K3-surfaces with special symmetry

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften an der Fakultät für Mathematik der Ruhr-Universität Bochum

vorgelegt von

Kristina Frantzen

im Oktober 2008

Contents

Introduction 7
1 Finite group actions on K3-surfaces 13
1.1 Basic notation and definitions 13
1.2 Quotients of K3-surfaces 14
1.2.1 Quotients by finite groups of symplectic transformations 14
1.2.2 Quotients by finite groups of nonsymplectic transformations 16
1.3 Antisymplectic involutions on K3-surfaces 18
1.3.1 Picard lattices of K3-surfaces 19
1.3.2 The fixed point set of an antisymplectic involution 19
1.4 Finite groups of symplectic automorphisms 20
1.4.1 Examples of K3-surfaces with symplectic symmetry 21
2 Equivariant Mori reduction 23
2.1 The cone of curves and the cone theorem 23
2.2 Surfaces with group action and the cone of invariant curves 24
2.3 The contraction theorem and minimal models of surfaces 26
2.4 Equivariant contraction theorem and G-minimal models 26
3 Centralizers of antisymplectic involutions 33
3.1 Del Pezzo surfaces 34
3.2 Branch curves and Mori fibers 36
3.2.1 Rational branch curves 38
3.2.2 Elliptic branch curves 41
3.3 Rough classification 42
4 Mukai groups centralized by antisymplectic involutions 43
4.1 The group $L_{2}(7)$ 45
4.2 The group A_{6} 45
4.3 The group S_{5} 47
4.3.1 Double covers of Del Pezzo surfaces of degree three 48
4.3.2 Double covers of Del Pezzo surfaces of degree five 49
4.3.3 Conclusion 52
4.4 The group $M_{20}=C_{2}^{4} \rtimes A_{5}$ 52
4.5 The group $F_{384}=C_{2}^{4} \rtimes S_{4}$ 53
4.6 The group $A_{4,4}=C_{2}^{4} \rtimes A_{3,3}$ 54
4.7 The groups $T_{192}=\left(Q_{8} * Q_{8}\right) \rtimes S_{3}$ and $H_{192}=C_{2}^{4} \rtimes D_{12}$ 54
4.8 The group $N_{72}=C_{3}^{2} \rtimes D_{8}$ 55
4.9 The group $M_{9}=C_{3}^{2} \rtimes Q_{8}$ 58
4.10 The group $T_{48}=Q_{8} \rtimes S_{3}$ 60
5 K3-surfaces with an antisymplectic involution centralizing $C_{3} \ltimes C_{7}$ 67
5.1 Branch curves and Mori fibers 68
5.2 Classification of the quotient surface Y 70
5.3 Fine classification - Computation of invariants 71
5.3.1 \quad The case $Y=Y_{\min }=\mathbb{P}_{2}$ 71
5.3.2 Equivariant equivalence 72
5.3.3 \quad The case $Y \neq Y_{\text {min }}$ 73
5.4 Klein's quartic and the Klein-Mukai surface 73
5.5 The group $L_{2}(7)$ centralized by an antisymplectic involution 75
6 The simple group of order 168 77
6.1 Finite groups containing $L_{2}(7)$ 77
6.2 Non-existence of K3-surfaces with an action of $L_{2}(7) \times C_{3}$ 78
6.2.1 Global structure 78
6.2.2 Mori contractions and C_{7}-fixed points 80
6.2.3 Lifting Klein's quartic 81
Case 1: The curve \hat{B} is reducible 82
Case 2: The curve \hat{B} is irreducible 85
Conclusion 87
7 The alternating group of degree six 89
7.1 The group \tilde{A}_{6} 89
7.1.1 The centralizer G of σ in \tilde{A}_{6} 90
7.1.2 The group $H=G /\langle\sigma\rangle$ 92
7.2 H-minimal models of Y 92
7.3 Branch curves and Mori fibers 95
7.3.1 Two elliptic branch curves 97
7.4 Rough classification of X 99
7.4.1 \quad The action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ 100
7.4.2 Invariant curves of bidegree $(4,4)$ 101
7.4.3 Refining the classification of X 101
7.5 Summary and outlook 104
A Actions of certain Mukai groups on projective space 107
A. 1 The action of N_{72} on \mathbb{P}_{3} 107
A.1.1 Invariant quadrics and cubics 108
A. 2 The action of M_{9} on \mathbb{P}_{2} 109
Bibliography 111
Index of Notation 114
Index 116

Introduction

K3-surfaces are special two-dimensional holomorphic symplectic manifolds. They come equipped with a symplectic form ω, which is unique up to a scalar factor, and their symmetries are naturally partitioned into symplectic and nonsymplectic transformations. An important class of K3-surfaces consists of those possessing an antisymplectic involution, i.e., a holomorphic involution σ such that $\sigma^{*} \omega=-\omega$.

K3-surfaces with antisymplectic involution occur classically as branched double covers of the projective plane, or more generally of Del Pezzo surfaces. This construction is a prominent source of examples and plays a significant role in the classification of \log Del Pezzo surfaces of index two (see the works of Alexeev and Nikulin e.g. in [AN06] and the classification by Nakayama [Nak07]). Moduli spaces of K3-surfaces with antisymplectic involution are studied by Yoshikawa in [Yos04], [Yos07], and lead to new developments in the area of automorphic forms.

In this monograph we study K3-surfaces with antisymplectic involution from the point of view of symmetry. On a K3-surface X with antisymplectic involution it is natural the consider those holomorphic symmetries of X compatible with the given structure (X, ω, σ). These are symplectic automorphisms of X commuting with σ.

Given a finite group G one wishes to understand if it can act in the above fashion on a K3-surface X with antisymplectic involution σ. If this is the case, i.e., if there exists a holomorphic action of G on X such that $g^{*} \omega=\omega$ and $g \circ \sigma=\sigma \circ g$ for all $g \in G$, then the structure of G can yield strong constraints on the geometry of X. More precisely, if the group G has rich structure or large order, it is possible to obtain a precise description of X. This can be considered the guiding classification problem of this monograph.
In Chapter 3 we derive a classification of K3-surfaces with antisymplectic involution centralized by a group of symplectic automorphisms of order greater than or equal to 96 . We prove (cf. Theorem 3.25):

Theorem 1. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic involution σ such that $\operatorname{Fix}(\sigma) \neq \varnothing$. If $|G|>96$, then X / σ is a Del Pezzo surface and $\operatorname{Fix}(\sigma)$ is a smooth connected curve C with $g(C) \geq 3$.

By a theorem due to Mukai [Muk88] finite groups of symplectic transformations on K3-surfaces are characterized by the existence of a certain embedding into a particular Mathieu group and are subgroups of eleven specified finite groups of maximal symplectic symmetry. This result naturally limits our considerations and has led us to consider the above classification problem for a group G from this list of eleven Mukai groups.

Theorem 1 above can be refined to obtain a complete classification of K3-surfaces with a symplectic action of a Mukai group centralized by an antisymplectic involution with fixed points (cf. Theorem 4.1).

Theorem 2. Let G be a Mukai group acting on a K3-surface X by symplectic transformations. Let σ be an antisymplectic involution on X centralizing G with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Then the pair (X, G) can be found in Table 4.1.

In addition to a number of examples presented by Mukai we find new examples of K3-surfaces with maximal symplectic symmetry as equivariant double covers of Del Pezzo surfaces.

It should be emphasized that the description of K3-surfaces with given symmetry does however not necessary rely on the size of the group or its maximality and a classification can also be obtained for rather small subgroups of the Mukai groups. In order to illustrate that the approach does rather depend on the structure of the group, we prove a classification of K3-surfaces with a symplectic action of the group $C_{3} \ltimes C_{7}$ centralized by an antisymplectic involution in Chapter 5 . The surfaces with this given symmetry are characterized as double covers of \mathbb{P}_{2} branched along invariant sextics in a precisely described one-dimensional family \mathcal{M} (Theorem 5.4).

Theorem 3. The K3-surfaces with a symplectic action of $G=C_{3} \ltimes C_{7}$ centralized by an antisymplectic involution σ are parametrized by the space \mathcal{M} of equivalence classes of sextic branch curves in \mathbb{P}_{2}.

The group $C_{3} \ltimes C_{7}$ is a subgroup of the simple group $L_{2}(7)$ of order 168 which is among the Mukai groups. The actions of $L_{2}(7)$ on $K 3$-surfaces have been studied by Oguiso and Zhang [OZ02] in an a priori more general setup. Namely, they consider finite groups containing $L_{2}(7)$ as a proper subgroup and obtain lattice theoretic classification results using the Torelli theorem. Since a finite group containing $L_{2}(7)$ as a proper subgroup posseses, in the cases considered, an antisymplectic involution centralizing $L_{2}(7)$, we can apply Theorem 4.1 and improve the existing result (cf. Theorem 6.1).
All classification results summarized above are proved by applying the following general strategy.
The quotient of a K3-surface by an antisymplectic involution σ with fixed points centralized by a finite group G is a rational G-surface Y. We apply an equivariant version of the minimal model program respecting finite symmetry groups to the surface Y. Chapter 2 is dedicated to a detailed derivation of this method, a brief outline of which can also be found in the book of Kollár and Mori ([KM98] Example 2.18, see also Section 2.3 in [Mor82]). In the setup of rational surfaces it leads to the well-known classification of G-minimal rational surfaces ([Man67], [Isk80]).
Equivariant Mori reduction and the theory of G-minimal models have applications in various different context and can also be generalized to higher dimensions. Initiated by Bayle and Beauville in [BB00], the methods have been employed in the classification of subgroups of the Cremona group $\operatorname{Bir}\left(\mathbb{P}_{2}\right)$ of the plane for example by Beauville and Blanc ([Bea07], [BB04], [Bla06]), [Bla07], etc.), de Fernex [dF04], Dolgachev and Iskovskikh [DI06], and Zhang [Zha01].

The equivariant minimal model $Y_{\min }$ of Y is obtained from Y by a finite number of blow-downs of (-1)-curves. Since individual (-1)-curves are not necessarily invariant, each reduction step blows down a number of disjoint (-1)-curves. The surface $Y_{\text {min }}$ is, in all cases considered, a Del Pezzo surface.

Using detailed knowledge of the equivariant reduction map $Y \rightarrow Y_{\min }$, the shape of the invariant set Fix $X_{X}(\sigma)$, and the equivariant geometry of Del Pezzo surfaces, we classify $Y, Y_{\min }$ and Fix $_{X}(\sigma)$ and can describe X as an equivariant double cover of a possibly blown-up Del Pezzo surface. Besides the book of Manin, [Man74], our analysis relies, to a certain extend, on Dolgachev's discussion of automorphism groups of Del Pezzo surfaces in [Dol08], Chapter 10.

In addition to classification, this method yields a multitude of new examples of K3-surfaces with given symmetry and a more geometric understanding of existing examples. It should be remarked that a number of these arise when the reduction $Y \rightarrow Y_{\min }$ is nontrivial.

In the last two chapters we present two different generalizations of our classification strategy for K3-surfaces with antisymplectic involution.

One of our starting points has been the study of K3-surfaces with $L_{2}(7)$-symmetry by Oguiso and Zhang mentioned above. Apart from a classification result for K3-surfaces with an action the group $L_{2}(7) \times C_{4}$, they also show that there does not exist a K3-surface with an action of a the group $L_{2}(7) \times C_{3}$. We give an independent proof of this result in Chapter 6. Assuming the existence of such a surface and following the strategy above, we consider the quotient by the nonsymplectic action of C_{3} and apply the equivariant minimal model program to its desingularization. Combining this with additional geometric consideration we reach a contradiction.

In the last chapter we consider K3-surfaces X with an action of a finite group \tilde{G} which contains an antisymplectic involution σ but is not of the form $\tilde{G}_{\text {symp }} \times\langle\sigma\rangle$. Since the action of $\tilde{G}_{\text {symp }}$ does not descend to the quotient X / σ we need to restrict our considerations to the centralizer of σ inside \tilde{G}. This strategy is exemplified for a finite group \tilde{A}_{6} characterized by the short exact sequence $\{\mathrm{id}\} \rightarrow A_{6} \rightarrow \tilde{A}_{6} \rightarrow C_{4} \rightarrow\{\mathrm{id}\}$. In analogy to the $L_{2}(7)$-case, the action of \tilde{A}_{6} on K3-surfaces has been studied by Keum, Oguiso, and Zhang ([KOZ05], [KOZ07]), and a characterization of X using lattice theory and the Torelli theorem has been derived. Since the existing realization of X does however not reveal its equivariant geometry, we reconsider the problem and, though lacking the ultimate classification, find families of K3-surfaces with D_{16}-symmetry, in which the \tilde{A}_{6}-surface is to be found, as branched double covers. These families are of independent interest and should be studied further. In particular, it remains to find criteria to identify the \tilde{A}_{6}-surface inside these families. Possible approaches are outlined at the end of Chapter 7.

Since none of our results depends on the Torelli theorem, our approach to the classification problem allows generalization to fields of appropriate positive characteristic. This possible direction of further research was proposed to the author by Prof. Keiji Oguiso. Another potential further development would be the adaptation of the methods involved in the present work to related questions in higher dimensions.

Acknowledgements

First of all, I would like to express my gratitude to my Doktorvater Prof. Dr. Dr.h.c.mult. Alan Huckleberry for introducing me to the research field of this thesis, for uncountable intensive and inspiring discussions, for his steady support and encouragement, and for sharing his mathematical enthusiasm with me.

My thanks also go to Prof. Dr. Peter Heinzner for his help and advise throughout the entire years of my undergraduate and graduate studies at Ruhr-Universität Bochum.

The work on this project was carried out in the fertile and most enjoyable working atmosphere provided by "Lehrstuhl II" and "Arbeitsgruppe Transformationsgruppen" at the Mathematics Institute of Ruhr-Universität Bochum. I am grateful to all members and former members of this team, namely Prof. Dr. Dmitri Akhiezer, Kathrin Breit, Riccardo Catalano, Matthias Kalus, Stefanie Kramer, Ayşe Kurtdere, Dr. Christian Miebach, Prof. Dr. Stefan Nemirovski, Dr. Annett Püttmann, Dr. Ingolf Schäfer, Dr. Patrick Schützdeller, Holger Sebert, and Dr. Henrik Stötzel for lively discussions, seminars and talks, and, beyond this, the friendly environment created by all of them.

In August 2007 I was given the opportunity to visit Nagoya University for a conference on "Birational Automorphisms of Compact Complex Manifolds and Dynamical Systems". I would like to thank the organizers for their invitation and Prof. Shigeyuki Kondo, Prof. Keiji Oguiso, and Prof. De-Qi Zhang for interesting and helpful remarks on my work.

The financial support of the Studienstiftung des deutschen Volkes, DFG-Schwerpunkt "Globale Methoden in der komplexen Geometrie", and SFB TR 12 of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

I am indebted to my family and friends, especially to my parents, my grandmother and my best friend Julia, for their loving understanding and patience, their indispensable personal support and for always being there for me when I need them. All of the above and much more also applies to you, Daniel. Thank you for everything you are and do for me. Finite group actions on K3-surfaces

This chapter is devoted to a brief introduction to finite groups actions on K3-surfaces and presents a number of basic, well-known results: We consider quotients of K3-surfaces by finite groups of symplectic or nonsymplectic automorphisms. It is shown that the quotient of a K3-surface by a finite group of symplectic automorphisms is a K3-surface, whereas the quotient by a finite group containing nonsymplectic transformations is either rational or an Enriques surface. Our attention concerning nonsymplectic automorphisms is then focussed on antisymplectic involutions and the description of their fixed point set. The chapter concludes with Mukai's classification of finite groups of symplectic automorphisms on K3-surfaces and a discussion of basic examples.

1.1 Basic notation and definitions

Let X be a n-dimensional compact complex manifold. We denote by \mathcal{O}_{X} the sheaf of holomorphic functions on X and by \mathcal{K}_{X} its canonical line bundle. The $i^{\text {th }}$ Betti number of X is the rank of the free part of $H_{i}(X)$ and denoted by $b_{i}(X)$.

A surface is a compact connected complex manifold of complex dimension two. A curve on a surface X is an irreducible 1-dimensional closed subspace of X. The (arithmetic) genus of a curve C is denoted by $g(C)$.

Definition 1.1. A K3-surface is a surface X with trivial canonical bundle \mathcal{K}_{X} and $b_{1}(X)=0$.

Note that a K3-surface is equivalently characterized if the condition $b_{1}(X)=0$ is replaced by $q(X)=\operatorname{dim}_{C} H^{1}\left(X, \mathcal{O}_{X}\right)=0$ or $\pi_{1}(X)=\{i d\}$, i.e., X is simply-connected. Examples of K3surfaces arise as Kummer surfaces, quartic surfaces in \mathbb{P}_{3} or double coverings of \mathbb{P}_{2} branched along smooth curves of degree six.

Let X be a K3-surface. Triviality of \mathcal{K}_{X} is equivalent to the existence of a nowhere vanishing holomorphic 2-form ω on X. Any 2-form on X can be expressed as a complex multiple of ω. We will therefore mostly refer to ω (or ω_{X}) as "the" holomorphic 2-form on X. We denote by $\operatorname{Aut}_{\mathcal{O}}(X)=\operatorname{Aut}(X)$ the group of holomorphic automorphisms of X and consider a (finite) subgroup $G \hookrightarrow \operatorname{Aut}(X)$. If the context is clear, the abstract finite group G is identified with its image
in $\operatorname{Aut}(X)$. The group G is referred to as a transformation group, symmetry group or automorphism group of X. Note that our considerations are independent of the question whether the group $\operatorname{Aut}(X)$ is finite or not. The order of G is denoted by $|G|$.

Definition 1.2. The action of G on X is called symplectic if ω is G-invariant, i.e., $g^{*} \omega=\omega$ for all $g \in G$.

For a finite group $G<\operatorname{Aut}(X)$ we denote by $G_{\text {symp }}$ the subgroup of symplectic transformations in G. This group is the kernel of the homomorphism $\chi: G \rightarrow \mathbb{C}^{*}$ defined by the action of G on the space of holomorphic 2 -forms $\Omega^{2}(X) \cong \mathbb{C} \omega$. It follows that G fits into the short exact sequence

$$
\{\mathrm{id}\} \rightarrow G_{\text {symp }} \rightarrow G \rightarrow C_{n} \rightarrow\{\mathrm{id}\}
$$

for some cyclic group C_{n}. If both $G_{\text {symp }}$ and $C_{n} \cong G / G_{\text {symp }}$ are nontrivial, then G is called a symmetry group of mixed type.

1.2 Quotients of K3-surfaces

Let X be a surface and let $G<\operatorname{Aut}(X)$ be a finite subgroup of the group of holomorphic automorphisms of X. The orbit space X / G carries the structure of a reduced, irreducible, normal complex space of dimension 2 where the sheaf of holomorphic functions is given by the sheaf G-invariant functions on X. In many cases, the quotient is a singular space. The map $X \rightarrow X / G$ is referred to as a quotient map or a covering (map).

For reduced, irreducible complex spaces X, Y of dimension 2 a proper holomorphic map $f: X \rightarrow$ Y is called bimeromorphic if there exist proper analytic subsets $A \subset X$ and $B \subset Y$ such that f : $X \backslash A \rightarrow Y \backslash B$ is biholomorphic. A holomorphic, bimeromorphic map $f: X \rightarrow Y$ with X smooth is a resolution of singularities of Y.

Definition 1.3. A resolution of singularities $f: X \rightarrow Y$ is called minimal if it does not contract any (-1)-curves, i.e., there is no curve $E \subset X$ with $E \cong \mathbb{P}_{1}$ and $E^{2}=-1$ such that $f(E)=\{$ point $\}$.

Every normal surface Y admits a minimal resolution of singularities $f: X \rightarrow Y$ which is uniquely determined by Y. In particular, this resolution is equivariant.

1.2.1 Quotients by finite groups of symplectic transformations

In the study and classification of finite groups of symplectic transformations on K3-surfaces, the following well-known result has proved to be very useful (see e.g. [Nik80])

Theorem 1.4. Let X be a K3-surface, G be a finite group of automorphisms of X and $f: Y \rightarrow X / G$ be the minimal resolution of X / G. Then Y is a K3-surface if and only if G acts by symplectic transformations.

For the reader's convenience we give a detailed proof of this theorem. We begin with the following lemma.

Lemma 1.5. Let X be a simply-connected surface, G be a finite group of automorphisms and $f: Y \rightarrow X / G$ be an arbitrary resolution of singularities of X / G. Then $b_{1}(Y)=0$.

Proof. We denote by $\pi_{1}(Y)$ the fundamental group of Y and by $[\gamma] \in \pi_{1}(Y)$ the homotopy equivalence class of a closed continuous path γ. The first Betti number is the rank of the free part of

$$
H_{1}(Y)=\pi_{1}(Y) /\left[\pi_{1}(Y), \pi_{1}(Y)\right]
$$

We show that for each $[\gamma] \in \pi_{1}(Y)$ there exists $N \in \mathbb{N}$ such that $[\gamma]^{N}=0$, i.e., γ^{N} is homotopic to zero for some $N \in \mathbb{N}$. It then follows that $H_{1}(Y)$ is a torsion group and $b_{1}(Y)=0$.
Let $C \subset X / G$ be the union of branch curves of the covering $q: X \rightarrow X / G$, let $P \subset X / G$ be the set of isolated singularities of X / G, and $E \subset Y$ be the exceptional locus of f. Let $\gamma:[0,1] \rightarrow Y$ be a closed path in Y. By choosing a path homotopic to γ which does not intersect $E \cup f^{-1}(C)$ we may assume without loss of generality that $\gamma \cap\left(E \cup f^{-1}(C)\right)=\varnothing$.
The path γ is mapped to a closed path in $(X / G) \backslash(C \cup P)$ which we denote also by γ. The quotient $q: X \rightarrow X / G$ is unbranched outside $C \cup P$ and we can lift γ to a path $\widetilde{\gamma}$ in X. Let $\widetilde{\gamma}(0)=x \in X$, then $\widetilde{\gamma}(1)=g . x$ for some $g \in G$. Since G is a finite group, it follows that $\widetilde{\gamma^{N}}$ is closed for some $N \in \mathbb{N}$.
As X is simply-connected, we know that also $X \backslash q^{-1}(P)$ is simply-connected. So $\widetilde{\gamma^{N}}$ is homotopic to zero in $X \backslash q^{-1}(P)$. We can map the corresponding homotopy to $(X / G) \backslash P$ and conclude that γ^{N} is homotopic to zero in $(X / G) \backslash P$. It follows that γ^{N} is homotopic to zero in $Y \backslash E$ and therefore in Y.

Proof of Theorem 1.4. We let $E \subset Y$ denote the exceptional locus of the map $f: Y \rightarrow X / G$. If Y is a K3-surface, let ω_{Y} denote the nowhere vanishing holomorphic 2-form on Y. Let $(X / G)_{\text {reg }}$ denote the regular part of X / G. Since $\left.f\right|_{Y \backslash E}: Y \backslash E \rightarrow(X / G)_{\text {reg }}$ is biholomorphic, this defines a holomorphic 2-form $\omega_{(X / G)_{\mathrm{reg}}}$ on $(X / G)_{\mathrm{reg}}$. Pulling this form back to X, we obtain a G-invariant holomorphic 2-form on $\pi^{-1}\left((X / G)_{\text {reg }}\right)=X \backslash\left\{p_{1}, \ldots p_{k}\right\}$. This extends to a nonzero, i.e., not identically zero, G-invariant holomorphic 2-form on X. In particular, any holomorphic 2-form on X is G-invariant and the action of G is by symplectic transformations.
Conversely, if G acts by symplectic transformations on X, then ω_{X} defines a nowhere vanishing holomorphic 2-form on $(X / G)_{\text {reg }}$ and on $Y \backslash E$. Our aim is to show that it extends to a nowhere vanishing holomorphic 2 -form on Y. In combination with Lemma 1.5 this yields that Y is a K3surface.

Locally at $p \in X$ the action of G_{p} can be linearized. I.e., there exist a neighbourhood of p in X which is G_{p}-equivariantly isomorphic to a neighbourhood of $0 \in \mathbb{C}^{2}$ with a linear action of G_{p}. A neighbourhood of $\pi(p) \in X / G$ is isomorphic to a neighbourhood of the origin in \mathbb{C}^{2} / Γ for some finite subgroup $\Gamma<S L(2, C)$. In particular, the points with nontrivial isotropy are isolated. The singularities of X / G are called simple singularities, Kleinian singularities, Du Val singularities or rational double points. Following [Sha94] IV.4.3, we sketch an argument which yields the desired extension result.

Let $X \times_{(X / G)} Y=\{(x, y) \in X \times Y \mid \pi(x)=f(y)\}$ and let N be its normalization. Consider the diagram

We let ω_{X} denote the nowhere vanishing holomorphic 2 -form on X. Its pullback $p_{X}^{*} \omega_{X}$ defines a nowhere vanishing holomorphic 2-form on $N_{\text {reg }}$. Simultaneously, we consider the meromorphic

2-form ω_{Y} on Y obtained by pulling back the 2-form on X / G induced by the G-invariant 2-form ω_{X}. By contruction, the pullback $p_{Y}^{*} \omega_{Y}$ coincides with the pullback $p_{X}^{*} \omega_{X}$ on $N_{\text {reg }}$.

Consider the finite holomorphic map $\left.p_{Y}\right|_{N_{\mathrm{reg}}}: N_{\mathrm{reg}} \rightarrow p_{Y}\left(N_{\mathrm{reg}}\right) \subset Y$. Since $p_{Y}^{*} \omega_{Y}$ is holomorphic on $N_{\text {reg }}$, one checks (by a calculation in local coordinates) that ω_{Y} is holomorphic on $p_{Y}\left(N_{\text {reg }}\right)=$ $Y \backslash\left\{y_{1}, \ldots y_{k}\right\}$ and consequently extends to a holomorphic 2-form on Y. Since $p_{X}^{*} \omega_{X}=p_{Y}^{*} \omega_{Y}$ is nowhere vanishing on $N_{\text {reg }}$, it follows that ω_{Y} defines a global, nowhere vanishing holomorphic 2-form on Y.

Remark 1.6. Let g be a symplectic automorphism of finite order on a K3-surface X. Since K3surfaces are simply-connected, the covering $X \rightarrow X /\langle g\rangle$ can never be unbranched. It follows that g must have fixed points.

Using Theorem 1.4 we give an outline of Nikulin's classification of finite Abelian groups of symplectic transformations on a K3-surface [Nik80]. Let C_{p} be a cyclic group of prime order acting on a K3-surface X by symplectic transformations and Y be the minimal desingularization of the quotient X / C_{p}.

Notice that by adjunction the self-intersection number of a curve D of genus $g(D)$ on a K3-surface is given by $D^{2}=2 g(D)-2$. In particular, if D is smooth, then $D^{2}=-e(D)$.

The exceptional locus of the map $Y \rightarrow X / G$ is a union of (-2)-curves and one can calculate their contribution to the topological Euler characteristic $e(Y)$ in relation to $e\left(X / C_{p}\right)$. Let n_{p} denote the number of fixed point of C_{p} on X. Then

$$
\begin{aligned}
& 24=e(X)=p \cdot e(X / G)-n_{p} \\
& 24=e(Y)=e(X / G)+n_{p} \cdot p
\end{aligned}
$$

Combining these formulas gives $n_{p}=24 /(p+1)$. For a general finite Abelian group G acting symplectically on a K3-surface X, one needs to consider all possible isotropy groups G_{x} for $x \in X$. By linearization, $G_{x}<\mathrm{SL}_{2}(\mathbb{C})$. Since G is Abelian, it follows that G_{x} is cyclic and an analoguous formula relating the Euler characteristic of $X, X / G$, and Y can be derived. A case by case study then yields Nikulin's classification. In particular, we emphasize the following remark.

Remark 1.7. If $g \in \operatorname{Aut}(X)$ is a symplectic automorphism of finite order $n(g)$ on a K3-surface X, then $n(g)$ is bounded by eight and the number of fixed points of g is given by the following table:

$$
\begin{array}{c|c|c|c|c|c|c|c}
n(g) & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\left|\mathrm{Fix}_{X}(g)\right| & 8 & 6 & 4 & 4 & 2 & 3 & 2
\end{array}
$$

Table 1.1: Fixed points of symplectic automorphisms on K3-surfaces

1.2.2 Quotients by finite groups of nonsymplectic transformations

In this subsection we consider the quotient of a K3-surface X by a finite group G such that $G \neq$ $G_{\text {symp }}$, i.e., there exists $g \in G$ such that $g^{*} \omega \neq \omega$. We prove

Theorem 1.8. Let X be a K3-surface and let $G<\operatorname{Aut}(X)$ be a finite group such that $g^{*} \omega \neq \omega$ for some $g \in G$. Then either

- X/G is rational, i.e., bimeromorphically equivalent to \mathbb{P}_{2}, or
- the minimal desingularisation of X / G is a minimal Enriques surface and

$$
G / G_{\text {symp }} \cong C_{2} .
$$

In this case, $\pi: X \rightarrow X / G$ is unbranched if and only if $G_{\text {symp }}=\{\mathrm{id}\}$.
Before giving the proof, we establish the necessary notation and state two useful lemmata. We denote by $\pi: X \rightarrow X / G$ the quotient map. This map can be ramified at isolated points and along curves. Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ denote the set of singularities of X / G. For simplicity, the denote the correspondig subset $\pi^{-1}(P)$ of X also by P. Outside P, the map π is ramified along curves C_{i} of ramification order $c_{i}+1$. We write $C=\sum c_{i} C_{i}$.

Let $r: Y \rightarrow X / G$ denote a minimal resolution of singularities of X / G. The exceptional locus of r in Y is denoted by D. As Y is not necessarily a minimal surface, we denote by $p: Y \rightarrow Y_{\min }$ the sucessive blow-down of (-1)-curves. The union of exceptional curves of p is denoted by E.

The following two lemmata (cf. e.g. [BHPVdV04] I. 16 and Thm. I.9.1) will be useful in order to relate the canonical bundles of the spaces $X,(X / G)_{\text {reg, }}, Y$ and $Y_{\min }$. For a divisor D on a manifold X we denote by $\mathcal{O}_{X}(D)$ the line bundle associated to D.

Lemma 1.9. Let X, Y be surfaces and let $\varphi: X \rightarrow Y$ be a surjective finite proper holomorphic map ramified along a curve C in X of ramification order k. Then

$$
\mathcal{K}_{X}=\varphi^{*}\left(\mathcal{K}_{Y}\right) \otimes \mathcal{O}_{X}(C)^{\otimes(k-1)}
$$

More generally, if π is ramified along a ramification divisor $R=\sum_{i} r_{i} R_{i}$, where R_{i} is an irreducible curve and $r_{i}+1$ is the ramification order of π along R_{i}, then

$$
\mathcal{K}_{X}=\pi^{*}\left(\mathcal{K}_{Y}\right) \otimes \mathcal{O}_{X}(R)
$$

Lemma 1.10. Let X be a surface and let $b: X \rightarrow Y$ be the blow-down of $a(-1)$-curve $E \subset X$. Then

$$
\mathcal{K}_{X}=b^{*}\left(\mathcal{K}_{Y}\right) \otimes \mathcal{O}_{X}(E)
$$

We present a proof of Theorem 1.8 using the Enriques Kodaira classification of surfaces.
Proof of Theorem 1.8. The Kodaira dimension of the K3-surface X is $\operatorname{kod}(X)=0$. The Kodaira dimension of X / G, which is defined as the Kodaira dimension of some resolution of X / G, is less than or equal to the Kodaira dimension of X. (c.f. Theorem 6.10 in [Uen75]),

$$
0=\operatorname{kod}(X) \geq \operatorname{kod}(X / G)=\operatorname{kod}(Y)=\operatorname{kod}\left(Y_{\min }\right) \in\{0,-\infty\}
$$

By Lemma 1.5, the first Betti number of Y and $Y_{\min }$ is zero. If $\operatorname{kod}(Y)=-\infty$, then Y is a smooth rational surface. If $\operatorname{kod}(Y)=\operatorname{kod}\left(Y_{\min }\right)=0$, then, since Y is not a K3-surface by Theorem 1.4, it follows that $Y_{\min }$ is an Enriques surface.
If $Y_{\text {min }}$ is an Enriques surface, then $\mathcal{K}_{Y_{\text {min }}}^{\otimes 2}$ is trivial. Let $s \in \Gamma\left(Y_{\min }, \mathcal{K}_{Y_{\text {min }}}^{\otimes 2}\right)$ be a nowhere vanishing section. Consecutive application of Lemma 1.10 yields the following formula

$$
\mathcal{K}_{Y}^{\otimes 2}=\left(p^{*} \mathcal{K}_{Y_{\text {min }}}\right)^{\otimes 2} \otimes \mathcal{O}_{Y}(E)^{\otimes 2}=p^{*}\left(\mathcal{K}_{Y_{\text {min }}}^{\otimes 2}\right) \otimes \mathcal{O}_{Y}(E)^{\otimes 2}
$$

Let $e \in \Gamma\left(Y, \mathcal{O}_{Y}(E)^{\otimes 2}\right)$ and write $\tilde{s}=p^{*}(s) \cdot e$. This global section of $\mathcal{K}_{Y}^{\otimes 2}$ vanishes along E and is nowhere vanishing outside E. By restricting \tilde{s} to $Y \backslash D$ we obtain a section of $\mathcal{K}_{Y \backslash D}^{\otimes 2}$. Since π is biholomorphic outside D, we can map the restricted section to $(X / G) \backslash P=(X / G)_{\text {reg }}$ and obtain a section \hat{s} of $\mathcal{K}_{(X / G)_{\text {reg }}}^{\otimes 2}$. Note that \hat{s} is not the zero-section. If $E \neq \varnothing$, i.e., Y is not minimal, let $E_{1} \subset E$ be a (-1)-curve. The minimality of the resolution $r: Y \rightarrow X / G$ implies $E_{1} \nsubseteq D$. It follows that \hat{s} vanishes along the image of E_{1} in $(X / G)_{\text {reg }}$
We may now apply Lemma 1.9 to the map $\left.\pi\right|_{X \backslash P}$ to see

$$
\begin{aligned}
\mathcal{K}_{X \backslash P}^{\otimes 2} & =\left(\pi^{*} \mathcal{K}_{(X / G)_{\mathrm{reg}}}\right)^{\otimes 2} \otimes \mathcal{O}_{X \backslash P}(C)^{\otimes 2} \\
& =\pi^{*}\left(\mathcal{K}_{(X / G)_{\mathrm{reg}}}^{\otimes 2}\right) \otimes \mathcal{O}_{X \backslash P}(C)^{\otimes 2} .
\end{aligned}
$$

Let $c \in \Gamma\left(X \backslash P, \mathcal{O}_{X \backslash P}(C)\right)^{\otimes 2}$. Then $t:=\pi^{*} \hat{s} \cdot c \in \Gamma\left(X \backslash P, \mathcal{K}_{X \backslash P}^{\otimes 2}\right)$ is not the zero-section but vanishes along C and along the preimage of the zeroes of \hat{s}.
Now t extends to a holomorphic section $\tilde{t} \in \Gamma\left(X, \mathcal{K}_{X}^{\otimes 2}\right)$. Since X is $K 3$, it follows that both \mathcal{K}_{X} and $\mathcal{K}_{X}^{\otimes 2}$ are trivial and \tilde{t} must be nowhere vanishing. Consequently, both E and C must be empty. It follows that the map π is at worst branched at points P (not along curves) and the minimal resolution Y of X / G is a minimal surface.

The section \tilde{t} on X is G-invariant by construction. Let ω be a nonzero section of the trivial bundle \mathcal{K}_{X} such that $\tilde{t}=\omega^{2}$. The action of G on X is nonsymplectic, therefore ω is not invariant but \tilde{t} is. Hence G acts on ω by multiplication with $\{1,-1\}$ and $G / G_{\text {symp }} \cong C_{2}$.
If $\pi: X \rightarrow X / G$ is unbranched, it follows that $\operatorname{Fix}_{X}(g)=\varnothing$ for all $g \in G \backslash\{\mathrm{id}\}$. Since symplectic automorphisms of finite order necessarily have fixed points, this implies $G_{\text {symp }}=\{\mathrm{id}\}$.
Conversely, if G is isomorphic to C_{2}, it remains to show that the set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ is empty. Our argument uses the Euler characteristic e of $X, X / G$, and Y. By chosing a triangulation of X / G such that all points p_{i} lie on vertices we calculate $24=e(X)=2 e(X / G)-n$. Blowing up the $C_{2^{-}}$ quotient singularities of X / G we obtain $12=e(Y)=e(X / G)+n$. This implies $e(X / G)=12$ and $n=0$ and completes the proof of the theorem.

1.3 Antisymplectic involutions on K3-surfaces

As a special case of the theorem above we consider the quotient of a K3-surface X by an involution $\sigma \in \operatorname{Aut}(X)$ which acts on the 2 -form ω by multiplication by -1 and is therefore called antisymplectic involution.

Proposition 1.11. Let $\pi: X \rightarrow X / \sigma$ be the quotient of a K3-surface by an antisymplectic involution σ. If $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$, then $\operatorname{Fix}_{X}(\sigma)$ is a disjoint union of smooth curves and X / σ is a smooth rational surface. Furthermore, $\operatorname{Fix}_{X}(\sigma)=\varnothing$ if and only if X / σ is an Enriques surfaces.

Proof. If $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$, then Theorem 1.8 and linearization of the σ-action at its fixed points yields the proposition. If $\operatorname{Fix}_{X}(\sigma)=\varnothing$, then $X \rightarrow X / \sigma$ is unbranched and $\operatorname{kod}(X)=\operatorname{kod}(X / G)$. It follows that X / G is an Enriques surface.

In order to sketch Nikulin's description of the fixed point set of an antisymplectic involution we summarize some information about the Picard lattice of a K3-surface.

1.3.1 Picard lattices of K3-surfaces

Let X be a complex manifold. The Picard group of X is the group of isomorphism classes of line bundles on X and denoted by $\operatorname{Pic}(X)$. It is isomorphic to $H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$. Let \mathbb{Z}_{X} denote the constant sheaf on X corresponding to \mathbb{Z}, then the exponential sequence $0 \rightarrow \mathbb{Z}_{X} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{*} \rightarrow 0$ induces a map

$$
\delta: H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \rightarrow H^{2}(X, \mathbb{Z})
$$

Its kernel is the identity component $\operatorname{Pic}^{0}(X)$ of the Picard group. The quotient $\operatorname{Pic}(X) / \operatorname{Pic}^{0}(X)$ is isomorphic to a subgroup of $H^{2}(X, \mathbb{Z})$ and referred to as the Néron-Severi group $N S(X)$ of X. On the space $H^{2}(X, \mathbb{Z})$ there is the natural intersection or cupproduct pairing. The rank of the Néron-Severi group of X is denoted by $\rho(X)$ and referred to as the Picard number of X
If X is a K3-surface, then $H^{1}\left(X, \mathcal{O}_{X}\right)=\{0\}$ and $\operatorname{Pic}(X)$ is isomorphic to $N S(X)$. In particular, the Picard group carries the structure of a lattice, the Picard lattice of X, and is regarded as a sublattice of $H^{2}(X, \mathbb{Z})$, which is known to have signature $(3,19)$ (cf. VIII. 3 in [BHPVdV04]).
If X is an algebraic K3-surface, i.e., the transcendence degree of the field of meromorphic functions on X equals 2 , then $\operatorname{Pic}(X)$ is a nondegenerate lattice of signature $(1, \rho-1)$ (cf. $\S 3.2$ in [Nik80]).

1.3.2 The fixed point set of an antisymplectic involution

We can now present Nikulin's classification of the fixed point set of an antisymplectic involution on a K3-surface [Nik83].

Theorem 1.12. The fixed point set of an antisymplectic involution σ on a K3-surface X is one of the following three types:

$$
\text { 1.) } \operatorname{Fix}(\sigma)=D_{g} \cup \bigcup_{i=1}^{n} R_{i}, \quad \text { 2.) } \operatorname{Fix}(\sigma)=D_{1} \cup D_{1}^{\prime}, \quad \text { 3.) } \operatorname{Fix}(\sigma)=\varnothing \text {, }
$$

where D_{g} denotes a smooth curve of genus $g \geq 0$ and $\bigcup_{i=1}^{n} R_{i}$ is a possibly empty union of smooth disjoint rational curves. In case 2.), D_{1} and D_{1}^{\prime} denote disjoint elliptic curves.

Proof. Assume there exists a curve D_{g} of genus $g \geq 2$ in $\operatorname{Fix}(\sigma)$. By adjunction, this curve has positive self-intersection. We claim that each curve D in $\operatorname{Fix}(\sigma)$ disjoint from D_{g} is rational.
First note that the existence of an antisymplectic automorphism on X implies that X is algebraic (cf. Thm. 3.1 in [Nik80]) and therefore $\operatorname{Pic}(X)$ is a nondegenerate lattice of signature $(1, \rho-1)$.

If D is elliptic, then $D^{2}=0, D_{g}^{2}>0$ and $D \cdot D_{g}=0$ is contrary to the fact that $\operatorname{Pic}(X)$ has signature $(1, \rho-1)$. If D is of genus ≥ 2, then $D^{2}>0$ and we obtain the same contradiction.

Now assume that there exists an elliptic curve D_{1} in $\operatorname{Fix}(\sigma)$. By the considerations above, there may not be curves of genus ≥ 2 in $\operatorname{Fix}(\sigma)$. If there are no further elliptic curves in $\operatorname{Fix}(\sigma)$, we are in case 1) of the classification. If there is another elliptic curve D_{1}^{\prime} in $\operatorname{Fix}(\sigma)$, this has to be linearly equivalent to D_{1}, as otherwise the intersection form of $\operatorname{Pic}(X)$ would degenerate on the span of D_{1} and D_{1}^{\prime}. The linear system of D_{1} defines an elliptic fibration $X \rightarrow \mathbb{P}_{1}$. The induced action of σ on the base may not be trivial since this would force σ to act trivially in a neighbourhood of D_{1} in X. It follows that the induced action of σ on \mathbb{P}_{1} has precisely two fixed points and that $\operatorname{Fix}(\sigma)$ contains no other curves than D_{1} and D_{1}^{\prime}. This completes the proof of the theorem.

1.4 Finite groups of symplectic automorphisms

In preparation for stating Mukai's classification of finite groups of symplectic automorphisms on K3-surfaces we present his list [Muk88] of symplectic actions of finite groups G on K3-surfaces X. It is an important source of examples, many of these will occur in our later discussion. For the sake of brevity, at this point we do not introduce the notation of groups used in this table.
\(\left.\left.$$
\begin{array}{l|l|l|l} & G & |G| & \text { K3-surface } X \\
\hline 1 & L_{2}(7) & 168 & \left\{x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}+x_{4}^{4}=0\right\} \subset \mathbb{P}_{3} \\
\hline 2 & A_{6} & 360 & \left\{\sum_{i=1}^{6} x_{i}=\sum_{i=1}^{6} x_{1}^{2}=\sum_{i=1}^{6} x_{i}^{3}=0\right\} \subset \mathbb{P}_{5} \\
\hline 3 & S_{5} & 120 & \left\{\sum_{i=1}^{5} x_{i}=\sum_{i=1}^{6} x_{1}^{2}=\sum_{i=1}^{5} x_{i}^{3}=0\right\} \subset \mathbb{P}_{5} \\
\hline 4 & M_{20} & 960 & \left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}+12 x_{1} x_{2} x_{3} x_{4}=0\right\} \subset \mathbb{P}_{3} \\
\hline 5 & F_{384} & 384 & \left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}_{3}\end{array}
$$\right] $$
\begin{array}{llll}\hline 6 & A_{4,4} & 288 & \begin{array}{l}\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\sqrt{3} x_{4}^{2}\right\} \cap \\
\left\{x_{1}^{2}+\omega x_{2}^{2}+\omega^{2} x_{3}^{2}=\sqrt{3} x_{5}^{2}\right\} \cap\end{array}
$$

\hline 7 \& T_{192} \& 192 \& \left\{x_{1}^{2}+\omega^{2} x_{2}^{2}+\omega x_{3}^{2}=\sqrt{3} x_{6}^{2}\right\} \subset \mathbb{P}_{5}^{4}+x_{3}^{4}+x_{4}^{4}-2 \sqrt{-3}\left(x_{1}^{2} x_{2}^{2}+x_{3}^{2} x_{4}^{2}=0\right\} \subset \mathbb{P}_{3}

\hline 8 \& H_{192} \& 192 \& \left\{x_{1}^{2}+x_{3}^{2}+x_{5}^{2}=x_{2}^{2}+x_{4}^{2}+x_{6}^{2}\right\} \cap

\left\{x_{1}^{2}+x_{4}^{2}=x_{2}^{2}+x_{5}^{2}=x_{3}^{2}+x_{6}^{2}\right\} \subset \mathbb{P}_{5}\end{array}\right]\)| $\left\{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=x_{1} x_{2}+x_{3} x_{4}+x_{5}^{2}=0\right\} \subset \mathbb{P}_{4}$ | | |
| :--- | :--- | :--- |
| 9 | N_{72} | 72 |

Table 1.2: Finite groups of symplectic automorphisms on K3-surfaces

The following theorem (Theorem 0.6 in [Muk88]) characterizes finite groups of symplectic automorphisms on K3-surfaces.

Theorem 1.13. A finite group G has an effective sympletic actions on a K3-surface if and only if it is isomorphic to a subgroup of one of the eleven groups in Table 1.2.

The "only if"-implication of this theorem follows from the list of eleven examples summarized in Table 1.2. This list of examples is, however, far from being exhaustive. It is therefore desirable to find further examples of K3-surfaces where the groups from this list occur and describe or classify these surfaces with maximal symplectic symmetry..

Definition 1.14. By Proposition 8.8 in [Muk88] there are no subgroup relations among the eleven groups in Mukai's list. Therefore, the groups are maximal finite groups of symplectic transformations. We refer to the groups in this list also as Mukai groups.

1.4.1 Examples of K3-surfaces with symplectic symmetry

We conclude this chapter by presenting two typical examples of K3-surface with symplectic symmetry.

Example 1.15. The group $L_{2}(7)=\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)=\mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$ is a simple group of order 168. It is generated by the three projective transformations α, β, γ of $\mathbb{P}_{1}\left(\mathbb{F}_{7}\right)$ given by

$$
\alpha(x)=x+1 ; \quad \beta(x)=2 x ; \quad \gamma(x)=-x^{-1}
$$

In terms of these generators, we define a three-dimensional representation of $L_{2}(7)$ by

$$
\alpha \mapsto\left(\begin{array}{ccc}
\xi & 0 & 0 \\
0 & \xi^{2} & 0 \\
0 & 0 & \xi^{4}
\end{array}\right) ; \quad \beta \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) ; \gamma \mapsto \frac{-1}{\sqrt{-7}}\left(\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right)
$$

where $\xi=e^{\frac{2 \pi i}{7}}, a=\xi^{2}-\xi^{5}, b=\xi-\xi^{6}, c=\xi^{4}-\xi^{3}$, and $\sqrt{-7}=\xi+\xi^{2}+\xi^{4}-\xi^{3}-\xi^{5}-\xi^{6}$. Klein's quartic curve

$$
C_{\text {Klein }}=\left\{x_{1} x_{2}^{3}+x_{2} x_{3}^{3}+x_{3} x_{1}^{3}=0\right\} \subset \mathbb{P}_{2}
$$

is invariant with respect to induced action of $L_{2}(7)$ on \mathbb{P}_{2}. Mukai's example of a K3-surface with symplectic $L_{2}(7)$-symmetry is the smooth quartic hypersurface in \mathbb{P}_{3} defined by

$$
X_{K M}=\left\{x_{1} x_{2}^{3}+x_{2} x_{3}^{3}+x_{3} x_{1}^{3}+x_{4}^{4}=0\right\} \subset \mathbb{P}_{3}
$$

where the action of $L_{2}(7)$ is defined to be trivial on the coordinate x_{4} and defined as above on x_{1}, x_{2}, x_{3}. Since $L_{2}(7)$ is a simple group, it follows that the action is effective and symplectic. The surface $X_{K M}$ is called the Klein-Mukai surface. By construction, it is a cyclic degree four cover of \mathbb{P}_{2} branched along Klein's quartic curve. In fact, there is an action of the group $L_{2}(7) \times C_{4}$ on $X_{K M}$, where the action of C_{4} is by nonsymplectic transformations. The Klein-Mukai surface will play an important role in Sections 5.4 and 5.5.

