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Introduction

The aim of this work is the evaluation of braid-based cryptography by crypt-
analysis and the introduction of new schemes.
Braid group cryptography, a relatively new branch of public key crypto-
graphy using feasible non-commutative groups, was introduced in [AAG99]
and [KL+00]. A motivation and a very short review of the history of non-
commutative cryptography, of which braid group cryptography is a branch,
is given at the beginning of chapter 5. Section 5.1 describes the fundamental
braid-based key agreement protocols [AAG99, KL+00, CK+01] for gen-
eral groups and their base problems. In section 5.2 we discuss several attacks
against the above mentioned key agreement protocols which were proposed
so far.
The AAG [AAG99] and the Ko-Lee et al. scheme [KL+00] were early com-
promised by Gebhardt's practically e�cient solution to the conjugacy search
problem in braid groups for randomly chosen, long input braids [Ge05].
Therefore we focussed our cryptanalytical e�orts to the braid Di�e-Hellman
KAP (section 4.1) [CK+01], a revised Ko-Lee protocol, based on a decompo-
sition problem in braid groups. As cryptanalytical tool we used representa-
tion attacks. The idea is, using linear representations of the braid group Bn,
to solve the base problem in a matrix group, and then lift back to Bn. We
improved the two known representation attacks on the braid Di�e-Helman
KAP [CK+01], the Lee-Park attack (section 4.2.2) [LP03] using Burau rep-
resentation, and the Cheon-Jun attack (section 4.2.1) [CJ03a, CJ03b] using
Lawrence-Krammer representation.
After a short review of several notions and fundamental properties of braid
groups in section 1.1 we introduce the fundamental representations in ques-
tion, the Burau representation β : Bn → GL(n, Z[q±1]) (section 1.2) and the
Lawrence-Krammer representation ρ : Bn → GL(

(
n
2

)
, Z[q±1, t±1]) (section

1.3) [La90]. In section 1.4 we show that the Lawrence-Krammer module
for t = 1 is isomorphic to the symmetric square of the reduced Burau mod-
ule [Kr00]. But there is a further connection between the Burau and the
Lawrence-Krammer representation: There exists an iterated construction of
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braid representations, called augmenting construction, which generalizes the
construction of Magnus representations. The augmenting construction (sec-
tion 1.5), independently introduced in [BLM92] and [L92], yields, starting
with the trivial representation, the Burau representation. And if we apply it
to the Burau representation, we get an n2-dimensional representation which
can be reduced to the Lawrence-Krammer representation [Lo94].
Since the Lawrence-Krammer representation is proved to be faithful for all
n ∈ N [Bi00, Kr02] we are able to compute the unique preimage braid of
a given Lawrence-Krammer matrix. Chapter 2 deals with inversion algo-
rithms for the Lawrence-Krammer representation. Indeed, there is a deep
connection between the Lawrence-Krammer representation and e�ciently
computable normal forms of the braid group, the Garside or greedy nor-
mal forms. All Garside groups admit such greedy normal forms. The notion
of Garside monoids and groups is introduced in section 2.1. Note that there
are two (known) Garside monoids in Bn, the monoid of positive braids B+

n

in the classical Artin presentation, and the dual monoid BKL+
n , consisting

of those braids which are positive according to the dual (or Birman-Ko-Lee)
presentation. Indeed, we are able to reconstruct the unique preimage braid
of a given Lawrence-Krammer matrix directly in greedy and dual greedy nor-
mal form. In order to explain why a reconstruction in greedy normal form is
always possible we review in section 2.2 the main steps of Krammer's combi-
natorial faithfulness proof for the Lawrence-Krammer representation setting
q ∈ (0, 1) [Kr02]. Further, Krammer's faithfulness proof for the Lawrence-
Krammer representation of B4 with t ∈ (0, 1) [Kr00] is reviewed in detail in
section 2.3. Indeed, we present a slightly di�erent, quite longer proof, which
has the advantage that the de�nition of the cones Cy (see proof of Theorem
2.38) is more uni�ed. This faithfulness proof of ρ4|t∈(0,1) leads to an inversion
algorithm (which is an inversion heuristic for n ≥ 5 with 100% success rate)
that reconstructs the preimage braid in dual Garside normal form. Both
inversion algorithms for the Lawrence-Krammer representation are explicitly
given in section 2.4.
Contrary to the Lawrence-Krammer representation, the Burau representa-
tion is not faithful for n ≥ 5 [Bi99]. Since the structure of the Burau kernel
is not understood so far, only heuristics for the computation of preimage
braids are known. In the sections 3.1 and 3.2 we describe Hughes' algorithm
[Hu02] and its improvements by E. Lee and Park [LP03]. In section 3.3 we
�rst construct an inversion heuristic (with 100% success rate) for the above
mentioned n2-dimensional representation arising from augmenting construc-
tion. Then we apply an analgue of this heuristic to the Burau representation.
This yields a linear time inversion heuristic for the Burau representation (al-
gorithm 3.5) with sligthly, but signi�cantly better success rates than the
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linear time heuristics described in section 3.1. Of course, algorithm 3.5 pro-
vides an improved Lee-Park attack against the braid Di�e-Hellman KAP
(section 4.2.2).
Further, using ideas from [LP03], we improved Cheon-Jun attack using
Lawrence-Krammer representation. Though our attack (section 4.3) is not
deterministic, for generic, su�ciently long instance braids, we can recover
the ρ-image of the private key using only one matrix inversion. This result
was already published in [Ka06]. A complexity analysis (section 4.3.3) shows
that our attack is 3τ orders in n more e�cient than Cheon-Jun attack, where
τ denotes the matrix multiplication exponent.
Nevertheless, a completely di�erent and more e�cient heuristic attack had
been proposed by Myasnikov, Shpilrain and Ushakov at the CRYPTO 2005
[MSU05]. We describe this attack in section 5.2.4. Further, Shpilrain and
Ushakov introduced a new key agreement protocol based on a generalized
decomposition problem (section 5.3) [SU06b].
KAPs are not the only braid-based cryptographic primitives. In section 5.4
we deal with signature and authentication schemes. Special attention de-
serves the Fiat-Shamir-like authentication scheme using shifted conjugacy
(section 6.2), introduced by P. Dehornoy [De06]. Shifted conjugacy is a
(left) self-distributive binary operation in the in�nite braid group BN. To-
gether with other examples for LD-systems it is discussed in section 6.1.
The base problem of Dehornoy's authentication scheme [De06] is the shifted
conjugacy search problem, for which, contrary to the usual conjugacy search
problem in braid groups, no solution is known so far.
We tried to invent a new key agreement protocol based on shifted conjugacy
in braid groups. It turned out that we are able to adapt the AAG scheme.
We show in section 6.3 that the AAG protocol for monoids naturally gen-
eralizes to an AAG protocol for magmas. Further, we show that the most
natural special case of this general scheme is a key agreement scheme for
LD-systems. In section 6.4 we construct an explicit KAP, which is based
on a simultaneous shifted conjugacy search problem in braid groups. As a
further example of the general AAG scheme for magmas we introduce in sec-
tion 6.3.2 a KAP based on a simultaneous decomposition problem in groups.
We believe that the above mentioned variants of the AAG protocol are not
the only speci�cations of our general AAG scheme for magmas and that it
should provide plenty more concrete examples. In particular Laver tables
seem to provide other interesting platform LD systems. But this is dedicated
to future work.
We note that the ideas introduced in section 6.3 inspired us to repair a fur-
ther Fiat-Shamir-like authentication scheme for LD-systems (section 6.2),
introduced by P. Dehornoy in a talk given at a workshop in Bochum [De05].

iii



Acknowledgements

I wish to thank my supervisor L. Gerritzen for his kind support, encourage-
ment, constant interest and steadfast patience. In particular I thank him
that I could take part in the organization of the international workshop "Al-
gebraic Methods in Cryptography" (17.-18.11.2005) at the Ruhr-Universität
Bochum. For valuable hints or stimulating discussions I thank R. Avanzi,
P. Dehornoy, M. Kreuzer, E. Lee, S. J. Lee, M. Paterson, A. Razborov, G.
Rosenberger, V. Shpilrain, B. Tsaban and A. Ushakov. In particular I wish
to thank B. Tsaban for his e�orts concerning the CGC Bulletin, dedicated
to combinatorial group theory and cryptography. My thanks also go to all
the nice people I have met at the "Lehrstuhl für Algebra and Geometrie".
In particular I thank R. Holtkamp for refereeing my thesis.
Further, I would like to acknowledge �nancial support by the Graduate Col-
lege "Mathematische und ingenieurwissenschaftliche Methoden für sichere
Datenübertragung und Informationsvermittlung" (speaker: G. Frey). Here I
wish to thank H. Flenner, L. Gerritzen and U. Storch who encouraged and
helped me to apply for this grant.
Finally, I wish to thank my father for his lovable support over many years.

iv



Chapter 1

On some linear representations of

braid groups

1.1 Braid groups: several notions and funda-

mental properties

This section deals with the de�nition and fundamental properties of the braid
groups, which were introduced by E. Artin in 1926 [Ar26, Ar47]. For more
details on braids and braid groups we refer to [Bi74, MK99, BB06]. Sev-
eral of our notations are used as in [Bi74].

De�nition 1.1 Consider the so-called big diagonal in Cn,

∆ := {(z1, . . . , zn) ∈ Cn | zi = zj for some i 6= j}.

Choose a �xed base point z0 in Cn\∆, e.g., de�ned by z0 = (z0
1 , . . . , z

0
n) =

(1, . . . , n). Then the fundamental group Pn := π1(Cn\∆, z0) is called the
pure (or unpermuted or colored) braid group (with n strands).

There exists a natural left1 action of the symmetric group Sn = (Sn, ◦)
on Cn\∆, permuting the coordinates in z ∈ Cn\∆:

Sn × Cn\∆ −→ Cn\∆ de�ned by
(σ, (z1, . . . , zn)) 7−→ (zσ(1), . . . , zσ(n)).

The orbit space (Cn\∆)/Sn is called con�guration space, and the orbit space
projection p : Cn\∆ → (Cn\∆)/Sn is a regular covering projection.

1We use the notation (σ ◦ τ)(i) := σ(τ(i)).
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De�nition 1.1 (continued)
The fundamental group of the con�guration space, Bn := π1((Cn\∆)/Sn), is
(called) the (full) braid group (with n strands). The elements of Pn and Bn

are called pure braids and braids, respectively. The neutral element of Pn and
Bn is called trivial braid and denoted by e or 1.

A braid is represented by a loop f : [0, 1] −→ (Cn\∆)/Sn, i.e., f(0) =
f(1) = p(z0). This loop lifts uniquely to a path

f̂ = (f̂1, . . . , f̂n) : [0, 1] → Cn\∆ with f̂(1) = z0.

The graph si := {(f̂i(t), t) ∈ C × [0, 1] | t ∈ [0, 1]} of the i-th coordinate
function f̂i : [0, 1] → C can be viewed as the i-th braid strand and the union
s := s1 ∪ . . . ∪ sn as a geometric braid.
This unique lift f̂ of f allows us to de�ne the surjective homomorphism

ν : Bn = π1((Cn\∆)/Sn) −→ Sn by

f 7−→
(

f̂1(1), . . . , f̂n(1)

f̂1(0), . . . , f̂n(0)

)
.

Here we de�ne the braid permutation or induced permutation ν(f) by specify-
ing the initial positions f̂i(0) in terms of the �nal positions f̂i(1) ∀i = 1, . . . , n.
Otherwise we would get an anti-homomorphism instead of a homomorphism.
Together with the injective homomorphism p∗ induced by the covering pro-
jection p, this surjective homomorphism ν gives rise to a short exact sequence

1 −→ Pn
p∗−→ Bn

ν−→ Sn −→ 1

with im p∗ = ker ν = Pn. This short exact sequence is not split, since
there exists no monomorphism from Sn to Bn. And this is true, because the
braid group is torsion free, i.e., there exists no b ∈ Bn such that bk = e for
some k ≥ 1. An older proof for the fact that Bn contains no elements of
�nite order is given in [Mu82]. See also the proof to Proposition 10.14 in
[BZ03], using Satz 4.1 of [Wa67]. Dehornoy's fundamental discovery of a
left-invariant total order2 < on Bn [De94, De00] yields a very short proof
(see also section 6.4 in [BB06]):
Let b 6= e be a braid with e < b. Now, left-invariance of the order < implies

. . . < b−3 < b−2 < b−1 < e < b < b2 < b3 < . . . .

Further, replace in the case e > b "<" by ">" which proves the assertion.

2A group G admits a left-invariant order < if b < c ⇒ ab < ac ∀a, b, c ∈ G.
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Now, since Pn is a subgroup of index n! in Bn, it turns out to be su�cient
for our purposes to consider presentations of Bn:

Proposition 1.2 Denote i =
√
−1 ∈ C. For all k = 1, . . . , n− 1, let the k-th

Artin generator3 σk ∈ Bn be represented, e.g., by the path

[0, 1] −→ Cn\∆,

t 7−→ (1, . . . , k − 1, k + t− i
√

t− t2, k + 1− t + i
√

t− t2, . . . , n),

then Bn admits the well-known Artin presentation

Bn = 〈σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi ∀|i− j| > 1,
σiσi+1σi = σi+1σiσi+1 ∀i = 1, . . . , n− 2

〉
.

Proof. - See, e.g., [Ar47] or theorem 1.8 in [Bi74]. �

A new presentation with an enlarged set of generators (so-called band
generators4)

ats = (σt−1 · · ·σs+1)σs(σ
−1
s+1 · · ·σ−1

t−1)

= (σ−1
s · · ·σ−1

t−2)σt−1(σt−2 · · ·σs), 1 ≤ s < t ≤ n,

and relations
atsasr = asratr = atrats, 1 ≤ r < s < t ≤ n,

atsarq = arqats, (t− r)(t− q)(s− r)(s− q),

was introduced in [Xu92, Br94, KKL97, BKL98]. We call this presenta-
tion BKL- or dual presentation.

Further, we can view Bn as the mapping class group of the n-punctured
disc:

De�nition 1.3 (see [Kr00]) Let D = D(n) := {z ∈ C | |z − 1
2
(n + 1)| ≤

1
2
(n+1)} be the disc in C with diameter [0, n+1], and denote the correpond-

ing n-punctured disc by Dn := D\P with P := {z0
1 , . . . , z

0
n} = {1, . . . , n}.

Let H = H(D,P) be the group of all orientation-preserving homeomorphisms
φ : D → D satisfying φ |∂D= id and φ(P) = P . The group structure on H

3Informally speaking, inside the Artin generator σk the (k + 1)-th strand crosses over
the k-th strand, and vice versa for the inverse generator σ−1

k .
4Loosely speaking, inside the band generator ats the t-th strand crosses over the s-th

strand in front of the strands s + 1, . . . , t− 1.
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is simply given by composition.
By H0 we denote the (normal) subgroup of H, consisting of those φ ∈ H
which are isotopic to the identity element, i.e., there exists a continous iso-
topy I : [0, 1] × D → D such that I(0, z) = z, I(1, z) = φ(z) ∀z ∈ D and
(I(t, ·) : D → D) ∈ H for all t ∈ [0, 1].
Then we can de�ne the mapping class group of Dn, i.e. the mapping class group
of D relative to P , as the group of orientation-preserving self-homeomorphisms
of D which keep the boundary ∂D pointwise and P as a set �xed:

M(Dn) = M(D,P) := H/H0.

De�nition 1.4 Let γ be an embedded arc in Dn whose endpoints are punc-
tures. A Dehn half twist is a homeomorphism τγ ∈ M(Dn) which is the
identity map outside a regular neighbourhood of γ and which exchanges the
endpoint punctures. Identifying this arc with a straight line, the homeomor-
phism τγ is obtained by rotating γ about its midpoint to the angle of π in
counterclockwise direction.

Proposition 1.5 The mapping Bn → M(Dn) de�ned by σk 7→ τ[k,k+1]

(1 ≤ k < n) is a group isomorphism.

Proof. - A proof is sketched in section 1.1.2 of [DD+02]. For details
we refer to chapter 4 in [Bi74] or section 1.3 in [BB06].

An orientation-preserving homeomorphism φ : D → D with φ(P) = P
which keeps the boundary ∂D pointwise �xed can be recovered up to isotopy
from the induced isomorphism φ∗ : π1(Dn, z∗) → π1(Dn, z∗), where z∗ ∈ ∂D
is a �xed base point. This gives rise to an embedding

ı : Bn
∼= M(Dn) −→ Aut(π1(Dn, z∗)) = Aut(Fn).

If we choose z∗ = n + 1 and {xi | i = 1, . . . , n} (Figure 1.1) as generator
set of Fn

∼= π1(Dn, z∗), then the monomorphic image of an Artin generator
is ∀k = 1, . . . , n− 1:

ı(σk) : Fn −→ Fn,

xi 7−→


xk+1, i = k,
x−1

k+1xkxk+1, i = k + 1,
xi, i 6= k, k + 1.

4



q q ..... q q q ..... q q1 2 i-1 i i+1 n-1 n qz∗
xi

��
���

- q q ..... q q q ..... q q1 2 i-1 i i+1 n-1 n qz∗
yi

��
���

6
H

HHHj

Figure 1.1: Paths representing the Generators
xi and yi of π1(Dn, z∗).

In the case Fn
∼= π1(Dn, z∗) = 〈y1, . . . , yn〉 (Figure 1.1) we get ∀k =

1, . . . , n− 2:
ı(σk) : Fn −→ Fn,

yi 7−→
{

yk+2y
−1
k+1yk, i = k + 1

yi, i 6= k + 1
and

ı(σn−1) : Fn −→ Fn,

yi 7−→
{

y−1
n yn−1, i = n

yi, i 6= n.

Note the following relations between the xi's and the yi's:
xi = yiy

−1
i+1, yi = xixi+1 · · ·xn ∀1 ≤ i < n, and xn = yn.

Proposition 1.6 There exists a natural embedding

α : Fn −→ Pn+1 de�ned by

xi 7−→
{

f̂ : [0, 1] −→ Cn\∆
t 7−→ (1, . . . , n, xi(t))

such that the subgroup of Pn+1 generated by α(x1), . . . , α(xn) is a free group.
Further this free subgroup is normal in Pn+1, but it is not a normal subgroup
of Bn+1.

Proof. - See, e.g., chapter 3.2 in [MK99].
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Embed C × [0, 1] in the 3-dimensional space such that the real and
imaginary axes lie in (1, 0, 0)T - and (0, 1, 0)T -direction, respectively, and
the t-axis lies in (0, 0,−1)T -direction. Now, if we view along the imagi-
nary axis, then we see that f̂ : t 7→ (1, . . . , n, xi(t)) describes the pure braid
Ai,n+1 := a2

n+1,i ∈ Pn+1. The Aij's (1 ≤ i < j ≤ n) build a classical gener-
ating set of the pure braid group Pn, introduced by E. Artin. Further, if we
de�ne Bij = AijAi+1,j · · ·Aj−1,j, then α(xi) = Ai,n+1 implies α(yi) = Bi,n+1.
It is easy to verify that the following braid identities hold in Bn+1:

σkA
±1
k,n+1σ

−1
k = A±1

k+1,n+1, σkA
±1
k+1,n+1σ

−1
k = A−1

k+1,n+1A
±1
k,n+1Ak+1,n+1,

and σkA
±1
j,n+1σ

−1
k = A±1

j,n+1 for all j 6= k, k + 1. This implies
σkα(x±1

j )σ−1
k = α(ı(σk)(x

±1
j )) for all 1 ≤ j ≤ n, 1 ≤ k < n.

Analogously we verify σ−1
k α(x±1

j )σk = α(ı(σ−1
k )(x±1

j )). Now, we can simply
prove by induction that

bα(w)b−1 = α(ı(b)(w)) ∀b ∈ Bn, ∀w ∈ Fn.

Therefore, if we do not distinguish between w ∈ Fn and α(w) ∈ Pn+1, then
we can say that Bn acts from left on Fn by conjugation.
Together with the surjective homomorphism ξ : Pn+1 → Pn de�ned by pulling
out the (n + 1)-th strand, the embedding α gives rise to the short exact
sequence

1 −→ Fn
α−→ Pn+1

ξ−→ Pn −→ 1.

Because of the (injective) homomorphism  : Pn → Pn+1 with ξ ◦  = idPn ,
this short exact sequence is split, i.e., Pn+1 = Fn o Pn. By induction Pn

becomes an iterated semidirect product of free subgroups:
Pn = Fn−1 o (Fn−2 o (Fn−3 o . . . (F2 o F1))).

This yields the so-called combed normal form of pure braids. Since every
braid b can be written as product of a pure braid and a permutation braid5
with induced permutation ν(b), this also provides a solution to the word-
problem in Bn.
But the Artin combing algorithm [Ar47, Bi74] works quite slowly. It seems

5A permutation braid is a positive braid where every pair of strands crosses at most once.
Consider the set {τi = (i, i + 1) | i = 1, . . . , n − 1} of nearest neighbour transpositions,
which is a generating set of Sn. Now, a permutation braid bσ ∈ Bn can be obtained from
its induced permutation σ ∈ Sn in the following way: Choose a positive word w in the τi's
with minimal length representing the permutation σ. Then replace each τi by a σi.
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to have a time complexity which is exponential in the wordlength of a given
instance braid word. Nevertheless, no complexity bounds seem to have been
proven so far. An example for a braid, represented by a relatively short braid
word, for which the combing algorithm takes a quite long time, is given by
the Burau kernel element of B5, discovered by S. Bigelow [Bi99].

1.2 Burau representation

A linear representation of the braid group Bn is a homomorphism Bn →
GL(k,R) for some k ∈ N and a ring R.
The Burau representation

β : Bn −→ GL(n, Z[q±1]) de�ned by
σi 7−→ Idi−1 ⊕

(
1− q q

1 0

)
⊕ Idn−i−1

was the �rst non-trivial representation of Bn, introduced in 1935 [Bu36]. It
can be viewed as a deformation of the standard representation of Sn, i.e.,
substituting q = 1 gives back the representation of Bn which factors through
Sn. Like the standard representation of Sn, which is known to be reducible,
the Burau representation β splits into an (n − 1)-dimensional irreducible
representation, the reduced Burau representation

βred : Bn −→ GL(n− 1, Z[q±1]) de�ned by
σ1 7−→

(
−q 1
0 1

)
⊕ Idn−i−3,

σi 7−→ Idi−2 ⊕

 1 0 0
q −q 1
0 0 1

⊕ Idn−i−2 , i = 2, . . . , n− 2,

σn−1 7−→ Idn−3 ⊕
(

1 0
q −q

)
,

and the trivial 1-dimensional representation.

The Burau representation can be introduced as a Magnus representation6
using Fox's free di�rential calculus [Fo53]. Another derivative of the Burau

6For an introduction in the theory of Magnus representations, see chapter 3 in [Bi74]
or [Ma74]. The �rst such representation was probably introduced in 1939 by W. Magnus
[Ma39].
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representation is given in [Lo89]. But here we present a homological inter-
pretation of the reduced Burau representation (see, e.g. [Bi99]):
Consider the homomorphism

Φ : π1(Dn, z∗) = 〈x1, . . . , xn〉 −→ 〈q〉 ∼= Z de�ned by
xi 7−→ q.

Let D̃n be the covering space corresponding to the subgroup ker Φ of π1(Dn, z∗),
i.e., γ ∈ π1(Dn, z∗) is lifted to a closed path in D̃n if and only if γ ∈ ker Φ.
A concrete description of D̃n is given in [Bi02].
Let z̃∗ be a �xed point in the �bre p−1(z∗), where p denotes the covering pro-
jection from D̃n onto Dn. Then a braid, thought as an element φ ∈M(Dn),
induces a unique lift φ̃ with φ̃(z̃∗) = z̃∗, i.e., φ̃ makes the following diagram
commute:

(D̃n, z̃∗)
φ̃ //

p

��

(D̃n, z̃∗)

p

��
(Dn, z∗) φ

// (Dn, z∗)

The group of covering transformations of D̃n is Cov(D̃n/Dn) = 〈q〉 ∼= Z. So,
multiplicating a cycle γ̃ ∈ H1(D̃n) by q can be considered as the induced
action of the covering transformation q. In so far H1(D̃n) gets a Z[q±1]-
module structure. We call H1(D̃n) the reduced Burau module.
The reduced Burau representation is the homomorphism

βred : Bn
∼= M(Dn) −→ Aut(H1(D̃n)),

φ 7−→ φ̃∗,

where φ̃∗ : H1(D̃n) → H1(D̃n) is the Z[q±1]-module homomorphism induced
by φ̃.
Consider, for all i = 1, . . . , n− 1, the closed path wi := xix

−1
i+1 ∈ π1(Dn, z∗).

Because wi lies in ker Φ, the unique lift w̃i is a closed path in D̃n, and we use
the same symbol w̃i for the corresponding cycle in H1(D̃n).

Proposition 1.7 H1(D̃n) is a free Z[q±1]-module of rank n − 1 with basis
w̃1, . . . , w̃n−1.

Proof. - Here we follow the proof sketched in section 2.6 of [Bi00]:
Observe that Dn is homotopy equivalent to a multigraph with one vertex d
(correponding to the base point z∗) and n edges e1, . . . , en (corresponding to
the closed paths x1, . . . , xn). And D̃n is homotopy equivalent to a multigraph
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with vertices {qkd | k ∈ Z} and edges {qkei | k ∈ Z, i = 1, . . . , n}, where
qkei goes from qkd to qk+1d. Denote by W1 the free Z[q±1]-module with ba-
sis {e1, . . . , en}, an let W0 be the free Z[q±1]-module with basis {d}, then
H1(D̃n) is the kernel of the module homomorphism ∂ : W1 → W0 de�ned by
ei 7→ d. But this kernel is a free Z[q±1]-module with basis {w̃1, . . . , w̃n−1},
where w̃i := ei+1 − ei. �

Matrices de�ning the σi-action according to this basis were given at the
beginning of this section.
An analogue homological de�nition of the (non-reduced) Burau representa-
tion is, e.g., given in [LP93, Tu00].

A linear representation is called faithful i� it is injective, i.e., it has a
trivial kernel. It is known for a long time that the Burau representation is
faithful for n ≤ 3 [MP69] (see also Theorem 3.15 in [Bi74]). Further, it
was regarded as a candidate for a faithful representation of Bn for all n until
Moody proved in 1991 [Mo91, Mo93] that it is not faithful for n ≥ 9. This
result was improved by Long and Paton to all n ≥ 6 [LP93]. A further
improvement is due to Bigelow, who found a Burau kernel element in B5

[Bi99]. The case n = 4 remains open.
The (reduced) Burau representation is unitary in following sense [Sq84]:
Let M † denote the conjugate-transpose of a matrix M over T[q±1], where
the conjugate of a Laurent polynomial p(q) is de�ned to be p(q−1). Then
there exists matrix J0 ∈ GL(n − 1, Z[q±1]) such that βred(b)

†J0βred(b) = J0

for all b ∈ Bn. Further, a change-of-basis leads to (reduced) Burau matrices
β′red(b) (for b ∈ Bn) such that the Burau representation is unitary relative
to an explicitly de�ned Hermitian form, i.e., there exists a Hermitian matrix
J ∈ GL(n − 1, Z[q±1]) (J = J†), obtained from J0 by a basis change, such
that β′red(b)

†Jβ′red(b) = J for all b ∈ Bn.

1.3 Lawrence-Krammer representation

In 1990 R. Lawrence gave a topological construction of representations of
Hecke algebras associated with 2-row Young diagrams [La90]. This construc-
tion gives rise to family of representation of Bn. One of these representations
was later described algebraically by D. Krammer as a free Z[q±1, t±1]-module
generated by the isotopy classes of forks [Kr00]:

De�nition 1.8 Recall the notation from de�nition 1.3. A fork (in Dn) is an
embedded tree T ⊂ D with 4 vertices z∗, p1, p2, d with T ∩ P = {p1, p2} and
T ∩ ∂D = z∗, and the 3 edges have d as a vertex. The union of the edges
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containing puncture points is called tine edge of T , and the third edge is the
handle of T .
Two forks T1, T2 are said to be isotopic if there exists a self-homeomorphism
φ ∈ H0 such that φ(T1) = T2. An isotopy class represented by a fork T is
denoted by [T ].
If the imaginary part of z is nonnegative for all z ∈ T , i.e., =(z) ≥ 0, then T
is called a standard fork. vij denotes the isotopy class of a standard fork with
punctures i, j.

We want to introduce the Lawrence-Krammer-module V as a Bn-module
with the isotopy classes of forks as generators. The relations between non-
isotopic forks in V are determined by the following speci�c ansatz:

(V 1) : qq
q

= a qq
q

, (V 2) : q qq
q

= b q qq
q

(V 3) : q q q
q

= c q q q
q

+d q q q
q

+e q q q
q

Figure 1.2: Relations between forks

Note that any selfhomeomorphism of D may be applied simultaneously to
the disks in �gure 1.2. Then the interpretation of Bn as the mapping class
group of Dn and a straightforward computation yields the following σk-action
on standard forks:

(ρσk)vk,k+1 = avk,k+1,
(ρσk)vk+1,j = vkj, k + 1 < j,

(ρσk)vkj = − ca
e
vk,k+1 − d

e
vkj + 1

e
vk+1,j, k + 1 < j,

(ρσk)vi,k+1 = vik, i < k,
(ρσk)vik = bdvk,k+1 + bcvik + bevi,k+1, i < k,
(ρσk)vij = vij, {i, j} ∩ {k, k + 1} = ∅.

The commutativity relation (σkσl)vkl = (σlσk)vkl leads to b(c+e) = 1 and
e = 1 − d. And from (σkσk+1σk)vk,k+2 = (σk+1σkσk+1)vk,k+2 we get the fol-
lowing relations for the ansatz parameters: −d/e = bc,−bc/e = bd, 1/e = be.
It is a straightforward though tedious task to check that in all other cases
we do not obtain further relations for the parameters. Setting q := 1/e and
t := ae2, we can express the ansatz parameters a, b, c, d, e in terms of q, t.
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De�nition 1.9 The Lawrence-Krammer module V is de�ned as the Z[q±1, t±1]-
module generated by {[T ] | T is a fork } with de�ning relations (V 1)− (V 3)
and a = tq2, b = q2, c = q−2 − q−1, d = 1− q−1, and e = q−1. The Lawrence-
Krammer representation is the mapping ρ : Bn → Aut(V ) de�ned by the
above Bn-action.

