapped to a smooth curve segment in
bX(B̂i).

• Type m > 1: The intersection at b ∈ B̂i is of higher multiplicity m(b), i.e., Ê is tangent to
B̂i and in local coordinates (z, w) we may write Ê = {z = 0} and B̂i = {z− wm}. Blowing
down Ê transforms a neighbourhood of b into a a curve segment isomorphic to {xm+1 −
ym = 0}. For the singularity (0, 0) of this curve we calculate

δ(0,0) =
1
2

m(m− 1).

Let bm denote the number of points in Ê∩ B̂i with local intersection multiplicity m. For each point
of intersection of Ê and B̂i we obtain an irreducible component of the germ of bX(B̂i) at p = bX(Ê).
We compute δp by decomposing this germ and need to determine local intersection multiplicities
of all combinations of irreducible components.

Lemma 6.12. Two irreducible components of the germ of bX(B̂i) at p corresponding to points in Ê ∩ B̂i of
type m and n meet with local intersection multiplicity greater than or equal to mn.

Proof. In order to determine the intersection multiplicity of two irreducible components corre-
sponding to points of type m and n, we write one curve as {xm+1 − ym = 0}. The second
curve can be expressed as {h1(x, y)n+1 − h2(x, y)n = 0} where (x, y) 7→ (h1(x, y), h2(x, y)) is a
holomorphic change of coordinates. Now normalizing the first curve by ξ 7→ (ξm, ξm+1) and
pulling back the equation of the second curve to the normalization C, we obtain the equation
h1(ξm, ξm+1)n+1 − h2(ξm, ξm+1)n = 0 which has degree at least mn in ξ. It follows that the local
intersection multiplicity is greater than or equal to mn.

Counting different types of intersections of irreducible components we obtain the following esti-
mate for δp

δp = ∑ δp(Ci) + ∑
i 6=j

(Ci · Cj)p

≥ ∑
m∈N

bm

2
m(m− 1) +

1
2 ∑

m∈N

bm(bm − 1)m2 + ∑
m>n

bmbnmn
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where ∑i 6=j(Ci ·Cj)p decomposes into intersections (Ci ·Cj)p of type mm and intersections of type
mn for m 6= n. The formula above applies to each curve Êj having nontrivial intersection with B̂i.

Let pj be the point on X obtained by blowing down Êj and let bj
m denote the number of points of

type m in B̂i ∩ Êj. Then

δ(bX(B̂i)) = ∑
j

δpj(bX(B̂i))

≥∑
j
( ∑

m∈N

bj
m
2

m(m− 1) +
1
2 ∑

m∈N

bj
m(bj

m − 1)m2 + ∑
m>n

bj
mbj

nmn).

Returning to the formula (6.1) for B̂2
i we obtain

B̂2
i = 2g(B̂i) + 2δ(bX(B̂i))− 2−∑

j
(Êj · B̂i)2

≥∑
j
( ∑

m∈N

bj
mm(m− 1) + ∑

m∈N

bj
m(bj

m − 1)m2 + 2 ∑
m>n

bj
mbj

nmn)

− 2−∑
j
(∑

m
bj

mm)2

≥ −2−∑
j

∑
m

bj
mm.

As a next step, we will find a bound for (B̂i · B̂k) in the case i 6= k. If a curve B̂i intersects a
ramification curve of type Ê or F̂ in a point x, then (B̂i · B̂k)x ≥ 1. If (B̂i · Êj)x = m, then for k 6= i

(B̂k · Êj)x = (ϕD(B̂i) · Êj)x = (ϕD(B̂i) · ϕD(Êj))x = (B̂i · Êj)x = m

where ϕD ∈ D is a biholomorphic transformation and Ej is in the fixed locus of D.

Lemma 6.13. Assume B̂i meets a curve of type Ê or F̂ in x with local intersection multiplicity m. Then
(B̂i · B̂k)x ≥ m.

Proof. Let Ê, F̂ respectively, be locally given by {z = 0}. Then B̂i is locally given by {z−wm = 0}
and B̂k by {h1(z, w) − h2(z, w)m = 0} where (z, w) 7→ (h1(z, w), h2(z, w)) is, as in the proof of
Lemma 6.12, a holomorphic change of coordinates. Note that it stabilizes {z = 0}, i.e., h1(0, w) =
0 for all w and we can write h1(z, w) = zh̃1(z, w). The intersection of B̂i and B̂j corresponds to
the equation wm h̃1(wm, w)− h2(wm, w) which is of degree greater than or equal to m. The lemma
follows.

Summing over all points of intersection of B̂i and B̂k one finds B̂i · B̂k ≥ ∑j ∑m bj
mm. Recall that

by Lemma 6.5 FixX̂(S) is contained in FixX̂(D) and that the curve B contains three S-fixed points.
Therefore, it intersects the ramification locus of π̂ in at least three points. At these points the three
irreducible components of B̂ must meet. In particular, (B̂i, B̂k) ≥ 3. This yields

(1, 1, 1)

 B̂2
1 B̂1 · B̂2 B̂1 · B̂3

B̂2 · B̂1 B̂2
2 B̂2 · B̂3

B̂3 · B̂1 B̂3 · B̂2 B̂2
3

1
1
1


= B̂2

1 + B̂2
2 + B̂2

3 + 2(B̂1 · B̂2 + B̂2 · B̂3 + B̂1 · B̂3)

≥ −6− 3 ∑
j

∑
m

bj
m + 3 ∑

j
∑
m

bj
mm + (B̂1 · B̂2 + B̂2 · B̂3 + B̂1 · B̂3)

= −6 + (B̂1 · B̂2 + B̂2 · B̂3 + B̂1 · B̂3)

≥ 3.
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Hence, the intersection matrix (B̂i · B̂j)ij is not negative-definite contradicting the fact that B̂ is
exceptional. It follows that the curve B̂ must be irreducible.

Case 2: The curve B̂ is irreducible

Let n : N → B̂ be the normalization of B̂. Since bX is a blow-up, bX ◦ n : N → bX(B̂) is the nor-
malization of the curve bX(B̂) ⊂ X. It follows that g(bX(B̂)) = g(N) + δ(bX(B̂)). By adjunction,
the self-intersection of bX(B̂) is given by

(bX(B̂))2 = 2g(bX(B̂))− 2 = 2g(N) + 2δ(bX(B̂))− 2.

As above, by Lemma 3.17, (bX(B̂))2 = B̂2 + ∑j(Êj · B̂)2. Thus, the self-intersection of B̂ can be
expressed as

B̂2 = 2g(N) + 2δ(bX(B̂))− 2−∑
j
(Êj · B̂)2.

Since the curve B̂ is exceptional, this self-intersection number must be negative. By finding a
lower bound for B̂2 we will obtain a contradiction.

Let us first examine the points of intersection B̂∩ Ê for one curve Ê among the exceptional curves
of the blow-down bX . We consider the corresponding points of intersection of B and E in Ŷ and
we choose coordinates (ξ, η) such that E is locally defined by {ξ = 0}, the map π̂ is locally given
by (z, w) 7→ (z3, w) = (ξ, η) and B = { f (ξ, η) = 0}. It follows that B̂ is locally defined by
{h = f ◦ π̂ = 0}.
If E and B meet transversally, we know that the function f (ξ, η) fulfills ∂ f

∂η |(0,0) 6= 0. It follows that
∂h
∂w |(0,0) 6= 0 and after a suitable change of coordinates h(z, w) = zm − w.

If E and B meet tangentially, we know that the function f (ξ, η) fulfills ∂ f
∂η |(0,0) = 0. Since B is

smooth, we know ∂ f
∂ξ |(0,0) 6= 0. After a suitable change of coordinates h(z, w) = z3 − wn with

n > 0. Note that in both cases the coordinate change on X̂ is such that Ê is still defined by
{z = 0}. This will be important when describing the blow-down bX of Ê.

Consider a curve segment {h = 0} in X̂ and its image under the map bX . If h(z, w) = zm −w then
the corresponding smooth segment of bX(B̂) is defined by xm+1− y = 0. If h(z, w) = z3−wn then
the corresponding piece of bX(B̂) is defined by xn+3 − yn = 0 and has a singular point if n > 1.

Let p = bX(Ê). We will determine δp by decomposing the germ of bX(B̂) at p into its irreducible
components. There are three different types of such components:

1. smooth components locally defined by xm+1 − y = 0,

2. singular components locally defined by xn+3 − yn = 0 for n > 1 not divisible by 3,

3. triplets of smooth components locally defined by x6 − y3 = 0,

4. triplets of singular components locally defined by xn+3 − yn = 0 for n = 3k and k > 1.

The singularity in case 2) gives δ = n2+n−2
2 . In case 4), each component is defined by an equation

of type xk+1 − yk = 0 and the singularity of each component gives δ = k2−k
2 .

In order to determine δp we need to specify intersection multiplicities for all combinations of
irreducible components.
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Lemma 6.14. The local intersection multiplicities of pairs of irreducible components of the germ of bX(B̂)
at p in general position are given by the following table.

local equation xm1+1 − y xn1+3 − yn1 x2 − y xk1+1 − yk1

xm2+1 − y 1 n1 1 k1

xn2+3 − yn2 n2 n1n2 n2 n2k1

x2 − y 1 n1 1 or (2) k1

xk2+1 − yk2 k2 k2n1 k2 k1k2 or (k2 + k)

Note that the local equations in the first row and column, although all written as functions of
(x, y), describe the curve segments in different choices of local coordinates.