Cyclic coverings

Since many examples of K3-surfaces are constructed as double covers we discuss the construction of branched cyclic covers with emphasis on group actions induced on the covering space.

Let Y be a surface such that Picard group of Y has no torsion, i.e., there does not exist a nontrivial line bundle E on Y such that $E^{\otimes n}$ is trivial for some $n \in \mathbb{N}$.

Let B be an effective and reduced divisor on Y and suppose there exists a line bundle L on Y such that $\mathcal{O}_{Y}(B)=L^{\otimes n}$ and a section $s \in \Gamma\left(Y, L^{\otimes n}\right)$ whose zero-divisor is B. Let $p: L \rightarrow L^{\otimes n}$ denote the bundle homomorphism mapping each element $(y, z) \in L$ for $y \in Y$ to $\left(y, z^{n}\right) \in L^{\otimes n}$. The preimage $X=p^{-1}(\operatorname{Im}(s))$ of the image of s is an analytic subspace of L. The bundle projection $L \rightarrow Y$ restricted to X defines surjective holomorphic map $X \rightarrow Y$ of degree n.

Since $\operatorname{Pic}(Y)$ is torsion free, the line bundle L is uniquely determined by B. It follows than X is uniquely determined and we refer to X as the cyclic degree n covering of Y branched along B. We note that X is normal and irreducible. It is smooth if the divisor B is smooth. (cf. I. 17 in [BHPVdV04])
Let G be a finite group in $\operatorname{Aut}(Y)$ and assume that the divisor B is invariant, i.e., $g B=B$ for all $g \in G$. Then the pull-back bundle $g^{*} L^{\otimes n}$ is isomorphic to $L^{\otimes n}$. We consider the group BAut $\left(L^{\otimes n}\right)$ of bundle maps of $L^{\otimes n}$ and the homomorphism BAut $\left(L^{\otimes n}\right) \rightarrow \operatorname{Aut}(Y)$ mapping each bundle map to the corresponding automorphism of the base. Its kernel is isomorphic to \mathbb{C}^{*}. The observation $g^{*} L^{\otimes n} \cong L^{\otimes n}$ implies that the group G is contained in the image of $\operatorname{BAut}\left(L^{\otimes n}\right)$ in $\operatorname{Aut}(Y)$.
By assumption, the zero set of the section s is G-invariant. The bundle map induced by g^{*} maps the section s to a multiple $\chi(g) s$ of s for some character $\chi: G \rightarrow \mathbb{C}^{*}$. It follows that the bundle map \tilde{g} induced by $\chi(g)^{-1} g^{*}$ stabilizes the section. The group $\tilde{G}=\{\tilde{g} \mid g \in G\} \subset \operatorname{BAut}\left(L^{\otimes n}\right)$ is isomorphic to G and stabilizes $\operatorname{Im}(s) \subset L^{\otimes n}$.
In order to define a corresponding action on X, first observe that $g^{*} L \cong L$ for all $g \in G$. This follows from the observation that $g^{*} L \otimes L^{-1}$ is a torsion bundle and the assumption that $\operatorname{Pic}(Y)$ has no torsion. As above, we deduce that the group G is contained in the image of $\operatorname{BAut}(L)$ in $\operatorname{Aut}(Y)$. Let \bar{G} be the preimage of G in $\operatorname{BAut}(L)$. Then \bar{G} is a central C^{*}-extension of G,

$$
\{i d\} \rightarrow \mathbb{C}^{*} \rightarrow \bar{G} \rightarrow G \rightarrow\{i d\} .
$$

The map $p: L \rightarrow L^{\otimes n}$ induces a homomorphism $p_{*}: \operatorname{BAut}(L) \rightarrow \operatorname{BAut}\left(L^{\otimes n}\right)$. Its kernel is isomorphic to $C_{n}<\mathbb{C}^{*}$ and we consider the preimage $H=p_{*}^{-1}(\tilde{G})$ in $\operatorname{BAut}(L)$. The group $H<\bar{G}$ is a central C_{n}-extension of $\tilde{G} \cong G$,

$$
\{i d\} \rightarrow C_{n} \rightarrow H \rightarrow G \rightarrow\{i d\} .
$$

By construction, the subset $X \subset L$ is invariant with respect to H. This discussion proves the following proposition.
Proposition 1.16. Let Y by a surface such that $\operatorname{Pic}(Y)$ is torsion free and $G<\operatorname{Aut}(Y)$ be a finite group. If $B \subset Y$ is an effective, reduced, G-invariant divisor defined by a section $s \in \Gamma\left(Y, L^{\otimes n}\right)$ for some line bundle L, then the cyclic degree n covering X of Y branched along B carries the induced action of a central C_{n}-extension H of G such that the covering map $\pi: X \rightarrow Y$ is equivariant.
Example 1.17 (Double covers). For any finite subgroup $G<\operatorname{PSL}(3, C)$ and any G-invariant smooth curve $C \subset \mathbb{P}_{2}$ of degree six, the double cover X of \mathbb{P}_{2} branched along C is a $K 3$-surface with an induced action of a degree two central extension of the group G. Many interesting examples (no. 10 and 11 in Mukai's table) can be contructed this way. For example, the Hessian of Klein's curve Hess ($C_{\text {Klein }}$) is an $L_{2}(7)$-invariant sextic curve and the double cover of \mathbb{P}_{2} branched along $\operatorname{Hess}\left(C_{\text {Klein }}\right)$ is a K3-surface with a symplectic action of $L_{2}(7)$ centralized by the antisymplectic covering involution (cf. Section 5.5).

Equivariant Mori reduction

This chapter deals with a detailed discussion of Example 2.18 in [KM98] (see also Section 2.3 in [Mor82]) and introduces a minimal model program for surfaces respecting finite groups of symmetries. Given a projective algebraic surface X with G-action, in analogy to the usual minimal model program, one obtains from X a G-minimal model $X_{G-\min }$ by a finite number of G equivariant blow-downs, each contracting a finite number of disjoint (-1)-curves. The surface $X_{G-m i n}$ is either a conic bundle over a smooth curve, a Del Pezzo surface or has nef canonical bundle. The case $G \cong C_{2}$ is also discussed in [BB00], the case $G \cong C_{p}$ for p prime in [dF04]. As indicated in the introduction, applications can be found throughout the literature.

2.1 The cone of curves and the cone theorem

Throughout this chapter we let X be a smooth projective algebraic surface and let Pic (X) denote the group of isomorphism classes of line bundles on X.

Definition 2.1. A divisor on X is a formal linear combination of irreducible curves $D=\sum a_{i} C_{i}$ with $a_{i} \in \mathbb{Z}$. A 1-cycle on X is a formal linear combination of irreducible curves $C=\sum b_{i} C_{i}$ with $b_{i} \in \mathbb{R}$. A 1 -cycle is effective if $b_{i} \geq 0$ for all i.

We define a pairing $\operatorname{Pic}(X) \times\{$ divisors $\} \rightarrow \mathbb{Z}$ by $(L, D) \mapsto L \cdot D=\operatorname{deg}\left(\left.L\right|_{D}\right)$. Extending by linearity, this defines a pairing $\operatorname{Pic}(X) \times\{1$-cycles $\} \rightarrow \mathbb{R}$. We use this notation for the intersection number also for pairs of divisors C and D and write $C \cdot D=\operatorname{deg}\left(\left.\mathcal{O}_{X}(D)\right|_{C}\right)$. Two 1-cycles C, C^{\prime} are called numerically equivalent if $L \cdot C=L \cdot C^{\prime}$ for all $L \in \operatorname{Pic}(X)$. We write $C \equiv C^{\prime}$. The numerical equivalence class of a 1 -cycle C is denoted by $[C]$. The space of all 1 -cycles with real coefficients modulo numerical equivalence is a real vector space denoted by $N_{1}(X)$. Note that $N_{1}(X)$ is finite-dimensional.

Remark 2.2. Let L be a line bundle on X and let L^{-1} denote its dual bundle. Then $L^{-1} \cdot C=-L \cdot C$ for all $[C] \in N_{1}(X)$. We therefore write $L^{-1}=-L$ in the following.

Definition 2.3. A line bundle L is called nef if $L \cdot C \geq 0$ for all irreducible curves C.

We set

$$
N E(X)=\left\{\sum a_{i}\left[C_{i}\right] \mid C_{i} \subset X \text { irreducible curve, } 0 \leq a_{i} \in \mathbb{R}\right\} \subset N_{1}(X) .
$$

The closure $\overline{N E}(X)$ of $N E(X)$ in $N_{1}(X)$ is called Kleiman-Mori cone or cone of curves on X.
For a line bundle L, we write $\overline{N E}(X)_{L \geq 0}=\left\{[C] \in N_{1}(X) \mid L \cdot C \geq 0\right\} \cap \overline{N E}(X)$. Analogously, we define $\overline{N E}(X)_{L \leq 0}, \overline{N E}(X)_{L>0}$, and $\overline{N E}(X)_{L<0}$.

Using this notation we phrase Kleiman's ampleness criterion (cf. Theorem 1.18 in [KM98])
Theorem 2.4. A line bundle L on X is ample if and only if $\overline{N E}(X)_{L>0}=\overline{N E}(X) \backslash\{0\}$.
Definition 2.5. Let V be a finite-dimensional real vector space. A subset $N \subset V$ is called cone if $0 \in N$ and N is closed under multiplication by positive real numbers. A subcone $M \subset N$ is called extremal if $u, v \in N$ satisfy $u, v \in M$ whenever $u+v \in M$. An extremal subcone is also referred to as an extremal face. A 1-dimensional extremal face is called extremal ray. For subsets $A, B \subset V$ we define $A+B:=\{a+b \mid a \in A, b \in B\}$.

The cone of curves $\overline{N E}(X)$ is a convex cone in $N_{1}(X)$ and the following cone theorem, which is stated here only for surfaces, describes its geometry (cf. Theorem 1.24 in [KM98]).

Theorem 2.6. Let X be a smooth projective surface and let \mathcal{K}_{X} denote the canonical line bundle on X. There are countably many rational curves $C_{i} \in X$ such that $0<-\mathcal{K}_{X} \cdot C_{i} \leq \operatorname{dim}(X)+1$ and

$$
\overline{N E}(X)=\overline{N E}(X)_{\mathcal{K}_{X} \geq 0}+\sum_{i} \mathbb{R}_{\geq 0}\left[C_{i}\right] .
$$

For any $\varepsilon>0$ and any ample line bundle L

$$
\overline{N E}(X)=\overline{N E}(X)_{\left(\mathcal{K}_{X}+\varepsilon L\right) \geq 0}+\sum_{\text {finite }} \mathbb{R}_{\geq 0}\left[C_{i}\right] .
$$

2.2 Surfaces with group action and the cone of invariant curves

Let X be a smooth projective surface and let $G<\operatorname{Aut}_{\mathcal{O}}(X)$ be a group of holomorphic transformations of X. We consider the induced action on the space of 1-cycles on X. For $g \in G$ and an irreducible curve C_{i} we denote by $g C_{i}$ the image of C_{i} under g. For a 1-cycle $C=\sum a_{i} C_{i}$ we define $g C=\sum a_{i}\left(g C_{i}\right)$. This defines a G-action on the space of 1-cycles.

Lemma 2.7. Let C_{1}, C_{2} be 1-cycles and $C_{1} \equiv C_{2}$. Then $g C_{1} \equiv g C_{2}$ for any $g \in G$.
Proof. The 1-cycle $g C_{1}$ is numerically equivalent to $g C_{2}$ if and only if $L \cdot\left(g C_{1}\right)=L \cdot\left(g C_{2}\right)$ for all $L \in \operatorname{Pic}(X)$. For $g \in G$ and $L \in \operatorname{Pic}(X)$ let $g^{*} L$ denote the pullback of L by g. The claim above is equivalent to $\left(\left(g^{-1}\right)^{*} L\right) \cdot\left(g C_{1}\right)=\left(\left(g^{-1}\right)^{*} L\right) \cdot\left(g C_{2}\right)$ for all $L \in \operatorname{Pic}(X)$. Now

$$
\left(\left(g^{-1}\right)^{*} L\right) \cdot\left(g C_{1}\right)=\operatorname{deg}\left(\left.\left(g^{-1}\right)^{*} L\right|_{g C_{1}}\right)=\operatorname{deg}\left(\left.L\right|_{C_{1}}\right)=L \cdot C_{1}=L \cdot C_{2}=\left(g^{-1}\right)^{*} L\left(g C_{2}\right)
$$

for all $L \in \operatorname{Pic}(X)$.

This lemma allows us to define a G-action on $N_{1}(X)$ by setting $g[C]:=[g C]$ and extending by linearity. We write $N_{1}(X)^{G}=\left\{[C] \in N_{1}(X) \mid[C]=[g C]\right.$ for all $\left.g \in G\right\}$, the set of invariant 1 -cycles modulo numerical equivalence. This space is a linear subspace of $N_{1}(X)$.

Since the cone $N E(X)$ is a G-invariant set it follows that its closure $\overline{N E}(X)$ is G-invariant. The subset of invariant elements in $\overline{N E}(X)$ is denoted by $\overline{N E}(X)^{G}$.

Remark 2.8. $\overline{N E}(X)^{G}=\overline{N E(X) \cap N_{1}(X)^{G}}=\overline{N E}(X) \cap N_{1}(X)^{G}$.

The subcone $\overline{N E}(X)^{G}$ of $\overline{N E}(X)$ is seen to inherit the geometric properties of $\overline{N E}(X)$ established by the cone theorem. Note however that the extremal rays of $\overline{N E}(X)^{G}$ are in general neither extremal in $\overline{N E}(X)$ (cf. Figure 2.1) nor generated by classes of curves but by classes of 1-cycles.

Figure 2.1: The extremal rays of $\overline{N E}(X)^{G}$ are not extremal in $\overline{N E}(X)$

Definition 2.9. The extremal rays of $\overline{N E}(X)^{G}$ are called G-extremal rays .
Lemma 2.10. Let G be a finite group and let R be a G-extremal ray with $\mathcal{K}_{X} \cdot R<0$. Then there exists a rational curve C_{0} such that R is generated by the class of the 1-cycle $C=\sum_{g \in G} g C_{0}$.

Proof. Consider an G-extremal ray $R=\mathbb{R}_{\geq 0}[E]$ where $[E] \in \overline{N E}(X)^{G} \subset \overline{N E}(X)$. By the cone theorem (Theorem 2.6) it can be written as $[E]=\left[\sum_{i} a_{i} C_{i}\right]+[F]$, where $\mathcal{K}_{X} \cdot F \geq 0, a_{i} \geq 0$ and C_{i} are rational curves. Let $|G|$ denote the order of G and let $[G F]=G[F]=\sum_{g \in G} g[F]$. Since $g[E]=[E]$ for all $g \in G$ we can write

$$
|G|[E]=\sum_{g \in G} g[E]=\sum_{g \in G}\left(\left[\sum_{i} a_{i} g C_{i}\right]+g[F]\right)=\sum_{i} a_{i} G\left[C_{i}\right]+G[F] .
$$

The element $\left[\sum a_{i}\left(G C_{i}\right)\right]+[G F]$ of the extremal ray $\mathbb{R}_{\geq 0}[E]$ is decomposed as the sum of two elements in $\overline{N E}(X)^{G}$. Since R is extremal in $\overline{N E}(X)^{G}$ both must lie in $R=\mathbb{R}_{\geq 0}[E]$.

Consider $[G F] \in R$. Since $g^{*} \mathcal{K}_{X} \equiv \mathcal{K}_{X}$ for all $g \in G$, we obtain

$$
\mathcal{K}_{X} \cdot(G F)=\sum_{g \in G} \mathcal{K}_{X} \cdot(g F)=\sum_{g \in G}\left(g^{*} \mathcal{K}_{X}\right) \cdot F=|G| \mathcal{K}_{X} \cdot F \geq 0
$$

Since $\mathcal{K}_{X} \cdot R<0$ by assumption this implies $[F]=0$ and $\mathbb{R}_{\geq 0}[E]=\mathbb{R}_{\geq 0}\left[\sum a_{i}(G C i)\right]$. Again using the fact that R is extremal in $\overline{N E}(X)^{G}$, we conclude that each summand of $\left[\sum a_{i}\left(G C_{i}\right)\right]$ must be contained in $R=\mathbb{R}_{\geq 0}[E]$ and the extremal ray $\mathbb{R}_{\geq 0}[E]$ is therefore generated by $\left[G C_{i}\right]$ for some C_{i} chosen such that $\left[G C_{i}\right] \neq 0$. This completes the proof of the lemma.

2.3 The contraction theorem and minimal models of surfaces

In this section, we state the contraction theorem for smooth projective surfaces. The proof of this theorem can be found e.g. in [KM98] and needs to be modified slightly in order to give an equivariant contraction theorem in the next section.

Definition 2.11. Let X be a smooth projective surface and let $F \subset \overline{N E}(X)$ be an extremal face. A morphism cont $_{F}: X \rightarrow Z$ is called the contraction of F if

- $\left(\operatorname{cont}_{F}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ and
- $\operatorname{cont}_{F}(C)=\{$ point $\}$ for an irreducible curve $C \subset X$ if and only if $[C] \in F$.

The following result is known as the contraction theorem (cf. Theorem 1.28 in [KM98]).
Theorem 2.12. Let X be a smooth projective surface and $R \subset \overline{N E}(X)$ an extremal ray such that $\mathcal{K}_{X} \cdot R<$ 0 . Then the contraction morphism $\operatorname{cont}_{R}: X \rightarrow Z$ exists and is one of the following types:

1. Z is a smooth surface and X is obtained from Z by blowing up a point.
2. Z is a smooth curve and $\operatorname{cont}_{R}: X \rightarrow Z$ is a minimal ruled surface over Z.
3. Z is a point and $-\mathcal{K}_{X}$ is ample.

The contraction theorem leads to the minimal model program for surfaces: Starting from X, if \mathcal{K}_{X} is not nef, i.e, there exists an irreducible curve C such that $\mathcal{K}_{X} C<0$, then $\overline{N E}(X)_{\mathcal{K}_{X}<0}$ is nonempty and there exists an extremal ray R which can be contracted. The contraction morphisms either gives a new surface Z (in case 1) or provides a structure theorem for X which is then either a minimal ruled surface over a smooth curve (case 2) or isomorphic to \mathbb{P}^{2} (case 3). Note that the contraction theorem as stated above only implies $-\mathcal{K}_{X}$ ample in case 3 . It can be shown that X is in fact \mathbb{P}^{2}. This is omitted here since the statement does not transfer to the equivariant setup. In case 1 , we can repeat the procedure if K_{Z} is not nef. Since the Picard number drops with each blow down, this process terminates after a finite number of steps. The surface obtained from X at the end of this program is called a minimal model of X.

Remark 2.13. Let E be a (-1)-curve on X. If C is any irreducible curve on X, then $E \cdot C<0$ if and only if $C=E$. It follows that $\overline{N E}(X)=\operatorname{span}\left(\mathbb{R}_{\geq 0}[E], \overline{N E}(X)_{E \geq 0}\right)$. Now $E^{2}=-1$ implies $E \notin \overline{N E}(X)_{E \geq 0}$ and E is seen to generate an extremal ray in $\overline{N E}(X)$. By adjunction, $\mathcal{K}_{X} \cdot E<0$. The contraction of the extremal ray $R=\mathbb{R}_{\geq 0}[E]$ is precisely the contraction of the (-1)-curve E. Conversely, each extremal contraction of type 1 above is the contraction of a (-1)-curve generating the extremal ray R.

2.4 Equivariant contraction theorem and G-minimal models

We state and prove an equivariant contraction theorem for smooth projective surfaces with finite groups of symmetries. Most steps in the proof are carried out in analogy to the proof of the standard contraction theorem.

Definition 2.14. Let G be a finite group, let X be a smooth projective surface with G-action and let $R \subset \overline{N E}(X)^{G}$ be G-extremal ray. A morphism $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ is called the G-equivariant contraction of R if

- $\operatorname{cont}_{R}^{G}$ is equivariant with respect to G
- $\left(\operatorname{cont}_{R}^{G}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ and
- $\operatorname{cont}_{R}(C)=\{$ point $\}$ for an irreducible curve $C \subset X$ if and only if $[G C] \in R$.

Theorem 2.15. Let G be a finite group, let X be a smooth projective surface with G-action and let R be a G-extremal ray with $\mathcal{K}_{X} \cdot R<0$. Then R can be spanned by the class of $C=\sum_{g \in G} g C_{0}$ for a rational curve C_{0}, the equivariant contraction morphism $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ exists and is one of the following three types:

1. $C^{2}<0$ and $g C_{0}$ are smooth disjoint (-1)-curves. The map $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ is the equivariant blow down of the disjoint union $\bigcup_{g \in G} g C_{0}$.
2. $C^{2}=0$ and any connected component of C is either irreducible or the union of two (-1)-curves intersecting transversally at a single point. The map $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ defines an equivariant conic bundle over a smooth curve .
3. $C^{2}>0, N_{1}(X)^{G}=\mathbb{R}$ and \mathcal{K}_{X}^{-1} is ample, i.e., X is a Del Pezzo surface. The map $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ is constant, Z is a point.

Proof. Let R be a G-extremal ray with $\mathcal{K}_{X} \cdot R<0$. It follows from Lemma 2.10 that the ray R can be spanned by a 1-cycle of the form $C=G C_{0}$ for a rational curve C_{0}. Let $n=\left|G C_{0}\right|$ and write $C=\sum_{i=1}^{n} C_{i}$ where the C_{i} correspond to $g C_{0}$ for some $g \in G$. We distinguish three cases according to the sign of the self-intersection of C.

The case $C^{2}<0$
We write $0>C^{2}=\sum_{i} C_{i}^{2}+\sum_{i \neq j} C_{i} \cdot C_{j}$. Since C_{i} are effective curves we know $C_{i} \cdot C_{j} \geq 0$ for all $i \neq j$. Since all curves C_{i} have the same negative self-intersection and by assumption, $\mathcal{K}_{X} \cdot C=$ $\sum_{i} \mathcal{K}_{X} \cdot C_{i}=n\left(\mathcal{K}_{X} \cdot C_{i}\right)<0$ the adjunction formula reads $2 g\left(C_{i}\right)-2=-2=\mathcal{K}_{X} \cdot C_{i}+C_{i}^{2}$. Consequently, $\mathcal{K}_{X} \cdot C_{i}=-1$ and $C_{i}^{2}=-1$. It remains to show that all C_{i} are disjoint. We assume the contrary and without loss of generality $C_{1} \cap C_{2} \neq \varnothing$. Now $g C_{1} \cap g C_{2} \neq \varnothing$ for all $g \in G$ and $\sum_{i \neq j} C_{i} \cdot C_{j} \geq n$. This is however contrary to $0>C^{2}=\sum_{i} C_{i}^{2}+\sum_{i \neq j} C_{i} \cdot C_{j}=-n+\sum_{i \neq j} C_{i} \cdot C_{j}$.
We let $\operatorname{cont}_{R}^{G}: X \rightarrow Z$ be the blow-down of $\bigcup_{g \in G} g C_{0}$ which is equivariant with respect to the induced action on Z and fulfills $\left(\operatorname{cont}_{R}^{G}\right)_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$. If D is an irreducible curve such that $\operatorname{cont}_{R}^{G}(D)=\{$ point $\}$, then $D=g C_{0}$ for some $g \in G$. In particular, $G D=G C_{0}=C$ and $[G D] \in R$. Conversely, if $[G D] \in R$ for some irreducible curve D, then $[G D]=\lambda[C]$ for some $\lambda \in \mathbb{R}_{\geq 0}$. Now $(G D) \cdot C=\lambda C^{2}<0$. It follows that D is an irreducible component of C.

The case $C^{2}>0$
This case is treated in precisely the same way as the corresponding case in the standard contraction theorem. Our aim is to show that $[C]$ is in the interior of $\overline{N E}(X)^{G}$. This is a consequence of the following lemma.

Lemma 2.16. Let X be a projective surface and let L be an ample line bundle on X. Then the set $Q=$ $\left\{[E] \in N_{1}(X) \mid E^{2}>0\right\}$ has two connected components $Q^{+}=\{[E] \in Q \mid L \cdot E>0\}$ and $Q^{-}=\{[E] \in$ $Q \mid L \cdot E<0\}$. Moreover, $Q^{+} \subset \overline{N E}(X)$.

This result follows from the Hodge Index Theorem (cf. Theorem IV.2.14 in [BHPVdV04]) and the fact, that $E^{2}>0$ implies that either E or $-E$ is effective. For a proof of this lemma, we refer the reader to Corollary 1.21 in [KM98].
We consider an effective cycle $C=\sum C_{i}$ with $C^{2}>0$. By the above lemma, $[C]$ is contained in Q^{+}which is an open subset of $N_{1}(X)$ contained in $\overline{N E}(X)$. It follows that $[C]$ lies in the interior of $\overline{N E}(X)$. The G-extremal ray $R=\mathbb{R}_{\geq 0}[C]$ can only lie in the interior if $\overline{N E}(X)^{G}=R$. By assumption $\mathcal{K}_{X} \cdot R<0$, so that \mathcal{K}_{X} is negative on $\overline{N E}(X)^{G} \backslash\{0\}$ and therefore on $\overline{N E}(X) \backslash\{0\}$. The anticanonical bundle \mathcal{K}_{X}^{-1} is ample by Kleiman ampleness criterion and X is a Del Pezzo surface.

We can define a constant map $\operatorname{cont}_{R}^{G}$ mapping X to a point Z which is the equivariant contraction of $R=\overline{N E}(X)$ in the sense of Definition 2.14.

The case $C^{2}=0$
Our aim is to show that for some $m>0$ the linear system $|m C|$ defines a conic bundle structure on X. The argument is seperated into a number of lemmata. For the convenience of the reader, we include also the proofs of well-known preparatory lemmata which do not involve group actions. Recall that $\mathcal{O}(D)$ denotes the line bundle associated to the divisor D on X.

Lemma 2.17. $H^{2}(X, \mathcal{O}(m C))=0$ for $m \gg 0$.

Proof. By Serre's duality (cf. Theorem I.5.3 in [BHPVdV04])

$$
h^{2}(X, \mathcal{O}(m C))=h^{0}\left(\mathcal{O}(-m C) \otimes \mathcal{K}_{X}\right)
$$

Since C is an effective divisor on X, it follows that $h^{0}\left(\mathcal{O}(-m C) \otimes \mathcal{K}_{X}\right)=0$ for $m \gg 0$.
Lemma 2.18. For $m \gg 0$ the dimension $h^{0}(X, \mathcal{O}(m C))$ of $H^{0}(X, \mathcal{O}(m C))$ is at least two.

Proof. Let m be such that $h^{2}(X, \mathcal{O}(m C))=0$. For a line bundle L on X we denote by $\chi(L)=$ $\sum_{i}(-1)^{i} h^{i}(X, L)$ the Euler characteristic of L. Using the theorem of Riemann-Roch (cf. Theorem V.1.6 in [Har77]),

$$
\begin{aligned}
h^{0}(X, \mathcal{O}(m C)) & \geq h^{0}(X, \mathcal{O}(m C))-h^{1}(X, \mathcal{O}(m C)) \\
& =h^{0}(X, \mathcal{O}(m C))-h^{1}(X, \mathcal{O}(m C))+h^{2}(X, \mathcal{O}(m C)) \\
& =\chi(\mathcal{O}(m C)) \\
& =\chi(\mathcal{O})+\frac{1}{2}\left(\mathcal{O}(m C) \otimes \mathcal{K}_{X}^{-1}\right) \cdot(m C) \\
& \stackrel{C^{2}=0}{=} \chi(\mathcal{O})-\frac{m}{2} \mathcal{K}_{X} \cdot C .
\end{aligned}
$$

Now $\mathcal{K}_{X} C<0$ implies the desired behaviour of $h^{0}(X, \mathcal{O}(m C))$.

For a divisor D on X we denote by $|D|$ the complete linear system of D, i.e., the set of all effective divisors linearly equivalent to D. A point $p \in X$ is called a base point of $|D|$ if $p \in \operatorname{support}(C)$ for all $C \in|D|$.

Lemma 2.19. There exists $m^{\prime}>0$ such that the linear system $\left|m^{\prime} C\right|$ is base point free.

Proof. We first exclude a positive dimensional set of base points. Let m be chosen such that $h^{0}(X, \mathcal{O}(m C)) \geq 2$. We denote by B the fixed part of the linear system $|m C|$, i.e., the biggest divisor B such that each $D \in|m C|$ can be decomposed as $D=B+E_{D}$ for some effective divisor E_{D}. The support of B is the union of all positive dimensional components of the set of base points of $|m C|$. We assume that B is nonempty. The choice of m guarantees that $|m C|$ is not fixed, i.e., there exists $D \in|m C|$ with $D \neq B$. Since $\operatorname{supp}(B) \subset\{s=0\}$ for all $s \in \Gamma(X, \mathcal{O}(m C))$, each irreducible component of $\operatorname{supp}(B)$ is an irreducible component of C and G-invariance of C implies G-invariance of the fixed part of $|m C|$. It follows that $B=m_{0} C$ for some $m_{0}<m$. Decomposing $|m C|$ into the fixed part $B=m_{0} C$ and the remaining free part $\left|\left(m-m_{0}\right) C\right|$ shows that some multiple $\left|m^{\prime} C\right|$ for $m^{\prime}>0$ has no fixed components. The linear system $\left|m^{\prime} C\right|$ has no isolated base points since these would correspond to isolated points of intersection of divisors linearly equivalent to $m^{\prime} C$. Such intersections are excluded by $C^{2}=0$.

We consider the base point free linear system $\left|m^{\prime} C\right|$ and the induced morphism

$$
\begin{aligned}
& \varphi=\varphi_{\left|m^{\prime} \mathrm{C}\right|}: X \\
& \rightarrow \varphi(X) \subset \mathbb{P}\left(\Gamma\left(X, \mathcal{O}\left(m^{\prime} C\right)\right)^{*}\right) \\
& x \mapsto\left\{s \in \Gamma\left(X, \mathcal{O}\left(m^{\prime} C\right)\right) \mid s(x)=0\right\}
\end{aligned}
$$

Since C is G-invariant, it follows that φ is an equivariant map with respect to action of G on $\mathbb{P}\left(\Gamma\left(X, \mathcal{O}\left(m^{\prime} C\right)\right)^{*}\right)$ induced by pullback of sections.

Let us study the fibers of φ. Let z be a linear hyperplane in $\Gamma\left(X, \mathcal{O}\left(m^{\prime} C\right)\right)$. By definition, $\varphi^{-1}(z)=$ $\bigcap_{s \in z}(s)_{0}$ where $(s)_{0}$ denotes the zero set of the section s. Since $(s)_{0}$ is linearly equivalent to $m^{\prime} C$ and $C^{2}=0$, the intersection $\bigcap_{s \in z}(s)_{0}$ does not consist of isolated points but all $(s)_{0}$ with $s \in z$ have a common component. In particular, each fiber is one-dimensional.

Let $f: X \rightarrow Z$ be the Stein factorization of $\varphi: X \rightarrow \varphi(X)$. The space Z is normal and 1dimensional, i.e., Z is a smooth curve. Note that there is a G-action on the smooth curve Z such that f is equivariant.

Lemma 2.20. The map $f: X \rightarrow Z$ defines an equivariant conic bundle, i.e., an equivariant fibration with general fiber isomorphic to \mathbb{P}_{1}.

Proof. Let F be a smooth fiber of f. By construction, F is a component of $(s)_{0}$ for some $s \in$ $\Gamma\left(X, \mathcal{O}\left(m^{\prime} C\right)\right)$. We can find an effective 1-cycle D such that $(s)_{0}=F+D$. Averaging over the group G we obtain $\sum_{g \in G} g F+\sum_{g \in G} g D=\sum_{g \in G} g(s)_{0}$. Recalling $(s)_{0} \sim m^{\prime} C$ and $[C] \in \overline{N E}(X)^{G}$ we deduce

$$
\left[\sum_{g \in G} g F+\sum_{g \in G} g D\right]=\left[\sum_{g \in G} g(s)_{0}\right]=m^{\prime}\left[\sum_{g \in G} g C\right]=m|G|[C]
$$

showing that $\left[\sum_{g \in G} g F+\sum_{g \in G} g D\right]$ in contained in the G-extremal ray generated by $[C]$. Now by the definition of extremality $\left[\sum_{g \in G} g F\right]=\lambda[C] \in \mathbb{R}^{>0}[C]$ and therefore $\mathcal{K}_{X} \cdot\left(\sum_{g \in G} g F\right)<0$. This implies $\mathcal{K}_{X} F<0$.
In order to determine the self-intersection of F, we first observe $\left(\sum_{g \in G} g F\right)^{2}=\lambda^{2} C^{2}=0$. Since F is a fiber of a G-equivariant fibration, we know that $\sum_{g \in G} g F=k F+k F_{1}+\cdots+k F_{l}$ where $F, F_{1}, \ldots F_{l}$ are distinct fibers of f and $k \in \mathbb{N}^{>0}$. Now $0=\left(\sum_{g \in G} g F\right)^{2}=(l+1) k^{2} F^{2}$ shows $F^{2}=0$. The adjunction formula then implies $g(F)=0$ and F is isomorphic to \mathbb{P}_{1}.

The map cont ${ }_{R}^{G}:=f$ is equivariant and fulfills $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ by Stein's factorization theorem. Let D be an irreducible curve in X such that f maps D to a point, i.e., D is contained in a fiber of f. Going through the same arguments as above one checks that $[G D] \in R$. Conversely, if D is an
irreducible curve in X such that $[G D] \in R$ it follows that $(G D) \cdot C=0$. If D is not contracted by f, then $f(D)=Z$ and D meets every fiber of f. In particular, $D \cdot C>0$, a contradiction. It follows that D must be contracted by f.

This completes the proof of the equivariant contraction theorem.
The singular fibers of the conic bundle in case 2 of the theorem above are characterized by the following lemma.

Lemma 2.21. Let $R=\mathbb{R}^{>0}[C]$ be a \mathcal{K}_{X}-negative G-extremal ray with $C^{2}=0$. Let cont ${ }_{R}^{G}:=f: X \rightarrow Z$ be the equivariant contraction of R defining a conic bundle structure on X. Then every singular fiber of f is a union of two (-1)-curves intersecting transversally.

Proof. Let F be a singular fiber of f. The same argument as in the previous lemma yields that $\mathcal{K}_{X} \cdot F<0$ and $F^{2}=0$. Since F is connected, adjunction implies that the arithmetic genus of F is zero and $\mathcal{K}_{X} \cdot F=-2$. It follows from the assumption on F being singular that F must be reducible. Let $F=\sum F_{i}$ be the decomposition into irreducible components. Now $g(F)=0$ implies $g\left(F_{i}\right)=0$ for all i.
We apply the same argument as above to the component F_{i} of F : after averaging over G we deduce that $G F_{i}$ is in the G-extremal ray R and $\mathcal{K}_{X} \cdot F_{i}<0$. Since $-2=\mathcal{K}_{X} \cdot F=\sum \mathcal{K}_{X} \cdot F_{i}$, we may conclude that $F=F_{1}+F_{2}$ and $F_{i}^{2}=-1$. The desired result follows.

G-minimal models of surfaces

Let X be a surface with G-action such that \mathcal{K}_{X} is not nef, i.e., $\overline{N E}(X)_{\mathcal{K}_{X}<0}$ is nonempty.
Lemma 2.22. There exists a G-extremal ray R such that $\mathcal{K}_{X} \cdot R<0$.
Proof. Let $[C] \in \overline{N E}(X)_{\mathcal{K}_{X}<0} \neq \varnothing$ and consider $[G C] \in \overline{N E}(X)^{G}$. The G-orbit or G-average of a \mathcal{K}_{X}-negative effective curve is again \mathcal{K}_{X}-negative. It follows that $\overline{N E}(X)_{\mathcal{K}_{X}<0}^{G}$ is nonempty. Let L be a G-invariant ample line bundle on X. By the cone theorem, for any $\varepsilon>0$

$$
\overline{N E}(X)^{G}=\overline{N E}(X)_{\left(\mathcal{K}_{X}+\varepsilon L\right) \geq 0}^{G}+\sum_{\text {finite }} \mathbb{R}_{\geq 0} G\left[C_{i}\right] .
$$

where $\mathcal{K}_{X} \cdot C_{i}<0$ for all i. Since $\overline{N E}(X)_{\mathcal{K}_{X}<0}^{G}$ is nonempty, we may choose $\varepsilon>0$ such that $\overline{N E}(X)^{G} \neq \overline{N E}(X)_{\left(\mathcal{K}_{X}+\varepsilon L\right) \geq 0}^{G}$. If the ray $R_{1}=\mathbb{R}_{\geq 0} G\left[C_{1}\right]$ is not extremal in $\overline{N E}(X)^{G}$, then its generator $G\left[C_{1}\right]$ can be decomposed as a sum of elements of $\overline{N E}(X)^{G}$ not contained in R_{1}. It follows that

$$
\overline{N E}(X)^{G}=\overline{N E}(X)_{\left(\mathcal{K}_{X}+\varepsilon L\right) \geq 0}^{G}+\sum_{\substack{i \neq 1 \\ \text { finite }}} \mathbb{R}_{\geq 0} G\left[C_{i}\right]
$$

i.e., the ray R_{1} is superfluous in the formula. By assumption $\overline{N E}(X)^{G} \neq \overline{N E}(X)_{\left(\mathcal{K}_{X}+\varepsilon L\right) \geq 0}^{G}$ and we may therefore not remove all rays R_{i} from the formula and at least one ray $R_{i}=\mathbb{R}_{\geq 0} G\left[C_{i}\right]$ is G-extremal.

We apply the equivariant contraction theorem to X : In case 1 we obtain from X a new surface Z by blowing down a G-orbit of disjoint (-1)-curves. There is a canonically defined holomorphic G-action on Z such that the blow-down is equivariant. If K_{Z} is not nef, we repeat the procedure
which will stop after a finite number of steps. In case 2 we obtain an equivariant conic bundle structure on X. In case 3 we conclude that X is a Del Pezzo surface with G-action. We call the G-surface obtained from X at the end of this procedure a G-minimal model of X.

As a special case, we consider a rational surface X with G-action. Since the canonical bundle \mathcal{K}_{X} of a rational surface X is never nef (cf. Theorem VI.2.1 in [BHPVdV04]), a G-minimal model of X is an equivariant conic bundle over Z or a Del Pezzo surface with G-action. Note that the base curve Z must be rational: if Z is not rational, one finds nonzero holomorphic one-forms on Z. Pulling these back to X gives rise to nonzero holomorphic one-forms on the rational surface X, a contradiction.

This proves the well-known classification of G-minimal models of rational surfaces (cf. [Man67], [Isk80]). Although this classification does classically not rely on Mori theory, the proof given above is based on Mori's approach. We therefore refer to an equivariant reduction $Y \rightarrow Y_{\min }$ as an equivariant Mori reduction.

In the following chapters we will apply the equivariant minimal model program to quotients of K3-surfaces by nonsymplectic automorphisms.

3
 Centralizers of antisymplectic involutions

This chapter is dedicated to a rough classification of K3-surfaces with antisymplectic involutions centralized by large groups of symplectic transformations (Theorem 3.25).

We consider a K3-surface X with an action of a finite group $G \times C_{2}<\operatorname{Aut}(X)$ and assume that the action of G is by symplectic transformations whereas C_{2} is generated by an antisymplectic involution σ centralizing G. Furthermore, we assume that $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Let $\pi: X \rightarrow X / \sigma=Y$ denote the quotient map. The quotient surface Y is a smooth rational G-surface to which we apply the equivariant minimal model program developed in the previous chapter. A G-minimal model of Y can either be a Del Pezzo surface or an equivariant conic bundle over \mathbb{P}_{1}. In the later case, the possibilities for G are limited by the classification of finite groups with an effective action on \mathbb{P}_{1}

Remark 3.1. The classification of finite subgroups of $\mathrm{SU}(2, \mathbb{C})$ (or $\mathrm{SO}(3, \mathbb{R})$) yields the following list of finite groups with an effective action on \mathbb{P}_{1} :

- cyclic groups C_{n}
- dihedral groups $D_{2 n}$
- the tetrahedral group $T_{12} \cong A_{4}$
- the octahedral group $O_{24} \cong S_{4}$
- the icosahedral group $I_{60} \cong A_{5}$

If G is any finite group acting on a space X, we refer to the number of elements in an orbit $G \cdot x=$ $\{g . x \mid g \in G\}$ as the length of the G-orbit G.x. Note that the length of a T_{12}-orbit in \mathbb{P}_{1} is at least four, the length of an O_{24}-orbit in \mathbb{P}_{1} is at least six, and the length of an I_{60}-orbit in \mathbb{P}_{1} is at least twelve.

Lemma 3.2. If a G-minimal model $Y_{\min }$ of Y is an equivariant conic bundle, then $|G| \leq 96$.

Proof. Let $\varphi: Y_{\min } \rightarrow \mathbb{P}_{1}$ be an equivariant conic bundle structure on $Y_{\min }$. By definition, the general fiber of φ is isomorphic to \mathbb{P}_{1}. We consider the induced action of G on the base \mathbb{P}_{1}. If this
action is effective, then G is among the groups specified in the remark above. Since the maximal order of an element in G is eight (cf. Remark 1.7), it follows that the order G is bounded by 60.

If the action of G on the base \mathbb{P}_{1} is not effective, every element n of the ineffectivity $N<G$ has two fixed points in the general fiber. This gives rise to a positive-dimensional n-fixed point set in $Y_{\min }$ and Y. A symplectic automorphism however has only isolated fixed points. It follows that the action of n on X coincides with the action of σ on $\pi^{-1}\left(\operatorname{Fix}_{Y}(N)\right)$. In particular, the order of n is two. Since N acts effectively on the general fiber, it follows that N is isomorphic to either C_{2} or $C_{2} \times C_{2}$.

If G / N is isomorphic to the icosahedral group $I_{60}=A_{5}$, then G fits into the exact sequence $1 \rightarrow N \rightarrow G \rightarrow A_{5} \rightarrow 1$ for $N=C_{2}$ or $C_{2} \times C_{2}$. Let η be an element of order five inside A_{5}. One can find an element ξ of order five in G which is mapped to η. Since neither C_{2} nor $C_{2} \times C_{2}$ has automorphisms of order five it follows that ξ centralizes the normal subgroup N. In particular, there is a subgroup $C_{2} \times C_{5} \cong C_{10}$ in G which is contrary to the assumption that G is a group of symplectic transformations and therefore its elements have order at most eight.

If G / N is cyclic or dihedral, we again use the fact that the order of elements in G is bounded by 8 and conclude $|G / N| \leq 16$. It follows that the maximal possible order of G / N is 24 . Using $|N| \leq 4$ we obtain $|G| \leq 96$.

If $|G|>96$, the lemma above allows us to restrict our classification to the case where a G-minimal model $Y_{\min }$ of Y is a Del Pezzo surface. The next section is devoted to a brief introduction to Del Pezzo surfaces and their automorphisms groups.

3.1 Del Pezzo surfaces

A Del Pezzo surface is a smooth surface Z such that the anticanonical bundle $\mathcal{K}_{Z}^{-1}=\mathcal{O}_{Z}\left(-K_{Z}\right)$ is ample. The self-intersection number of the canonical divisor $d:=K_{Z}^{2}$ is referred to as the degree of the Del Pezzo surface and $1 \leq d \leq 9$ (cf. Theorem 24.3 in [Man74]).

Example 3.3. Let $Z=\left\{f_{3}=0\right\} \subset \mathbb{P}_{3}$ be a smooth cubic surface. The anticanonical bundle \mathcal{K}_{Z}^{-1} of Z is given by the restriction of the hyperplane bundle $\mathcal{O}_{\mathbb{P}_{3}}(1)$ to Z and therefore ample.

As a consequence of the adjunction formula, an irreducible curve with negative self-intersection on a Del Pezzo surface is a (-1)-curve. The following theorem (cf. Theorem 24.4 in [Man74]) gives a classification of Del Pezzo surfaces according to their degree.

Theorem 3.4. Let Z be a Del Pezzo surface of degree d.

- If $d=9$, then Z is isomorphic to \mathbb{P}_{2}.
- If $d=8$, then Z is isomorphic to either $\mathbb{P}_{1} \times \mathbb{P}_{1}$ or the blow-up of \mathbb{P}_{2} in one point.
- If $1 \leq d \leq 7$, then Z is isomorphic to the blow-up of \mathbb{P}_{2} in $9-d$ points in general position, i.e., no three points lie on one line and no six points lie on one conic.

In our later considerations of Del Pezzo surfaces Table 3.1 below (cf. Theorem 26.2 in [Man74]) specifying the number of (-1)-curves on a Del Pezzo surface of degree d will be very useful.

degree d	1	2	3	4	5	6	7
number of (-1)-curves	240	56	27	16	10	6	3

Table 3.1: (-1)-curves on Del Pezzo surfaces
Example 3.5. Let Z be a Del Pezzo surface of degree 5. It follows from the theorem above that Z is isomorphic to the blow-up of \mathbb{P}_{2} in four points p_{1}, \ldots, p_{4} in general position. We denote by E_{i} the preimage of p_{i} is Z. Let $L_{i j}$ denote the line in \mathbb{P}_{2} joining p_{i} and p_{j} and note that there are precisely six lines of this type. The proper transform of $L_{i j}$ is a (-1)-curve in Z . We have thereby specified all ten (-1)-curves in Z. Their incidence graph is known as the Petersen graph .

The following theorem summarizes properties of the anticanonical map, i.e., the map associated to the linear system $\left|-K_{Z}\right|$ of the anticanonical divisor (Theorem 24.5 in [Man74] and Theorem 8.3.2 in [Dol08])

Theorem 3.6. Let Z be a Del Pezzo surface of degree d. If $d \geq 3$, then \mathcal{K}_{Z}^{-1} is very ample and the anticanonical map is a holomorphic embedding of Z into \mathbb{P}_{d} such that the image of Z in \mathbb{P}_{d} is of degree d.

If $d=2$, then the anticanonical map is a holomorphic degree two cover $\varphi: Z \rightarrow \mathbb{P}_{2}$ branched along a smooth quartic curve.

If $d=1$, then the linear system $\left|-K_{Z}\right|$ has exactly one base point p. Let $Z^{\prime} \rightarrow Z$ be the blow-up of p. Then the pull-back of $-K_{Z}$ to Z^{\prime} defines an elliptic fibration $f: Z^{\prime} \rightarrow \mathbb{P}_{1}$. The linear system $\left|-2 K_{Z}\right|$ defines a finite map of degree two onto a quadric cone Q in \mathbb{P}_{3}. Its branch locus is given by the intersection of Q with a cubic surface.

Our understanding of Del Pezzo surfaces as surfaces obtained by blowing-up points in \mathbb{P}_{2} in general position or as degree d subvarieties of \mathbb{P}_{d} enables us the decide whether certain finite groups G can occur as subgroups of the automorphisms group $\operatorname{Aut}(Z)$ of a Del Pezzo surface Z.
Example 3.7. Consider the semi-direct product $G=C_{3} \ltimes C_{7}$ where the action of C_{3} on C_{7} is defined by the embedding of C_{3} into $\operatorname{Aut}\left(C_{7}\right) \cong C_{6}$. The group G is a maximal subgroup of the simple group $L_{2}(7)$ which is discussed below. Let Z be a Del Pezzo surface of degree d with an effective action of G. Since G does not admit a two-dimensional representation, it follows that G does not have fixed points in Z. In particular, $d \neq 1$. For the same reason, Z is not the blow-up of \mathbb{P}_{2} in one or two points. Since there is no nontrivial homomorphisms $G \rightarrow C_{2}$ and no injective homomorphism $G \rightarrow \operatorname{PSL}(2, \mathbb{C})$ it follows that $G \nsim \operatorname{Aut}\left(\mathbb{P}_{1} \times \mathbb{P}_{1}\right)=\left(\operatorname{PSL}_{2}(\mathbb{C}) \times \operatorname{PSL}_{2}(\mathbb{C})\right) \rtimes C_{2}$.