Proposition 1.10 The Lawrence-Krammer module V is a free Z[q±1, t±1]-
module of rank

(
n
2

)
with basis {vij | 1 ≤ i < j ≤ n}.

Proof. - See Proposition 3.1 in [Kr00].

The basis {vij | 1 ≤ i < j ≤ n} is called standard fork basis and ρx (x ∈
Bn) is identi�ed with its matrix with respect to this basis. Then the matrix
elements of an Artin generator are given by (1 ≤ i < k < k + 1 < j ≤ n)

(ρσk)vk,k+1 = tq2vk,k+1,
(ρσk)vk+1,j = vkj,

(ρσk)vkj = tq(q − 1)vk,k+1 + (1− q)vkj + qvk+1,j,
(ρσk)vi,k+1 = vik,

(ρσk)vik = q(q − 1)vk,k+1 + (1− q)vik + qvi,k+1, and
(ρσk)vi1i2 = vi1i2 for {i1, i2} ∩ {k, k + 1} = ∅.

Let V ∗ denote the dual space of V with basis {v∗ij | 1 ≤ i < j ≤ n}. There
exists a natural pairing 〈· | ·〉 : V ∗ × V → Z[q±1, t±1] de�ned by 〈v∗ij | vkl〉 =
δikδjl, where δij denotes the usual Kronecker symbol. Let ρ∗ : Bn → Aut(V ∗)
be the dual representation de�ned by 〈(ρ∗x)v∗ | v〉 = 〈v∗ | (ρ(rev x))v〉 for
all v∗ ∈ V ∗, v ∈ V and x ∈ Bn. Here rev : Bn → Bn is the (reverse) anti-
automorphism de�ned by the identity on the set of Artin generators. Note
that ρ∗(x) = (ρ(rev x))>.
Then the dual action of an Artin generator on dual standard fork basis ele-
ments is described by the transposed matrix, i.e., we have

(ρ∗σk)v
∗
k,k+1 = q(q − 1)

∑
i<s

v∗ik + tq2v∗k,k+1 + tq(q − 1)
∑

k+1<j

v∗kj,

(ρ∗σk)v
∗
ik = (1− q)v∗ik + v∗i,k+1,

(ρ∗σk)v
∗
i,k+1 = qv∗ik,

(ρ∗σk)v
∗
kj = (1− q)v∗kj + v∗k+1,j,

(ρ∗σk)v
∗
k+1,j = qv∗kj,

(ρ∗σk)v
∗
i1i2

= v∗i1i2
for {i1, i2} ∩ {k, k + 1} = ∅.
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The dual ats-action is computed by (1 ≤ i0 < s < j0 < t < k0 ≤ n)
(ρ∗ats)v

∗
st = q(q − 1)

∑
i<s

v∗is + (q − 1)2
∑

i<s<j<t

v∗ij + tq(q − 1)
∑

s<j<t

v∗jt

+tq2v∗st + tq(q − 1)
∑
t<k

v∗sk + t(q − 1)2
∑

s<j<t<k

v∗jk,

(ρ∗ats)v
∗
i0s = (1− q)

∑
s≤j<t

v∗i0j + v∗i0t,

(ρ∗ats)v
∗
i0t = qv∗i0s + (q − 1)

∑
s<j<t

v∗i0j,

(ρ∗ats)v
∗
sj0

= (q − 1)
∑
i<s

v∗ij0 + tqv∗j0t + t(q − 1)
∑
t<k

v∗j0k,

(ρ∗ats)v
∗
j0t = t−1(1− q)

∑
i<s

v∗ij0 + t−1v∗sj0 + (1− q)
∑
t≤k

v∗j0k,

(ρ∗ats)v
∗
sk0

= (1− q)
∑

s≤j<t

v∗jk0
+ v∗tk0

,

(ρ∗ats)v
∗
tk0

= qv∗sk0
+ (q − 1)

∑
s<j<t

v∗jk0
,

(ρ∗ats)v
∗
i1i2

= v∗i1i2
for {s, t} ∩ {i1, i2} = ∅.

And the transposed matrix describes the rev ats-action on standard fork basis
elements (1 ≤ i < s < j < t < k ≤ n):

(ρ(rev ats))vst = tq2vst,
(ρ(rev ats))vis = (1− q)vis + qvit + q(q − 1)vst,
(ρ(rev ats))vit = vis,
(ρ(rev ats))vsj = t−1vjt,
(ρ(rev ats))vjt = tqvsj + tq(q − 1)vst + (1− q)vjt,
(ρ(rev ats))vsk = tq(q − 1)vst + (1− q)vsk + qvtk,
(ρ(rev ats))vtk = vsk,
(ρ(rev ats))vij = (1− q)vis + vij + (q − 1)vit+

= (q − 1)vsj + (1− q)2vst + t−1(1− q)vjt,
(ρ(rev ats))vjk = t(q − 1)vsj + t(1− q)2vst + (1− q)vsk+

= (1− q)vjt + vjk + (q − 1)vtk, and
(ρ(rev ats))vi1i2 = vi1i2 for {s, t} ∩ {i1, i2} = ∅.

The Lawrence-Krammer representation was proved to be faithful for n =
4 by D. Krammer in 2000 [Kr00]. A slight modi�cation of Krammer's proof
is discussed in detail in section 2.3.
Using the forks, introduced by Krammer, S. Bigelow developed a deep topo-
logical proof for the faithfulness of the Lawrence-Krammer representation for
all n ∈ N [Bi00, Bi01], implying that braid groups are linear7. Bigelow's
proof can be seen as a converse to the construction of Burau kernel elements

7Note that S. Bachmuth claimed the linearity of pure braid groups [Ba96], trying to
prove the faithfulness of the Gassner representation [Ga61]. Nevertheless, his "proof"
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given in [Mo91, LP93, Bi99].
In 2002 Krammer published a combinatorial proof for the faithfulness of the
Lawrence-Krammer representation for all n ∈ N [Kr02]. We review the main
steps of this proof in section 2.2.
Further, the Lawrence-Krammer representation ρ is unitary [So02], i.e., there
exists a matrix J1 ∈ GL(

(
n
2

)
, Z[q±1, t±1]) such that (ρx)†J1(ρx) = J1 holds

for all b ∈ Bn.
Murakami [Mu87] and, independently, Birman and Wenzl [BW89, We90],
used the skein relations for the Kau�man bracket polynomial [Ka87, Ka93]
to de�ne a new algebra, the BMW algebra. This algebra gives rise to the
BMW representation of the braid group Bn, which decomposes into irre-
ducible representations indexed by partitions of n−2k for 0 ≤ 2k ≤ n. Jones
observed a similarity between the LK representation and a certain summand
of the BMW representation. Indeed, following a rescaling and change of pa-
rameters, M. Zinno found that the LK representation of Bn is identical to
the (n− 2)× 1 irreducible representation of the BMW algebra [Zi01]. This
implies the faithfulness of the BMW algebra and the irreducibility of the
Lawrence-Krammer representation.

1.4 The reduced Burau module

As the Lawrence-Krammer representation the (reduced) Burau representa-
tion can also be de�ned by using forks. This leads to an alternative de�nition
of the reduced Burau module W (see [Kr00]):

De�nition 1.11 The reduced Burau module W is the Z[q±1]-module gener-
ated by {[T ] | T is a fork } with relations (W1)− (W3).

(W1) : qq
q

= −q qq
q

, (W2) : q qq
q

= q q qq
q

did not convince the mathematical community (see [Bi98]). Indeed, P. Abramenko and
T. Müller [AM99] presented a counterexample to Bachmuth's main assertion (Theorem
C in [Ba96]). Further, a detailed analysis [AM99] of Bachmuth's proof strategy shows
that none of Bachmuth's arguments sheds any light on the question whether the Gassner
representation is faithful or not.
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(W3) : q q q
q

= q q q
q

+ q q q
q

Figure 1.2: Relations between forks in W

Since there are di�erent relations in W than in V , we use in W the
abbreviation wij for the isotopy class of a standard fork with punctures in
i, j instead of vij. Because of (W3) we have wij =

∑j−1
k=i wk,k+1 (i < j). It is

easy to show that {wi,i+1 | i = 1, . . . , n− 1} is a basis of W .
Once again, the interpretation of the braid group as a mapping class group
leads to a Bn-action on W . The involved representation is the reduced Burau
representation βred : Bn → Aut(W ) described in section 1.2, i.e., we have
(j 6= k − 1, k, k + 1):

(βredσk)wk−1,k = wk−1,k + qwk,k+1, (βredσk)wk,k+1 = −qwk,k+1,

(βredσk)wk+1,k+2 = wk,k+1 + wk+1,k+2, (βredσk)wj,j+1 = wj,j+1.

Of course, the map W → H1(D̃n) de�ned by wi,i+1 7→ w̃i is an isomorphism
of Bn-modules8.

De�nition 1.12 Let R be a commutative ring and W an R-module. View
the tensor product9 T = W ⊗R W as an additive written abelian group. Let
C be the subgroup of T generated by v⊗w−w⊗ v for v, w ∈ W . Then the
symmetric square of W , denoted by S2W , is de�ned to be T/C. We use the
notation vw = v · w := v ⊗ w = w ⊗ v and v2 = v · v for all v, w ∈ W . As
T the symmetric square S2W admits a natural R-module structure, de�ned
by a(v ⊗ w) := (av)⊗ w for all a ∈ R and v, w ∈ W .

Now, let the coe�cient ring of the reduced Burau module W be a commu-
tative ring R where q and 2 are invertible in R. The symmetric square S2W
of the reduced Burau module W is a free R-module with basis {w2

ij | 1 ≤ i <
j ≤ n}. Note that we can express mixed products as linear combinations of
squares (1 ≤ i < j < k < l ≤ n):

wijwjk =
1

2
(w2

ik − w2
ij − w2

jk), wijwik =
1

2
(w2

ij + w2
ik − w2

jk),

wikwjk =
1

2
(w2

ik + w2
jk − w2

ij), wijwkl =
1

2
(w2

il + w2
jk − w2

ik − w2
jl),

wikwjl =
1

2
(w2

il + w2
jk − w2

ij − w2
kl), wilwjk =

1

2
(w2

ik + w2
jl − w2

ij − w2
kl).

8Recall that, if G is a group and V is a module or vector space, then V is called a
G-module if there exists a group homomorphism G → Aut(V )

9Tensor products of modules and algebras are, for example, introduced in [Hu67].
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The reduced Burau representation βred : Bn → Aut(W ) induces a represen-
tation β2 : Bn → Aut(S2W ) de�ned by

(β2σk)w
2
ij := [(βredσk)wij]

2 for all 1 ≤ i < j ≤ n, 1 ≤ k < n.

Therefore S2W is also a Bn-module. Using the equations above, we can com-
pute the σk-action (induced by the representation β2) on the basis elements
of S2W :

(β2σk)w
2
k,k+1 = q2w2

k,k+1,
(β2σk)w

2
k+1,j = w2

kj,
(β2σk)w

2
kj = q(q − 1)w2

k,k+1 + (1− q)w2
kj + qw2

k+1,j,
(β2σk)w

2
i,k+1 = w2

ik,
(β2σk)w

2
ik = q(q − 1)w2

k,k+1 + (1− q)w2
ik + qw2

i,k+1, and
(β2σk)w

2
i1i2

= w2
i1i2

for {i1, i2} ∩ {k, k + 1} = ∅.

Recall the following elementary de�nition (see, e.g., chapter 1.6 [Sa01]).

De�nition 1.13 Let G be a group, and V1, V2 are G-modules, i.e., there are
homomorphisms ρi : G → Aut(Vi) for i = 1, 2. A G-homomorphism is a linear
transformation θ : V1 → V2 which preserves (or respects) the action of G,
i.e., it satis�es

θ((ρ1g)v) = (ρ2g)(θ(v)) for all v ∈ V1, g ∈ G.

Further, a G-isomorphism is a bijective G-homomorphism.

Proposition 1.14 (Proposition 3.2 in [Kr00]) Let R be a commutative ring
where q and 2 are invertible elements. Consider the Lawrence-Krammer
module V and the symmetric square S2W of the reduced Burau module over
the coe�cient ring R.
The map φ : V → S2W given by vij 7→ w2

ij is a Bn-isomorphism.

Proof. - Comparing the σk-action on the w2
ij's with the σk-action in-

duced by the Lawrence-Krammer representation for t = 1 (see section 1.3),
we observe that

φ((ρt=1σk)v) = (β2σk)(φ(v)) for all v ∈ V, k = 1, . . . , n− 1.

Since the σk's generate Bn, this implies that φ is a Bn-homomorphism. Fur-
ther, the map φ is obviously bijective. Hence, the Bn-modules V and S2W
are Bn-isomorphic if t = 1. �
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1.5 An iterative construction of braid represen-

tations

D. D. Long presented in [Lo94] a method for constructing new represen-
tations from known linear representations of Bn. According to [BB06] it
is due to Moody, generalizing ideas from [La90], and it was �rst described
in [BLM92]. This method generalizes the classical construction of Magnus
representations [Bi74, Ma74].
Note that the same method was developed independently in [L92, CL92,
LT92], introducing so-called braid-valued representations of Bn. See also
[CT93, CL95, L96].
Now we give a short review of the so-called augmenting construction, described
in [Lo94]: Recall the split exact sequence Fn

α //Pn+1
ξ //Pn , which yields

the embedding Pn nFn
∼= Pn+1. This sequence naturally extends to the split

exact sequence Fn
α //B

(n+1)
n+1

ξ′ //Bn , where B
(n+1)
n+1 denotes the set of all

b ∈ Bn+1 with ν(b)(n+1) = n+1. Here the homomorphisms ξ, ξ′ are de�ned
by pulling out the (n+1)-th braid strand. This extended split exact sequence
yields the embedding Bn n Fn

∼= B
(n+1)
n+1 ⊂ Bn+1. Thus every representation

of Bn+1 induces (by restriction of the domain) a representation of Fn o Bn.
Here Bn acts (from left) on Fn by the induced automorphisms in ı(Bn) ⊂
Aut(Fn):

Bn × Fn −→ Fn

(b, w) 7−→ bw := ı(b)(w) = α−1(bα(w)b−1)

We can extend this Bn-action over the group ring R[Fn], where R denotes a
ring with unit 1.
Let I be the right R[Fn]-ideal generated by {xi − 1 | 1 ≤ i ≤ n}. Then the
σk-action (k = 1, . . . , n− 1) on xi − 1 is given by

σk(xi − 1) =


(xk+1 − 1), i = k,
(xk − 1)xk+1 + (xk+1 − 1)[1− x−1

k+1xkxk+1], i = k + 1,
(xi − 1), i 6= k, k + 1.

Thus we have bI ⊂ I (indeed bI = I) ∀b ∈ Bn, i.e., Bn operates on I.
If we view I as a right R[Fn]-module and the representation space V of a
given representation ρ : Fn o Bn → Aut(V ) as a left R[Fn]-module, then we
can de�ne a new representation of Bn by

ρ+ : Bn −→ Aut(I ⊗R[Fn] V ),

b 7−→ (i⊗ v 7→ bi⊗ (ρb)v)

16



De�ning Vi := (xi − 1)⊗ V , the new representation space can be written as
a direct sum of n copies of V :

I ⊗R[Fn] V = V1 ⊕ . . .⊕ Vn ≡
n⊕

i=1

Vi
∼= V ⊕n ≡ V n.

From the σi-action on I we compute the ρ+(σi)-action on ⊕n
i=1 Vi

∼= V n,
written in blockmatrix notation, as

ρ+(σi) = [Id
⊕(i−1)
V ⊕

(
0 ρ(xi+1)

IdV IdV − ρ(x−1
i+1xixi+1)

)
⊕ Id

⊕(n−i−1)
V ]ρ(σi).

In this notation we do not distinguish between xi and α(xi).
Analogeously, the σk-action (k = 1, . . . , n− 1) on yi − 1 is given by

σk(yi−1) =


(yk+2 − 1)y−1

k+1yk − (yk+1 − 1)y−1
k+1yk + (yk − 1), i = k + 1 < n,

−(yn − 1)y−1
n yn−1 + (yn−1 − 1), i = k + 1 = n,

(yi − 1), i 6= k + 1.

Let Ī be the right R[Fn]-ideal generated by {yi − 1 | 1 ≤ i ≤ n}, and let
ρ̄+ : Bn → Aut(Ī ⊗R[Fn] V ) be de�ned as ρ+. Further, set V̄i := (yi − 1)⊗ V .
From the σi-action on Ī we derive the ρ̄+(σi)-action on⊕n

i=1 V̄i
∼= V n, written

in blockmatrix notation, as (1 ≤ i < n− 1)

ρ̄+(σi) = ρσ
⊕(i−1)
i ⊕

 ρσi ρσi 0
0 −ρy−1

i+1yiσi 0
0 ρy−1

i+1yiσi ρσi

⊕ ρσ
⊕(n−i−2)
i ,

ρ̄+(σn−1) = ρσ
⊕(n−2)
n−1 ⊕

(
σn−1 ρσn−1

0 −ρy−1
n yn−1σn−1

)
.

Further, we can construct a representation, which is similar to ρ+, by using
a slightly di�erent blockmatrix formula:

Theorem 1.15 Given a representation ρ : Fn o Bn → Aut(V ), we may
construct a representation ρ‡ : Bn → Aut(V n) de�ned by

ρ‡(σi)) = ρ(σi)
⊕(i−1) ⊕R‡

i ⊕ ρ(σi)
⊕(n−i−1), R‡

i =

(
0 ρxi+1σi

ρσi ρσi − ρxi+1σi

)
.

Proof. - This is a straightforward computation.

Note that this braid-valued representation does not directly arise from
the augmenting construction, described above.
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Summarizing, if V is an R-module of rank m, i.e., V ∼= Rm, we obtain from
an m-dimensional representation ρ : Bn+1 → GL(m, R) the mn-dimensional
representation ρ+ (or ρ‡ or ρ̄+).

Examples:

1. Let R = Z. Starting with the (one-dim.) trivial representation τ (de-
�ned by σi 7→ 1), we obtain the standard (or "de�ning") representation
of Sn, i.e., the representation of Bn which factors through Sn:

τ+ : Bn −→ GL(n, Z)

σi 7−→ Idi−1 ⊕
(

0 1
1 0

)
⊕ Idn−i−1.

2. Let R be the Laurent polynomial ring Z[s±1] in one variabe s and
ρ : Bn+1 → GL(m, Z) a given family of representations. Then we can
de�ne a one-parameter representation by

ρs : Bn+1 −→ GL(m, Z[s±1]), σi 7→ s · ρ(σi).

Applying the augmenting construction to ρs yields a one-parameter
representation ρ+

s of Bn which contains more information than ρ+, i.e.
there exist elements b ∈ ker ρ+ with b /∈ ker ρ+

s .
(a) s−1 · τ+

s : Bn → GL(n, Z[s±1]) de�ned by σi 7→ Idi−1 ⊕ (0
1

s2

1−s2 ) ⊕
Idn−i−1 is a Burau-type representation.

(b) Starting with the Burau representation β of Bn+1, we get an n2-
dimensional representation β+

s : Bn → GL(n2, Z[s±1, t±1]). This
representation can be reduced to the (n

2

)-dimensional Lawrence-
Krammer representation [Lo94]. Indeed, according to Corollary
2.10 in [Lo94], iteration of the augmenting construction, begin-
ning with the trivial representation, yields all summands of the
Jones representation.

Note that the 2× 2 Burau blockmatrix (1−q
1

q
0
) ful�lles the equation

(∗) (R+ ⊕ IdV )(IdV ⊕R+)(R+ ⊕ IdV ) = (IdV ⊕R+)(R+ ⊕ IdV )(IdV ⊕R+).

Further, every R+ ∈ Aut(V ⊕2) = GL(2m, R) which satis�es this equation
gives rise to a linear representation of the braid groups de�ned by

ρ(R+) : Bn −→ Aut(V ⊕n) = GL(mn, R)

σi 7−→ Id
⊕(i−1)
V ⊕R+ ⊕ Id

⊕(n−i−1)
V .
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Equation (∗) expresses the Artin relations σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n−
1), while the far commutativity relations σiσj = σjσi ∀|i−j| ≥ 2 are satis�ed
in the ρ(R+)-image by construction.
This can be viewed as a direct sum analogue of the well known R-matrix
method [Ji86], where, given a R-matrix R ∈ Aut(V ⊗2) = GL(m2, R), we
can introduce the representation

ρ(R) : Bn −→ Aut(V ⊗n) = GL(mn, R)

σi 7−→ Id
⊗(i−1)
V ⊗R⊗ Id

⊗(n−i−1)
V

if R satis�es the famous quantum Yang-Baxter equation
(∗∗) (R⊗ IdV )(IdV ⊗R)(R⊗ IdV ) = (IdV ⊗R)(R⊗ IdV )(IdV ⊗R).

The theory of quantum groups provides a classi�cation of the solutions to
equation (∗∗). In so far all possibleR-matrix representations of Bn are known
[Tu88], while a corresponding classi�cation of theR+-matrix representations
of Bn, i.e. of the solutions of (∗), remains open. Here we view just the simple
case m = dim V = 1, i.e., R+ =

(
a
c

b
d

) with ad− bc 6= 0. In this case equation
(∗) speci�es to a2 + bac ab + bad b2

ca + dac cb + dad db
c2 cd d

 =

 a ba b2

ac ada + bc adb + bd
c2 cda + dc cdb + d2

 .

Thus we have bad = 0 = dac. If b = c = 0, then R+ = Id2. If a = 0, d 6= 0
or a 6= 0, d = 0 we obtain with R+ = (0

c
b

1−bc
) or R+ = (1−bc

c
b
0
) (generalized)

Burau-type representations. And the case a = d = 0 yields R+ = (0
c

b
0
),

a generalized version of the Tong-Yang-Ma (TYM) [TYM96] or standard
representation of Bn [Fo96].
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Chapter 2

Inverting the Lawrence-Krammer

representation

2.1 Braid groups and Garside groups

In this section we review the notion of a Garside group [DP99] and the so-
lution to the word problem in Garside groups. We start with the de�nition
of two natural partial orders on a monoid.

De�nition 2.1 Let M be a monoid. For a, b ∈ M , we say that a is a left
divisor of b, or equivalently, b is a right multiple of a, denoted by a ≺ b (or
b � a), if there exists a c ∈ M with ac = b.
Also we note a ≺̃ b (or b �̃ a), i.e., a is a right divisor of b or b is a left multiple
of a if there exists a c ∈ M satisfying b = ca.
For a, b ∈ M we de�ne further

a ∨ b := min≺{d ∈ M | a ≺ d ∧ b ≺ d},
a ∧ b := max≺{d ∈ M | d ≺ a ∧ d ≺ b},
a ∨̃ b := min ≺̃{d ∈ M | d �̃ a ∧ d �̃ b},
a ∧̃ b := max ≺̃{d ∈ M | a �̃ d ∧ b �̃ d},

provided these minima and maxima (with respect to ≺ and ≺̃) exist. We
call a ∨ b ( a∨̃ b) the least common right (left) multiple or right (left) lcm of a
and b and a∧ b (a ∧̃ b) is the greatest common left (right) divisor or left (right)
gcd of a and b.

De�nition 2.2 a ∈ M is called an atom if a 6= 1 and a = bc ⇒ (b = 1∨c = 1).
M is an atomic monoid if
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1. M is generated by its atoms.

2. ∀a ∈ M ∃N(a) ∈ N: a cannot be written as a product of more than
N(a) atoms.

M is said to be Garside or a Garside monoid if

1. M is atomic.

2. M is left and right cancellative, i.e. ∀a, b, c ∈ M :
ca = cb ⇒ a = b and ac = bc ⇒ a = b.

3. M is a lcm monoid, i.e., every pair (a, b) ∈ M2 admits an unique left
and right lcm (and a left and a right gcd).

4. There exists an element ∆ ∈ M , called Garside element, such that

(a) the left and right divisors of ∆, called simple elements, coincide,
i.e.,

{s ∈ M | s ≺ ∆} = {s′ ∈ M | ∆ �̃ s′} =: S.

(b) the simple elements generate M .

(c) S is �nite.

Let G be a group. A submonoid M of G, which is Garside, and its a�liated
Garside element ∆ provides a Garside structure for G if G is a group of left
and right fractions of M , i.e.,

G = {ab−1 | a, b ∈ M} = {a−1b | a, b ∈ M}.

If G admits a Garside structure (M, ∆), then G is called Garside group.

Proposition 2.3 Bn is a Garside group. It admits natural Garside struc-
tures (B+

n , ∆n) and (BKL+
n , δn) where B+

n and BKL+
n denote the monoids

generated by the sets {σi | i = 1, . . . , n − 1} and {ats | 1 ≤ s < t ≤ n},
respectively, and the Garside elements (here also called fundamental braids)
are

∆n := σ1(σ2σ1) . . . (σn−1σn−2 . . . σ1),

δn := an,n−1an−1,n−2 . . . a2,1.

Proof. - For the Garside structure (B+
n , ∆n) see [Th92]. The dual Garside

structure is introduced in [BKL98]. �
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The simple elements in the Artin presentation, i.e., the left (and right)
divisors of ∆n, are the permutation braids, mentioned in section 1.1. The set
of permutation braids will be denoted by Ω. Its cardinality is known to be n!.
But the set Q := {b ∈ BKL+

n | b ≺ δn} is smaller. Here we have |Q| = Cn,
where Cn = 1

n+1

(
2n
n

) denotes the n-th Catalan number. The simple elements
of the dual presentation, i.e., the elements of Q, are characterised by non-
crossing partitions or products of parallel descending cycles [BKL98].
We use the notation Ω1 for the set of Artin generators, and Q1 for the set
of band generators. Let lX : Bn → N denote the length function with re-
spect to the set X ⊂ Bn, i.e., lX(b) is the smallest number k ∈ N such that
there exist x1, . . . , xk ∈ X ∪X−1 with b = x1 · · ·xk. Then the word x1 · · ·xk

is called geodesic. If b ∈ Bn is Artin positive (also just called positive) (or
BKL positive), i.e., b ∈ B+

n (or b ∈ BKL+
n ), then lΩ1(b) (or lQ1(b)) is simply

given by the word length of any braid word representing b with respect to
the alphabet Ω1 (or Q1), since the Artin (and the BKL) relations preserve
the word lengths. For example, we have lΩ1(∆n) =

(
n
2

) and lQ1(δn) = n− 1.
Note that |Ω1| = n− 1 and |Q1| =

(
n
2

). These simple combinatorial observa-
tions suggest a kind of duality between the Garside structures (B+

n , ∆n) and
(BKL+

n , δn), which is extensively explored in [Be03].
While the computation of geodesics in the monoids B+

n , BKL+
n is trivial, it

was proved by Paterson and Razborov that the set of geodesics (according
to the length function lΩ1(·)) is co-NP-complete [PR91], i.e., given a braid
word w, the problem to �nd a shorter word w′ representing the same braid
is NP-complete. Therefore, unless P=NP, there exists no polynomial algo-
rithm to compute lΩ1(b) for a given braid b. Note that this result only holds
for a braid group with in�nitely many strands, i.e., Ω1 = {σ1, σ2, . . .}. It
is not known whether the same problem is NP-complete for a �xed number
of strands n (open question 9.5.6 in [EC+92]). Indeed, according to an un-
published preprint by K. Tatsuoka [Ta87] cited in [PR91], there exists a
polynomial time algorithm to produce a geodesic braid word for every �xed
n1. A linear time algorithm to the minimal word problem for 3-braids is given
in [Be94]. Further, it would be interesting to investigate analogue questions
for the dual length function lQ1(·).
The Garside structures (B+

n , ∆n) and (BKL+
n , δn) are the only known Gar-

side structures in the braid group Bn. Further, it is an open problem whether
the pure braid group Pn admits a Garside structure or not. A natural candi-
date is the monoid generated by the Aij's with possible Garside element ∆2

n.
Nevertheless, there are many other examples of Garside monoids, e.g, given

1Unfortunately we were unable to obtain it. But according to a private communication
with Paterson and Razborov there must have been a �aw in that proof.

23



by Picantin in [Pi00, Pi03, Pi05]: All spherical Artin monoids [BS72,
De72, Ch92, DP99], Birman-Ko-Lee monoids for spherical Artin groups
[BKL98, Be03, Pi02], braid monoids of the complex re�ection groups G7,
G11, G12, G13, G15, G19 and G22 given in [BMR98] [Pi00], Garside's hy-
percube monoids [Ga69, Pi00], monoids for all torus links groups given in
[Pi03], and some other monoids, arising from the Wirtinger presentation of
the link group (see chapter 3 B in [BZ03]) of a torus link [Pi03], are Garside.
M. Picantin proved [Pi01b] that every Garside group is an iterated crossed
product of Garside groups with an in�nite cyclic center. This extends a sim-
ilar result established independently by Brieskorn and Saito [BS72] and by
Deligne [De72] for sphercal Artin groups. Especially, the center of the braid
group Bn is in�nite cyclic, generated by ∆2

n = δn
n for n ≥ 3 [Ch48].

Dehornoy proved that, like as braid groups, all Garside groups are torsion
free [De98, De04a].
In Garside groups there exist natural normal forms, the left and right normal
form, also called left and right greedy (normal) form, which provide a solution
to the word problem in Garside groups.

Proposition 2.4 G is a Garside group. For every a ∈ G there exist unique
decompositions

a = ∆pa1 . . . al, a = ã1 . . . ãl̃∆
p̃,

called left and right normal form of a, where

1. p = max{r ∈ Z | ∆−ra ∈ M} and p̃ = max{r ∈ Z | a∆−r ∈ M}.

2. the ai's and ãi's satisfy

ai = LF (a−1
i−1 · · · a−1

1 ∆−pa) = LF (ai · · · al) ∀i = 1, . . . , l,

ãi = RF (a∆−p̃ã−1

l̃
· · · ã−1

i+1) = RF (ã1 · · · ãi) ∀i = 1, . . . , l̃,

with LF (b) := ∆ ∧ b ∈ S, called left most factor of b, and RF (b) :=
∆ ∧̃b ∈ S, called the right most factor of b.