Sketch of proof. As above, we rewrite one equation as f (h1(x, y), h2(x, y)) where (h1, h2) is a holo-
morphic change of local coordinates. The intersection multiplicities can then be calculated by the
method introduced in the proof of Lemma 6.12. Two irreducible components in a triplet of type
3) meet with intersection multiplicity 2. Two irreducible components in a triplet of type 4) meet
with intersection multiplicity k2 + k. These quantities are indicated in brackets as they differ from
the intersection multiplicities of two irreducible components from different triplets.

Remark 6.15. If two irreducible components of the germ of bX(B̂) at p are in special position, their
local intersection multiplicity is greater than the value specified in the above table. In particular,
the table gives lower bounds for the respective intersection numbers.

Let a denote the number of irreducible components of type 1), let bn the number of irreducible
components of type 2) where n 6∈ 3N, let c ∈ 3N denote the number of irreducible components of
type 3) and let dk ∈ 3N denote the number of irreducible components of type 4). We summarize
e = a + c.

A lower bound for δp is given by

δp ≥∑
n

bn
n2 + n− 2

2
+ ∑

k
dk

k2 − k
2

+
1
2

e(e− 1) + c + ∑
n

ebnn + ∑
k

edkk

+
1
2 ∑

n
bn(bn − 1)n2 + ∑

n1>n2

bn1 bn2 n1n2 + ∑
n,k

bndknk

+
1
2 ∑

k
dk(dk − 1)k2 + ∑

k
dkk + ∑

k1>k2

dk1 dk2 k1k2.

For simplicity, we first consider only one curve Ê intersecting B̂. The formula for B̂2 becomes

B̂2 = 2g(N) + 2δ(bX(B̂))− 2− (Ê · B̂)2

= 2g(N) + 2δ(bX(B̂))− 2− (e + ∑
n

bnn + ∑
k

dkk)2

︸ ︷︷ ︸
(Ê·B̂)2

= 2g(N)− 2− e + 2c + ∑
k

dkk + ∑
n

bn(n− 2)

≥ 2g(N)− 2− a. (6.2)
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The same formula also holds if we consider the general case of curves
⋃

i Êi intersecting B̂ since
both the calculation of δ and the intersection number ∑i(B̂, Êi)2 can be obtained from the above
by addition. The number a now represents the number of points of type 1) in the union of curves
Êi.

The map n ◦ π̂ : N → B̂→ B is a degree three cover of the smooth curve B branched at V ⊂ B. The
genus of B is three, the topological Euler characteristic is e(B) = −4. Let Ṽ := B ∩ (

⋃
Ei ∪ ⋃ Fj)

denote the branch locus of π̂ : B̂ → B. Then V ⊂ Ṽ and V must contain those points in Ṽ which
correspond to smooth points on B̂. In partcular, |V| ≥ a.

The Euler characteristic of N is given by e(N) = 3e(B)− 2|V| = −12− 2|V| = 2− 2g(N). and
inequality (6.2) becomes

B̂2 ≥ 12 + 2|V| − a ≥ 12 + |V| ≥ 0

contradicting the fact that B̂ is exceptional.

Conclusion

The above contradiction shows the non-existence of a K3-surface with an action of G× C3. This
completes the prove of Theorem 6.3.





7 The alternating group of degree six

In the previous chapters we have considered symplectic automorphisms groups of K3-surfaces
centralized by an antisymplectic involution, i.e., the groups under consideration were of the form
G̃ = G× 〈σ〉 where G̃symp = G. In this chapter we wish to discuss more general automorphims
groups G̃ of mixed type: if G̃ contains an antisymplectic involution σ with fixed points we con-
sider the quotient by σ. In general, if σ does not centralize the group G̃symp inside G̃, the action
of G̃symp does not descend to the quotient surface. We therefore restrict our consideration to the
centralizer ZG̃(σ) of σ inside G̃ (or G̃symp) and study its action on the quotient surface.

If we are able to describe the family of K3-surfaces with ZG̃(σ)-symmetry, it remains to detect
the surfaces with G̃-symmetry inside this family. This chapter is devoted to a situation where
the group G̃ contains the alternating group of degree six. Although, a precise classification can-
not be obtained at present, we achieve an improved understanding of the equivariant geometry
of K3-surfaces with G̃-symmetry and classify families of K3-surfaces with ZG̃(σ)-symmetry (cf.
Theorem 7.31). In this sense, this closing chapter serves as an outlook on how the method of
equivariant Mori reduction allows generalization to more advanced classification problems.

7.1 The group Ã6

We let G̃ be any finite group which fits into the exact sequence

{id} → A6 → G̃ α→ Cn → {id}.
and in the following consider a K3-surface X with an effective action of G̃. The group of symplec-
tic automorphisms (G̃)symp in G̃ coincides with A6.

This particular situation is considered by Keum, Oguiso, and Zhang in [KOZ05] and [KOZ07].
They lay special emphasis on the maximal possible choice of G̃ and therefore consider a group
G̃ = Ã6 characterized by the exact sequence

{id} → A6 → Ã6
α→ C4 → {id}. (7.1)

Let N := Inn(Ã6) ⊂ Aut(A6) denote the group of inner automorphisms of Ã6 and let int :
Ã6 → N be the homomorphisms mapping an element g ∈ Ã6 to conjugation with g. It can be

89
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shown that the group Ã6 is a semidirect product A6oC4 embedded in N×C4 by the map (int, α)
(Theorem 2.3 in [KOZ07]). By Theorem 4.1 in [KOZ07] the group N is isomorphic to M10 and
the isomorphism class of Ã6 is uniquely determined by (7.1) and the condition that it acts on a
K3-surface.

In [KOZ05] a lattice-theoretic proof of the following classification result (Theorem 5.1, Theorem
3.1, Proposition 3.5) is given.

Theorem 7.1. A K3 surface X with an effective action of Ã6 is isomorphic to the minimal desingularization
of the surface in P1 ×P2 given by

S2(X3 + Y3 + Z3)− 3(S2 + T2)XYZ = 0.

Although this realization is very concrete, the action of Ã6 on this surface is hidden. The ex-
istence of an isomorphism from a K3-surface with Ã6-symmetry to the surface defined by the
equation above follows abstractly since both surfaces are shown to have the same transcendental
lattice. It is therefore desirable to achieve a more geometric understanding of K3-surfaces with
Ã6-symmetry in general and in particular to obtain an explicit realization of X where the action
of Ã6 is visible.

We let the generator of the factor C4 in the semidirect product Ã6 = A6 o C4 be denoted by
τ. The order four automorphism τ is nonsymplectic and has fixed points. It follows that the
antisymplectic involution σ := τ2 fulfils

FixX(σ) 6= ∅.

Since σ is mapped to the trivial automorphism in Out(A6) = Aut(A6)/int(A6) ∼= C2 × C2 there
exists h ∈ A6 such that int(h) = int(σ) ∈ Aut(A6). The antisymplectic involution hσ centralizes
A6 in Ã6.

Remark 7.2. If FixX(hσ) 6= ∅, we are in the situation dealt with in Section 4.2, i.e., the K3-surface
X is an A6-equivariant double cover of P2 where A6 acts as Valentiner’s group and the branch
locus is given by FA6(x1, x2, x3) = 10x3

1x3
2 + 9x5

1x3 + 9x3
2x3

3 − 45x2
1x2

2x2
3 − 135x1x2x4

3 + 27x6
3. By

construction, there is an evident action of A6 × C2 on the Valentiner surface, it is however not
clear whether this surface admits the larger symmetry group Ã6.

In the following we assume that hσ acts without fixed points on X as otherwise the remark above
yields an A6-equivariant classification of X.

7.1.1 The centralizer G of σ in Ã6

We study the quotient π : X → X/σ = Y. As mentioned above, the action of the centralizer of σ

descends to an action on Y. We therefore start by identifying the centralizer G := ZÃ6
(σ) of σ in

Ã6.

Lemma 7.3. The group G equals ZA6(σ)o C4 and ZA6(σ) = ZA6(h)

Proof. The lemma follows from direct computations: we write an element of Ã6 as aτk with a ∈
A6. Then aτk is in ZÃ6

(σ) if and only if aτkτ2 = τ2aτk. This is the case if and only if aτ2 = τ2a,
i.e., if a ∈ ZA6(σ). Now 〈τ〉 < ZÃ6

(σ) implies the first part of the lemma. The second part follows
from the equality int(σ) = int(h).
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Lemma 7.4. ZA6(h) = D8

Proof. Since int(σ) = int(h) and σ2 = id, it follows that h2 commutes with any element in A6. As
Z(A6) = {id}, it follows that h is of order two. There is only one conjugacy class of elements of
order two in A6. We calculate ZA6(h) = D8 for one particular choice of h. Let

h =
(

1 2 3 4 5 6
3 4 1 2 5 6

)
.

Any element in the centralizer of h must be of the form(
1 2 3 4 5 6
∗ ∗ ∗ ∗ 5 6

)
or

(
1 2 3 4 5 6
∗ ∗ ∗ ∗ 6 5

)
It is therefore sufficient to perform all calculations in S4. If an element of S4 is a composition of an
even (odd) number of transpositions, the corresponding element of ZA6(h) is given by completing
it with the identity map (transposition map) on the fifth and sixth letter.