In many cases it can be useful to consider possible actions of a finite group G on the union of (-1)-curves on a Del Pezzo surfaces.

Example 3.8. We consider $G=L_{2}(7)$, the simple group of order 168. Its maximal subgroups are $C_{3} \ltimes C_{7}$ and S_{4}. Assume G acts effectively on a Del Pezzo surface Z of degree d. Since $L_{2}(7)$ does not stabilize any smooth rational curve, the G-orbit of a (-1)-curve $E \subset Z$ consists of $7,8,14,24$ or more curves. It now follows from Table 3.1 that $d \neq 3,5,6$.

If $d=4$, then the union of (-1)-curves on Z would consist of two G-orbits of length 8 . In particular, $\operatorname{Stab}_{G}(E) \cong C_{3} \ltimes C_{7}$ for any (-1)-curve $E \subset Z$. Blowing down E to a point $p \in Z^{\prime}$ induces an action of $C_{3} \ltimes C_{7}$ on Z^{\prime} fixing p. Since $C_{3} \ltimes C_{7}$ does not admit a two-dimensional representation, it follows that the normal subgroup C_{7} acts trivially on Z^{\prime} and therefore on Z. This is a contradiction.

Using the result of the previous example, it follows that Z is either a Del Pezzo surface of degree 2 or isomorphic to \mathbb{P}_{2}. Both cases will play a role in our discussion of K3-surfaces with an action of $L_{2}(7)$.

Example 3.9. Let be the Del Pezzo surface obtained by blowing up one point p in \mathbb{P}_{2}. Then its automorphims group is the subgroup of $\operatorname{Aut}\left(\mathbb{P}_{2}\right)$ fixing the point p. Similarly, if Z is the Del Pezzo surface obtained by blowing up two points p, q in \mathbb{P}_{2}, then $\operatorname{Aut}(Z)=G \rtimes C_{2}$ where G is the subgroup of $\operatorname{Aut}\left(\mathbb{P}_{2}\right)$ fixing the two points p, q and C_{2} acts by switching the exceptional curves E_{p}, E_{q}.

In the previous chapter we have shown that Del Pezzo surfaces can occur as equivariant minimal models. It should be remarked that the blow-up of \mathbb{P}_{2} in one or two points is never equivariantly minimal: Let Z be the surface obtained by blowing up one or two points in \mathbb{P}_{2}. Then Z contains an $\operatorname{Aut}(Z)$-invariant (-1)-curve, namely the curve E_{p} in the first case and the proper transform of the line joining p and q in the second case. This curve can always be blown down equivariantly. Using the language of equivariant Mori theory introduced in the previous chapter, the $\operatorname{Aut}(Z)-$ invariant (-1)-curve spans a $\operatorname{Aut}(Z)$-extremal ray R of the cone of invariant curves $\overline{N E}(X)^{\operatorname{Aut}(Z)}$ with $\mathcal{K}_{Z} \cdot R<0$. Its contraction defines an $\operatorname{Aut}(Z)$-equivariant map to \mathbb{P}_{2}. In particular, Z is not equivariantly minimal.

Remark 3.10. A complete classification of automorphisms groups of Del Pezzo surfaces can be found in [Dol08].

3.2 Branch curves and Mori fibers

We return to the initial setup where X is a K3-surface with an action of $G \times\langle\sigma\rangle$ and $\pi: X \rightarrow$ $X / \sigma=Y$ denotes the quotient map, and fix an equivariant Mori reduction $M: Y \rightarrow Y_{\min }$.
A rational curve $E \subset Y$ is called a Mori fiber if it is contracted in some step of the equivariant Mori reduction $Y \rightarrow Y_{\min }$. The set of all Mori fibers is denoted by \mathcal{E}. Its cardinality $|\mathcal{E}|$ is denoted by m. We let n denote the total number of rational curves in $\operatorname{Fix}_{X}(\sigma)$.
Lemma 3.11. The total number m of Mori fibers in Y is bounded by $m \leq n+12-e\left(Y_{\min }\right) \leq n+9$.

Proof. Recall that $\operatorname{Fix}_{X}(\sigma)$ is a disjoint union of smooth curves. We choose a triangulation of Fix $_{X}(\sigma)$ and extend it to a triangulation of the surface X. The topological Euler characteristic of the double cover is

$$
\begin{aligned}
e(X)=24 & =2 e(Y)-\sum_{C \subset \operatorname{Fix}_{X}(\sigma)} e(C) \\
& =2 e(Y)-\sum_{C \subset \operatorname{Fix}_{X}(\sigma)}(2-2 g(C)) \\
& =2 e(Y)-2 n+\sum_{\substack{ \\
g(C) \geq 1 \\
g(C) \geq 1}}(2 g(C)-2) \\
& \geq 2 e(Y)-2 n \\
& =2\left(e\left(Y_{\text {min }}\right)+m\right)-2 n
\end{aligned}
$$

This yields $m \leq n+12-e\left(Y_{\min }\right)$, and $e\left(Y_{\min }\right) \geq 3$ completes the proof of the lemma.
Let $R:=\operatorname{Fix}_{X}(\sigma) \subset X$ denote the ramification locus of π and let $B:=\pi(R) \subset Y$ be its branch locus. In the following, we repeatedly use the fact that for a finite proper surjective holomorphic map of complex manifolds (spaces) $\pi: X \rightarrow Y$ of degree d, the intersection number of pullback divisors fulfills $\left(\pi^{*} D_{1} \cdot \pi^{*} D_{2}\right)=d\left(D_{1} \cdot D_{2}\right)$.

Lemma 3.12. Let $E \in \mathcal{E}$ be a Mori fiber such that $E \not \subset B$ and $|E \cap B| \geq 2$ or $E \cdot B \geq 3$. Then $E^{2}=-1$ and $\pi^{-1}(E)$ is a smooth rational curve in X. Furthermore, $E \cdot B=|E \cap B|=2$.

Proof. Let $k<0$ denote self-intersection number of E. By the remark above, the divisor $\pi^{-1}(E)=$ $\pi^{*} E$ has self-intersection $2 k$. Assume that $\pi^{-1}(E)$ is reducible and let $\tilde{E}_{1}, \tilde{E}_{2}$ denote its irreducible components. They are rational and therefore, by adjunction on the K3-surface X, have self-intersection number -2 . Write

$$
0>2 k=\left(\pi^{-1}(E)\right)^{2}=\tilde{E}_{1}^{2}+\tilde{E}_{2}^{2}+2\left(\tilde{E}_{1} \cdot \tilde{E}_{2}\right)=-4+2\left(\tilde{E}_{1} \cdot \tilde{E}_{2}\right)
$$

Since \tilde{E}_{1} and \tilde{E}_{2} intersect at points in the preimage of $E \cap B$, we obtain $\tilde{E}_{1} \cdot \tilde{E}_{2} \geq 2$, a contradiction. It follows that $\pi^{-1}(E)$ is irreducible. Consequently, $k=-1$ and $\pi^{-1}(E)$ is a smooth rational curve with two σ-fixed points .

Remark 3.13. Let $E \in \mathcal{E}$ be a Mori fiber.

- If $E \subset B$, then E is the image of a rational curve in X and $E^{2}=-4$. (cf. Corollary 3.16 below).
- If $E \not \subset B$ and $\pi^{-1}(E)$ is irreducible, then $2 E^{2}=\left(\pi^{-1}(E)\right)^{2}<0$. Adjunction on X implies that $\left(\pi^{-1}(E)\right)^{2}=-2$ and that $\pi^{-1}(E)$ is a smooth rational curve in X. The action of σ has two fixed points on $\pi^{-1}(E)$ and the restricted degree two map $\left.\pi\right|_{\pi^{-1}(E)}: \pi^{-1}(E) \rightarrow E$ is necessarily branched, i.e., $E \cap B \neq \varnothing$.
- If $E \not \subset B$ and $\pi^{-1}(E)=\tilde{E}_{1}+\tilde{E}_{2}$ is reducible, then

$$
2 E^{2}=\underbrace{\tilde{E}_{1}^{2}}_{\geq-2}+\underbrace{2\left(\tilde{E}_{1} \cdot \tilde{E}_{2}\right)}_{\geq 0}+\underbrace{\tilde{E}_{2}^{2}}_{\geq-2} \geq-4
$$

In particular, $E^{2} \in\{-1,-2\}$.

- If $E^{2}=-1$, then $\tilde{E}_{1} \cdot \tilde{E}_{2}=1$ and $E \cap B \neq \varnothing$.
- If $E^{2}=-2$, then $\tilde{E}_{1} \cdot \tilde{E}_{2}=0$ and $E \cap B=\varnothing$.

In summary, a Mori fiber $E \not \subset B$ has self-intersection -1 if and only if $E \cap B \neq \varnothing$ and selfintersection -2 if and only if $E \cap B=\varnothing$. A Mori fiber E has self-intersection -4 if and only if $E \subset B$.
More generally, any (-1)-curve E on Y meets B in either one or two points. If $|E \cap B|=1$, then $\pi^{-1}(E)=E_{1} \cup E_{2}$ is reducible. If $|E \cap B|=2$, then $\pi^{-1}(E)$ is irreducible and meets Fix $(\sigma)=$ $R=\pi^{-1}(B)$ in two points.

Proposition 3.14. Every Mori fiber $E \in \mathcal{E}, E \not \subset B$ meets the branch locus B in at most two points. If E and B are tangent at p, then $E \cap B=\{p\}$ and $(E \cdot B)_{p}=2$.

Proof. Let $E \in \mathcal{E}, E \not \subset B$ and assume $|E \cap B| \geq 2$ or $E \cdot B \geq 3$. Then by the lemma above, $\tilde{E}=\pi^{-1}(E)$ is a smooth rational curve in X. Since $\tilde{E} \not \subset \operatorname{Fix}_{X}(\sigma)$, the involution σ has exactly two fixed points on \tilde{E} showing $|E \cap B|=2$. It remains to show that the intersection is transversal.
To see this, let $N_{\tilde{E}}$ denote the normal bundle of \tilde{E} in X. We consider the induced action of σ on $N_{\tilde{E}}$ by a bundle automorphism. Using an equivariant tubular neighbourhood theorem we may equivariantly identify a neighbourhood of \tilde{E} in X with $N_{\tilde{E}}$ via a C^{∞}-diffeomorphism. The σ-fixed point curves intersecting \tilde{E} map to curves of σ-fixed points in $N_{\tilde{E}}$ intersecting the zero-section
and vice versa. Let D be a curve of σ-fixed point in $N_{\tilde{E}}$. If D is not a fiber of $N_{\tilde{E}}$, it follows that σ stabilizes all fibers intersecting D and the induced action of σ on the base must be trivial, a contradiction. It follows that the σ-fixed point curves correspond to fibers of $N_{\tilde{E}}$, and E and B meet transversally.

By negation of the implication above, if E and B are tangent at p, then $|E \cap B|=1$ and $E \cdot B=$ 2.

3.2.1 Rational branch curves

In this section we find conditions on G, in particular conditions on the order of G, guaranteeing the absence of rational curves in $\operatorname{Fix}_{X}(\sigma)$.

Lemma 3.15. Let $\pi: X \rightarrow Y$ be a cyclic degree two cover of surfaces and let $C \subset X$ be a smooth curve contained in the ramification locus of π. Then the image of C in Y has self-intersection $(\pi(C))^{2}=2 C^{2}$.

Proof. We recall that the intersection of pullback divisors fulfills $\pi^{*} D_{1} \cdot \pi^{*} D_{2}=2\left(D_{1} \cdot D_{2}\right)$. In the setup of the lemma, $\left(\pi^{*} \pi(C)\right)^{2}=2(\pi(C))^{2}$. Now $\pi^{*} \pi(C) \sim 2 C$ implies the desired result.

Note that the lemma above can also be proved by considering the normal bundle N_{C} of C and the induced action of σ on it. The normal bundle $N_{\pi(C)}$ is isomorphic to N_{C}^{2}. Since the self-intersection of a curve is the degree of the normal bundle restricted to the curve, the formula follows.

Corollary 3.16. Let X be a K3-surface and let $\pi: X \rightarrow Y$ be a cyclic degree two cover. Then a rational branch curve of π has self-intersection -4.

Proof. Let C be a rational curve on the K3-surface X. Then by adjunction $C^{2}=-2$ and the image $\pi(C)$ in Y is a (-4)-curve by Lemma 3.15 above.

On a Del Pezzo surface a curve with negative self-intersection necessarily has self-intersection -1 . So if $Y_{\text {min }}$ is a Del Pezzo surface, all rational branch curves of π, which have self-intersection -4 by Corollary 3.16, need to be modified by the Mori reduction when passing to $Y_{\min }$ and therefore have nonempty intersection with the union of Mori fibers.

An important tool in the study of rational branch curves is provided by the following lemma which describes the behaviour of self-intersection numbers under monoidal transformations.
Lemma 3.17. Let \tilde{X} and X be smooth projective surfaces and let $b: \tilde{X} \rightarrow X$ be the blow-down of a (-1)curve $E \subset \tilde{X}$. For a curve $B \subset \tilde{X}$ having no common component with E the self-intersection of its image in X is given by

$$
b(B)^{2}=B^{2}+(E \cdot B)^{2} .
$$

Proof. We may choose an ample divisor H in X with $p \notin \operatorname{supp}(H)$ and D linearly equivalent to $b(B)+H$ such that $p \notin \operatorname{supp}(D)$. Since b is biholomorphic away from p, we know

$$
(b(B)+H)^{2}=D^{2}=\left(b^{*} D\right)^{2}=\left(b^{*}((b(B)+H))^{2} .\right.
$$

Using $\left(b^{*} H\right)^{2}=H^{2}$ and $b^{*}(b(B)) \cdot b^{*} H=b(B) \cdot H$ we find $b(B)^{2}=\left(b^{*} B\right)^{2}$. Now $b^{*} B=B+\mu E$ where μ denotes the multiplicity of the point $p \in b(B)$. This multiplicity equals the intersection multiplicity $E \cdot B$. Therefore,

$$
b(B)^{2}=\left(b^{*} B\right)^{2}=(B+\mu E)^{2}=B^{2}+2 \mu^{2}-\mu^{2}=B^{2}+\mu^{2} .
$$

and the lemma follows.

We denote by \mathcal{C} the set of rational branch curves of π. The total number $|\mathcal{C}|$ of these curves is denoted by n. The union of all Mori fibers not contained in the branch locus B is denoted by $\cup E_{i}$.

Let $\mathcal{C}_{\geq k}=\left\{C \in \mathcal{C}| | C \cap \bigcup E_{i} \mid \geq k\right\}$ be the set of those rational branch curves C which meet $\cup E_{i}$ in at least k distinct points and let $\left|\mathcal{C}_{\geq k}\right|=r_{k}$. We let $\mathcal{E}_{\geq k}$ denote the set of Mori fibers $E \not \subset B$ which intersect some C in $\mathcal{C}_{\geq k}$ and define

$$
P_{k}=\left\{(p, E) \mid p \in C \cap E, E \in \mathcal{E}_{\geq k}, C \in \mathcal{C}_{\geq k}\right\} \subseteq Y \times \mathcal{E}_{\geq k}
$$

and the projection map $\mathrm{pr}_{k}: P_{k} \rightarrow \mathcal{E}_{\geq k}$ mapping (p, E) to E. This map is surjective by definition of $\mathcal{E}_{\geq k}$ and its fibers consist of ≤ 2 points by Proposition 3.14. Using $\left|P_{k}\right| \geq k r_{k}$ we see

$$
\begin{equation*}
\left|\mathcal{E}_{\geq k}\right| \geq \frac{k}{2} r_{k} \tag{3.1}
\end{equation*}
$$

Let N be the largest positive integer such that $\mathcal{C}_{\geq N}=\mathcal{C}$, i.e., each rational ramification curve is intersected at least N times by Mori fibers. A curve $C \in \mathcal{C}$ which is intersected precisely N times by Mori fibers is referred to as a minimizing curve. In the following, let C be a minimizing curve and let $H=\operatorname{Stab}_{G}(C)<G$ be the stabilizer of C in G.

Remark 3.18. The index of H in G is bounded by $n=r_{N}$.

Bounds for n

A smooth rational curve on a K3-surface has self-intersection -2 and all curves in $\mathrm{Fix}_{X}(\sigma)$ are disjoint. Therefore, the rational curves in $\operatorname{Fix}_{X}(\sigma)$ generate a sublattice of $\operatorname{Pic}(X)$ of signature $(0, n)$. It follows immediately that $n \leq 19$.
A sharper bound $n \leq 16$ for the number of disjoint (-2)-curves on a K3-surface has been obtained by Nikulin [Nik76] and the following optimal bound in our setup is due to Zhang [Zha98], Theorem 3.

Proposition 3.19. The total number of connected curves in the fixed point set of an antisymplectic involution on a K3-surface is bounded by 10.

Corollary 3.20. The number n of rational curves in $\operatorname{Fix}_{X}(\sigma)$ is at most 10. If $n=10$, then $\operatorname{Fix}_{X}(\sigma)$ is a union of rational curves.

In the following, we use Zhang's bound $n \leq 10$. Note, however, that all results can likewise be obtained by using the weakest bound $n \leq 19$.
For $N \geq 4$ Zhang's bound can be sharpened using the notion of Mori fibers and minimizing curves.

Lemma 3.21. $\frac{N}{2} n \leq n+12-e\left(Y_{\text {min }}\right) \leq n+9$.

Proof. Using Lemma 3.2 and inequality (3.1) $\frac{N}{2} n=\frac{N}{2} r_{N} \leq\left|\mathcal{E}_{\geq N}\right| \leq|\mathcal{E}| \leq n+12-e\left(Y_{\min }\right) \leq$ $n+9$.

In the following we consider the stabilizer H of a minimizing curve C and using the above bounds for n, we obtain bounds for $|G|$.

A bound for $|G|$

Proposition 3.22. Let X be a K3-surface with an action of a finite group $G \times\langle\sigma\rangle$ such that $G<$ $\operatorname{Aut}_{\text {symp }}(X)$ and σ is an antisymplectic involution with fixed points. If $|G|>108$, then $\operatorname{Fix}_{X}(\sigma)$ contains no rational curves.

Proof. Assume that $\operatorname{Fix}_{X}(\sigma)$ contains rational curves and consider a minimizing curve $C \subset B$ and its stabilizer $\operatorname{Stab}_{G}(C)=: H$. Since a symplectic automorphism on X does not admit a onedimensional set of fixed points, it follows that the action of H on C is effective and H is among the groups discussed in Remark 3.1. We recall the possible lengths of H-orbits in C : the length of an orbit of a dihedral group is at least two, the length of a T_{12}-orbit in \mathbb{P}_{1} is at least four, the length of an O_{24}-orbit in \mathbb{P}_{1} is at least six, and the length of an I_{60}-orbit in \mathbb{P}_{1} is at least twelve.

Let $Y_{\min }$ be a G-minimal model of $X / \sigma=Y$. Recall that by Lemma $3.2 Y_{\min }$ is a Del Pezzo surface. Each rational branch curve is a (-4)-curve in Y. Since its image in $Y_{\min }$ has self-intersection ≥-1, it must intersect Mori fibers.

- If $N=1$, i.e., the rational curve C meets the union of Mori fibers in exactly one point p, then p is a fixed point of the H-action on C. In particular, H is a cyclic group C_{k}. By Remark 1.7 $k \leq 8$. Since the index of H in G is bounded by $n \leq 10$, it follows that $|G| \leq 80$.
- If $N=2$, then H is either a cyclic or a dihedral group. By Proposition 3.10 in [Muk88] the maximal order of a dihedral group of symplectic automorphisms on a K3-surface is 12 . We first assume $H \cong D_{2 m}$ and that the G-orbit G.C of the rational branch curve C has the maximal length $n=|G . C|=10$, i.e., $B=G \cdot C$. Each curve in $G \cdot C$ meets the union of Mori fibers in precisely two points forming an $D_{2 m}$-orbit. If a Mori fiber E_{C} meets the curve C twice, then it follows from Proposition 3.14 that E meets no other curve in B. The contraction of E transforms C into a singular curve of self-intersection zero. The Del Pezzo surface $Y_{\min }$ does however not admit a curve of this type. It follows, that E meets a Mori fiber E^{\prime} which is contracted in a later step of the Mori reduction and meets no other Mori fiber than E^{\prime}. The described configuration $G E \cup G E^{\prime}$ requires a total number of at least 20 Mori fibers and therefore contradicts Lemma 3.2. If C meets two distinct Mori fibers E_{1}, E_{2}, each of these two can meet at most one further curve in B. The contraction of E_{1} and E_{2} transforms C into a (-2)-curve. As above, the existence of further Mori fibers meeting E_{i} follows. Again, by invariance, the total number of Mori fibers exceeds 20, a contradiction. It follows that either H is cyclic or $|G . C| \leq 9$. Both imply $|G| \leq 108$.
- If $N=3$, let $S=\left\{p_{1}, p_{2}, p_{3}\right\}$ be the points of intersection of C with the union $\cup E_{i}$ of Mori fibers. The set S is H-invariant. It follows that H is either trivial or isomorphic to C_{2}, C_{3} or D_{6} and that $|G| \leq 60$
- If $N=4$, it follows from Lemma 3.21 that $n \leq 9$. Now $|H| \leq 12$ implies $|G| \leq 108$. The bound for the order of H is attained by the tetrahedral group T_{12}. If the group G does not contain a tetrahedral group, then $|H| \leq 8$ and $|G| \leq 72$.
- If $N=5$, the largest possible group acting on C such that there is an invariant subset of cardinality 5 is the dihedral group D_{10}. Since 3.21 implies $n \leq 6$, we conclude $|G| \leq 60$.
- If $N=6$, then $n \leq 4$ and $|H| \leq 24$ implies $|G| \leq 96$. This bound is attained if and only if $H \cong O_{24}$. If there is no octahedral group in G, then $|H| \leq 12$ and $|G| \leq 48$.
- If $N \geq 12$, then $n=1$ and $H=G$. The maximal order 60 is attained by the icosahedral group.
- If $6<N<12$, we combine $n \leq 4$ and $|H| \leq 24$ to obtain $|G| \leq 96$. If H is not the octahedral group, then $|H| \leq 16$ and $|G| \leq 64$.

The case by case discussion shows that the existence of a rational curve in B implies $|G| \leq 108$ and the proposition follows.

Remark 3.23. If the group G under consideration does not contain certain subgroups (such as large dihedral groups or T_{12}, O_{24} or I_{60}) then the condition $|G|>108$ in the proposition above can be improved and non-existence of rational ramification curves also follows for smaller G.

3.2.2 Elliptic branch curves

The aim of this section is to find conditions on the order of G which allow us to exclude elliptic curves in $\operatorname{Fix}_{X}(\sigma)$. We prove:

Proposition 3.24. Let X be a K3-surface with an action of a finite group $G \times\langle\sigma\rangle$ such that $G<$ $\operatorname{Aut}_{\text {symp }}(X)$ and σ is an antisymplectic involution with fixed points. If $|G|>108$, then $\operatorname{Fix}_{X}(\sigma)$ contains neither rational nor elliptic ramification curves.

Proof. By the previous proposition $\operatorname{Fix}_{X}(\sigma)$ contains no rational curves. It follows from Nikulin's description of $\operatorname{Fix}_{X}(\sigma)$ (cf. Theorem 1.12) that it is either a single curve of genus $g \geq 1$ or the disjoint union of two elliptic curves.

Let $T \subset B$ be an elliptic branch curve and let $H:=\operatorname{Stab}_{G}(T)$. If $H \neq G$, then H has index two in G. The action of H on T is effective. The automorphism group $\operatorname{Aut}(T)$ of T is a semidirect product $L \ltimes T$, where L is a linear cyclic group of order at most 6 . We consider the projection $\mathrm{pr}_{L}: \operatorname{Aut}(T) \rightarrow L$ and let $\lambda \in \operatorname{Pr}_{L}(H)$ be a generating root of unity. We consider T as a quotient \mathbb{C} / Γ and choose $h \in H$ with $h(z)=\lambda z+\omega$ and $t \in T$ such that $\omega+(1-\lambda) t=0$. After conjugation with the translation $z \mapsto z+t$ the group $H<\operatorname{Aut}(T)$ inherits the semidirect product structure of $\operatorname{Aut}(T)$, i.e.,

$$
H=(H \cap L) \ltimes(H \cap T) .
$$

We refer to this decomposition as the normal form of H. By Lemma 3.2 a G-minimal model of Y is a Del Pezzo surface and therefore does not admit elliptic curves with self-intersection zero. It follows that T meets the union $\bigcup E_{i}$ of Mori fibers. Let E be a Mori fiber meeting T. By Proposition $3.14|T \cap E| \in\{1,2\}$. The stabilzer of E in H is denoted by $\operatorname{Stab}_{H}(E)$. Since the total number of Mori fibers is bounded by 9 (cf. Lemma 3.2), the index of $\operatorname{Stab}_{H}(E)$ in H is bounded by 9 .

If $T \cap E=\{p\}$, then $\operatorname{Stab}_{H}(E)$ is a cyclic group of order less than or equal to six. It follows that $|G| \leq 6 \cdot 9 \cdot 2=108$.

If $T \cap E=\left\{p_{1}, p_{2}\right\}$, then $B \cap E=T \cap E$ and the stabilizer $\operatorname{Stab}_{G}(E)$ of E in G is contained in H. If both points p_{1}, p_{2} are fixed by $\operatorname{Stab}_{G}(E)$, then $\left|\operatorname{Stab}_{G}(E)\right| \leq 6$. If p_{1}, p_{2} form a $\operatorname{Stab}_{G}(E)$-orbit, then in the normal form $\left|\operatorname{Stab}_{G}(E) \cap T\right|=2$. It follows that $\operatorname{Stab}_{G}(E)$ is either C_{2} or $D_{4}=C_{2} \times C_{2}$. The index of $\operatorname{Stab}_{G}(E)$ in G is bounded by 9 and $|G| \leq 54$.

In summary, the existence of an elliptic curve in B implies $|G| \leq 108$ and the proposition follows.

3.3 Rough classification

With the preparations of the previous sections we may now turn to a classification result for K3surfaces with antisymplectic involution centralized by a large group.

Theorem 3.25. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic involution σ such that $\operatorname{Fix}(\sigma) \neq \varnothing$. If $|G|>96$, then Y is a G-minimal Del Pezzo surface and there are no rational or elliptic curves in $\operatorname{Fix}(\sigma)$. In particular, $\operatorname{Fix}(\sigma)$ is a single smooth curve C with $g(C) \geq 3$ and $\pi(C) \sim-2 K_{Y}$, where K_{Y} denotes the canonical divisor on Y.

Proof. The group G is a subgroup of one of the eleven groups on Mukai's list [Muk88] (cf. Theorem 1.13 and Table 1.2). The orders of these Mukai groups are 48, 72, 120, 168, 192, 288, 360, 384, 960. None of these groups can have a subgroup G with $96<|G|<120$. In particular, the order of G is at least 120 .

We may therefore apply the results of the previous two sections and conclude that $\pi: X \rightarrow Y$ is branched along a single smooth curve C of general type. Its genus $g(C)$ must be ≥ 3 by Hurwitz' formula. It remains to show that Y is G-minimal.
Assume the contrary and let $E \subset Y$ be a Mori fiber with $E^{2}=-1$. As before we let $B \subset Y$ denote the branch locus of $\pi: X \rightarrow Y$. By Remark 3.13 $E \cap B \neq \varnothing$. It follows that $|E \cap B| \in\{1,2\}$. Let $\operatorname{Stab}_{G}(E)$ denote the stabilizer of E in G.
If $\pi^{-1}(E)$ is reducible its two irreducible components meet transversally in one point corresponding to $\{p\}=E \cap B$. The curve E is tangent to B at p and we consider the linearization of the action of $\operatorname{Stab}_{G}(E)$ at p. If the action of $\operatorname{Stab}_{G}(E)$ on E is not effective, the linearization of the ineffectivity $I<\operatorname{Stab}_{G}(E)$ yields a trivial action of I on the tangent line of B at p. It follows that the action of I is trivial in a neighbourhood of $\pi^{-1}(p) \in R=\pi^{-1}(B)$. This is contrary to the assumption that G acts symplectically on X. Consequently, the action of $\operatorname{Stab}_{G}(E)$ on E is effective and in particular, $\operatorname{Stab}_{G}(E)$ is a cyclic group.
If $\pi^{-1}(E)$ is irreducible, then it is a smooth rational curve with an effective action of $\operatorname{Stab}_{G}(E)$. It follows that $\operatorname{Stab}_{G}(E)$ is either cyclic or dihedral. The largest dihedral group with a symplectic action on a K3-surface is D_{12} (Proposition 3.10 in [Muk88]).
We conclude that the order of $\operatorname{Stab}_{G}(E)$ is bounded 12 and the index of G_{E} in G is >9. By Lemma 3.2 the total number m of Mori fibers however satifies $m \leq 9$. This contradiction shows that Y is G-minimal and, in particular, a Del Pezzo surface.

Remark 3.26. Let X be a K3-surface with a symplectic action of G centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$ and let E be a (-1)-curve on $Y=X / \sigma$. Then the argument above can be applied to see that the stabilizer of E in G is cyclic or dihedral and therefore has order at most 12.

In the following chapter, the classification above is applied and extended to the case where G is a maximal group of symplectic transformations on a K3-surface.

${ }^{4}$

Mukai groups centralized by antisymplectic involutions

In this chapter we consider K3-surfaces with a symplectic action of one of the eleven groups from Mukai's list (Table 1.2) and assume that it is centralized by an antisymplectic involution. We prove the following classification result.

Theorem 4.1. Let G be a Mukai group acting on a K3-surface X by symplectic transformations and σ be an antisymplectic involution on X centralizing G with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Then the pair (X, G) is in Table 4.1 below. In particular, for groups G numbered 4-8 on Mukai's list, there does not exist a K3-surface with an action of $G \times C_{2}$ with the properties above.
\(\left.$$
\begin{array}{l|l|l|l} & G & |G| & \text { K3-surface } X \\
\hline \text { 1a } & L_{2}(7) & 168 & \left\{x_{1}^{3} x_{2}+x_{2}^{3} x_{3}+x_{3}^{3} x_{1}+x_{4}^{4}=0\right\} \subset \mathbb{P}_{3} \\
\hline \text { 1b } & L_{2}(7) & 168 & \begin{array}{l}\text { Double cover of } \mathbb{P}_{2} \text { branched along } \\
\left\{x_{1}^{5} x_{2}+x_{3}^{5} x_{1}+x_{2}^{5} x_{3}-5 x_{1}^{2} x_{2}^{2} x_{3}^{2}=0\right\}\end{array} \\
\hline 2 & A_{6} & 360 & \begin{array}{l}\text { Double cover of } \mathbb{P}_{2} \text { branched along } \\
\left\{10 x_{1}^{3} x_{2}^{3}+9 x_{1}^{5} x_{3}+9 x_{2}^{3} x_{3}^{3}-45 x_{1}^{2} x_{2}^{2} x_{3}^{2}-135 x_{1} x_{2} x_{3}^{4}+27 x_{3}^{6}=0\right\}\end{array}
$$

\hline 3a \& S_{5} \& 120 \& \left\{\sum_{i=1}^{5} x_{i}=\sum_{i=1}^{6} x_{1}^{2}=\sum_{i=1}^{5} x_{i}^{3}=0\right\} \subset \mathbb{P}_{5}\end{array}\right]\)| 3b | S_{5} | 120 | Double cover of \mathbb{P}_{2} branched along
 $\left\{F_{S_{5}}=0\right\}$ |
| :--- | :--- | :--- | :--- |
| 9 | N_{72} | 72 | $\left\{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=x_{1} x_{2}+x_{3} x_{4}+x_{5}^{2}=0\right\} \subset \mathbb{P}_{4}$ |
| 10 | M_{9} | 72 | Double cover of \mathbb{P}_{2} branched along
 $\left\{x_{1}^{6}+y_{2}^{6}+x_{3}^{6}-10\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)=0\right\}$ |
| 11a | T_{48} | 48 | Double cover of \mathbb{P}_{2} branched along
 $\left\{x_{1} x_{2}\left(x_{1}^{4}-x_{2}^{4}\right)+x_{3}^{6}=0\right\}$ |
| 11b | T_{48} | 48 | Double cover of $\left\{x_{0} x_{1}\left(x_{0}^{4}-x_{1}^{4}\right)+x_{2}^{3}+x_{3}^{2}=0\right\} \subset \mathbb{P}(1,1,2,3)$
 branched along $\left\{x_{2}=0\right\}$ |

Table 4.1: K3-surfaces with $G \times C_{2}$-symmetry

The polynomial $F_{S_{5}}$ in case $3 b$) is given by

$$
\begin{aligned}
& 2\left(x^{4} y z+x y^{4} z+x y z^{4}\right)-2\left(x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right) \\
+ & 2\left(x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3}\right)+x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x^{2} y z^{3}+x y^{3} z^{2}+x y^{2} z^{3}-6 x^{2} y^{2} z^{2}
\end{aligned}
$$

Remark 4.2. The examples $1 \mathrm{a}, 3 \mathrm{a}, 9,10$, and 11a appaer in Mukai's list, the remaining cases $1 \mathrm{~b}, 2$, 3 b , and 11 b provide additional examples of K3-surfaces with maximal symplectic symmetry.

For the proof of this theorem we consider each group separately and apply the following general strategy.
For a K3-surface X with $G \times C_{2}$-symmetry we consider the quotient $Y=X / C_{2}$ and a G-minimal model $Y_{\min }$ of the rational surface Y. We show that $Y_{\min }$ is a Del Pezzo surface and investigate which Del Pezzo surfaces admit an action of the group G.
It is then essential to study the branch locus B of the covering $X \rightarrow Y$. As a first step, we exclude rational and elliptic curves in B. In order to exclude rational branch curves, we study their images in $Y_{\min }$ and their intersection with the union of Mori fibers.

We then deduce that B consists of a single curve of genus ≥ 2 with an effective action of the group G. The possible genera of B are restricted by the nature of the group G and the Riemann-Hurwitz formula for the quotient of B by an appropriate normal subgroup N of G. The equations of B or X given in Table 4.1 are derived using invariant theory.
Throughout the remainder of this chapter, the Euler characteristic formula

$$
24=e(X)=2 e\left(Y_{\min }\right)+2 m-2 n+\underbrace{(2 g-2)}_{\begin{array}{c}
\text { if non-rational } \\
\text { branch curve exists }
\end{array}}
$$

is exploited various times. Here m denotes the total number of Mori contractions of the reduction $Y \rightarrow Y_{\min }$, the total number of rational branch curves is denoted by n and g is the genus of a non-rational branch curve.
All classification results are up to equivariant equivalence:
Definition 4.3. Let $\left(X_{1}, \sigma_{1}\right)$ and $\left(X_{2}, \sigma_{2}\right)$ be K3-surfaces with antisymplectic involution and let G be a finite group acting on X_{1} and X_{2} by

$$
\alpha_{i}: G \rightarrow \operatorname{Aut}_{\text {symp }}\left(X_{i}\right),
$$

such that $\alpha_{i}(g) \circ \sigma_{i}=\sigma_{i} \circ \alpha_{i}(g)$ for $i=1,2$ and all $g \in G$. Then the surfaces $\left(X_{1}, \sigma_{1}\right)$ and $\left(X_{2}, \sigma_{2}\right)$ are considered equivariantly equivalent if there exist a biholomorphic map $\varphi: X_{1} \rightarrow X_{2}$ and a group automorphism $\psi \in \operatorname{Aut}(G)$ such that

$$
\alpha_{2}(g) \varphi(x)=\varphi\left(\alpha_{1}(\psi(g)) x\right) \quad \text { and } \quad \sigma_{2}(\varphi(x))=\varphi\left(\sigma_{1}(x)\right)
$$

for all $x \in X_{1}$ and all $g \in G$.
More generally, two surfaces Y_{1} and Y_{2}, without additional structure such as a symplectic form or an involution, with actions of a finite group G

$$
\alpha_{i}: G \rightarrow \operatorname{Aut}\left(Y_{i}\right)
$$

are considered equivariantly equivalent if there exist a biholomorphic map $\varphi: Y_{1} \rightarrow Y_{2}$ and a group automorphism $\psi \in \operatorname{Aut}(G)$ such that

$$
\alpha_{2}(g) \varphi(y)=\varphi\left(\alpha_{1}(\psi(g)) y\right)
$$

for all $y \in Y_{1}$ and all $g \in G$.

This notion differs from the notion of equivalence in representation theory. Two non-equivalent linear represenations of a group G can induce equivalent actions on the projective plane if they differ by an outer automorphism of the group.

Remark 4.4. If two K3-surfaces $\left(X_{1}, \sigma_{1}\right)$ and $\left(X_{2}, \sigma_{2}\right)$ are G-equivariantly equivalent, then the quotient surfaces X_{i} / σ_{i} are equivariantly equivalent with respect to the induced action of G.

Conversely, let Y be a rational surface with two action of a finite group G which are equivalent in the above sense and let $\varphi \in \operatorname{Aut}(Y)$ be the isomorphims identifying these two actions. We consider a smooth G-invariant curve B linearly equivalent to $-2 K_{Y}$ and the K3-surfaces X_{B} and $X_{\varphi(B)}$ obtained as double covers branched along B and $\varphi(B)$ equipped with their respective antisymplectic covering involution.

Note that X_{B} and $X_{\varphi(B)}$ are constructed as subsets of the anticanonical line bundle where the involution σ is canonically defined. The induced biholomorphic map $\varphi_{X}: X_{B} \rightarrow X_{\varphi(B)}$ fulfills $\sigma \circ \varphi_{X}=\varphi_{X} \circ \sigma$ by construction.
If all elements of the group G can be lifted to symplectic transformations on X_{B} and $X_{\varphi(B)}$, then the central degree two extensions E of G acting on $X_{B}, X_{\varphi(B)}$, respectively, split as $E=E_{\text {symp }} \times C_{2}$ with $E_{\text {symp }}=G$. In this case the group G acts by symplectic transformations on X_{B} and $X_{\varphi(B)}$ and these are G-equivariantly equivalent in strong sense introduced above. This follows from the assumption that the corresponding G-actions on the base Y are equivalent and the fact that for each $g \in G \subset \operatorname{Aut}(Y)$ there is only one choice of symplectic lifting $\tilde{g} \in \operatorname{Aut}\left(X_{B}\right)$ and $\operatorname{Aut}\left(X_{\varphi(B)}\right)$.

In the following sections we will go through the lists of Mukai groups and for each group we prove the classification claimed in Theorem 4.1.

4.1 The group $L_{2}(7)$

Let $G \cong L_{2}(7)$ be the finite simple group of order 168 . If G acts on a K3-surface X, then the kernels of the homomorphism $G \rightarrow \operatorname{Aut}(X)$ and the homomorphism $G \rightarrow \Omega^{2}(X)$ are trivial and the action is effective and symplectic. Let σ be an antisymplectic involution on X centralizing G. Since G has an element of order seven which is known to have exactly three fixed points p_{1}, p_{2}, p_{3} and σ acts on this set of three points, we know that $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. By Theorem 3.25, the K3-surface X is a double cover of a Del Pezzo surface Y. Our study of Del Pezzo surfaces with an action of $L_{2}(7)$ in Example 3.8 has revealed that Y is either \mathbb{P}_{2} or a Del Pezzo surface of degree 2. In the first case, $\pi: X \rightarrow Y$ is branched along a curve of genus 10 , in the second case π is branched along a curve of genus 3 . Section 5.5 in the next chapter is devoted to an inspection of K3-surfaces with an action of $L_{2}(7) \times C_{2}$ and a precise classification result in the setup above will be obtained. The pair (X, G) is equivariantly isomorphic to either the surface 1a) or 1 b).

4.2 The group A_{6}

Let $G \cong A_{6}$ be the alternating group degree 6 . Ii is a simple group and if it acts on a K3-surface X, then this action effective and symplectic. Let σ be an antisymplectic involution on X centralizing G and assume that $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. By Theorem 3.25, the K3-surface X is a double cover of a Del Pezzo surface Y with an effective action of A_{6}.

Lemma 4.5. The Del Pezzo surface Y is isomorphic to \mathbb{P}_{2} with a uniquely determined action of A_{6} given by a nontrivial central extension $V=3 . A_{6}$ of degree three known as Valentiner's group.

Proof. We go through the list of Del Pezzo surfaces.

- If Y has degree one, then $\left|-K_{Y}\right|$ has precisely one base point which would have to be an A_{6}-fixed point. This is contrary to the fact that A_{6} has no faithful two-dimensional representation.
- We recall that the stabilizer of a (-1)-curve E in Y is either cyclic or dihedral (Remark 3.26). In particular, its order is at most 12 and therefore its index in A_{6} is at least 30. Using Table 3.1 we see that Y can not be a Del Pezzo surface of degree 2,3,4,5,6.
- Since the blow-up of \mathbb{P}_{2} in one point is never G-minimal, it remains to exclude $Y \cong \mathbb{P}_{1} \times$ \mathbb{P}_{1}. Assume there is an action of A_{6} on $\mathbb{P}_{1} \times \mathbb{P}_{1}$. Since A_{6} has no subgroups of index two, it follows that $A_{6}<\operatorname{PSL}(2, \mathbb{C}) \times \operatorname{PSL}(2, \mathbb{C})$ and both canonical projections are A_{6} equivariant. Since A_{6} has neither an effective action on \mathbb{P}_{1} nor nontrivial normal subgroups of ineffectivity, it follows that A_{6} acts trvially on Y.

It follows that $Y \cong \mathbb{P}_{2}$. The action of A_{6} on \mathbb{P}_{2} is given by a degree three central extension of A_{6}. Since A_{6} has no faithful three-dimensional representation, this extension is nontrivial and isomorphic the unique nontrivial degree three extension $V=3 . A_{6}$ known as Valentiner's group. Up to equivariant equivalence, there is a unique action of A_{6} on \mathbb{P}_{2}. This follows from the classification of finite subgroup of $\mathrm{SL}_{3}(\mathbb{C})$ (cf. [MBD16], [Bli17], and [YY93]) and can also be derived as follows: An action of A_{6} on \mathbb{P}_{2} is given by a threedimensional projective representation. We wish to show that any two actions induced by ρ_{1}, ρ_{2} are equivalent. We restrict the projective representations ρ_{1} and ρ_{2} to the subgroup A_{5}. The restricted representations are linear and after a change of coordinates $\rho_{1}\left(A_{5}\right)=\rho_{2}\left(A_{5}\right) \subset \mathrm{SL}_{3}(\mathbb{C})$. We fix a subgroup A_{4} in A_{5} and consider its normalizer N in A_{6}. The groups N and A_{4} generate the full group A_{6} and it suffices to prove that $\rho_{1}(N)=\rho_{2}(N)$. This is shown by considering an explicit three-dimensional representation of $A_{4}<A_{5}$ and the normalizer \mathcal{N} of A_{4} inside $\operatorname{PSL}_{3}(\mathbb{C})$. The group A_{4} has index two in \mathcal{N} and therefore $\mathcal{N}=\rho_{1}(N)=\rho_{2}(N)$..

The covering $X \rightarrow Y$ is branched along an invariant curve C of degree six. This curve is defined by an invariant polynomial $F_{A_{6}}$ of degree six, which is unique by Molien's formula. Its explicit equation is derived in [Cra99]. In appropriately chosen coordinates,

$$
F_{A_{6}}\left(x_{1}, x_{2}, x_{3}\right)=10 x_{1}^{3} x_{2}^{3}+9 x_{1}^{5} x_{3}+9 x_{2}^{3} x_{3}^{3}-45 x_{1}^{2} x_{2}^{2} x_{3}^{2}-135 x_{1} x_{2} x_{3}^{4}+27 x_{3}^{6} .
$$

If a K3-surface with $A_{6} \times C_{2}$-symmetry exists, then it must be the double cover of \mathbb{P}_{2} branched along $\left\{F_{A_{6}}=0\right\}$.

The action of A_{6} on \mathbb{P}_{2} induces an action of a central degree two extension of E on the double cover branched along $\left\{F_{A_{6}}=0\right\}$,

$$
\{\mathrm{id}\} \rightarrow C_{2} \rightarrow E \rightarrow A_{6} \rightarrow\{\mathrm{id}\}
$$

Let $E_{\text {symp }} \neq E$ be the normal subgroup of symplectic automorphisms in E. Since A_{6} is simple, it follows that $E_{\text {symp }}$ is mapped surjectively to A_{6} and $E_{\text {symp }} \cong A_{6}$. In particular, the group E splits as $E_{\text {symp }} \times C_{2}$ where C_{2} is generated by the antisymplectic covering involution. This proves the existence of a unique K3-surface with $A_{6} \times C_{2}$-symmetry. We refer to this K3-surface as the Valentiner surface.

4.3 The group S_{5}

In this section we study K3-surfaces with an symplectic action of the symmetric group S_{5} centralized by an antisymplectic involution.

Let X be a K3-surface with a symplectic action of $G=S_{5}$ and let σ denote an antisymplectic involution centralizing G. We assume that $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. We may apply Theorem 3.25 which yields that $X / \sigma=Y$ is a G-minimal Del Pezzo surface and $\pi: X \rightarrow Y$ is branched along a smooth connected curve B of genus

$$
g(B)=13-e(Y)
$$

We will see in the following that only very few Del Pezzo surfaces admit an effective action of S_{5} or a smooth S_{5}-invariant curve of appropriate genus.

Lemma 4.6. The degree $d(Y)$ of the Del Pezzo surface Y is either three or five.
Proof. We prove the statement by excluding Del Pezzo surfaces of degree $\neq 3,5$.