Proof. - This is an immediate consequence of the de�nition of a Garside
group and an lcm monoid. �

The map M × S → S de�ned by (x, y) 7→ LF (xy) is an action of the
Garside monoid M on the set of simple elements S. Moreover LF (xy) =
LF (xLF (y)) holds for all x, y ∈ M .
One can prove that l = l̃ and p = p̃ holds in Garside groups. p, l and p + l
are known as the in�mum inf(a), canonical length or gap cl(a), and supremum
sup(a) of a, respectively. Note that l = cl(a) = lS(∆−pa) = lS(a1 · · · al).
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Further, the minimal word problem in Garside groups with respect to the
length function lS can be solved e�ciently. Indeed, the language of geodesics
is regular, i.e, it is accepted by a �nite-state automaton:

Lemma 2.5 (Lemma 3.7 in [De02b]) Let G be a Garside group with Garside
monoid M . For every g ∈ G there exists an unique decomposition g = a−1b
with a, b ∈ M and a ∧ b = 1.

The left normal forms a = a1 · · · aj and b = b1 · · · bk lead to the decom-
position

g = a−1
j · · · a−1

1 b1 · · · bk with a1, . . . aj, b1, . . . , bk ∈ S.

We call this normal form (left) mixed normal form.

Proposition 2.6 [CM04] The mixed normal form yields a geodesic word
with respect to lS for every Garside group G.

For braid groups and the length functions lΩ and lQ such a result was
established earlier in [Ch95, Mi99] and [Kr00], respectively.
Let wl be the word length of a braid word representing a given braid, then the
computation of the left (or right) normal form needs O(wl2n log n) time in the
Artin presentation [Th92] and O(wl2n) in the BKL presentation [BKL98].
Note that the algorithm for computing the left greedy form is reminiscent of
the bubble sort algorithm. It needs O(l2) computations of left gcd's of two
simple elements. An implemetation of such lattice operations and the greedy
algorithm is described in [CK+01].
A quadratic-time algorithm (quadratic in the input length) for the word prob-
lem is shared by all automatic groups. Indeed, according to [De02b] Garside
groups are biautomatic. Roughly speaking, a group is called automatic, if
there exists a �nite-state automaton which can be used for the computation
of the normal form. For the exact de�nitions of automatic and biautomatic
groups see [EC+92] or chapter 13 in [HEO05].
Recalling Bn

∼= M(Dn), we note that L. Mosher proved that all mapping
class groups M(S) are automatic where S denotes a compact surface minus
a �nite, possibly empty set of punctures [Mo94, Mo95]. The correspond-
ing normal form of an element of M(S) is called Mosher normal form. For
the Mosher normal form of a braid, which, of course, can be computed in
quadratic time in the length of the given braid word, see also chapter 8.2 in
[DD+02].
Other e�cient solutions to the word problem in braid groups are provided by
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Dehornoy's handle reduction [De97], Dynnikov's formulae for a faithful braid
action on Z2n arising from a braid action on laminations [Dy02, DD+02],
Garber, Kaplan and Teicher's algorithm using a braid action on a standard g-
base [GKT02, KT03], and an algorithm from B. Wiest [Wi02]. Dehornoy's
handle reduction algorithm [De97], which turns out to be extremely e�cient
in practice, will be discussed in section 5.2.4.

2.2 Inverting the Lawrence-Krammer represen-

tation in x-basis

Here we view the Lawrence-Krammer representation in a transformed basis
{xij | 1 ≤ i < j ≤ n} [Kr02], which we call x-basis. The linear transfor-
mations between the standard fork basis {vij | 1 ≤ i < j ≤ n} and the new
x-basis are given by

vij = xij + (1− q)
∑

i<k<j

xkj, xij = vj + (q − 1)
∑

i<k<j

qk−1−jvkj.

Then the Lawence-Krammer representation induces the following left action
of an Artin generator on x-basis elements

σk ·xij := (ρnσk)xij =



tq2xk,k+1, i = k, j = k + 1,
(1− q)xik + qxi,k+1, i < k = j,
xik + tqk−i+1(q − 1)xk,k+1, i < k, j = k + 1,
tq(q − 1)xk,k+1 + qxk+1,j, i = k, k + 1 < j,
xkj + (1− q)xk+1,j, i = k + 1 < j,
xij, j < k or k + 1 < i,
xij + tqk−i(q − 1)2xk,k+1, i < k, k + 1 < j.

In order to understand the procedure how to compute the preimage braid
x ∈ Bn from a given LK matrix ρx in x-basis, it is necessary to recapitulate
the main steps of the faithfulness proof for the LK representation given by
D. Krammer in [Kr02].
The following key lemma (Prop. 2.1 in [Kr02]) gives a su�cient condition
on a Bn-action on any set to be faithful.

Key Lemma 2.7 Let Bn act (from left) on a set V . This induces a
natural action of Bn on the power set 2V .
If there exists a family {Cy | y ∈ Ω} of nonempty and pairwise disjoint
subsets Cy ⊂ V such that the inclusion x · Cy ⊂ CLF (xy) holds for every
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(x, y) ∈ B+
n × Ω, then the Bn-action on V is faithful.

It can be proved by induction that it is su�cient to verify x ·Cy ⊂ CLF (xy)

for every (x, y) ∈ Ω1 × Ω, i.e., one has to verify this inclusion just in a �nite
number of cases (for a �xed n). Alternatively, one has to show that the
inclusion x · Cy ⊂ CLF (xy) holds for every left greedy pair (x, y) ∈ Ω2, i.e.
LF (xy) = x.
If we specify q ∈ (0, 1) ⊂ R, the LK module becomes a free R-module with
R = R[t±1]. Observe that for 0 < q < 1 all entries of the matrix ρσk are in
R≥0 + tR[t]. So if we de�ne

U :=
⊕
i<j

(R≥0 + tR[t])xij ⊂ V,

this set is invariant under the B+
n -action, i.e., B+

n U ⊂ U . For a subset
A ⊂ Trp := {(i, j) | 1 ≤ i < j ≤ n} we de�ne

UA : = {
∑

s∈Trp

csxs | cs ∈ R≥0 + tR[t], cs ∈ R[t] ⇔ s ∈ A}

= t

(⊕
s∈A

R[t]xs

)
⊕

 ⊕
s∈Trp\A

(R+ + tR[t])xs


=

 ⊕
s∈Trp\A

R+xs

⊕ t

(⊕
s∈Trp

R[t]xs

)
.

In particular we have

UTrp = t

(⊕
s∈Trp

R[t]xs

)
and U∅ =

(⊕
s∈Trp

R+xs

)
⊕ t

(⊕
s∈Trp

R[t]xs

)
.

U is the disjoint union ⊎A∈2Trp UA. For any A ⊂ Trp and x ∈ B+
n there exists

an unique B ⊂ Trp with xUA ⊂ UB, denoted by B = xA. Thus we have an
action of B+

n on 2Trp, de�ned by B+
n × 2Trp → 2Trp, (x, A) 7→ xA.

Note that x∅ contains all indices s ∈ Trp of rows of ρx such that all entries
in these rows are in tR[t], i.e. for t = 0 x∅ indicates zero rows in ρx|t=0.

De�nition 2.8 A ⊂ Trp is called a half-permutation if

∀ 1 ≤ i < j < k ≤ n : (i, j) ∈ A ∧ (j, k) ∈ A ⇒ (i, k) ∈ A.

HP ⊂ 2Trp denotes the set of half-permutations.
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Proposition 2.9 (Lemma 4.2 in [Kr02]) HP is B+
n -invariant, i.e. A ∈ HP ⇒

xA ∈ HP.

We de�ne an obviously injective map L : Sn → 2Trp by
L(τ) := {(i, j) | 1 ≤ i < j ≤ n, τ(i) > τ(j)}.

Note that |L(τ)| = |τ | and L(τ) ∈ HP for all τ ∈ Sn. Further, we have
∀A ⊂ Trp

A ∈ L(Sn) ⇔ A ∈ HP ∧ Ā := Trp \ A ∈ HP, and

x ≺ y ⇔ L(ν(x)) ⊂ L(ν(y)) ∀x, y ∈ Ω.

Proposition 2.10 (Lemma 4.3 in [Kr02]) For every A ∈ HP there exists
a greatest (with respect to inclusion) B ∈ L(Sn) with B ⊂ A, denoted by
B = Proj(A).

Proposition 2.11 (Lemma 4.4 in [Kr02]) The map (Greatest Braid) GB :=
ν−1 ◦ L−1 ◦ Proj : HP → Ω is B+

n -equivariant, i.e., the following diagram
commutes

A_

��

HP
GB //

��

Ω

��

y = GB(A)
_

��
xA HP

GB // Ω LF (xy) = GB(xA).

In formula we have GB(xA) = LF (xGB(A)) for all x ∈ B+
n and A ∈ HP.

Theorem 2.12 (Lemma 4.6 in [Kr02]) The Lawrence-Krammer represen-
tation ρ : Bn → GL(

(
n
2

)
, Z[q±1, t±1]) is faithful, even if we specify q ∈ (0, 1).

Proof. - For y ∈ Ω, de�ne Cy :=
⋃

A∈GB−1(y) UA ⊂ V . Since the sets
{UA}A∈HP are disjoint, the sets {Cy}y∈Ω are disjoint, too. The sets {Cx}x∈Ω

are non-empty because of ∅ 6= UL(ν(y)) ⊂ Cy. It remains to prove that
xCy ⊂ CLF (xy) ∀(x, y) ∈ B+

n × Ω. Since Cy =
⋃
{UA | A ∈ HP, GB(A) = y},

it su�ces to show xUA ⊂ CLF (xy) for all A ∈ HP with GB(A) = y. We get
the following chain of inclusions:

xUA ⊂ UxA ⊂ CGB(xA) = CLF (xy).
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The �rst inclusion is an immediate consequence of the de�nition of the
B+

n -action on 2Trp, i.e., the de�nition of xA. By Prop. 2.9 xA is a half-
permutation. So, by Prop. 2.10 Proj(A) and GB(A) are de�ned, and we get
the second inclusion. The last equality follows from the B+

n -equivariance of
GB.
Thus the sets {Cy}y∈Ω ful�ll all conditions of the key lemma 2.7 and the
proof is �nished. �

Note that the following diagrams commute:

v ∈ UA_

��

U

��

⊎
A∈HP

UA? _oo

��

id //
⊎

x∈Ω

Cx

��

v ∈ Cx_

��
A 2Trp HP? _oo GB // Ω x

Krammer's faithfulness proof [Kr00] has been generalised by Cohen and
Wales [CW02], and Digne [Di03] to a proof for the linearity of all Artin
groups.
An explicit algorithm for inverting the Lawrence-Krammer representation in
x-basis is given in section 2.4.

2.3 Inverting the Lawrence-Krammer represen-

tation in standard fork basis

Here we describe an algorithm for computing preimage braids directly in the
Garside normal form of the dual presentation, given a LK matrix in standard
fork basis. To understand this algorithm it is necessary to review the main
steps of D. Krammers proof of the linearity of B4 [Kr00]. Nevertheless we
will present here a slightly di�ferent proof.
Di�erent to section 2.2., here we specify t ∈ (0, 1) ⊂ R, so that the LK
module V becomes a free R-module with R = R[q±1].

2.3.1 Motivation

The formulas given in section 1.3. imply that ρ∗x ∈ Mat(
(

n
2

)
, Z[q, t±1]) for

all x ∈ BKL+
n , i.e., ρ∗x has no poles in q = 0 for x ∈ BKL+

n . De�ne the
monoid representation ρ0 : BKL+

n → GL(
(

n
2

)
, Z[t±1]) by ρ0x := (ρx) |q=0.
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Then we have
(ρ∗0ats)v

∗
st =

∑
i<s<j<t

v∗ij + tq2v∗st + t
∑

s<j<t<k

v∗jk,

(ρ∗0ats)v
∗
i0s =

∑
s≤j≤t

v∗i0j,

(ρ∗0ats)v
∗
i0t = −

∑
s<j<t

v∗i0j,

(ρ∗0ats)v
∗
sj0

= −
∑
i<s

v∗ij0 − t
∑
t<k

v∗j0k,

(ρ∗0ats)v
∗
j0t = t−1

∑
i≤s

v∗ij0 +
∑
t≤k

v∗j0k,

(ρ∗0ats)v
∗
sk0

=
∑

s≤j≤t

v∗jk0
,

(ρ∗0ats)v
∗
tk0

= −
∑

s<j<t

v∗jk0
,

(ρ∗0ats)v
∗
i1i2

= v∗i1i2
for {s, t} ∩ {i1, i2} = ∅,

and
(ρ0(rev ats))vst = 0,
(ρ0(rev ats))vis = vis,
(ρ0(rev ats))vit = vis,
(ρ0(rev ats))vsj = t−1vjt,
(ρ0(rev ats))vjt = vjt,
(ρ0(rev ats))vsk = vsk,
(ρ0(rev ats))vtk = vsk,
(ρ0(rev ats))vij = vis + vij − vit − vsj + vst + t−1vjt,
(ρ0(rev ats))vjk = −tvsj + tvst + vsk + vjt + vjk − vtk, and

(ρ0(rev ats))vi1i2 = vi1i2 for {s, t} ∩ {i1, i2} = ∅.

This allows us to make the following observation.

Theorem 2.13 ∀x ∈ Q: ρ∗0x is a projector, i.e., (ρ∗0x)2 = ρ∗0x.

Proof. - The proof is done by induction over lQ1(x):
1. lQ1(x) = 1: It is straightforward to verify (ρ∗0ats)

2 = ρ∗0ats for 1 ≤ s <
t ≤ n.

2. lQ1(x) > 1: Recall the de�nitions of starting and �nishing sets of a
BKL positive braid b from [BKL98]:

S(b) := {a ∈ Q1 | ∃b′ ∈ BKL+
n : b = ab′},

F (b) := {a ∈ Q1 | ∃b′ ∈ BKL+
n : b = b′a}.
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According to corollary 3.7 (IV) in [BKL98], we have S(x) = F (x) for
all x ∈ Q. Now, let ats be in S(x) = F (x). This implies x = atsx

′ =
x′′ats for some x′, x′′ ∈ Q. Then we have

ρ∗0x = ρ∗0ats(ρ
∗
0x

′)
!
= ρ∗0atsx

′2 = ρ∗0x
′′atsx

′ 1.
= ρ∗0x

′′ρ∗0a
2
tsx

′ = ρ∗0x
2. �

The eigenspaces for the eigenvalues λ = 1, 0 of ρ∗0ats, i.e., the image and
the kernel under this monoid representation, respectively, are given by

im(ρ∗0ats) = {v∗ ∈ V ∗ | (ρ∗0ats)v
∗ = v∗}

= {
∑
i<j

dijv
∗
ij | dst = 0, dis = dit ∀i < s,

dsj = t−1djt ∀s < j < t, dsk = dtk ∀t < k},
ker(ρ∗0ats) = {v∗ ∈ V ∗ | (ρ∗0ats)v

∗ = 0}
= {

∑
i<j

dijv
∗
ij | dis = 0 ∀i < s, djt = 0 ∀s < j < t,

dsk = 0 ∀t < k, dij + dst = dit + dsj ∀i < s < j < t,

tdst + djk = tdsj + dtk ∀s < j < t < k}.

Note that V ∼= V ∗ since V is �nite-dimensional.
The structure of the image and the kernel of a simple element x ∈ Q with
lQ1(x) = k > 1 is determined by the following theorem.

Theorem 2.14 Let be x = a1 · · · ak ∈ Q with a1, . . . , ak ∈ Q1. Then we
have

im(ρ∗0a1 · · · ak) =
k⋂

i=1

im(ρ∗0ai) and ker(ρ∗0a1 · · · ak) =
k∑

i=1

ker(ρ∗0ai).

Proof. - Let A, B ∈ Mat(N, R) (N ∈ N, R ring) be idempotent ma-
trices, i.e. A2 = A and B2 = B. Choose an x ∈ im(A) ∩ im(B). Then
there exist v, v′ ∈ RN with x = Av = A2v = Ax = ABv′. This implies
im(A) ∩ im(B) ⊂ im(AB).
Especially for x = atsx

′ = x′′ats and Ats := ρ∗0ats, X := ρ∗0x, X ′ := ρ∗0x
′ and

X ′′ := ρ∗0x
′′, we have

im(Ats) ∩ im(X ′) ⊂ im(X) and im(X ′′) ∩ im(Ats) ⊂ im(X).

Since im(X) = im(X ′′Ats) ⊂ im(X ′′) and im(X) = im(AtsX
′) ⊂ im(Ats) the

opposite of the second inclusion holds, too. Therefore we have
im(X ′′) ∩ im(Ats) = im(X ′′Ats) = im(X),
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and the �rst assertion is proved by induction over lQ1(x). �

Since im(A) ⊃ im(AC) the map
(Q,≺) −→ (2V ∗

,⊂) defined by

ats 7−→ im(ρ∗0ats) = ρ∗0ats(V
∗)

is an order-reversing injection.

Lemma 2.15 A braid action ρ : Bn × V → V , e.g., de�ned by an linear
representation ρ , induces a BKL+

n -action ρ0 : BKL+
n × V → V , i.e., ρxv =

ρyv ⇒ ρ0xv = ρ0yv for all x, y ∈ BKL+
n and v ∈ V . This naturally induces

a BKL+
n -action ρ0 : BKL+

n × 2V → 2V .
If there exist a bijection between Q and Q̃ := {Cy ⊂ V | y ∈ Q}, and BKL+

n

acts on Q̃ via ρ0 with

ρ0xCy = CLF (xy) ∀x ∈ BKL+
n , y ∈ Q,

then the Bn-action ρ is faithful.

Proof. - Since ∀z ∈ Bn ∃x, y ∈ BKL+
n : z = xy−1 it su�ces to show

ρx = ρy ⇒ x = y, which will be proved by induction over lQ(x).
The case lQ(x) = 1 is given by the bijection Q −̃→ Q̃.
In the case lQ(x) > 1 we have

ρx = ρy ⇒ CLF (x) = ρ0xCe = ρ0yCe = CLF (y) ⇒ LF (x) = LF (y).

Write x = LF (x)x′ and y = LF (x)y′, then we have
(ρLF (x))ρx′ = (ρLF (x))ρy ⇔ ρx′ = ρy′

!⇒ x′ = y′ ⇒ x = y. �

Once again, it su�ces to show ρ0xCy = CLF (xy) for all (x, y) ∈ Q1 ×Q.

Lemma 2.16 Let · be a BKL+
n -action on Q̃.

x ·Cy = CLF (xy) ∀(x, y) ∈ Q1×Q ⇒ x ·Cy = CLF (xy) ∀(x, y) ∈ BKL+
n ×Q.

Proof. - Induction over |x| := lQ1(x).
For |x| = 1 there is nothing to prove. Let x = uv with |u|, |v| < |x|.
x · Cy = u · (v · Cy)

!
= u · CLF (vy)

!
= CLF (uLF (vy)) = CLF (u(vy) = CLF (xy). �

We use this lemma to obtain a �rst faithfulness result for n = 3.
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Corollary 2.17 The Lawrence-Krammer representation ρ : B3 → GL(3, R)
with R = R[q±1] is injective for each t ∈ R.

Proof. - Consider the natural BKL+
n -action on 2V ∗ de�ned by x ·C :=

(ρ∗0)C, which is induced by the dual Lawrence-Krammer representation ρ∗

via ρ∗0 := ρ∗|q=0. De�ne Q̃ := {Cy := im(ρ∗0y) | y ∈ Q}.
Explicitly we have ρ∗0e = id3, Ce = V ∗, and ρ∗0δ3 = (0)3, Cδ3 = {0}, and

ρ∗0a21 =

 0 0 0
0 1 0
0 1 0

 , Ca21 = {

 0
β
β

 | β ∈ R}, and

ρ∗0a31 =

 0 0 t−1

0 0 0
0 0 1

 , Ca31 = {

 t−1γ
0
γ

 | γ ∈ R}, and

ρ∗0a32 =

 1 0 0
1 0 0
0 0 0

 , Ca32 = {

 α
α
0

 | α ∈ R},

according to the ordered basis {v∗12, v
∗
13, v

∗
23}.

It is easy to check that BKL+
n acts on Q̃ with a ·Cy = CLF (ay) for all Q1×Q,

i.e., the preconditions of the lemmata 2.15 and 2.16 are ful�lled. �

Note that if we set t = 1, this implies the faithfulness of the Burau
representation for n = 3.
For n = 4 this method does not work. Here we have just a ·Cy = CLF (ay) for
all (a, y) ∈ (Q1×Q)\{(a42, a41a32), (a31, a43a21)}. In the �rst counterexample
we have for v ∈ Ca41a32

a42 · v = (ρ∗0a42)v =


1 0 0 0 0 0
1 1 −1 −1 1 t−1

0 0 0 0 0 t−1

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1




α
α
0
0
tα
tα

 =


α

(3 + t)α
α
α
0
tα

 .

This implies a42 · Ca41a32 $ CLF (a42a41a32) = Ca42 = {(α, β, γ, α, 0, tγ)> |
α, β, γ ∈ R}.
Since LF (x) ≺ x ∀x ∈ BKL+

n the inclusion x·Cy = (ρ∗0x)ρ∗0yV ∗ = (ρ∗0xy)V ∗ ⊂
ρ∗0(LF (xy))V ∗ = CLF (xy) with (x, y) ∈ BKL+

n ×Q holds for all n ∈ N.
In order to apply this inclusion for a faithfulness proof of the Lawrence-
Krammer representation it is necessary to de�ne proper nonempty, disjoint
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subsets of im(ρ∗0y), y ∈ Q, and use the following variant of a lemma of D.
Krammer (Proposition 5.1 in [Kr00]).

Main Lemma 2.18 A braid action ρ : Bn×V → V , e.g., de�ned by an linear
representation ρ, induces a BKL+

n -action ρ0 : BKL+
n × V → V with ρ0x =

ρ0y ⇒ x = y. This naturally induces a BKL+
n -action ρ0 : BKL+

n ×2V → 2V .
If there exists a family {Cy | y ∈ Q} of nonempty and pairwise disjoint
subsets Cy ⊂ V such that the inclusion ρ0xCy ⊂ CLF (xy) holds for every
(x, y) ∈ BKL+

n ×Q, then the Bn-action on V is faithful.

Proof. - Once again it su�ces to show ρx = ρy ⇒ x = y for all
x, y ∈ BKL+

n , which will be proved by induction over lQ(x).
lQ(x) = 1 : ρx = ρy ⇒ ρ0x = ρ0y ⇒ x = y.
lQ(x) > 1: Choose a v ∈ Ce. Then we have

ρ0xv = ρ0yv ∈ CLF (x) ∩ CLF (y) =

{
∅ LF (x) 6= LF (y)
CLF (x) 6= ∅ LF (x) = LF (y)

,

which implies LF (x) = LF (y), and the assertion follows by induction. �

Note that it su�ces to verify ρ0xCy ⊂ CLF (xy) for all (x, y) ∈ Q1 ×Q, or
equivalently, ρ0xCy ⊂ Cx for all left greedy pairs (x, y) ∈ Q2.

2.3.2 On some special distance spaces

A classical reference on distance geometry is [Bl53]. We refer to [DL97] and
the notation therein.

De�nition 2.19 A distance space is a pair (X, d) with a set X and a sym-
metric function, called distance, d : X2 → R with d(i, j) ≥ 0 ∀i, j ∈ X and
i = j ⇒ d(i, j) = 0.

Here view �nite distance spaces, i.e., X ∼= Vn := {1, . . . , n} for some
n ∈ N. The n × n symmetrc matrix D, whose (i, j)-th entry is dij :=
d(i, j)∀i, j ∈ Vn, is the distance matrix of the �nite distance space (Vn, d).
Since dij = dji ∀i, j ∈ Vn and dii = 0∀i ∈ Vn, the distance d is given by its
restriction on En := {(i, j) ∈ V 2

n | 1 ≤ i < j ≤ n}. So d can be viewed as
vector (dij)1≤i<j≤n ∈ REn ∼= R(n

2).

De�nition 2.20 If a distance d satis�es the triangle inequalities

d(i, k) ≤ d(i, j) + d(j, k) ∀i, j, k ∈ X,
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then d is called a semimetric on X, and if, in addition, d(i, j) = 0 ⇒ i = j,
then d is a metric.
The cone

CSM
n := {d ∈ REn | d is a semimetric on Vn}

is called semimetric cone.

For any p ≥ 1, we can de�ne the lp-metric on the vector space Rm as the
associated norm metric of the well-known lp-norm:

dlp(x, y) := ||x||p = (
m∑

k=1

|xk − yk|p)1/p.

We use the notation abbreviation lmp = (Rm, dlp).

De�nition 2.21 A distance space (X, d) is said to be (isometrically) embed-
dable into another distance space (X ′, d′) if there exists a mapping φ : X →
X ′ such that d(i, j) = d′(φ(i), φ(j)) for all i, j ∈ X.
And (X, d) is said to be lp-embeddable if it is embeddable into lmp for some
m ∈ N.

We are interested in l2-embeddable (or euclidean) distance spaces. We
recall some classical results on l2-embeddability:
The �rst result is due to Schoenberg [Sc35, Sc38].

De�nition 2.22 Let b ∈ Zn. The inequality Qn(b)>d :=
∑

1≤i<j≤n

bibjdij ≤ 0

is said to be of negative type if
∑n

i=1 bi = 0. It is pure if |bi| = 0, 1 for all
i ∈ Vn, and if

∑n
i=1 |bi| = 2k holds for some k ∈ N, then it is called a k-gonal

inequality.
The negative type cone is de�ned by

Cneg
n := {d ∈ REn |

∑
1≤i<j≤n

bibjdij ≤ 0 ∀b ∈ Zn with
n∑

i=1

bi = 0}.

Proposition 2.23 (Theorem 6.2.2 in [DL97]) The distance space (X,
√

d)
is l2-embeddable i� (X, d) is of negative type.

Alternatively, de�ne the euclidean cone as
Ceucl

n := {d ∈ REn |
√

d is l2−embeddable},
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then Prop. 2.23 can be restated as Ceucl
n = Cneg

n .

The second characterization of euclidicity is due to Gower [Go82].

Proposition 2.24 (X, d) is of negative type if and only if the matrix A=(idn−
es>)(−D)(idn − se>) is positive semide�nite for any s ∈ Rn with s>e = 1,
where e denotes the all-ones column vector.

A further result, formulated in terms of Cayley-Menger determinants, is
due to Menger [Me28, Me31, Me54]. In this explicit form it appears in
[Me54] or [DL97].

De�nition 2.25 Let (X, d) be a �nite distance space with |X| = n. Then
the Caley-Menger matrix is de�ned as the (n + 1)× (n + 1) symmetric matrix

CM(X, d) :=

(
D e
e> 0

)
,

and det CM(X, d) denotes its Cayley-Menger determinant.

Proposition 2.26 (Vn,
√

d) is l2-embeddable i� (−1)|Y | det CM(Y, d) ≥ 0
for all Y ⊂ Vn.

For |Y | = 2, i.e., Y = {i, j} with i < j, we get det CM(Y, d) = 2dij ≥ 0.
For |Y | = 3, i.e., Y = {i, j, k} with i < j < k, we get

0 ≥ det CM(Y, d) = d2
ij + d2

ik + d2
jk − 2dijdik − 2dijdjk − 2dikdjk

= (
√

dij +
√

dik +
√

djk)(
√

dij −
√

dik −
√

djk) ·
(−
√

dij +
√

dik −
√

djk)(−
√

dij −
√

dik +
√

djk).

Hence, (V3, d) is euclidean if and only if d satis�es the triangle inequalities,
i.e., (V3, d) is a semimetric space.
So, if we de�ne the following variant of the semimetric cone

C
√

SM
n := {d ∈ REn |

√
d is a semimetric on Vn},

we get
Ceucl

3 = C
√

SM
3 and Ceucl

n ⊂ C
√

SM
n ∀n ∈ N.
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Further, (V4,
√

d) is l2-embeddable i� it is semimetric and
0 ≤ det CM(V4, d)

= 2(−d2
12d34 − d12d

2
34 − d2

13d24 − d13d
2
24 − d2

23d14 − d23d
2
14

−d12d13d23 − d12d14d24 − d13d14d34 − d23d24d34 + d12d13d24 + d12d13d34

+d12d23d14 + d12d23d34 + d13d23d14 + d13d23d24 + d12d14d34

+d12d24d34 + d13d14d24 + d13d24d34 + d23d14d24 + d23d14d34).

De�nition 2.27 We say that d satis�es the tetragonal inequalities on V4 if

fT1(d) := 2d12d34 − |d2
13 + d2

24 − d2
23 − d2

14| ≥ 0, (T1)

fT2(d) := 2d14d23 − |d2
12 + d2

34 − d2
13 − d2

24| ≥ 0, (T2)

fT3(d) := 2d13d24 − |d2
23 + d2

14 − d2
12 − d2

34| ≥ 0. (T3)

Theorem 2.28 Let, for i = 1, 2, 3, C
√

SM,iT
4 denote the set of all d ∈ C

√
SM

4

where
√

d ful�lls exactly i of the 3 inequlities (T1)− (T3).
Then we have the following chain of inclusions:

Ceucl
4 $ C

√
SM,3T

4 $ C
√

SM,2T
4 $ C

√
SM,T

4 = C
√

SM
4 .

Proof. - For any subset I ⊂ Vn, we construct the principal submatrix
AI := (aij)i,j∈I of A by removing all rows and columns of A which are not
in I. According to Prop. 2.24, (X,

√
d) is euclidean i� the matrix A =

(idn − es>)(−D)(idn − se>) is positive semide�nite for any s ∈ Rn with
s>e = 1. Therefore, if (Vn,

√
d) is euclidean, we have det(AI) ≥ 0 ∀I ⊂ Vn.

Choose for example s> = (0, 1, 1,−1) then we have
0 ≤ det A{1,2} = 4d12d34 − (d13 + d24 − d23 − d14)

2 ⇔ fT1(
√

d) ≥ 0.