Let

g1 =
(

1 2 3 4
2 1 4 3

)
, g2 =

(
1 2 3 4
3 2 1 4

)
, g3 =

(
1 2 3 4
1 4 3 2

)
.

and check that g1, g2, g3 ∈ ZA6(h). Define g1g2 =: c and check

c =
(

1 2 3 4
2 3 4 1

)
, c2 = h.

Now g3cg3 = c3 and the subgroup of S4 (A6, respectively) generated by c and g3 is seen to be
a dihedral group of order eight; 〈g3〉n 〈c〉 = D8 < ZA6(h). In order to show equality, assume
that ZA6(h) is bigger. It then follows that the centralizer of h in S4 is a subgroup of order 12, in
particular, it has a subgroup of order three. Going through the list of elements of order three in S4
one checks that none commutes with h and obtains a contradiction.

Let D8 = C2 n C4 where C2 is generated by g = g3 and C4 by c and note that c2 = h. We study
the action of τ on D8 by conjugation. Since C4 is the only cyclic subgroup of order four in D8, it is
τ-invariant. If c is τ-fixed, i.e. τc = cτ, then

(τc)2 = cττc = cσc
c∈Z(σ)

= σc2 = σh.

In this case τc generates a cyclic group of order four acting freely on X, a contradiction. So τ acts
on 〈c〉 by c 7→ c3 and c2 7→ c2. Now τgτ−1 = ckg for some k ∈ {0, 1, 2, 3}. If k = 2, then

(τg)2 = τgτg = τgτ−1τ2g = c2gσg
g∈Z(σ)

= c2σ = σh

and we obtain the same contradiction as above. So k ∈ {1, 3} and by choosing the appropriate
generator of 〈c〉 we may assume that k = 3. The action of τ on ZA6(h) = D8 given by g 7→ c3g
and c 7→ c3.

Lemma 7.5. G′ = 〈c〉.

Proof. The commutator subgroup G′ is the smallest normal subgroup N of G such that G/N
is Abelian. We use the above considerations about the action of τ on D8 by conjugation. The
subgroup 〈c〉 is normal in G = D8 o 〈τ〉 and G/〈c〉 is seen to be Abelian. Since G/〈c2〉 is not
Abelian, G′ 6= 〈c2〉 and the lemma follows.
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7.1.2 The group H = G/〈σ〉
We consider the quotient Y = X/σ equipped with the action of G/σ =: H = ZÃ6

(σ)/〈σ〉 =
D8 o C2. The group C2 is generated by [τ]σ. For simplicity, we transfer the above notation from
G to H by writing e.g. τ for [τ]σ. etc.. Since τgτ−1 = c3g = gc, it follows as above that H′ = 〈c〉.
Let K < G be the cyclic group of order eight generated by gτ.

K = {id, gτ, cσ, gτ3c, c2, gτc2, σc3, gcτ3}.

We denote the image of K in G/σ by the same symbol. Since [σc]σ = [c]σ ∈ K it contains H′ = 〈c〉
and we can write H = 〈τ〉n K = D16.

Lemma 7.6. There is no nontrivial normal subgroup N in H with N ∩ H′ = {id}.

Proof. If such a group exists, first consider the case N ∩ K = {id}. Then N ∼= C2 and H = K× N
would be Abelian, a contradiction. If N ∩ K 6= {id} then N ∩ K = 〈(gτ)k〉 for some k ∈ {1, 2, 4}.
This implies (gτ)4 = c2 ∈ N and contradicts N ∩ H′ = N ∩ 〈c〉 = ∅.

The following observations strongly rely the assumption that σh acts freely on X.

Lemma 7.7. The subgroup H′ acts freely on the branch set B = π(FixX(σ)) in Y.

Proof. If for some b ∈ B the isotropy group H′b is nontrivial, then c2(b) = h(b) = b and σh fixes
the corresponding point b̃ ∈ X.

Corollary 7.8. The subgroup H′ acts freely on the set R of rational branch curves. In particular, the
number of rational branch curves n is a multiple of four.

Corollary 7.9. The subgroup H′ acts freely on the set of τ-fixed points in Y.

Proof. We show FixY(τ) ⊂ B. Since σ = τ2 on X, a 〈τ〉-orbit {x, τx, σx, τ3x} in X gives rise to a
τ-fixed point y in the quotient Y = X/σ if and only if σx = τx. Therefore, τ-fixed points in Y
correspond to τ-fixed points in X. By definition FixX(τ) ⊂ FixX(σ) and the claim follows.

7.2 H-minimal models of Y

Since FixX(σ) 6= ∅, the quotient surface Y is a smooth rational H-surface to which we apply the
equivariant minimal model program. We denote by Ymin an H-minimal model of Y. It is known
that Ymin is either a Del Pezzo surface or an H-equivariant conic bundle over P1.

Theorem 7.10. An H-minimal model Ymin does not admit an H-equivariant P1-fibration. In particular,
Ymin is a Del Pezzo surface.

In order to prove this statement we begin with the following general fact (cf. Proof of Lemma 6.7).

Lemma 7.11. If Y → Ymin is an H-equivariant Mori reduction and A a cyclic subgroup of H, then

|FixY(A)| ≥ |FixYmin(A)| .
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Proof. Each step of a Mori reduction is known to contract a disjoint union of (-1)-curves. It is
sufficient to prove the statement for one step in a Mori reduction. If such a step changes the
number of fixed points, then some Mori fiber E of the reduction is contracted to an A-fixed point.
The rational curve E is A-invariant and therefore contains two A-fixed points. The number of
fixed points drops.

Suppose that some Ymin is an H-equivariant conic bundle, i.e., there is an H-equivariant fibration
p : Ymin → P1 with generic fiber P1. We let p∗ : H → Aut(P1) be the associated homomorphism.

Lemma 7.12. Ker(p∗) ∩ H′ = {id} .

Proof. The elements of Ker(p∗) fix two points in every generic p-fiber. If h = c2 ∈ H′ = 〈c〉 fixes
points in every generic p-fiber, then h acts trivially on a one-dimensional subset C ⊂ Y. Since
h = c2 acts symplectically on X it has only isolated fixed points in X. Therefore, on the preimage
C̃ = π−1(C) ⊂ X, the action of h coincides with the action of σ. But then σh|C̃ = id|C̃ contradicts
the assumption that σh acts freely on X.

Proof of Theorem 7.10. Since there are no nontrivial normal subgroups in H which have trivial in-
tersection with H′ (Lemma 7.6), it follows from Lemma 7.12 that Ker(p∗) = {id}, i.e., the group
H acts effectively on the base.

We regard H as the semidirect product H = 〈τ〉 n K, where K = C8 is described above. The
group H acts on the base as a dihedral group and therefore τ exchanges the K-fixed points. We
will obtain a contraction by analyzing the K-actions on the fibers over its two fixed points. Since
τ exchanges these fibers, it is enough to study the K-action on one of them which we denote by F.

By Lemma 2.21 there are two situations which we must consider:

1. F is a regular fiber of Ymin → P1.

2. F = F1 ∪ F2 is the union of two (-1)-curves intersecting transversally in one point.

We study the fixed points of c, h = c2 and gτ in Ymin. Recall that in X the symplectic transforma-
tion c has precisely four fixed points and h has precisely eight fixed points. This set of eight points
is stabilized by the full centralizer of h, in particular by K = 〈gτ〉 ∼= C8.

Since hσ acts by assumption freely on X, it follows that σ acts freely on the set of h-fixed points in
X. If hy = y for some y ∈ Y, then the preimage of y in X consists of two elements x1, σx1 = x2. If
these form an 〈h〉-orbit, then both are σh-fixed, a contradiction. It follows that {x1, x2} ⊂ FixX(h)
and the number of h-fixed points in Y is precisely four. In particular, h acts effectively on any
curve in Y.

Let us first consider Case 2 where F = F1 ∪ F2 is reducible. Since 〈c〉 is the only subgroup of
index two in K, it follows that 〈c〉 stabilizes Fi and both c and h have three fixed points in F (two
on each irreducible component, one is the point of intersection F1 ∩ F2), i.e., six fixed points on
F ∪ τF ⊂ Ymin. This is contrary to Lemma 7.11 because h has at most four fixed points in Ymin.

If F is regular (Case 1), then the cyclic group K has two fixed points on the rational curve F. Since
h ∈ K, the four K-fixed points on F ∪ τF are contained in the set of h-fixed points on Ymin. As
|FixYmin(h)| ≤ 4, the K-fixed points coincide with the four h-fixed points in Ymin;

FixYmin(h) = FixYmin(K).
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In particular, the Mori reduction does not affect the four h-fixed points {y1, . . . y4} in Y. By equiv-
ariance of the reduction, the group K acts trivially on this set of four points. Passing to the double
cover X, we conclude that the action of gτ ∈ K on a preimage {xi, σxi} of yi is either trivial or
coincides with the action of σ. In both cases it follows that (gτ)2 = cσ acts trivially on the set
of h-fixed points in X. As FixX(c) ⊂ FixX(h), this is contrary to the fact that σ acts freely on
FixX(h).

In the following we wish to identify the Del Pezzo surface Ymin. For thus, we use the Euler
characteristic formulas,

24 = e(X) = 2e(Y)− 2n + 2g− 2︸ ︷︷ ︸
if Dg is present

,

where Dg ⊂ B is of general type, g = g(Dg) ≥ 2, and

e(Y) = e(Ymin) + m,

where m = |E | denotes the total number of Mori fibers. For convenience we introduce the differ-
ence δ = m− n. If a branch curve Dg of general type is present, then 13− g− δ = e(Ymin) and if
it is not present 12− δ = e(Ymin).