- Assume $Y \cong \mathbb{P}_{2}$. Then $G=S_{5}$ is acting effectively on \mathbb{P}_{2}, i.e., $S_{5} \hookrightarrow \operatorname{PSL}_{3}(\mathbb{C})$. Let \tilde{G} denote the preimage of G in $\mathrm{SL}_{3}(\mathbb{C})$. Since A_{5} has no nontrivial central extension of degree three, it follows that the preimage of $A_{5}<S_{5}$ in \tilde{G} splits as $\tilde{A}_{5}=A_{5} \times C_{3}$. It has index two in \tilde{G} and therefore is a normal subgroup of \tilde{G}. Let $g \in S_{5}$ be any transposition and pick \tilde{g} in its preimage with $\tilde{g}^{2}=\mathrm{id}$. Now \tilde{g} and A_{5} generate a copy of S_{5} in $\mathrm{SL}_{3}(\mathbb{C})$. The action of S_{5} is given by a three-dimensional representation. The irreducible representations of S_{5} have dimensions $1,4,5$ or 6 and it follows that there is no faithful three-dimensional represenation of S_{5} and therefore no effective S_{5}-action on \mathbb{P}_{2}.
- Assume that Y is isomorphic to $\mathbb{P}_{1} \times \mathbb{P}_{1}$. We investigate the action of $S_{5}=A_{5} \rtimes C_{2}$ and note that A_{5} is a simple group. The automorphism group $\operatorname{Aut}(Y)$ is given by

$$
\left(\mathrm{PSL}_{2}(\mathbb{C}) \times \mathrm{PSL}_{2}(\mathbb{C})\right) \rtimes \mathrm{C}_{2}
$$

It follows that $A_{5}<\mathrm{PSL}_{2}(\mathbb{C}) \times \mathrm{PSL}_{2}(\mathbb{C})$, and the action of A_{5} respects the product structure, i.e, the canonical projections onto the factors are A_{5}-equivariant. If A_{5} acts trivially on one of the factors, then the generator τ of the outer C_{2} stabilizes this factor because A_{5} must act nontrivially on the second factor. It follows that S_{5} stablizes the second factor which is impossible since there is no effective action of S_{5} on \mathbb{P}_{1}. It follows that A_{5} acts effectively on both factors and τ exchanges them. We consider an element λ of order five in A_{5} and chose coordinates on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ such that λ acts by

$$
\left(\left[z_{1}: z_{2}\right],\left[w_{1}: w_{2}\right]\right) \mapsto\left(\left[\xi z_{1}: z_{2}\right],\left[\xi^{a} w_{1}: w_{2}\right]\right)
$$

for some $a \in\{1,2,3,4\}$ and $\xi^{5}=1$. The automorphism λ has four fixed points

$$
p_{1}=([1: 0],[1: 0]), p_{2}=([1: 0],[0: 1]), p_{3}=([0: 1],[1: 0]), p_{4}=([0: 1],[0: 1]) .
$$

Since it lifts to a symplectic automorphism on the K3-surface X with four fixed points, all fixed points must lie on the branch curve. The branch curve $B \subset Y$ is a smooth invariant curve linearly equivalent to $-2 K_{Y}$ and is therefore given by an S_{5}-semi-invariant polynomial f of bidegree $(4,4)$. Since f must be invariant with respect to the subgroup A_{5}, it is a linear combination of λ-invariant monomials of bidegree $(4,4)$. For each choice of a one lists all λ-invariant monomials of bidegree (4,4). For $a=1$ these are

$$
z_{1} z_{2}^{3} w_{1,}^{4} z_{1}^{2} z_{2}^{2} w_{1}^{3} w_{2,} z_{1}^{3} z_{2} w_{1}^{2} w_{2}^{2}, z_{1}^{4} w_{1} w_{2}^{3}, z_{2}^{4} w_{2}^{4}
$$

Since f must vanish at $p_{1} \ldots p_{4}$, one sees that f may not contain $z_{2}^{4} w_{2}^{4}$. The remaining monomials have a common component $z_{1} w_{1}$ such that f factorizes and C must be reducible, a contradiction. The same argument can be carried out for each choice of a. It follows that the action of S_{5} on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ does not admit irreducble curves of bidegree $(4,4)$. This eliminates the case $Y \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$.

- Again using the fact that the largest subgroup of S_{5} which can stabilize a (-1)-curve in Y is the group D_{12} of index 10 , it follows that the number of (-1)-curves in a G-orbit is at least 10 . A Del Pezzo surface of degree six has six (-1)-curves and therefore $d(Y) \neq 6$. A Del Pezzo surface of degree four contains sixteen (-1)-curves. Since 16 does not divide the the order of S_{5}, the set of these curves is not a single G-orbit. As it cannot be the union of G-orbits either, we conclude $d(Y) \neq 4$.
- If $d(Y)=2$, then the anticanonical map defines an $\operatorname{Aut}(Y)$-equivariant double cover of \mathbb{P}_{2}. The induced action of S_{5} on \mathbb{P}_{2} would have to be effective and therefore we obtain a contradiction as in the case $Y \cong \mathbb{P}_{2}$.
- If $d(Y)=1$ then the anticanonical system $\left|-K_{Y}\right|$ is known to have precisely one base point which has to be fixed point of the action of S_{5}. Since S_{5} has no faithful two-dimensional representation, this is a contradiction.

Since we have considered all possible G-minimal Del Pezzo surfaces the proof of the lemma is completed.

4.3.1 Double covers of Del Pezzo surfaces of degree three

The following example of a K3-surface X with an action of $S_{5} \times C_{2}$ such that X / σ is a Del Pezzo surface of degree three can be found in Mukai's list [Muk88] (cf. also Table 1.2).
Example 4.7. Let X be the K3-surface in \mathbb{P}_{5} given by

$$
\sum_{i=1}^{5} x_{i}=\sum_{i=1}^{6} x_{1}^{2}=\sum_{i=1}^{5} x_{i}^{3}=0
$$

and let S_{5} act on \mathbb{P}_{5} by permuting the first five variables and by the character sgn on the last variable. This induces an action on X.

The commutator subgroup $S_{5}^{\prime}=A_{5}<S_{5}$ acts by symplectic transformations. In order to show that the full group acts symplectically, consider the transposition $\tau=(12) \in S_{5}$ acting on \mathbb{P}_{5} by $\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \mapsto\left[x_{2}: x_{1}: x_{3}: x_{4}: x_{5}:-x_{6}\right]$. One checks that the induced involution on X has isolated fixed points and is therefore symplectic. It follows that $S_{5}<$ Aut $_{\text {symp }}(X)$.
Let $\sigma: \mathbb{P}_{5} \rightarrow \mathbb{P}_{5}$ be the involution $\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \mapsto\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}:-x_{6}\right]$. This defines an involution on X with a positive-dimensional set of fixed point $\left\{x_{6}=0\right\} \cap X$. Therefore σ is an antisymplectic involution on X which centralizes the action of S_{5}.
The quotient Y of X by σ is given by restricting then rational map $\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}: x_{6}\right] \mapsto$ $\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]$ to X. The surface Y is given by

$$
\left\{\sum_{i=1}^{5} y_{i}=\sum_{i=1}^{5} y_{i}^{3}=0\right\} \subset \mathbb{P}_{4}
$$

and is isomorphic to the Clebsch diagonal surface $\left\{z_{1}^{2} z_{2}+z_{1} z_{3}^{2}+z_{3} z_{4}^{2}+z_{4} z_{2}^{2}=0\right\} \subset \mathbb{P}_{3}$ (cf. Theorem 10.3.10 in [Dol08]), a Del Pezzo surface of degree three. The branch set B is given by $\left\{\sum_{i=1}^{5} y_{1}^{2}=0\right\} \cap Y \subset \mathbb{P}_{4}$.

By the following proposition, the example above is the unique K3-surface with $S_{5} \times C_{2}$-symmetry such that X / σ is a Del Pezzo surface of degree three.

Proposition 4.8. Let X be a K3-surface with a symplectic action of the group S_{5} centralized by an antisymplectic involution σ. If $Y=X / \sigma$ is a Del Pezzo surface of degree three, then X is equivariantly isomorphic to Mukai's S_{5}-example $\left\{\sum_{i=1}^{5} x_{i}=\sum_{i=1}^{6} x_{1}^{2}=\sum_{i=1}^{5} x_{i}^{3}=0\right\} \subset \mathbb{P}_{5}$.

Proof. We consider the $\operatorname{Aut}(Y)$-equivariant embedding of the Del Pezzo surface Y into \mathbb{P}_{3} given by the anticanonical map. Any automorphism of Y induced by an automorphism of the ambient projective space.
It follows from the representation and invariant theory of the group S_{5} that a Del Pezzo surface of degree three with an effective action of the group S_{5} is equivariantly isomorphic the Clebsch cubic $\left\{z_{1}^{2} z_{2}+z_{1} z_{3}^{2}+z_{3} z_{4}^{2}+z_{4} z_{2}^{2}=0\right\} \subset \mathbb{P}_{3}$ (cf. Theorems 10.3.9 and 10.3.10, Table 10.3 in [Dol08]).
The ramification curve $B \subset Y$ is linearly equivalent to $-2 K_{Y}$. We show that B is given by intersecting Y with a quadric in \mathbb{P}_{3}.
Applying the formula

$$
h^{0}\left(Y, \mathcal{O}\left(-r K_{Y}\right)\right)=1+\frac{1}{2} r(r+1) d(Y)
$$

(cf. e.g. Lemma 8.3.1 in [Dol08]) to $d=d(Y)=3$ and $r=2$ we obtain $h^{0}\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)=10$. This is also the dimension of the space of sections of $\mathcal{O}_{\mathbb{P}_{3}}(2)$ in \mathbb{P}_{3} (homogeneous polynomials of degree two in four variables). It follows that the restriction map

$$
H^{0}\left(\mathbb{P}_{3}, \mathcal{O}(2)\right) \rightarrow H^{0}\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)
$$

is surjective and $B=Y \cap Q$ for some quadric $Q=\{f=0\}$ in \mathbb{P}_{3}.
Since B is an S_{5}-invariant curve in Y, it follows that for each $g \in S_{5}$ the intersection of $g Q=$ $\left\{f \circ g^{-1}=0\right\}$ with Y coincides with B. It follows that $\left.f\right|_{Y}$ is a multiple of $\left.\left(f \circ g^{-1}\right)\right|_{Y}$, i.e., there exists a constant $c \in \mathbb{C}^{*}$ such that $\left(f \circ g^{-1}\right)-c f$ vanishes identically on Y. Since Y is irreducible, this implies $f \circ g^{-1}=c f$. It follows that the polynomial f is an S_{5} - semi-invariant and therefore invariant with respect to the commutator subgroup A_{5}.
We have previously noted that after a suitable linear change of coordinates the surface Y is given by $\left\{\sum_{i=1}^{5} y_{i}=\sum_{i=1}^{5} y_{i}^{3}=0\right\} \subset \mathbb{P}_{4}$ where S_{5} acts by permutation. The action of any transposition on an S_{5}-semi-invariant polynomial is given by multiplication by ± 1. It follows that in the coordinates $\left[y_{1}: \cdots: y_{5}\right]$ the semi-invariant polynomial f is given by

$$
a \sum_{i=1}^{5} y_{i}^{2}+b\left(\sum_{i=1}^{5} y_{i}\right)^{2}=0
$$

for some $a, b \in \mathbb{C}$. Using the fact $Y \subset\left\{\sum_{i=1}^{5} y_{i}=0\right\}$ it follows that B is given by intersecting Y with $\left\{\sum_{i=1}^{5} y_{i}^{2}=0\right\}$ and X is Mukai's S_{5}-example discussed in Example 4.7.

4.3.2 Double covers of Del Pezzo surfaces of degree five

A second class of candidates of K3-surfaces with $S_{5} \times C_{2}$-symmetry is given by double covers of Del Pezzo surfaces of degree five.

Any two Del Pezzo surfaces of degree five are isomorphic and the automorphisms group of a Del Pezzo surface Y of degree five is S_{5}. The ten (-1)-curves on Y form a graph known as the Petersen
graph. The Petersen graph has S_{5}-symmetry and every symmetry of the abstract graph is induced by a unique automorphism of the surface Y.

The following proposition classifies K3-surfaces with $S_{5} \times C_{2}$-symmetry which are double covers of Del Pezzo surfaces of degree five.

Proposition 4.9. Let X be a K3-surface with a symplectic action of the group S_{5} centralized by an antisymplectic involution σ. If $Y=X / \sigma$ is a Del Pezzo surface of degree five, then X is equivariantly isomorphic to the minimal desingularization of the double cover of \mathbb{P}_{2} branched along the sextic

$$
\begin{aligned}
& \left\{2\left(x^{4} y z+x y^{4} z+x y z^{4}\right)-2\left(x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right)+2\left(x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3}\right)\right. \\
& \left.\quad+x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x^{2} y z^{3}+x y^{3} z^{2}+x y^{2} z^{3}-6 x^{2} y^{2} z^{2}=0\right\}
\end{aligned}
$$

Proof. Let $B \subset Y$ denote the branch locus of the covering $X \rightarrow Y$. The curve B is smooth, connected, invariant with respect to the full automorphism group of Y and linearly equivalent to $-2 K_{Y}$.

The Del Pezzo surface Y is the blow-up of \mathbb{P}_{2} in four points $p_{1}, p_{2}, p_{3}, p_{4}$ in general position. We may choose coordinates $[x: y: z]$ on \mathbb{P}_{2} such that

$$
p_{1}=[1: 0: 0], \quad p_{2}=[0: 1: 0], \quad p_{3}=[0: 0: 1], \quad p_{4}=[1: 1: 1] .
$$

Let $m: Y \rightarrow \mathbb{P}_{2}$ be the blow-down map and let $E_{i}=m^{-1}\left(p_{i}\right)$. Consider the S_{4}-action on \mathbb{P}_{2} permuting the points $\left\{p_{i}\right\}$. The isotropy at the point p_{1} is isomorphic to S_{3} and induces an effective S_{3}-action on E_{1}.

Let E be any (-1)-curve on Y. By adjunction $E \cdot B=2$. Since Y contains precisely ten (-1)-curves forming an S_{5}-orbit, the group $H=\operatorname{Stab}_{S_{5}}(E)$ has order 12 and all stabilizer groups of (-1)-curves in Y are conjugate. It follows that the group H contains S_{3}, which is acting effectively on E, and therefore H is isomorphic to the dihedral group of order 12. The points of intersection $B \cap E$ form an H-invariant subset of E. Since H has no fixed points in E and precisely one orbit $H . p=\{p, q\}$ consisting of two elements, it follows that B meets E transversally in p and q.

In particular, each curve E_{i} meets B in two points and the image curve $C=m(B)$ has nodes at the four points p_{i}. By Lemma 3.17, the self-intersection number of C is $20+4 \cdot 4=36$, so C is a sextic curve. It is invariant with respect to the action of S_{4} given by permutation on $p_{1}, \ldots p_{4}$. For simplicity, we first only consider the action of S_{3} permuting p_{1}, p_{2}, p_{3} and conclude that C is given by $\left\{f=\sum a_{i} f_{i}=0\right\}$ as a linear combination of the following degree six polynomials

$$
\begin{aligned}
& f_{1}=x^{6}+y^{6}+z^{6} \\
& f_{2}=x^{5} y+x^{5} z+x y^{5}+x z^{5}+y^{5} z+y z^{6} \\
& f_{3}=x^{4} y z+x y^{4} z+x y z^{4} \\
& f_{4}=x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4} \\
& f_{5}=x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3} \\
& f_{6}=x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x^{2} y z^{3}+x y^{3} z^{2}+x y^{2} z^{3} \\
& f_{7}=x^{2} y^{2} z^{2}
\end{aligned}
$$

The fact that C passes through p_{i} and is singular at p_{i} yields $a_{1}=a_{2}=0$ and

$$
3 a_{3}+6 a_{4}+3 a_{5}+6 a_{6}+a_{7}=0
$$

The two tangent lines of C at the node p_{i} correspond to the unique $\operatorname{Stab}\left(E_{i}\right)$-orbit of length two in E_{i}. We consider the point p_{3} and the subgroup $S_{3}<S_{4}$ stabilizing p_{3}. The action of S_{3} on E_{3} is given by the linearized S_{3}-action on the set of lines through p_{3}. One checks that in local affine coordinates (x, y) the unique orbit of length two corresponds to the line pair $x^{2}-x y+y^{2}=0$. Dehomogenizing f at p_{3}, i.e., setting $z=1$, we obtain the local equation $f_{\text {dehom }}$ of C at p_{3}. The polynomial $f_{\text {dehom }}$ modulo terms of order three or higher must be a multiple of $x^{2}-x y+y^{2}$. Therefore $a_{3}=-a_{4}$.

Next we consider the intersection of C with the line $L_{34}=\{x=y\}$ joining p_{3} and p_{4}. We know that $\left.f\right|_{L_{34}}$ vanishes of order two at p_{3} and p_{4} and at one or two further points on L_{34}.
Let \widetilde{L}_{34} denote the proper transform of L_{34} inside the Del Pezzo surface Y. The curve \widetilde{L}_{34} is a (-1)curve, hence its stabilizer $\operatorname{Stab}_{G}\left(\widetilde{L}_{34}\right)$ is isomorphic to $D_{12}=S_{3} \times C_{2}$. The factor C_{2} acts trivially on \widetilde{L}_{34}. Since the intersection of \widetilde{L}_{34} with B is $\operatorname{Stab}_{G}\left(\widetilde{L}_{34}\right)$ invariant, it follows that $\widetilde{L}_{34} \cap B$ is the unique S_{3}-orbit a length two in \widetilde{L}_{34}.

We wish to transfer our determination of the unique S_{3}-orbit of length two in E_{3} above to the curve \widetilde{L}_{34} using an automorphism of Y mapping E_{3} to \widetilde{L}_{34}. Consider the automorphism φ of Y induced by the birational map of \mathbb{P}_{2} given by

$$
[x: y: z] \mapsto[x(z-y): z(x-y): x z]
$$

(cf. Theorem 10.2.2 in [Dol08]) and let ψ be the automorphism of Y induced by the permutation of the points p_{2} and p_{3} in \mathbb{P}_{2}. Then $\psi \circ \varphi$ is an automorphism of Y mapping E_{3} to \widetilde{L}_{34}. If $[X: Y]$ denote homogeneous coordinates on E_{3} induced by the affine coordinates (x, y) in a neighbourhood of p_{3}, then a point $[X: Y] \in E_{3}$ is mapped to the point corresponding to $[X: X: X-Y] \in L_{34} \subset \mathbb{P}_{2}$. It was derived above that the unique S_{3}-orbit of length two in E_{3} is given by $X^{2}-X Y+Y^{2}$ and it follows that the unique S_{3}-orbit of length two in \widetilde{L}_{34} corresponds to the points $[x: x: z] \in \mathbb{P}_{2}$ fulfilling $x^{2}-x z+z^{2}=0$.

Therefore, $\left.f\right|_{L_{34}}$ is a multiple of polynomial given by $x^{2}(x-z)^{2}\left(x^{2}-x z+z^{2}\right)$. Comparing coefficients with $f(x: x: z)$ yields

$$
\begin{aligned}
2 a_{3}+2 a_{6} & =2 a_{5}+2 a_{6} \\
2 a_{4}+a_{5} & =2 a_{4}+a_{3} \\
8 a_{4}+4 a_{5} & =2 a_{4}+2 a_{6}+a_{7} \\
-6 a_{4}-3 a_{5} & =2 a_{5}+2 a_{6} .
\end{aligned}
$$

We conclude $a_{3}=a_{5}=2=-a_{4}, a_{6}=1$, and $a_{7}=-6$. So if X as in the lemma exists, it is the double cover of Y branched along the proper transform of $\{f=0\}$ in Y, where

$$
\begin{aligned}
f(x, y, z)= & 2\left(x^{4} y z+x y^{4} z+x y z^{4}\right) \\
& -2\left(x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right) \\
& +2\left(x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3}\right) \\
& +x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x^{2} y z^{3}+x y^{3} z^{2}+x y^{2} z^{3} \\
& -6 x^{2} y^{2} z^{2} .
\end{aligned}
$$

In order to prove existence, let X be the minimal desingularisation of the double cover of \mathbb{P}_{2} branched along $\{f=0\}$. Then X is the double cover of the Del Pezzo surface Y of degree five branched along the proper transform D of $\{f=0\}$ in Y. Since all automorphisms of Y are induced by explicit biholomorphic or birational transformation of \mathbb{P}_{2} one can check by direct computations
that D is in fact invariant with respect to the action of $\operatorname{Aut}(Y)=S_{5}$. The covering involution σ is antisymplectic.

On X there is an action of a central extension E of S_{5} by C_{2}. Let $E_{\text {symp }}$ be the subgroup of symplectic automorphisms in E. Since E contains the antisymplectic covering involution $E_{\text {symp }} \neq E$. The image N of $E_{\text {symp }}$ in S_{5} is normal and therefore either $N \cong S_{5}$ or $N \cong A_{5}$.

If $N \cong A_{5}$ and $\left|E_{\text {symp }}\right|=60$, then $E_{\text {symp }} \cong A_{5}$. Lifting any transposition from S_{5} to an element g of order two in E, the group generated by g and $E_{\text {symp }}$ inside E is isomorphic to S_{5}. It follows that E splits as $S_{5} \times C_{2}$ and $E / E_{\text {symp }} \cong C_{2} \times C_{2}$. This is a contradiction.
If $N \cong A_{5}$ and $\left|E_{\text {symp }}\right|=120$, then $E=E_{\text {symp }} \times C_{2}$, where the outer C_{2} is generated by the antisymplectic covering involution σ, and $E / C_{2}=S_{5}$ implies that $E_{\text {symp }} \cong S_{5}$. This is contradictory to the assumption $N \cong A_{5}$.
In the last remaining case $N \cong S_{5}$. Since $E_{\text {symp }} \neq E$, also $E_{\text {symp }} \cong S_{5}$ and E splits as $E_{\text {symp }} \times C_{2}$. It follows that the action of S_{5} on Y induces an symplectic action of S_{5} on the double cover X centralized by the antisymplectic covering involution. This completes the proof of the proposition.

4.3.3 Conclusion

We summarize our results of the previous subsections in the following theorem.
Theorem 4.10. Let X be a K3-surface with a symplectic action of the group S_{5} centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Then X is equivariantly isomorphic to either Mukai's S_{5}-example or the minimal desingularization of the double cover of \mathbb{P}_{2} branched along the sextic

$$
\begin{aligned}
& \left\{F_{S_{5}}\left(x_{1}, x_{2}, x_{3}\right)=\right. \\
& 2\left(x^{4} y z+x y^{4} z+x y z^{4}\right)-2\left(x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}+y^{2} z^{4}\right)+2\left(x^{3} y^{3}+x^{3} z^{3}+y^{3} z^{3}\right) \\
& \left.+x^{3} y^{2} z+x^{3} y z^{2}+x^{2} y^{3} z+x^{2} y z^{3}+x y^{3} z^{2}+x y^{2} z^{3}-6 x^{2} y^{2} z^{2}=0\right\}
\end{aligned}
$$

4.4 The group $M_{20}=C_{2}^{4} \rtimes A_{5}$

Proposition 4.11. There does not exist a K3-surface with a symplectic action of M_{20} centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$.

Proof. Assume that a K3-surface X with these properties exists. Applying Theorem 3.25 we see that $X \rightarrow Y$ is branched along a single M_{20}-invariant smooth curve C on the Del Pezzo surface Y. The curve C is neither rational nor elliptic. By Hurtwitz' formula,

$$
|\operatorname{Aut}(C)| \leq 84(g(C)-1)
$$

the genus of C must be at least twelve. Since C is linearly equivalent to $-2 K_{Y}$, the adjunction formula

$$
2 g(C)-2=\left(K_{Y}, C\right)+C^{2}=2 K_{Y}^{2}
$$

implies $\operatorname{deg}(Y)=K_{Y}^{2} \geq 11$. This is a contradiction since the degree of a Del Pezzo surface is at most nine.

4.5 The group $F_{384}=C_{2}^{4} \rtimes S_{4}$

Before we prove non-existence of K3-surfaces with $F_{384} \times C_{2}$-symmetry, we note the following useful fact about S_{4}-actions on Riemann surfaces.

Lemma 4.12. The group S_{4} does not admit an effective action on a Riemann surface of genus one or two.

Proof. The automorphism group of a Riemann surface T of genus one is of the form $\operatorname{Aut}(T)=$ $L \ltimes T$ for $L \in\left\{C_{2}, C_{4}, C_{6}\right\}$. We have seen before (cf. Proof of Proposition 3.24) that any subgroup H of $\operatorname{Aut}(T)$ can be put into the form $H=(H \cap L) \ltimes(H \cap T)$. The nontrivial normal subgroups of S_{4} are A_{4} and $C_{2} \times C_{2}$. Since A_{4} is not Abelian and the quotient of S_{4} by $S_{4} \cap T=C_{2} \times C_{2}$ is not cyclic, we conclude that S_{4} is not a subgroup of $\operatorname{Aut}(T)$.

Assume that S_{4} acts effectively on a Riemann surface H of genus two. Note that H is hyperelliptic and the quotient of H by the hyperelliptic involution is branched at six points. Since S_{4} has no normal subgroup of order two, the induced action of S_{4} on the quotient \mathbb{P}_{1} is effective and therefore has precisely one orbit consisting of six points. The isotropy subgroup at these points is isomorphic to C_{4}. The isotropy group at the corresponding points in H must be isomorphic to $C_{4} \times C_{2}$. Since this group is not cyclic, it cannot act effectively with fixed points on a Riemann surface and we obtain a contradiction.

Proposition 4.13. There does not exists a K3-surface with a symplectic action of F_{384} centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$.

Proof. As above, assume that a K3-surface X with these properties exists and apply Theorem 3.25 to see that $X \rightarrow Y$ is branched along a single F_{384}-invariant smooth curve C on the Del Pezzo surface Y. It follows from Hurwitz' formula that the genus of C is at least 6 .

We use the realization of F_{384} as a semi-direct product $C_{4}^{2} \rtimes S_{4}$ (cf. [Muk88]) and consider the quotient Q of the branch curve C by the normal subgroup $N=C_{4}^{2}$. On Q there is the induced action of S_{4}. It follows from the lemma above that Q is either rational or $g(Q)>2$. In the second case, if we apply the Riemann-Hurwitz formula to the covering $C \rightarrow Q$, then

$$
e(C)=16 e(Q)-\text { branch point contributions } \leq-64
$$

and $g(C) \geq 33$. This contradicts the adjunction formula on the Del Pezzo surface Y and implies that Q is a rational curve.

It follows from adjunction that $K_{Y}^{2}=g(C)-1$. Therefore, the degree of the Del Pezzo surface Y is at least five. We consider the action of F_{384} on the configuration of (-1)-curves on Y and recall that the order of a stabilizer of a (-1)-curve in Y is at most twelve (cf. Remark 3.26) and therefore has index greater than or equal to 32 in G. It follows that Y is either $\mathbb{P}_{1} \times \mathbb{P}_{1}$ or \mathbb{P}_{2}. In the first case, the canonical projections of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ are equivariant with respect to a subgroup of index two in F_{384} and thereby contradict Lemma 3.2. Consequently, $Y \cong \mathbb{P}_{2}$. In particular, $g(C)=10$ and $e(C)=-18$. It follows that the branch point contribution of the covering $C \rightarrow Q$ must be 50 . Since isotropy groups must be cyclic, the only possible isotropy subgroups of $N=C_{4}^{2}$ at a point in C are C_{2} and C_{4} and have index four or eight. The full branch point contribution must therefore be a multiple of four. This contradiction yields the non-existence claimed.

4.6 The group $A_{4,4}=C_{2}^{4} \rtimes A_{3,3}$

By $S_{p, q}$ for $p+q=n$ we denote a subgroup $S_{p} \times S_{q}$ of S_{n} preserving a partition of the set $\{1, \ldots, n\}$ into two subsets of cardinality p and q. The intersection of A_{n} with $S_{p . q}$ is denoted by $A_{p, q}$.

Proposition 4.14. There does not exists a K3-surface with a symplectic action of $A_{4,4}$ centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$.

Proof. We again assume that a K3-surface with these properties exists. Applying Theorem 3.25 we see that $X \rightarrow Y$ is branched along a single $A_{4,4}$-invariant smooth curve C on the Del Pezzo surface Y. The group $A_{4,4}$ is a semi-direct product $C_{2}^{4} \rtimes A_{3,3}$ (see e.g. [Muk88]). We consider the quotient Q of C by the normal subgroup $N \cong C_{2}^{4}$. On Q there is an action of $A_{3,3}$. Since $A_{3,3}$ contains the subgroup $C_{3} \times C_{3}$, which does not act on a rational curve, it follows that Q not rational. We apply the Riemann-Hurwitz formula to the covering $C \rightarrow Q$.
If Q is elliptic, then $2 g(C)-2$ equals the branch point contribution of the covering $C \rightarrow Q$. As above, isotropy groups must be cyclic and the maximal possible isotropy group of the $C_{2}^{4}-$ action on C is C_{2} and has index eight in C_{2}^{4}. Consequently, the branch point contribution at each branch point is eight. Recall that any group H acting on the torus Q can be put into the form $H=(H \cap L) \ltimes(H \cap Q)$ for $L \in\left\{C_{2}, C_{4}, C_{6}\right\}$. Since Q acts freely, the action of $C_{3} \times C_{3}<A_{3,3}$ on the elliptic curve Q has orbits of length greater than or equal to three. Therefore, the total branch point contribution must be greater than or equal to 24 . In particular, $g(C)=\operatorname{deg}(Y)+1 \geq 13$ contrary to $\operatorname{deg}(Y) \leq 9$.
If $g(Q) \geq 2$, then $g(C) \geq 17$ which is also contrary to $\operatorname{deg}(Y) \leq 9$

4.7 The groups $T_{192}=\left(Q_{8} * Q_{8}\right) \rtimes S_{3}$ and $H_{192}=C_{2}^{4} \rtimes D_{12}$

By Q_{8} we denote the quaternion group $\{+1,-1,+I,-I,+J,-J,+K,-K\}$ where $I^{2}=J^{2}=K^{2}=$ $I J K=-1$. The central product $Q_{8} * Q_{8}$ is defined as the quotient of $Q_{8} \times Q_{8}$ by the central involution $(-1,-1)$, i.e., $Q_{8} * Q_{8}=\left(Q_{8} \times Q_{8}\right) /(-1,-1)$.
Note that both groups T_{192} and H_{192} are semi-direct products $C_{2}^{3} \rtimes S_{4}$ (cf. [Muk88]).
Proposition 4.15. For $G=T_{192}$ or $G=H_{192}$ there does not exists a K3-surface with a symplectic action of G centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$.

Proof. Assume that a K3-surface with these properties exists. Applying Theorem 3.25 we see that $X \rightarrow Y$ is branched along a single G-invariant smooth curve C on the Del Pezzo surface Y. The genus of C is at least four by Hurwitz' formula and therefore $\operatorname{deg}(Y) \geq 3$. We consider the quotient Q of C by the normal subgroup $N=C_{2}^{3}$. By Lemma 4.12 the quotient Q is either rational or $g(Q)>2$. In the second case $g(C) \geq 19$ and we obtain a contradiction to $\operatorname{deg}(Y)=g(C)-1 \leq$ 9. It follows that Q is a rational curve.

We consider the action of G on the Del Pezzo surface Y of degree ≥ 3, in particular the induced action on its configuration of (-1)-curves. By Remark 3.26 the stabilizer of a (-1)-curve in Y has index ≥ 16 in G and we may immediately exclude the cases $\operatorname{deg}(Y)=3,5,6,7$. The automorphism group of a Del Pezzo surface of degree four is $C_{2}^{4} \rtimes \Gamma$ for $\Gamma \in\left\{C_{2}, C_{4}, S_{3}, D_{10}\right\}$ (cf. [Dol08]). In particular, the maximal possible order is 160 and therefore $\operatorname{deg}(Y) \neq 4$.

Assume that $Y \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$. The canonical projection $\pi_{1,2}: Y \rightarrow \mathbb{P}_{1}$ is equivariant with respect to a subgroup H of G of index at most two. It follows that H fits into the exact sequences

$$
\begin{aligned}
& \{\mathrm{id}\} \rightarrow I_{1} \rightarrow H \xrightarrow{\left(\pi_{1}\right)_{*}} H_{1} \rightarrow\{\mathrm{id}\} \\
& \{\mathrm{id}\} \rightarrow I_{2} \rightarrow H \xrightarrow{\left(\pi_{2}\right)_{*}} H_{2} \rightarrow\{\mathrm{id}\}
\end{aligned}
$$

where $I_{i} \cong C_{2} \times C_{2}$ is the ineffectivity of the induced H-action on the base and $H_{i} \cong S_{4}$ (cf. proof of Lemma 3.2). Since the action of G on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ is effective by assumption, it follows that I_{2} acts effectively on $\pi_{1}\left(\mathbb{P}_{1} \times \mathbb{P}_{1}\right)$. We find a set of four points in $\pi_{1}\left(\mathbb{P}_{1} \times \mathbb{P}_{1}\right)$ with nontrivial isotropy with respect to $I_{2} \cong C_{2} \times C_{2}$. Since I_{2} is a normal subgroup of H, this set is H-invariant. The action of $H_{1} \cong S_{4}$ on $\pi_{1}\left(\mathbb{P}_{1} \times \mathbb{P}_{1}\right)$ does however not admit invariant sets of cardinality four since the minimal S_{4}-orbit in \mathbb{P}_{1} has length six.
We conclude that Y must be isomorphic to \mathbb{P}_{2}. It follows that $g(C)=10$. Return to the covering $C \rightarrow Q$,

$$
-18=e(C)=8 \cdot e(Q)-\text { branch point contributions. }
$$

Since Q is rational, the branch point contribution must 34. The possible isotropy of $N=C_{2}^{3}$ at a point in C is C_{2} and the full branch point contribution must be divisible by four. This contradiction yields the desired non-existence.

4.8 The group $N_{72}=C_{3}^{2} \rtimes D_{8}$

We let X be a K3-surface with a symplectic action of $G=N_{72}$ centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Note that in this case we may not apply Theorem 3.25 and therefore begin by excluding that a G-minimal model of $Y=X / \sigma$ is an equivariant conic bundle.

Lemma 4.16. A G-minimal model of Y is a Del Pezzo surface.

Proof. Assume the contrary and let $Y_{\text {min }}$ be an equivariant conic bundle and a G-minimal model of Y. We consider the induced action of G on the base $B=\mathbb{P}_{1}$ and denote by $I \triangleleft G$ the ineffectivity of the G-action on B. Arguing as in the proof of Lemma 3.2, we see that I is trivial or isomorphic to either C_{2} or $C_{2} \times C_{2}$. In all cases the quotient G / I contains the subgroup $C_{3} \times C_{3}$, which has no effective action on the rational curve B.

As we will see, only very few Del Pezzo surfaces admit an effective action of the group N_{72}. We will explicitly use the group structure of $N_{72}=C_{3}^{2} \rtimes D_{8}$: the action of $D_{8}=C_{2} \ltimes\left(C_{2} \times C_{2}\right)=$ $\langle\alpha\rangle \ltimes(\langle\beta\rangle \times\langle\gamma\rangle)=\operatorname{Aut}\left(C_{3} \times C_{3}\right)$ on $C_{3} \times C_{3}$ is given by

$$
\alpha(a, b)=(b, a), \quad \beta(a, b)=\left(a^{2}, b\right), \quad \gamma(a, b)=\left(a, b^{2}\right)
$$

As a first step we show:
Lemma 4.17. The degree of a Del Pezzo surface $Y_{\min }$ is at most four.

Proof. We exclude Del Pezzo surface of degree ≥ 5.

- A Del Pezzo surface of degree five has automorphims group S_{5} and $N_{72} \nless S_{5}$.
- The automorphism group of a Del Pezzo surface of degree six is $\left(\mathbb{C}^{*}\right)^{2} \rtimes\left(S_{3} \times C_{2}\right)$ (cf. Theorem 10.2.1 in [Dol08]). Assume that $N_{72}=C_{3}^{2} \rtimes D_{8}$ is contained in this group and consider the intersection $A=N_{72} \cap\left(\mathbb{C}^{*}\right)^{2}$. The quotient of N_{72} by A has order at most 12 and may not contain a copy of C_{3}^{2}. Therefore, the order of A is at least six and A contains a copy of C_{3}. If $|A|=6$, then $A=C_{6}=C_{3} \times C_{2}$ and C_{2} is central in N_{72}. Using the group structure of N_{72} specified above one finds that there is no copy of C_{2} in N_{72} centralizing $C_{3} \times C_{3}$ and therefore C_{2} cannot be contained in the centre of N_{72}. For every choice of C_{3} inside $C_{3} \times C_{3}$ there is precisely one element in $\{\alpha, \beta, \gamma\}$ acting trivially on it and the centralizer of C_{3} inside D_{8} is isomorphic to C_{2}. If $|A|>6$, then the centralizer of C_{3} in D_{8} has order greater then 2 , a contradiction.
- A Del Pezzo surface of degree seven is obtained by blowing-up to points p, q in \mathbb{P}_{2}. As was mentioned before, such a surface is never G-minimal.
- If G acts on $\mathbb{P}_{1} \times \mathbb{P}_{1}$, then the canonical projections are equivariant with respect to a subgroup H of index two in G. We consider one of these projections. The action of H induces an effective action of H / I on the base \mathbb{P}_{1}. The group I is either trivial or isomorphic to C_{2} or $C_{2} \times C_{2}$. In all case we find an effective action of C_{3}^{2} on the base, a contradiction.
- It remains to exclude \mathbb{P}_{2}. If N_{72} acts on \mathbb{P}_{2} we consider its embedding into $\mathrm{PSL}_{3}(\mathbb{C})$, in particular the realization of the subgroup $C_{3}^{2}=\langle a\rangle \times\langle b\rangle$ and its lifting to $\mathrm{SL}_{3}(\mathbb{C})$.
We fix a preimage \tilde{a} of a inside $\mathrm{SL}_{3}(\mathbb{C})$ and may assume that \tilde{a} is diagonal. Since the action of a on \mathbb{P}_{2} is induced by a symplectic action on X, it follows that a does not have a positivedimensional set of fixed point. In appropiately chosen coordinates

$$
\tilde{a}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \xi & 0 \\
0 & 0 & \xi^{2}
\end{array}\right)
$$

where ξ is third root of unity. As a next step, we want to specify a preimage \tilde{b} of b inside $\mathrm{SL}_{3}(\mathbb{C})$. Since a and b commute in $\mathrm{PSL}_{3}(\mathbb{C})$, we know that

$$
\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1}=\xi^{k} \operatorname{id}_{\mathbb{C}^{3}}
$$

for $k \in\{0,1,2\}$. Note that \tilde{b} is not diagonal in the coordinates chosen above since this would give rise to C_{3}^{2}-fixed points in \mathbb{P}_{2}. As these correspond to C_{3}^{2}-fixed points on the double cover $X \rightarrow Y$ and a symplectic action of $C_{3}^{2} \nless \mathrm{SL}_{2}(\mathbb{C})$ on a K3-surface does not admit fixed points, this is a contradiction. An explicit calculation yields

$$
\tilde{b}=\tilde{b}_{1}=\left(\begin{array}{lll}
0 & 0 & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right) \quad \text { or } \quad \tilde{b}=\tilde{b}_{2}=\left(\begin{array}{lll}
0 & * & 0 \\
0 & 0 & * \\
* & 0 & 0
\end{array}\right) .
$$

We can introduce a change of coordinates commuting with \tilde{a} such that

$$
\tilde{b}=\tilde{b}_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { or } \quad \tilde{b}=\tilde{b}_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Since $\tilde{b}_{1}^{2}=\tilde{b}_{2}$, the two choices above correspond to the two choices of generators b and b^{2} of $\langle b\rangle$. We pick $\tilde{b}=\tilde{b}_{1}$.
The action of D_{8} on C_{3}^{2} is specified above and the element $\beta \in D_{8}$ acts on C_{3}^{2} by $a \rightarrow a^{2}$ and $b \rightarrow b$. There is no element $T \in \mathrm{SL}_{3}(\mathbb{C})$ such that (projectively) $T \tilde{a} T^{-1}=\tilde{a}^{2}$ and $T \tilde{b} T^{-1}=\tilde{b}$. It follows that there is no action of N_{72} on \mathbb{P}_{2}.

This completes the proof of the lemma.

As a next step, we study the possibility of rational curves in $\operatorname{Fix}_{X}(\sigma)$.
Lemma 4.18. There are no rational curves in $\operatorname{Fix}_{X}(\sigma)$.

Proof. Let n denote the total number of rational curves in $\operatorname{Fix}_{X}(\sigma)$ and recall $n \leq 10$. If $n \neq 0$, let C be a rational curve in the image of $\operatorname{Fix}_{X}(\sigma)$ in Y and let $H=\operatorname{Stab}_{G}(C)$ be its stabilzer. The index of H in G is at most nine, therefore the order of H is at least eight. The action of H on C is effective.

First note that G does not contain $S_{4}=O_{24}$ as a subgroup. If this were the case, consider the intersection $S_{4} \cap C_{3}^{2}$ and the quotient $S_{4} \rightarrow S_{4} /\left(S_{4} \cap C_{3}^{2}\right)<D_{8}$. Since the only nontrivial normal subgroups of S_{4} are A_{4} and $C_{2} \times C_{2}$, this leads to a contradiction.

Consequently, the order of H is at most twelve. In particular, $n \geq 6$. Since $C_{8} \nless G$, the group H is not cyclic and any H-orbit on C consists of at least two points.

It follows from $C^{2}=-4$ that C must meet the union of Mori fibers and the union of Mori fibers meets the curve C in at least two points. Recalling that each Mori fibers meets the branch locus B in at most two points we see that at least n Mori fibers meeting B are required. However, no configuration of n Mori fibers is sufficient to transform the curve C into a curve on a Del Pezzo surface and further Mori fibers are required. By invariance, the total number m of Mori fibers must be at least $2 n$.

Combining the Euler-characteristic formula

$$
24=2 e\left(Y_{\min }\right)+2 m-2 n+\underbrace{2 g-2}_{\begin{array}{c}
\text { if non-rational } \\
\text { branch curve exists }
\end{array}}
$$

with our observation $\operatorname{deg}\left(Y_{\min }\right) \leq 4$, i.e., $e\left(Y_{\min }\right) \geq 8$ we see that $n \leq 4$. However, it was shown above, that if $n \neq 0$, then $n \geq 6$. It follows that $n=0$.

Proposition 4.19. The quotient surface Y is G-minimal and isomorphic to the Fermat cubic $\left\{x_{1}^{3}+x_{2}^{3}+\right.$ $\left.x_{3}^{3}+x_{4}^{3}=0\right\} \subset \mathbb{P}_{3}$. Up to equivalence, there is a unique action of G on Y and the branch locus of $X \rightarrow Y$ is given by $\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}$. In particular, X is equivariantly isomorphic to Mukai's N_{72}-example.

Proof. We first show that the total number m of Mori fibers equals zero. By the Euler-characteristic formula above, the number m is bounded by four. Using the fact that the maximal order of a stabilizer group of a Mori fiber is twelve (cf. proof of Theorem 3.25) we see that Y must be Gminimal.

In order to conclude that Y is the Fermat cubic we consult Dolgachev's lists of automorphisms groups of Del Pezzo surfaces of degree less than or equal to four ([Dol08] Section 10.2.2; Tables 10.3; 10,4; and 10.5): It follows immediately from the order of G that Y is not of degree two or four. If G were a subgroup of an automorphism group of a Del Pezzo surface of degree one, it would contain a central copy of C_{3}. The group structure of N_{72} does however not allow this. After excluding the cases $\operatorname{deg}(Y) \in\{1,2,4\}$ the result now follows from the uniqueness of the cubic surface in \mathbb{P}_{3} with an action of N_{72} (cf. Appendix A.1). The action of G on Y is induced by a four-dimensional (projective) representation of G and the branch curve $C \subset Y$ is the intersection of Y with an invariant quadric (compare proof of Proposition 4.8).

In the Appendix A. 1 it is shown that there is a uniquely determined action of N_{72} on \mathbb{P}_{3} and a unique invariant quadric hypersurface $\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}$. In particular, the branch curve in Y is defined by $\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\} \cap Y$.
Mukai's N_{72}-example is defined by $\left\{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}=x_{1} x_{2}+x_{3} x_{4}+x_{5}^{2}=0\right\} \subset \mathbb{P}_{4}$. An antisymplectic involution centralizing the action of N_{72} is given by the map $x_{5} \mapsto-x_{5}$. The quotient of Mukai's example by this involution is the Fermat cubic and the fixed point set of the involution is given by $\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}$.

4.9 The group $M_{9}=C_{3}^{2} \rtimes Q_{8}$

Let $G=M_{9}$ and let X be a K3-surface with a symplectic G-action centralized by the antisymplectic involution σ such that $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. We proceed in analogy to the case $G=N_{72}$ above. Arguing precisely as in the proof of Lemma 4.16 one shows.

Lemma 4.20. A G-minimal model of Y is a Del Pezzo surface.

We may exclude rational branch curves without studying configurations of Mori fibers.
Lemma 4.21. There are no rational curves in $\operatorname{Fix}_{X}(\sigma)$.
Proof. Let n be the total number of rational curves in $\operatorname{Fix}_{X}(\sigma)$. Assume $n \neq 0$, let C be a rational curve in the image of $\operatorname{Fix}_{X}(\sigma)$ in Y and let $H<G$ be its stabilizer. The action of H on C is effective. We go through the list of finite groups with an effective action on a rational curve.

Since M_{9} is a group of symplectic transformations on a K3-surface, its element have order at most eight. Clearly, $A_{6} \nless M_{9}$ and $D_{10}, D_{14}, D_{16} \nless M_{9}$. If $S_{4}<M_{9}=C_{3}^{2} \rtimes Q_{8}$, then $S_{4} \cap C_{3}^{2}$ is a normal subgroup of S_{4} and it is therefore trivial. Now $S_{4}=S_{4} /\left(S_{4} \cap C_{3}^{2}\right)<M_{9} / C_{3}^{2}=Q_{8}$ yields a contradiction. The same argument can be carried out for A_{4}, D_{8} and C_{8}. If $D_{12}<M_{9}=C_{3}^{2} \rtimes Q_{8}$, then either $D_{12} \cap C_{3}^{2}=C_{3}$ and $C_{2} \times C_{2}=D_{12} / C_{3}<M_{9} / C_{3}^{2}=Q_{8}$ or $D_{12} \cap C_{3}^{2}=\{\mathrm{id}\}$ and $D_{12}<Q_{8}$, both are impossible.

It follows that the subgroups of M_{9} admitting an effective action on a rational curve have index greater than or equal to twelve. Therefore $n \geq 12$, contrary to the bound $n \leq 10$ obtained in Corollary 3.20.

Proposition 4.22. The quotient surface Y is G-minimal and isomorphic to \mathbb{P}_{2}. Up to equivalence, there is a unique action of G on Y and the branch locus of $X \rightarrow Y$ is given by $\left\{x_{1}^{6}+x_{2}^{6}+x_{3}^{6}-10\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+\right.\right.$ $\left.\left.x_{3}^{3} x_{1}^{3}\right)=0\right\}$. In particular, X is equivariantly isomorphic to Mukai's M_{9}-example.

Proof. We first check that Y is G-minimal. Again, we proceed as in the proof of Theorem 3.25 and Lemma 4.21 above to see that the largest possible stablizer group of a Mori fiber is $D_{6}<G$. If Y is not G-minimal, this implies that the total number of Mori fibers is ≥ 12, contradicting $m \leq 9$.
Note that $X \rightarrow Y$ is not branched along one or two elliptic curves as this would imply $e(Y)=12$ and contradict the fact that Y is a Del Pezzo surface.

Let D be the branch curve of $X \rightarrow Y$ and consider the quotient Q of D by the normal subgroup $N=C_{3}^{2}$ in G. On Q there is an action of Q_{8} implying that Q is not rational. We show that Q_{8} does not act on an elliptic curve Q. If this were the case, consider the decomposition $Q_{8}=\left(Q_{8} \cap Q\right) \rtimes$ ($Q_{8} \cap L$) where ($Q_{8} \cap L$) is a nontrivial cyclic group. For any choice of generator of $\left(Q_{8} \cap L\right)$ the
center $\{+1,-1\}$ of Q_{8} is contained in $\left(Q_{8} \cap L\right)$. Let $q: Q_{8} \rightarrow Q_{8} /\left(Q_{8} \cap Q\right) \cong Q_{8} \cap L$ denote the quotient homomorphism. The commutator subgroup $Q_{8}^{\prime}=\{+1,-1\}$ must be contained in the kernel of q. This contradiction yields that Q_{8} does not act on an elliptic curve. It follows that the genus of Q is at least two and the genus of D is at least ten. Adjunction on the Del Pezzo surface Y now implies $g=10$ and $Y \cong \mathbb{P}_{2}$.