Analogously det A{1,3} ≥ 0 implies (T3), and if we set s> = (0, 1,−1, 1), then
det A{1,4} ≥ 0 implies (T2). So we have proved the inclusion Ceucl

4 ⊂ C
√

SM,3T
4 ,

while all other inclusions are trivial.
De�ne the distance d on V4 by d12 = d13 = d23 = 1 and d14 = d24 = d34 = 2.
Then d ful�lls the triangle inequalities and (T1)−(T3), but d is not euclidean,
since det CM(V4, d

2) = −25 < 0, i.e., d2 ∈ C
√

SM,3T
4 , but d2 /∈ Ceucl

4 .
Consider the semimetric space (V4, d) de�ned by d12 = d23 = 1, d13 = d14 = 2
and d24 = d34 = 3. Then we have
2d12d34 = 2 · 1 · 3 = 6  |d2

13 + d2
24 − d2

23 − d2
14| = |22 + 32 − 12 − 22| = 8,

2d14d23 = 2 · 2 · 1 = 4 ≥ |d2
12 + d2

34 − d2
13 − d2

24| = |12 + 32 − 22 − 32| = 3,

2d13d24 = 2 · 2 · 3 = 12 ≥ |d2
23 + d2

14 − d2
12 − d2

34| = |12 + 22 − 12 − 32| = 5,
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i.e., d2 ∈ C
√

SM,2T
4 , but d2 /∈ C

√
SM,3T

4 .
Further, the distance d on V4 de�ned by d12 = d23 = d34 = d14 = 1 and
d13 = d24 = 2 is an example for d2 ∈ C

√
SM

4 , but d2 /∈ C
√

SM,2T
4 .

Since
0 ≤

∑
1≤i<j<k≤4

(2dijdik + 2dijdjk + 2dikdjk − d2
ij − d2

ik − d2
jk)

= 4d12d34 − (d13 + d24 − d23 − d14)
2 + 4d14d23 − (d12 + d34 − d13 − d24)

2

+4d13d24 − (d23 + d14 − d12 − d34)
2,

every semimetric satis�es at least one tetragonal inequality. This implies
C
√

SM,T
4 = C

√
SM

4 . �

2.3.3 Braid action on distance spaces

Consider the BKL+
n -action on V ∗ ∼= REn already de�ned in the proof of

corollary 2.17: x · v∗ := (ρ∗0x)v∗.
Write v∗ =

∑
i<j dijv

∗
ij with dij = 〈v∗ | vij〉, and (ρ∗0x)v∗ =

∑
i<j d′ijv

∗
ij with

d′ij := 〈(ρ∗0x)v∗ | vij〉 = 〈v∗ | (ρ0(revx))vij〉.

Then, for x = ats, we have for all i, j, k with 1 ≤ i < s < j < t < k ≤ n:
d′st = 0,
d′is = dis, d′it = dis,
d′sj = t−1djt, d′jt = djt,
d′sk = dsk, d′tk = dsk,
d′ij = dis + dij − dit − dsj + dst + t−1djt,
d′jk = −tdsj + tdst + dsk + djt + djk − dtk,

and d′i1i2
= di1i2 for all i1, i2 with {s, t} ∩ {i1, i2} = ∅.

Now let dij be ∀i, j ∈ Vn a matrix element of a distance matrix D, i.e., v∗ de-
scribes a distance. It is a natural question to ask under which circumstances
does x · v∗ (x ∈ BKL+

n ) describe a distance, too, or more precisely, on which
subsets of V ∗ does BKL+

n act.
First, we consider the case t = 1.

Theorem 2.29 For t = 1 BKL+
n acts on Ceucl

n ⊂ V ∗, i.e.,

(BKL+
n )Ceucl

n ⊂ Ceucl
n .
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Proof. - According to proposition 2.23 v∗ =
∑

i<j dijv
∗
ij ∈ Ceucl

n satis�es∑
1≤i<j≤n bibjdij ≤ 0 for all b ∈ Zn with ∑n

i=1 bi = 0.
Then, for d′ := (ρ∗0ats)v

∗ =
∑

i<j d′ijv
∗
ij, we have∑

1≤i<j≤n

bibjd
′
ij =

∑
i<s

bi(bsd
′
is + btd

′
it) +

∑
s<j<t

bj(bsd
′
sj + btd

′
jt)

+
∑
t<k

(bsd
′
sk + btd

′
tk)bk +

∑
i<s<j<t

bibjd
′
ij +

∑
s<j<t<k

bjbkd
′
jk

+(
∑

i1,i2<s

+
∑

s<i1,i2<t

+
∑

t<i1,i2

+
∑

i1<s<t<i2

)bi1bi2d
′
i1i2

=
∑
i<s

bi(bs + bt)dis +
∑

s<j<t

bj(bs + bt)djt +
∑
t<k

bk(bs + bt)dsk

+
∑

i<s<j<t

bibj(dis + dij − dsj − dit + dst + djt)

+
∑

s<j<t<k

bjbk(−dsj + dst + djt + dsk + djk − dtk)

+(
∑

i1,i2<s

+
∑

s<i1,i2<t

+
∑

t<i1,i2

+
∑

i1<s<t<i2

)bi1bi2di1i2 .

These terms can be regrouped to
Qn(b)>d′ =

∑
i<s

bi[(bs +
∑

s<j<t

bj + bt)dis + (−
∑

s<j<t

bj)dit]

+
∑

s<j<t

bj[(−
∑
i<s

bi −
∑
t<k

bk)dsj + (
∑
i<s

bi + bs + bt +
∑
t<k

bk)djt]

+
∑
t<k

bk[(bs +
∑

s<j<t

bj + bt)dsk + (−
∑

s<j<t

bj)dtk]

+(−
∑

s<j<t

bj)(
∑
i<s

bi +
∑
t<k

bk)dst +
∑

{i,j}∩{s,t}=∅

bibjdij
!
=
∑
i<j

b′ib
′
jdij,

where b′ ∈ Z, de�ned by
b′s =

∑
s≤j≤t

bj = −
∑
i<s

bi −
∑
t<k

bk,

b′t = −
∑

s<j<t

bj =
∑
i≤s

bi +
∑
t≤k

bk and

b′i = bi ∀i /∈ {s, t},

satis�es ∑n
i=1 b′i = 0. Therefore we have proved Qn(b)>d′ ≤ 0 for all b ∈ Z

with ∑n
i=1 bi = 0, i.e. (ρ∗0ats)v

∗ ∈ Ceucl
n .
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Then (ρ∗0x)v∗ ∈ Ceucl
n for all x ∈ BKL+

n is proved by induction over lQ1(x). �

But for n = 4, BKL+
n acts on other subsets of V ∗ ∼= R6, too.

Theorem 2.30 Let C
√

SM,T1,T2

4 denote the set of all d ∈ C
√

SM
4 where d ful�lls

the tetragonal inequalities (T1), (T2).
Then, for n = 4 and t = 1, BKL+

n acts on C
√

SM,T1,T2

4 and C
√

SM,3T
4 , i.e.

BKL+
n C

√
SM,T1,T2

4 ⊂ C
√

SM,T1,T2

4 and BKL+
n C

√
SM,3T

4 ⊂ C
√

SM,3T
4 .

Proof. - The �rst assertion will be proved later.
In order to prove the second assertion we have to verify

fT3(
√

d′) ≥ 0 ⇔ 4d′13d
′
24 − (d′12 + d′34 − d′14 − d′23)

2 ≥ 0

with d′ij := 〈(ρ∗0x)v∗ | vij〉 for all 1 ≤ s < t ≤ n

fT3(d
′) =



4d13d14 − (0 + d34 − d14 − d13)
2 ≥ 0, (∆(1, 3, 4)) (s, t) = (1, 2),

4d12d24 − (d12 + d24 − d14 − 0)2 ≥ 0, (∆(1, 2, 4)) (s, t) = (2, 3),
4d13d23 − (d12 + 0− d13 − d23)

2 ≥ 0, (∆(1, 2, 3)) (s, t) = (3, 4),
4d34d24 − (d24 + d34 − 0− d23)

2 ≥ 0, (∆(2, 3, 4)) (s, t) = (1, 4),
0− (d23 + d14 − d14 − d23)

2 = 0 ≥ 0, X (s, t) = (1, 3),
0− (d12 + d34 − d12 − d34)

2 = 0 ≥ 0, X (s, t) = (2, 4).

Here the �rst four inequalites are valid since √d satis�es the triangle inequal-
ities ∆(i, j, k) for all 1 ≤ i < j < k ≤ 4. �

But in order to prove injectivity of the LK representation ρ of B4 for
t ∈ (0, 1), we have to introduce t-generalized versions of the above de�ned
subset of V ∗.
It is not known so far, whether there exists a proper notion of "t-euclidicity"
for n ≥ 4. We leave it as an open problem.
But Krammer introduced a proper t-generalization of the triangle inequali-
ties [Kr00]:

De�nition 2.31 The distance space (Vn, d) is called a t-semimetric space if
it ful�lles the following t-triangle inequalities

dik ≤ dij + dj,k, (D1)
dij ≤ dik + t−1/2djk, (D2)
djk ≤ dik + t1/2dij (D3)
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for all 1 ≤ i < j < k ≤ n.

Since dij ≥ 0 ∀i < j, we are allowed to square the inequalities (D1)−(D3).
Therefore these linear inequalities in d are obviously equivalent to

(D1) ⇔ d2
ij − d2

ik + d2
jk ≥ −2dijdjk,

(D2) ⇔ −td2
ij + td2

ik + d2
jk ≥ −2pdikdjk,

(D3) ⇔ td2
ij + d2

ik − d2
jk ≥ −2pdijdik.

But there are other su�cient and/or necessary conditions for d to be a
t-semimetric.

Lemma 2.32 a) d is a t-semimetric on Vn i� it satis�es the following in-
equalities:

2dikdjk ≥ −d2
ij + d2

ik + d2
jk, (D̃1)

2dijdik ≥ d2
ij + d2

ik − t−1d2
jk, (D̃2)

2dijdjk ≥ pd2
ij − p−1d2

ik + p−1d2
jk. (D̃3)

b) If (Vn, d) is a t-semimetric space, then d ful�lles the following inequalities:

2p−1dijdjk ≥ d2
ij − d2

ik + d2
jk, (E1)

2dikdjk ≥ −td2
ij + td2

ik + d2
jk, (E2)

2dijdik ≥ td2
ij + d2

ik − d2
jk. (E3)

Proof. - a) Since (D̃1), (D̃2), (D̃3), are equivalent to
dij ≥ |dik − djk|, p−1djk ≥ |dij − dik|, dik ≥ |djk − pdij|

respectively, it is clear that (D̃l) ⇒ (Dl) for l = 1, 2, 3.
And (Dl−1mod3) ∧ (Dl) ⇒ (Dl) for l = 1, 2, 3 follows from
−dij

(D1)

≤ djk − dik

(D3)

≤ pdij ≤ dij, −p−1djk ≤ −djk

(D1)

≤ dij − dik

(D2)

≤ p−1djk,

and− dik ≤ −pdik

(D2)

≤ djk − pdij

(D3)

≤ pdik ≤ dik, respectivly.
b) Proof of (E1): We study the cases dij ≥ p−1djk and p−1djk ≥ dij separately.

1) dij ≥ p−1djk ⇒ dik

(D2)

≥ dij − p−1djk ≥ 0 ⇒ d2
ik ≥ (dij − p−1djk)

2 ⇒
2p−1dijdjk − d2

ij − d2
jk + d2

ik ≥ 2p−1dijdjk − d2
ij − d2

jk + (dij − p−1djk)
2

= (t−1 − 1)d2
jk ≥ 0 ⇔ (E1).

2) p−1djk ≥ dij ⇒ dik

(D3)

≥ djk − pdij ≥ 0 ⇒ d2
ik ≥ (djk − pdij)

2 ⇒
2p−1dijdjk − d2

ij − d2
jk + d2

ik ≥ 2p−1dijdjk − d2
ij − d2

jk + (djk − pdij)
2

= 2p−1dijdjk − d2
ij − d2

jk + td2
ij − 2pdijdjk + d2

jk

= (p−1 − p)dijdjk + (1− t)dij[p
−1djk − dij]

2)

≥ 0 ⇔ (E1).
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Proof of (E2):

1) djk ≥ dik ⇒ pdij

(D3)

≥ djk − dik ≥ 0 ⇒ td2
ij ≥ (dik − djk)

2 ⇒
2dikdjk − td2

ik − d2
jk + td2

ij ≥ 2dikdjk − td2
ik − d2

jk + (dik − djk)
2

= (1− t)d2
ik ≥ 0 ⇔ (E2).

2) dik ≥ djk ⇒ dij

(D1)

≥ dik − pdjk ≥ 0 ⇒ d2
ij ≥ (dik − pdjk)

2 ⇒
2dikdjk − td2

ik − d2
jk + td2

ij ≥ 2dikdjk − td2
ik − d2

jk + td2
ij + (dik − pdjk)

2

= (1− t)dikdjk + (1− t)djk[dik − djk]
2)

≥ 0 ⇔ (E2).

Proof of (E3):

1) dik ≥ dij ⇒ djk

(D1)

≥ dik − dij ≥ 0 ⇒ d2
jk ≥ (dij − dik)

2 ⇒
2dijdik − td2

ij − d2
ik + d2

jk ≥ 2dijdik − td2
ij − d2

ik + (dij − dik)
2

= (1− t)d2
ij ≥ 0 ⇔ (E3).

2) dij ≥ dik ⇒ djk

(D2)

≥ p(dij − dik) ≥ 0 ⇒ d2
ik ≥ t(dij − dik)

2 ⇒
2dijdik − td2

ij − d2
ik + d2

jk ≥ 2dijdik − td2
ij − d2

ik + t(dij − dik)
2

= (1− t)dijdik + (1− t)dik[dij − dik]
2)

≥ 0 ⇔ (E3). �

Each t-semimetric has the the following properties:

Lemma 2.33 Let (Vn, d) be a t-semimetric space. Then d satis�es (1 ≤ q <
r < s < t ≤ n)

(a) dst = 0 ⇒


dis = dit ∀i < s
dsj = p−1djt ∀s < j < t
dsk = dtk ∀t < k

.

(b) t 6= 1 : dqs = drt = 0 ⇒ dqr = drs = dst = dqt = 0.

Proof. - For dst = 0, the t-triangle inequalities D2(s, j, t) and D3(s, j, t)
(s < j < t) turn to

dsj ≤ p−1djt and djt ≤ pdsj ⇔ dsj = p−1djt.

Analogously D1(i, s, t) and D3(i, s, t) (i < s) imply dis = dit, and D1(s, t, k)
and D2(s, t, k) (t < k) imply dsk = dtk. This proves property (a)
According to property (a) we have (1 ≤ q < r < s < t ≤ n)

dqs = 0 ⇒
{

dqr = p−1drs

dqt = dst
and drt = 0 ⇒

{
dqr = dqt

drs = p−1dst
.
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This yields the following chain of equations,

dqt = dqr = p−1drs = p−2dst = p−2dqt,

which implies the assertion for t 6= 1. �

De�nition 2.34 The following inequalities on V4

2p−1d12d34

(T1a)

≥ d2
13 − d2

23 − d2
14 + d2

24

(T1b)

≥ −2d12d34, (T1)

2d23d14

(T2a)

≥ −td2
12 + td13 + d24 − d2

34

(T2b)

≥ −2pd23d14 (T2)

are called t-tetragonal inequalities for d.

De�ne γn ∈ Aut(V ) and γ∗n ∈ Aut(V ∗) by ρδn = q2γn and ρ∗δn = q2γ∗n,
respectively. Then the γ(∗)-action on (dual) standard fork basis elements is

γnvij =

{
vi+1,j+1, j < n
tv1,i+1, j = n

and γ∗nv
∗
ij =

{
v∗i−1,j−1, i > 1
tv∗j−1,n, i = 1

.

Write v∗ =
∑

i<j dijv
∗
ij and γ∗nv

∗ =
∑

i<j d̃ijv
∗
ij, then we have

d̃ij = 〈γ∗nv∗ | vij〉 = 〈v∗ | γnvij〉 =

{
di+1,j+1, j < n
td1,i+1, j = n

.

Lemma 2.35 We use the notation

C
√

SM
n (t) := {d ∈ REn |

√
d is t-semimetric on Vn} and

C
√

T1,T2
n (t) := {d ∈ REn |

√
d is a distance and ful�lls T1(t), T2(t).}.

Then we have

γ∗nC
√

SM
n (t) = C

√
SM

n (t) and γ∗nC
√

T1,T2

4 (t) = C
√

T1,T2

4 (t).

Proof. - For l = 1, 2, 3, de�ne C
√

Dl
n (i, j, k) (1 ≤ i < j < k ≤ n) as

the set of all vectors ∑i<j dijv
∗
ij where dij ≥ 0 and √d satis�es Dl(i, j, k).

Then C
√

SM
n (t) is the intersection of all C

√
Dl

n (i, j, k). We will show that γ∗n
permutes the C

√
Dl

n (i, j, k).
Obviously we have γ∗nv

∗ ∈ C
√

Dl
n (i, j, k) ⇔ v∗ ∈ C

√
Dl

n (i + 1, j + 1, k + 1) for
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k < n. In the case k = n we have

γ∗nv
∗ ∈ C

√
D1

n (i, j, n) ⇔
√

d̃in ≤
√

d̃ij +

√
d̃jn

⇔ p
√

d1,i+1 ≤
√

di+1,j+1 + p
√

d1,j+1 ⇔ v∗ ∈ C
√

D2
n (1, i + 1, j + 1),

γ∗nv
∗ ∈ C

√
D2

n (i, j, n) ⇔
√

d̃ij ≤
√

d̃in + p−1

√
d̃jn

⇔
√

di+1,j+1 ≤ p
√

d1,i+1 +
√

d1,j+1 ⇔ v∗ ∈ C
√

D3
n (1, i + 1, j + 1),

γ∗nv
∗ ∈ C

√
D3

n (i, j, n) ⇔
√

d̃jn ≤
√

d̃in + p

√
d̃ij

⇔ p
√

d1,j+1 ≤ p
√

d1,i+1 + p
√

di+1,j+1 ⇔ v∗ ∈ C
√

D1
n (1, i + 1, j + 1).

This proves the �rst assertion.
Further, de�ne C

√
T1

4 (t), C
√

T2
4 (t) as the sets of all vectors ∑i<j dijv

∗
ij with

dij ≥ 0 (1 ≤ i < j ≤ 4) where √d satis�es T1(t), T2(t), respectively. Then we
have C

√
T1,T2

4 (t) = C
√

T1
4 (t) ∩ C

√
T2

4 (t) and

γ∗nv
∗ ∈ C

√
T1

4 (t) ⇔ 2p−1d̃
1/2
12 d̃

1/2
34 ≥ d̃13 − d̃23 − d̃14 + d̃24 ≥ −2d̃

1/2
12 d̃

1/2
34

⇔ 2d
1/2
23 d

1/2
14 ≥ d24 − d34 − td12 + td13 ≥ −2pd

1/2
23 d

1/2
14

⇔ v∗ ∈ C
√

T2
4 (t) and

γ∗nv
∗ ∈ C

√
T2

4 (t) ⇔ 2d̃
1/2
23 d̃

1/2
14 ≥ −td̃12 + td̃13 + d̃24 − d̃34 ≥ −2pd̃

1/2
23 d̃

1/2
14

⇔ 2pd
1/2
34 d

1/2
12 ≥ −td23 + td24 + td13 − td14 ≥ −2td

1/2
34 d

1/2
12

⇔ v∗ ∈ C
√

T1
4 (t). �

Theorem 2.36 Recall theBKL+
n -action on V ∗ de�ned by x·v∗ = (ρ∗0x)v ∀x ∈

BKL+
n . Then BKL+

4 acts on C4(t) := C
√

SM
4 (t) ∩ C

√
T1,T2

4 (t), i.e.

x · C4(t) ⊂ C4(t) ∀x ∈ BKL+
n .

Proof. - We prove the assertion by induction over lQ1(x). Therefore
we have to verify atsC4(t) ⊂ C4(t) for all 1 ≤ s < t ≤ n. Because of
Lemma 2.35 we have γ∗4C4(t) = C4(t). Therefore xC4(t) ⊂ C4(t) implies
γ∗4xC4(t) ⊂ γ∗4C4(t) = C4(t). This is equivalent to

γ∗4xC4(t) = γ∗4(ρ
∗
0x)(γ∗4)

−1γ∗4C4(t) = (ρ∗0δ4xδ−1
4 )C4(t) ⊂ C4(t).

Therefore it su�ces to show v′∗ := atsv
∗ ∈ C4(t) ∀v∗ ∈ C4(t) just for one rep-

resentant of each generator orbit (under the shift automorphism δ4(·)δ−1
4 ).

The orbits in question are {a43, a32, a21, a41} and {a42, a31}, and we study the
cases (s, t) = (3, 4) and (s, t) = (2, 4). Recall the notation d′ij = 〈ats · v∗ | vij〉
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and dij = 〈v∗ | vij〉 with 1 ≤ s < t ≤ n.

1) (s, t) = (3, 4) : Since v′∗ ∈ im(ρ∗0a43) we have d′34 = 0, d′13 = d′14
and d′23 = d′24. This allows us to express all t-triangle inequalities (for√

d′) in terms of d′12, d
′
13, d

′
23. So we have just to verify the 3 inequalities

Dl(1, 2, 3) (l = 1, 2, 3) for√d′ instead of all 12 t-triangle inequalities Dl(i, j, k)
(l = 1, 2, 3 and 1 ≤ i < j < k ≤ 4). But, since d′12 = d12, d

′
13 = d13 and

d′23 = d23, we have dij ≥ 0 ⇒ d′ij ≥ 0 ∀i < j and √d′ ful�lles these inequali-
ties if √d does.

It remains to verify the t-tetragonal inequalities for √d′.
(T1a) : 2p−1d

′1/2
12 d

′1/2
34 − (d′13 − d′23 − d′14 + d′24)

= 0− (d13 − d23 − d13 + d23) = 0 ≥ 0,

(T1b) : 2d
′1/2
12 d

′1/2
34 + (d′13 − d′23 − d′14 + d′24)

= 0 + (d13 − d23 − d13 + d23) = 0 ≥ 0,

(T2a) : 2d
′1/2
23 d

′1/2
14 − (−td′12 + td′13 + d′24 − d′34)

= 2d
1/2
23 d

1/2
13 − (−td12 + td13 + d23 − 0)

(E2)

≥ 0,

(T2b) : 2pd
′1/2
23 d

′1/2
14 + (−td′12 + td′13 + d′24 − d′34)

= 2d
1/2
23 d

1/2
13 + (−td12 + td13 + d23 − 0)

(D2)

≥ 0.

2) (s, t) = (2, 4) : First we establish that d′ is a distance, i.e., d′ij ≥
0 ∀i < j. The only nontrivial case is

d′13 = d12 + d13− d23− d14 + d24 + t−1d34

(T1b)

≥ (t−1− 1)d34 +(d
1/2
12 − d

1/2
34 )2 ≥ 0.

Further, here v′∗ ∈ im(ρ∗0a42) implies d′24 = 0, d′12 = d′14 and d′23 = t−1d′34. We
express the t-triangle inequalities Dl(i, j, k) (for √d′) in terms of d′12, d

′
13, d

′
23.

The cases (i, j, k) = (1, 2, 4) and (2, 3, 4) lead to trivial inequalities. The
remaining cases are
D1(1, 2, 3) : d

′1/2
13 ≤ d

′1/2
12 + d

′1/2
23 , D1(1, 3, 4) : d

′1/2
12 ≤ d

′1/2
13 + pd

′1/2
23 ,

D2(1, 2, 3) : d
′1/2
12 ≤ d

′1/2
13 + p−1d

′1/2
23 , D2(1, 3, 4) : d

′1/2
13 ≤ d

′1/2
12 + d

′1/2
23 ,

D3(1, 2, 3) : d
′1/2
23 ≤ d

′1/2
13 + pd

′1/2
12 , D3(1, 3, 4) : pd

′1/2
23 ≤ d

′1/2
12 + pd

′1/2
13 .

Therefore we have to establish the inequalities
d
′1/2
13 ≤ d

′1/2
12 + d

′1/2
23 , (F1)

d
′1/2
12 ≤ d

′1/2
13 + pd

′1/2
23 , (F2)

d
′1/2
23 ≤ d

′1/2
13 + pd

′1/2
12 , (F3)
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which are symmetric in d′12, d
′
23.

Squaring (F1) leads to d′13 ≤ d′12 + 2d
′1/2
12 d

′1/2
23 + d′23. Since

−d
′1/2
13

(F2)

≤ pd
′1/2
23 − d

′1/2
12 ≤ d

′1/2
23 − pd

′1/2
12

(F3)

≤ d
′1/2
13 ,

we have

(F2) ∧ (F3) ⇔

{
2d

′1/2
12 d

′1/2
23 ≥ p−1d′12 − p−1d′13 + pd′23 (F̃2)

2d
′1/2
12 d

′1/2
23 ≥ pd′12 − p−1d′13 + p−1d′23 (F̃3)

.

Now (F1), (F̃2) and (F̃3) are satis�ed because of
(F1) : d′12 + 2d

′1/2
12 d

′1/2
23 + d′23 − d′13

= d12 + 2p−1d
1/2
12 d

1/2
34 + t−1d34 − (d12 + d13 − d23 − d14 + d24 + t−1d34)

= 2p−1d
1/2
12 d

1/2
34 − (d13 − d23 − d14 + d24)

(T1a)

≥ 0,

(F̃2) : 2pd
′1/2
12 d

′1/2
23 − d′12 + d′13 − td′23

= 2d
1/2
12 d

1/2
34 − d12 + (d12 + d13 − d23 − d14 + d24 + t−1d34)− d34

= (t−1 − 1)d34 + 2d
1/2
12 d

1/2
34 + (d13 − d23 − d14 + d24)

≥ 2d
1/2
12 d

1/2
34 + (d13 − d23 − d14 + d24)

(T1b)

≥ 0,

(F̃3) : 2pd
′1/2
12 d

′1/2
23 − td′12 + d′13 − d′23

= 2d
1/2
12 d

1/2
34 − td12 + (d12 + d13 − d23 − d14 + d24 + t−1d34)− t−1d34

= (1− t)d12 + 2d
1/2
12 d

1/2
34 + (d13 − d23 − d14 + d24)

≥ 2d
1/2
12 d

1/2
34 + (d13 − d23 − d14 + d24)

(T1b)

≥ 0.

Finally we verify the t-tetragonal inequalities for √d′:
(T1a) : 2p−1d

′1/2
12 d

′1/2
34 − (d′13 − d′23 − d′14 + d′24)

= 2p−1d
1/2
12 d

1/2
34 − (d13 − d23 − d13 + d23)

(T1a)

≥ 0,

(T1b) : 2d
′1/2
12 d

′1/2
34 + (d′13 − d′23 − d′14 + d′24)

= 2d
1/2
12 d

1/2
34 + (d13 − d23 − d13 + d23)

(T1b)

≥ 0,

(T2a) : 2d
′1/2
23 d

′1/2
14 − (−td′12 + td′13 + d′24 − d′34)

= 2p−1d
1/2
34 d

1/2
12 − (−td12 + t(d12 + d13 − d23 − d14 + d24 + t−1d34)− d34)

= 2p−1d
1/2
12 d

1/2
34 − t(d13 − d23 − d14 + d24)

≥ 2p−1d
1/2
12 d

1/2
34 − (d13 − d23 − d14 + d24)

(T1a)

≥ 0,

(T2b) : 2pd
′1/2
23 d

′1/2
14 + (−td′12 + td′13 + d′24 − d′34)

= 2d
1/2
34 d

1/2
12 + t(d13 − d23 − d14 + d24)

≥ 2td
1/2
12 d

1/2
34 + t(d13 − d23 − d14 + d24)

(T1b)

≥ 0. �

46



Lemma 2.37 The pairwise disjoint, nonempty sets

Dy := {v∗ =
∑

1≤i<j≤n

dijv
∗
ij ∈ im(ρ∗0x) | ∀s < t : dst ≥ 0 ∧ dst = 0 ⇔ ats ≺ y},

y ∈ Q, satisfy the following properties:

(1) γ∗nDy = Dδnyδ−1
n

for all y ∈ Q.

(2) If n = 4 then xDy ⊂ Dx holds for all leftgreedy pairs
(x, y) ∈ (Q \ {a31, a42})×Q.

Proof. - Proof of (1).
γ∗nv

∗ =
∑

i<j d̃ijv
∗
ij ∈ Dδnyδ−1

n

⇔ (d̃st = 0 ⇔ ats ≺ δnyδ−1
n ∀s < t)

⇔ (ds+1,t+1modn = 0 ⇔ δ−1
n atsδn = at+1,s+1modn ≺ y ∀s < t)

⇔ (dst = 0 ⇔ ats ≺ y ∀s < t) ⇔ v∗ ∈ Dx. �

Evidently, we have x · im(ρ∗0y) ⊂ im(ρ∗0x) for all leftgreedy (x, y) ∈ Q2. Nev-
ertheless it is a straightforward but lengthy task to verify xDy ⊂ Dx for
all leftgreedy (x, y) ∈ (Q \ {a31, a42}) × Q for n = 4. We leave it to the
reader. The reader has to perform a case study as in the proof of lemma 6.5
in [Kr00]. The proof can be abbreviated using property (1). Note that for
x ∈ Q \ {a31, a42} the matrices ρ∗0x contain just nonnegative entries. Indeed
every row of these matrices contains at most one positive entry. �

Theorem 2.38 The Lawrence-Krammer representation ρ : Bn → GL(
(

n
2

)
, R)

is faithful for n = 4 and t ∈ (0, 1).

Proof. -We de�ne pairwise disjoint, nonempty subsets Cy := Dy∩C4(t)
(y ∈ Q) of im(ρ∗0y) and C4(t), and we will show that they ful�ll the inclusion
xCy := (ρ∗0x)Cy ⊂ Cx for all leftgreedy pairs (x, y) ∈ Q2. This implies the
inclusion for all (x, y) ∈ BKL+

4 × Q, and hence, by Lemma 2.18, we have
proved the faithfulness of ρ∗ (and ρ).
Using lemma 2.37 (2), we obtain for all leftgreedy (x, y) ∈ (Q\{a31, a42})×Q

xCy = x(Dy ∩ C4(t)) ⊂ xDy ∩ xC4(t) ⊂ Dx ∩ C4(t) = Cx.

The orbits (under shift conjugation) of the remaining leftgreedy pairs are
{(a42, a31), (a31, a42)}, {(a42, a41), (a31, a43), (a42, a32), (a31, a21)},
{(a42, a42), (a31, a31)}, {(a42, a41a32), (a31, a43a21)}, {(a42, e), (a31, e)}.
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Since Cy, Cδnyδ−1
n

∈ C4(t) and γ∗n preserves C4(t), lemma 2.37 (1) implies
γ∗nCy = Cδnyδ−1

n
for all y ∈ Q. Now, xCy ⊂ Cx implies

δnxδ−1
n Cδnxδ−1

n
= γ∗n(ρ∗0x)(γ∗n)−1γ∗nCy = γ∗n(ρ∗0x)Cy ⊂ γ∗nCx = Cδnxδ−1

n
.