Proposition 7.13. For every Mori fiber E the orbit H.E consists of at least four Mori fibers.

Proof. We need to distinguish three cases:

1.) E ∩ B 6= ∅ and E 6⊂ B; 2.) E ⊂ B; 3.) E ∩ B = ∅

Case 1 Since H′ acts freely on the branch curves and E meets B in at most two points, we know
|H′.E| ≥ 2. If |H.E| = 2, then the isotropy group HE is a normal subgroup of index two which
necessarily contains the commutator group H′, a contradiction.

Case 2 We show that the H′-orbit of E consists of four Mori fibers. If it consisted of less than four
Mori fibers, the stabilizer H′E 6= {id} of E in H′ would fix two points in E ⊂ B. This contradicts
Lemma 7.7.

Case 3 All Mori fibers disjoint from B have self-intersection (-2) and meet exactly one Mori fiber
of the previous steps of the reduction in exactly one point. If E ∩ B = ∅ there is a chain of Mori
fibers E1, . . . , Ek = E connecting E and B with the following properties: The Mori fiber E1 is the
only one to have nonempty intersection with B and is the first curve of this configuration to be
blown down in the reduction process. The curves fulfil (Ei, Ei+1) = 1 for all i ∈ {1, . . . , k− 1} and
(Ei, Ej) = 0 for all j 6= i + 1. The curves are blown down subsequently and meet no Mori fibers
outside this chain.

The H-orbit of this union of Mori fibers consists of at least four copies of this chain. This is due
to that fact that the H-orbit of E1 consists of at least four Mori fibers by Case 1. In particular, the
H-orbit of E consists of at least four copies of E.

Corollary 7.14. The difference δ is a non-negative multiple 4k of four. If δ = 0, then X is a double cover
of Y = Ymin = P1 ×P1 branched along a curve of genus nine.

Proof. Above we have shown that m and and n are multiples of four. Therefore δ = 4k.

If δ was negative, i.e., m < n, there is no configuration of Mori fibers meeting the rational branch
curves such that the corresponding contractions transform the (-4)-curves in Y to curves on a Del
Pezzo surface Ymin. It follows that δ is non-negative.
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If δ = 0, then n = m = 0 and Y is H-minimal. The commutator subgroup H′ ∼= C4 acts freely
on the branch locus B implying e(B) ∈ {0,−8,−16, . . . }. Since the Euler characteristic of the Del
Pezzo surface Y is at least 3 and at most 11,

6 ≤ 2e(Y) = 24 + e(B) ≤ 22,

we only need to consider the case e(Y) ∈ {4, 8} and B = Dg for g ∈ {9, 5}.
The automorphism group of a Del Pezzo surface of degree 4 is C4

2 o Γ for Γ ∈ {C2, C4, S3, D10}. If
D16 < C4

2 o Γ then A := D16 ∩ C4
2 C D16 and A is either trivial or isomorphic to C2. In both case

D16/A is not a subgroup of Γ in any of the cases listed above. Therefore, e(Y) 6= 8.

A Del Pezzo surface of degree 8 is either the blow-up of P2 in one point or P1×P1. Since the first
is never equivariantly minimal, it follows that Y ∼= P1 ×P1 and g(B) = 9.

Theorem 7.15. Any H-minimal model Ymin of Y is P1 ×P1 .

Proof. Suppose δ 6= 0. Since δ ≥ 4, it follows that e(Ymin) = 13− g− δ ≤ 7 if a branch curve Dg
of general type is present, and e(Ymin) = 12− δ ≤ 8 if not. We go through the list of of Del Pezzo
surfaces with e(Ymin) ≤ 8.

• If e(Ymin) = 8, i.e., deg(Ymin) = 4, then the possible automorphism groups are very limited
and we have alredy noted above that D16 does not occur.

• If e(Ymin) = 7, then Aut(Ymin) = S5. Since 120 is not divisible by 16, we see that a Del Pezzo
surface of degree five does not admit an effective action of the group H.

• If e(Ymin) = 6, then A := Aut(Ymin) = (C∗)2 o (S3 × C2). We denote by A◦ ∼= (C∗)2 the
connected component of A. If q : A → A/A◦ is the canonical quotient homomorphism
then q(H′) < q(A)′ ∼= C3. Consequently H′ = C4 < A◦. We may realize Ymin as P2 blown
up at the three corner points and A◦ as the space of diagonal matrices in SL3(C). Every
possible representation of C4 in this group has ineffectivity along one of the lines joining
corner points. But, as we have seen before, the elements of H′, in particular c2 = h, have
only isolated fixed points in Ymin.

• A Del Pezzo surface obtained by blowing up one or two points in P2 is never H-minimal
and therefore does not occur

• Finally, Ymin 6= P2: If e(Ymin) = 3 then either δ = 9 (if Dg is not present), a contradiction
to δ = 4k, or g + δ = 10. In the later case, δ = 4, 8 forces g = 6, 2. In both cases, the Euler
characteristic 2− 2g of Dg is not divisible by 4. This contradicts the fact that H′ acts freely
on Dg.

We have hereby excluded all possible Del Pezzo surfaces except P1 × P1 and the proposition
follows.

7.3 Branch curves and Mori fibers

We let M : Y → Ymin = P1 ×P1 denote an H-equivariant Mori reduction of Y.

Lemma 7.16. The length of an orbit of Mori fibers is at least eight.
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Proof. Consider the action of H on P1 × P1. Both canonical projections are equivariant with re-
spect to the commutator subgroup H′ = 〈c〉 ∼= C4. Since c2 ∈ H′ does not act trivially on any
curve in Y or Ymin, it follows that H′ has precisely four fixed points in Ymin = P1 × P1. Since
h = c2 has precisely four fixed points in Y and FixY(H′) = FixY(c) ⊂ FixY(c2), we conclude that
H′ has precisely four fixed points in Y and it follows that the Mori fibers do not pass through
H′-fixed points. Note that the H′-fixed points in Y coincide with the h-fixed points.

Suppose there is an H-orbit H.E of Mori fibers of length strictly less then eight and let p = M(E).
We obtain an H-orbit H.p in P1 ×P1 with |H.p| ≤ 4. Now |K.p| ≤ 4 implies that Kp 6= {id}, in
particular, h = c2 ∈ Kp. It follows that p is a h-fixed point. This contradicts the fact that the Mori
fibers do not pass through fixed points of h.

Corollary 7.17. The total number m of Mori fibers equals 0, 8, or 16..

Proof. A total number of 24 or more Mori fibers would require 16 rational curves in B. This
contradicts the bound for the number of connected components of the fixed point set of an anti-
symplectic involution on a K3-surface (cf. Corollary 3.20)

Recalling that the number of rational branch curves is a multiple of four, i.e., n ∈ {0, 4, 8} and
using the fact m ∈ {0, 8, 16} along with m ≤ n + 9, we conclude that the surface Y is of one of the
following types.

1. m = 0
The quotient surface Y is H-minimal. The map X → Y ∼= P1×P1 is branched along a single
curve B. This curve B is a smooth H-invariant curve of bidegree (4, 4).

2. m = 8 and e(Y) = 12
The surface Y is the blow-up of P1 ×P1 in an H-orbit consisting of eight points.

(a) If the branch locus B of X → Y contains no rational curves, then e(B) = 0 and B is
either an elliptic curve or the union of two elliptic curves defining an elliptic fibration
on X.

(b) If the branch locus B of X → Y contains rational curves, their number is exactly four
(Observe that eight or more rational branch curves of self-intersection (-4) cannot be
modified sufficiently and mapped to curves on a Del Pezzo surface by contracting eight
Mori fibers). It follows that the branch locus is the disjoint union of an invariant curve
of higher genus and four rational curves.

3. m = 16 and e(Y) = 20
The map X → Y is branched along eight disjoint rational curves.

We can simplify the above situation by studying rational curves in B, their intersection with Mori
fibers and their images in P1 ×P1.

Proposition 7.18. If e(Y) = 12, then n = 0.

Proof. Suppose n 6= 0 and let Ci ⊂ Y be a rational branch curve. Since C2
i = −4 and M(Ci) ⊂ P1×

P1 has self-intersection≥ 0 it must meet the union of Mori fibers
⋃

Ej. All possible configurations
of Mori fibers yield image curves M(Ci) of self-intersection ≤ 4. If M(Ci) is a curve a bidegree
(a, b), then, by adjunction.

2g(M(Ci))− 2 = (M(Ci))2 + (M(Ci) · KP1×P1) = 2ab− 2a− 2b,
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and (M(Ci))2 = 2ab ≤ 4 implies that g(M(Ci)) = 0. In particular, M(Ci) must be nonsingular.
Hence each Mori fiber meets Ci in at most one point. It follows that Ci meets four Mori fibers,
each in one point, and (M(Ci))2 = 0. Curves of self-intersection zero in P1 ×P1 are fibers of the
canonical projections P1 × P1 → P1. The curve C1 meets four Mori fibers E1, . . . E4 and each of
these Mori fibers meets some Ci for i 6= 1. After renumbering, we may assume that E1 and E2
meet C2 and therefore M(C1) and M(C2) meet in more than one point, a contradiction. It follows
that e(Y) = 12 implies n = 0

Proposition 7.19. If e(Y) = 20, then Y is the blow-up of P1 ×P1 in sixteen points

{p1, . . . p16} = (F1 ∪ F2 ∪ F3 ∪ F4) ∩ (F5 ∪ F6 ∪ F7 ∪ F8),

where F1, . . . F4 are fibers of the canonical projection π1 and F5, . . . F8 are fibers of π2. The branch locus is
given by the proper transform of

⋃
Fi in Y.