It is shown in Appendix A. 2 that, up to natural equivalence, there is a unique action of M_{9} on the projective plane. In suitably chosen coordinated the generators a, b of C_{3}^{2} are represented as

$$
\tilde{a}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \xi & 0 \\
0 & 0 & \xi^{2}
\end{array}\right), \quad \tilde{b}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

and $I, J \in Q_{8}$ are represented as

$$
\tilde{I}=\frac{1}{\xi-\xi^{2}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \xi & \xi^{2} \\
1 & \xi^{2} & \xi
\end{array}\right), \quad \tilde{J}=\frac{1}{\xi-\xi^{2}}\left(\begin{array}{ccc}
1 & \xi & \xi \\
\xi^{2} & \xi & \tilde{\zeta}^{2} \\
\xi^{2} & \xi^{2} & \xi
\end{array}\right) .
$$

We study the action of M_{9} on then space of sextic curves. By restricting our consideration to the subgroup C_{3}^{2} first, we see that a polynomial defining an invariant curve must be a linear combination of the following polynomials:

$$
\begin{aligned}
& f_{1}=x_{1}^{6}+x_{2}^{6}+x_{3}^{6} \\
& f_{2}=x_{1}^{2} x_{2}^{2} x_{3}^{2} \\
& f_{3}=x_{1}^{3} x_{2}^{3}+x_{1}^{3} x_{3}^{3}+x_{2}^{3} x_{3}^{3} \\
& f_{4}=x_{1}^{4} x_{2} x_{3}+x_{1} x_{2}^{4} x_{3}+x_{1} x_{2} x_{3}^{4}
\end{aligned}
$$

Taking now the additional symmetries into account, we find three M_{9}-invariant sextic curves, namely

$$
\left\{f_{1}-10 f_{3}=x_{1}^{6}+x_{2}^{6}+x_{3}^{6}-10\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)=0\right\}
$$

which is the example found by Mukai, and additionally

$$
\left\{f_{a}=f_{1}+(18-3 a) f_{2}+2 f_{3}+a f_{4}=0\right\}
$$

where a is a solution of the quadratic equation $a^{2}-6 a+36$, i.e. $a=-6 \xi$ or $a=-6 \xi^{2}$. The polynomial f_{a} is invariant with respect to the action of M_{9} for $a=-6 \tilde{\xi}^{2}$ and semi-invariant if $a=-6 \xi$.

We wish to show that X is not the double cover of \mathbb{P}_{2} branched along $\left\{f_{a}=0\right\}$. If this were the case, consider the fixed point $p=[0: 1:-1]$ of the automorphism I and note that $f_{a}(p)=0$. So the $\pi^{-1}(p)$ consists of one point $x \in X$ and we linearize the $\langle I\rangle \times\langle\sigma\rangle$ at x. In suitably chosen coordintes the action of the symplectic automorphism I of order four is of the form $(z, w) \mapsto$ $(i z,-i w)$. Since the action of σ commutes with I, the σ-quotient of X is locally given by

$$
(z, w) \mapsto\left(z^{2}, w\right) \quad \text { or } \quad(z, w) \mapsto\left(z, w^{2}\right)
$$

It follows that the action of I on Y is locally given by either

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -i
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
i & 0 \\
0 & -1
\end{array}\right)
$$

In particular, the local linearization of I at p has determinant $\neq 1$. By a direct computation using the explicit form of \tilde{I} given above, in particular the facts that $\operatorname{det}(\tilde{I})=1$ and $\tilde{I} v=v$ for $[v]=p$, we obtain a contradiction.

This completes the proof of the proposition.
Remark 4.23. In the proof of the propostion above we have observed that an element of $\mathrm{SL}_{3}(\mathbb{C})$ does not necessarily lift to a symplectic transformation on the double cover of \mathbb{P}_{2} branched along a sextic given by an invariant polynomial. Mukai's M_{9}-example X is a double cover of \mathbb{P}_{2} branched along the sextic curve $\left\{x_{1}^{6}+x_{2}^{6}+x_{3}^{6}-10\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)=0\right\}$ and for this particular example, the action of M_{9} does lift to a group of symplectic transformation as claimed by Mukai.

To see this consider the set $\{a, b, I, J\}$ of generators of M_{9}. Since a and b are commutators in M_{9}, they can be lifted to symplectic transformation \bar{a}, \bar{b} on X. For I, J consider the linearization at the fixed point $[0: 1:-1]$ and check that it has determinant one. Since $[0: 1:-1]$ is not contained in the branch set of the covering, its preimage in X consists of two points p_{1}, p_{2}. We can lift I (J, respectively) to a transformation of X fixing both p_{1}, p_{2} and a neighbourhood of p_{1} is I-equivariantly isomorphic to a neighbourhood of $[0: 1:-1] \in \mathbb{P}_{2}$. In particular, the action of the lifted element \bar{I} (\bar{J}, respectively) is symplectic. On X there is the action of a degree two central extension E of M_{9},

$$
\{\mathrm{id}\} \rightarrow C_{2} \rightarrow E \rightarrow M_{9} \rightarrow\{\mathrm{id}\}
$$

The elements $\bar{a}, \bar{b}, \bar{I}, \bar{J}$ generate a subgroup \tilde{M}_{9} of $E_{\text {symp }}$ mapping onto M_{9}. Since $E_{\text {symp }} \neq E$, the order of \tilde{M}_{9} is 72 and it follows that \tilde{M}_{9} is isomorphic to M_{9}. In particular E splits as $E_{\text {symp }} \times C_{2}$ with $E_{\text {symp }}=M_{9}$.

4.10 The group $T_{48}=Q_{8} \rtimes S_{3}$

We let X be a K3-surface with an action of $T_{48} \times C_{2}$ where the action of $G=T_{48}$ is symplectic and the generator σ of C_{2} is antisymplectic and has fixed points. The action of S_{3} on Q_{8} is given as follows: The element c of order three in S_{3} acts on Q_{8} by permuting I, J, K and an element d of order two acts by exchanging I and J and mapping K to $-K$.

Lemma 4.24. A G-minimal model $Y_{\min }$ of Y is either \mathbb{P}_{2}, a Hirzebruch surface Σ_{n} with $n>2$, or $e\left(Y_{\text {min }}\right) \geq 9$.

Proof. Let us first consider the case where $Y_{\min }$ is a Del Pezzo surface and go through the list of possibilities.

- Let $Y_{\text {min }} \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$. Since T_{48} acts on $Y_{\min }$, both canonical projections are equivariant with respect to the index two subgroup $G^{\prime}=Q_{8} \rtimes C_{3}$. Since Q_{8} has no effective action on \mathbb{P}_{1}, it follows that the subgroup $Z=\{+1,-1\}<Q_{8}$ acts trivially on the base. Since this holds with respect to both projections, the subgroup Z acts trivially on $Y_{\min }$, a contradiction.
- Using the group structure of T_{48} one checks that the only nontrivial normal subgroup N of T_{48} such that $N \cap Q_{8} \neq Q_{8}$ is the center $Z=\{+1,-1\}$ of T_{48}. It follows that T_{48} is neither a subgroup of $\left(\mathbb{C}^{*}\right)^{2} \rtimes\left(S_{3} \times C_{2}\right)$ nor a subgroup of any of the automorphism groups $C_{2}^{4} \rtimes \Gamma$ for $\Gamma \in\left\{C_{2}, C_{4}, S_{3}, D_{10}\right\}$ of a Del Pezzo surface of degree four. Furthermore, $T_{48} \nless S_{5}$. Thus it follows that $d\left(Y_{\min }\right) \neq 4,5,6$.

So if $Y_{\min }$ is a Del Pezzo surface, then $Y_{\min } \cong \mathbb{P}_{2}$ or $e\left(Y_{\min }\right) \geq 9$.
Let us now turn to the case where $Y_{\min }$ is an equivariant conic bundle. We first show that $Y_{\text {min }}$ is not a conic bundle with singular fibers. We assume the contrary and let $p: Y_{\min } \rightarrow \mathbb{P}_{1}$ be an equivariant conic bundle with singular fibers. The center $Z=\{+1,-1\}$ of $G=T_{48}$ acts trivially on the base an has two fixed points in the generic fiber. Let C_{1} and C_{2} denote the two curves of Z-fixed points in $Y_{\min }$. By Lemma 2.21 any singular fiber F is the union of two (-1)-curves F_{1}, F_{2} meeting transversally in one point. We consider the action of Z on this union of curves. The group Z does not act trivially on either component of F since linearization at a smooth point of F would yield a trivial action of Z on $Y_{\min }$. Consequently, it has either one or three fixed points on F. The first is impossible since C_{1} and C_{2} intersect F in two points. It follows that Z stabilizes each curve F_{i}. We linearize the action of Z at the point of intersection $F_{1} \cap F_{2}$. The intersection is transversal and the action of Z is by -Id on $T_{F_{1}} \oplus T_{F_{2}}$ contradicting the fact the Z acts trivially on the base. Thus $Y_{\min }$ is not a conic bundle with singular fibers.
If $Y_{\min } \rightarrow \mathbb{P}_{1}$ is a Hirzebruch surface Σ_{n}, then the action of T_{48} induces an effective action of S_{4} on the base \mathbb{P}_{1}.
The action of T_{48} on Σ_{n} stabilizes two disjoint sections E_{∞} and E_{0}, the curves of Z-fixed points. This is only possible if $E_{0}^{2}=-E_{\infty}^{2}=n$. Removing the exceptional section E_{∞} from Σ_{n}, we obtain the hyperplane bundle H^{n} of \mathbb{P}_{1}. Since T_{48} stabilizes the section E_{0}, we chose this section to be the zero section and conclude that the action of T_{48} on H^{n} is by bundle automorphisms.

If $n=2$, then H^{n} is the anticanonical line bundle of \mathbb{P}_{1} and the action of S_{4} on the base induces an action of S_{4} on H^{2} by bundle automorphisms. It follows that T_{48} splits as $S_{4} \times C_{2}$, a contradiction. Thus, if $Y_{\min }$ is a Hirzebruch surface Σ_{n}, then $n \neq 2$.

Lemma 4.25. There are no rational curves in $\operatorname{Fix}_{X}(\sigma)$.
Proof. We let n denote the total number of rational curves in $\operatorname{Fix}_{X}(\sigma)$ and assume $n>0$. Recall $n \leq 10$, let C be a rational curve in $B=\pi\left(\operatorname{Fix}_{X}(\sigma)\right) \subset Y$ and let $H=\operatorname{Stab}_{G}(C)<G$ be its stabilizer group. The action of H on C is effective, the index of H in G is at most 8 . Using the quotient homomorphism $T_{48} \rightarrow T_{48} / Q_{8}=S_{3}$ one checks that T_{48} does not contain $O_{24}=S_{4}$ or $T_{12}=A_{4}$ as a subgroup. It follows that H is a cyclic or a dihedral group.
If $H \in\left\{C_{6}, C_{8}, D_{8}\right\}$, then H and all conjugates of H in G contain the center $Z=\{+1,-1\}$ of G. It follows that Z has two fixed point on each curve $g C$ for $g \in G$. Since there are six (or eight) distinct curves $g C$ in Y, it follows that Z has at least 12 fixed points in Y and in X. This contradicts to assumption that $Z<G$ acts symplectically on X and therefore has eight fixed points in the K3-surface X.

It remains to study the cases $H=D_{12}$ and $H=D_{6}$ where $n=8$ or $n=4$.
We note that a Hirzebruch surface has precisely one curve with negative self-intersection and only fibers have self-intersection zero. A Del Pezzo surface does not contains curves of self-intersection less than -1 . The rational branch curves must therefore meet the union of Mori fibers in Y.

The total number of Mori fibers is bounded by $n+9$. We study the possible stabilizer subgroups $\operatorname{Stab}_{G}(E)<G$ of Mori fibers. A Mori fiber E with self-intersection (-1) meets the branch locus B in one or two points and its stabilizer is either cyclic or dihedral. If $\operatorname{Stab}_{G}(E) \in\left\{C_{4}, D_{8}\right\}$, then the points of intersection of E and B are fixed points of the center Z of G and we find too many Z-fixed points on X.
Assume $n=4$ and let $R_{1}, \ldots R_{4}$ be the rational curves in B. We denote by \tilde{R}_{i} their images in $Y_{\min }$. The total number m of Mori fibers is bounded by 12 . We go through the list of possible configurations:

- If $m=4$, there is no invariant configuration of Mori fibers such that the contraction maps the four rational branch curves to a configuration on the Hirzebruch or Del Pezzo surface $Y_{\text {min }}$.
- If $m=6$, then $\operatorname{Stab}_{G}(E)=C_{8}$ and the points of intersection of E and B are Z-fixed. Since Z has at most eight fixed points on B, it follows that each curve E meets B only once. The images \tilde{R}_{i} of the R_{i} contradict our observations about curves in Del Pezzo and Hirzebruch surfaces.
- If $m=8$ and all Mori fibers have self-intersection -1 , then each Mori fiber meets $\cup R_{i}$ in a Z-fixed point. Since there at at most eight such points, it follows that each Mori fibers meets $\cup R_{i}$ only once and their contractions does not transform the curves R_{i} sufficiently.
- If $m=8$ and only four Mori fibers have self-intersection -1 , we consider the four Mori fibers of the second reduction step. Each of these meets a Mori fiber E of the first step in precisely one point. By invariance, this would have to be a fixed points of the stabilizer $\operatorname{Stab}_{G}(E)=D_{12}$, a contradiction.
- If $m=12$, then either $e\left(Y_{\min }\right)=3$ and there exist a branch curve $D_{g=2}$ of genus two or $e\left(Y_{\min }\right)=4$ and $B=\bigcup R_{i}$. In the first case, $Y_{\min } \cong \mathbb{P}_{2}$ and twelve Mori fibers are not sufficient to transform $B=D_{g=2} \cup \bigcup R_{i}$ into a configuration of curves in the projective plane. So $Y_{\min }=\Sigma_{n}$ for $n>2$.
Since Z has two fixed points in each fiber of $p: \Sigma_{n} \rightarrow \mathbb{P}_{1}$ the Z-action on Σ_{n} has two disjoint curves of fixed points. As was remarked above, these curves are the exceptional section E_{∞} of self-intersection $-n$ and a section $E_{0} \sim E_{\infty}+n F$ of self-intersection n. Here F denotes a fiber of $p: \Sigma_{n} \rightarrow \mathbb{P}_{1}$. There is no automorphisms of Σ_{n} mapping E_{∞} to E_{0}.
Each rational branch curve \tilde{R}_{i} has two Z-fixed points. These are exchanged by an element of $\operatorname{Stab}_{G}\left(R_{i}\right)$ and therefore both lie on either E_{∞} or E_{0}, i.e., \tilde{R}_{i} cannot have nontrivial intersection with both E_{0} and E_{∞}. By invariance all curves \tilde{R}_{i} either meet E_{0} or E_{∞} and not both.
Using the fact that $\sum \tilde{R}_{i}$ is linearly equivalent to $-2 K_{\Sigma_{n}} \sim 4 E_{\infty}+(2 n+4) F$ we find that $\tilde{R}_{i} \cdot E_{\infty}=0$ and $n=2$, a contradiction to Lemma 4.24.

We have shown that all possible configurations in the case $n \neq 4$ lead to a contradiction. We now turn to the case $n=8$ and let $R_{1}, \ldots R_{8}$ be the rational ramification curves. The total number of Mori fibers is bounded by 16. Note that by invariance, the orbit of a Mori fiber meets $\cup R_{i}$ in at least 16 points or not at all. In particular, Mori fibers meeting R_{i} come in orbits of length ≥ 8. As above, we go through the list of possible configurations.

- If $m=16$, then the set of all Mori fibers consists of two orbits of length eight. If all 16 Mori fibers meet B, then each meets B in one point and R_{i} is mapped to a (-2)-curve in $Y_{\min }$. If only eight Mori fibers meet B, then each of the eight Mori fibers of the second reduction step meets one Mori fiber E of the first reduction step in one point. This point would have to be a $\operatorname{Stab}_{G}(E)$-fixed point. But if $\operatorname{Stab}_{G}(E)$ is cyclic, its fixed points coincide with the points $E \cap B$.
- If $m=12$, then the set of all Mori fibers consists of a single G-orbit and each curve R_{i} meets three distinct Mori fibers. Their contraction transforms R_{i} into a (-1)-curve on $Y_{\text {min }}$. It follows that $Y_{\min }$ contains at least eight (-1 -curves and is a Del Pezzo surface of degree ≤ 5. We have seen above that $d\left(Y_{\min }\right) \neq 4,5$ and therefore $e\left(Y_{\min }\right) \geq 9$. With $m=12$ and $n=8$, this contradicts the Euler characteristic formula $24=2 e\left(Y_{\min }\right)+2 m-2 n+(2 g-2)$.
- If $m=8$ there is no invariant configuration of Mori fibers such that the contraction maps the eight rational branch curves to a configuration on the Hirzebruch or Del Pezzo surface $Y_{\text {min }}$

This completes the proof of the lemma.
Since there is an effective action of T_{48} on $\operatorname{Fix}_{X}(\sigma)$, it is neither an elliptic curve nor the union of two elliptic curves. It follows that $X \rightarrow Y$ is branched along a single T_{48}-invariant curve B with $g(B) \geq 2$.

Lemma 4.26. The genus of B is neither three nor four.

Proof. We consider the quotient $Q=B / Z$ of the curve B by the center Z of G and apply the Euler characteristic formula, $e(B)=2 e(Q)-\left|\operatorname{Fix}_{B}(Z)\right|$. On Q there is an effective action of the group $G / Z=\left(C_{2} \times C_{2}\right) \rtimes C_{3}=S_{4}$. Using Lemma 4.12 we see that $e(Q) \in\{2,-4,-6,-8 \ldots\}$.

If $g(B)=3$, then $e(B)=-4$ and the only possibility is $Q \cong \mathbb{P}_{1}$ and $\left|\operatorname{Fix}_{B}(Z)\right|=8$. In particular, all Z-fixed points on X are contained in the curve B. Let $A<G$ be the group generated by $I \in Q_{8}=\{ \pm 1, \pm I, \pm J, \pm K\}$. The four fixed points of A in X are contained in $\operatorname{Fix}_{X}(Z)=\operatorname{Fix}_{B}(Z)$ and the quotient group $A / Z \cong C_{2}$ has four fixed points in Q. This is a contradiction.
If $g(B)=4$, then $e(B)=-6$ and the only possibility is $Q \cong \mathbb{P}_{1}$ and $\left|\operatorname{Fix}_{B}(Z)\right|=10$. This contradicts the fact that Z has at most eight fixed points in B since it has precisely eight fixed points in X.

In Lemma 4.24 we have reduced the classification to the cases $e\left(Y_{\min }\right) \in\{3,4,9,10,11\}$. In the following, we will exclude the cases $e\left(Y_{\min }\right) \in\{4,9,10$,$\} and describe the remaining cases more$ precisely. Recall that the maximal possible stabilizer subgroup of a Mori fiber is D_{12}, in particular, $m=0$ or $m \geq 4$.

Lemma 4.27. If $e\left(Y_{\min }\right)=3$, then $Y_{\min }=Y=\mathbb{P}_{2}$ and $X \rightarrow Y$ is branched along the curve $\left\{x_{1} x_{2}\left(x_{1}^{4}-\right.\right.$ $\left.\left.x_{2}^{4}\right)+x_{3}^{6}=0\right\}$. In particular, Y is equivariantly isomorphic to Mukai's T_{48}-example.

Proof. Let $M: Y \rightarrow \mathbb{P}_{2}$ denote a Mori reduction of Y and let $B \subset Y$ be the branch curve of the covering $X \rightarrow Y$. If $Y=Y_{\min }$, then $B=M(B)$ is a smooth sextic curve. If $Y \neq Y_{\min }$, then the Euler characteristic formula with $m \in\{4,6,8\}$ shows that $g(B) \in\{2,4,6\}$. The case $m=6, g(B)=4$ has been excluded by the previous lemma.

If $m=4$, then the stabilizer group of each Mori fiber is D_{12} and each Mori fiber meets B in two points. Furthermore, since in this case $g(B)=6$, the self-intersection of $\operatorname{Fix}_{X}(\sigma)$ in X equals ten and therefore $B^{2}=20$. The image $M(B)$ of B in $Y_{\min }$ has self-intersection $20+4 \cdot 4=36$ and follows to be an irreducible singular sextic.
If $m=8$, then $g(B)=2$ and $B^{2}=4$. Since the self-intersection number $M(B)^{2}$ must be a square, one checks that all possible invariant configurations of Mori fibers yield $M(B)^{2}=36$ and involve Mori fibers meeting B is two points. In particular, $M(B)$ is a singular sextic.

We study the action of T_{48} on the projective plane. As a first step, we may choose coordinates on \mathbb{P}_{2} such that the automorphism $-1 \in Q_{8}<T_{48}$ is represented as

$$
\widetilde{-1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We denote by V to the -1-eigenspace of this operator. For each element I, J, K there is a unique choice $\widetilde{I}, \widetilde{J}, \widetilde{K}$ in $\mathrm{SL}_{3}(\mathbb{C})$ such that $\widetilde{I}^{2}=\widetilde{J}^{2}=\widetilde{K}^{2}=\widetilde{-1}$. One checks $\widetilde{I J} \widetilde{K}=\widetilde{-1}$. Therefore $\widetilde{I}, \widetilde{J}, \widetilde{K}$ generate a subgroup of $\mathrm{SL}_{3}(\mathbb{C})$ isomorphic to Q_{8}. By construction $\widetilde{I}, \widetilde{J}, \widetilde{K}$ stabilze the vector space V. Up to isomorphisms, there is a unique faithful 2-dimensional representation of Q_{8} and it follows that I, J, K are represented as

$$
\widetilde{I}=\left(\begin{array}{ccc}
-i & 0 & 0 \\
0 & i & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{J}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{K}=\left(\begin{array}{lll}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We recall that the action of S_{3} on Q_{8} is given as follows: The element c of order three in S_{3} acts on Q_{8} by permuting I, J, K and an element d of order two acts by exchanging I and J and mapping K to $-K$. With $\mu=\sqrt{\frac{i}{2}}$ and $v=\frac{i}{\sqrt{2}}$ it follows that the elements c and d are represented as

$$
\widetilde{c}=\left(\begin{array}{ccc}
-i \mu & i \mu & 0 \\
\mu & \mu & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{d}=\left(\begin{array}{ccc}
-i v & -v & 0 \\
v & i v & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

In particular, there is a unique action of T_{48} on \mathbb{P}_{2}. In the following, we denote by $\left[x_{1}: x_{2}: x_{3}\right]$ homogeneous coordintes such that the action of T_{48} is as above. Using the explicit form of the T_{48}-action and the fact that the commutator subgroup of T_{48} is $Q_{8} \rtimes C_{3}$ one can check that any invariant curve of degree six is of the form

$$
C_{\lambda}=\left\{x_{1} x_{2}\left(x_{1}^{4}-x_{2}^{4}\right)+\lambda x_{3}^{6}=0\right\}
$$

In order to avoid this calculation, one can also argue that the polynomial $x_{1} x_{2}\left(x_{1}^{4}-x_{2}^{4}\right)$ is the lowest order invariant of the octahedral group $S_{4} \cong T_{48} / Z$.

The curve C_{λ} is smooth and it follows that $Y=Y_{\min }$. We may adjust the coordinates equivariantly such that $\lambda=1$ and find that our surface X is precisely Mukai's T_{48}-example.

Remark 4.28. As claimed by Mukai, the action of T_{48} on \mathbb{P}_{2} does indeed lift to a symplectic action of T_{48} on the double cover of \mathbb{P}_{2} branched along the invariant curve $\left\{x_{1} x_{2}\left(x_{1}^{4}-x_{2}^{4}\right)+x_{3}^{6}=0\right\}$. The elements of the commutator subgroup can be lifted to symplectic transformation on the double cover X.

The remaining generator d is an involution fixing the point $[0: 0: 1]$. Any involution τ with a fixed point p outside the branch locus can be lifted to a symplectic involution on the double cover X as follows:

The linearized action of τ at p has determinant ± 1. We consider the lifting $\tilde{\tau}$ of τ fixing both points in the preimage of p. Its linearization coincides with the linearization on the base and therefore also has determinant ± 1. In particular, $\tilde{\tau}$ is an involution. It follows that either $\tilde{\tau}$ or the second choice of a lifting $\sigma \tilde{\tau}$ acts symplectically on X.
The group generated by all lifted automorphisms is either isomorphic to T_{48} or to the full central extension E

$$
\{\mathrm{id}\} \rightarrow C_{2} \rightarrow E \rightarrow T_{48} \rightarrow\{\mathrm{id}\}
$$

acting on the double cover. Since $E_{\text {symp }} \neq E$ the later is impossible it follows that E splits as $E_{\text {symp }} \times C_{2}$ with $E_{\text {symp }}=T_{48}$.

Finally, we return to the remaining possibilities $e\left(Y_{\min }\right) \in\{4,9,10,11\}$.

Lemma 4.29. $e\left(Y_{\min }\right) \notin\{4,9,10\}$.

Proof. Recalling that the genus of the branch curve B is neither three nor four and that m is either zero or ≥ 4, we may exclude $e\left(Y_{\min }\right)=9,10$ using the Euler characteristic formula $12=e\left(Y_{\min }\right)+$ $m+g-1$. It remains to consider the case $Y_{\min }=\Sigma_{n}$ with $n>2$ and we claim that this is impossible.

Let $M=Y \rightarrow Y_{\min }=\Sigma_{n}$ denote a (possibly trivial) Mori reduction of Y. The image $M(B)$ of B in Σ_{n} is linearly equivalent to $-2 K_{\Sigma_{n}}$. Now $M(B) \cdot E_{\infty}=2(2-n)<0$ and it follows that $M(B)$ contains the rational curve E_{∞}. This is a contradiction since B does not contain any rational curves by Lemma 4.25 .

In the last remaining case, i.e., $e\left(Y_{\min }\right)=11$, the quotient surface Y is a G-minimal Del Pezzo surface of degree 1. Consulting [Dol08], Table 10.5, we find that Y is a hypersurface in weighted projective space $\mathbb{P}(1,1,2,3)$ defined by the degree six equation

$$
x_{0} x_{1}\left(x_{0}^{4}-x_{1}^{4}\right)+x_{2}^{3}+x_{3}^{2}
$$

This follows from the invariant theory of the group $S_{4} \cong T_{48} / Z$ and fact that Y is a double cover of a quadric cone Q in \mathbb{P}_{3} branched along the intersection of Q with a cubic hypersurface (cf. Theorem 3.6).
The linear system of the anticanonical divisor K_{Y} has precisely one base point p. In coordinates $\left[x_{0}: x_{1}: x_{2}: x_{3}\right]$ this point is given as $[0: 0: 1: i]$. It is fixed by the action of T_{48}. The linearization of T_{48} at p is given by the unique faithful 2-dimensional represention of T_{48}. This represention has implicitly been discussed above as a subrepresentation V of the three-dimensional representation of T_{48}. It follows that there is a unique action of T_{48} on Y. The branch curve B is linearly equivalent to $-2 K_{Y}$, i.e., $B=\{s=0\}$ for a section $s \in \Gamma\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)$ which is either invariant or semiinvariant.

By an adjunction formula for hypersurfaces in weighted projective space $\left.\mathcal{O}\left(-2 K_{Y}\right)\right)=\mathcal{O}_{Y}(2)$. The four-dimensional space of sections $\Gamma\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)$ is generated by the weighted homogeneous polynomials $x_{0}^{2}, x_{1}^{2}, x_{0} x_{1}, x_{2}$. We consider the map $Y \rightarrow \mathbb{P}\left(\Gamma\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)^{*}\right)$ associated to $\left|-2 K_{Y}\right|$. Since this map is equivariant with respect to $\operatorname{Aut}(Y)$, the fixed point p is mapped to a fixed point in $\mathbb{P}\left(\Gamma\left(Y, \mathcal{O}\left(-2 K_{Y}\right)\right)^{*}\right)$. It follows that the section corresponding to the homogeneous polynomial x_{2} is invariant or semi-invariant with respect to T_{48}. It is the only section of $\mathcal{O}\left(-2 K_{Y}\right)$ with this property since the representation of T_{48} on the span of $x_{0}^{2}, x_{1}^{2}, x_{0} x_{1}$ is irreducible.

The curve $B \subset Y$ defined by $s=0$ is connected and has arithmetic genus 2. Since T_{48} acts effectively on B and does not act on \mathbb{P}_{1} or a torus, it follows that B is nonsingular.

It remains to check that the action of T_{48} on Y lifts to a group of symplectic transformation on the double cover X branched along B. First note that B does not contain the base point p. For $I, J, K, c \in T_{48}$ we we choose liftings $\bar{I}, \bar{J}, \bar{K}, \bar{c} \in \operatorname{Aut}(X)$ fixing both points in $\pi^{-1}(p)=\left\{p_{1}, p_{2}\right\}$. The linearization of $\bar{I}, \bar{J}, \bar{K}, \bar{c}$ at p_{1} is the same as the linearization at p and in particular has determinant one. By the general considerations in Remark 4.28 the involution d can be lifted to a symplectic involution on X. The symplectic liftings of I, J, K, c, d generate a subgroup \tilde{G} of Aut (X) which is isomorphic to either T_{48} or to the central degree two extension of T_{48} acting on X. In analogy to Remarks 4.23 and 4.28 we conclude that $\tilde{G} \cong T_{48}$ and the action of T_{48} on Y induces a symplectic action of T_{48} on the double cover X.

This completes the classification of K3-surfaces with $T_{48} \times C_{2}$-symmetry. We have shown:

Theorem 4.30. Let X be a K3-surface with a symplectic action of the group T_{48} centralized by an antisymplectic involution σ with $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$. Then X is equivariantly isomorphic either to Mukai's T_{48}-example or to the double cover of

$$
\left\{x_{0} x_{1}\left(x_{0}^{4}-x_{1}^{4}\right)+x_{2}^{3}+x_{3}^{2}=0\right\} \subset \mathbb{P}(1,1,2,3)
$$

branched along $\left\{x_{2}=0\right\}$
Remark 4.31. The automorphism group of the Del Pezzo surface $Y=\left\{x_{0} x_{1}\left(x_{0}^{4}-x_{1}^{4}\right)+x_{2}^{3}+x_{3}^{2}=\right.$ $0\} \subset \mathbb{P}(1,1,2,3)$ is the trivial central extension $C_{3} \times T_{48}$. By contruction, the curve $B=\{s=0\}$ is invariant with respect to the full automorphism group. The double cover X of Y branched along B carries the action of a finite group \tilde{G} of order $2 \cdot 3 \cdot 48=288$ containing $T_{48}<\tilde{G}_{\text {symp }}$. Since T_{48} is a maximal group of symplectic transformations, we find $T_{48}=\tilde{G}_{\text {symp }}$ and therefore

$$
\{\mathrm{id}\} \rightarrow T_{48} \rightarrow \tilde{G} \rightarrow C_{6} \rightarrow\{\mathrm{id}\}
$$

In analogy to the proof of Claim 2.1 in [OZ02], one can check that 288 is the maximal order of a finite group H acting on a K3-surface with $T_{48}<H_{\text {symp }}$. It follows that \tilde{G} is maximal finite subgroup of $\operatorname{Aut}(X)$. For an arbitrary finite group H acting on a K3-surface with $\{\mathrm{id}\} \rightarrow T_{48} \rightarrow$ $H \rightarrow C_{6} \rightarrow\{$ id $\}$, there need however not exist an involution in H centralizing T_{48}.

K3-surfaces with an antisymplectic involution centralizing $C_{3} \ltimes C_{7}$

In this chapter it is illustrated that a classification of K3-surfaces with antisymplectic involution σ can be carried out even even if the centralizer G of σ inside the group of symplectic transformations is relatively small, i.e., well below the bound 96 obtianed in Theorem 3.25, and not among the maximal groups of symplectic transformations. We consider the group $G=C_{3} \ltimes C_{7}$, which is a subgroup of $L_{2}(7)$. The principles presented in Chapter 3 can be transferred to this group G and yield a description of K3-surfaces with $G \times\langle\sigma\rangle$-symmetry. Using this, we deduce the classification K3-surfaces with an action of $L_{2}(7) \times C_{2}$ announced in Section 4.1. The results presented in this chapter have appeared in [FH08].

To begin with, we present a family of K3-surfaces with $G \times\langle\sigma\rangle$-symmetry.
Example 5.1. We consider the action of G on \mathbb{P}_{2} given by one of its three-dimensional representations. After a suitable change of coordinates, the action of the commutator subgroup $G^{\prime}=C_{7}<G$ is given by

$$
\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[\lambda z_{0}: \lambda^{2} z_{1}: \lambda^{4} z_{2}\right]
$$

for $\lambda=\exp \left(\frac{2 \pi i}{7}\right)$ and C_{3} is generated by the permutation

$$
\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{2}: z_{0}: z_{1}\right]
$$

The vector space of G-invariant homogeneous polynomials of degree six is the span of $P_{1}=z_{0}^{2} z_{1}^{2} z_{2}^{2}$ and $P_{2}=z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}$.
The family $\mathbb{P}(V)$ of curves defined by polynomials in V contains exactly four singular curves, namely the curve defined by $z_{0}^{2} z_{1}^{2} z_{2}^{2}$ and those defined by $3 z_{0}^{2} z_{1}^{2} z_{2}^{2}-\zeta^{k}\left(z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}\right)$, where ζ is a nontrivial third root of unity, $k=1,2,3$. We let $\Sigma=\mathbb{P}(V) \backslash\left\{z_{0}^{2} z_{1}^{2} z_{2}^{2}=0\right\}$.
The double cover of \mathbb{P}_{2} branched along a curve $C \in \Sigma$ is a K3-surface (singular K3-surface if C is singular) with an action of $G \times C_{2}$ where C_{2} acts nonsymplectically. It follows that Σ parametrizes a family of K3-surface with $G \times C_{2}$-symmetry.
Remark 5.2. Let us consider the cyclic group Γ of order three generated by the transformation $\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{0}: \zeta z_{1}: \zeta^{2} z_{2}\right]$ and its induced action on the space Σ. One finds that the three irreducible singular G-invariant curves form a Γ-orbit. Furthermore, if two curves $C_{1}, C_{2} \in \Sigma$ are equivalent with respect to the action of Γ, then the corresponding $K 3$-surfaces are equivariantly isomorphic (see Section 5.3.2 for a detailed discussion).

Remark 5.3. The singular curve $C_{\text {sing }} \subset \mathbb{P}_{2}$ defined by $3 z_{0}^{2} z_{1}^{2} z_{2}^{2}-\left(z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}\right)$ has exactly seven singular points $p_{1}, \ldots p_{7}$ forming an G-orbit. Since they are in general position (cf. Proposition 5.15), the blow up of \mathbb{P}_{2} in these points defines a Del Pezzo surface $Y_{\text {Klein }}$ of degree two with an action of G. It is seen to be the double cover of \mathbb{P}_{2} branched along Klein's quartic curve

$$
C_{\text {Klein }}:=\left\{z_{0} z_{1}^{3}+z_{1} z_{2}^{3}+z_{2} z_{0}^{3}=0\right\}
$$

The proper transform B of $C_{\text {sing }}$ in $Y_{\text {Klein }}$ is a smooth G-invariant curve. It is a normalization of $C_{\text {sing }}$ and has genus three by the genus formula. The curve B coincides with the preimage of $C_{\text {Klein }}$ in $Y_{\text {Klein }}$. The minimal resolution $\tilde{X}_{\text {sing }}$ of the singular surface $X_{\text {sing }}$ defined as the double cover of \mathbb{P}_{2} branched along $C_{\text {sing }}$ is a K3-surface with an action of G. By construction, it is the double cover of $Y_{\text {Klein }}$ branched along B. In particular, $\tilde{X}_{\text {sing }}$ is the degree four cyclic cover of \mathbb{P}_{2} branched along $C_{\text {Klein }}$ and known as the Klein-Mukai-surface $X_{\text {KM }}$ (cf. Example 1.15).

Notation. In the following, the notion of " $G \times C_{2}$-symmetry" abbreviates a symplectic action of G centralized an antisymplectic action of C_{2}.

In this chapter we will show that the space $\mathcal{M}=\Sigma / \Gamma$ parametrizes K3-surfaces with $G \times C_{2^{-}}$ symmetry up to equivariant equivalence. More precisely, we prove:

Theorem 5.4. The K3-surfaces with a symplectic action of $G=C_{3} \ltimes C_{7}$ centralized by an antisymplectic involution σ are parametrized by the space $\mathcal{M}=\Sigma / \Gamma$ of equivalence classes of sextic branch curves in \mathbb{P}_{2}. The Klein-Mukai-surface occurs as the minimal desingularization of the double cover branched along the unique singular curve in \mathcal{M}.

Inside the family \mathcal{M} one finds two K3-surfaces with a symplectic action of the larger group $L_{2}(7)$ centralized by an antisymplectic involution.

Theorem 5.5. There are exactly two K3-surfaces with an action of the group $L_{2}(7)$ centralized by an antisymplectic involution. These are the Klein-Mukai-surface X_{KM} and the double cover of \mathbb{P}_{2} branched along the curve $\operatorname{Hess}\left(C_{\text {Klein }}\right)=\left\{z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}-5 z_{0}^{2} z_{1}^{2} z_{2}^{2}=0\right\}$.

5.1 Branch curves and Mori fibers

Let X be a K3 surface with an symplectic action of $G=C_{3} \ltimes C_{7}$ centralized by the antisymplectic involution σ. We consider the quotient $\pi: X \rightarrow X / \sigma=Y$. Since the action of G^{\prime} has precisely three fixed points in X and σ acts on this point set, we know that $\operatorname{Fix}_{X}(\sigma)$ is not empty. It follows that Y is a smooth rational surface with an effective action of the group G to which we apply the equivariant minimal model program. The following lemma excludes the possibility that a G-minimal model is a conic bundle. The argument resembles that in the proof of Lemma 3.2.
Lemma 5.6. A G-minimal model of Y is a Del Pezzo surface.
Proof. Assume the contrary and let $Y_{\min } \rightarrow \mathbb{P}_{1}$ be a G-equivariant conic bundle. Since G has no effective action on the base, there must be a nontrivial normal subgroup acting trivially on the base. This subgroup must be G^{\prime}. The action of G^{\prime} on the generic fiber has two fixed points and gives rise to a positive-dimensional G^{\prime}-fixed point set in $Y_{\min }$ and Y. Since the action of G^{\prime} on Y is induced by a symplectic action of G^{\prime} on X, this is a contradiction.

Remark 5.7. Since G has no subgroup of index two, the above proof also shows that $Y_{\min } \not \neq$ $\mathbb{P}_{1} \times \mathbb{P}_{1}$.

In analogy to the procedure of the previous chapter we exclude rational and elliptic ramification curves and show that π is branched along a single curve of genus greater than or equal to three.

Proposition 5.8. The set $\operatorname{Fix}_{X}(\sigma)$ consists of a single curve C and $g(C) \geq 3$.

Proof. We let $\left\{x_{1}, x_{2}, x_{3}\right\}=\operatorname{Fix}_{X}\left(G^{\prime}\right)$. Since G has no faithful two-dimensional representation, it has no fixed points in X an therefore acts transitively on $\left\{x_{1}, x_{2}, x_{3}\right\}$. It follows that the central involution σ, which fixes at at least one point x_{i}, fixes all three points by invariance. Now $\left\{x_{1}, x_{2}, x_{3}\right\} \subset \operatorname{Fix}_{X}(\sigma)$ implies that G^{\prime} has precisely three fixed points in Y. Let C_{i} denote the connected component of $\operatorname{Fix}_{X}(\sigma)$ containing x_{i}. Since G acts on the set $\left\{C_{1}, C_{2}, C_{3}\right\}$, it follows that either $C_{1}=C_{2}=C_{3}$ or no two of them coincide.

In the later case, it follows from Theorem 1.12 that at least two curves C_{1}, C_{2} are rational. The action of G^{\prime} on a rational curves C_{i} has two fixed points. We therefore find at least five G^{\prime}-fixed points in X contradicting $\left|\operatorname{Fix}_{X}\left(G^{\prime}\right)\right|=3$.

It follows that all three points x_{1}, x_{2}, x_{3} lie on one G-invariant connected component C of $\operatorname{Fix}_{X}(\sigma)$. The action of G on C is effective and it follows that C is not rational.

If $g(C)=1$, then an effective action of G on C would force G^{\prime} to act by translations on C, in particular freely, a contradiction.

If $g(C)=2$, then C is hyperelliptic. The quotient $C \rightarrow \mathbb{P}_{1}$ by the hyperellitic involution is $\operatorname{Aut}(C)$ equivariant and would induce an effective action of G on \mathbb{P}_{1}, a contradiction.

It follows that $g(C) \geq 3$ and it remains to check that there are no rational ramification curves.
We let n denote the total number of rational curves in $\operatorname{Fix}_{X}(\sigma)$. Since G^{\prime} acts freely on the complement of C in X, it follows that the number n must be a multiple of seven. Combining this observation with the bound $n \leq 9$ from Corollary 3.20 we conclude that n is either 0 or 7 .

We suppose $n=7$ and let m denote the total number of Mori contractions of a reduction $Y \rightarrow$ $Y_{\min }$. The Euler characeristic formula

$$
13-g(C)=e\left(Y_{\min }\right)+m-n
$$

with $n=7, g(C) \geq 3$ and $e\left(Y_{\text {min }}\right) \geq 3$ implies $m \leq 14$.
Let us first check that no Mori fiber E coincides with a rational branch curve B. If this was the case, then all seven rational branch curves coincide with Mori fibers. Rational branch curves have self-intersection -4 by Corollary 3.16. Before they may by contracted, they need to be transformed into (-1)-curves by earlier reduction steps. The remaining seven or less Mori contraction are not sufficient to achieve this transformation. It follows that each rational branch curve is mapped to a curve in $Y_{\text {min }}$ and not to a point.

We now first consider the case $m=14$. The Euler characteristic formula implies $Y_{\min } \cong \mathbb{P}_{2}$ and $g(C)=3$. Using our study of Mori fibers and branch curves in Section 3.2, in particular Remark 3.13 and Proposition 3.14, we see that no configuration of 14 Mori fibers is such that the images in $Y_{\min } \cong \mathbb{P}_{2}$ of any two rational branch curves have nonempty intersection. It follows that $m \leq 13$.

Let $R_{1}, \ldots, R_{7} \subset Y$ denote the rational branch curves. Each curve R_{i} has self-intersection -4 and therefore has nontrivial intersection with at least one Mori fiber. Let E_{1} be a Mori fiber meeting R_{1}, let $H \cong C_{3}$ be the stabilizer of R_{1} in G and let I be the stabilizer of E_{1} in G. Since $m \leq 13$ the group I is nontrivial. If I does not stabilize R_{1}, then E_{1} meets the branch locus in at least three points. This is contrary to Proposition 3.14. It follows that $I=H$. If E_{1} meets any other rational
branch curve R_{2}, then it meets all curves in the H-orbit through R_{2}. Since H acts freely on the set $\left\{R_{2}, \ldots, R_{7}\right\}$, it follows that E_{1} meets three more branch curves. This is again contradictory to Proposition 3.14.

Since $m \leq 13$ it follows that each rational branch curve meets exactly one Mori fiber. Their intersection can be one of the following three types:

1. $E_{i} \cap R_{i}=\left\{p_{1}, p_{2}\right\}$ or
2. $E_{i} \cap R_{i}=\{p\}$ and $\left(E_{i}, R_{i}\right)_{p}=2$ or
3. $E_{i} \cap R_{i}=\{p\}$ and $\left(E_{i}, R_{i}\right)_{p}=1$.

In all three cases the contraction of E_{i} alone does not transform the curve R_{i} into a curve on a Del Pezzo surface. So further reduction steps are needed and require the existence of Mori fibers F_{i} disjoint from $\bigcup R_{i}$. Each F_{i} is a (-2)-curve meeting $\bigcup E_{i}$ transversally in one point and the total number of Mori fibers exceeds our bound 13.

This contradiction yields $n=0$ and the proof of the proposition is completed.

5.2 Classification of the quotient surface Y

We now turn to a classification of the quotient surface Y.
Proposition 5.9. The surface Y is either G-minimal or the blow up of \mathbb{P}_{2} in seven singularities of an irreducible G-invariant sextic..

Proof. Since $n=0$, the Euler characteristic formula yields $m \leq 7$. The fact that G acts on the set of Mori fibers implies that $m \in\{0,3,6,7\}$. If $m \in\{3,6\}$, then G^{\prime} stabilizes every Mori fiber, and consequently it has more then three fixed points, a contradiction. Thus we must only consider the case $m=7$.

In this case the set of Mori fibers is a G-orbit and it follows that every Mori fiber has self-intersection -1 and therefore has nonempty intersection with $\pi(C)$ by Remark 3.13.

As before, the Euler characteristic formula implies that $g(C)=3$ and $Y_{\min }=\mathbb{P}_{2}$ and adjunction in X shows that $(\pi(C))^{2}=8$ in Y. The fact that $\pi(C)$ has nonempty intersection with seven different Mori fibers implies that its image D in $Y_{\min }$ has self-intersection either $15=8+7$ or $36=8+4 \cdot 7$. Since the first is impossible it follows that $E \cdot \pi(C)=2$ for all Mori fibers E and the G-invariant irreducible sextic D has seven singular points corresponding to the images of E in \mathbb{P}_{2}.

Corollary 5.10. If Y is not G-minimal, then X is the minimal desingularization of a double cover of \mathbb{P}_{2} branched along an irreducible G-invariant sextic with seven singular points.

We conclude this section with a classification of possible G-minimal models of Y.
Proposition 5.11. The surface $Y_{\min }$ is either a Del Pezzo surface of degree two or \mathbb{P}_{2}.

Proof. The case $Y_{\min }=\mathbb{P}_{1} \times \mathbb{P}_{1}$ is excluded by Example 3.7 and also by Remark 5.7.
Thus $Y_{\min }=Y_{d}$ is a Del Pezzo surface of degree $d=1, \ldots, 9$ which is a blowup of \mathbb{P}_{2} in $9-d$ points.

If $Y_{\min }=Y_{1}$ the anticanonical map has exactly one base point. This point has to be G-fixed and since G has no faithful two-dimensional representations, this case does not occur.

It remains to eliminate $d=8, \ldots, 3$. In these cases the sets \mathcal{S} of (-1)-curves consist of $1,2,6,10$, 16 or 27 elements, respectively (cf. Table 3.1). The G-orbits in \mathcal{S} consist of 1,3,7 or 21 curves and there must be orbits of length three or one. If G stablizes a curve in \mathcal{S}, then its contraction gives rise to a two-dimensional representation of G which does not exist. If G has an orbit consisting of three curves, then G^{\prime} stabilizes each of the curves in this orbit. Thus G^{\prime} has at least six fixed points in $Y_{\text {min }}$ and in Y. This contradicts the fact that $\left|\operatorname{Fix}_{Y}\left(G^{\prime}\right)\right|=3$.

5.3 Fine classification - Computation of invariants

We have reduced the classification of K 3 -surfaces with $G \times C_{2}$-symmetry to the study of equivariant double covers of rational surfaces Y branched along a single invariant curve of genus $g \geq 3$. Here Y is either \mathbb{P}_{2}, the blow-up of \mathbb{P}_{2} in seven singular points of an irreducible G-invariant sextic, or a Del Pezzo surface of degree two.