Therefore, it su�ces to show that v∗ =
∑

i<j dijv
∗
ij ∈ Cy for y = e, a41, a42,

a31, a41a32 implies a42v
∗ =

∑
i<j d′ijv

∗
ij ∈ Ca42 .

Theorem 2.36 yields a42v
∗ ∈ C(t). Further, we have d′24 = 0 and d′12 = d′14 =

d12, td
′
23 = d′34 = d34. Since d12, d34 > 0 for all v∗ ∈ Ce, Ca41 , Ca42 , Ca31 , Ca41a32 ,

we get d′12 = d′14 > 0, d′23 > 0 and d′34 > 0. Finally, we have

d′13 = d12 + d13− d23− d14 + d24 + t−1d34

(T1b)

≥ (t−1− 1)d34 + (d
1/2
12 − d

1/2
34 )2

(∗)
> 0

because of d34 > 0. So we have proved a42Cy ⊂ Ca42 for all leftgreedy (a42, y),
and the proof is �nished. �
Note that step (∗) is the argument which fails for t = 1.

2.4 Inverting algorithms

According to Krammers faithfulness proof of the LK representation [Kr02]
it is possible to compute the preimage braid x ∈ Bn of a given LK matrix ρx
directly in the Garside normal form (of the Artin presentation). An explicit
algorithm for inverting the LK representation was �rst published by Cheon
and Jun in [CJ03a, CJ03b].
Recall the notation from section 2.2.
Algorithm 2.1: Invert the Lawrence Krammer representation.
Input: A LK matrix ρ′x := ρx|q=1/2 ∈ GL(

(
n
2

)
, Q[t±1]) in x-basis.

Output: The unique preimage braid x ∈ Bn in left normal form.
1: Compute the smallest p ∈ Z such that M = (ρ′∆n)pρ′x ∈ GL(

(
n
2

)
, Q[t]).

2: Initialize k = 0;
3: while M 6= IdV do
4: k := k + 1;
5: Determine the zero rows of M |t=0, i.e., A := x′∅ ⊂ Trp for M = ρ′x′.
6: Compute x[k] := GB(A).
7: M := (ρ′x[k])−1 ·M ;
8: end while;
9: return LNF x = ∆−p

n x[1] · · ·x[k];

Krammers faithfulness proof of the LK representation of B4 [Kr00] given
in standard fork basis can also be used to develop an inversion algorithm.
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Though this inversion algorithm was not explicitly published so far, its idea
is contained in the de�nition of the cones Cx used by Krammer in [Kr00].
Recall that, according to corollary 3.7 in [BKL98], the starting (and the
�nishing) set of a descending cycle δπ = atm,tm−1atm−1,tm−2 · · · at2,t1 (π =
(tm, tm−1, . . . , t1) with 1 ≤ t1 < · · · < tm ≤ n) is given by

S(δπ) = F (δπ) = {atj ,ti | 1 ≤ i < j ≤ m}.

A simple element s of the Garside monoid BKL+
n is given by a product of

parallel descending cycles π1, . . . , πk, i.e., s = π1 · · ·πk. And the starting
(and �nishing) sets of s are

S(s) = F (s) = S(δπ1) ∪ · · · ∪ S(δπk
).

Obviously, there exists a simply computable bijection between the set of sim-
ples S ⊂ BKL+

n and the set of starting sets of simples. We will use this fact
in the following algorithm.
Algorithm 2.2: Invert the Lawrence Krammer representation.
Input: A LK matrix ρ′x := ρx|t=1/2 ∈ GL(

(
n
2

)
, Q[q±1]) in sf basis.

Output: The unique preimage braid x ∈ Bn in left normal form.
1: Transpose the instance matrix to obtain ρ′∗x.
2: Compute the smallest p ∈ Z such that

M = (ρ′∗δn)pρ′∗x ∈ GL(
(

n
2

)
, Q[q]).

3: Initialize k = 0;
4: while M 6= IdV ∗ do
5: k := k + 1;
6: Compute the zero rows of M |q=0.

They determine a starting set S(s) for some s ∈ S.
7: Compute the canonical factor s from S(s), and set x[k] := s.
8: M := (ρ′∗x[k])−1 ·M ;
9: end while;
10: return LNF x = δ−p

n x[1] · · ·x[k];

Due to the lack of a faithfulness proof of the LK representation if we set
t ∈ (0, 1), algorithm 2.2 is just a heuristic for n ≥ 5. Nevertheless, we have
implemented this algorithm using MAGMA 2.10 [Co03], and we have shown
in thousands of computer experiments with di�erent parameter values that
the preimage braids can be recovered by algorithm 2.2 for n ≥ 5, too. This
con�rms Krammers main conjecture in [Kr00].
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Chapter 3

Computing preimage braids for

the Burau representation

Recall the Burau representation β : Bn → GL(n, Z[q±1]) de�ned by

β(σi) = Idi−1 ⊕
(

1− q q
1 0

)
⊕ Idn−i−1 ∀i = 1, . . . , n− 1.

This representation is not faithful for n ≥ 5. Since the structure of the
kernel of the Burau representation is not understood so far, there exists
no deterministic inversion algorithm for the Burau representation as for the
Lawrence-Krammer representation. Only heuristic algorithms for computing
preimage braids for the Burau representation have been developed so far.
Since, for x ∈ Bn, x′ := ∆u

nx ∈ B+
n for some su�ciently great u ∈ Z, we may

deal only with positive instance braids for the inversion heuristics. Note that
u is an upper bound for − inf(x).

3.1 Hughes' algorithm

The �rst heuristic inversion algorithm for the Burau representation was pro-
posed in [Hu02] by J. Hughes. The goal is to compute a braid x ∈ B+

n

with β(x) = X for a given Burau matrix X ∈ β(B+
n ). Hughes' algorithm

reconstructs x from β(x) gnerator by generator from right to left. It uses the
observation that, if cH(β(x)) denotes the �rst column with highest q-degree
entry in β(x), then cH(x) is with high probability an element in the �nishing
set F (x) := {i ∈ Z | σi ≺ x}, at least for su�ciently short x ∈ B+

n .
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Algorithm 3.1: Hughes' Algorithm
Input: X ∈ β(B+

n ).
Output: z ∈ B+

n .
1: Compute l such that det(X) = (−q)l.
2: z := e;
3: for i := l to 1 by -1 do
4: Compute jc := cH(X).
5: if jc = n then break; end if;
6: z := σjc · z;
7: X := X · β(σjc)

−1;
8: end for;
9: return z;

Note that, since the row sum of every Burau matrix equals 1, cH(X) = n
implies X /∈ β(B+

n ).
E. Lee and Park introduced a slight variation of Hughes' algorithm, which
uses the fact that, if σj ∈ F (x), then every entry in the (j + 1)-th column
of β(x) is always in qZ[q] [LP03]. Now, let cLP (X) denote the integer in-
dicating the �rst column containing a highest-degree entry in X among the
columns whose next column's entries are all in qZ[q], if such a cLP (X) exists.

Algorithm 3.2: Lee-Park's Algorithm without self-correction
Input: X ∈ β(B+

n ).
Output: z ∈ B+

n .
1: Compute l such that det(X) = (−q)l.
2: z := e;
3: for i := l to 1 by -1 do
4: if there does not exist such a cLP (X) then
5: break;
6: else
7: Compute jc := cLP (X).
8: z := σjc · z;
9: X := X · β(σjc)

−1;
10: end if;
11: end for;
12: return z;
We tried to reproduce the results of the computer experiments in [LP03]:

The experiment was performed on a computer with a Mobile Intel Pentium
4 Processor 3.06 GHz and 512 MB DDR-RAM using quite comfortable im-
plementations in MAGMA V2.10.
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The tables 3.1 and 3.2 show the experimental results for the algorithms 3.1
and 3.2. On input (n, l), the program chooses at random 10000 x's from
B+

n with |x| = l, computes ρB(x) from x, computes z from ρB(x) by each
algorithm, and then checks whether or not z is equal to x by comparing their
normal forms.

Table 3.1 Success rate of recovering x from β(x) (unit: %)
n 5 7 10
|x| 30 40 50 40 55 70 60 80 100

Alg. 3.1 90.89 81.36 70.61 88.71 73.72 56.71 84.74 67.74 49.94
Alg. 3.2 91.57 81.52 71.12 89.08 74.06 56.56 84.16 67.37 50.22
[LP03]: 96 83 76 91 76 64 87 67 42
Observation: We can reproduce similar results for the success rates of

algorithm 3.2 (and algorithm 3.1) as in [LP03].

Table 3.2 Elapsed time in recovering x from β(x) (unit: millisecond)

[ tH :=time(algorithm 3.1) and tLP :=time(algorithm 3.2)]

(n, |x|) (7,40) (7,55) (7,70) (10,60) (10,80) (10,100)
tH 7.1064 10.2109 13.1468 19.0047 25.8394 32.0566
tLP 10.5127 14.8576 18.6722 28.1155 38.1345 46.1931

tLP /tH 1.479 1.455 1.420 1.479 1.476 1.441
(Note that this table only compares the inverting processes themselves.

The time commonly taken in computing |x| from β(x) is not included.)

Observation: The measured elapsed times tH and tLP depend on the im-
plementations. But the quotient tLP /tH decreases for increasing wordlength
l (n =const.) in our experiment as in [LP03].

The lucid analysis in section 4.2 of [LP03] explains why the Hughes
heuristic works so surprisingly good. Note that in the case n = 3 the success
rate of the Hughes algorithm is 100% and the just mentioned analysis [LP03]
contains a fatihfulness proof of the Burau representation.

3.2 Self-correcting algorithm

In [LP03] E. Lee and Park introduced an upgraded, self-correcting version
of algorithm 3.2.
For x ∈ B+

n , we introduce the abbreviations x1 = σcLP (x), x2 = σcLP (xx−1
1 ),
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. . ., xk = σcLP (xx−1
1 ···x−1

k−1), and x′ = xx−1
1 · · ·x−1

k for 1 ≤ k < |x|. E. Lee and
Park made the observation that, if cH(x′) 6= cLP (x′), then cLP (y) /∈ F (y)
(y := x′xk · · ·xi) for some 1 ≤ i ≤ k. Further they observed that, if
cLP (y) > 1 and if every entry in the cLP (y)-th column of β(y) is in qZ[q],
then it is probable that cLP (y) − 1 ∈ F (y). This is the main idea of the
selfcorrection in algorithm 3.3.
Here we reprint a corrected version of algorithm 2 in [LP03], published as
algorithm 4 in [Le06]. Mj denotes the j-th column of the matrix M .
Algorithm 3.3: Lee-Park's Algorithm with self-correction
Input: X ∈ β(B+

n ).
Output: z ∈ B+

n .
1: if X = Idn then
2: z := e;
3: else
4: Compute l such that det(X) = (−q)l.
5: M [l] := X;
6: for i := l to 1 by -1 do
7: Compute ja := cH(M [i]) and jc := cLP (M [i]).
8: if there exists such jc and jc = ja then
9: A[i] := jc; M [i− 1] := M [i] · β(σjA[i]

)−1;
10: else
11: if i = l then
12: break;
13: end if;
14: if there exists k (> i) such that jc = ja > 1 for M [k],

A[k] = ja and every entry of M [k]jc is in tZ[t] then
15: reset i to be the smallest value among such k's;
16: i := k; A[i] := A[i]− 1; M [i− 1] := M [i] · β(σA[i])

−1;
17: else
18: break;
19: end if;
20: end if;
21: end for;
22: if i = l then
23: z := e;
24: else
25: z := σA[i] · · ·σA[l];
26: end if;
27: end if;
28: return z;
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Note that in line 10 of algorithm 2 in [LP03], which corresponds to line
14 of algorithm 3.3, the additional condition A[k] = ja is missing, i.e., we
have line
14old: if there exists k (> i) such that jc = ja > 1 for M [k]

and every entry of M [k]jc is in tZ[t] then
instead of line

14. Unfortunately, this leads to the phenomenon that the selfcorrecting pro-
cedure does not work accurately, because after some �selfcorrection jumps�
(line 15 in alg. 3.3) the di�erence between ja = CH(M [k]) and A[k] could
become greater than 1.
Further, in line 11 of algorithm 2 in [LP03] the authors simply reset i to
be k, without declaring which k do they choose. Of course, it is the most
natural choice to select the minimal k (with the properties described in line
14 of algorithm 3.3). Indeed, this choice is made in line 15 of algorithm 3.3
(algorithm 4 in [Le06]).
We tried to reproduce the results for the success rates of the selfcorrecting
algorithm 3.3 given in [LP03, Le06]:
We implemented algorithm 3.3 using the computer algebra system MAGMA
2.10. Now, our program only chooses at random 1000 x's from B+

n . We
also perfomed some tests to show what happens, if we choose the maximal k
instead of the minimal in line 15.

Table 3.3 Success rate of recovering x from β(x) using algorithm 3.3
n 5 7 10
|x| 30 40 50 40 55 70 60 80 100

Line 14old, min. k 92.8 90.3 84.5
Line 14, min. k 99.9 99.2 99.4 99.7 98.8 98.2 99.2 98.7 96.9*
[LP03, Le06] 100 99 97 99 97 82 99 90 69
Line 14, max. k 93.3 89.2 86.4
*We used a conditional statement (if elapsed time greater than 1 hour

then break;) to reduce the expenditure of time. In so far 969 is just a lower
bound for the number of successfully recoverable preimage braids in this com-
puter experiment.

Observation: The success rates of our implementation of algorithm 3.3 are
actually higher than those reported in [LP03]. Especially for the parameter
values (n, l) = (7, 70), (10, 80) and (10,100) there is a signi�cant gap between
the results in [LP03, Le06] and our results1.

1We assume that E. Lee and Park used such a conditional statement as we did for
the parameter value (n, l) = (10, 100). Otherwise we estimate their computer experiments
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3.3 An improved linear complexity algorithm

First, for the purpose of motivation, we describe an inversion algorithm for
the representations s−1(βred

s )+, s−1(βred
s )‡ : Bn → GL(n2, Z[s±1, q±1]). (See

the notation used in section 1.5.)
Here the rows (and columns) of an n2-dimensional matrix are indexed by
(i, j) ∈ {1, . . . , n}2. Explicitly, the (i, j)-th row (column) of the matrix M is
denoted by (i,j)M (M(i,j)).
Algorithm 3.4: Inverting algorithm for s−1(βred

s )+, s−1(βred
s )‡

Input: A matrix X = ρx with ρ = s−1(βred
s )+ or ρ = s−1(βred

s )‡

for some unknown x ∈ Bn.
Output: z ∈ Bn in right normal form.
1: Compute the smallest p ∈ Z such that

M = ρx(ρδn)p ∈ GL(n2, Z[s, q±1]).
2: Initialize k := 0;
3: while M 6= Idn2 do
4: k := k + 1;
5: St := ∅;
6: for i := 1 to n− 1 do
7: for j := i + 1 to n do
8: if M(i,k) = M(j,k) for all k = 1, . . . , n then
9: Include aji in St.
10: end if;
11: end for;
12: end for;
13: if St is the starting set of some s̄ ∈ Q then
14: Compute x[k] = s̄ ∈ Q such that St = S(s̄).
15: else break;
16: end if;
17: M := M · (ρs̄)−1;
18: end while;
19: return z = x[k] · · ·x[1]δ−p

n ;
This algorithm is reminiscent of algorithm 2.2 based on the ideas of D.

Krammer, used in his faithfulness proof of B4 [Kr00]. Obviously it has linear
time complexity in the dual canonical length.
Though we are not able to prove that algorithm 3.4 computes the unique
would have taken at least a month. Keep in mind that one hour in our implementation
corresponds to ca. one day in the implementation of Lee, Park. This rough estimation
is deduced from the elapsed times given for the Hughes algorithm. If this assumption is
true, this could explain the gap. Otherwise we have no explanation for the gap.
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preimage braid x ∈ Bn such that X = ρx (ρ = s−1(βred
s )+ or ρ = s−1(βred

s )‡),
hundreds of computer experiments with di�erent parameter values, where the
input braids were always reconstructed successfully, supports this assump-
tion.
Analogously, we can apply this algorithm to the n(n + 1)-dimensional repre-
sentations s−1β+

s , s−1(ρTY M
s )+ where ρTY M denotes the Tong-Yang-Ma rep-

resentation de�ned by σi 7→ Idi−1 ⊕
(

0
1

q
0

)
⊕ Idn−i−1. Note that in the case of

s−1(ρTY M
s )+ an analogue of algorithm 3.4 fails to recover a preimage braid

with increasing probabilty for increasing length of the input braid. Indeed,
we conjecture that the augmented representation s−1(ρTY M

s )+ is not faithful
for n ≥ 4.
Further, we can apply an analogue of algorithm 3.4 to the n-dimensional
representation s−1τ+

s (see example 2.(a) in section 1.5), i.e., to Burau-type
representations. However, if we want to apply it to the Burau matrices, ex-
plicitly de�ned in section 1.2, we set s2 = q and we build a somehow reverse
(or transposed) algorithm:

Algorithm 3.5: Linear inversion heuristic for the Burau represention
Input: A Burau matrix X ∈ β(Bn).
Output: z ∈ Bn in left normal form.
1: Compute the smallest p ∈ Z such that

M = βx(βδn)p ∈ GL(n, Z[q]).
2: Initialize k := 0;
3: while M 6= Idn do
4: k := k + 1;
5: St := ∅;
6: for i := 1 to n− 1 do
7: for j := i + 1 to n do
8: if iM =j M then
9: Include aji in St.
10: end if;
11: end for;
12: end for;
13: if St is the starting set of some s ∈ Q then
14: Compute x[k] = s ∈ Q such that St = S(s).
15: else break;
16: end if;
17: M := (βs)−1 ·M ;
18: end while;
19: return z = δ−p

n x[1] · · ·x[k];

57



For the purpose of comparability with the success rates of the Lee-Park
algorithm (without self-correction), we constrained the inputs to Artin posi-
tive braids. The table 3.4 shows the experimental results for the algorithms
3.2 and 3.5. On input (n, l), the program chooses at random 10000 x's from
B+

n with |x| = lΩ1(x) = l, computes ρB(x) from x, computes z from ρB(x) by
each algorithm, and then checks whether or not z is equal to x by comparing
their normal forms. Further, we compare algorithm 3.5 with algorithm 2.2
where we have set t = 1. Since, in this case, we deal with (n

2

)-dimensional
matrices, we performed just 1000 experiments per (n, l)-value.

Table 3.4 Success rate of recovering x from β(x) (unit: %)
n 5 7 10
|x| 30 40 50 40 55 70 60 80 100

Alg. 3.2 91.57 81.52 71.12 89.08 74.06 56.56 84.16 67.37 50.22
Alg. 3.5 95.49 90.16 83.87 92.67 81.72 68.76 88.49 72.86 55.75
Alg.2.2
(t = 1)

95.5 91.2 84.8 93.0 82.3 67.4 88.3 73.9 52.8

Observation: The success rates of our linear complexity inverting heuris-
tic for the Burau representation are slightly, but signi�cantly, better than
the corresponding success rates of the Hughes or the Lee-Park algorithm
(without self-correction) for all investigated parameter values. Further, the
success rates of algorithm 3.5 and algorithm 2.2 with t = 1 are roughly equal.
Since the Lawrence-Krammer module for t = 1 is the symmetric square of
the (reduced) Burau module, this is far from being a surprising e�ect.
But the success rates of algorithm 3.3 are not within reach for our algorithm
3.5. This is due to a lack of self-correction in this algorithm. The develop-
ment of a self-correcting version of algorithm 3.5 remains as a task for future
research. Nevertheless, since algorithm 3.5 has linear time complexity (as
Hughes' algorithm), it can be used as a cryptanalytic tool in representation
attacks against braid-based cryptosystems.

Note that success rates of all inversion algorithms for the Burau repre-
sentation are 100% for the 3-strand braid group. But they are lower than
100% in the case n = 4. This also holds for algorithm 2.2 setting t = 1.
This con�rms the conjecture that the Burau representation is not faithful
for n = 4. But non-trivial Burau kernel elements in B4 have not been found
so far. According to an exhaustive search, using the topological character-
ization of Burau kernel elements reported in [Bi99], such elements, if they
really exist, must be quite long "monster elements".
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Chapter 4

Representation attacks on the

braid Di�e-Hellman key

agreement

4.1 Braid Di�e-Hellman key agreement

Braid-based cryptography was introduced by Anshel, Anshel and Goldfeld in
1999 [AAG99] and by Ko, Lee, Cheon, Han, Kang and Park at the CRYPTO
2000 [KL+00]. Several attacks have been proposed for the AAG key agree-
ment protocol (KAP) for braid groups, and for the Ko, Lee et al. protocol
so far. We will discuss them in detail in chapter 5. Further, an introducing,
summarizing and outlooking survey on braid-based cryptography is given by
P. Dehornoy [De04b].
Here we deal with the braid Di�e-Hellman KAP suggested at the ASIACRYPT
2001 [CK+01], which is an revised version of the Ko-Lee protocol [KL+00].
A straightforward generalization for general groups is described in section
5.2.1.
Let LBm and UBn−m (m < n) be the commuting subgroups of Bn gener-
ated by σ1, . . . , σm−1 and σm+1, . . . , σn−1 respectively. The elements of LBm

and UBn−m are called lower and upper braids. Now, Alice and Bob have to
perform the following protocol steps:
0. Alice or Bob select (and publish) a generic, su�ciently complicated

braid x ∈ Bn.
1.A Alice generates randomly (al, ar) ∈ LB2

m, and sends yA = alxar in a
rewritten (normal) form to Bob.

1.B Bob generates randomly (bl, br) ∈ UB2
n−m, and sends a rewritten form

of yB = blxbr to Alice.
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2.A Alice receives yB and computes K := alyBar.
2.B Bob receives yA and computes also the shared key blyAbr = bl(alxar)br =

al(blxbr)ar = alyBar = K.
The security of this key agreement scheme and the corresponding public

key cryptosytem1 (PKC) depend on the following speci�c Di�e-Hellman type
Decompositon Problem (DH-DP) for braid groups:
Input: (x, yA, yB) ∈ B3

n such that yA = alxar and yB = blxbr for some
al, ar ∈ LBm and bl, br ∈ UBn−m.

Objective: Find K := alyBar = blyAbr = alblxarbr.
To recover the private key (al, ar) ∈ LB2

m of Alice it is su�cient to solve
the following speci�c Decompositon Problem (DP) for braid groups:
Input: (x, yA) ∈ B2

n such that yA = alxar for some al, ar ∈ LBm.
Objective: Find (a′l, a

′
r) ∈ LB2

m such that a′lxa′r = yA.
A solution for the DP induces a solution for the DH-DP. In the case al = a−1

r

and bl = b−1
r we obtain the original braid Di�e-Hellman key agreement

scheme, which is based on a Di�e-Hellman version of the Generalized Con-
jugacy Search Problem (GCSP) [KL+00] (see section 5.1.2). The fact that
in general al 6= a−1

r (and bl 6= b−1
r ) for the revised scheme [CK+01] is in-

deed its advantage: x and yA are in general not in the same conjugacy class.
So attacks which (frequently) use conjugacy operations like cycling attacks
[HS03] and Gebhardt's computation of Ultra Summit Sets [Ge05, Ge06]
do not work.
We can restrict to the monoid versions DP+ and DH-DP+, in which each
braid group is replaced by the corresponding monoid of positive braids, be-
cause we can multiply the equations yA = alxar, yB = blxbr by a su�ciently
high power of the square of the Garside element ∆2

n, which generates the
center of Bn.

4.2 Representation attacks and previous work

Linear algebra or representation attacks on braid-based cryptosystems work
as follows:
I. Choose a linear representation ρ : Bn −→ GL(k, R) of the n-braid

group for some ring R and k ∈ N, and compute the images of the
instance braids for this representation.

1Using an ideal hash function from the braid group into the message space H : Bn −→
{0, 1}k a corresponding Public Key Encryption can be constructed ([CK+01], chapter 6).
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II. Solve the base problem in the matrix group GL(k,R). Keep in mind
that there will be in�nitely many solutions in general, and that not all
solutions are in imρ ⊂ GL(k, R).

III. Find preimage braids for solutions in imρ.

4.2.1 Linear algebra attack on DH-DP via Lawrence-

Krammer representation

Here we describe the deterministic polynomial time algorithm developed by
J. H. Cheon and B. Jun [CJ03a, CJ03b].
Let V denote the free Z[t±1, q±1]-module of rank (n

2

) with basis {xij|1 ≤ i <
j ≤ n} (see section 2.2). Via Lawrence-Krammer (LK) representation [La90]
ρ = ρn : Bn −→ GL(

(
n
2

)
, Z[t±1, q±1]) = Aut(V ) braids acts on V . Recall that

the action of an Artin generator σk (k = 1, . . . , n− 1) is given by

(ρnσk)xij =



tq2xk,k+1, i = k, j = k + 1
(1− q)xik + qxi,k+1, i < k = j
xik + tqk−i+1(q − 1)xk,k+1, i < k, j = k + 1
tq(q − 1)xk,k+1 + qxk+1,j, i = k, k + 1 < j
xkj + (1− q)xk+1,j, i = k + 1 < j
xij, j < k or k + 1 < i
xij + tqk−i(q − 1)2xk,k+1, i < k, k + 1 < j.

ρnb denotes the LK matrix of the braid b ∈ Bn according to this x-basis.
Further, we use the abbreviation ρ′n := ρn|q=1/2. Now, the Cheon-Jun attack
on DH-DP+ works roughly as follows. For technical details see [CJ03b].
I. Compute X = ρ′nx, Y A = ρ′nyA, Y B = ρ′nyB ∈ Mat(

(
n
2

)
, Q[t]) for x, yA,

yB ∈ B+
n .

II. Compute (n
2

)
×
(

n
2

)-matrices A′
l, A

′
r over Q[t] satisfying the following

equations ∀k = m + 1, . . . , n− 1 :
XA′

r = A′
lY

A (1)
ρ′n(σk)A

′
l = A′

lρ
′
n(σk)

ρ′n(σk)A
′
r = A′

rρ
′
n(σk)

}
(2)

A′
l is invertible with overwhelming probability, so we can compute

(A′
l)
−1Y BA′

r = (A′
l)
−1(BlXBr)A′

r

(2)
= Bl((A′

l)
−1XA′

r)B
r (1)

= BlY ABr =
ρ′n(K) with Bl := ρ′nbl, B

r := ρ′nbr.
Note that in general (A′

l)
−1 6= Al := ρ′nal and A′

r 6= Ar := ρ′nar, and
(A′

l)
−1 and A′

r need not to lie in im ρ′n.
We remark that we can change the system (1), (2) by vectorization into
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a highly overdetermined linear system with (2n − 2m − 1)
(

n
2

)2 equa-
tions and 2

(
n
2

)2 variables, which are polynomials in Q[t]. By precise
analysis of Krammer matrices, as suggested in the proof of theorem
3 in [CJ03b], we can reduce the number of variables and equations.
Nevertheless, here we have to correct a simple mistake in theorem 3 of
[CJ03b]:
Let n = 2m. Using a reordering of the basis ρ′nσk (k = m+1, . . . , n−1)
can be written as (Mk

0
0
Id

) where Mk is a square matrix of size k(n −
k)+n−2 =

(
n
2

)
−
(

k−1
2

)
−
(

n−k−1
2

). Therefore, each matrix equation (2),
for n/2 < k < n, yields only [k(n− k) + n− 2]2 non-trivial equations,
while Cheon and Jun claim that there are only k(n − k) non-trivial
equations (for n/2 < k < n). We cannot follow this argument. To
establish such a result a much more precise analysis of LK matrices of
Artin generators would be necessary, if possible. But such an analysis
is missing in the proof of theorem 3 in [CJ03b].
Therefore, the numbers of variables and equations in the above men-
tioned, highly overdetermined linear system keep (in the case m =
O(n)) O(n4) and O(n5), respectively. The complexity of the Cheon-Jun
attack is dominated by Gaussian elimination for such linear systems.

III. In section 3.2 of [CJ03b] Cheon and Jun developed a polynomial time
algorithm for inverting the LK-representation based on the ideas of
Krammer [Kr02] (see algorithm 2.1 described in section 2.4). Applying
this algorithm to (A′

l)
−1Y BA′

r = ρ′n(K) we obtain the unique preimage
braid K.
Practically we can also use LK matrices according to standard fork
basis and algorithm 2.2 as inverting algorithm. But in this case we
have no proof that the algorithm is deterministic.

So the Cheon-Jun attack provides a deterministic polynomial time solu-
tion to the DH-DP. Nevertheless the complexity is too large to break the
cryptosystem with the proposed parameters in [KL+00, CK+01] e�ciently.
A complexity analysis of the Cheon-Jun attack is given in section 4.3.3.

4.2.2 Linear algebra attack on DP via Burau represen-

tation

In this section we describe a linear algebra attack using the Burau represen-
tation, introduced by E. Lee and J. Park in [LP03].
Let W0 denote the free Z[q±1]-module of rank n with basis {wi|1 ≤ i ≤ n}.
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The (unreduced)2 Burau representation [Bu36] βn : Bn −→ GL(n, Z[q±1]) =
Aut(W0) de�ned by

βnσk = Idk−1 ⊕
(

1− q q
1 0

)
⊕ Idn−k−1 ∀ k = 1, . . . , n− 1

provides the following special attack on DP+, but only in the symmetric case
2m = n:
I. Compute X = βnx, Y = βnyA ∈ Mat(n, Z[q]) for x, yA ∈ B+

n .
II. Consider the DP-induced decomposition W0 = spanL ⊕ spanU with

L := {wi|1 ≤ i ≤ m}, U := {wi|m + 1 ≤ i ≤ n}. Then we obtain the
following block matrix equations:

Y =
(

YLL

YUL

YLU

YUU

)
=

(
Al

0
0

Idn−m

)(
XLL

XUL

XLU

XUU

)(
Ar

0
0

Idn−m

)
=

(
AlXLLAr AlXLU

XULAr XUU

)
Note that Al = βmal, Ar = βmar. In the case 2m = n the o�diagonal
blockmatrices XLU , XUL are quadratic. The probability that XLU or
XUL have full rank for randomly chosen x ∈ B+

n increases for n = const
and increasing word length |x|, and for |x| = const and decreasing braid
index n (n ≥ 5) [LP03]. If at least one of these two o�diagonal matrices
is regular, so we obtain Al = YLUX−1

LU or Ar = X−1
ULYUL.