Proof. We denote the eight rational branch curves by C1, . . . C8. The Mori reduction can have
two steps. A slightly more involved study of possible configurations of Mori fibers shows that
0 ≤ (M(Ci))2 ≤ 4. As above M(Ci) is seen to be nonsingular and each Mori fiber can meet Ci
in at most one point. Any configuration of curves with this property yields (M(Ci))2 = 0 and
Fi = M(Ci) is a fiber of a canonical projection P1 ×P1 → P1.

If there are Mori fibers disjoint from B these are blown down in the second step of the Mori
reduction. Let E1, . . . , E8 denote the Mori fibers of the first step and Ẽ1, . . . , Ẽ8 those of the second
step. We label them such that Ẽi meets Ei. Each curve Ei meets two rational branch curves Ci
and Ci+4 and their images Fi = M(Ci) and Fi+4 = M(Ci+4) meet with multiplicity ≥ 2. This is
contrary to the fact that they are fibers of the canonical projections. It follows that there are no
Mori fibers disjoint from B and all 16 Mori fibers are contrancted simultaniously. There is precisely
one possible configuration of Mori fibers on Y such that all rational brach curves are mapped to
fibers of the canonical projections of P1×P1: The curves C1, . . . C4 are mapped to fibers of π1 and
C5, . . . , C8 are mapped to fibers of π2. The Mori reduction contracts 16 curves to the 16 points of
intersection {p1, . . . p16} = (

⋃4
i=1 Fi) ∩ (

⋃8
i=5 Fi) ⊂ P1 ×P1.

Let us now restrict our attention to the case where the branch locus B is the union of two linearly
equivalent elliptic curves and exclude this case.

7.3.1 Two elliptic branch curves

In this section we prove:

Theorem 7.20. FixX(σ) is not the union of two elliptic curves.

We assume the contrary, let FixX(σ) = D1 ∪ D2 with Di elliptic and let f : X → P1 denote the
elliptic fibration defined by the curves D1 and D2. Recall that σ acts effectively on the base P1 as
otherwise σ would act trivially in a neighbourhood of Di by a linearization argument (cf. Theorem
1.12). It follows that the group of order four generated by τ acts effectively on P1.

Let I be the ineffectivity of the induced G-action on the base P1. We regard G = C4 n D8 where
C4 = 〈τ〉 and D8 is the centralizer of σ in A6 (cf. Section 7.1.1) and define J := I ∩ D8. First, note
that I is nontrivial:

Lemma 7.21. The group G does not act effectively on P1, i.e., I 6= {id}.
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Proof. If G acts effectively on P1, then G is among the groups specified in Remark 3.1. In our
special case |G| = 32 and G would have to be cyclic or dihedral. Since the group G does not
contain a cyclic group of order 16, this is a contradiction.

Lemma 7.22. The intersection J = I ∩ D8 is nontrivial.

Proof. Assume the contrary and let J = I ∩ D8 = {e}. We consider the quotient G → G/D8 ∼= C4
and see that either I ∼= C2 or I ∼= C4.

• If I ∩ D8 = {e} and I ∼= C2, we write I = 〈σξ〉 with ξ ∈ D8 an element of order two. Now
I is normal if and only if ξ = h, i.e., I = 〈σh〉. In this case, since σh /∈ K, the image of K
in G/I is a normal subgroup of index two and one checks that G/I ∼= D16 . The group K
is mapped injectively into G/I. The equivalence relation defining this quotient identifies σ

and h and both are in the image of K. So h-fixed points in X must lie in the fibers over the
σ-fixed points in P1, i.e., the σ-fixed points sets D1, D2. Since σh acts freely on X, this is a
contradiction.

• If I ∩ D8 = {e} and I ∼= C4 we write I = 〈τξ〉 and show that for no choice of ξ the group
I = 〈τξ〉 is normal in G: If ξ = ckg, then 〈τξ〉 = K is of order eight. If ξ = ck, then 〈τξ〉 is of
order four and has trivial intersection with D8. It is however not normalized by g.

As we obtain contradictions in all cases, we see that the intersection J = I ∩ D8 is nontrivial.

In the following, we consider the different possibilities for the order of J and show that in fact
none of these occur.

If |J| = 8 then D8 ⊂ I. Recall that any automorphism group of an elliptic curve splits into an
Abelian part acting freely and a cyclic part fixing a point. Since D8 is not Abelian, any D8-action on
the fibers of f must have points with nontrivial isotropy and gives rise to a positive-dimensional
fixed point set of some subgroup of D8 on X contradicting the fact that D8 acts symplectically on
X. It follows that the maximal possible order of J is four.

Lemma 7.23. The ineffectivity I does not contain 〈c〉.

Proof. Assume the contrary and consider the fixed points of c2. If a c2-fixed point lies at a smooth
point of a fiber of f , then the linearization of the c2-action at this fixed point gives rise to a positive-
dimensional fixed point set in X and yields a contradiction. It follows that the fixed points of c2

are contained in the singular f -fibers. Since 〈τ〉 normalizes 〈c〉 and the 〈τ〉-orbit of a singular fiber
consists of four such fibers, we must only consider two cases:

1. The eight c2-fixed points are contained in four singular fibers (one 〈τ〉-orbit of fibers), each
of these fibers contains two c2-fixed points.

2. The eight c2-fixed points are contained in eight singular fibers (two 〈τ〉-orbits).

Note that 〈c2〉 is normal in I and therefore I acts on the set of 〈c2〉-fixed points. In the second case,
all eight c2-fixed points are also c-fixed. This is contrary to c having only four fixed points and
therefore the second case does not occur.

The first case does not occur for similar reasons: If c2 has exactly two fixed points x1 and x2 in
some fiber F, then 〈c〉 either acts transitively on {x1, x2} or fixes both points. Since FixX(c) ⊂
FixX(c2) and 〈c〉must have exactly one fixed point on F, this is impossible.
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Corollary 7.24. |J| 6= 4.

Proof. Assume |J| = 4. Using τ we check that no subgroup of D8 isomorphic to C2×C2 is normal
in G. It follows that the group 〈c〉 is the only order four subgroup of D8 which is normal in G and
therefore J = 〈c〉. By the lemma above this is however impossible.

It remains to consider the case where |J| = 2. The only normal subgroup of order two in D8 is
J = 〈h〉.

Lemma 7.25. If |J| = 2, then I = 〈σc〉.

Proof. We first show that |J| = 2 implies |I| = 4: If |I| = 2, then I = 〈h〉 and G/I = C4n (C2×C2).
Since this group does not act effectively on P1, this is a contradiction. If |I| ≥ 8, then G/I is
Abelian and therefore I contains the commutator subgroup G′ = 〈c〉. This contradicts Lemma
7.23. It follows that |I| = 4 and either I ∼= C4 or I ∼= C2 × C2. In the later case, the only possible
choice is I = 〈σ〉 × 〈h〉which contradicts the fact that σ acts effectively on the base. It follows that
I = 〈σξ〉, where ξ2 = h and therefore ξ = c.

Let us now consider the action of G on X with I = 〈σc〉. Recall that the cyclic group 〈τ〉 acts
effectively on the base and has two fixed points there. Since σ = τ2, these are precisely the two σ-
fixed points. In particular, 〈τ〉 stabilizes both σ-fixed point curves D1 and D2 in X. Furthermore,
the transformations σc and c stabilize Di for i = 1, 2. Since the only fixed points of c in P1 are the
images of D1 and D2,

FixX(c) ⊂ D1 ∪ D2 = FixX(σ).

On the other hand, we know that FixX(c) ∩ FixX(σ) = ∅. Thus I = 〈σc〉 is not possible and the
case |J| = 2 does not occur.

We have hereby eleminated all possibilities for |J| and completed the proof of Theorem 7.20.

7.4 Rough classification of X

We summerize the observations of the previous section in the following classification result.

Theorem 7.26. Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅.
Then X is one of the following types:

1. a double cover of P1 ×P1 branched along a smooth H-invariant curve of bidegree (4,4).

2. a double cover of a blow-up of P1 ×P1 in eight points and branched along a smooth elliptic curve B.
The image of B in P1 ×P1 has bidegree (4,4) and eight singular points.

3. a double cover of a blow-up Y of P1 ×P1 in sixteen points {p1, . . . p16} = (
⋃4

i=1 Fi) ∩ (
⋃8

i=5 Fi),
where F1, . . . F4 are fibers of the canonical projection π1 and F5, . . . F8 are fibers of π2. The branch
locus ist given by the proper transform of

⋃
Fi in Y. The set

⋃
Fi is an invariant reducible subvariety

of bidegree (4,4).
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Proof. It remains to consider case 2. and show that the image of B in P1 ×P1 has bidegree (4,4)
and eight singular points. We prove that each Mori fiber E meets the branch locus B either in
two points or once with multiplicity two, i.e., we need to check that E may not meet B transver-
sally in exactly one point. If this was the case, the image M(B) of the branch curve is a smooth
H-invariant curve of bidegree (2, 2). The double cover X′ of P1 ×P1 branched along the smooth
curve M(B) = C(2,2) is a smooth surface. Since X is K3 and therefore minimal the induced bira-
tional map X → X′ is an isomorphism. This is a contradiction since X′ is not a K3-surface.