5.3.1 The case $Y=Y_{\min }=\mathbb{P}_{2}$

An effective action of G on \mathbb{P}_{2} is given by an injective homomorphisms $G \rightarrow \mathrm{PSL}_{3}(\mathbb{C})$. There are two central degree three extension of G, the trivial extension and $C_{9} \ltimes C_{7}$. A study of their three-dimensional representation reveals that in both cases the action of G on \mathbb{P}_{2} is given by an irreducible representation $G \hookrightarrow \mathrm{SL}_{3}(\mathbb{C})$. There are two isomorphism classes of irreducible 3dimensional representations. Since these differ by a group automorphism and the corresponding actions on \mathbb{P}_{2} are therefore equivalent, we may assume that in appropriately chosen coordinates a generator of G^{\prime} acts by

$$
\begin{equation*}
\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[\lambda z_{0}, \lambda^{2}, z_{1}, \lambda^{4} z_{2}\right], \tag{5.1}
\end{equation*}
$$

where $\lambda=\exp \frac{2 \pi i}{7}$ and a generator of C_{3} acts by the cyclic permutation τ which is defined by

$$
\begin{equation*}
\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{2}: z_{0}: z_{1}\right] . \tag{5.2}
\end{equation*}
$$

A homogeneous polynomial defining an invariant curve must be a G-semi-invariant with G^{\prime} acting with eigenvalue one. The G^{\prime}-invariant monomials of degree six are

$$
\mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]_{(6)}^{G^{\prime}}=\operatorname{Span}\left\{z_{0}^{2} z_{1}^{2} z_{2}^{2}, z_{0}^{5} z_{1}, z_{2}^{5} z_{0}, z_{1}^{5} z_{2}\right\} .
$$

Letting $P_{1}=z_{0}^{2} z_{1}^{2} z_{2}^{2}$ and $P_{2}=z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}$, it follows that

$$
\mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]_{(6)}^{G}=\operatorname{Span}\left\{P_{1}, P_{2}\right\}=: V .
$$

There are two G-semi-invariants which are not invariant, namely $z_{0}^{5} z_{1}+\zeta z_{2}^{5} z_{0}+\zeta^{2} z_{1}^{5} z_{2}$ for $\zeta^{3}=1$ but $\zeta \neq 1$. By direct computation one checks that the curves defined by these polynomials are smooth and that in both cases all τ-fixed points in \mathbb{P}_{2} lie on them. Thus, τ has only three fixed points on the K3-surface X obtained as a double cover and therefore does not act symplectically (cf. Table 1.1). Consequently, G does not lift to an action by symplectic transformations on the K3surfaces defined by these two curves. Hence it is enough to consider ramified covers $X \rightarrow Y=\mathbb{P}_{2}$, where the branch curves are defined by invariant polynomials $f \in V$.

We wish to determine which polynomials $P_{\alpha, \beta}=\alpha P_{1}+\beta P_{2}$ define singular curves. Since $\operatorname{Fix}(\tau)=$ $\left\{\left[1: \zeta: \zeta^{2}\right] \mid \zeta^{3}=1\right\}$, the curves which contain τ-fixed points are defined by condition $\alpha+$ $3 \zeta \beta=0$. Let $C_{P_{1}}=\left\{P_{1}=0\right\}$ and let C_{ζ} be the curve defined by $P_{\alpha, \beta}$ for $\alpha+3 \zeta \beta=0$. A direct computation shows that C_{ζ} is singular at the point $\left[1: \zeta: \zeta^{2}\right]$. We let $\Sigma_{\text {reg }}$ be the complement of this set of four curves, $\Sigma_{\text {reg }}=\mathbb{P}(V) \backslash\left\{C_{P_{1}} ; C_{\zeta} \mid \zeta^{3}=1\right\}$.

Lemma 5.12. A curve $C \in \mathbb{P}(V)$ is smooth if and only if $C \in \Sigma_{\text {reg }}$.

Proof. Let $C \in \Sigma_{\text {reg }}$. Since τ has no fixed points in C by definition and every subgroup of order three in G is conjugate to $\langle\tau\rangle$, it follows that any G-orbit $G . p$ through a point $p \in C$ has length three or 21.

The only subgroup of order seven in G is the commutator group G^{\prime}. So the G-orbits of length three are the orbits of the G^{\prime}-fixed points $[1: 0: 0],[0: 1: 0],[0: 0: 1]$. One checks by direct computation that every $C \in \Sigma_{\text {reg }}$ is smooth at these three points.

An irreducible curve of degree six has at most ten singular points by the genus formula. Suppose that C is singular at some point q. Then it is singular at each of the 21 points in $G . q$ and C must be reducible. Considering the G-action on the space of irreducible components of C yields a contradiction and it follows that C is smooth.

For any curve $C \in \Sigma_{\text {reg }}$ the double cover of \mathbb{P}_{2} branched along C is a K3-surface X_{C} with an action of a degree two central extension of G. By the following lemma, this action is always of the desired type.

Lemma 5.13. For every $C \in \Sigma_{\text {reg }}$ the K3-surface X_{C} carries an action of the group $G \times\langle\sigma\rangle$. The group G acts by symplectic transformations on X_{C} and σ denotes the covering involution.

Proof. It follows from the group structure of G that the central degree two extension of G acting on X_{C} splits as $G \times C_{2}$. The factor C_{2} is by construction generated by the covering involution σ. It remains to check that G acts symplectically. As the commutator subgroup G^{\prime} acts symplectically it is sufficient to check whether τ lifts to a symplectic automorphism. Consider the τ-fixed point $p=[1: 1: 1]$ and check that the linearization of τ at p is in $\operatorname{SL}(2, \mathbb{C})$. Since p is not contained in C, it follows that the linearization of τ at a corresponding fixed point in X_{C} is also in $\operatorname{SL}(2, \mathbb{C})$. Consequently, the group G acts by symplectic transformations on X_{C}.

5.3.2 Equivariant equivalence

We wish to describe the space of K3-surfaces with $G \times C_{2}$-symmetry modulo equivariant equivalence. For this, we study the family of K3-surfaces parametrized by the family of branch curves $\Sigma_{\text {reg. }}$. Consider the cyclic group Γ of order three in PGL($3, \mathbb{C}$) generated by

$$
\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{0}: \zeta z_{1}: \zeta^{2} z_{2}\right]
$$

for $\zeta=\exp \left(\frac{2 \pi i}{3}\right)$. The group Γ acts on $\Sigma_{\text {reg }}$ and by the following proposition the induced equivalence relation is precisely equivariant equivalence formulated in Definition 4.3.

Proposition 5.14. Two K3-surfaces $X_{C_{1}}$ and $X_{C_{2}}$ for $C_{1}, C_{2} \in \Sigma_{\text {reg }}$ are equivariantly equivalent if and only if $C_{1}=\gamma C_{2}$ for some $\gamma \in \Gamma$, i.e., the quotient $\Sigma_{\text {reg }} / \Gamma$ parametrizes equivariant equivalence classes of K3-surfaces X_{C} for $C \in \Sigma_{\text {reg }}$.

Proof. If two K3-surfaces $X_{C_{1}}$ and $X_{C_{2}}$ for $C_{1}, C_{2} \in \Sigma_{\text {reg }}$ are equivariantly equivalent, then the isomorphism $X_{C_{1}} \rightarrow X_{C_{2}}$ induces an automorphism of \mathbb{P}_{2} mapping C_{1} to C_{2}.
Let $C \in \Sigma_{\text {reg }}$ and for $T \in \mathrm{SL}_{3}(\mathbb{C})$ assume that $T(C) \in \Sigma_{\text {reg }}$. We consider the group span S of $T G T^{-1}$ and G. By Lemma 5.13, the group G acts by symplectic transformations on X_{C} and $X_{T(C)}$. We argue precisely as in the proof of this lemma to see that $T G T^{-1}$ also acts symplectically on the K3-surface $X_{T(C)}$. It follows that S is acting as a group of symplectic transformations on this K3-surface.

If $S=G$, then T normalizes G. The normalizer N of G in $\operatorname{PGL}_{3}(\mathbb{C})$ is the product $\Gamma \times G$ and it follows that $g T$ is contained in Γ for some $g \in G$ and $T(C)=g T(C)=\gamma C$.
Note that $L_{2}(7)$ is the only group in Mukai's list which contains G. Therefore, S is a subgroup of $L_{2}(7)$. The group G is a maximal subgroup of $L_{2}(7)$ and if $S \neq G$, then it follows that $S=L_{2}(7)$. Any two subgroups of order 21 in $L_{2}(7)$ are conjugate. This implies the existence of $s \in S=L_{2}(7)$ such that $s T G T^{-1} s^{-1}=G$. Now $s T \in N=\Gamma \times G$ can be written as $s T=\gamma g$ for $(\gamma, g) \in \Gamma \times G$. By assumption, s stabilizes $T(C)$ and $T(C)=s T(C)=\gamma g(C)=\gamma C$. This completes the proof of the proposition.

5.3.3 The case $Y \neq Y_{\text {min }}$

Let us now consider the three singular irreducible curves in our family $\mathbb{P}(V)$. They are identified by the action of Γ. Using Corollary 5.10 we see that if $Y=X / \sigma$ is not G-minimal, then, up to equivariant equivalence, the K 3 -surface X is the minimal desingularization of the double cover of \mathbb{P}_{2} branched along $C_{\zeta=1}=C_{\text {sing }}$ and Y is the blow-up of \mathbb{P}_{2} in the seven singular points of $C_{\text {sing }}$. These points are the G^{\prime}-orbit of $[1: 1: 1]$. In the following propostion we prove that these are in general position and therefore Y is a Del Pezzo surface.

Proposition 5.15. If Y is not minimal, then it is the Del Pezzo surface of degree two which arises by blowing up the seven singular points p_{1}, \ldots, p_{7} on the curve $C_{\text {sing }}$ in \mathbb{P}_{2}. The corresponding map $Y \rightarrow \mathbb{P}_{2}$ is G-equivariant and therefore a Mori reduction of Y.

Proof. We show that the points $\left\{p_{1}, \ldots, p_{7}\right\}=G^{\prime}[1: 1: 1]$ are in general position, i.e., no three lie on one line and no six lie on one conic. It follows from direct computation that no three points in $G^{\prime} .[1: 1: 1]$ lie on one line. If $p_{1}, \ldots p_{6}$ lie on a conic Q, then $g . p_{1}, \ldots, g . p_{6}$ lie on $g . Q$ for every $g \in G$. Since $\left\{p_{1}, \ldots, p_{7}\right\}$ is a G-invariant set, the conics Q and $g . Q$ intersect in at least five points and therefore coincide. It follows that Q is an invariant conic meeting $C_{\text {sing }}$ at its seven singularities and $\left(Q, C_{\text {sing }}\right) \geq 14$ implies $Q \subset C_{\text {sing }}$, a contradiction.

5.4 Klein's quartic and the Klein-Mukai surface

In this section we show that the Del Pezzo surface discussed in Proposition 5.15 above can be realized as the double cover of \mathbb{P}_{2} branched along Klein's quartic curve.

Proposition 5.16. A Del Pezzo surface of degree two with an action of G is equivariantly isomorphic to the double cover $Y_{\text {Klein }}$ of \mathbb{P}_{2} branched along Klein's quartic curve.

Proof. Recall that the anticanonical map of a Del Pezzo surface Y of degree two defines a 2:1 map to \mathbb{P}_{2}. This map is branched along a smooth curve of degree four and equivariant with respect to
$\operatorname{Aut}(Y)$. We obtain an action of G on \mathbb{P}_{2} stabilizing a smooth quartic. As before, we may choose coordinates such that G is acting as in equations (5.1) and (5.2). Then

$$
\mathbb{C}\left[z_{0}: z_{1}: z_{2}\right]_{(4)}^{G^{\prime}}=\operatorname{Span}\left\{z_{0}^{3} z_{2}, z_{1}^{3} z_{0}, z_{2}^{3} z_{1}\right\} .
$$

is a direct sum of G-eigenspaces. The eigenspace of the eigenvalue ζ is spanned by the polynomial $Q_{\zeta}:=z_{0}^{3} z_{2}+\zeta z_{2}^{3} z_{1}+\zeta^{2} z_{1}^{3} z_{0}$ with ζ being a third root of unity.
In order to take into account equivariant equivalence we consider the cyclic group $\Gamma \subset \mathrm{SL}_{3}(\mathbb{C})$ which is generated by the transformation $\gamma,\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{0}: \zeta z_{1}: \zeta^{2} z_{2}\right]$. The induced action on $\mathbb{C}\left[z_{0}: z_{1}: z_{2}\right]_{(4)}^{G^{\prime}}$ is transitive on the G-eigenspaces spanned by the Q_{ζ}. Consequently, up to equivariant equivalence, we may assume that $Y \rightarrow \mathbb{P}_{2}$ is branched along Klein's curve $C_{\text {Klein }}$ which is defined by Q_{1}.

Corollary 5.17. A Del Pezzo surface of degree two with an action of G is never G-minimal. Its Mori reduction $Y_{\text {Klein }} \rightarrow \mathbb{P}_{2}$ is precisely the map discussed in Proposition 5.15.

We summarize our observartions in the following proposition.
Proposition 5.18. If X is a K3-surface with a symplectic G-action centralized by an antisymplectic involution σ, then $Y_{\text {min }}=\mathbb{P}_{2}$. In all but one case $X / \sigma=Y=Y_{\text {min }}$. In the exceptional case $Y=Y_{\text {Klein, }}$, the Mori reduction $Y \rightarrow Y_{\text {min }}$ is the contraction of seven (-1)-curves to the singular points of $C_{\text {sing }}$ and the branch set B of $X \rightarrow Y$ is the proper transform of $C_{\text {Klein }}$ in Y.

Proof. It remains to prove that B is the proper transform of $C_{\text {Klein }}$ in Y. Suppose that the branch curve of $X \rightarrow Y$ is some other curve \widetilde{B} linearly equivalent to $-2 K_{Y}$. Let $I:=\widetilde{B} \cap B$ and note that $|I| \leq B \cdot \widetilde{B}=4 K_{Y}^{2}=8$. Since G has no fixed points in B, it follows that $|I|=3$ and that I is a G-orbit. Thus the intersection multiplicities at the three points in $\widetilde{B} \cap B$ are the same. Since 3 does not divide 8 , this is a contradiction.

In order to complete the proof of Theorem 5.4 it remains to show that the action of G on $Y_{\text {Klein }}$ lifts to a group of symplectic transformation on the K3-surface $X=X_{K M}$ defined as a double cover of $Y_{\text {Klein }}$ branched along the proper transform of $C_{\text {sing }}$.
Since G stabilizes $C_{\text {Klein }}$ and does not admit nontrivial central extensions of degree two, it lifts to a subgroup of $\operatorname{Aut}\left(Y_{\text {Klein }}\right)$ and subsequently to a subgroup of $\operatorname{Aut}(X)$.

The covering involution $Y_{\text {Klein }} \rightarrow \mathbb{P}_{2}$, lifts to a holomorphic transformation of X where we also find the involution defining $X \rightarrow Y_{\text {Klein }}$. These two transformations generate a group F of order four. The elements of F all have a positive-dimensional fixed point set. It follows that F acts solely by nonsymplectic transformations and is therefore isomorphic to C_{4}. The full preimage of G in $\operatorname{Aut}(X)$ splits as $G \times C_{4}$.
Since the commutator group G^{\prime} automatically acts by symplectic transformations, we must only check that the lift of the cyclic permutation $\tau,\left[z_{0}: z_{1}: z_{2}\right] \mapsto\left[z_{2}: z_{0}: z_{1}\right]$, acts symplectically. As above, this follows from a linearization argument at a τ-fixed point not in $C_{\text {Klein }}$.

In conclusion, up to equivalence there is a unique action of G by symplectic transformations on the K3-surface $X_{K M}$. It is centralized by a cyclic group of order four which acts faithfully on the symplectic form.

The Klein-Mukai-surface is the only surface with $G \times C_{2}$-symmetry for which $Y \nsubseteq \mathbb{P}_{2}$. As in the introduction of this chapter, we define Σ as the complement of $C_{P_{1}}$ in $\mathbb{P}(V)$. Then $\Sigma=\Sigma_{\text {reg }} \cup$ $\left\{C_{\zeta} \mid \zeta^{3}=1\right\}$. Using this notation the space

$$
\mathcal{M}=\Sigma / \Gamma
$$

parametrizes the space of $K 3$-surfaces with $G \times C_{2}$-symmetry up to equivariant equivalence. This completes the proof of Theorem 5.4.

5.5 The group $L_{2}(7)$ centralized by an antisymplectic involution

We consider the simple group of order 168. This group is $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$ and usually denoted by $L_{2}(7)$. It contains our group $G=C_{3} \ltimes C_{7}$ as a subgroup. Since $L_{2}(7)$ is a simple group, if it acts on a K3-surface, it automatically acts by symplectic transformations.

We wish to prove Theorem 5.5 stating that there are exactly two K3-surfaces with an action of the group $L_{2}(7)$ centralized by an antisymplectic involution. These are the Klein-Mukai-surface $X_{K M}$ and the double cover of \mathbb{P}_{2} branched along the curve $\operatorname{Hess}\left(C_{\text {Klein }}\right)=\left\{z_{0}^{5} z_{1}+z_{2}^{5} z_{0}+z_{1}^{5} z_{2}-\right.$ $\left.5 z_{0}^{2} z_{1}^{2} z_{2}^{2}=0\right\}$.
We have to check which elements of \mathcal{M} have the symmetry of the larger group. The Klein-Mukai-surface is known to have $L_{2}(7) \times C_{4}$-symmetry (cf. Example 1.15). If $X \neq X_{K M}$ has $L_{2}(7)$-symmetry, then it follows from the considerations of the previous sections that X is an $L_{2}(7)$-equivariant double cover of \mathbb{P}_{2} branched along a smooth $L_{2}(7)$-invariant sextic curve. I.e., it remains to identify the surfaces with $L_{2}(7)$-symmetry in the family parametrized by $\Sigma_{\text {reg }} / \Gamma$.

Lemma 5.19. The action of $L_{2}(7)$ on \mathbb{P}_{2} is necessarily given by a three-dimensional represention.

Proof. The lemma follows from the fact that the group $L_{2}(7)$ does not admit nontrivial degree three central extensions. This can be derived from the cohomology group $H^{2}\left(L_{2}(7), \mathbb{C}^{*}\right) \cong C_{2}$ known as the Schur Multiplier.

There are two isomorphism classes of three-dimensional representations and these differ by an outer automorphism. We may therefore consider the particular representation given in Example 1.15. One checks that the curve $\operatorname{Hess}\left(C_{\text {Klein }}\right)$ is $L_{2}(7)$-invariant. The maximal possible isotropy group is C_{7} and each $L_{2}(7)$-orbit in Hess $\left(C_{\text {Klein }}\right)$ consists of at least 21 elements. If there was another $L_{2}(7)$-invariant curve C in $\Sigma_{\text {reg }}$, then the invariant set $C \cap \operatorname{Hess}\left(C_{\text {Klein }}\right)$ consists of at most 36 points. This is a contradiction and it follows that $\operatorname{Hess}\left(C_{\text {Klein }}\right)$ is the only $L_{2}(7)$-invariant curve in $\Sigma_{\text {reg }}$.
It remains to check that $L_{2}(7)$ lifts to a subgroup of $\operatorname{Aut}\left(X_{\text {Hess }\left(C_{\text {Klein }}\right)}\right)$: On $X_{\text {Hess }\left(C_{\text {Klein }}\right)}$ we find an action of a central degree two extension E of $L_{2}(7)$. Since $E \neq E_{\text {symp }}$ and $L_{2}(7)$ is simple, the subgroup of symplectic transformations inside E must be isomorphic to $L_{2}(7)$.

It follows that X_{KM} and the double cover of \mathbb{P}_{2} branched along Hess $\left(C_{\text {Klein }}\right)$ are the only examples of K3-surfaces with $L_{2}(7) \times C_{2}$ symmetry. This completes the proof of Theorem 5.5.

Remark 5.20. If we consider the quotient $Y_{\text {Klein }}$ of $X_{\text {KM }}$ by the antisymplectic involution $\sigma \in C_{4}$, this surface was seen not to be minimal with respect to the action of $C_{3} \ltimes C_{7}$. It is however $L_{2}(7)$-minimal as we cannot find a equivariant contraction morphism blowing down an orbit of disjoint (-1)-curves in $Y_{\text {Klein }}$. Such an orbit would have to consists of seven Mori fibers. The only subgroup of index seven is S_{4}. A Mori fiber of self-intersection (-1) does however not admit an action of the group S_{4} (cf. Proof of Theorem 3.25).

The simple group of order 168

In this chapter we consider finite groups containing $L_{2}(7)$, the simple group of order 168, and their actions on K3-surfaces. Based on our considerations about $L_{2}(7) \times C_{2}$-actions on K3-surfaces in Section 5.5 we derive a classification result (Theorem 6.1). This gives a refinement of a latticetheoretic result due to Oguiso and Zhang [OZ02]. The main part of this chapter is dedicated to proving the non-existence of K3-surfaces with an action of the group $L_{2}(7) \times C_{3}$ (Theorem 6.3) using equivariant Mori reduction.

6.1 Finite groups containing $L_{2}(7)$

If H is a finite group acting on a K3-surface and $L_{2}(7) \supsetneqq H$, then it follows from Mukai's theorem and the fact that $L_{2}(7)$ is simple, that H fits into the short exact sequence

$$
1 \rightarrow L_{2}(7)=H_{\text {symp }} \rightarrow H \rightarrow C_{m} \rightarrow 1
$$

for some $m \in \mathbb{N}$. As it is noted by Oguiso and Zhang, Claim 2.1 in [OZ02], it follows from Proposition 3.4 in [Muk88] that $m \in\{1,2,3,4,6\}$.

The action of H on $L_{2}(7)$ by conjugation defines a homomorphism $H \rightarrow \operatorname{Aut}\left(L_{2}(7)\right)$. Factorizing by the group of inner automorphism of $L_{2}(7)$ we obtain a homomorphism

$$
C_{m} \cong H / L_{2}(7) \rightarrow \operatorname{Out}\left(L_{2}(7)\right) \cong C_{2}
$$

If H is not the nontrivial semidirect product $L_{2}(7) \rtimes C_{2}$, this homomorphism has a nontrivial kernel. In particular, we find a cyclic group $C_{k}<C_{m}$ centralizing $L_{2}(7)$. If k is even, we may apply our results on K3-surfaces with $L_{2}(7) \times C_{2}$-symmetry from the previous chapter.

If $m=3,6$, then $k=3$ or $k=6$. These cases may be excluded as is shown in [OZ02], Added in proof, Proposition 1. An independent proof of this fact, i.e., the non-existence of K3-surfaces with $L_{2}(7) \times C_{3}$ symmetry, using equivariant Mori theory, in particular the classification of $L_{2}(7)$ minimal models, is given below (Theorem 6.3).

We summarize our observations about $K 3$-surfaces with $L_{2}(7)$-symmetry in the following theorem, which improves the classification result due to Oguiso and Zhang.

Theorem 6.1. Let H be finite group acting on a K3-surface X with $L_{2}(7) \supsetneqq H$. Then

- $\left|H / L_{2}(7)\right| \in\{2,4\}$.
- If $\left|H / L_{2}(7)\right|=4$, then $H=L_{2}(7) \times C_{4}$ and $X \cong X_{\mathrm{KM}}$.
- If $\left|H / L_{2}(7)\right|=2$ and $H=L_{2}(7) \times C_{2}$, then either $X \cong X_{\text {KM }}$ or $X \cong X_{\text {Hess }\left(C_{\text {Klein }}\right)}$

The first statement follows from the non-existence of K3-surfaces with $L_{2}(7) \times C_{3}$-symmetry (Theorem 6.3 below) and the third statement follows from Theorem 5.5. The remaining part ist covered in the following lemma (cf. Main Theorem in [OZ02]).

Lemma 6.2. If X is a K3-surface with an action of a finite group containing the $L_{2}(7)$ as a subgroup of index four, then X is the Klein-Mukai-surface.

Proof. We let X be a K3-surface and H be a finite subgroup of $\operatorname{Aut}(X)$ with $L_{2}(7)<H$ and $\left|H / L_{2}(7)\right|=4$.

Since $L_{2}(7)$ is simple and a maximal group of symplectic transformations, it coincides with the group of symplectic transformations in H. In particular, $H / L_{2}(7)=C_{4}$ and a group $\langle\sigma\rangle$ of order two is contained in the kernel of the homomorphism $H \rightarrow \operatorname{Aut}\left(L_{2}(7)\right)$. It follows that we are in the setting of Theorem 5.5 where $\Lambda:=H /\langle\sigma\rangle$ acts on $Y=X / \sigma$. If $X \neq X_{K M}$, then $Y=\mathbb{P}_{2}$. This possibility needs to be eliminated.

Let τ be any element of Λ which is not in $L_{2}(7)$ and let $\Gamma=C_{3} \ltimes C_{7}<L_{2}(7)$. Since any two subgroups of order 21 in $L_{2}(7)$ are conjugate by an element of $L_{2}(7)$, it follows that there exists $h \in L_{2}(7)$ with $(h \tau) \Gamma(h \tau)^{-1}=\Gamma$. Thus, the normalizer $N(\Gamma)$ of Γ in Λ is group of order 42 which also normalizes the commutator subgroup Γ^{\prime} and therefore stabilizes its set F of fixed points.
Using coordinates $\left[z_{0}: z_{1}: z_{2}\right]$ of \mathbb{P}_{2} as in Theorem 5.5 one checks by direct computation that the only transformations in $\operatorname{Stab}(F)$ which stabilize the branch curve Hess $\left(C_{\text {Klein }}\right)$ are those in Γ itself. This contradiction shows that $Y \neq \mathbb{P}_{2}$ and therefore $X=X_{K M}$.

6.2 Non-existence of K3-surfaces with an action of $L_{2}(7) \times C_{3}$

The method of equivariant Mori reduction can be applied to obtain both classification and nonexistence results. In the following, we exemplify a general approach to prove non-existence of K3surfaces with specified symmetry by considering the group $L_{2}(7) \times C_{3}$ and give an independent proof of the following observation of Oguiso and Zhang [OZ02]:

Theorem 6.3. There does not exist a K3-surface with an action of $L_{2}(7) \times C_{3}$.

The remainder of this chapter is dedicated to the proof of this theorem.

6.2.1 Global structure

Let $G \cong L_{2}(7)$, let $D \cong C_{3}$, and assume there exists a K3-surface X with a holomorphic action of $G \times D$. Since G is a simple group and a maximal group of symplectic transformations on a

K3-surface, it follows that G acts symplectically whereas the action of D is nonsymplectic. We obtain the following commuting diagram.

Here b_{X} is the blow-up of the isolated D-fixed points in X. The singularities of X / D correspond to isolated D-fixed points. Since the linearization of the D-action at an isolated fixed point is locally of the form $(z, w) \mapsto(\chi z, \chi w)$ for some nontrivial character $\chi: D \rightarrow \mathbb{C}^{*}$, each singularity of X / D is resolved by a single blow-up. We let b_{Y} denote the simultanious blow-up of all singularities of Y. We fix a G-Mori reduction $M_{\text {red }}: \hat{Y} \rightarrow \hat{Y}_{\text {min }}=Z$. All maps in the diagram are G-equivariant. By Theorem 1.8, the surface \hat{Y} is rational. As conic bundles do not admit an action of G (cf. Lemma 5.6), we know that $\hat{Y}_{\text {min }}$ is a Del Pezzo surface. The following lemma specifies Z.

Lemma 6.4. The Del Pezzo surface Z is either \mathbb{P}_{2} or a surface obtained from \mathbb{P}_{2} by blowing up 7 points in general position. In the later case, Z is a G-equivariant double cover of \mathbb{P}_{2} branched along Klein's quartic curve. The action of G on \mathbb{P}_{2} is given by a three-dimensional representation.

Proof. The first part of the lemma follows from our observations in Example 3.8, the last part has been discussed in Lemma 5.19. If Z is a Del Pezzo surface of degree two, then the anticanonical map realizes it as an equivariant double cover of \mathbb{P}_{2} branched along a smooth quartic curve C. We choose coordinates on \mathbb{P}_{2} such that the action of G is given by the representation ρ of Example 1.15 (or its dual represenation ρ^{*}) and have already seen that Klein's quartic curve

$$
C_{\text {Klein }}=\left\{x_{1} x_{2}^{3}+x_{2} x_{3}^{3}+x_{3} x_{1}^{3}=0\right\} \subset \mathbb{P}_{2}
$$

is G-invariant. If $C \neq C_{\text {Klein, }}$, then $C \cap C_{\text {Klein }}$ is a G-invariant subset of \mathbb{P}_{2}. Since the maximal cyclic subgroup of G is of order seven, it follows that a G-orbit $G . p$ for a point $p \in C \cap C_{\text {Klein }}$ consists of at least 24 elements. Since $C \cap C_{\text {Klein }}$ however consists of at most 16 points, this is a contradiction. Therefore, $C=C_{\text {Klein }}$ and the lemma follows.

D-fixed points

The map π is in general ramified both at points and along curves. Let x be an isolated D-fixed point in X. As was noted above, the isotropy representation of the nonsymplectic D-action at x in local coordinates (z, w) is given by $(z, w) \mapsto(\chi z, \chi w)$ for some nontrivial character $\chi: D \rightarrow \mathbb{C}^{*}$. The action of D on the rational curve \hat{E} obtained by blowing up x is trivial and therefore \hat{E} is contained in the ramification set $\operatorname{Fix}_{\hat{X}}(D)$. Let $\left\{\hat{E}_{i}\right\}$ denote the set of (-1)-curves in \hat{X} obtained from blowing up isolated D-fixed points in X and define $E_{i}=\hat{\pi}\left(\hat{E}_{i}\right)$.
If C is a curve of D-fixed points in X, it follows that $\hat{\pi}$ is ramified along $b_{X}^{-1}(C)$. Let $\left\{\hat{F}_{j}\right\}$ denote the set of all ramification curves of type $b_{X}^{-1}(C)$ and define $F_{j}=\hat{\pi}\left(\hat{F}_{j}\right)$. The map $\hat{\pi}$ is a D-quotient and ramified along curves

$$
\operatorname{Fix}_{\hat{X}}(D)=\bigcup \hat{E}_{i} \cup \bigcup \hat{F}_{j} .
$$

6.2.2 Mori contractions and C_{7}-fixed points

Many aspects of the group theory of G can be well understood in term of its generators α, β, γ of order $7,3,2$, respectively. Since the action of G on \mathbb{P}_{2} is given by a three-dimensional irreducible representation, the action of G on Z is given explicitly in terms of α, β, γ. We let $S=\langle\alpha\rangle \cong C_{7}<G$ be a cyclic subgroup of order seven in G.

The symplectic action of a cyclic group of order seven on an K3-surface has exactly three fixed points. Since $p_{1}=[1: 0: 0], p_{2}=[0: 1: 0]$ and $p_{3}=[0: 0: 1]$ all lie on $C_{\text {Klein }} \subset \mathbb{P}_{2}$, the action of S on Z has exactly three fixed points.

Let $\operatorname{Fix}_{\hat{\gamma}}(S)=:\left\{y_{1}, \ldots, y_{k}\right\}$ and let $\operatorname{Fix}_{\hat{X}}(S)=:\left\{x_{1}, \ldots, x_{l}\right\}$. Since blowing-up an S-fixed point in X replaces the fixed point by a rational curve with two S-fixed points in \hat{X}, we find $3 \leq k \leq l \leq 6$.

Lemma 6.5. The fixed points of S in \hat{X} are contained in the D-ramification set, i.e., $\operatorname{Fix}_{\hat{X}}(S) \subset \operatorname{Fix}_{\hat{X}}(D)$.

Proof. Since D centralizes S, the action of D stabilizes the S-fixed point set. We first show that $\operatorname{Fix}_{X}(S) \subset \operatorname{Fix}_{X}(D)$. Assume the contrary and let $\operatorname{Fix}_{X}(S)=\left\{s_{1}, s_{2}, s_{3}\right\}$ be a D-orbit and $\pi\left(s_{i}\right)=$ y. Then y is a smooth point and fixed by the action of S on Y. There exists a neighbourhood of y in Y which is biholomorphic to a neighbourhood of $b_{Y}^{-1}(y)=\tilde{y}$ in \hat{Y}. By construction, $\tilde{y} \in \operatorname{Fix}_{\hat{Y}}(S)$. Since $\operatorname{Fix}_{\hat{Y}}(S)$ consists of at least three points, we let $\tilde{\tilde{y}} \neq \tilde{y}$ be an additional S-fixed point on \hat{Y}. The fibre $\pi^{-1}\left(b_{Y}(\tilde{y})\right)$ consists of one or three points and is disjoint from $\left\{s_{1}, s_{2}, s_{3}\right\}$. Since the point $\tilde{\tilde{y}}$ is a fixed point of S, we know that $S \cong C_{7}$ acts on the fiber $\pi^{-1}\left(b_{Y}(\tilde{\tilde{y}})\right)$ and is seen to fix it pointwise. This is contrary to the fact that $\operatorname{Fix}_{X}(S)=\left\{s_{1}, s_{2}, s_{3}\right\}$. It follows that $\operatorname{Fix}_{X}(S) \subset \operatorname{Fix}_{X}(D)$.

It remains to show the corresponding inclusion on \hat{X}. If the points s_{i} do not coincide with isolated D-fixed points, the statement follows since b_{X} is equivariant and biholomorphic outside the isolated D-fixed points. If s_{i} is an isolated D-fixed point, we have seen above that the action of D on the blow-up of s_{i} is trivial. In particular, $\operatorname{Fix}_{\hat{X}}(S) \subset \operatorname{Fix}_{\hat{X}}(D)$.

Excluding the case $\left|\operatorname{Fix}_{\hat{\gamma}}(S)\right|=3$

Lemma 6.6. If $\left|\operatorname{Fix}_{\hat{Y}}(S)\right|=3$, then $\operatorname{Fix}_{\hat{Y}}(S) \cap \cup E_{i}=\varnothing$.

Proof. Fixed points of S on a curve \hat{E}_{i} always come in pairs: If the curve \hat{E}_{i} contains a fixed point of S, then the isotropy representation of S at the fixed point $b_{X}\left(\hat{E}_{i}\right)$ in X defines an action of the cyclic group S on the rational curve \hat{E}_{i} with exactly two fixed points. If $\left|\operatorname{Fix}_{\hat{\gamma}}(S)\right|=\left|\operatorname{Fix}_{\hat{X}}(S)\right|=3$ and $\operatorname{Fix}_{\hat{Y}}(S) \cap \bigcup E_{i} \neq \varnothing$, then two of the S-fixed point lie on the same curve \hat{E}_{i} and $\left|\operatorname{Fix}_{X}(S)\right| \leq 2$, a contradiction.

Lemma 6.7. If $\left|\operatorname{Fix}_{\hat{Y}}(S)\right|=3$, then the set $\operatorname{Fix}_{\hat{Y}}(S)$ has empty intersection with the exceptional locus of the full equivariant Mori reduction $M_{\text {red }}: \hat{Y} \rightarrow Z$.

Proof. Let C be any exceptional curve of the Mori reduction and assume there is a fixed point of S on C. As the point p obtained from blowing down C has to be a fixed point of S, it follows that the curve C is S-invariant. In particular, we know that the action of S on C has exactly two fixed points. Now blowing down C reduces the number of S-fixed point by 1 . This contradicts the fact that $\left|\operatorname{Fix}_{Z}(S)\right|=3$.

Lemma 6.8. Let $\left|\operatorname{Fix}_{\hat{Y}}(S)\right|=3$ and let $p \in \operatorname{Fix}_{Z}(S)$. Then there exist local coordinates (u, v) at p and a nontrivial character $\mu: S \rightarrow \mathbb{C}^{*}$ such that the action of S at p is locally given by either

$$
(u, v) \mapsto\left(\mu^{3} u, \mu^{-1} v\right) \quad \text { or } \quad(u, v) \mapsto\left(\mu u, \mu^{-3} v\right)
$$

Proof. On the K3-surface X the action of S at a fixed point is in local coordinates (z, w) given by $(z, w) \mapsto\left(\mu z, \mu^{-1} w\right)$ for some nontrivial character $\mu: S \rightarrow \mathbb{C}^{*}$. Since Fix $\hat{\gamma}_{\hat{\gamma}}(S) \cap \bigcup E_{i}=\varnothing$, the map b_{X} is biholomorphic in a neighbourhood of the fixed point. Recalling that Fix $\left.\hat{X}^{(} S\right)$ is contained in the ramification locus of $\hat{\pi}$ (i.e., $p \in \operatorname{Fix}_{\hat{X}}(D)$) the action of D may be linearized at p. Since S and D commute, the action of D is diagonal in the chosen local coordinates (z, w). We conclude that $\hat{\pi}$ is locally of the form $(z, w) \mapsto\left(z^{3}, w\right)$ or $\left(z, w^{3}\right)$. The action of S at a fixed point in \hat{Y} is defined by $\left(\mu^{3}, \mu^{-1}\right)$ or $\left(\mu, \mu^{-3}\right)$, respectively. By the lemma above, the fixpoints of S are not affected by the Mori reduction. The map $M_{\text {red }}$ is S-equivariant and locally biholomorphic in a neighbourhood of a fixed point of S. The lemma follows.

Using our explicit knowledge of the G-action on Z we will show in the following that the linearization of the action of $S<G$ at a fixed point in the Del Pezzo surface Z is not of the type described by the lemma above. We distinguish two cases when studying Z.

Let $Z \cong \mathbb{P}_{2}$ and $\left[x_{0}: x_{1}: x_{2}\right]$ denote homogeneous coordinates on \mathbb{P}_{2} such that the action of $S<G$ on \mathbb{P}_{2} is given by $\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[\zeta x_{0}, \zeta^{2} x_{1}, \zeta^{4} x_{2}\right]$ where ζ is a $7^{\text {th }}$ root of unity. Using affine coordinates $z=\frac{x_{1}}{x_{0}}, w=\frac{x_{2}}{x_{0}}$ we check that the action of S at $p_{1}=[1: 0: 0]$ is locally given by $(z, w) \mapsto\left(\zeta z, \zeta^{3} w\right)$. This contradicts Lemma 6.8.

Let $Z \xrightarrow{q} \mathbb{P}_{2}$ be the double cover of \mathbb{P}_{2} branched along Klein's quartic curve and let $\left[x_{0}: x_{1}: x_{2}\right]$ denote homogeneous coordinates on \mathbb{P}_{2}. As above, using affine coordinates $u=\frac{x_{1}}{x_{0}}, v=\frac{x_{2}}{x_{0}}$ we check that the action of S in a neighbourhood of $[1: 0: 0]$ is locally given by $(u, v) \mapsto\left(\zeta u, \zeta^{3} v\right)$. The branch curve $C_{\text {Klein }} \subset \mathbb{P}_{2}$ is defined by the equation $u^{3}+u v^{3}+v$. In new coordinates $(\tilde{u}(u, v), \tilde{v}(u, v))=\left(u, u^{3}+u v^{3}+v\right)$ the branch curve is defined by $\tilde{v}=0$ and the action of S is given by $(\tilde{u}, \tilde{v}) \mapsto\left(\zeta \tilde{u}, \zeta^{3} \tilde{v}\right)$. Consider the fixed point $[1: 0: 0] \in \mathbb{P}_{2}$ and its preimage $p \in Z$. At p, coordinates (z, w) can be chosen such that the covering map is locally given by $(z, w) \mapsto\left(z, w^{2}\right)=(\tilde{u}, \tilde{v})$. It follows that the action of S at $p \in Z$ is locally given by $(z, w) \mapsto\left(\zeta z, \zeta^{5} w\right)$. This is again contrary to Lemma 6.8.
In summary, if $\left|\operatorname{Fix}_{\hat{Y}}(S)\right|=3$, the action of $S<G$ on the Del Pezzo surface Z cannot be induced by a symplectic C_{7}-action on the K3-surface X. This proves the following lemma.

Lemma 6.9. $\left|\operatorname{Fix}_{\hat{Y}}(S)\right| \geq 4$.

6.2.3 Lifting Klein's quartic

The discussion of the previous section shows that there must be a step in the Mori reduction where the blow-down of a (-1)-curve identifies two S-fixed points. Let $z \in Z$ be a fixed point of S. Then, by equivariance, all points in the G-orbit of z are obtained by blowing down (-1)-curves in the process of Mori reduction. If $Z \cong \mathbb{P}_{2}$, we denote by $C_{\text {Klein }} \subset Z$ Klein's quartic curve. If Z is the double cover of \mathbb{P}_{2} branched along Klein's curve, we abuse notation and denote by $C_{\text {Klein }}$ the ramification curve in Z. In the later case $C_{\text {Klein }}$ is a G-invariant curve of genus 3 and self-intersection 8 by Lemma 3.15.

Let $z \in \operatorname{Fix}_{Z}(S) \subset C_{\text {Klein }}$ and consider the G-orbit $G \cdot z$. By invariance, $G \cdot z \subset C_{\text {Klein }}$. The isotropy group G_{z} must be cyclic and $G_{z}=S$ implies $|G \cdot z|=24$. Let B denote the strict transform of
$C_{\text {Klein }}$ in \hat{Y}. The curve B is a smooth G-invariant curve of genus 3 and meets at least 24 Mori fibers. Applying Lemma 3.17 to $M_{\text {red }}(B)=C_{\text {Klein }}$ we obtain

$$
B^{2} \leq C_{\text {Klein }}^{2}-24 \leq-8
$$

Lemma 6.10. The curve B does not coincide with any of the curves of type E or F. Its preimage $\hat{B}:=$ $\hat{\pi}^{-1}(B) \subset \hat{X}$ is a cyclic degree three cover of B branched at $B \cap\left(\cup E_{i} \cup \cup F_{j}\right)$.

Proof. The curves $E_{i} \subset \hat{Y}$ are (-3)-curves whereas B has self-intersection less than or equal to -8 . Assume $B=F_{j}$ for some j. Then \hat{B} is a curve of self-intersection less than or equal to -4 by Lemma 3.15 which is mapped biholomorphically to the K3-surface X. We obtain a contradiction since K3-surfaces do not admit curves of self-intersection less than -2 .

Since $\operatorname{Fix}_{Z}(S) \subset C_{\text {Klein }}$ there are three fixed points of S on \hat{B}. From $^{\operatorname{Fix}} \hat{X}_{\hat{X}}(S) \subset \operatorname{Fix}_{\hat{X}}(D)$ it follows that $\left.\hat{\pi}\right|_{\hat{B}}: \hat{B} \rightarrow B$ is branched at three or more points. In particular, the curve \hat{B} is connected. In the following, we will distinguish two cases: the curve \hat{B} being reducible or irreducible.

Case 1: The curve \hat{B} is reducible

The three irreducible components $\hat{B}_{i}, i=1,2,3$ of \hat{B} are smooth curves which are mapped biholomorphically onto B. Since B is exceptional, the configuration of curves \hat{B} is also exceptional. It follows that the intersection matrix $\left(\hat{B}_{i} \cdot \hat{B}_{j}\right)_{i j}$ is negative definite. In the following we study the intersection matrix of \hat{B} and will obtain a contradiction.

The restricted map $b_{X}: \hat{B}_{i} \rightarrow b_{X}\left(\hat{B}_{i}\right)$ is the normalization of $b_{X}\left(\hat{B}_{i}\right)$ and consequently the arithmetic genus of $b_{X}\left(\hat{B}_{i}\right)$ is given by the formula (cf. II. 11 in [BHPVdV04])

$$
g\left(b_{X}\left(\hat{B}_{i}\right)\right)=g\left(\hat{B}_{i}\right)+\delta\left(b_{X}\left(\hat{B}_{i}\right)\right)
$$

where the number δ is computed as $\delta\left(b_{X}\left(\hat{B}_{i}\right)\right)=\sum_{p \in b_{X}\left(\hat{B}_{i}\right)} \operatorname{dim}_{C}\left(b_{X *} \mathcal{O}_{\hat{B}_{i}} / \mathcal{O}_{b_{X}\left(\hat{B}_{i}\right)}\right)_{p}$. Note that the sum can also be taken over the singular points $p \in b_{X}\left(\hat{B}_{i}\right)$ only, since smooth points do not contribute to the sum. Since X is a K3-surface, the adjunction formula for $b_{X}\left(\hat{B}_{i}\right)$ reads

$$
\left(b_{X}\left(\hat{B}_{i}\right)\right)^{2}=2 g\left(b_{X}\left(\hat{B}_{i}\right)\right)-2=2 g\left(\hat{B}_{i}\right)+2 \delta\left(b_{X}\left(\hat{B}_{i}\right)\right)-2 .
$$

By Lemma 3.17, the self-intersection number $\left(b_{X}\left(\hat{B}_{i}\right)\right)^{2}$ can be expressed in terms of the selfintersection \hat{B}_{i}^{2} and intersection multiplicities $E_{j} \cdot \hat{B}_{i}$:

$$
\left(b_{X}\left(\hat{B}_{i}\right)\right)^{2}=\hat{B}_{i}^{2}+\sum_{j}\left(\hat{E}_{j} \cdot \hat{B}_{i}\right)^{2} .
$$

It follows that the self-intersection number of \hat{B}_{i} can be expressed as

$$
\begin{equation*}
\hat{B}_{i}^{2}=2 g\left(\hat{B}_{i}\right)+2 \delta\left(b_{X}\left(\hat{B}_{i}\right)\right)-2-\sum_{j}\left(\hat{E}_{j} \cdot \hat{B}_{i}\right)^{2} \tag{6.1}
\end{equation*}
$$

For simplicity, we first consider the case where \hat{B}_{i} has nontrivial intersection with only one curve of type \hat{E}. We refer to this curve as \hat{E}. The general case then follows by addition over all curves \hat{E}_{j}, the number δ for the full contraction b_{X} is the sum of all numbers δ obtained when blowing down disjoint curves \hat{E}_{j} stepwise.

Estimating the number δ

Example 6.11. Let $C=C_{1} \cup C_{2}$ be a connected curve consisting of two irreducible components. Then the arithmetic genus of C is calculated as $g(C)=g\left(C_{1}\right)+g\left(C_{2}\right)+C_{1} \cdot C_{2}-1$. The normalization \tilde{C} of C is given by the disjoint union of the normalizations \tilde{C}_{i} of C_{1} and C_{2}. In particular, $g(\tilde{C})=g\left(\tilde{C}_{1}\right)+g\left(\tilde{C}_{2}\right)-1$, so that $\delta(C)=\delta\left(C_{1}\right)+\delta\left(C_{2}\right)+C_{1} \cdot C_{2}(c f$. II. 11 in [BHPVdV04]).

Since the number δ is a sum of contributions δ_{p} at singular points p, we can calculate the number δ_{p} locally at each singularity where we decompose the germ of the curve as the union of irreducible components and use a formula generalizing the example above. We refer to an irreducible component of a curve germ realized in a open neighbourhood of the surface as a curve segment.
In order to study the singularities of $b_{X}\left(\hat{B}_{i}\right)$ one needs to consider the points of intersection $\hat{E} \cap \hat{B}_{i}$. These points of intersection can be of different quality:

- Type $m=1$: The intersection at $b \in \hat{B}_{i}$ is transversal and the local intersection multiplicity at b is equal to 1 . A neighbourhood of b in \hat{B}_{i} is mapped to a smooth curve segment in $b_{X}\left(\hat{B}_{i}\right)$.
- Type $m>1$: The intersection at $b \in \hat{B}_{i}$ is of higher multiplicity $m(b)$, i.e., \hat{E} is tangent to \hat{B}_{i} and in local coordinates (z, w) we may write $\hat{E}=\{z=0\}$ and $\hat{B}_{i}=\left\{z-w^{m}\right\}$. Blowing down \hat{E} transforms a neighbourhood of b into a a curve segment isomorphic to $\left\{x^{m+1}-\right.$ $\left.y^{m}=0\right\}$. For the singularity $(0,0)$ of this curve we calculate

$$
\delta_{(0,0)}=\frac{1}{2} m(m-1)
$$

Let b_{m} denote the number of points in $\hat{E} \cap \hat{B}_{i}$ with local intersection multiplicity m. For each point of intersection of \hat{E} and \hat{B}_{i} we obtain an irreducible component of the germ of $b_{X}\left(\hat{B}_{i}\right)$ at $p=b_{X}(\hat{E})$. We compute δ_{p} by decomposing this germ and need to determine local intersection multiplicities of all combinations of irreducible components.

Lemma 6.12. Two irreducible components of the germ of $b_{X}\left(\hat{B}_{i}\right)$ at p corresponding to points in $\hat{E} \cap \hat{B}_{i}$ of type m and n meet with local intersection multiplicity greater than or equal to $m n$.