In numerous experiments the probabilities that XLU or XUL are regular
were found to be 90% or so for cl(x) = lΩ(x) = 5 and n = 50, 70, 90
(see section 4.3 in [LP03]).
In [Ko03] Ko suggests the following countermeasure: Choose a x which
contains just a few generators σm.

III. The Burau representation is proved to be not faithful for n ≥ 5 [Bi99].
The only known algorithms for computing preimage braids for the Bu-
rau representation are the heuristic Hughes algorithm [Hu02] and its
variations by Lee and Park [LP03] (see chapter 3). Applying it to Al

or Ar, we might obtain al or ar, and that is su�cient to solve DP.
Since the self-correcting algorithm 3.3, which provides the best success
rates so far, took too long time to be used on a PC for large param-
eters, Lee and Park used algorithm 3.2 to compute preimage braids
for the Burau representation. Let a = al or ar. For the parameter
values (n, cl(a)) = (50, 3), (70, 3) and (90, 3) a is recovered from βm(a)
with a success rate of 100%. Further, Lee and Park can recover a from

2It is also possible to use the reduced Burau representation Bn −→ GL(n− 1, Z[q±1]).
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βm(a) for (n, cl(a)) = (50, 5), (70, 5), (90, 5) and (50, 10) with signi�-
cant probability [LP03]. These results can be even improved by using
our inverting algorithm 3.5 instead of Lee, Park's algorithm 3.2.
Nevertheless, the success rates of these heuristics decrease for m =
const with increasing word length |a| (or canonical length cl(a)), and
they are very low for the parameter values suggested in [CK+01].

4.3 Probabilistic linear algebra attack using Law-

rence-Krammer representation

Now we use ideas from Lee and Park [LP03] to develop an attack on DP+ via
LK representation. For generic and su�ciently long instance braids we re-
cover the ρ′m-image of Alice's private key by using just3 one matrix inversion.
We have already published this work in [Ka06].

4.3.1 Symmetric case 2m = n

Consider the DP-induced decomposition V = span L⊕span M⊕span U with
L := {xij|1 ≤ i < j ≤ m}, M := {xij|1 ≤ i ≤ m < m + 1 ≤ j ≤ n} and
U := {xij|m + 1 ≤ i < j ≤ n} (|L| = (m

2

)
, |M | = m(n−m), |U | =

(
n−m

2

)).
The basis is reordered according to the DP-induced decomposition of V by
the transformation φ : {xij|1 ≤ i < j ≤ n} −→ {xk|1 ≤ k ≤

(
n
2

)
} de�ned by

xij 7→ xk with

k :=


(

j−1
2

)
, xij ∈ L(

m
2

)
+ (j −m− 1)m + i, xij ∈ M(

m
2

)
+ m(n−m) +

(
j−m−1

2

)
+ i−m, xij ∈ U

So we get the following block matrix structures for embedded braids:

ρna =

(
ALL ALM

0 AMM

)
⊕ Id(n−m

2 ) ∀a ∈ LBm and

ρnb = Id(m
2 )
⊕
(

BMM 0
BUM BUU

)
∀b ∈ UBn−m .

Note that ALL = ρma = ρma(t, q), ALM = ALM(t, q), rank ALM ≤ m,
and AMM = AMM(q) = (β̃ma)⊕(n−m) ∈ Mat((n −m)m, Z[q±1]), where β̃m :
Bm → GL(m, Z[q±1]) is a Burau-type representation.

3Nevertheless, this matrix is an
(
m
2

)
-dimensional matrix over Q[t].
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Table 4.1: p := Prob(rank XUL|t=3 =
(

m
2

)
)

n = 2m
6 |x| 15 20 25 30 35 40 45 50

p in % 6 30 41 62 77 90 92 95
8 |x| 30 40 50 60 70 80 90 100

p in % 0 7 30 48 69 87 89 99
10 |x| 70 90 110 130 150 170

p in % 5 21 60 80 92 100
12 |x| 100 140 180 220 260

p in % 1 20 65 88 99
100 random experiments were executed for each entry. A randomly chosen x ∈ B+

n

is rejected, if it does not contain all Artin generators.

The commutativity equation ab = ba ∀a ∈ LBm ∀b ∈ UBn−m yields the
following block matrix equation:

ρnab =

 ALL ALMBMM 0
0 AMMBMM 0
0 BUM BUU

 =

 ALL ALM 0
0 BMMAMM 0
0 BUMAMM BUU

 .

Our representation attack contains the following steps:
I. Compute the images of the instance braids:

ρ′nx =

 XLL XLM XLU

XML XMM XMU

XUL XUM XUU

 , ρ′nyA =

 YLL YLM YLU

YML YMM YMU

YUL YUM YUU

 .

II. The UL-block matrix from ρ′nalxar =
Al

LLXLLAr
LL+

Al
LMXMLAr

LL

(Al
LLXLL + Al

LMXML)Ar
LM+

(Al
LLXLM + Al

LMXMM)Ar
MM

Al
LLXLU+

Al
LMXMU

Al
MMXMLAr

LL Al
MM(XMLAr

LM + XMMAr
MM) Al

MMXMU

XULAr
LL XULAr

LM + XUMAr
MM XUU


yields the equation YUL = XULAr

LL.
XUL is quadratic for 2m = n and non-singular with increasing proba-
bility for increasing |x| (n = const) and decreasing n (|x| = const) (see
table 4.1).
If XUL is regular, we can compute ρ′mar = Ar

LL = X−1
ULYUL.

If it is not, choose a generic, su�ciently long u ∈ UB+
n−m with ρ′nu =
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Id(m
2 )
⊕
(

UMM

UUM

0
UUU

)
, and compute

(ρ′nualxar)UL = (UY )UL = UUMYML + UUUYUL = UUMAl
MMXMLAr

LL

+UUUXULAr
LL

(3)
= (UUMXML + UUUXUL)Ar

LL.

Then UUMXML + UUUXUL = (ρ′nux)UL has with high probability full
rank for su�ciently long u, and we obtain

Ar
LL = (UUMXML + UUUXUL)−1(UUMYML + UUUYUL).

Note that this regularization procedure does not work, if XML and XUL

have a common zero column, or if XUL is the null matrix and XML does
not have full rank. But for generic, su�ciently long and complicated
x, which of course contains all Artin generators σ1, . . . , σn−1, this will
not occur.

III. By Cheon-Jun algorithm we lift back Ar
LL = ρ′mar to ar ∈ B+

m.

4.3.2 Asymmetric cases

(a) The case m < n−m

Here we have to replace m by m′ := n/2 (n even) or m′ := (n + 1)/2 (n
odd) in the de�nitions of L, M, U . If n is even the problem is reduced to the
symmetric case n = 2m′.
But if n is odd we have to embed the problem into B2m′ and compute images
of the instance braids for ρ′2m′ . Choose the decomposition span{xij|1 ≤ i <
j ≤ 2m′} = spanL ⊕ spanM̄ ⊕ spanŪ with M̄ := {xij|1 ≤ i ≤ m′, m′ + 1 ≤
j ≤ 2m′} and Ū := {xij|m′ + 1 ≤ i < j ≤ 2m′}. Then XŪL is quadratic, but
singular - it contains (at least) m′ − 1 = (n− 1)/2 zero rows, and XM̄L has
(at least) m′ = (n + 1)/2 zero rows. Nevertheless we can apply the above
regularization procedure again:
Choose a generic, su�ciently long u ∈ ŪB+

2m′−m′ := 〈σm′+1, . . . , σ2m′−1〉+ ⊂
B+

2m′ and compute
(ρ′2m′uyA)ŪL = UŪM̄YM̄L + UŪŪYŪL = UŪMYML + UŪUYUL =

(ρ′2m′ualxar)ŪL = (ρ′2m′uxar)ŪL = (UŪM̄XM̄L + UŪŪXŪL)Ar
LL

= (UŪMXML + UŪUXUL)Ar
LL.

(ρ′2m′ux)ŪL = UŪMXML + UŪUXUL is quadratic, and regular for generic,
su�ciently long u ∈ ŪB′+

m , x ∈ LB+
n , and we obtain

Ar
LL = (UŪMXML + UŪUXUL)−1(UŪMYML + UŪUYUL) = ρ′m′ar.
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(b) The case m > n−m

By half twist transformation τn : Bn −→ Bn def. by σi 7→ σn−i we reduce
case (b) to case (a).
Note that we perform now an attack on Bob's private key, while in case (a)
we only can compute the private key of Alice.

(c) Simple Generalizations

We can introduce some simple variations and generalizations of the DH-DP:
One way is to choose di�erent partitions of the (l)eft and (r)ight "areas,"
i.e. choose al ∈ LBml

, bl ∈ UBn−ml
, ar ∈ LBmr , br ∈ UBn−mr with ml 6= mr

(ml, mr < n). By half twist transformation, reverse anti-automorphism of
Bn and proper embeddings of the private keys we can transform the problem
to the following standard form of l,r-asymmetric DP:
Instance: (x′, y′) ∈ B2

n such that y′ = plxpr for some pl ∈ LBm′
l
, pr ∈ LBm′

rwith m′
r = n−m′

l < n/2.
Objective: Find p′l ∈ LBm′

l
, p′r ∈ LBm′

r
such that p′lx

′p′r = y′.
De�ning L := {xij|1 ≤ i < j ≤ m′

r} and U := {xij|n−m′
r + 1 ≤ i < j ≤ n}

we get (ρ′ny
′)UL = (ρ′nplx

′pr)UL = X ′
ULρ′m′

r
(pr). So recovering pr depends on

the regularity of the quadratic block matrix X ′
UL := (ρ′nx

′)UL.
Another way is to choose ar ∈ UBn−m, br ∈ LBm (and keep al ∈ LBm, bl ∈
UBn−m) or vice versa. But in this case we can attack the DP, if one of the
quadratic matrices XUU or XLL is invertible.
Further generalizations e.g., by introducing re�ned partitions of each "area,"
can be treated with similar methods.

4.3.3 Complexity analysis

For simplicity we assume that x, yA ∈ B+
2m, al, ar ∈ LB+

m, and x, al, ar have
the same (Artin) canonical length l. Therefore the entries in Ar

LL = ρ′mar are
polynomials in Q[t] with degree bounded above l. According to Corollary 1 in
[CJ03b] the absolute values of the numerators and denominators of the co-
e�cients of these polynomials are bounded by 2|ar| and 22(m−1)l respectively.
Let p be a prime with p > 2|ar|+2(m−1)l and f(t) an irreducible polynomial of
degree l over Zp. Then we have

ρ′mar =
1

22(m−1)l
[22(m−1)lρ′mar mod(p, f(t))].

So we can work in the residue class �eld F = Zp[t]/(f) ∼= Fpl rather than
in Q[t]. This allows us to estimate the costs of the ring operations. Using
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Schönhage-Strassen method one multiplication in Zp takes O(log p log log p
log log log p) = O∼(log p) = O∼(|ar|) = O∼(m2l) bit operations4, and a mul-
tiplication in Fpl takes O(l2) multiplications in Zp

5. Therefore an operation
in F takes O∼(l2 log p) = O∼(m2l3) bit operations.

Step II: Compute ρ′mar = X−1
ULYUL.

The matrix inversion has the same asymptotic complexity of O(m2τ )
operations in F as matrix multiplication. The feasible matrix multipli-
cation exponent τ is 3 for classical algorithms, log2 7 using Strassen's
method, and the current world record is τ < 2.376 ([GG99], sec-
tion 12.1). Therefore the asymptotic complexity of step II is about
O∼(m2τ+2l3).

Step III: Invert the Lawrence-Krammer representation.
In [CJ03b] the authors errouneously assume that the complexity of
their Algorithm 1 for inverting the Lawrence-Krammer representation
is dominated by the computation of a power of ρn∆n. This is not
the case, because we can compute even powers by formula ρn∆2k

n =
t2kq2nkId(n

2)
and ρn∆n is sparse - it has the support of a permutation

matrix.
Therefore the complexity of the Cheon-Jun algorithm (Algorithm 1
in [CJ03b]) is dominated by step 3.4 (for k = 1 to l). So Inverting
Ar

LL = ρ′mar has the same complexity as computing ρ′mar
6.

In step 3.4 we have to perform O((m2)τ ) operations in F . That are
O(m2τ l) operations in Zp, because the (Artin) canonical length of a
permutation braid is 1. Therefore step 3.4 takes O∼(m2τ l log p) =
O∼(m2τ+2l2) and the whole Algorithm 1 O∼(m2τ+2l3) bit operations.
Note that the computation of the Krammer matrices of l permutation
braids takes O∼(m6l) bit operations:
The Krammer matrix of an Artin generator contains at most 2 nonzero
entries per column. So multiplication with ρ′mσj (j = 1, . . . ,m − 1)
takes O((m2)2) �eld operations in F , and also in Zp, because the (Artin)
canonical length of a permutation braid is 1. Because the word length
of a permutation braid bσ is O(m2), Schönhage-Strassen multiplication
takes O∼(|bσ|) = O∼(m2) bit operations.

Summary: Our proposed attack requires O∼(m2τ+2l3) bit operations using
4For a precise de�nition of the O∼-notation see de�nition 25.8 in [GG99].
5Using asymptotically fast algorithms this can be reduced to O∼(l) multiplications in

Zp.
6Because the (Artin) canonical length of yA is bounded by 3l, step I (compute

ρ′nx, ρ′nyA) has the same complexity as step III.
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Schönhage-Strassen multiplication in Zp and O(m2τ+4l4) bit operations
using classical multiplication.

Comparison with Cheon-Jun attack: The complexity of Cheon-Jun atack
[CJ03b] is dominated by Gaussian elimination. The Gaussian elimination
of the overdetermined system with O(m5) equations and O(m4) variables
needs O(m5τ ) operations in F , and therefore O∼(m5τ+2l3) bit operations
using Schönhage-Strassen multiplication and O(m5τ l2(m2l)2) = O(m5τ+4l4)
bit operations using classical multiplication.
Therefore, our attack is 3τ orders in m (or n) more e�cient than the Cheon-
Jun attack.
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Chapter 5

Braid group cryptography

Most of the currently used methods in public-key cryptography are based on
problems in number theory. These methods have proved to be worthwhile
over several years. Nevertheless, after the advent of quantum computers,
systems like RSA [RSA78] and its variants, e.g. [Ra79] , ElGamal [El85]
and ECC [Mi85, Ko87] will be broken easily [Sh97, PZ03].
There have been several e�orts to develop public-key cryptosystems which
are not based on number-theoretic problems. One approach is the use of hard
problems in combinatorial group theory like the word problem [De11, Th14,
GZ91], the conjugacy problem [De11], etc. The groups in question are usu-
ally non-commutative. Therefore, it was suggested to name this relatively
new branch of cryptography as �non-commutative cryptography� [GG+06].
The �rst PKC that uses non-commutative groups was proposed by Wag-
ner and Magyarik [WM85]. The platform groups are �nitely presented
groups with an unsolvable word problem. Such groups exist according to the
Novikov-Boone theorem [Bo54, No55]. Some examples for such groups are
given in [La79, Co89]. Furthermore there exist an e�cient algorithm, which
constructs from a �nitely presented Thue system T with unsolvable word
problem a �nitely presented group G(T ) with unsolvable word problem. Note
that the existence of �nitely presented Thue systems with unsolvable word
problem is guaranteed by the Post-Markov theorem [Po47, Ma47, Ma86].
Nevertheless, Birget, Magliveras and Sramka argued in [BMS06] that the
Wagner-Magyarik scheme is based on the word choice problem rather than
the word problem as proposed by the authors.
A cryptosystem using Lyndon words was proposed by Siromoney and Mathew
[SM90].
According to a theorem of C. Miller III [Mi71] there exist �nitely presented,
residually �nite groups with algorithmically unsolvable conjugacy problem.
Since these groups are residually �nite, they have a solvable word problem.
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An earlier example for a �nitely presented group with solvable word problem,
but unsolvable conjugacy problem, was given in [Fr60]. A PKC based on
Miller's theorem was introduced in [AA93]. Note that an analogue critique
as in [BMS06] applies also to the scheme proposed in [AA93]. In particu-
lar, the scheme is not based on the conjugacy problem, but on the conjugacy
choice problem, which we de�ne analogously to the word choice problem de-
scribed in [BMS06].
In 1999 I. Anshel, M. Anshel and Goldfeld described an key agreement pro-
tocol [AAG99] using noncomutative groups with feasible word problem, but
algorithmically hard conjugacy problem. This was the �rst cryptosystem,
where braid groups were explicitly suggested as platform groups. Therefore
the paper [AAG99] marks the birthdate of braid group cryptography.
The introduction of the �rst braid-based cryptographic schemes [AAG99,
KL+00, CK+01] caused some excitement in the crypto community and led
to an amuont of cryptanalytic research. Further, braid group cryptogra-
phy inspired the search for other feasible, non-commutative platform groups
[PH+01, PK+01, MST02, EK04, SU05], or other non-commutative struc-
tures usable for cryptographic purposes (see, e.g., [GP04,AK06,CDW07]).

5.1 AAG and KLCHKP key agreement

5.1.1 Protocols

For the general AAG key agreement protocol for monoids [AAG99] we need
two feasible monoids (M, ·M), (N, ·N), and functions

β : M ×M −→ N, γi : M ×N −→ N (i = 1, 2)

which satisfy the following conditions:
(1) β(x, ·) : M → N is for all x ∈ M a monoid homomorphism, i.e.

∀x, y1, y2 ∈ M : β(x, y1 ·M y2) = β(x, y1) ·N β(x, y2).

(2) It is, in general, not feasible to determine a secret x ∈ M from the
knowledge of

y1, y2, . . . , yk ∈ M and β(x, y1), β(x, y2), . . . , β(x, yk) ∈ N.

(3) For all x, y ∈ M : γ1(x, β(y, x)) = γ2(y, β(x, y)).
Now Alice and Bob have to perform the following protocol steps:

72



0. Alice and Bob select two public submonoids
SA = 〈s1, . . . , sm〉, SB = 〈t1, . . . , tn〉 ⊂ M.

1.A. Alice generates her secret key a ∈ SA.
1.B. Bob chooses his secret key b ∈ SB.
2.A. Alice computes the elements β(a, t1), . . . , β(a, tn) and publicly announces

this list. This list is her public key.
2.B. Analogously Bob computes the elements β(b, s1), . . . , β(b, sm) and pub-

lishes this list. This list is his public key.
3.A. Alice, knowing a = r1 · · · rk with ri ∈ {s1, . . . , sm}, computes from

Bob's public key
β(b, a) = β(b, r1 · · · rk)

(1)
= β(b, r1) · · · β(b, rk).

3.B. And Bob, knowing b = u1 · · ·uk′ with uj ∈ {t1, . . . , tn}, computes from
Alice's public key

β(a, b) = β(a, u1 · · ·uk′)
(1)
= β(a, r1) · · · β(a, uk′).

4.A. Alice computes K := γ1(a, β(b, a)).
4.B. Bob also computes the shared key γ2(b, β(a, b))

(3)
= K.

Note that, in order to establish a shared key K, it is su�cient to replace
condition (3) by the weaker condition
(3') For all a ∈ SA, b ∈ SB : γ1(a, β(b, a)) = γ2(b, β(a, b)).
In the following, monoids which are used in the AAG KAP, have to ful�ll
the conditions (1),(2) and (3').
The AAG key agreement scheme is formulated in a too general manner to
be applied. For practical purposes we have to specify the monoids M, N and
the functions β, γ1, γ2.
The AAG commutator KAP for groups [AAG99] is determined by the follow-
ing speci�cations:
Let M = N = G be a group, and SA and SB are assumed to be subgroups
of G1. The functions β, γ1, γ2 : G2 → G are de�ned by

β(x, y) = x−1yx, γ1(x, y) = x−1y, γ2(x, y) = y−1x.

1Now ri and uj are elements from {s±1
1 , . . . , s±1

m } and {t±1
1 , . . . , t±1

n }, respectively.
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Note that the shared key is the commutator
K = γ1(a, β(b, a)) = γ1(a, b−1ab) = a−1(b−1ab) = [a, b].

In combinatorial group theory multiplication is de�ned by simple con-
catenation of words. Therefore Alice and Bob have to publish the elements
β(a, ti) = a−1tia and β(b, sj) = b−1sjb in a disguised form. Therefore the
question, whether one can e�ciently disguise elements by using de�ning re-
lations [SZ06], is very important for any platform group. One way is to
use e�ciently computable normal forms. Such normal forms exist, e.g., in
braid group. Furthermore, the conjugator search, i.e. determining x from
β(x, y) = x−1yx, was assumed to be hard in braid groups. Therefore Anshel,
Anshel and Goldfeld suggested braid groups as platform groups for the AAG
commutator KAP [AAG99].
In 2000 Ko, Lee, Cheo, Han, Kang and Park introduced a new key agreement
scheme based on braid groups [KL+00]. Here we describe a generalized ver-
sion of this KAP [CK+01] for a general platform group G. Since this KAP is
a non-abelian generalization of the classical Di�e-Hellman (DH) key agree-
ment in the abelian group F×p [DH76], we call it the group Di�e-Hellman key
agreement protocol.
0. Alice and Bob select two public, commuting subgroups SA, SB ⊂ G,

i.e. [SA, SB] = 1. Furthermore they publish a "generic" element x ∈ G.
1.A. Alice generates her secret key (al, ar) with al, ar ∈ SA.
1.B. Bob selects his private key (bl, br) with bl, br ∈ SB.
2.A. Alice computes yA = alxar and sends it to Bob.
2.B. Bob computes yB = blxbr and submits it to Alice.
3.A. Alice receives yB and computes K := alyBar.
3.B. Bob receives yA and computes the shared key

blyAbr = bl(alxar)br = al(blxbr)ar = alyBar = K.

For al = a−1
r and bl = b−1

r we obtain the original Ko-Lee et al. protocol
[KL+00].

Proposition 5.1 The Ko-Lee protocol is a special case of Anshel Anshel
Goldfeld KAP for monoids [AAG03].
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Proof. - Set (M, ·M) = (G, ·) and N = {g−1xg | g ∈ G}. Furthermore
de�ne
1 ·N u = u ·N 1 = u (∀x ∈ N) and u ·N v = u (∀u, v ∈ N, u 6= 1, v 6= 1).

This turns N into a monoid.
The functions β : G2 → N and γ1,2 : G×N → G are de�ned by

β(u, v) = u−1xu, γ1(u, v) = γ2(u, v) = u−1vu.

Then condition (1) is ful�lled obviously, because β(u, v) is independent of
the second argument. Condition (2) is satis�ed, because conjugacy search is
assumed to be hard in the platform group G of the Ko-Lee protocol. And
(3') holds, because we have for all a ∈ SA, b ∈ SB ([SA, SB] = 1):
γ1(a, β(b, a)) = γ1(a, b−1xb) = a−1b−1xba = b−1(a−1xa)b = γ2(b, β(a, b)). �

If we want to verify the stronger but not necessary condition (3), then we
have to de�ne [AAG03]

γ1(u, v) =


x u /∈ C(x) · SA,
x u ∈ C(x) · SA and v /∈ NB,
u−1vu u ∈ C(x) · SA and v ∈ NB.

γ2(u, v) =


x u /∈ C(x) · SB,
x u ∈ C(x) · SB and v /∈ NA,
u−1vu u ∈ C(x) · SB and v ∈ NA.

Here C(x) denotes the centralizer of x and NA := {a−1xa | a ∈ SA},
NB := {b−1xb | b ∈ SB}. Note that u ∈ C(x) · SA ⇔ u−1xu ∈ NA and
u ∈ C(x) · SB ⇔ u−1xu ∈ NB.

Proposition 5.2 The group Di�e-Hellman key agreement protocol is a spe-
cial case of the Anshel Anshel Goldfeld KAP for monoids.

Proof. - Here we set M = G2 and N = {g1xg2 | (g1, g2) ∈ G2}. The
composition in G2 is de�ned componentwise, and ·N is de�ned as in the
proof of Prop. 5.1. Now, if we de�ne the functions β : G2 × G2 → N and
γ1,2 : G2 ×N → N by

β((u1, u2), (v1, v2)) = u1xu2, γ1((u1, u2), v) = γ2((u1, u2), v) = u1vu2,

then condition (1) is satis�ed obviously. Further, condition (2) holds, because
it is assumed to be hard for the group G to determine a = (a1, a2) ∈ G2
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from β((a1, a2), b) = a1xa2. And (3') is satis�ed, because we have for all
a = (a1, a2) ∈ SA, b = (b1, b2) ∈ SB ([SA, SB] = 1):

γ1(a, β(b, a)) = γ1(a, b1xb2) = a1b1xb2a2 = b1(a1x2)b2 = γ2(b, β(a, b)). �

So we have proved that the group DH KAP is a special case of the AAG
KAP for monoids. Nevertheless, not every special case is obvious. Indeed,
the group DH KAP does not use the homomophy property (1) anyway. We
close with a construction of a explicit public-key cryptosystem (PKC) for
enciphering/deciphering messages from the AAG KAP. This is a straightfor-
ward generalization of the PKC in [KL+00]. We assume that the monoids
M, N satisfy the conditions (1)-(3). Let {0, 1}k be the message space and
H : G → {0, 1}k an ideal hash function.

1. Key generation by Alice:

(a) Choose two public submonoids
SA = 〈s1, . . . , sm〉, SB = 〈t1, . . . , tn〉 ⊂ M.

(b) Choose the private key a ∈ SA.
(c) Compute the public key (ya, . . . , yn) ∈ Nn with yi = β(a, ti).

2. Encryption by Bob:

(a) Choose a b ∈ SB at random.
(b) Compute ci = β(b, si) for all i = 1, . . . ,m.
(c) Use the presentation b = ti1 · · · ti|b| for the computation of

β(a, b) = β(a, ti1) · · · β(a, ti|b|) = yi1 · · · yi|b| .

(d) Encipher the message m ∈ {0, 1}k by d = m ⊕ H(γ2(b, β(a, b)).
The cipher text is (c1, . . . , cm, d).

3. Decryption by Alice:

(a) Use the presentation a = sj1 · · · sj|a| for the computation of
β(b, a) = β(b, sj1) · · · β(b, sj|a|) = cj1 · · · cj|a| .

(b) Compute the original message by

d⊕H(γ1(a, β(b, a))) = m⊕H(γ2(b, β(a, b)))⊕H(γ1(a, β(b, a)))
(3)
= m.
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5.1.2 Base problems

The following search problems are related with the group based protocols
from the previous section:
CSP (Conjugacy Search Problem):
Input: (s, sx) ∈ G2.
Objective: Find x′ ∈ G such that sx′ = sx.

l-SCSP (l-Simultaneous Conjugacy Search Problem):
Input: {(si, s

x
i ) ∈ G2|i = 1, . . . , l}.

Objective: Find x′ ∈ G such that sx′
i = sx

i ∀i = 1, . . . , l.

GCSP (Generalized Conjugacy Search Problem):
Input: (s, sx) ∈ G2 with x ∈ T ⊂ G.
Objective: Find x′ ∈ T such that sx′ = sx.

l-SGCSP (l-Simultaneous Generalized Conjugacy Search Problem):
Input: {(si, s

x
i ) ∈ G2|i = 1, . . . ,m} with x ∈ T ⊂ G.

Objective: Find x′ ∈ T such that sx′
i = sx

i ∀i = 1, . . . , l.

AAGP (Anshel-Anshel-Goldfeld Problem):
Input: {(ai, a

y
i ) ∈ G2|i = 1, . . . , k} ∪ {(bj, b

x
j ) ∈ G2|j = 1, . . . ,m} with

x ∈ A = 〈a1, . . . , ak〉 and y ∈ B = 〈b1, . . . , bm〉.
Objective: Find K := x−1y−1xy.

CDP (Conjugacy Decompositon Problem):
Input: (s, sx) ∈ G2 with x ∈ T ⊂ G.
Objective: Find (x′1, x

′
2) ∈ T 2 such that x′1sx

′
2 = sx.

KLP (Ko-Lee Problem - a Di�e-Hellman version of the GCSP or CDP):
Input: (s, sx, sy) ∈ G3 with x ∈ A, y ∈ B, and A, B ⊂ G with [A, B] = 1.
Objective: Find K := x−1y−1sxy.

DP (Decompositon Problem):
Input: (s, x1sx2) ∈ G2 for some x1, x2 ∈ T ⊂ G.
Objective: Find (x′1, x

′
2) ∈ T 2 such that x′1sx

′
2 = x1sx2.

DH-DP (Di�e-Hellman Decompositon Problem):
Input: (s, x1sx2, y1sy2) ∈ G3 with x1, x2 ∈ A, y1, y2 ∈ B, and A, B ⊂ G

with [A, B] = 1.
Objective: Find K := x1y1sx2y2.
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Indeed, the AAG commutator KAP, the Ko-Lee protocol and the group DH
KAP are based on the AAGP, KLP and DH-DP, respectively.
A key transport protocol based (see e.g. [BM03]) on the DH-DP is given in
[BC+06].
Note that the DP can be generalized by choosing x1, x2 from two di�erent
subgroups T1, T2, respectively. We call the corresponding search problem also
decomposition problem. A similar remark a�ects the DH-DP.
Now, let P1, P2 be two computational problems. We say P1 is harder than
P2 or P1 implies P2, written P1 → P2, if a P1-oracle provides a solution to
problem P2.

Proposition 5.3 We have the following hierarchy of search problems:

l-SGCSP

AAGP l-SCSP GCSP DP

CSP CDP DH-DP

KLP
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�

�
�	 ?

@
@

@
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@
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@
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?
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�
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Proof. - Most of the sketched implications are obvious consequences of
the de�nitions. We just prove CDP → KLP and l-SGCSP → AAGP:

1. The input is a triple (s, sx, sy) ∈ G3 with x ∈ A, y ∈ B, and A, B ⊂ G
with [A, B] = 1. A CDP-oracle provides (x1, x2) ∈ A2 with x1sx2 = sx.
Now we can compute the shared key

x1s
yx2 = x1y

−1syx2 = y−1(x1sx2)y = y−1(x−1sx)y = K.