As each Mori fiber meets B with multiplicity two, the self-intersection number of M(B) is 32 and
M(B) is a curve of bidegree (4,4) with eight singular points. These singularities are either nodes
or cusps depending on the kind of intersection of E and B. We obtain a diagram

Xsing

2:1
��

X

2:1
��

desing.
oo

C(4,4) ⊂ P1 ×P1 Y ⊃ B
Moo

In order to obtain a description of possible branch curves, we study the action of H on P1 × P1
and its invariants.

7.4.1 The action of H on P1 ×P1

Recall that we consider the dihedral group H ∼= D16 generated by τg of order eight and τ. For
convenience, we recall the group structure of H:

c = (gτ)2, τgτ = gc,

g2 = id, τcτ = c3,

c4 = id, τ2 = id.

In this section, we prove:

Proposition 7.27. In appropriately chosen coordinates the action of H on P1 ×P1 given by

• c([z0 : z1], [w0 : w1]) = ([iz0 : z1], [−iw0 : w1])

• τ([z0 : z1], [w0 : w1]) = ([z1 : z0], [iw1 : w0])

• g([z0 : z1], [w0 : w1]) = ([w0 : w1], [z0 : z1]) .

Sketch of proof. First note that the index two subgroup H1 of H preserving the canonical projec-
tions is generated by τ and c, i.e, H1 = 〈τ〉n 〈c〉 ∼= D8. We begin by choosing coordinates such
that

c([z0 : z1], [w0 : w1]) = ([χ1(c)z0 : z1], [χ2(c)w0 : w1])

where χi : H′ → S1 are faithful characters. Since τ acts transitively on the set of H′-fixed points,
we conclude that after an appropriate change of coordinates not affecting the H′-action

τ([z0 : z1], [w0 : w1]) = ([z1 : z0], [w1 : w0]).

The automorphism g permutes the factors of P1 × P1, stabilizes the fixed point set of H′ and
fulfills gcg−1 = c3 and gτg−1 = cτ. Therefore, one finds
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• c([z0 : z1], [w0 : w1]) = ([iz0 : z1], [−iw0 : w1])

• τ([z0 : z1], [w0 : w1]) = ([z1 : z0], [w1 : w0])

• g([z0 : z1], [w0 : w1]) = ([λw0 : w1], [λ−1z0 : z1]) , where λ2 = i.

We introduce a change of coordinates such that g is of the simple form

g([z0 : z1], [w0 : w1]) = ([w0 : w1], [z0 : z1]).

This does affect the shape of the τ-action and yields the action of H described in the propostion.

7.4.2 Invariant curves of bidegree (4, 4)

Given the action of H on P1 × P1 discussed above, we wish to study the invariants and semi-
invariants of bidegree (4, 4). The space of (a, b)- bihomogeneous polynomials in [z0 : z1][w0 : w1]
is denoted by C(a,b)([z0 : z1][w0 : w1]).

An invariant curve C is given by a D16-eigenvector f ∈ C(4,4)([z0 : z1][w0 : w1]). The kernel of
the D16-representation on the line C f spanned f contains the commutator subgroup H′ = 〈c〉. It
follows that f is a linear combination of c-invariant monomials of bidegree (4, 4). These are

z4
0w4

0, z4
0w4

1, z4
1w4

0, z4
1w4

1, z2
0z2

1w2
0w2

1, z3
0z1w3

0w1, z0z3
1w0w3

1.

The polynomials

f1 = z4
0w4

0 + z4
1w4

1, f2 = z4
0w4

1 + z4
1w4

0, f3 = z3
0z1w3

0w1 − iz0z3
1w0w3

1

span the space of D16-invariants. Semi-invariants are appropiate linear combinations of

g1 = z4
0w4

0 − z4
1w4

1, g2 = z4
0w4

1 − z4
1w4

0, g3 = z3
0z1w3

0w1 + iz0z3
1w0w3

1, g4 = z2
0z2

1w2
0w2

1.

Note
τ(g1) = −g1, τ(g2) = −g2, τ(g3) = −g3, τ(g4) = −g4,
g(g1) = g1, g(g2) = −g2, g(g3) = g3, g(g4) = g4.

It follows that a D16-invariant curve of bidegree (4, 4) in P1 ×P1 is of the following three types

Ca = {a1 f1 + a2 f2 + a3 f3 = 0},
Cb = {b1g1 + b3g3 + b4g4 = 0},
C0 = {g2 = 0}.

7.4.3 Refining the classification of X

Using the above description of invariant curves of bidegree (4,4) we may refine Theorem 7.26.
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Reducible curves of bidegree (4, 4)

Theorem 7.28. Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅. If
e(X/σ) = 20, then X/σ is equivariantly isomorphic to the blow up of P1 ×P1 in the singular points of
the curve C = { f1 − f2 = 0} and X → Y is branched along the proper transform of C in Y.

Proof. It follows from Theorem 7.26 that X is the double cover of P1 × P1 blown up in sixteen
points. These sixteen points are the points of intersection of eight fibers of P1 ×P1, four for each
of fibration.

By invariance these fibers lie over the base points [1 : 1], [1 : −1], [1 : i], [1 : −1] and the configu-
rations of eight fibres is defined by the invariant polynomial f1 − f2.

The double cover X → Y is branched along the proper transform of this configuration of eight
rational curves. This proper transform is a disjoint union of eight rational curves in Y, each with
self-intersection (-4).

Smooth curves of bidegree (4, 4)

Theorem 7.29. Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅. If
X/σ ∼= P1 ×P1, then after a change of coordinates the branch locus is Ca for some a1, a2, a3 ∈ C.

Proof. The surface X is a double cover of P1 ×P1 branched along a smooth H-invariant curve of
bidegree (4,4). The invariant (4,4)-curves Cb and C0 discussed above are seen to be singular at
([1 : 0], [1 : 0]) or ([1 : 0], [0 : 1]).

Note that the general curve Ca is smooth. We obtain a 2-dimensional family {Ca} of smooth
branch curves and a corresponding family of K3-surfaces {XCa}.

Curves of bidegree (4, 4) with eight singular points

It remains to consider the case 2. of the classification. Our aim is to find an example of a K3-
surface X such that X/σ = Y has a nontrivial Mori reduction M : Y → P1×P1 = Z contracting a
single H-orbit of Mori fibers consisting of precisely 8 curves. In this case the branch locus B ⊂ Y
is mapped to a singular (4, 4)-curve C = M(B) in Z. The curve C is irreducible and has precisely
8 singular points along a single H-orbit in Z.

As we have noted above, many of the curves Ca, Cb, C0 are seen to be singular at ([1 : 0], [1 : 0]) or
([1 : 0], [0 : 1]). Since both points lie in H-orbits of length two, these curves are not candidates for
our construction. This argument excludes the curves Cb, C0 and Ca if a1 = 0 or a2 = 0.

For Ca with a3 = 0 one checks that Ca has singular points if and only if a1 = −a2, i.e., if Ca is
reducible. It therefore remains to consider curves Ca where all coefficients ai 6= 0. We choose
a3 = 1.

Lemma 7.30. If ai 6= 0 for i = 1, 2, 3, then Ca is irreducible.

Sketch of proof. First note that Ca does not pass through ([1 : 0], [1 : 0]) or ([1 : 0], [0 : 1]). There-
fore, possible singularities or points of intersection of irreducible components come in orbits of
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length eight. Assume that Ca is reducible, consider the decomposition into irreducible compo-
nents and the H-action on it. A curve of type (n, 0) is always reducible for n > 1 and therefore
does not occur in the decomposition.

If Ca contains a (2,2)-curve C(2,2)
a , then the H-orbit of C(2,2)

a has length ≤ 2 and C(2,2)
a is stable

with respect to the subgroup H′ = 〈c〉 of H. All c-semi-invariants of bidegree (2,2) are, however,
reducible. Similary, all c-semi-invariants of bidegree (1,2) or (2,1) are reducible an therefore C
does not have a curve of this type as an irreducible component.

The curve Ca is not the union of a (1,3)- and a (3,1)-curve, since their intersection number is 10
and contradicts invariance. Similarly one excludes the union of a (1,1) and a (3,3)-curve.

If Ca is a union of (1,1) or (1,0) and (0,1)-curves, one checks by direct computation that the re-
quirement that Ca is H-invariant gives strong restrictions and finds that in all cases at least one
coefficient ai has to be zero.

One possible choice of an orbit of length eight is given by the orbit through a τ-fixed point pτ =
([1 : 1], [±√i : 1]). One checks that pτ ∈ Ca for any choice of ai. However, if we want Ca to be
singular in pτ , then a2 = 0. It then follows that Ca is singular at points outside H.pτ . It has more
than eight singular points and is therefore reducible.

All other orbits of length eight are given by orbits through g-fixed points px = ([1 : x], [1 : x])
for x 6= 0. One can choose coefficients ai(x) such that Ca(x) is singular at px if and only if x8 6= 1.
If the curve Ca(x) is irreducible, then it has precisely eight singular points H.px of multiplicity 2
(cusps or nodes) and the double cover of P1 × P1 branched along Ca(x) is a singular K3-surface
with precisely eight singular points. We obtain a diagram

Xsing

2:1
��

X

2:1
��

desing.
oo

C(4,4) ⊂ P1 ×P1 Y ⊃ B
M

oo

If px is a node in Ca(x), then the corresponding singularity of Xsing is resolved by a single blow-
up. The (-2)-curve in X obtained from this desingularization is a double cover of a (-1)-curve in Y
meeting B in two points.