Proof. In order to determine the intersection multiplicity of two irreducible components corresponding to points of type m and n, we write one curve as $\left\{x^{m+1}-y^{m}=0\right\}$. The second curve can be expressed as $\left\{h_{1}(x, y)^{n+1}-h_{2}(x, y)^{n}=0\right\}$ where $(x, y) \mapsto\left(h_{1}(x, y), h_{2}(x, y)\right)$ is a holomorphic change of coordinates. Now normalizing the first curve by $\xi \mapsto\left(\xi^{m}, \xi^{m+1}\right)$ and pulling back the equation of the second curve to the normalization \mathbb{C}, we obtain the equation $h_{1}\left(\xi^{m}, \xi^{m+1}\right)^{n+1}-h_{2}\left(\xi^{m}, \xi^{m+1}\right)^{n}=0$ which has degree at least $m n$ in ξ. It follows that the local intersection multiplicity is greater than or equal to $m n$.

Counting different types of intersections of irreducible components we obtain the following estimate for δ_{p}

$$
\begin{aligned}
\delta_{p} & =\sum \delta_{p}\left(C_{i}\right)+\sum_{i \neq j}\left(C_{i} \cdot C_{j}\right)_{p} \\
& \geq \sum_{m \in \mathbb{N}} \frac{b_{m}}{2} m(m-1)+\frac{1}{2} \sum_{m \in \mathbb{N}} b_{m}\left(b_{m}-1\right) m^{2}+\sum_{m>n} b_{m} b_{n} m n
\end{aligned}
$$

where $\sum_{i \neq j}\left(C_{i} \cdot C_{j}\right)_{p}$ decomposes into intersections $\left(C_{i} \cdot C_{j}\right)_{p}$ of type $m m$ and intersections of type $m n$ for $m \neq n$. The formula above applies to each curve \hat{E}_{j} having nontrivial intersection with \hat{B}_{i}. Let p_{j} be the point on X obtained by blowing down \hat{E}_{j} and let b_{m}^{j} denote the number of points of type m in $\hat{B}_{i} \cap \hat{E}_{j}$. Then

$$
\begin{aligned}
\delta\left(b_{X}\left(\hat{B}_{i}\right)\right) & =\sum_{j} \delta_{p_{j}}\left(b_{X}\left(\hat{B}_{i}\right)\right) \\
& \geq \sum_{j}\left(\sum_{m \in \mathbb{N}} \frac{b_{m}^{j}}{2} m(m-1)+\frac{1}{2} \sum_{m \in \mathbb{N}} b_{m}^{j}\left(b_{m}^{j}-1\right) m^{2}+\sum_{m>n} b_{m}^{j} b_{n}^{j} m n\right) .
\end{aligned}
$$

Returning to the formula (6.1) for \hat{B}_{i}^{2} we obtain

$$
\begin{aligned}
\hat{B}_{i}^{2} & =2 g\left(\hat{B}_{i}\right)+2 \delta\left(b_{X}\left(\hat{B}_{i}\right)\right)-2-\sum_{j}\left(\hat{E}_{j} \cdot \hat{B}_{i}\right)^{2} \\
& \geq \sum_{j}\left(\sum_{m \in \mathbb{N}} b_{m}^{j} m(m-1)+\sum_{m \in \mathbb{N}} b_{m}^{j}\left(b_{m}^{j}-1\right) m^{2}+2 \sum_{m>n} b_{m}^{j} b_{n}^{j} m n\right) \\
& -2-\sum_{j}\left(\sum_{m} b_{m}^{j} m\right)^{2} \\
& \geq-2-\sum_{j} \sum_{m} b_{m}^{j} m .
\end{aligned}
$$

As a next step, we will find a bound for $\left(\hat{B}_{i} \cdot \hat{B}_{k}\right)$ in the case $i \neq k$. If a curve \hat{B}_{i} intersects a ramification curve of type \hat{E} or \hat{F} in a point x, then $\left(\hat{B}_{i} \cdot \hat{B}_{k}\right)_{x} \geq 1$. If $\left(\hat{B}_{i} \cdot \hat{E}_{j}\right)_{x}=m$, then for $k \neq i$

$$
\left(\hat{B}_{k} \cdot \hat{E}_{j}\right)_{x}=\left(\varphi_{D}\left(\hat{B}_{i}\right) \cdot \hat{E}_{j}\right)_{x}=\left(\varphi_{D}\left(\hat{B}_{i}\right) \cdot \varphi_{D}\left(\hat{E}_{j}\right)\right)_{x}=\left(\hat{B}_{i} \cdot \hat{E}_{j}\right)_{x}=m
$$

where $\varphi_{D} \in D$ is a biholomorphic transformation and E_{j} is in the fixed locus of D.
Lemma 6.13. Assume \hat{B}_{i} meets a curve of type \hat{E} or \hat{F} in x with local intersection multiplicity m. Then $\left(\hat{B}_{i} \cdot \hat{B}_{k}\right)_{x} \geq m$.

Proof. Let \hat{E}, \hat{F} respectively, be locally given by $\{z=0\}$. Then \hat{B}_{i} is locally given by $\left\{z-w^{m}=0\right\}$ and \hat{B}_{k} by $\left\{h_{1}(z, w)-h_{2}(z, w)^{m}=0\right\}$ where $(z, w) \mapsto\left(h_{1}(z, w), h_{2}(z, w)\right)$ is, as in the proof of Lemma 6.12, a holomorphic change of coordinates. Note that it stabilizes $\{z=0\}$, i.e., $h_{1}(0, w)=$ 0 for all w and we can write $h_{1}(z, w)=z \tilde{h}_{1}(z, w)$. The intersection of \hat{B}_{i} and \hat{B}_{j} corresponds to the equation $w^{m} \tilde{h}_{1}\left(w^{m}, w\right)-h_{2}\left(w^{m}, w\right)$ which is of degree greater than or equal to m. The lemma follows.

Summing over all points of intersection of \hat{B}_{i} and \hat{B}_{k} one finds $\hat{B}_{i} \cdot \hat{B}_{k} \geq \sum_{j} \sum_{m} b_{m}^{j} m$. Recall that by Lemma $6.5 \operatorname{Fix}_{\hat{X}}(S)$ is contained in $\operatorname{Fix}_{\hat{X}}(D)$ and that the curve B contains three S-fixed points. Therefore, it intersects the ramification locus of $\hat{\pi}$ in at least three points. At these points the three irreducible components of \hat{B} must meet. In particular, $\left(\hat{B}_{i}, \hat{B}_{k}\right) \geq 3$. This yields

$$
\begin{aligned}
& (1,1,1)\left(\begin{array}{ccc}
\hat{B}_{1}^{2} & \hat{B}_{1} \cdot \hat{B}_{2} & \hat{B}_{1} \cdot \hat{B}_{3} \\
\hat{B}_{2} \cdot \hat{B}_{1} & \hat{B}_{2}^{2} & \hat{B}_{2} \cdot \hat{B}_{3} \\
\hat{B}_{3} \cdot \hat{B}_{1} & \hat{B}_{3} \cdot \hat{B}_{2} & \hat{B}_{3}^{2}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\hat{B}_{1}^{2}+\hat{B}_{2}^{2}+\hat{B}_{3}^{2}+2\left(\hat{B}_{1} \cdot \hat{B}_{2}+\hat{B}_{2} \cdot \hat{B}_{3}+\hat{B}_{1} \cdot \hat{B}_{3}\right) \\
& \geq-6-3 \sum_{j} \sum_{m} b_{m}^{j}+3 \sum_{j} \sum_{m} b_{m}^{j} m+\left(\hat{B}_{1} \cdot \hat{B}_{2}+\hat{B}_{2} \cdot \hat{B}_{3}+\hat{B}_{1} \cdot \hat{B}_{3}\right) \\
& =-6+\left(\hat{B}_{1} \cdot \hat{B}_{2}+\hat{B}_{2} \cdot \hat{B}_{3}+\hat{B}_{1} \cdot \hat{B}_{3}\right) \\
& \geq 3 .
\end{aligned}
$$

Hence, the intersection matrix $\left(\hat{B}_{i} \cdot \hat{B}_{j}\right)_{i j}$ is not negative-definite contradicting the fact that \hat{B} is exceptional. It follows that the curve \hat{B} must be irreducible.

Case 2: The curve \hat{B} is irreducible

Let $n: N \rightarrow \hat{B}$ be the normalization of \hat{B}. Since b_{X} is a blow-up, $b_{X} \circ n: N \rightarrow b_{X}(\hat{B})$ is the normalization of the curve $b_{X}(\hat{B}) \subset X$. It follows that $g\left(b_{X}(\hat{B})\right)=g(N)+\delta\left(b_{X}(\hat{B})\right)$. By adjunction, the self-intersection of $b_{X}(\hat{B})$ is given by

$$
\left(b_{X}(\hat{B})\right)^{2}=2 g\left(b_{X}(\hat{B})\right)-2=2 g(N)+2 \delta\left(b_{X}(\hat{B})\right)-2 .
$$

As above, by Lemma 3.17, $\left(b_{X}(\hat{B})\right)^{2}=\hat{B}^{2}+\sum_{j}\left(\hat{E}_{j} \cdot \hat{B}\right)^{2}$. Thus, the self-intersection of \hat{B} can be expressed as

$$
\hat{B}^{2}=2 g(N)+2 \delta\left(b_{X}(\hat{B})\right)-2-\sum_{j}\left(\hat{E}_{j} \cdot \hat{B}\right)^{2}
$$

Since the curve \hat{B} is exceptional, this self-intersection number must be negative. By finding a lower bound for \hat{B}^{2} we will obtain a contradiction.

Let us first examine the points of intersection $\hat{B} \cap \hat{E}$ for one curve \hat{E} among the exceptional curves of the blow-down b_{X}. We consider the corresponding points of intersection of B and E in \hat{Y} and we choose coordinates (ξ, η) such that E is locally defined by $\{\xi=0\}$, the map $\hat{\pi}$ is locally given by $(z, w) \mapsto\left(z^{3}, w\right)=(\xi, \eta)$ and $B=\{f(\xi, \eta)=0\}$. It follows that \hat{B} is locally defined by $\{h=f \circ \hat{\pi}=0\}$.

If E and B meet transversally, we know that the function $f(\xi, \eta)$ fulfills $\left.\frac{\partial f}{\partial \eta}\right|_{(0,0)} \neq 0$. It follows that $\left.\frac{\partial h}{\partial w}\right|_{(0,0)} \neq 0$ and after a suitable change of coordinates $h(z, w)=z^{m}-w$.

If E and B meet tangentially, we know that the function $f(\xi, \eta)$ fulfills $\left.\frac{\partial f}{\partial \eta}\right|_{(0,0)}=0$. Since B is smooth, we know $\left.\frac{\partial f}{\partial \xi}\right|_{(0,0)} \neq 0$. After a suitable change of coordinates $h(z, w)=z^{3}-w^{n}$ with $n>0$. Note that in both cases the coordinate change on \hat{X} is such that \hat{E} is still defined by $\{z=0\}$. This will be important when describing the blow-down b_{X} of \hat{E}.

Consider a curve segment $\{h=0\}$ in \hat{X} and its image under the map b_{X}. If $h(z, w)=z^{m}-w$ then the corresponding smooth segment of $b_{X}(\hat{B})$ is defined by $x^{m+1}-y=0$. If $h(z, w)=z^{3}-w^{n}$ then the corresponding piece of $b_{X}(\hat{B})$ is defined by $x^{n+3}-y^{n}=0$ and has a singular point if $n>1$.

Let $p=b_{X}(\hat{E})$. We will determine δ_{p} by decomposing the germ of $b_{X}(\hat{B})$ at p into its irreducible components. There are three different types of such components:

1. smooth components locally defined by $x^{m+1}-y=0$,
2. singular components locally defined by $x^{n+3}-y^{n}=0$ for $n>1$ not divisible by 3 ,
3. triplets of smooth components locally defined by $x^{6}-y^{3}=0$,
4. triplets of singular components locally defined by $x^{n+3}-y^{n}=0$ for $n=3 k$ and $k>1$.

The singularity in case 2) gives $\delta=\frac{n^{2}+n-2}{2}$. In case 4), each component is defined by an equation of type $x^{k+1}-y^{k}=0$ and the singularity of each component gives $\delta=\frac{k^{2}-k}{2}$.
In order to determine δ_{p} we need to specify intersection multiplicities for all combinations of irreducible components.

Lemma 6.14. The local intersection multiplicities of pairs of irreducible components of the germ of $b_{X}(\hat{B})$ at p in general position are given by the following table.

local equation	$x^{m_{1}+1}-y$	$x^{n_{1}+3}-y^{n_{1}}$	$x^{2}-y$	$x^{k_{1}+1}-y^{k_{1}}$
$x^{m_{2}+1}-y$	1	n_{1}	1	k_{1}
$x^{n_{2}+3}-y^{n_{2}}$	n_{2}	$n_{1} n_{2}$	n_{2}	$n_{2} k_{1}$
$x^{2}-y$	1	n_{1}	1 or (2)	k_{1}
$x^{k_{2}+1}-y^{k_{2}}$	k_{2}	$k_{2} n_{1}$	k_{2}	$k_{1} k_{2}$ or $\left(k^{2}+k\right)$

Note that the local equations in the first row and column, although all written as functions of (x, y), describe the curve segments in different choices of local coordinates.

Sketch of proof. As above, we rewrite one equation as $f\left(h_{1}(x, y), h_{2}(x, y)\right)$ where $\left(h_{1}, h_{2}\right)$ is a holomorphic change of local coordinates. The intersection multiplicities can then be calculated by the method introduced in the proof of Lemma 6.12. Two irreducible components in a triplet of type 3) meet with intersection multiplicity 2 . Two irreducible components in a triplet of type 4) meet with intersection multiplicity $k^{2}+k$. These quantities are indicated in brackets as they differ from the intersection multiplicities of two irreducible components from different triplets.

Remark 6.15. If two irreducible components of the germ of $b_{X}(\hat{B})$ at p are in special position, their local intersection multiplicity is greater than the value specified in the above table. In particular, the table gives lower bounds for the respective intersection numbers.

Let a denote the number of irreducible components of type 1), let b_{n} the number of irreducible components of type 2) where $n \notin 3 \mathbb{N}$, let $c \in 3 \mathbb{N}$ denote the number of irreducible components of type 3) and let $d_{k} \in 3 \mathbb{N}$ denote the number of irreducible components of type 4). We summarize $e=a+c$.

A lower bound for δ_{p} is given by

$$
\begin{aligned}
\delta_{p} & \geq \sum_{n} b_{n} \frac{n^{2}+n-2}{2}+\sum_{k} d_{k} \frac{k^{2}-k}{2} \\
& +\frac{1}{2} e(e-1)+c+\sum_{n} e b_{n} n+\sum_{k} e d_{k} k \\
& +\frac{1}{2} \sum_{n} b_{n}\left(b_{n}-1\right) n^{2}+\sum_{n_{1}>n_{2}} b_{n_{1}} b_{n_{2}} n_{1} n_{2}+\sum_{n, k} b_{n} d_{k} n k \\
& +\frac{1}{2} \sum_{k} d_{k}\left(d_{k}-1\right) k^{2}+\sum_{k} d_{k} k+\sum_{k_{1}>k_{2}} d_{k_{1}} d_{k_{2}} k_{1} k_{2} .
\end{aligned}
$$

For simplicity, we first consider only one curve \hat{E} intersecting \hat{B}. The formula for \hat{B}^{2} becomes

$$
\begin{align*}
\hat{B}^{2} & =2 g(N)+2 \delta\left(b_{X}(\hat{B})\right)-2-(\hat{E} \cdot \hat{B})^{2} \\
& =2 g(N)+2 \delta\left(b_{X}(\hat{B})\right)-2-\underbrace{\left(e+\sum_{n} b_{n} n+\sum_{k} d_{k} k\right)^{2}}_{(\hat{E} \cdot \hat{B})^{2}} \\
& =2 g(N)-2-e+2 c+\sum_{k} d_{k} k+\sum_{n} b_{n}(n-2) \\
& \geq 2 g(N)-2-a . \tag{6.2}
\end{align*}
$$

The same formula also holds if we consider the general case of curves $\bigcup_{i} \hat{E}_{i}$ intersecting \hat{B} since both the calculation of δ and the intersection number $\sum_{i}\left(\hat{B}, \hat{E}_{i}\right)^{2}$ can be obtained from the above by addition. The number a now represents the number of points of type 1) in the union of curves \hat{E}_{i}.
The map $n \circ \hat{\pi}: N \rightarrow \hat{B} \rightarrow B$ is a degree three cover of the smooth curve B branched at $V \subset B$. The genus of B is three, the topological Euler characteristic is $e(B)=-4$. Let $\tilde{V}:=B \cap\left(\cup E_{i} \cup \cup F_{j}\right)$ denote the branch locus of $\hat{\pi}: \hat{B} \rightarrow B$. Then $V \subset \tilde{V}$ and V must contain those points in \tilde{V} which correspond to smooth points on \hat{B}. In partcular, $|V| \geq a$.

The Euler characteristic of N is given by $e(N)=3 e(B)-2|V|=-12-2|V|=2-2 g(N)$. and inequality (6.2) becomes

$$
\hat{B}^{2} \geq 12+2|V|-a \geq 12+|V| \geq 0
$$

contradicting the fact that \hat{B} is exceptional.

Conclusion

The above contradiction shows the non-existence of a K3-surface with an action of $G \times C_{3}$. This completes the prove of Theorem 6.3.

The alternating group of degree six

In the previous chapters we have considered symplectic automorphisms groups of K3-surfaces centralized by an antisymplectic involution, i.e., the groups under consideration were of the form $\tilde{G}=G \times\langle\sigma\rangle$ where $\tilde{G}_{\text {symp }}=G$. In this chapter we wish to discuss more general automorphims groups \tilde{G} of mixed type: if \tilde{G} contains an antisymplectic involution σ with fixed points we consider the quotient by σ. In general, if σ does not centralize the group $\tilde{G}_{\text {symp }}$ inside \tilde{G}, the action of $\tilde{G}_{\text {symp }}$ does not descend to the quotient surface. We therefore restrict our consideration to the centralizer $Z_{\tilde{G}}(\sigma)$ of σ inside \tilde{G} (or $\tilde{G}_{\text {symp }}$) and study its action on the quotient surface.
If we are able to describe the family of K3-surfaces with $Z_{\tilde{G}}(\sigma)$-symmetry, it remains to detect the surfaces with \tilde{G}-symmetry inside this family. This chapter is devoted to a situation where the group \tilde{G} contains the alternating group of degree six. Although, a precise classification cannot be obtained at present, we achieve an improved understanding of the equivariant geometry of K3-surfaces with \tilde{G}-symmetry and classify families of K 3 -surfaces with $Z_{\tilde{G}}(\sigma)$-symmetry (cf. Theorem 7.31). In this sense, this closing chapter serves as an outlook on how the method of equivariant Mori reduction allows generalization to more advanced classification problems.

7.1 The group \tilde{A}_{6}

We let \tilde{G} be any finite group which fits into the exact sequence

$$
\{\mathrm{id}\} \rightarrow A_{6} \rightarrow \tilde{G} \xrightarrow{\alpha} C_{n} \rightarrow\{\mathrm{id}\}
$$

and in the following consider a K3-surface X with an effective action of \tilde{G}. The group of symplectic automorphisms $(\tilde{G})_{\text {symp }}$ in \tilde{G} coincides with A_{6}.
This particular situation is considered by Keum, Oguiso, and Zhang in [KOZ05] and [KOZ07]. They lay special emphasis on the maximal possible choice of \tilde{G} and therefore consider a group $\tilde{G}=\tilde{A}_{6}$ characterized by the exact sequence

$$
\begin{equation*}
\{\mathrm{id}\} \rightarrow A_{6} \rightarrow \tilde{A}_{6} \xrightarrow{\alpha} C_{4} \rightarrow\{\mathrm{id}\} \tag{7.1}
\end{equation*}
$$

Let $N:=\operatorname{Inn}\left(\tilde{A}_{6}\right) \subset \operatorname{Aut}\left(A_{6}\right)$ denote the group of inner automorphisms of \tilde{A}_{6} and let int : $\tilde{A}_{6} \rightarrow N$ be the homomorphisms mapping an element $g \in \tilde{A}_{6}$ to conjugation with g. It can be
shown that the group \tilde{A}_{6} is a semidirect product $A_{6} \rtimes C_{4}$ embedded in $N \times C_{4}$ by the map (int, α) (Theorem 2.3 in [KOZ07]). By Theorem 4.1 in [KOZ07] the group N is isomorphic to M_{10} and the isomorphism class of \tilde{A}_{6} is uniquely determined by (7.1) and the condition that it acts on a K3-surface.

In [KOZ05] a lattice-theoretic proof of the following classification result (Theorem 5.1, Theorem 3.1, Proposition 3.5) is given.

Theorem 7.1. A K3 surface X with an effective action of \tilde{A}_{6} is isomorphic to the minimal desingularization of the surface in $\mathbb{P}_{1} \times \mathbb{P}_{2}$ given by

$$
S^{2}\left(X^{3}+Y^{3}+Z^{3}\right)-3\left(S^{2}+T^{2}\right) X Y Z=0 .
$$

Although this realization is very concrete, the action of \tilde{A}_{6} on this surface is hidden. The existence of an isomorphism from a K3-surface with \tilde{A}_{6}-symmetry to the surface defined by the equation above follows abstractly since both surfaces are shown to have the same transcendental lattice. It is therefore desirable to achieve a more geometric understanding of K3-surfaces with \tilde{A}_{6}-symmetry in general and in particular to obtain an explicit realization of X where the action of \tilde{A}_{6} is visible.

We let the generator of the factor C_{4} in the semidirect product $\tilde{A}_{6}=A_{6} \rtimes C_{4}$ be denoted by τ. The order four automorphism τ is nonsymplectic and has fixed points. It follows that the antisymplectic involution $\sigma:=\tau^{2}$ fulfils

$$
\operatorname{Fix}_{X}(\sigma) \neq \varnothing
$$

Since σ is mapped to the trivial automorphism in $\operatorname{Out}\left(A_{6}\right)=\operatorname{Aut}\left(A_{6}\right) / \operatorname{int}\left(A_{6}\right) \cong C_{2} \times C_{2}$ there exists $h \in A_{6}$ such that $\operatorname{int}(h)=\operatorname{int}(\sigma) \in \operatorname{Aut}\left(A_{6}\right)$. The antisymplectic involution $h \sigma$ centralizes A_{6} in $\tilde{A_{6}}$.

Remark 7.2. If $\operatorname{Fix}_{X}(h \sigma) \neq \varnothing$, we are in the situation dealt with in Section 4.2, i.e., the K3-surface X is an A_{6}-equivariant double cover of \mathbb{P}_{2} where A_{6} acts as Valentiner's group and the branch locus is given by $F_{A_{6}}\left(x_{1}, x_{2}, x_{3}\right)=10 x_{1}^{3} x_{2}^{3}+9 x_{1}^{5} x_{3}+9 x_{2}^{3} x_{3}^{3}-45 x_{1}^{2} x_{2}^{2} x_{3}^{2}-135 x_{1} x_{2} x_{3}^{4}+27 x_{3}^{6}$. By construction, there is an evident action of $A_{6} \times C_{2}$ on the Valentiner surface, it is however not clear whether this surface admits the larger symmetry group \tilde{A}_{6}.

In the following we assume that $h \sigma$ acts without fixed points on X as otherwise the remark above yields an A_{6}-equivariant classification of X.

7.1.1 The centralizer G of σ in \tilde{A}_{6}

We study the quotient $\pi: X \rightarrow X / \sigma=Y$. As mentioned above, the action of the centralizer of σ descends to an action on Y. We therefore start by identifying the centralizer $G:=Z_{\tilde{A}_{6}}(\sigma)$ of σ in $\tilde{A_{6}}$.

Lemma 7.3. The group G equals $Z_{A_{6}}(\sigma) \rtimes C_{4}$ and $Z_{A_{6}}(\sigma)=Z_{A_{6}}(h)$
Proof. The lemma follows from direct computations: we write an element of \tilde{A}_{6} as $a \tau^{k}$ with $a \in$ A_{6}. Then $a \tau^{k}$ is in $Z_{\tilde{A}_{6}}(\sigma)$ if and only if $a \tau^{k} \tau^{2}=\tau^{2} a \tau^{k}$. This is the case if and only if $a \tau^{2}=\tau^{2} a$, i.e., if $a \in Z_{A_{6}}(\sigma)$. Now $\langle\tau\rangle<Z_{\tilde{A}_{6}}(\sigma)$ implies the first part of the lemma. The second part follows from the equality $\operatorname{int}(\sigma)=\operatorname{int}(h)$.

Lemma 7.4. $Z_{A_{6}}(h)=D_{8}$
Proof. Since $\operatorname{int}(\sigma)=\operatorname{int}(h)$ and $\sigma^{2}=\operatorname{id}$, it follows that h^{2} commutes with any element in A_{6}. As $\mathrm{Z}\left(A_{6}\right)=\{\mathrm{id}\}$, it follows that h is of order two. There is only one conjugacy class of elements of order two in A_{6}. We calculate $Z_{A_{6}}(h)=D_{8}$ for one particular choice of h. Let

$$
h=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 4 & 1 & 2 & 5 & 6
\end{array}\right)
$$

Any element in the centralizer of h must be of the form

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
* & * & * & * & 5 & 6
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
* & * & * & * & 6 & 5
\end{array}\right)
$$

It is therefore sufficient to perform all calculations in S_{4}. If an element of S_{4} is a composition of an even (odd) number of transpositions, the corresponding element of $Z_{A_{6}}(h)$ is given by completing it with the identity map (transposition map) on the fifth and sixth letter.

Let

$$
g_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right), g_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right), g_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)
$$

and check that $g_{1}, g_{2}, g_{3} \in Z_{A_{6}}(h)$. Define $g_{1} g_{2}=: c$ and check

$$
c=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), \quad c^{2}=h
$$

Now $g_{3} c g_{3}=c^{3}$ and the subgroup of $S_{4}\left(A_{6}\right.$, respectively) generated by c and g_{3} is seen to be a dihedral group of order eight; $\left\langle g_{3}\right\rangle \ltimes\langle c\rangle=D_{8}<Z_{A_{6}}(h)$. In order to show equality, assume that $Z_{A_{6}}(h)$ is bigger. It then follows that the centralizer of h in S_{4} is a subgroup of order 12, in particular, it has a subgroup of order three. Going through the list of elements of order three in S_{4} one checks that none commutes with h and obtains a contradiction.

Let $D_{8}=C_{2} \ltimes C_{4}$ where C_{2} is generated by $g=g_{3}$ and C_{4} by c and note that $c^{2}=h$. We study the action of τ on D_{8} by conjugation. Since C_{4} is the only cyclic subgroup of order four in D_{8}, it is τ-invariant. If c is τ-fixed, i.e. $\tau c=c \tau$, then

$$
(\tau c)^{2}=c \tau \tau c=c \sigma c \stackrel{c \in Z(\sigma)}{=} \sigma c^{2}=\sigma h
$$

In this case τc generates a cyclic group of order four acting freely on X, a contradiction. So τ acts on $\langle c\rangle$ by $c \mapsto c^{3}$ and $c^{2} \mapsto c^{2}$. Now $\tau g \tau^{-1}=c^{k} g$ for some $k \in\{0,1,2,3\}$. If $k=2$, then

$$
(\tau g)^{2}=\tau g \tau g=\tau g \tau^{-1} \tau^{2} g=c^{2} g \sigma g \stackrel{g \in Z(\sigma)}{=} c^{2} \sigma=\sigma h
$$

and we obtain the same contradiction as above. So $k \in\{1,3\}$ and by choosing the appropriate generator of $\langle c\rangle$ we may assume that $k=3$. The action of τ on $Z_{A_{6}}(h)=D_{8}$ given by $g \mapsto c^{3} g$ and $c \mapsto c^{3}$.

Lemma 7.5. $G^{\prime}=\langle c\rangle$.
Proof. The commutator subgroup G^{\prime} is the smallest normal subgroup N of G such that G / N is Abelian. We use the above considerations about the action of τ on D_{8} by conjugation. The subgroup $\langle c\rangle$ is normal in $G=D_{8} \rtimes\langle\tau\rangle$ and $G /\langle c\rangle$ is seen to be Abelian. Since $G /\left\langle c^{2}\right\rangle$ is not Abelian, $G^{\prime} \neq\left\langle c^{2}\right\rangle$ and the lemma follows.

7.1.2 The group $H=G /\langle\sigma\rangle$

We consider the quotient $Y=X / \sigma$ equipped with the action of $G / \sigma=: H=Z_{\tilde{A}_{6}}(\sigma) /\langle\sigma\rangle=$ $D_{8} \rtimes C_{2}$. The group C_{2} is generated by $[\tau]_{\sigma}$. For simplicity, we transfer the above notation from G to H by writing e.g. τ for $[\tau]_{\sigma}$. etc.. Since $\tau g \tau^{-1}=c^{3} g=g c$, it follows as above that $H^{\prime}=\langle c\rangle$.

Let $K<G$ be the cyclic group of order eight generated by $g \tau$.

$$
K=\left\{\mathrm{id}, g \tau, c \sigma, g \tau^{3} c, c^{2}, g \tau c^{2}, \sigma c^{3}, g c \tau^{3}\right\} .
$$

We denote the image of K in G / σ by the same symbol. Since $[\sigma c]_{\sigma}=[c]_{\sigma} \in K$ it contains $H^{\prime}=\langle c\rangle$ and we can write $H=\langle\tau\rangle \ltimes K=D_{16}$.

Lemma 7.6. There is no nontrivial normal subgroup N in H with $N \cap H^{\prime}=\{\mathrm{id}\}$.

Proof. If such a group exists, first consider the case $N \cap K=\{\mathrm{id}\}$. Then $N \cong C_{2}$ and $H=K \times N$ would be Abelian, a contradiction. If $N \cap K \neq\{\mathrm{id}\}$ then $N \cap K=\left\langle(g \tau)^{k}\right\rangle$ for some $k \in\{1,2,4\}$. This implies $(g \tau)^{4}=c^{2} \in N$ and contradicts $N \cap H^{\prime}=N \cap\langle c\rangle=\varnothing$.

The following observations strongly rely the assumption that σh acts freely on X.
Lemma 7.7. The subgroup H^{\prime} acts freely on the branch set $B=\pi\left(\operatorname{Fix}_{X}(\sigma)\right)$ in Y.

Proof. If for some $b \in B$ the isotropy group H_{b}^{\prime} is nontrivial, then $c^{2}(b)=h(b)=b$ and σh fixes the corresponding point $\tilde{b} \in X$.

Corollary 7.8. The subgroup H^{\prime} acts freely on the set \mathcal{R} of rational branch curves. In particular, the number of rational branch curves n is a multiple of four.

Corollary 7.9. The subgroup H^{\prime} acts freely on the set of τ-fixed points in Y.

Proof. We show $\operatorname{Fix}_{Y}(\tau) \subset B$. Since $\sigma=\tau^{2}$ on X, a $\langle\tau\rangle$-orbit $\left\{x, \tau x, \sigma x, \tau^{3} x\right\}$ in X gives rise to a τ-fixed point y in the quotient $Y=X / \sigma$ if and only if $\sigma x=\tau x$. Therefore, τ-fixed points in Y correspond to τ-fixed points in X. By definition $\operatorname{Fix}_{X}(\tau) \subset \operatorname{Fix}_{X}(\sigma)$ and the claim follows.

7.2 H-minimal models of Y

Since $\operatorname{Fix}_{X}(\sigma) \neq \varnothing$, the quotient surface Y is a smooth rational H-surface to which we apply the equivariant minimal model program. We denote by $Y_{\min }$ an H-minimal model of Y. It is known that $Y_{\min }$ is either a Del Pezzo surface or an H-equivariant conic bundle over \mathbb{P}_{1}.

Theorem 7.10. An H-minimal model $Y_{\min }$ does not admit an H-equivariant \mathbb{P}_{1}-fibration. In particular, $Y_{\min }$ is a Del Pezzo surface.

In order to prove this statement we begin with the following general fact (cf. Proof of Lemma 6.7).
Lemma 7.11. If $Y \rightarrow Y_{\min }$ is an H-equivariant Mori reduction and A a cyclic subgroup of H, then

$$
\left|\operatorname{Fix}_{Y}(A)\right| \geq\left|\operatorname{Fix}_{Y_{\min }}(A)\right|
$$

Proof. Each step of a Mori reduction is known to contract a disjoint union of (-1)-curves. It is sufficient to prove the statement for one step in a Mori reduction. If such a step changes the number of fixed points, then some Mori fiber E of the reduction is contracted to an A-fixed point. The rational curve E is A-invariant and therefore contains two A-fixed points. The number of fixed points drops.

Suppose that some $Y_{\min }$ is an H-equivariant conic bundle, i.e., there is an H-equivariant fibration $p: Y_{\min } \rightarrow \mathbb{P}_{1}$ with generic fiber \mathbb{P}_{1}. We let $p_{*}: H \rightarrow \operatorname{Aut}\left(\mathbb{P}_{1}\right)$ be the associated homomorphism.

Lemma 7.12. $\operatorname{Ker}\left(p_{*}\right) \cap H^{\prime}=\{\mathrm{id}\}$.

Proof. The elements of $\operatorname{Ker}\left(p_{*}\right)$ fix two points in every generic p-fiber. If $h=c^{2} \in H^{\prime}=\langle c\rangle$ fixes points in every generic p-fiber, then h acts trivially on a one-dimensional subset $C \subset Y$. Since $h=c^{2}$ acts symplectically on X it has only isolated fixed points in X. Therefore, on the preimage $\tilde{C}=\pi^{-1}(C) \subset X$, the action of h coincides with the action of σ. But then $\left.\sigma h\right|_{\tilde{C}}=\left.\mathrm{id}\right|_{\tilde{C}}$ contradicts the assumption that σh acts freely on X.

Proof of Theorem 7.10. Since there are no nontrivial normal subgroups in H which have trivial intersection with H^{\prime} (Lemma 7.6), it follows from Lemma 7.12 that $\operatorname{Ker}\left(p_{*}\right)=\{$ id $\}$, i.e., the group H acts effectively on the base.

We regard H as the semidirect product $H=\langle\tau\rangle \ltimes K$, where $K=C_{8}$ is described above. The group H acts on the base as a dihedral group and therefore τ exchanges the K-fixed points. We will obtain a contraction by analyzing the K-actions on the fibers over its two fixed points. Since τ exchanges these fibers, it is enough to study the K-action on one of them which we denote by F.

By Lemma 2.21 there are two situations which we must consider:

1. F is a regular fiber of $Y_{\min } \rightarrow \mathbb{P}_{1}$.
2. $F=F_{1} \cup F_{2}$ is the union of two (-1)-curves intersecting transversally in one point.

We study the fixed points of $c, h=c^{2}$ and $g \tau$ in $Y_{\min }$. Recall that in X the symplectic transformation c has precisely four fixed points and h has precisely eight fixed points. This set of eight points is stabilized by the full centralizer of h, in particular by $K=\langle g \tau\rangle \cong C_{8}$.

Since $h \sigma$ acts by assumption freely on X, it follows that σ acts freely on the set of h-fixed points in X. If $h y=y$ for some $y \in Y$, then the preimage of y in X consists of two elements $x_{1}, \sigma x_{1}=x_{2}$. If these form an $\langle h\rangle$-orbit, then both are σh-fixed, a contradiction. It follows that $\left\{x_{1}, x_{2}\right\} \subset \operatorname{Fix}_{X}(h)$ and the number of h-fixed points in Y is precisely four. In particular, h acts effectively on any curve in Y.

Let us first consider Case 2 where $F=F_{1} \cup F_{2}$ is reducible. Since $\langle c\rangle$ is the only subgroup of index two in K, it follows that $\langle c\rangle$ stabilizes F_{i} and both c and h have three fixed points in F (two on each irreducible component, one is the point of intersection $F_{1} \cap F_{2}$), i.e., six fixed points on $F \cup \tau F \subset Y_{\min }$. This is contrary to Lemma 7.11 because h has at most four fixed points in $Y_{\min }$.

If F is regular (Case 1), then the cyclic group K has two fixed points on the rational curve F. Since $h \in K$, the four K-fixed points on $F \cup \tau F$ are contained in the set of h-fixed points on $Y_{\min }$. As $\left|\operatorname{Fix}_{Y_{\text {min }}}(h)\right| \leq 4$, the K-fixed points coincide with the four h-fixed points in $Y_{\min }$;

$$
\operatorname{Fix}_{Y_{\min }}(h)=\operatorname{Fix}_{Y_{\min }}(K) .
$$

In particular, the Mori reduction does not affect the four h-fixed points $\left\{y_{1}, \ldots y_{4}\right\}$ in Y. By equivariance of the reduction, the group K acts trivially on this set of four points. Passing to the double cover X, we conclude that the action of $g \tau \in K$ on a preimage $\left\{x_{i}, \sigma x_{i}\right\}$ of y_{i} is either trivial or coincides with the action of σ. In both cases it follows that $(g \tau)^{2}=c \sigma$ acts trivially on the set of h-fixed points in X. As $\operatorname{Fix}_{X}(c) \subset \operatorname{Fix}_{X}(h)$, this is contrary to the fact that σ acts freely on $\operatorname{Fix}_{X}(h)$.

In the following we wish to identify the Del Pezzo surface $Y_{\min }$. For thus, we use the Euler characteristic formulas,

$$
24=e(X)=2 e(Y)-2 n+\underbrace{2 g-2}_{\text {if } D_{g} \text { is present }},
$$

where $D_{g} \subset B$ is of general type, $g=g\left(D_{g}\right) \geq 2$, and

$$
e(Y)=e\left(Y_{\min }\right)+m,
$$

where $m=|\mathcal{E}|$ denotes the total number of Mori fibers. For convenience we introduce the difference $\delta=m-n$. If a branch curve D_{g} of general type is present, then $13-g-\delta=e\left(Y_{\min }\right)$ and if it is not present $12-\delta=e\left(Y_{\min }\right)$.

Proposition 7.13. For every Mori fiber E the orbit H.E consists of at least four Mori fibers.

Proof. We need to distinguish three cases:
1.) $E \cap B \neq \varnothing$ and $E \not \subset B$;
2.) $E \subset B$;
3.) $E \cap B=\varnothing$

Case 1 Since H^{\prime} acts freely on the branch curves and E meets B in at most two points, we know $\left|H^{\prime} . E\right| \geq 2$. If $|H . E|=2$, then the isotropy group H_{E} is a normal subgroup of index two which necessarily contains the commutator group H^{\prime}, a contradiction.

Case 2 We show that the H^{\prime}-orbit of E consists of four Mori fibers. If it consisted of less than four Mori fibers, the stabilizer $H_{E}^{\prime} \neq\{\mathrm{id}\}$ of E in H^{\prime} would fix two points in $E \subset B$. This contradicts Lemma 7.7.

Case 3 All Mori fibers disjoint from B have self-intersection (-2) and meet exactly one Mori fiber of the previous steps of the reduction in exactly one point. If $E \cap B=\varnothing$ there is a chain of Mori fibers $E_{1}, \ldots, E_{k}=E$ connecting E and B with the following properties: The Mori fiber E_{1} is the only one to have nonempty intersection with B and is the first curve of this configuration to be blown down in the reduction process. The curves fulfil $\left(E_{i}, E_{i+1}\right)=1$ for all $i \in\{1, \ldots, k-1\}$ and $\left(E_{i}, E_{j}\right)=0$ for all $j \neq i+1$. The curves are blown down subsequently and meet no Mori fibers outside this chain.

The H-orbit of this union of Mori fibers consists of at least four copies of this chain. This is due to that fact that the H-orbit of E_{1} consists of at least four Mori fibers by Case 1. In particular, the H-orbit of E consists of at least four copies of E.

Corollary 7.14. The difference δ is a non-negative multiple $4 k$ of four. If $\delta=0$, then X is a double cover of $Y=Y_{\min }=\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along a curve of genus nine.

Proof. Above we have shown that m and and n are multiples of four. Therefore $\delta=4 k$.
If δ was negative, i.e., $m<n$, there is no configuration of Mori fibers meeting the rational branch curves such that the corresponding contractions transform the (-4)-curves in Y to curves on a Del Pezzo surface $Y_{\min }$. It follows that δ is non-negative.

If $\delta=0$, then $n=m=0$ and Y is H-minimal. The commutator subgroup $H^{\prime} \cong C_{4}$ acts freely on the branch locus B implying $e(B) \in\{0,-8,-16, \ldots\}$. Since the Euler characteristic of the Del Pezzo surface Y is at least 3 and at most 11,

$$
6 \leq 2 e(Y)=24+e(B) \leq 22
$$

we only need to consider the case $e(Y) \in\{4,8\}$ and $B=D_{g}$ for $g \in\{9,5\}$.
The automorphism group of a Del Pezzo surface of degree 4 is $C_{2}^{4} \rtimes \Gamma$ for $\Gamma \in\left\{C_{2}, C_{4}, S_{3}, D_{10}\right\}$. If $D_{16}<C_{2}^{4} \rtimes \Gamma$ then $A:=D_{16} \cap C_{2}^{4} \triangleleft D_{16}$ and A is either trivial or isomorphic to C_{2}. In both case D_{16} / A is not a subgroup of Γ in any of the cases listed above. Therefore, $e(Y) \neq 8$.
A Del Pezzo surface of degree 8 is either the blow-up of \mathbb{P}_{2} in one point or $\mathbb{P}_{1} \times \mathbb{P}_{1}$. Since the first is never equivariantly minimal, it follows that $Y \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$ and $g(B)=9$.

Theorem 7.15. Any H-minimal model $Y_{\min }$ of Y is $\mathbb{P}_{1} \times \mathbb{P}_{1}$.

Proof. Suppose $\delta \neq 0$. Since $\delta \geq 4$, it follows that $e\left(Y_{\min }\right)=13-g-\delta \leq 7$ if a branch curve D_{g} of general type is present, and $e\left(Y_{\min }\right)=12-\delta \leq 8$ if not. We go through the list of of Del Pezzo surfaces with $e\left(Y_{\min }\right) \leq 8$.

- If $e\left(Y_{\min }\right)=8$, i.e., $\operatorname{deg}\left(Y_{\min }\right)=4$, then the possible automorphism groups are very limited and we have alredy noted above that D_{16} does not occur.
- If $e\left(Y_{\min }\right)=7$, then $\operatorname{Aut}\left(Y_{\min }\right)=S_{5}$. Since 120 is not divisible by 16 , we see that a Del Pezzo surface of degree five does not admit an effective action of the group H.
- If $e\left(Y_{\min }\right)=6$, then $A:=\operatorname{Aut}\left(Y_{\min }\right)=\left(\mathbb{C}^{*}\right)^{2} \rtimes\left(S_{3} \times C_{2}\right)$. We denote by $A^{\circ} \cong\left(\mathbb{C}^{*}\right)^{2}$ the connected component of A. If $q: A \rightarrow A / A^{\circ}$ is the canonical quotient homomorphism then $q\left(H^{\prime}\right)<q(A)^{\prime} \cong C_{3}$. Consequently $H^{\prime}=C_{4}<A^{\circ}$. We may realize $Y_{\min }$ as \mathbb{P}_{2} blown up at the three corner points and A° as the space of diagonal matrices in $\mathrm{SL}_{3}(\mathbb{C})$. Every possible representation of C_{4} in this group has ineffectivity along one of the lines joining corner points. But, as we have seen before, the elements of H^{\prime}, in particular $c^{2}=h$, have only isolated fixed points in $Y_{\text {min }}$.
- A Del Pezzo surface obtained by blowing up one or two points in \mathbb{P}_{2} is never H-minimal and therefore does not occur
- Finally, $Y_{\min } \neq \mathbb{P}_{2}$: If $e\left(Y_{\min }\right)=3$ then either $\delta=9$ (if D_{g} is not present), a contradiction to $\delta=4 k$, or $g+\delta=10$. In the later case, $\delta=4,8$ forces $g=6,2$. In both cases, the Euler characteristic $2-2 g$ of D_{g} is not divisible by 4 . This contradicts the fact that H^{\prime} acts freely on D_{g}.

We have hereby excluded all possible Del Pezzo surfaces except $\mathbb{P}_{1} \times \mathbb{P}_{1}$ and the proposition follows.

7.3 Branch curves and Mori fibers

We let $M: Y \rightarrow Y_{\text {min }}=\mathbb{P}_{1} \times \mathbb{P}_{1}$ denote an H-equivariant Mori reduction of Y.
Lemma 7.16. The length of an orbit of Mori fibers is at least eight.

Proof. Consider the action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$. Both canonical projections are equivariant with respect to the commutator subgroup $H^{\prime}=\langle c\rangle \cong C_{4}$. Since $c^{2} \in H^{\prime}$ does not act trivially on any curve in Y or $Y_{\min }$, it follows that H^{\prime} has precisely four fixed points in $Y_{\min }=\mathbb{P}_{1} \times \mathbb{P}_{1}$. Since $h=c^{2}$ has precisely four fixed points in Y and $\operatorname{Fix}_{Y}\left(H^{\prime}\right)=\operatorname{Fix}_{Y}(c) \subset \operatorname{Fix}_{Y}\left(c^{2}\right)$, we conclude that H^{\prime} has precisely four fixed points in Y and it follows that the Mori fibers do not pass through H^{\prime}-fixed points. Note that the H^{\prime}-fixed points in Y coincide with the h-fixed points.

Suppose there is an H-orbit H. E of Mori fibers of length strictly less then eight and let $p=M(E)$. We obtain an H-orbit $H . p$ in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ with $|H . p| \leq 4$. Now $|K . p| \leq 4$ implies that $K_{p} \neq\{\mathrm{id}\}$, in particular, $h=c^{2} \in K_{p}$. It follows that p is a h-fixed point. This contradicts the fact that the Mori fibers do not pass through fixed points of h.

Corollary 7.17. The total number m of Mori fibers equals 0,8 , or 16 ..
Proof. A total number of 24 or more Mori fibers would require 16 rational curves in B. This contradicts the bound for the number of connected components of the fixed point set of an antisymplectic involution on a K3-surface (cf. Corollary 3.20)

Recalling that the number of rational branch curves is a multiple of four, i.e., $n \in\{0,4,8\}$ and using the fact $m \in\{0,8,16\}$ along with $m \leq n+9$, we conclude that the surface Y is of one of the following types.

1. $m=0$

The quotient surface Y is H-minimal. The map $X \rightarrow Y \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$ is branched along a single curve B. This curve B is a smooth H-invariant curve of bidegree $(4,4)$.
2. $m=8$ and $e(Y)=12$

The surface Y is the blow-up of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in an H-orbit consisting of eight points.
(a) If the branch locus B of $X \rightarrow Y$ contains no rational curves, then $e(B)=0$ and B is either an elliptic curve or the union of two elliptic curves defining an elliptic fibration on X.
(b) If the branch locus B of $X \rightarrow Y$ contains rational curves, their number is exactly four (Observe that eight or more rational branch curves of self-intersection (-4) cannot be modified sufficiently and mapped to curves on a Del Pezzo surface by contracting eight Mori fibers). It follows that the branch locus is the disjoint union of an invariant curve of higher genus and four rational curves.
3. $m=16$ and $e(Y)=20$

The map $X \rightarrow Y$ is branched along eight disjoint rational curves.
We can simplify the above situation by studying rational curves in B, their intersection with Mori fibers and their images in $\mathbb{P}_{1} \times \mathbb{P}_{1}$.