2. Here the input is {(ai, a
y
i ) ∈ G2|i = 1, . . . , k} ∪ {(bj, b

x
j ) ∈ G2|j =

1, . . . ,m} with x ∈ A = 〈a1, . . . , ak〉 and y ∈ B = 〈b1, . . . , bm〉. A m-
SGCSP-oracle provides a x′ ∈ A with x′−1bjx

′ = bx
j for all j = 1, . . . ,m.

And a k-SGCSP-oracle provides a y′ ∈ B with y′−1aiy
′ = ay

i for all
i = 1, . . . , k. Now, since x′−1bjx

′ = bx
j ⇔ [x′x−1, bj] = 1∀j, we have

x′ = cbx for some cb ∈ C(B). Here C(B) denotes the intersection of all
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centralizers C(bj) (j = 1, . . . ,m). Analogously, we can write y′ = cay

with ca ∈ C(A) =
⋂k

i=1 C(ai).
Now, x′ ∈ A implies cb ∈ A. Therefore we have [ca, cb] = 1, and we can
compute the shared key

K ′ := x′−1y′−1x′y′ = (cbx)−1(cay)−1cbxcay = x−1c−1
b y−1c−1

a cbxcay

= x−1y−1c−1
b c−1

a cbcaxy
!
= x−1y−1xy = K. �

We see, that solving the classical CSP is insu�cient for breaking the AAG
protocol or the Ko-Lee protocol. Furthermore, it is, in general, insu�cient
to solve the l-SCSP to obtain the shared key K of the AAG protocol:
Let x′ = cbx ∈ G and y′ = cay ∈ G with ca ∈ C(A), cb ∈ C(B) be the
output of a m-SCSP-oracle and a k-SCSP-oracle, respectively. Then we have
K ′ = K if and only if [ca, cb] = 1. A necessary condition for [cb, ca] 6= 1 is
cb /∈ A ∧ ca /∈ B, which implies x′ /∈ A ∧ y′ /∈ B. Otherwise, if x′ /∈ A, but
y′ ∈ B (or vice versa), the adversary gets K ′ = K.
We see that, additional to the SCSP, an adversary has to solve the
MDP (Membership Decision Problem):
Input: x ∈ G and a subgroup A = 〈a1, . . . , ak〉 ⊂ G.
Objective: Decide whether x ∈ A or not.
to solve the AAGP. Indeed, we have (l-SCSP ∧ MDP) → l-SGCSP.
Note that the MDP is hard in most groups. For instance, the MDP is algo-
rithmically unsolvable in F2×F2 [Mi58]. Since F2×F2

∼=< σ2
1, σ

2
2, σ

2
4, σ

2
5 >⊂

B6 [Co94], the MDP is also algorithmically unsolvable in the braid groups
for n ≥ 6.
Alternatively, the adversary could solve the SCSP and the
MSP (Membership Search Problem):
Input: x, a1, . . . , ak ∈ G.
Objective: Find an expression of x as a word in a1, . . . , ak (notation x =

x(a1, . . . , ak)), if it exists.
to break the AAG key agreement scheme [SU06a]:
If a m-SCSP-oracle outputs a x′ = cbx ∈ A, then the MSP-oracle provides the
word expression x′(a1, . . . , ak). Now the adversary can compute the shared
key

x′−1x′(ay
1, . . . , a

y
k) = x′−1x′y = (x−1cb)y

−1(cbx)y = [x, y] = K.

But we have shown above, that it is not necessary to solve the MSP.
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5.2 Attacks on the braid-based key encryption

schemes

In this section we describe several attacks on the braid-based cryptographic
schemes introduced in the foregoing section, except of representation attacks.
Representation attacks on the braid Di�e-Hellman key agreement scheme
were covered in chapter 4. We add some remarks on other representation
atttacks:
A linear algebra attack against the AAG scheme [AAG99, AA+01] was
proposed by J. Hughes in [Hu02], where he introduced his heuristic for
inverting the Burau representation.
Further, Lee and Lee performed a linear algebra attack on the key extractor
suggested in [AA+01] (see also [AAG06]). Indeed, they showed that the
security of the key extractor is based on the problems of listing all solutions
to some SCSP's in Sn and in GL(n− 1, Fp) (p prime) [LL02].

5.2.1 Solutions to the CSP and computation of central-

izers and roots in braid and Garside groups

The conjugacy problem in braid groups was solved in the late sixties by
Makanin [Ma68] and Garside [Ga69]. In his fundamental work Garside
associated with every braid b a special �nite set of conjugates of b, called
the summit set of b. Then he showed that two braid are conjugated if their
summit sets are identical.
Elrifai and Morton [EM94] improved Garside's solution to the conjugacy
problem by introducing a much smaller invariant class under conjugation,
the super summit set. The super summit set SSS(b) of a braid b is de�ned as
the set of all conjugates of b with minimal canonical length. An element b̃ ∈
SSS(b) can be computed by using cycling and decycling operations φ+, φ− :
Bn → Bn with

φ+(b) = ∆pb2 · · · blτ
−p(b1) , φ−(b) = ∆pτ p(bl)b1 · · · bl−1

for b = ∆pb1 · · · bl∈G in LNF. Here τ denotes the �ip automorphism de�ned
by σi 7→ σn−i. Note that cycling and decycling is nothing else than conjugat-
ing b by τ−p(b1) and b−1

l , respectively. If b /∈ SSS(b), then, according to the
Cycling Theorem [BKL01], one �nds a conjugate b′ of b with cl(b′) < cl(b)
by cycling or decycling at most (n

2

)
−1 times. So, by repeated cycling and/or

decycling, we �nd a b̃ ∈ SSS(b). Starting from b̃, SSS(b) can be computed
by repeated conjugations by simple braids. Note that, by this procedure, we
compute the whole directed super summit graph labeled by simple braids.
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Two braids b, b̄ are conjugated if and only if b̃ ∈ SSS(b̄). Now, if b ∼ b̄ (i.e. b,
b̄ are conjugated), then a conjugator can be obtained from the super summit
graph of b̄ by keeping track of the conjugating braids. This provides us with
a solution to the CSP. This method was generalized by Picantin to a solution
of the conjugacy problem in all Garside groups [Pi01a]. The �rst attack on
a braid-based cryptosystem (the Ko-Lee protocol for B45) using SSS's was
published in [Hu00].
Franco and Gonzales-Meneses [FG03a] showed, that if bs1 ∈ SSS(b) and
bs2 ∈ SSS(b), then bs1∧s2 ∈ SSS(b). Therefore it is su�cient to conjugate
with minimal (minimal according to ≺) simple elements. Note that in the
Artin presentation of Bn there are n! simple braids, but only at most n− 1
(the number of atoms in B+

n ) minimal simple braids. This reduces the av-
erage (vertex) degree of the super summit graph immensely. But it leads to
an increase of the average minimal path length between two vertices. Fur-
ther Franco and Gonzales-Meneses developed concrete algorithms to compute
minimal simple elements in Garside groups [FG03a].
These methods were used in [Go05] to improve an attack on the l-SCSP by
E. Lee and S. J. Lee [LL02]. The complexity of the algorithm used in the
Lee-Lee attack is O(N maxi |si|(n!)n log n) where N denotes the cardinality
of the special conjugacy class

C inf(s1, . . . , sl) = {(s′1, . . . , s′l) ∈ Bl
n | inf(s′i) ≥ inf(si) and

s′i = x′−1six
′ for some x′ ∈ Bn∀i = 1, . . . , l}.

Now, the improvement from [Go05] leads to an attack on the SCSP which
is polynomial in n. But the complexity still depends on the cardinalty of
C inf(s1, . . . , sl). Nevertheless the Lee-Lee attack is strong when the si's are
short and it does not depend on how complicated the simultaneous conjugator
x is. If, e.g., the si's are all positive, then C inf(s1, . . . , sl) will be very small.
It was suggested in [AA+01] to use short si's to prevent length attacks (see
5.2.2). Myasnikov, Shpilrain and Ushakov investigated random subgroups
of Bn generated by a small number of elements s1, . . . , sl with |si| << n
[MSU06]. Their experiments showed that the parameter choice suggested
in [AA+01] is unsuitable, because "most" of these subgroups are equal to the
whole group Bn. Further, "almost all" of these subgroups are generated by
positive braid words, and the centralizers of these subgroups coincide with the
center 〈∆2

n〉. Even with modi�ed parameters (n = 80, l = 20, 11 ≤ |si| ≤ 13)
many subgroups generate the whole braid group. Therefore, using the tech-
niques from [LL02, Go05], according to [MSU06] it is easy to break the
AAG scheme with parameters suggested in [AA+01]. Note that Myasnikov,
Shpilrain and Ushakov developed concrete algorithms how to simplify the
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generating sets of random subgroups of Bn [MSU06]. Therefore the lengths
of the si's should be further increased, even if this contradicts with security
requirements against length attacks (see 5.2.2).
A further striking improvement of the solution to the CSP is due to V.
Gebhardt [Ge05]. Because iterated cycling in the SSS certainly becomes
periodic, he showed that it is su�cient to consider a small subset of the
SSS, the ultra summit set (USS), consisting of the cyclic parts of the conju-
gacy orbits in the SSS. He reports that for a random braid b ∈ B100 with
|b| = 1000 the USS(b) can be computed e�ciently (within a few seconds in
his implementation). According to his experiments (and the theoretical con-
siderations in [BGG06b]) it seems likely that pseudo-Anosov2 braids have
very small USS's, whereas the USS's of perodic and reducible braids may
be much larger. Therefore, pseudo-Anosov braids are a very bad choice as
instance braids for braid cryptosystems based on conjugacy search. But al-
most all long, randomly chosen braids fall into the pseudo-Anosov class.
But no polynomial bound (in n or |b|) is known for the size of the USS(b).
Indeed, according to [BGG06c] there are examples of periodic braids whose
size of the USS is exponential in n. Particulary, we have |USS(dn)| = 2n−2

(Corollary 11 in [BGG06c]). Therefore Garside's algorithm using USS's has
exponential time complexity for periodic braids. Nevertheless, using both
Garside structures of braid groups a polynomial time algorithm for the con-
jugacy problem of periodic braids is given in [BGG06c]. Therefore, accord-
ing to the Nielsen-Thurston trichotemy the class of reducible braids seems
to remain as the only usable class of instance braids for braid cryptosystems
using conjugacy search.
Further insight to the CSP was gained by Birman, Gebhardt and Gonzales-
Meneses [BGG06a, BGG06b, BGG06c]. The authors believe that due to
their increased understanding of the structure of USS's a polynomial algo-
rithm for the CSP is within reach3.
Before we discuss how an e�cient solution to the CSP in braid groups could
a�ect the security of the braid-based key agreement protocols, we consider
the computation of centralizers and roots in Bn.
The �rst algorithm for computing a generating set of the centralizer C(b),

2Since Bn
∼= M(Dn), a braid can be, according to the Nielsen-Thurston classi�cation of

homeomorphisms [Ni86, Th88a, Th88b], either periodic or reducible or pseudo-Anosov.
3Note that P. Bangert claims, that he had found a polynomial solution to the CSP with

time complexity O(|b|5n11) [Ba02a, Ba02b, Ba04, Ba07]. Nevertheless his proof seems
not to be well accepted in the mathematical community. One indicator are the ongoing
e�orts to �nd such a polynomial solution [BGG06a, BGG06b, BGG06c]. Further,
according to a private communication, Gonzales-Meneses observed, that Bangert's (cyclic)
term rewrite system does not recognize that σi and σj are conjugated for i 6= j.
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b ∈ Bn, was given by Makanin [Ma71]. But his algorithm is very slow
and provides large and highly redundant generating sets. While Makanin
[Ma71] used simple braids, the introduction of minimal simple elements by
Gonzales-Meneses and Franco [FG03a] leads to a much quicker algorithm
for computing generating sets of centralizers, using the fact that an element
in C(b) is a loop in the (minimal) conjugacy graph of b [FG02]. In a revised
version of this paper they improved their algorithm by considering the (min-
imal) super summit graph instead of the whole positive conjugacy graph (see
section 3 in [FG03b]). A further improvement may come from Gebhardt's
ultra summit sets.
There were several e�orts to characterize the centralizers at least of special
braids. Gurzo [Gu88] computed generators for centralizers of what he called
rigid braids4. Fenn, Rolfsen and Zhu determined in [FRZ96] the centralizers
of Artin generators and of naturally included braid subgroups, i.e. C(σi)∀i =
1, . . . , n− 1 and C(Br)∀r ≤ n. Franco and Gonzales-Meneses conjectured in
[FG02] that the centralizer a of a braid is generated by at most n−1 elements.
This conjecutre was disproved by Ivanov [Iv04], who constructed examples
of centralizers with O(n2) generators. Then, using the ideas from [Iv04],
Gonzales-Meneses and Wiest [GW04] proved that the generating set of the
centralizer of any braid b ∈ Bn has at most k(k +1)/2 = n(n+2)/8 elements
if n = 2k, and at most k(k + 3)/2 = (n− 1)(n + 5)/8 elements if n = 2k + 1.
The examples of reducible braids given in [Iv04] and [GW04] show that
these bounds are sharp. In [GW04] the centralizers are described in terms
of direct and semidirect products of mixed braid groups5 [Ma95, Or01].
Especially, if b ∈ Bn is pseudo-Anosov, Gonzales-Meneses and Wiest show
that the centralizer is

C(b) = 〈α〉 × 〈ρ〉 ∼= Z2 ∼= B2
{1,2}.

They describe how to compute the periodic braid ρ commuting with b. Fur-
ther α is the smallest possible root of b′, which is obtained from b by multi-
plication with a suitable power of ρ. The k-th root problem, i.e. for a given
k, determining whether a given braid b has a k-th root, and computing this
root, was solved in [St78] (translated in [St79]). This solution was general-
ized by Sibert to Garside groups in [Si02]. H. Zheng developed an algorithm
to exract roots in Garside groups [Zh06] using USS's. He conjectures that
this algorithm is polynomial in |b <. Further, Gonzales-Meneses showed that

4According to [Gu88] a braid b is called rigid if there exists exactly one positive braid
word for b.

5The mixed braid group BP consists of all braids b whose braid permutation ν(b) pre-
serves a given partition P of {1, . . . , n}.
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the k-th root of a braid b is unique up to conjugacy [Go03]. And S. J. Lee
proved that the root problem in any Garside group G can be reduced to the
conjugacy problem in Z×Gn, which is a Garside group, too [Le07]. There-
fore, if the conjugacy problem is e�ectively solvable in any Garside group,
then the same holds for the root problem. Using a simple heuristic approach
Groch, Hofheinz and Steinwandt developed a practical attack on the root
problem in Bn [GHS06].
Nevertheless, for a random pseudo-Anosov braid b, an element c ∈ C(b) usu-
ally has the form b = bk∆2l

n for some k, l ∈ Z [Ko01], i.e. ρ = ∆2
n and

α = b. Now consider the m-SCSP with input {(si, s
x
i ) ∈ G2|i = 1, . . . ,m}

for G = Bn. A CSP-oracle provides solutions x1, . . . , xm with
x−1

1 s1x1 = x−1s1x, . . . , x−1
m smxm = x−1smx.

Therefore we have xx−1
i ∈ C(si) for all i = 1, . . . ,m. If the si's are pseudo-

Anosov, then we have xx−1
i = ∆2ki

n sli
i (in general = ρki

i αli
i ) for some integers

ki, li (i = 1, . . . ,m). A search for integers ki, li ∈ Z (i = 1, . . . ,m) with
∆2k1

n s1i
1 x1 = . . . = ∆2km

n slm
m xm =: x′

leads to a solution x′ ∈ G of the m-SCSP. In so far the CSP is probabilistically
harder than the m-SCSP ∀m ∈ N in braid groups [Ko01]. Note that if
the given si's are not all pseudo-Anosov, then we have to generalize our
strategy using the results on the structure of centralizers in Bn [GW04].
But this doesn't lead to a solution to the m-SGCSP. Here we have to check
whether the solution x′ is in a given subgroup T or not, i.e. we have to
solve additionally the (subgroup) MDP for T . Nevertheless we can attack the
AAGP for braid groups. Consider the notation from the proof of Proposition
5.3. SCSP-oracles yield solutions x′ = cbx ∈ G and y′ = cay ∈ G with
ca ∈ C(A), cb ∈ C(B). Note that we don't know how to generate elements in
C(A) =

⋂k
i=1 C(ai) even if we know how to generate elements in each C(ai).

But the randomly chosen elements a1, . . . , ak are with high probability of
type pseudo-Anosov. Therefore the centralizer C(A) =

⋂k
i=1 C(ai) is with

high probality equal to the centre 〈∆2
n〉. This implies [ca, cb] = 1 and K ′ = K.

Therefore, an e�cient solution to the CSP in provides a dangerous attack on
the AAG KAP in braid groups.
Now, consider the GCSP with input (s, sx) ∈ G2 with x ∈ T ⊂ G for G = Bn

and s of type pseudo-Anosov. A CSP-oracle provides a solution x′ ∈ G with
x′−1sx′ = x−1sx. This implies xx′−1 ∈ C(s). Analogously, a search for
k, l ∈ Z such that ∆2k

n slx′ ∈ T leads to a solution of the GSCP. But here we
have to solve the MDP for T . For simple commuting subgroups of Bn such
as LBm, UBn−m, suggested in [KL+00], the MDP is trivial. Therefore, for
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such speci�c subgroups, the CSP is probabilistically harder than the GCSP
(and the KLP) in braid groups [Ko01].
Furthermore, let G be a group endowed with a solution to the CSP and with
an algorithm for computing centralizers. Then N. Franco proved in [Fr04],
that the GCSP (for the subgroup T ) is solvable if there exist groups K,K ′

with K ′ ⊂ K and a homomorphism φ : G → K, such that:
1. K ′ is �nite,
2. T = φ−1(K ′), and
3. there exists a solution to the MDP in K.

Gebhardt applied his practically fast method for conjugacy search in braid
groups (using USS's) in [Ge06], where he performed an attack against the
Ko-Lee problem. Using the facts that long, randomly chosen braids, i.e.,
braids of pseudo-Anosov type, have very small USS's and the centralizers of
these braids have a very simple structure (see above [GW04]), he was able to
recover the shared key in about 100,000 tries for 130 sets of parameter values
without any failure of key recovery. Further, the average observed ratio of
key recovery time to key generation time was around 6 [Ge06]. Therefore,
the Ko-Lee protocol using randomly chosen public braids can be considered
as completely broken.
A demonstration of the strength of Gebhardt's method for the AAG scheme
was not explicitly performed so far. Nevertheless, we have argued above why
we expect similar successful results.

Conclusion. Due to an unsuitable parameter choice [AA+01] it is easy
to �nd the shared key in the AAG protocol [MSU06].
Further, Gebhardt's practically e�cient solution to the CSP in braid groups
[Ge05] provides very dangerous attacks against the AAG and the Ko-Lee
protocol. Particulary, the Ko-Lee scheme was completely broken in [Ge06].
A possible countermeasure is the usage of reducible braids with big USS's.
Otherwise, a solution to the CSP does not yield an attack against the (braid)
group Di�e-Hellman KAP, if x and alxar (and analogously x and blxbr) are
not conjugated.

5.2.2 Length attacks in Bn

Length-based attacks were suggested as possible attacks against the AAG
protocol in [AA+01] and [HT02], and they were studied in detail in [GK+06].
For given elements (bj, x

−1bjx) ∈ B2
n (j = 1, . . . ,m) we try to �nd the conju-

gator x ∈ A = 〈a1, . . . , ak〉. We use an e�ciently computable length function
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L : Bn → N, which is required to have the property that L(x−1yx) is usu-
ally greater than L(y) for arbitrary braids x, y ∈ Bn. Note that all naturally
arising length functions seem to have this property. Now, we peel o� simulta-
neously generator (or the inverse of a generator) by generator from the given
elements x−1b1x, . . . , x−1bmx. We have to �x some linear order < on the set of
all m-tuples of lengths. In the �rst step we choose a g ∈ A1 := {a±1

1 , . . . , a±1
k }

for which the m-tuple
(L(gx−1b1xg−1), . . . , L(gx−1bmxg−1))

is minimal with respect to the selected linear order <. Let x = g1 · · · gl

with gi ∈ A1 be freely reduced, then g is equal to gl with some nontrivial
probablility. In this case we have xg−1 = g1 · · · gl−1. Note, if there exist
nontrivial relations between the generators a1, . . . , am of A, then we try to
�nd a g such that lA1(xg−1) < lA1(x). We proceed with this peeling o�
process until we end up with b1, . . . , bm. This yields the conjugator x or
another solution x′ to the m-SCSP. In the sequel, we do not distinct between
x and x′.
We can improve the length attack by using a look ahead of depth t6. Here,
at each peeling o� step, we check all products g(t) · · · g(1) with g(i) ∈ A1 and
choose that one which yields the minimal length vector

(. . . , L(g(t) · · · g(1)x−1bjx(g(1))−1 · · · (g(t))−1), . . .) ∈ Nm

with respect to <. Alternatively we peel o� just one generator (g(1)) at each
step, even if we use look ahead of depth t > 1. This seems to be slightly better
than taking the whole word g(t) · · · g(1), but the di�erences in the computer
experiments in [GK+06] were not signi�cant.
Empirically, for any braid b the probability that the choosen element g ∈ A1

is a "correct" generator, i.e. the probability
p := Pr[L(gx−1bxg−1) < L(x−1bx)],

decreases with increasing braid index n, and p increases as |ai| gets larger.
Further, the probability to �nd the correct solution x decreases with increas-
ing length lA1(x). In order to circumvent the length attack, the authors from
[AA+01] suggested to choose "big" values for n and lA1(x) and the |ai| (and
|bj|) should be small ∀i = 1, . . . , k (∀j = 1, . . . ,m). Concrete parameter val-
ues given in [AA+01] are n = 80 (or larger), k = m = 20, |ai| = |bj| = 5−10
and lA1(x) = 100.
The length functions used in [GK+06] were the socalled Garside length and

6The above described procedure has a look ahead of depth 1.
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the reduced Garside length function7. Here, the Garside length LG(b) of a
braid b ∈ Bn is the number of Artin generators needed to write b in its
(Artin) Left normal form b = ∆−p

n b1 · · · bc. And the reduced Garside length is
de�ned as

LRG(b) := LG(b)− 2

min(p,c)∑
i=1

|bi|.

It turns out that the reduced Garside length provides the best success rates
to �nd a correct generator g [GK+06]. Further, in [HT06] it is shown that
the reduced BKL length8, i.e. a BKL version of the reduced Garside length,
even works better.
Nevertheless the success rates of length attacks in [GK+06] for the para-
meters suggested in [AA+01] are completely neglegible. Since the time com-
plexity of length attacks is exponential in the look ahead parameter t, we
require unfeasible computational power to break the AAG protocol.
An improvement might come from using better length functions. Note that
all length functions studied in [GK+06] and [HT06] come from left or mixed
Garside normal forms (in the Artin or the BKL presentation). Interestingly,
approximations for geodesic braids (with respect to the length lΩ1(·)) seem
not to be used so far in (pure) length attacks. Remember that the non-
minimal braid problem, i.e., given a word w in the Artin generators, decide
whether there exists a word w′ representing the same braid with |w′| < |w|,
is NP-complete [PR91]. A good algorithm to approximate geodesic braids
is the Algorithm 1 (Minimization of braids) from [MSU05] using Dehornoy
forms, which is also used in [MSU06]. According to [De04b] the relaxation
algorithm in [Wi02] seems, at least for small n, also to be e�cient for �nd-
ing short word representatives in Bn. Further, physical methods like elastic
relaxation and the usage of crossing number minimizing forces are studied in
[Ba02a], but such methods are too time consuming and they therefore apply
just for su�ciently "small" braids.
The length attack seems to be specially active against the AAG KAP, be-
cause one knows several pairs of conjugate braids associated with the same
conjugator [De04b]. Hughes and Tannenbaum [HT02] stated it as an in-
teresting open question, whether the length attack may be suitably modi�ed
to be relevant to the Ko-Lee protocol. Nevertheless, according to [GK+06]
several computer experiments showed that, if we increase the number m of
given braids x−1bjx (j = 1, . . . ,m) from few (about 10) to many (about
3000), this did not yield a signi�cantly increased probability for �nding a

7In a preliminary draft [GK+02] of this paper they studied additionally the socalled
shortened Garside length function.

8Also called mixed BKL length.
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"correct" generator g.
Indeed, the length attack was generalized in [GK+05] to a memory-based ex-
tension which provides probabilistic solutions to many combinatorial group-
theoretic problems in random subgroups of Bn like the SCSP, MDP, minimal
braid problem etc.

Conclusion. While the length attacks in�uenced the parameter choices
of the AAG protocol in [AA+01], it is clear from [GK+06] that (pure) length
attacks are not dangerous in practice. We propose a further investigation of
short braid representatives (as used in [MSU05]), which could yield better
length functions.

5.2.3 Hofheinz-Steinwandt attack

The Hofheinz-Steinwandt attack [HS03] is a practical attack on the AAG
and the Ko-Lee protocol. It can be characterized as a mixture of a length-
based and a projection attack. In the sequel, we follow the lucid description
in [De04b], which explains why the Hofheinz-Steinwandt attack works so
successfully.
Let b1, b2 be two "random" braids. We observe empirically, that for n ≥ 50
the probability that

cl(b1b2) = cl(b1) + cl(b2)

is practically 1, at least for cl(b1), cl(b2) ≤ 200 [De04b]. Therefore, if b, c are
random braids, we have with probability close to 1

cl(c−1bc) = cl(b) + 2cl(c),

i.e., the canonical length of a random conjugate of b is higher than that of b.
This seems to be paradoxical, since conjugacy is a symmetric relation, but it
just depends on the way the conjugates are chosen.
Now, consider b, b′ = c−1bc as instance braids of the conjugacy search prob-
lem. b lies with overwhelming probability in its super summit set SSS(b)9

and we have cl(b′) > cl(b). In the Hofheinz-Steinwandt approach we perform,
starting with b′, cyclings and/or decyclings until we reach an element b̃′ with
cl(b̃′) = cl(b), i.e. b̃′ ∈ SSS(b). Now Hofheinz and Steinwandt conjecture
that it is probable that b̃′ and b are simply conjugated. The plausibility of
this conjecture is established by the considerations above. Since the simple
elements of the Artin presentation are permutation braids, this conjectured

9This is true for the parameters suggested for the braid-based KAPs.
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simple conjugator can be determined by an projection attack10 using the
natural projection of Bn onto Sn. Now we just have to solve the CSP in the
symmetric group for the instance pair (ν(b), ν(b̃′)).
Though we have to �nd in the case of the Ko-Lee KAP a conjugator within
a proper subgroup of Bn, this seemingly simple mixture of a cycling and
projection attack breaks the Ko-Lee protocol with a success rate of 80% for
n = 90 and cl(b) = cl(c) = 12 usually within a few seconds.
A straightforward generalization of this approach which applies to the simul-
taneous CSP (Algorithm B in [HS03]) breaks the AAG protocol with a suc-
cess rate of 99% for the parameters suggested in [AA+01]. Further Hofheinz
and Steinwandt develop improvements of their attack in order to deal with
pure braids as instance braids[HS03], which was suggested in [KL+00] and
[LL02] for the Ko-Lee and the AAG protocol11, respectively.
Dehornoy points out, that the e�ectivity of the Hofheinz-Steinwandt attack
relies on way the keys are chosen [De04b]. Given b ∈ SSS(b), if we choose
c such that c−1bc is also in SSS(b) and the distance between b and c−1bc in
the super summit graph (called "permutation distance" in [De04b]) is large
(at least 2), then this countermeasure prevents the Hofheinz-Steinwandt at-
tack. Note that in the AAG scheme we have to �nd a conjugator a for given
elements b1, . . . , bm such that the "permutation distance" is simultaneously
large for all pairs (bj, a

−1bja). Therefore it seems to be much more di�cult
to �nd secure instances of the AAG protocol. Nevertheless, the elements
s1, . . . , sm and t1, . . . , tn should lie in their super summit sets.
It would be interesting to apply the Hofheinz-Steinwandt attack in the dual
(BKL) presentation. In this case, if b, b̃′ ∈ SSSdual(b) are simply conjugated12
then we have to �nd a solution to the CSP in Sn for the instance pair (b, b̃′),
restricted to permutations which describe non-crossing partitions. Note that
the CSP in symmetric groups is easy, but there are in general many solutions.
Such a dual Hofheinz-Steinwandt attack leads to the additional requirement,
that b and c−1bc should be both in SSSdual(b), and their distance in the dual
super summit graph should be also su�ciently large.

10Notice that, in general, projection attacks alone are not successful against compu-
tational problems, because it turns out to be di�cult to recover the lost information.
Projection attacks are usually used against decision problems. An example in the �eld of
braid-based cryptography is the attack given in [GM02].

11Note that the conjugacy decision problem for subgroups of the pure braid group Pn

is unsolvable for n ≥ 5 [BD99], i.e. there exists no (deterministic) algorithm that allows
one to decide whether two given �nitely generated subgroups are conjugate in P5 or not.
Nevertheless, this does not a�ect the AAG scheme, since the given subgroups 〈s1, . . . , sl〉
and a−1〈s1, . . . , sl〉a are known to be conjugated.

12Of course, this b̃′ di�ers from that obtained by using cyclings/decyclings in the Artin
presentation.
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S. Ma�re developed an approach to the conjugacy search problem which
is related to the Hofheinz-Steinwandt attack. While the cycling attack of
Hofheinz and Steinwandt allows us to determine a pre�x (left divisor) d of
the secret a, i.e. d ≺ a, Ma�re proposed an algorithm which computes a
pre�x (d ≺ a) and a multiple of the secret (m � a) [Ma06a, Ma06b].
This can be used to reduce the Artin length of the secret. Further, we can
reduce the CSP-instance (x, a−1xa) to the two reducts (x, da−1xad−1) and
(x, ma−1xam−1). Ma�re used this reduction to test weak keys of the proposed
cryptographic primitives based on variants of the CSP [Ma06a, Ma06b].

Conclusion. The Hofheinz-Steinwandt attack breaks the AAG and the
Ko-Lee protocol e�ectively. At least in the case of the Ko-Lee protocol,
we can avoid this attack by using proper instance braids. The Hofheinz-
Steinwandt attack (and the work of Ma�re) do not a�ect to the braid Di�e-
Hellman KAP.