If px is a cusp in Ca(x), then the corresponding singularity of Xsing is resolved by two blow-ups.
The union of the two intersecting (-2)-curves in X obtained from this desingularization is a double
cover of a (-1)-curve in Y tangent to B is one point.

The information determining whether px is a cusp or a node is encoded in the rank of the Hessian
of the equation of Ca(x) at px. The condition that this rank is one gives a nontrivial polynomial
condition. For a general irreducible member of the family {Ca(x) | x 6= 0, x8 6= 1} the singularities
of Ca(x) are nodes.

We let q be the polynomial in x that vanishes if and only if the rank of the Hessian of Ca(x) at px
is one. It has degree 24, but 16 of its solutions give rise to reducible curves Ca(x). The remaining
eight solution give rise to four different irreducible curves. These are identified by the action of
the normalizer of H in Aut(P1 ×P1) and therefore define equivalent K3-surfaces.

We summarize the discussion in the following main classification theorem.
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Theorem 7.31. Let X be a K3-surface with an effective action of the group G such that FixX(hσ) = ∅.
Then X is an element of one the following families of K3-surfaces:

1. the two-dimensional family {XCa} for Ca smooth,

2. the one-dimensional family of minimal desingularization of double covers of P1×P1 branched along
curves in {Ca(x) | x 6= 0, x8 6= 1}. The general curve Ca(x) has precisely eight nodes along an
H-orbit. Up to natural equivalence there is a unique curve Ca(x) with eight cusps along an H-orbit.

3. the trivial family consisting only of the minimal desingularization of the double cover of P1 × P1
branched along the curve Ca = { f1 − f2 = 0} where a1 = 1, a2 = −1, a3 = 0.

Corollary 7.32. Let X be a K3-surface with an effective action of the group Ã6. If FixX(hσ) = ∅, then X
is an element of one the families 1. -3. above. If FixX(hσ) 6= ∅, then X is A6-equivariantly isomorphic to
the Valentiner surface.

7.5 Summary and outlook

Recall that our starting point was the description of K3-surfaces with Ã6-symmetry. Using the
group structure of Ã6 we have divided the problem into two possible cases corresponding to the
question whether FixX(hσ) is empty or not. If it is nonempty, the K3-surface with Ã6-symmetry
is the Valentiner surface discussed in Section 4.2. If is is empty, our discussion in the previous
sections has reduced the problem to finding the Ã6-surface in the families of surfaces XCa with
D16-symmetry.

It is known that a K3-surface with Ã6-symmetry has maximal Picard rank 20. This follows from a
criterion due to Mukai (cf. [Muk88]) and is explicitely shown in [KOZ05].

All surfaces XCa for Ca ⊂ P1 ×P1 a (4,4)-curve are elliptic since the natural fibration of P1 ×P1
induces an elliptic fibration on the double cover (or is desingularization).

A possible approach for finding the Ã6-example inside our families is to find those surfaces with
maximal Picard number by studying the elliptic fibration. It would be desirable to apply the
following formula for the Picard rank of an elliptic surface f : X → P1 with a section (cf. [SI77]):

ρ(X) = 2 + rank(MW f ) + ∑
i
(mi − 1)

where the sum is taken over all singular fibers, mi denotes the number of irreducible components
of the singular fiber and rank(MW f ) is the rank of the Mordell-Weil group of sections of f . The
number two in the formula is the dimension of the hyperbolic lattice spanned by a general fiber
and the section.

First, one has to ensure that the fibration under consideration has a section. One approach to find
sections is to consider the quotient q : P1 ×P1 → P2 and the image of the curve Ca inside P2. If
we find an appropiate bitangent to q(Ca) such that its preimage in P1×P1 is everywhere tangent
to Ca, then its preimage in the double cover of P1 × P1 is reducible and both its components
define sections of the elliptic fibration. For Ca the curve with eight nodes the existence of a section
(two sections) follows from an application of the Plücker formula to the curve q(Ca) with 3 cusps
and its dual curve.

As a next step, one wishes to understand the singular fibers of the elliptic fibrations. Singular
fibers occur whenever the branch curve Ca intersects a fiber F of the P1 × P1 in less than four
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points. Depending on the nature of intersection F ∩ Ca one can describe the corresponding sin-
gular fiber of the elliptic fibration. For Ca the curve with eight cusps one finds precisely eight
singular fibres of type I3, i.e., three rational curves forming a closed cycle. In particular, the con-
tribution of all singular fibres ∑i(mi − 1) in the formula above is 16. In the case where Ca is
smooth or has eight nodes, this contribution is less.

In order to determine the number ρ(XCa) it is neccesary to either understand the Mordell-Weil
group and its rank(MW f ) or to find curves which give additional contribution to Pic(XCa not
included in 2 + ∑i(mi − 1).

In conclusion, the method of equivariant Mori reduction applied to quotients X/σ yields an ex-
plicit description of a families of K3-surfaces with D16 × 〈σ〉-symmetry and by construction, the
K3-surface with Ã6-symmetry is contained in one of these families. It remains to find criteria to
characterize this particular surface inside this family. The possible approach by understanding
the function

a 7→ ρ(XCa)

using the elliptic structure of XCa requires a detailed analysis of the Mordell-Weil group.





A Actions of certain Mukai groups on
projective space

In this appendix, we derive the unique action of the group N72 on P3 and the unique action of M9
on P2 in the context of Sections 4.8 and 4.9. We consider the homomorphism SLn(C)→ PSLn(C)
and determine preimages g̃ ∈ SLn(C) of the generators g ∈ G ⊂ PSLn(C). Our considerations
benefit from fact that both actions are induced by symplectic actions of the corresponding group
on a K3-surface X.

A.1 The action of N72 on P3

One can calculate explicitly the realization of the N72-action on P3 by using the decomposition
C2

3 o D8 where D8 = C2 n (C2 × C2) = Aut(C2
3). For each generator of N72 we will specify the

corresponding element in SL4(C). We denote the center of SL4(C) by Z. Recall that the action of
D8 = C2 n (C2 × C2) = 〈α〉n (〈β〉 × 〈γ〉) on C3 × C3 is given by

α(a, b) = (b, a), β(a, b) = (a2, b), γ(a, b) = (a, b2).

In suitably chosen coordinates the generator a of C2
3 can be represented as

ã =


ξ 0 0 0
0 ξ2 0 0
0 0 1 0
0 0 0 1


where ξ is a third root of unity. Next we wish to specify γ in SL4(C). We know that aγ = γa, i.e.,
ãγ̃ã−1γ̃−1 ∈ Z, and γ is seen to be of the form

γ̃ =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗


107
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where ∗ denotes a nonzero matrix entry. Since a and b commute in N72, we know that ãb̃ã−1b̃−1 ∈
Z and

b̃ =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗


Since γ acts on b by γbγ = b−1 = b2, it follows that

b̃ =


1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 .

We apply a change of coordinates affecting only the lower (2× 2)-block of b and therefore not
affecting the shape of a auch that

b̃ =


1 0 0 0
0 1 0 0
0 0 ξ 0
0 0 0 ξ2

 .

It follows that α interchanges the two (2× 2)-blocks of the matrices a and b and

α̃ =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Finally, γ and β can be put into the form

γ̃ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , β̃ =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

A.1.1 Invariant quadrics and cubics

Let f ∈ C2[x1 : x2 : x3 : x4] be a semi-invariant homogeneous polynomial of degree two,

f = ∑
i

aix2
1 + ∑

i 6=j
bijxixj.

If ai 6= 0 for some 1 ≤ i ≤ 4, then semi-invariance with respect to the transformations α, β, γ

yields a1 = a2 = a3 = a4. It follows that f is not semi-invariant with respect to a.

If b13 6= 0, then semi-invariance with respect to the transformations α, β, γ yields b13 = b23 =
b24 = b14. As above, the polynomial f is not semi-invariant with respect to a.

Therefore, if f is semi-invariant, then ai = b13 = b23 = b24 = b14 = 0 and b12 = b34. In particu-
lar, all degree two semi-invariants are in fact invariant. There is a unique N72-invariant quadric
hypersurface in P3 given by the equation x1x2 + x3x4 .

Analogous considerations show that a semi-invariant polynomial of degree three is a multiple
of fFermat = x3

1 + x3
2 + x3

3 + x3
4 and the Fermat cubic { fFermat = 0} is seen to be the unique N72-

invariant cubic hypersurface in P3.
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A.2 The action of M9 on P2

We consider the decompostion of M9 = (C3 × C3)oQ8. The generators of C3 × C3 are denoted
a and b and the generators of Q8 are denoted by I, J, K. Recall I2 = J2 = K2 = I JK = −1. We
choose the factorization of C3 × C3 such that −1 acts as

(−1)a(−1) = a2, (−1)b(−1) = b2.

Furthermore, Ia(−I) = b and Ja(−J) = b2a.

We repeatedly use the fact that the action of M9 is induced by a symplectic action of M9 on a
K3-surface X which is a double cover of P2.

We begin by fixing a representation of a. Since a may not have a positive dimensional set of fixed
points in P2, it follows that in appropriately chosen coordinates

ã =

1 0 0
0 ξ 0
0 0 ξ2

 ,

where ξ is third root of unity.