Proposition 7.18. If $e(Y)=12$, then $n=0$.
Proof. Suppose $n \neq 0$ and let $C_{i} \subset Y$ be a rational branch curve. Since $C_{i}^{2}=-4$ and $M\left(C_{i}\right) \subset \mathbb{P}_{1} \times$ \mathbb{P}_{1} has self-intersection ≥ 0 it must meet the union of Mori fibers $\cup E_{j}$. All possible configurations of Mori fibers yield image curves $M\left(C_{i}\right)$ of self-intersection ≤ 4. If $M\left(C_{i}\right)$ is a curve a bidegree (a, b), then, by adjunction.

$$
2 g\left(M\left(C_{i}\right)\right)-2=\left(M\left(C_{i}\right)\right)^{2}+\left(M\left(C_{i}\right) \cdot K_{\mathbb{P}_{1} \times \mathbb{P}_{1}}\right)=2 a b-2 a-2 b,
$$

and $\left(M\left(C_{i}\right)\right)^{2}=2 a b \leq 4$ implies that $g\left(M\left(C_{i}\right)\right)=0$. In particular, $M\left(C_{i}\right)$ must be nonsingular. Hence each Mori fiber meets C_{i} in at most one point. It follows that C_{i} meets four Mori fibers, each in one point, and $\left(M\left(C_{i}\right)\right)^{2}=0$. Curves of self-intersection zero in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ are fibers of the canonical projections $\mathbb{P}_{1} \times \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$. The curve C_{1} meets four Mori fibers $E_{1}, \ldots E_{4}$ and each of these Mori fibers meets some C_{i} for $i \neq 1$. After renumbering, we may assume that E_{1} and E_{2} meet C_{2} and therefore $M\left(C_{1}\right)$ and $M\left(C_{2}\right)$ meet in more than one point, a contradiction. It follows that $e(Y)=12$ implies $n=0$

Proposition 7.19. If $e(Y)=20$, then Y is the blow-up of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in sixteen points

$$
\left\{p_{1}, \ldots p_{16}\right\}=\left(F_{1} \cup F_{2} \cup F_{3} \cup F_{4}\right) \cap\left(F_{5} \cup F_{6} \cup F_{7} \cup F_{8}\right)
$$

where $F_{1}, \ldots F_{4}$ are fibers of the canonical projection π_{1} and $F_{5}, \ldots F_{8}$ are fibers of π_{2}. The branch locus is given by the proper transform of $\cup F_{i}$ in Y.

Proof. We denote the eight rational branch curves by $C_{1}, \ldots C_{8}$. The Mori reduction can have two steps. A slightly more involved study of possible configurations of Mori fibers shows that $0 \leq\left(M\left(C_{i}\right)\right)^{2} \leq 4$. As above $M\left(C_{i}\right)$ is seen to be nonsingular and each Mori fiber can meet C_{i} in at most one point. Any configuration of curves with this property yields $\left(M\left(C_{i}\right)\right)^{2}=0$ and $F_{i}=M\left(C_{i}\right)$ is a fiber of a canonical projection $\mathbb{P}_{1} \times \mathbb{P}_{1} \rightarrow \mathbb{P}_{1}$.
If there are Mori fibers disjoint from B these are blown down in the second step of the Mori reduction. Let E_{1}, \ldots, E_{8} denote the Mori fibers of the first step and $\tilde{E}_{1}, \ldots, \tilde{E}_{8}$ those of the second step. We label them such that \tilde{E}_{i} meets E_{i}. Each curve E_{i} meets two rational branch curves C_{i} and C_{i+4} and their images $F_{i}=M\left(C_{i}\right)$ and $F_{i+4}=M\left(C_{i+4}\right)$ meet with multiplicity ≥ 2. This is contrary to the fact that they are fibers of the canonical projections. It follows that there are no Mori fibers disjoint from B and all 16 Mori fibers are contrancted simultaniously. There is precisely one possible configuration of Mori fibers on Y such that all rational brach curves are mapped to fibers of the canonical projections of $\mathbb{P}_{1} \times \mathbb{P}_{1}$: The curves $C_{1}, \ldots C_{4}$ are mapped to fibers of π_{1} and C_{5}, \ldots, C_{8} are mapped to fibers of π_{2}. The Mori reduction contracts 16 curves to the 16 points of intersection $\left\{p_{1}, \ldots p_{16}\right\}=\left(\bigcup_{i=1}^{4} F_{i}\right) \cap\left(\bigcup_{i=5}^{8} F_{i}\right) \subset \mathbb{P}_{1} \times \mathbb{P}_{1}$.

Let us now restrict our attention to the case where the branch locus B is the union of two linearly equivalent elliptic curves and exclude this case.

7.3.1 Two elliptic branch curves

In this section we prove:
Theorem 7.20. Fix $_{X}(\sigma)$ is not the union of two elliptic curves.
We assume the contrary, let $\operatorname{Fix}_{X}(\sigma)=D_{1} \cup D_{2}$ with D_{i} elliptic and let $f: X \rightarrow \mathbb{P}_{1}$ denote the elliptic fibration defined by the curves D_{1} and D_{2}. Recall that σ acts effectively on the base \mathbb{P}_{1} as otherwise σ would act trivially in a neighbourhood of D_{i} by a linearization argument (cf. Theorem 1.12). It follows that the group of order four generated by τ acts effectively on \mathbb{P}_{1}.

Let I be the ineffectivity of the induced G-action on the base \mathbb{P}_{1}. We regard $G=C_{4} \ltimes D_{8}$ where $C_{4}=\langle\tau\rangle$ and D_{8} is the centralizer of σ in A_{6} (cf. Section 7.1.1) and define $J:=I \cap D_{8}$. First, note that I is nontrivial:

Lemma 7.21. The group G does not act effectively on \mathbb{P}_{1}, i.e., $I \neq\{\mathrm{id}\}$.

Proof. If G acts effectively on \mathbb{P}_{1}, then G is among the groups specified in Remark 3.1. In our special case $|G|=32$ and G would have to be cyclic or dihedral. Since the group G does not contain a cyclic group of order 16 , this is a contradiction.

Lemma 7.22. The intersection $J=I \cap D_{8}$ is nontrivial.
Proof. Assume the contrary and let $J=I \cap D_{8}=\{e\}$. We consider the quotient $G \rightarrow G / D_{8} \cong C_{4}$ and see that either $I \cong C_{2}$ or $I \cong C_{4}$.

- If $I \cap D_{8}=\{e\}$ and $I \cong C_{2}$, we write $I=\langle\sigma \xi\rangle$ with $\xi \in D_{8}$ an element of order two. Now I is normal if and only if $\xi=h$, i.e., $I=\langle\sigma h\rangle$. In this case, since $\sigma h \notin K$, the image of K in G / I is a normal subgroup of index two and one checks that $G / I \cong D_{16}$. The group K is mapped injectively into G / I. The equivalence relation defining this quotient identifies σ and h and both are in the image of K. So h-fixed points in X must lie in the fibers over the σ-fixed points in \mathbb{P}_{1}, i.e., the σ-fixed points sets D_{1}, D_{2}. Since σh acts freely on X, this is a contradiction.
- If $I \cap D_{8}=\{e\}$ and $I \cong C_{4}$ we write $I=\langle\tau \xi\rangle$ and show that for no choice of ξ the group $I=\langle\tau \xi\rangle$ is normal in G : If $\xi=c^{k} g$, then $\langle\tau \xi\rangle=K$ is of order eight. If $\xi=c^{k}$, then $\langle\tau \xi\rangle$ is of order four and has trivial intersection with D_{8}. It is however not normalized by g.

As we obtain contradictions in all cases, we see that the intersection $J=I \cap D_{8}$ is nontrivial.
In the following, we consider the different possibilities for the order of J and show that in fact none of these occur.

If $|J|=8$ then $D_{8} \subset I$. Recall that any automorphism group of an elliptic curve splits into an Abelian part acting freely and a cyclic part fixing a point. Since D_{8} is not Abelian, any D_{8}-action on the fibers of f must have points with nontrivial isotropy and gives rise to a positive-dimensional fixed point set of some subgroup of D_{8} on X contradicting the fact that D_{8} acts symplectically on X. It follows that the maximal possible order of J is four.

Lemma 7.23. The ineffectivity I does not contain $\langle c\rangle$.
Proof. Assume the contrary and consider the fixed points of c^{2}. If a c^{2}-fixed point lies at a smooth point of a fiber of f, then the linearization of the c^{2}-action at this fixed point gives rise to a positivedimensional fixed point set in X and yields a contradiction. It follows that the fixed points of c^{2} are contained in the singular f-fibers. Since $\langle\tau\rangle$ normalizes $\langle c\rangle$ and the $\langle\tau\rangle$-orbit of a singular fiber consists of four such fibers, we must only consider two cases:

1. The eight c^{2}-fixed points are contained in four singular fibers (one $\langle\tau\rangle$-orbit of fibers), each of these fibers contains two c^{2}-fixed points.
2. The eight c^{2}-fixed points are contained in eight singular fibers (two $\langle\tau\rangle$-orbits).

Note that $\left\langle c^{2}\right\rangle$ is normal in I and therefore I acts on the set of $\left\langle c^{2}\right\rangle$-fixed points. In the second case, all eight c^{2}-fixed points are also c-fixed. This is contrary to c having only four fixed points and therefore the second case does not occur.
The first case does not occur for similar reasons: If c^{2} has exactly two fixed points x_{1} and x_{2} in some fiber F, then $\langle c\rangle$ either acts transitively on $\left\{x_{1}, x_{2}\right\}$ or fixes both points. Since Fix $x_{X}(c) \subset$ $\operatorname{Fix}_{X}\left(c^{2}\right)$ and $\langle c\rangle$ must have exactly one fixed point on F, this is impossible.

Corollary 7.24. $|J| \neq 4$.

Proof. Assume $|J|=4$. Using τ we check that no subgroup of D_{8} isomorphic to $C_{2} \times C_{2}$ is normal in G. It follows that the group $\langle c\rangle$ is the only order four subgroup of D_{8} which is normal in G and therefore $J=\langle c\rangle$. By the lemma above this is however impossible.

It remains to consider the case where $|J|=2$. The only normal subgroup of order two in D_{8} is $J=\langle h\rangle$.

Lemma 7.25. If $|J|=2$, then $I=\langle\sigma c\rangle$.

Proof. We first show that $|J|=2$ implies $|I|=4$: If $|I|=2$, then $I=\langle h\rangle$ and $G / I=C_{4} \ltimes\left(C_{2} \times C_{2}\right)$. Since this group does not act effectively on \mathbb{P}_{1}, this is a contradiction. If $|I| \geq 8$, then G / I is Abelian and therefore I contains the commutator subgroup $G^{\prime}=\langle c\rangle$. This contradicts Lemma 7.23. It follows that $|I|=4$ and either $I \cong C_{4}$ or $I \cong C_{2} \times C_{2}$. In the later case, the only possible choice is $I=\langle\sigma\rangle \times\langle h\rangle$ which contradicts the fact that σ acts effectively on the base. It follows that $I=\langle\sigma \xi\rangle$, where $\xi^{2}=h$ and therefore $\xi=c$.

Let us now consider the action of G on X with $I=\langle\sigma c\rangle$. Recall that the cyclic group $\langle\tau\rangle$ acts effectively on the base and has two fixed points there. Since $\sigma=\tau^{2}$, these are precisely the two σ fixed points. In particular, $\langle\tau\rangle$ stabilizes both σ-fixed point curves D_{1} and D_{2} in X. Furthermore, the transformations σc and c stabilize D_{i} for $i=1,2$. Since the only fixed points of c in \mathbb{P}_{1} are the images of D_{1} and D_{2},

$$
\operatorname{Fix}_{X}(c) \subset D_{1} \cup D_{2}=\operatorname{Fix}_{X}(\sigma)
$$

On the other hand, we know that $\operatorname{Fix}_{X}(c) \cap \operatorname{Fix}_{X}(\sigma)=\varnothing$. Thus $I=\langle\sigma c\rangle$ is not possible and the case $|J|=2$ does not occur.

We have hereby eleminated all possibilities for $|J|$ and completed the proof of Theorem 7.20.

7.4 Rough classification of X

We summerize the observations of the previous section in the following classification result.
Theorem 7.26. Let X be a K3-surface with an effective action of the group G such that $\operatorname{Fix}_{X}(h \sigma)=\varnothing$. Then X is one of the following types:

1. a double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along a smooth H-invariant curve of bidegree $(4,4)$.
2. a double cover of a blow-up of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in eight points and branched along a smooth elliptic curve B. The image of B in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ has bidegree $(4,4)$ and eight singular points.
3. a double cover of a blow-up Y of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in sixteen points $\left\{p_{1}, \ldots p_{16}\right\}=\left(\bigcup_{i=1}^{4} F_{i}\right) \cap\left(\bigcup_{i=5}^{8} F_{i}\right)$, where $F_{1}, \ldots F_{4}$ are fibers of the canonical projection π_{1} and $F_{5}, \ldots F_{8}$ are fibers of π_{2}. The branch locus ist given by the proper transform of $\cup F_{i}$ in Y. The set $\bigcup F_{i}$ is an invariant reducible subvariety of bidegree $(4,4)$.

Proof. It remains to consider case 2 . and show that the image of B in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ has bidegree $(4,4)$ and eight singular points. We prove that each Mori fiber E meets the branch locus B either in two points or once with multiplicity two, i.e., we need to check that E may not meet B transversally in exactly one point. If this was the case, the image $M(B)$ of the branch curve is a smooth H-invariant curve of bidegree $(2,2)$. The double cover X^{\prime} of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along the smooth curve $M(B)=C_{(2,2)}$ is a smooth surface. Since X is K3 and therefore minimal the induced birational map $X \rightarrow X^{\prime}$ is an isomorphism. This is a contradiction since X^{\prime} is not a K3-surface.

As each Mori fiber meets B with multiplicity two, the self-intersection number of $M(B)$ is 32 and $M(B)$ is a curve of bidegree $(4,4)$ with eight singular points. These singularities are either nodes or cusps depending on the kind of intersection of E and B. We obtain a diagram

In order to obtain a description of possible branch curves, we study the action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ and its invariants.

7.4.1 The action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$

Recall that we consider the dihedral group $H \cong D_{16}$ generated by τg of order eight and τ. For convenience, we recall the group structure of H :

$$
\begin{gathered}
c=(g \tau)^{2}, \quad \tau g \tau=g c, \\
g^{2}=\mathrm{id}, \quad \tau c \tau=c^{3}, \\
c^{4}=\mathrm{id}, \quad \tau^{2}=\mathrm{id} .
\end{gathered}
$$

In this section, we prove:
Proposition 7.27. In appropriately chosen coordinates the action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ given by

$$
\begin{aligned}
& \text { - } c\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[i z_{0}: z_{1}\right],\left[-i w_{0}: w_{1}\right]\right) \\
& \text { - } \tau\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[z_{1}: z_{0}\right],\left[i w_{1}: w_{0}\right]\right) \\
& \text { - } g\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[w_{0}: w_{1}\right],\left[z_{0}: z_{1}\right]\right) .
\end{aligned}
$$

Sketch of proof. First note that the index two subgroup H_{1} of H preserving the canonical projections is generated by τ and c, i.e, $H_{1}=\langle\tau\rangle \ltimes\langle c\rangle \cong D_{8}$. We begin by choosing coordinates such that

$$
c\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[\chi_{1}(c) z_{0}: z_{1}\right],\left[\chi_{2}(c) w_{0}: w_{1}\right]\right)
$$

where $\chi_{i}: H^{\prime} \rightarrow S^{1}$ are faithful characters. Since τ acts transitively on the set of H^{\prime}-fixed points, we conclude that after an appropriate change of coordinates not affecting the H^{\prime}-action

$$
\tau\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[z_{1}: z_{0}\right],\left[w_{1}: w_{0}\right]\right)
$$

The automorphism g permutes the factors of $\mathbb{P}_{1} \times \mathbb{P}_{1}$, stabilizes the fixed point set of H^{\prime} and fulfills $g c g^{-1}=c^{3}$ and $g \tau g^{-1}=c \tau$. Therefore, one finds

- $c\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[i z_{0}: z_{1}\right],\left[-i w_{0}: w_{1}\right]\right)$
- $\tau\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[z_{1}: z_{0}\right],\left[w_{1}: w_{0}\right]\right)$
- $g\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[\lambda w_{0}: w_{1}\right],\left[\lambda^{-1} z_{0}: z_{1}\right]\right)$, where $\lambda^{2}=i$.

We introduce a change of coordinates such that g is of the simple form

$$
g\left(\left[z_{0}: z_{1}\right],\left[w_{0}: w_{1}\right]\right)=\left(\left[w_{0}: w_{1}\right],\left[z_{0}: z_{1}\right]\right)
$$

This does affect the shape of the τ-action and yields the action of H described in the propostion.

7.4.2 Invariant curves of bidegree (4,4)

Given the action of H on $\mathbb{P}_{1} \times \mathbb{P}_{1}$ discussed above, we wish to study the invariants and semiinvariants of bidegree $(4,4)$. The space of (a, b) - bihomogeneous polynomials in $\left[z_{0}: z_{1}\right]\left[w_{0}: w_{1}\right]$ is denoted by $\mathbb{C}_{(a, b)}\left(\left[z_{0}: z_{1}\right]\left[w_{0}: w_{1}\right]\right)$.

An invariant curve C is given by a D_{16}-eigenvector $f \in \mathbb{C}_{(4,4)}\left(\left[z_{0}: z_{1}\right]\left[w_{0}: w_{1}\right]\right)$. The kernel of the D_{16}-representation on the line $\mathbb{C} f$ spanned f contains the commutator subgroup $H^{\prime}=\langle c\rangle$. It follows that f is a linear combination of c-invariant monomials of bidegree $(4,4)$. These are

$$
z_{0}^{4} w_{0}^{4}, z_{0}^{4} w_{1}^{4}, z_{1}^{4} w_{0}^{4}, z_{1}^{4} w_{1}^{4}, z_{0}^{2} z_{1}^{2} w_{0}^{2} w_{1}^{2}, z_{0}^{3} z_{1} w_{0}^{3} w_{1}, z_{0} z_{1}^{3} w_{0} w_{1}^{3}
$$

The polynomials

$$
f_{1}=z_{0}^{4} w_{0}^{4}+z_{1}^{4} w_{1}^{4}, \quad f_{2}=z_{0}^{4} w_{1}^{4}+z_{1}^{4} w_{0}^{4}, \quad f_{3}=z_{0}^{3} z_{1} w_{0}^{3} w_{1}-i z_{0} z_{1}^{3} w_{0} w_{1}^{3}
$$

span the space of D_{16}-invariants. Semi-invariants are appropiate linear combinations of

$$
g_{1}=z_{0}^{4} w_{0}^{4}-z_{1}^{4} w_{1}^{4}, \quad g_{2}=z_{0}^{4} w_{1}^{4}-z_{1}^{4} w_{0}^{4}, \quad g_{3}=z_{0}^{3} z_{1} w_{0}^{3} w_{1}+i z_{0} z_{1}^{3} w_{0} w_{1}^{3}, \quad g_{4}=z_{0}^{2} z_{1}^{2} w_{0}^{2} w_{1}^{2}
$$

Note

$$
\begin{array}{llll}
\tau\left(g_{1}\right)=-g_{1}, & \tau\left(g_{2}\right)=-g_{2}, & \tau\left(g_{3}\right)=-g_{3}, & \tau\left(g_{4}\right)=-g_{4}, \\
g\left(g_{1}\right)=g_{1}, & g\left(g_{2}\right)=-g_{2}, & g\left(g_{3}\right)=g_{3}, & g\left(g_{4}\right)=g_{4} .
\end{array}
$$

It follows that a D_{16}-invariant curve of bidegree $(4,4)$ in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ is of the following three types

$$
\begin{aligned}
& C_{a}=\left\{a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}=0\right\} \\
& C_{b}=\left\{b_{1} g_{1}+b_{3} g_{3}+b_{4} g_{4}=0\right\} \\
& C_{0}=\left\{g_{2}=0\right\}
\end{aligned}
$$

7.4.3 Refining the classification of X

Using the above description of invariant curves of bidegree $(4,4)$ we may refine Theorem 7.26.

Reducible curves of bidegree $(4,4)$

Theorem 7.28. Let X be a K3-surface with an effective action of the group G such that $\operatorname{Fix}_{X}(h \sigma)=\varnothing$. If $e(X / \sigma)=20$, then X / σ is equivariantly isomorphic to the blow up of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in the singular points of the curve $C=\left\{f_{1}-f_{2}=0\right\}$ and $X \rightarrow Y$ is branched along the proper transform of C in Y.

Proof. It follows from Theorem 7.26 that X is the double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ blown up in sixteen points. These sixteen points are the points of intersection of eight fibers of $\mathbb{P}_{1} \times \mathbb{P}_{1}$, four for each of fibration.

By invariance these fibers lie over the base points $[1: 1],[1:-1],[1: i],[1:-1]$ and the configurations of eight fibres is defined by the invariant polynomial $f_{1}-f_{2}$.

The double cover $X \rightarrow Y$ is branched along the proper transform of this configuration of eight rational curves. This proper transform is a disjoint union of eight rational curves in Y, each with self-intersection (-4).

Smooth curves of bidegree $(4,4)$

Theorem 7.29. Let X be a K3-surface with an effective action of the group G such that $\operatorname{Fix}_{X}(h \sigma)=\varnothing$. If $X / \sigma \cong \mathbb{P}_{1} \times \mathbb{P}_{1}$, then after a change of coordinates the branch locus is C_{a} for some $a_{1}, a_{2}, a_{3} \in \mathbb{C}$.

Proof. The surface X is a double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along a smooth H-invariant curve of bidegree (4,4). The invariant (4,4)-curves C_{b} and C_{0} discussed above are seen to be singular at $([1: 0],[1: 0])$ or $([1: 0],[0: 1])$.

Note that the general curve C_{a} is smooth. We obtain a 2-dimensional family $\left\{C_{a}\right\}$ of smooth branch curves and a corresponding family of K3-surfaces $\left\{X_{C_{a}}\right\}$.

Curves of bidegree $(4,4)$ with eight singular points

It remains to consider the case 2. of the classification. Our aim is to find an example of a K3surface X such that $X / \sigma=Y$ has a nontrivial Mori reduction $M: Y \rightarrow \mathbb{P}_{1} \times \mathbb{P}_{1}=Z$ contracting a single H-orbit of Mori fibers consisting of precisely 8 curves. In this case the branch locus $B \subset Y$ is mapped to a singular $(4,4)$-curve $C=M(B)$ in Z. The curve C is irreducible and has precisely 8 singular points along a single H-orbit in Z.

As we have noted above, many of the curves C_{a}, C_{b}, C_{0} are seen to be singular at $([1: 0],[1: 0])$ or ($[1: 0],[0: 1]$). Since both points lie in H-orbits of length two, these curves are not candidates for our construction. This argument excludes the curves C_{b}, C_{0} and C_{a} if $a_{1}=0$ or $a_{2}=0$.

For C_{a} with $a_{3}=0$ one checks that C_{a} has singular points if and only if $a_{1}=-a_{2}$, i.e., if C_{a} is reducible. It therefore remains to consider curves C_{a} where all coefficients $a_{i} \neq 0$. We choose $a_{3}=1$.

Lemma 7.30. If $a_{i} \neq 0$ for $i=1,2,3$, then C_{a} is irreducible.

Sketch of proof. First note that C_{a} does not pass through ([1:0], $[1: 0]$) or ([1:0],[0:1]). Therefore, possible singularities or points of intersection of irreducible components come in orbits of
length eight. Assume that C_{a} is reducible, consider the decomposition into irreducible components and the H-action on it. A curve of type $(n, 0)$ is always reducible for $n>1$ and therefore does not occur in the decomposition.
If C_{a} contains a (2,2)-curve $C_{a}^{(2,2)}$, then the H-orbit of $C_{a}^{(2,2)}$ has length ≤ 2 and $C_{a}^{(2,2)}$ is stable with respect to the subgroup $H^{\prime}=\langle c\rangle$ of H. All c-semi-invariants of bidegree $(2,2)$ are, however, reducible. Similary, all c-semi-invariants of bidegree $(1,2)$ or $(2,1)$ are reducible an therefore C does not have a curve of this type as an irreducible component.

The curve C_{a} is not the union of a $(1,3)$ - and a $(3,1)$-curve, since their intersection number is 10 and contradicts invariance. Similarly one excludes the union of a $(1,1)$ and a $(3,3)$-curve.

If C_{a} is a union of $(1,1)$ or $(1,0)$ and $(0,1)$-curves, one checks by direct computation that the requirement that C_{a} is H-invariant gives strong restrictions and finds that in all cases at least one coefficient a_{i} has to be zero.

One possible choice of an orbit of length eight is given by the orbit through a τ-fixed point $p_{\tau}=$ ($[1: 1],[\pm \sqrt{i}: 1]$). One checks that $p_{\tau} \in C_{a}$ for any choice of a_{i}. However, if we want C_{a} to be singular in p_{τ}, then $a_{2}=0$. It then follows that C_{a} is singular at points outside $H . p_{\tau}$. It has more than eight singular points and is therefore reducible.

All other orbits of length eight are given by orbits through g-fixed points $p_{x}=([1: x],[1: x])$ for $x \neq 0$. One can choose coefficients $a_{i}(x)$ such that $C_{a(x)}$ is singular at p_{x} if and only if $x^{8} \neq 1$. If the curve $C_{a(x)}$ is irreducible, then it has precisely eight singular points H. p_{x} of multiplicity 2 (cusps or nodes) and the double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along $C_{a(x)}$ is a singular K3-surface with precisely eight singular points. We obtain a diagram

If p_{x} is a node in $C_{a(x)}$, then the corresponding singularity of $X_{\text {sing }}$ is resolved by a single blowup. The (-2)-curve in X obtained from this desingularization is a double cover of a (-1)-curve in Y meeting B in two points.

If p_{x} is a cusp in $C_{a(x)}$, then the corresponding singularity of $X_{\text {sing }}$ is resolved by two blow-ups. The union of the two intersecting (-2)-curves in X obtained from this desingularization is a double cover of a (-1)-curve in Y tangent to B is one point.

The information determining whether p_{x} is a cusp or a node is encoded in the rank of the Hessian of the equation of $C_{a(x)}$ at p_{x}. The condition that this rank is one gives a nontrivial polynomial condition. For a general irreducible member of the family $\left\{C_{a(x)} \mid x \neq 0, x^{8} \neq 1\right\}$ the singularities of $C_{a(x)}$ are nodes.

We let q be the polynomial in x that vanishes if and only if the rank of the Hessian of $C_{a(x)}$ at p_{x} is one. It has degree 24 , but 16 of its solutions give rise to reducible curves $C_{a(x)}$. The remaining eight solution give rise to four different irreducible curves. These are identified by the action of the normalizer of H in $\operatorname{Aut}\left(\mathbb{P}_{1} \times \mathbb{P}_{1}\right)$ and therefore define equivalent K 3 -surfaces.

We summarize the discussion in the following main classification theorem.

Theorem 7.31. Let X be a K3-surface with an effective action of the group G such that $\operatorname{Fix}_{X}(h \sigma)=\varnothing$. Then X is an element of one the following families of K3-surfaces:

1. the two-dimensional family $\left\{X_{C_{a}}\right\}$ for C_{a} smooth,
2. the one-dimensional family of minimal desingularization of double covers of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along curves in $\left\{C_{a(x)} \mid x \neq 0, x^{8} \neq 1\right\}$. The general curve $C_{a(x)}$ has precisely eight nodes along an H-orbit. Up to natural equivalence there is a unique curve $C_{a(x)}$ with eight cusps along an H-orbit.
3. the trivial family consisting only of the minimal desingularization of the double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ branched along the curve $C_{a}=\left\{f_{1}-f_{2}=0\right\}$ where $a_{1}=1, a_{2}=-1, a_{3}=0$.
Corollary 7.32. Let X be a K3-surface with an effective action of the group \tilde{A}_{6}. If $\mathrm{Fix}_{X}(h \sigma)=\varnothing$, then X is an element of one the families 1. -3. above. If $\operatorname{Fix}_{X}(h \sigma) \neq \varnothing$, then X is A_{6}-equivariantly isomorphic to the Valentiner surface.

7.5 Summary and outlook

Recall that our starting point was the description of K3-surfaces with \tilde{A}_{6}-symmetry. Using the group structure of \tilde{A}_{6} we have divided the problem into two possible cases corresponding to the question whether $\operatorname{Fix}_{X}(h \sigma)$ is empty or not. If it is nonempty, the K3-surface with \tilde{A}_{6}-symmetry is the Valentiner surface discussed in Section 4.2. If is is empty, our discussion in the previous sections has reduced the problem to finding the \tilde{A}_{6}-surface in the families of surfaces $X_{C_{a}}$ with D_{16}-symmetry.
It is known that a K3-surface with \tilde{A}_{6}-symmetry has maximal Picard rank 20. This follows from a criterion due to Mukai (cf. [Muk88]) and is explicitely shown in [KOZ05].
All surfaces $X_{C_{a}}$ for $C_{a} \subset \mathbb{P}_{1} \times \mathbb{P}_{1}$ a (4,4)-curve are elliptic since the natural fibration of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ induces an elliptic fibration on the double cover (or is desingularization).

A possible approach for finding the \tilde{A}_{6}-example inside our families is to find those surfaces with maximal Picard number by studying the elliptic fibration. It would be desirable to apply the following formula for the Picard rank of an elliptic surface $f: X \rightarrow \mathbb{P}_{1}$ with a section (cf. [SI77]):

$$
\rho(X)=2+\operatorname{rank}\left(M W_{f}\right)+\sum_{i}\left(m_{i}-1\right)
$$

where the sum is taken over all singular fibers, m_{i} denotes the number of irreducible components of the singular fiber and $\operatorname{rank}\left(M W_{f}\right)$ is the rank of the Mordell-Weil group of sections of f. The number two in the formula is the dimension of the hyperbolic lattice spanned by a general fiber and the section.

First, one has to ensure that the fibration under consideration has a section. One approach to find sections is to consider the quotient $q: \mathbb{P}_{1} \times \mathbb{P}_{1} \rightarrow \mathbb{P}_{2}$ and the image of the curve C_{a} inside \mathbb{P}_{2}. If we find an appropiate bitangent to $q\left(C_{a}\right)$ such that its preimage in $\mathbb{P}_{1} \times \mathbb{P}_{1}$ is everywhere tangent to C_{a}, then its preimage in the double cover of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ is reducible and both its components define sections of the elliptic fibration. For C_{a} the curve with eight nodes the existence of a section (two sections) follows from an application of the Plücker formula to the curve $q\left(C_{a}\right)$ with 3 cusps and its dual curve.

As a next step, one wishes to understand the singular fibers of the elliptic fibrations. Singular fibers occur whenever the branch curve C_{a} intersects a fiber F of the $\mathbb{P}_{1} \times \mathbb{P}_{1}$ in less than four
points. Depending on the nature of intersection $F \cap C_{a}$ one can describe the corresponding singular fiber of the elliptic fibration. For C_{a} the curve with eight cusps one finds precisely eight singular fibres of type I_{3}, i.e., three rational curves forming a closed cycle. In particular, the contribution of all singular fibres $\sum_{i}\left(m_{i}-1\right)$ in the formula above is 16 . In the case where C_{a} is smooth or has eight nodes, this contribution is less.

In order to determine the number $\rho\left(X_{C_{a}}\right)$ it is neccesary to either understand the Mordell-Weil group and its $\operatorname{rank}\left(M W_{f}\right)$ or to find curves which give additional contribution to $\operatorname{Pic}\left(X_{C_{a}}\right.$ not included in $2+\sum_{i}\left(m_{i}-1\right)$.

In conclusion, the method of equivariant Mori reduction applied to quotients X / σ yields an explicit description of a families of K3-surfaces with $D_{16} \times\langle\sigma\rangle$-symmetry and by construction, the K3-surface with \tilde{A}_{6}-symmetry is contained in one of these families. It remains to find criteria to characterize this particular surface inside this family. The possible approach by understanding the function

$$
a \mapsto \rho\left(X_{C_{a}}\right)
$$

using the elliptic structure of $X_{C_{a}}$ requires a detailed analysis of the Mordell-Weil group.

A

Actions of certain Mukai groups on projective space

In this appendix, we derive the unique action of the group N_{72} on \mathbb{P}_{3} and the unique action of M_{9} on \mathbb{P}_{2} in the context of Sections 4.8 and 4.9. We consider the homomorphism $\mathrm{SL}_{n}(\mathbb{C}) \rightarrow \mathrm{PSL}_{n}(\mathbb{C})$ and determine preimages $\tilde{g} \in \mathrm{SL}_{n}(\mathbb{C})$ of the generators $g \in G \subset \operatorname{PSL}_{n}(\mathbb{C})$. Our considerations benefit from fact that both actions are induced by symplectic actions of the corresponding group on a K3-surface X.

A. 1 The action of N_{72} on \mathbb{P}_{3}

One can calculate explicitly the realization of the N_{72}-action on \mathbb{P}_{3} by using the decomposition $C_{3}^{2} \rtimes D_{8}$ where $D_{8}=C_{2} \ltimes\left(C_{2} \times C_{2}\right)=\operatorname{Aut}\left(C_{3}^{2}\right)$. For each generator of N_{72} we will specify the corresponding element in $\mathrm{SL}_{4}(\mathbb{C})$. We denote the center of $\mathrm{SL}_{4}(\mathbb{C})$ by Z . Recall that the action of $D_{8}=C_{2} \ltimes\left(C_{2} \times C_{2}\right)=\langle\alpha\rangle \ltimes(\langle\beta\rangle \times\langle\gamma\rangle)$ on $C_{3} \times C_{3}$ is given by

$$
\alpha(a, b)=(b, a), \quad \beta(a, b)=\left(a^{2}, b\right), \quad \gamma(a, b)=\left(a, b^{2}\right)
$$

In suitably chosen coordinates the generator a of C_{3}^{2} can be represented as

$$
\tilde{a}=\left(\begin{array}{cccc}
\xi & 0 & 0 & 0 \\
0 & \zeta^{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where ξ is a third root of unity. Next we wish to specify γ in $\mathrm{SL}_{4}(\mathbb{C})$. We know that $a \gamma=\gamma a$, i.e., $\tilde{a} \tilde{\gamma} \tilde{a}^{-1} \tilde{\gamma}^{-1} \in Z$, and γ is seen to be of the form

$$
\tilde{\gamma}=\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

where $*$ denotes a nonzero matrix entry. Since a and b commute in N_{72}, we know that $\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1} \in$ Z and

$$
\tilde{b}=\left(\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

Since γ acts on b by $\gamma b \gamma=b^{-1}=b^{2}$, it follows that

$$
\tilde{b}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right)
$$

We apply a change of coordinates affecting only the lower (2×2)-block of b and therefore not affecting the shape of a auch that

$$
\tilde{b}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \tilde{\zeta} & 0 \\
0 & 0 & 0 & \xi^{2}
\end{array}\right)
$$

It follows that α interchanges the two (2×2)-blocks of the matrices a and b and

$$
\tilde{\alpha}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Finally, γ and β can be put into the form

$$
\tilde{\gamma}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \tilde{\beta}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

A.1.1 Invariant quadrics and cubics

Let $f \in \mathbb{C}_{2}\left[x_{1}: x_{2}: x_{3}: x_{4}\right]$ be a semi-invariant homogeneous polynomial of degree two,

$$
f=\sum_{i} a_{i} x_{1}^{2}+\sum_{i \neq j} b_{i j} x_{i} x_{j} .
$$

If $a_{i} \neq 0$ for some $1 \leq i \leq 4$, then semi-invariance with respect to the transformations α, β, γ yields $a_{1}=a_{2}=a_{3}=a_{4}$. It follows that f is not semi-invariant with respect to a.
If $b_{13} \neq 0$, then semi-invariance with respect to the transformations α, β, γ yields $b_{13}=b_{23}=$ $b_{24}=b_{14}$. As above, the polynomial f is not semi-invariant with respect to a.

Therefore, if f is semi-invariant, then $a_{i}=b_{13}=b_{23}=b_{24}=b_{14}=0$ and $b_{12}=b_{34}$. In particular, all degree two semi-invariants are in fact invariant. There is a unique N_{72}-invariant quadric hypersurface in \mathbb{P}_{3} given by the equation $x_{1} x_{2}+x_{3} x_{4}$.

Analogous considerations show that a semi-invariant polynomial of degree three is a multiple of $f_{\text {Fermat }}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}$ and the Fermat cubic $\left\{f_{\text {Fermat }}=0\right\}$ is seen to be the unique $N_{72^{-}}$ invariant cubic hypersurface in \mathbb{P}_{3}.

A. 2 The action of M_{9} on \mathbb{P}_{2}

We consider the decompostion of $M_{9}=\left(C_{3} \times C_{3}\right) \rtimes Q_{8}$. The generators of $C_{3} \times C_{3}$ are denoted a and b and the generators of Q_{8} are denoted by I, J, K. Recall $I^{2}=J^{2}=K^{2}=I J K=-1$. We choose the factorization of $C_{3} \times C_{3}$ such that -1 acts as

$$
(-1) a(-1)=a^{2}, \quad(-1) b(-1)=b^{2}
$$

Furthermore, $I a(-I)=b$ and $J a(-J)=b^{2} a$.
We repeatedly use the fact that the action of M_{9} is induced by a symplectic action of M_{9} on a $K 3$-surface X which is a double cover of \mathbb{P}_{2}.

We begin by fixing a representation of a. Since a may not have a positive dimensional set of fixed points in \mathbb{P}_{2}, it follows that in appropriately chosen coordinates

$$
\tilde{a}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \xi & 0 \\
0 & 0 & \xi^{2}
\end{array}\right)
$$

where ξ is third root of unity.
As a next step, we want to specify a representation of b inside $\mathrm{SL}_{3}(\mathbb{C})$. Since a and b commute in $\operatorname{PSL}_{3}(\mathbb{C})$, we know that

$$
\tilde{a} \tilde{b} \tilde{a}^{-1} \tilde{b}^{-1}=\xi^{k} \mathrm{id}_{\mathrm{C}^{3}}
$$

for $k \in\{0,1,2\}$. Note that \tilde{b} is not diagonal in the coordinates chosen above since this would give rise to C_{3}^{2}-fixed points in \mathbb{P}_{2}. As these correspond to C_{3}^{2}-fixed points on the double cover $X \rightarrow Y$ and a symplectic action of $C_{3}^{2} \nless \mathrm{SL}_{2}(\mathbb{C})$ on a K3-surface does not admit fixed points, this is a contradiction. An explicit calculation yields

$$
\tilde{b}=\tilde{b}_{1}=\left(\begin{array}{lll}
0 & 0 & * \\
* & 0 & 0 \\
0 & * & 0
\end{array}\right) \quad \text { or } \quad \tilde{b}=\tilde{b}_{2}=\left(\begin{array}{ccc}
0 & * & 0 \\
0 & 0 & * \\
* & 0 & 0
\end{array}\right)
$$

We can introduce a change of coordinates commuting with \tilde{a} such that

$$
\tilde{b}=\tilde{b}_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { or } \quad \tilde{b}=\tilde{b}_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Since $\tilde{b}_{1}=\tilde{b}_{2}^{2}$, the two choices above correspond to choices of generators b and b^{2} of $\langle b\rangle$ and are therefore equivalent. In the following we fix the second choice of b. A direct computation yields that the element -1 must be represented in the form

$$
\left(\begin{array}{lll}
* & 0 & 0 \\
0 & 0 & * \\
0 & * & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{lll}
0 & * & 0 \\
* & 0 & 0 \\
0 & 0 & *
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{lll}
0 & 0 & * \\
0 & * & 0 \\
* & 0 & 0
\end{array}\right) .
$$

After reordering the coordinates, we can assume that

$$
\widetilde{-1}=\left(\begin{array}{lll}
* & 0 & 0 \\
0 & 0 & * \\
0 & * & 0
\end{array}\right)
$$

The relation $(-1) b(-1)=b^{2}$ yields

$$
\widetilde{-1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \eta \\
0 & \eta^{2} & 0
\end{array}\right) .
$$

for some third root of unity η. The element I fulfills $I a(-I)=b$ and, using the representation of a and b given above, we conclude

$$
\widetilde{I}=\frac{1}{\xi-\xi^{2}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\zeta^{2} & \zeta^{2} \xi & \zeta^{2} \tilde{\zeta}^{2} \\
\zeta & \zeta \xi^{2} & \zeta \xi
\end{array}\right)
$$

for some third root of unity ζ. Now $I^{2}=-1$ implies $\zeta=1$ and $\eta=1$. Analogous considerations yield the following shape of J :

$$
\widetilde{J}=\frac{1}{\xi-\xi^{2}}\left(\begin{array}{ccc}
1 & \xi & \xi \\
\tilde{\zeta}^{2} & \xi & \xi^{2} \\
\xi^{2} & \xi^{2} & \xi
\end{array}\right) .
$$

In appropiately chosen coordinates the action on M_{9} is precisely of the type claimed in Section 4.9 .

Bibliography

[AN06] Valery Alexeev and Viacheslav V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs, vol. 15, Mathematical Society of Japan, Tokyo, 2006.
[BB00] Lionel Bayle and Arnaud Beauville, Birational involutions of \mathbf{P}^{2}, Asian J. Math. 4 (2000), no. 1, 11-17, Kodaira's issue.
[BB04] Arnaud Beauville and Jérémy Blanc, On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris 339 (2004), no. 4, 257-259.
[Bea07] Arnaud Beauville, p-elementary subgroups of the Cremona group, J. Algebra 314 (2007), no. 2, 553-564.
[BHPVdV04] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 2004.
[Bla06] Jérémy Blanc, Finite Abelian subgroups of the Cremona group of the plane, Ph.D. thesis, Université de Genève, 2006.
[Bla07] , Finite abelian subgroups of the Cremona group of the plane, C. R. Math. Acad. Sci. Paris 344 (2007), no. 1, 21-26.
[Bli17] Hans Frederik Blichfeldt, Finite collineation groups, The University of Chicago Press, Chicago, 1917.
$\left[C C N^{+} 85\right]$ John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker, and Robert A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985, Website: http://web.mat.bham.ac.uk/atlas/v2.0.
[Cra99] Scott Crass, Solving the sextic by iteration: a study in complex geometry and dynamics, Experiment. Math. 8 (1999), no. 3, 209-240.
[dF04] Tommaso de Fernex, On planar Cremona maps of prime order, Nagoya Math. J. 174 (2004), 1-28.
[DI06] Igor V. Dolgachev and Vasily A. Iskovskikh, Finite subgroups of the plane Cremona group, to appear in Algebra, Arithmetic, and Geometry, Volume I: in honour of Y.I. Manin, Progress in Mathematics, Preprint arXiv:math/0610595, 2006.
[Dol08] Igor V. Dolgachev, Topics in classical algebraic geometry. Part I, available from http://www.math.lsa.umich.edu/ ~idolga/topics1.pdf, 2008.
[FH08] Kristina Frantzen and Alan Huckleberry, K3-surfaces with special symmetry: An example of classification by Mori-reduction, Complex Geometry in Osaka, In honour of Professor Akira Fujiki on the occasion of his 60th birthday, 2008, pp. 86-99.
[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977.
[Isk80] Vasily A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv. 14 (1980), no. 1, 17-39.
[JL93] Gordon James and Martin Liebeck, Representations and characters of groups, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1993.
[KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[KOZ05] JongHae Keum, Keiji Oguiso, and De-Qi Zhang, The alternating group of degree 6 in the geometry of the Leech lattice and K3 surfaces, Proc. London Math. Soc. (3) 90 (2005), no. 2, 371-394.
[KOZ07] , Extensions of the alternating group of degree 6 in the geometry of K3 surfaces, European J. Combin. 28 (2007), no. 2, 549-558.
[Man67] Yuri I. Manin, Rational surfaces over perfect fields. ii, Math. USSR-Sb. 1 (1967), no. 2, 141-168.
[Man74] _ Cubic forms: algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam, 1974, Translated from Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4.
[MBD16] George Abram Miller, Hans Frederik Blichfeldt, and Leonard Eugene Dickson, Theory and applications of finite groups, Dover, New York, 1916.
[Mor82] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133-176.
[Muk88] Shigeru Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183-221.
[Nak07] Noboru Nakayama, Classification of \log del Pezzo surfaces of index two, J. Math. Sci. Univ. Tokyo 14 (2007), no. 3, 293-498.
[Nik76] Viacheslav V. Nikulin, Kummer surfaces, Math. USSR. Izv. 9 (1976), no. 2, 261-275.
[Nik80] , Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc 38 (1980), no. 2.
[Nik83] , On factor groups of groups of automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. algebrogeometric applications, J. Soviet Math. 22 (1983), 1401-1476.
[OZ02] Keiji Oguiso and De-Qi Zhang, The simple group of order 168 and K3 surfaces, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 165-184.
[Sha94] Igor R. Shafarevich, Basic algebraic geometry. 1, second ed., Springer-Verlag, Berlin, 1994, Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid.
[SI77] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119-136.
[Uen75] Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Springer-Verlag, Berlin, 1975, Lecture Notes in Mathematics, Vol. 439.
[Yos04] Ken-Ichi Yoshikawa, K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space, Invent. Math. 156 (2004), no. 1, 53-117.
[Yos07] , K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space ii:a structure theorem, University of Tokyo, Graduate School of Mathematical Sciences, preprint, 2007.
[YY93] Stephen S.-T. Yau and Yung Yu, Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc. 105 (1993), no. 505.
[Zha98] De-Qi Zhang, Quotients of K3 surfaces modulo involutions, Japan. J. Math. (N.S.) 24 (1998), no. 2, 335-366.
[Zha01] ___, Automorphisms of finite order on rational surfaces, J. Algebra 238 (2001), no. 2, 560-589, With an appendix by I. Dolgachev.

Index of Notation

$\mathcal{K}_{X} \quad$ the canonical line bundle of X
$K_{X} \quad$ the canonical divisor of X
$\mathcal{O}_{X} \quad$ the sheaf of holomorphic functions on X
$\mathcal{O}_{X}(D)$ the line bundle associated to the divisor D
$\operatorname{Aut}(X)$ the group of holomorphic automorphisms of X
$\omega_{X} \quad$ the holomorphic 2-form on a K3-surface X
$N S(X)$ the Néron-Severi group of X
$\operatorname{Pic}(X)$ the Picard group of X
$\rho(X)$ the Picard number of X
$L \cdot C$ the intersection number of a line bundle L and a 1-cycle C
$\overline{N E}(X)$ the cone of curves on X
$\overline{N E}(X)^{G}$ the intersection of $\overline{N E}(X)$ with the space of invariant numerical equivalence classes of 1-cycles
cont $_{F}$ the contraction of an extremal face F
$\pi_{1}(X)$ the fundamental group of X
$b_{i}(X)$ the $i^{\text {th }}$ Betti number of X
$e(X) \quad$ the topological Euler characteristic of X
$g(C)$ the (arithmetic) genus of a curve C
$G_{\text {symp }}$ the subgroup of symplectic transformations in G
$C_{n} \quad$ the cyclic group of order n
$D_{2 n} \quad$ the dihedral group of order $2 n$
$Q_{8} \quad$ the quaternion group
$T_{12} \quad$ the tetrahedral group
O_{24} the octahedral group
$I_{60} \quad$ the icosahedral group

Index

1-cycle, 23
antisymplectic involution, 18
base point, 28
Betti number, 13
bimeromorphic map, 14
canonical divisor, 34
cone of curves, 24
conic bundle, 29
contraction morphism, 26
equivariant contraction morphism, 27
contraction theorem, 26
equivariant contraction theorem, 27
curve, 13
degree of a Del Pezzo surface, 34
Del Pezzo surface, 34
divisor, 23
equivariant Mori reduction, 31
equivariantly equivalent, 44
Euler characteristic formula, 36, 44
extremal ray, 24
G-extremal rays, 25
intersection number, 23
K3-surface, 13
Klein's curve, 68, 74
Klein-Mukai surface, 21, 75
length of an orbit, 33
linear system, 28
maximal group of symplectic transformations, 21
minimal model, 26
G-minimal model, 31
mixed type, 14
Mori fiber, 36
Mukai group, 21
$A_{6}, 45$
$A_{4,4}, 54$
$F_{384}, 53$
$L_{2}(7), 45$
$M_{9}, 58$
$M_{20}, 52$
$N_{72}, 55$
$S_{5}, 47$
$T_{192}, 54$
$T_{48}, 60$
Néron-Severi group, 19
nef, 23
numerically equivalent, 23
Petersen graph, 35
Picard group, 19
Picard lattice, 19
resolution of singularities, 14
minimal resolution of singularities, 14
surface, 13
symplectic action, 14
Valentiner surface, 46,90
Valentiner's group, 45