As a next step, we want to specify a representation of b inside SL3(C). Since a and b commute in
PSL3(C), we know that

ãb̃ã−1b̃−1 = ξkidC3

for k ∈ {0, 1, 2}. Note that b̃ is not diagonal in the coordinates chosen above since this would give
rise to C2

3-fixed points in P2. As these correspond to C2
3-fixed points on the double cover X → Y

and a symplectic action of C2
3 ≮ SL2(C) on a K3-surface does not admit fixed points, this is a

contradiction. An explicit calculation yields

b̃ = b̃1 =

0 0 ∗
∗ 0 0
0 ∗ 0

 or b̃ = b̃2 =

0 ∗ 0
0 0 ∗
∗ 0 0

 .

We can introduce a change of coordinates commuting with ã such that

b̃ = b̃1 =

0 0 1
1 0 0
0 1 0

 or b̃ = b̃2 =

0 1 0
0 0 1
1 0 0

 .

Since b̃1 = b̃2
2, the two choices above correspond to choices of generators b and b2 of 〈b〉 and are

therefore equivalent. In the following we fix the second choice of b. A direct computation yields
that the element −1 must be represented in the form∗ 0 0

0 0 ∗
0 ∗ 0

 or

0 ∗ 0
∗ 0 0
0 0 ∗

 or

0 0 ∗
0 ∗ 0
∗ 0 0

 .

After reordering the coordinates, we can assume that

−̃1 =

∗ 0 0
0 0 ∗
0 ∗ 0

 .
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The relation (−1)b(−1) = b2 yields

−̃1 =

−1 0 0
0 0 η

0 η2 0

 .

for some third root of unity η. The element I fulfills Ia(−I) = b and, using the representation of
a and b given above, we conclude

Ĩ =
1

ξ − ξ2

 1 1 1
ζ2 ζ2ξ ζ2ξ2

ζ ζξ2 ζξ


for some third root of unity ζ. Now I2 = −1 implies ζ = 1 and η = 1. Analogous considerations
yield the following shape of J:

J̃ =
1

ξ − ξ2

 1 ξ ξ

ξ2 ξ ξ2

ξ2 ξ2 ξ

 .

In appropiately chosen coordinates the action on M9 is precisely of the type claimed in Section
4.9.
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[Bla07] , Finite abelian subgroups of the Cremona group of the plane, C. R. Math. Acad.
Sci. Paris 344 (2007), no. 1, 21–26.

[Bli17] Hans Frederik Blichfeldt, Finite collineation groups, The University of Chicago Press,
Chicago, 1917.

[CCN+85] John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker, and
Robert A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985,
Website: http://web.mat.bham.ac.uk/atlas/v2.0.

[Cra99] Scott Crass, Solving the sextic by iteration: a study in complex geometry and dynamics,
Experiment. Math. 8 (1999), no. 3, 209–240.

[dF04] Tommaso de Fernex, On planar Cremona maps of prime order, Nagoya Math. J. 174
(2004), 1–28.

[DI06] Igor V. Dolgachev and Vasily A. Iskovskikh, Finite subgroups of the plane Cremona
group, to appear in Algebra, Arithmetic, and Geometry, Volume I: in honour of Y.I.
Manin, Progress in Mathematics, Preprint arXiv:math/0610595, 2006.

[Dol08] Igor V. Dolgachev, Topics in classical algebraic geometry. Part I, available from
http://www.math.lsa.umich.edu/ ∼idolga/topics1.pdf, 2008.

111



112 Bibliography

[FH08] Kristina Frantzen and Alan Huckleberry, K3-surfaces with special symmetry: An ex-
ample of classification by Mori-reduction, Complex Geometry in Osaka, In honour of
Professor Akira Fujiki on the occasion of his 60th birthday, 2008, pp. 86–99.

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52,
Springer-Verlag, New York, 1977.

[Isk80] Vasily A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Math.
USSR-Izv. 14 (1980), no. 1, 17–39.

[JL93] Gordon James and Martin Liebeck, Representations and characters of groups, Cam-
bridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.

[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cam-
bridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge,
1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the
1998 Japanese original.

[KOZ05] JongHae Keum, Keiji Oguiso, and De-Qi Zhang, The alternating group of degree 6 in
the geometry of the Leech lattice and K3 surfaces, Proc. London Math. Soc. (3) 90 (2005),
no. 2, 371–394.

[KOZ07] , Extensions of the alternating group of degree 6 in the geometry of K3 surfaces,
European J. Combin. 28 (2007), no. 2, 549–558.

[Man67] Yuri I. Manin, Rational surfaces over perfect fields. ii, Math. USSR-Sb. 1 (1967), no. 2,
141– 168.

[Man74] , Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co.,
Amsterdam, 1974, Translated from Russian by M. Hazewinkel, North-Holland
Mathematical Library, Vol. 4.

[MBD16] George Abram Miller, Hans Frederik Blichfeldt, and Leonard Eugene Dickson, The-
ory and applications of finite groups, Dover, New York, 1916.

[Mor82] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann.
of Math. (2) 116 (1982), no. 1, 133–176.

[Muk88] Shigeru Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group,
Invent. Math. 94 (1988), no. 1, 183–221.

[Nak07] Noboru Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci.
Univ. Tokyo 14 (2007), no. 3, 293–498.

[Nik76] Viacheslav V. Nikulin, Kummer surfaces, Math. USSR. Izv. 9 (1976), no. 2, 261–275.

[Nik80] , Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc
38 (1980), no. 2.

[Nik83] , On factor groups of groups of automorphisms of hyperbolic forms with respect
to subgroups generated by 2-reflections. algebrogeometric applications, J. Soviet Math. 22
(1983), 1401–1476.

[OZ02] Keiji Oguiso and De-Qi Zhang, The simple group of order 168 and K3 surfaces, Com-
plex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 165–184.



Bibliography 113

[Sha94] Igor R. Shafarevich, Basic algebraic geometry. 1, second ed., Springer-Verlag, Berlin,
1994, Varieties in projective space, Translated from the 1988 Russian edition and
with notes by Miles Reid.

[SI77] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic
geometry, Iwanami Shoten, Tokyo, 1977, pp. 119–136.

[Uen75] Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces,
Springer-Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 439.

[Yos04] Ken-Ichi Yoshikawa, K3 surfaces with involution, equivariant analytic torsion, and au-
tomorphic forms on the moduli space, Invent. Math. 156 (2004), no. 1, 53–117.

[Yos07] , K3 surfaces with involution, equivariant analytic torsion, and automorphic forms
on the moduli space ii:a structure theorem, University of Tokyo, Graduate School of
Mathematical Sciences, preprint, 2007.

[YY93] Stephen S.-T. Yau and Yung Yu, Gorenstein quotient singularities in dimension three,
Mem. Amer. Math. Soc. 105 (1993), no. 505.

[Zha98] De-Qi Zhang, Quotients of K3 surfaces modulo involutions, Japan. J. Math. (N.S.) 24
(1998), no. 2, 335–366.

[Zha01] , Automorphisms of finite order on rational surfaces, J. Algebra 238 (2001), no. 2,
560–589, With an appendix by I. Dolgachev.





Index of Notation

KX the canonical line bundle of X

KX the canonical divisor of X

OX the sheaf of holomorphic functions on X

OX(D) the line bundle associated to the divisor D

Aut(X) the group of holomorphic automorphisms of X

ωX the holomorphic 2-form on a K3-surface X

NS(X) the Néron-Severi group of X

Pic(X) the Picard group of X

ρ(X) the Picard number of X

L · C the intersection number of a line bundle L and a 1-cycle C

NE(X) the cone of curves on X

NE(X)G the intersection of NE(X) with the space of invariant numerical equivalence classes of
1-cycles

contF the contraction of an extremal face F

π1(X) the fundamental group of X

bi(X) the ith Betti number of X

e(X) the topological Euler characteristic of X

g(C) the (arithmetic) genus of a curve C

Gsymp the subgroup of symplectic transformations in G

Cn the cyclic group of order n

D2n the dihedral group of order 2n

Q8 the quaternion group

T12 the tetrahedral group

O24 the octahedral group

I60 the icosahedral group
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1-cycle, 23

antisymplectic involution, 18

base point, 28
Betti number, 13
bimeromorphic map, 14

canonical divisor, 34
cone of curves, 24
conic bundle, 29
contraction morphism, 26

equivariant contraction morphism, 27
contraction theorem, 26

equivariant contraction theorem, 27
curve, 13

degree of a Del Pezzo surface, 34
Del Pezzo surface, 34
divisor, 23

equivariant Mori reduction, 31
equivariantly equivalent, 44
Euler characteristic formula, 36, 44
extremal ray, 24

G-extremal rays, 25

intersection number, 23

K3-surface, 13
Klein’s curve, 68, 74
Klein-Mukai surface, 21, 75

length of an orbit, 33
linear system, 28

maximal group of symplectic transformations,
21

minimal model, 26
G-minimal model, 31

mixed type, 14
Mori fiber, 36
Mukai group, 21

A6, 45
A4,4, 54
F384, 53
L2(7), 45
M9, 58
M20, 52
N72, 55
S5, 47
T192, 54
T48, 60

Néron-Severi group, 19
nef, 23
numerically equivalent, 23

Petersen graph, 35
Picard group, 19
Picard lattice, 19

resolution of singularities, 14
minimal resolution of singularities, 14

surface, 13
symplectic action, 14

Valentiner surface, 46, 90
Valentiner’s group, 45
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