5.2.4 Practical attack on the braid Di�e-Hellman key

exchange

At the CRYPTO 2005 Myasnikov, Shpilrain and Ushakov presented a prac-
tical heuristic solving the decompostion problem (DP) in braid groups with
success rates over 95%. This implies an attack against the braid Di�e-
Hellman key exchange (and also against the Ko-Lee protocol). In this at-
tack geodesic braids are approximated by an algorithm extensively using
Dehornoy forms. Therefore we begin with a short description of Dehornoy's
handle reduction algorithm. Consider a left (or lower) σi-handle, i.e. a braid
word of the form

w = σε
iw0(σ

ζ1
i+1w1) · · · (σζk

i+1wk)σ
−ε
i

with ε, ζ1, . . . , ζk ∈ {±1}, w0, w1, . . . , wk ∈ 〈σi+2, . . . , σn−1〉13 and k ≥ 0.
Such a σi-handle is reduced to the word

w′ = w0(σ
−ε
i+1σ

ζ1
i σε

i+1w1) · · · (σ−ε
i+1σ

ζk
i σε

i+1wk),

which is equivalent to w, i.e. it represents the same braid. For k = 0 and
w0 = e we get w = σε

iσ
−ε
i and w′ = e. Therefore free reduction is a spe-

cial case of handle reduction. Dehornoy proved that every handle reduction
sequence starting with w stops after at most 2n|w|4 steps at an irreducible

13For a straightforward generalization of a σi-handle the wj 's lie in 〈σ1, . . . , σi−2〉 ·
〈σi+2, . . . , σn−1〉.
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word [De97]. Further, there are no representatives of the trivial braid with
word length > 0. Therefore, if we �x a strategy determining in which or-
der the handles have to be reduced, Dehornoy's handle reduction algorithm
provides a solution to the word problem in Bn. We refer to the irreducible
word obtained from a handle reduction sequence applied to a braid word w
as Dehornoy form D(w).
While the above mentioned upper bound for the complexity of Dehornoy's
algorithm is exponetial in n and |w|, it turns out that handle reduction is
extremely e�cient in practice, i.e. for random braids. For big n, it outper-
forms even the Garside normal forms (complexity O(|w|2n log n)).
The word length of the Dehornoy form D(w) of a random braid word w
(representing a braid b ∈ Bn) is according to table 3.2 in [DD+02] usually
greater than |w| for n| ≤ 64 and |w| ≤ 4096. But for the cryptographic rele-
vant parameter values used in [MSU05] (n = 100 and |w| = 2000 or 4000)
we usually have |D(w)| < |w|. The minimization algorithm Shorten(w) in
[MSU05] uses (left) handle reduction to remove all left handles. This might
introduce right (or upper) handles. Now, if |D(w)| < |w|, we apply right han-
dle reduction to remove all right handles and so on. We use alternately left
and right handle reduction until the word length of a (left or right) Dehornoy
form is greater or equal than the word length of the actual input word. The
word obtained by this shortening process is assumed to be a good approx-
imate for a geodesic braid word. According to [MSU05] it is questionable
whether there exist Dehornoy forms without both left and right handles.
Now, given x, y ∈ Bn with y = alxar for some al, ar ∈ LBm, the practical
attack on the decomposition problem developed in [MSU05] works roughly
as follows.

1. Let w1, w2 be words representing the instance braids x, y, respectively.
First we simplify the instance pair (w1, w2) to (s1, s2) in three steps.
(a) Find shorter braid representatives than w1, w2 using the above

mentioned algorithm. The reduced words are w′
1 = Shorten(w1)

and w′
2 = Shorten(w2).

(b) Find a decomposition (li, ti, ri) ∈ LBm × Bn × LBm of w′
i with

w′
i = litiri and |ti| < |w′

i| for i = 1, 2. Algorithm 3 in [MSU05],
which extensively uses Dehornoy forms, tries to make t1, t2 as short
as possible.

(c) Find braid words u, v ∈ UBn−m and s1, s2 ∈ Bn with |s1| < |t1|
such that us1v = t1 and us2v = t2. Algorithm 4 in [MSU05], also
extensively using Dehornoy forms, tries to make s1, s2 as short as
possible.
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The pair of braid words (s1, s2) is called a simpli�ed pair of (w1, w2).
Let

S(w1,w2) = {(a′l, a′r) ∈ LB2
m | a′lw1a

′
r = w2} = S(w′

1,w′
2)

be the set of solutions for the DP for the instance pair (w1, w2). Then
we have

(ql, qr) ∈ S(s1,s2) ⇔ qls1qr = s2 ⇔ qlu
−1t1v

−1qr = u−1t2v
−1

⇔ qlt1qr = t2 ⇔ qll
−1
1 w1r

−1
1 qr = l−1

2 w2r
−1
2

⇔ (l2qll
−1
1 , r−1

1 qrr2) ∈ S(w1,w2).

2. Solve the DP for the simpli�ed pair (s1, s2).
Here we perform a heuristic search in the set of all pairs of braid words,
representing braids in LBm. This set is represented as a digraph whose
edge set E contains edges of the following two types:
• If ql = q′l and q′r = q

(1)
r σε

jq
(2)
r where qr = q

(1)
r q

(2)
r , j ∈ {1 . . . , n− 1}

and ε ∈ {±1}, then ((ql, qr), (q
′
l, q

′
r)) ∈ E.

• If qr = q′r and q′l = q
(1)
l σε

jq
(2)
l where ql = q

(1)
l q

(2)
l , j ∈ {1 . . . , n− 1}

and ε ∈ {±1}, then ((ql, qr), (q
′
l, q

′
r)) ∈ E.

Let CycShorten(·) be a straightforward generalization of the minimiz-
ing algorithm Shorten(·) for cyclic braid words, then we de�ne by

ω(ql, qr) := |CycShorten(qls1qrs
−1
2 )|

a length function on the set of all pairs of braid words. Solutions to
the DP-instance (s1, s2) obviously satisfy ω(ql, qr) = 0. Therefore the
heuristic search, starting at (e, e), tries to minimize the length function
ω.
A. Initialize Q := {(e, e)}.
B. Select an unchecked pair (ql, qr) from Q with minimal ω-value.
C. If ((ql, qr), (q

′
l, q

′
r)) ∈ E then add (q′l, q

′
r) to Q.

If ω(q′l, q
′
r) = 0 then return (l2q

′
ll
−1
1 , r−1

1 q′rr2) else goto A.
In the experiments in [MSU05] x ∈ Bn, al, ar ∈ LBm are chosen as random
braid words with n = 100, m = n/2, |x| = 2000 and |al| = |ar| = 1000.
y = alxar is given in a rewritten form (Garside normal form) ξ and there-
fore ξ has to be converted in a braid word w2 before we apply the attack.
Note that x, al and ar are chosen in [KL+00] and [CK+01] as products of
p canonical factors. Typical parameters used in [KL+00] are n = 90 and
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p = 1214. Now, the canonical length of a random braid word (representing
a braid in Bn) of length l is approximately 3l

2n
for su�ciently great l. This

implies that the instances cracked in [MSU05] are even harder than the one
considered in [KL+00], but they are not harder than the one suggested in
[CK+01].
Nevertheless, for the above parameter values the heuristic attack from Myas-
nikov, Shpilrain and Ushakov breaks the braid Di�e-Hellman protocol with
a success rate of 96% within a running time of 150 minutes on a computer
cluster of 8 PC's with 2 GHz processor and 1GB memory each [MSU05].
Despite of increasing parameters (as in [CK+01]) which obviously contra-
dicts with e�ciency requirements, Myasnikov, Shpilrain and Ushakov suggest
to choose the word w1 for x as a geodesic in the Cayley graph of Bn such
that any geodesic representing x starts and terminates with σm or σ−1

m . The
simpli�ed pair of (w1, w2) for such a word w1 and any other braid word w2

is also (w1, w2), i.e. there is no simpli�cation.

Conclusion. The heuristic attack fromMyasnikov, Shpilrain and Ushakov
[MSU05] breaks the braid Di�e-Hellman key exchange e�ectively and e�-
ciently on a computer cluster. It would be interesting to investigate whether
this heuristic search works successfully for simpli�ed or unsimpli�able in-
stance pairs.

5.3 Further key exchange protocol based on the

decomposition problem

In [SU06b] V. Shpilrain and A. Ushakov proposed an improved version of
the group Di�e-Hellman key agreement scheme. Let x be a public element
in the platform group G. Then Alice and Bob have to perform the following
protocol steps:

1.A. Alice selects an element al ∈ G, computes a subgroup L of the central-
izer C(al), and publishes the generators l1, . . . , lk of L.

1.B. Bob chooses an element br ∈ G, selects a subgroup R ⊂ C(br), and
publishes the generators r1, . . . , rm of R.

2.A. Alice chooses a random element ar ∈ R = 〈r1, . . . , rm〉 and sends yA =
alxar in a rewritten form to Bob.

14The parameters used in [CK+01] vary from (n, p) = (150, 15) to (250, 40)
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2.B. Analogeously, Bob chooses a random element bl ∈ L = 〈l1, . . . , lk〉 and
sends yB = blxbr in a rewritten form to Alice.

3.A. Alice receives yB and computes K := alyBar.
3.B. Bob receives yA and computes K ′ := blyAbr.
Since bl ∈ L ⊂ C(al) and ar ∈ R ⊂ C(br), we have [al, bl] = 1 = [ar, br] which
implies K ′ = K.

If an attacker wants to obtain Alice's private key, then he has to solve
the following
Base Problem:
Input: Two subgroups L = 〈l1, . . . , lk〉, R = 〈r1, . . . , rm〉 of G and two

elements x, yA with yA = alxar ∈ G for some a1 ∈ C(L), ar ∈ R.
Objective: Find a′1 ∈ C(L) and a′r ∈ R such that a′lxa′r = yA.
The authors of [SU06b] refer to this problem as a search version of the
membership problem in the double coset C(L) · x · R. In our terminology it
is a (generalized) decomposition problem (DP) with subgroups T1 = C(L)
and T2 = R. Note that in order to solve the DP, an attacker always has to
face a subgroup membership problem. But in the case of the original braid
Di�e-Hellman KAP the membership problem for the subgroups LBm and
UBn−m is trivial. Here the membership decision problems for the subgroups
C(L) and R are much more di�cult. Further, the attacker has to compute
the centralizer C(L) before he can face this DP. Therefore, this Shpilrain-
Ushakov KAP seems to be much harder to break than the original braid
Di�e-Hellman KAP.
Shpilrain and Ushakov propose braid groups as platform groups for their
key establishment protocol. Further, they present techniques how one can
e�ciently generate commuting elements in braid groups

5.4 Further cryptographic primitives

Key establishment and public key cryptosystems for encyphering-deciphering
are not the only cryptographic primtives using braid groups. Since the inven-
tion of braid-based cryptography other cryptographic protocols using braid
groups like signature and authentication schemes were introduced. They are
mentioned in the next two subsections.
Also a pseudorandom number generator and synthesizer based on the de-
cional version of the socalled Ko-Lee assumption were suggested in [LLH01].
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But it was proved in [GM02] that the decisional Ko-Lee assumption for braid
groups is false.
Further, hash functions h : Bn → {0, 1}∗, which are used in several braid-
based schemes, are discussed in section 4.4 of [De04b].

5.4.1 Signature schemes

The �rst signature schemes based on braid groups were proposed by Ko,
Choi, Cho and Lee [KC+02]. We describe their braid signature scheme (BSS)
for general platform groups G. Let H : {0, 1}∗ → G be an one-way hash
function.
Key generation The secret key is an element s ∈ G and the public key is

a CSP-hard pair (x, x′) ∈ G2 with x′ = s−1xs.
Signing Given a message m, select a random r ∈ G, and let y = H(m||α)

with α = r−1xr. Now, the signature is σ = (α, β, γ) with β = r−1yr
and γ = r−1sys−1r.

Verifying A signature is valid i� α ∼ x, β ∼ γ ∼ y, αβ ∼ xy and αγ ∼ x′y.
The BSS is obviously based on the

MTSP (Matching Triple Search Problem):
Input: CSP-hard pair (x, x′) ∈ G2 and a y ∈ G.
Objective: Find a triple (α, β, γ) ∈ G3 such that α ∼ x, β ∼ γ ∼ y,

αβ ∼ xy and αγ ∼ x′y.
A closely related search problem is the

MCSP (Matching Conjugacy Search Problem):
Input: CSP-hard pair (x, x′) ∈ G2 and a y ∈ G.
Objective: Find an element y′ ∈ G such that y ∼ y′ and xy ∼ x′y′.
Proposition 5.4 (Section 2.2 in [KC+02]) The CSP is harder than the
MCSP and the MTSP.

Proof. - A CSP-oracle provides a solution s′ to the CSP-instance (x, x′),
i.e. x′ = s′−1xs′. Now, y′ := s′−1ys′ is a solution to the MCSP, because y′ ∼ y
and x′y′ = (s′−1xs′)(s′−1ys′) = (xy)s′ ∼ xy.
Further, choose an arbitrary r′ ∈ G, then

(α, β, γ) = (r′−1xr′, r′−1yr′, r′−1s′ys′−1r′)
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solves the MTSP, because α = xr′ ∼ x, β = yr′ ∼ y, αβ = (xy)r′ ∼ xy,
γ = ys′−1r′ and αγ = (x′y)s′−1r′ . �

Proposition 5.5 (Section 2.2 in [KC+02]) MCSP is feasible i� and only if
MTSP is feasible.

Proof. - 1) MCSP→ MTSP: Let γ be a solution to the MCSP-instance
(x′, α) and y, i.e. y ∼ γ and x′y ∼ αγ. Then (α, β, γ) with α = r′−1xr′ and
β = r′−1yr′ for any arbitrary r′ ∈ G solves the MTSP.

2) MTSP→ MCSP: For instance (x, x′) and y a MTSP-oracle provides a
solution (α, β, γ), i.e. α ∼ x, β ∼ γ ∼ y, αβ ∼ xy and αγ ∼ x′y. Therefore
β is a solution to the MCSP-instance (x, α) and y, and γ is a solution to the
MCSP-instance (x′, α) and y. This implies that (x, α) and (x′, α) are not
CSP-hard pairs. Hence (x, x′) is not CSP-hard and the MCSP is feasible.
�

Platform groups for the BSS are all non-commutative groups with a gap
between the search and the decision version of the conjugacy problem. The
CSP must be hard, but the conjugacy decision problem should be feasible
in order to verify the signature e�ciently. In the case of braid groups the
authors of [KC+02] propose a conjugacy decision algorithm using Alexan-
der polynomial test etc., which solves the conjugacy decision problem with
overwhelming probability.
Gebhardt's practically e�cient solution to the CSP in braid groups [Ge05]
seems to provide a dangerous attack against the BSS. Therefore the braids
x, x′ should have big USS's in order to provide a CSP-hard instance pair.
Undeniable signature schemes15 using braid group are proposed by Thomas
and Lal in [TL06a]. The simple undeniable signature scheme (section 4 in
[TL06a]) is based on a simultaneos decomposition problem (SDP), while the
zeroknowledge undeniable signature scheme (section 5 in [TL06a]) relies on
the SCSP.
Thomas and Lal also proposed three group signature schemes16 using the
CSP, SCSP, DP, a simultaneous DP and the root problem in braid groups

15The concept of undeniable signature scheme was introduced 1989 by Chaum and van
Antwerpen [CA90] for limiting the ability of a third party to verify the validity of a
signature.

16Group signature schemes were introduced 1991 by Chaum and van Heyst [CH91].
They are generalizations of credential mechanisms [Ch86] and membership authenti�cation
schemes [SKI90, OOK91], where a group member convinces a veri�er that he belongs to
a certain group without revealing his identity. With group signature schemes the group
member can sign messages on behalf of the group.
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[TL06b].
Further a designated veri�er group signature scheme17 based on the Ko-Lee
problem and the root problem in braid groups was introduced in [ZZQ06].

5.4.2 Authentication schemes

The �rst three braid-based authentication (or identi�cation) schemes were
proposed in 2002 by Sibert, Dehornoy and Girault [SDG06]. Their Scheme
I (section 3.1 in [SDG06]) is a Di�e-Hellman-like authentication scheme
based on the Ko-Lee problem. We describe a slightly generalized version
based on the DH-DP.
Let Alice be the prover and Bob the veri�er. Alice's secret key is a pair
(al, ar) ∈ LB2

m and her public key is a pair (x, yA) ∈ B2
n with yA = alxar.

Further h : Bn → {0, 1}∗ is a collisionfree one-way hash function on Bn. The
protocol steps are:
1. Bob chooses random braids (bl, br) ∈ UBn−m, and he sends the challenge

yB = blxbr.
2. Alice transmits the response r = h(alyBar), and Bob checks r

?
= h(blyAbr).

Another two-pass protocol is scheme I in [LC05]. But this scheme is not
based on the root problem as proposed by the authors. This scheme can be
broken immediately as it was shown by B. Tsaban [Ts05].
Further scheme II from [LC05] turns out to be a special case of the above
described DH-DP-based scheme. Therefore, we just have to specify al =
ae, ar = af , bl = be, br = bf for some a ∈ LBm, b ∈ UBn−m and e, f ≥ 2. We
see, that scheme II from [LC05] is also based on the DH-DP.
The authentication schemes II and III from [SDG06] are reminiscent of the
famous Fiat-Shamir zero-knowledge protocol [FS87, FFS88]. While scheme
II is based on the CSP, scheme III is based on the CSP or on the root (�nding)
problem. We describe scheme II from [SDG06] for general groups G. Alice's
(the prover) secret key is an element s ∈ G, and her public key consists of
a conjugate pair (x, x′) ∈ G2 such that x′ = s−1xs. Now, Alice and Bob
repeats k ∈ N times the following three-pass protocol.
1. Alice selects a random element r ∈ S, and she sends the commitment

c = r−1xr to Bob.
17The concept of a designated veri�er group signature scheme was introduced 1996 by

Jakobssson, Sako and Impagliazzo [JSI96]. Here a signature can only be veri�ed by a
single designated veri�er chosen by the signer. The designated veri�er can check whether
the signer is a member of the group, but he cannot identify the signer.
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2. Bob chooses a random bit b ∈ {0, 1} and transmits it to Alice.

3.0 If b = 0, then Alice sends r0 = r, and Bob checks c
?
= r−1

0 xr0.

3.1 If b = 1, then Alice sends r1 = s−1r, and Bob checks c
?
= r−1

1 xr1.
While the veri�cation for b = 0 is obvious, in the case b = 1 Bob veri�es
Alice's secret because of

r−1
1 xr1 = (r−1s)s−1xs(s−1r) = r−1xr = c.

Note that the usual way, known from key agreement protocols [AAG99,
KL+00], how to generate CSP-instance pairs (x, x′) works as follows: Gen-
erate x, choose a random s, and de�ne x′ = s−1xs. But this approach is vul-
nerable to length attacks, because often there exists a length function L on
G, like canonical length in braid groups etc., which satisfy L(x) < L(s−1xs)
[De04b].
In order to avoid length attacks, Dehornoy points out that there exists a
better choice of a CSP-instance pair (x, x′) [De05]: Choose secret elements
x0, s, s

′ ∈ G, and then set x = s−1x0s and x′ = s′−1x0s
′.

In the case of braid groups, s, s′ should have the same canonical length. But
there are two Garside structures on Bn, and therefore also two canonical
length functions. In general, you cannot avoid all length attacks by choosing
s, s′ in such a way, that L(s) ≈ L(s′) for all length functions on G.
Nevertheless, Sibert (2003) [De05] used this idea to develop a "bit-symmetric"
version of the authentication scheme II from [SDG06]:
Now, (x0, s, s

′) ∈ G3 is Alice's private key, and (x, x′) ∈ G2 with x = s−1x0s
and x′ = s′−1x0s

′ is her public key. We describe a three-pass protocol round.
1. Alice selects a random element r ∈ S, and she sends the commitment

c = r−1x0r to Bob.
2. Bob chooses a random bit b ∈ {0, 1} and transmits it to Alice.

3.0 If b = 0, then Alice sends r0 = s−1r, and Bob checks c
?
= r−1

0 xr0.

3.1 If b = 1, then Alice sends r1 = s′−1r, and Bob checks c
?
= r−1

1 x′r1.
The veri�cation of Alice's secret succeeds in both cases, because

b = 0 : r−1
0 xr0 = (r−1s)s−1x0s(s

−1r) = r−1x0r = c,

b = 1 : r−1
1 xr1 = (r−1s′)s′−1x0s

′(s′−1r) = r−1x0r = c.
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We emphasize that Dehornoy's suggestion for constructing CSP-instances
(x, x′) with L(x) ≈ L(x′) for some length function L [De05] obviously apply
to authentication schemes, because here only the prover constructs the CSP-
instance. In the case of key establishment the CSP-instances are constructed
by Alice and Bob, sometimes entangled in a nontrivial manner. It seems that
Dehornoy's suggestion does not apply to the known group-based KAPs. We
leave it as an open question, dedicated to future work.
Further, the �rst provably-secure authentication scheme based on braid groups,
introduced by Z. Kim (Scheme I in [Ki04], see also [KK04]) and using ideas
from [KC+02], is also a Fiat-Shamir-like scheme, and it relies on the MTSP.
Since scheme I from [SDG06] is based on the DH-DP, it can be attacked
e�ectively by the Myasnikov-Shpilrain-Ushakov attack [MSU05]. Scheme
II from [SDG06] and the Z. Kim's scheme can be attacked by Gebhardt's
practically e�cient solution to the CSP in braid groups [Ge05]. In order to
prevent this attack, it is necessary to use CSP-hard instances with big USS's.
Scheme III from [SDG06] was broken in [GHS06].
Special attention deserves a Fiat-Shamir-like authenti�cation scheme using
shifted conjugacy by Dehornoy [De06]. We describe this scheme in chapter 6.
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Chapter 6

Shifted conjugacy in braid-based

cryptography

6.1 Examples for LD-systems

De�nition 6.1 An LD-system (S, ∗) is a set S equipped with a binary oper-
ation ∗ on S which satis�es the left self-distributivity law

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) ∀x, y, z ∈ S.

Analogously, RD-systems ful�ll (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ S.

We list some examples of LD-systems taken from [De06].

1. We begin with a trivial example. (S, ∗) with x ∗ y = f(y) is an LD-
system for any function f : S → S.

2. A set S with a binary operation ∗, that satis�es no other relations
than those resulting from the left self-distributivity law, is a free LD-system.
Free LD-systems are studied extensively in [De00].

3. A classical example of an LD-system is (G, ∗) where G is a group
equipped with the conjugacy operation x∗y = x−1yx or x∗y = xyx−1. Note
that such an LD-system cannot be free, because conjugacy satis�es addition-
aly the idempotency law x ∗ x = x.

4. Finite groups equipped with the conjugacy operation are not the only
�nite LD-systems. Indeed, the socalled Laver tables provide the classical
example for �nite LD-systems. There exists for each n ∈ N an unique LD-
system Ln = (Z/2nZ, ∗) with k ∗ 1 = k + 1. The values for k ∗ l with l 6= 1
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can be computed by induction using the left self-distributive law. The Laver
tables for n = 1, 2, 3 are

L1 1 0
1 0 0
0 1 0

L2 1 2 3 0
1 2 0 2 0
2 3 0 3 0
3 0 0 0 0
0 1 2 3 0

L3 1 2 3 4 5 6 7 0
1 2 4 6 0 2 4 6 0
2 3 4 7 0 3 4 7 0
3 4 0 4 0 4 0 4 0
4 5 6 7 0 5 6 7 0
5 6 0 6 0 6 0 6 0
6 7 0 7 0 7 0 7 0
7 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 0

Laver tables are also described in [De00].

5. Consider the following braid group with in�ntely many strands:

BN = 〈σ1, σ2, . . .

∣∣∣∣ σiσj = σjσi ∀i, j ∈ N : |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 ∀i ∈ N

〉
.

The shift mapping sh : BN → BN de�ned by σi 7→ σi+1 is an injective homo-
morphism.

Proposition 6.2 BN equipped with the shifted conjugacy operation

x ∗ y = shx−1 · σ1 · shy · x

is an LD-system.

Proof. - This is a simple veri�cation using [σ1, sh
2x] = 1 for all x ∈ BN:

x ∗ (y ∗ z) = x ∗ (shy−1 · σ1shz · y) = shx−1 · σ1(sh
2y−1 · σ2sh

2z · shy)x.

(x ∗ y) ∗ (x ∗ z) = (shx−1 · σ1shy · x) ∗ (shx−1 · σ1shz · x)

= (shx−1 · sh2y−1 · σ−1
2 sh2x)σ1(sh

2x−1 · σ2sh
2z · shx)(shx−1 · σ1shy · x)

= shx−1 · sh2y−1 · σ−1
2 σ1σ2σ1sh

2z · shy · x = x ∗ (y ∗ z).

The last equality holds since σ−1
2 σ1σ2σ1 = σ1σ2. �

Obviously, "reverse" shifted conjugacy de�ned by x∗̄y = xshy · σ1shx−1

also provides an LD-structure on BN.
It is shown in [De94, De00] that every braid generates under ∗ a free sub-
LD-system of (BN, ∗). But (BN, ∗) is not a free LD-system. Indeed, it is even
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conjectured that (BN, ∗) contains no free LD-systems with two generators.
Shifted conjugacy di�ers immensly from usual conjugacy in the braid groups.
For example, the exponent sum es is not a shifted conjugacy invariant. In-
deed, we have es(x ∗ y) = 1+ es(y). As a trivial consequence, there exists no
element ε ∈ BN such that ε ∗ x = x for some x ∈ BN. Further, if x′ = c ∗ x,
then there exists no c̄ ∈ BN with x = c̄ ∗ x′. And if x′′ = c′ ∗ x′ and x′ = c ∗ x
hold, then there exists no c̄ ∈ BN with x′′ = c̄ ∗ x. In particular, and in
contrast to conjugacy, shifted conjugacy de�nes no equivalence relation on
BN.
Further, Dehornoy proved that the map f : BN → BN de�ned by x 7→ x∗ e is
injective for shifted conjugacy [De99], while in the case of usual conjugacy
we have f(BN) = {e}. According to Dehornoy, f might be candidate for an
one-way function [De06].
Dehornoy points out, that once the de�nition of shifted conjugacy is used,
braids inevitably appear [De06]:
Consider a group G, a homomorphism h : G → G, and a �xed element a ∈ G.
Then the binary operation

x ∗ y = h(x)−1 · a · h(y) · x

yields an LD-structure on G if and only if the subgroup H := 〈{hn(a) | n ∈
N}〉 ⊂ G is a homomorphic image of BN. For a = σ1 and h = sh, which
implies H = BN, we get the above de�ned shifted conjugacy. Of course, we
can replace the shift monomorphism sh by any power shm for a �xed m ∈ N.

6. In the case a = e and h = sh, which implies H = {e}, we get the
following left self-distributive operation:

x ∗ y = shx−1 · shy · x.

We call it simple shifted conjugacy. Simple shifted conjugacy provides not
only an LD-structure on BN, but also on the double in�nite braid group

BZ =< {σi | i ∈ Z}
∣∣∣∣ σiσj = σjσi ∀i, j ∈ Z : |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 ∀i ∈ Z

〉
.

Another LD-structure on BZ is provided by the operation
x ◦ y = x · sh−y · sh−x−1,

where sh− denotes the downshift automorphism on BZ de�ned by σi 7→ σi−1

∀i ∈ Z. The binary operation ◦ is an inverse of the simple shifted conjugacy
operation. Indeed, we have

x ◦ (x ∗ y) = y and x ∗ (x ◦ y) = y ∀x, y ∈ BZ.
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We note that in case of simple shifted conjugacy the function f : x 7→ x∗e =
xshx−1 is (obviously) injective, too.

Examples for RD-systems are easily obtained from this list, becauce if
(S, ∗) is an LD-system, then (S, ∗̄) equipped with x∗̄y = y ∗ x is an RD-
system.

6.2 Fiat-Shamir-like authentication scheme for

LD-systems

Dehornoy proposed the following Fiat-Shamir-like authentication scheme for
LD-systems [De06].
Let (S, ∗) be an LD-system. Alice's private key is an element s ∈ S, and her
public key is a pair (x, x′) ∈ S2 with x′ = s ∗ x.
In the authentication phase Alice (the prover) and Bob (the veri�er) repeat
the following three exchanges k times.
1. Alice selects a random element r ∈ S, and she sends the commitment

(c, c′) = (r ∗ x, r∗, x′) to Bob.
2. Bob chooses a random bit b ∈ {0, 1} and transmits it to Alice.

3.0 If b = 0, then Alice sends r0 = r, and Bob checks c
?
= r0 ∗ x and

c′
?
= r0 ∗ x′.

3.1 If b = 1, then Alice sends r1 = r ∗ s, and Bob checks c′
?
= r1 ∗ c.

The veri�cation for b = 0 is obvious, and because of r1 ∗c = (r∗s)∗ (r∗x)
LD
=

r ∗ (s ∗ x) = r ∗ x′ = c′, Bob veri�es Alice's secret in the case b = 1, too.
Dehornoy proposes S = BN equipped with shifted conjugacy as platform
LD-system for this authentication scheme [De06]. In this case this authen-
tication scheme is based on the
ShCSP (Shifted Conjugacy Search Problem):
Input: A pair (x, x′) ∈ B2

N with x′ = s ∗ x for some s ∈ BN.
Objective: Find a s̃ ∈ BN such that s̃ ∗ x = x′.
Note that contrary to the CSP, no solution to the ShCSP in braid groups is
known so far. Further it is not known whether the shifted conjugacy decision
problem is solvable.
Dehornoy points out that the ShCSP is not a priori immune against general
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length attacks [De06]. Nevertheless, at the current stage, length attacks do
not seem to a�ect the CSP or even the SCSP (for cryptographically relevant
parameters) [GK+02, GK+06].
Therefore, this Fiat-Shamir-like authentication scheme based on the ShCSP
seems to provide more cryptographic security than e.g. scheme II from
[SDG06], which is based on the CSP.
Further, we consider a slight modi�cation of Dehornoy's authentication scheme.
Assume that Alice sends in the case b = 1 the response r′ = s ∗ r instead of
r ∗ s, and Bob still checks c′

?
= r′ ∗ c. Then Bob veri�es Alice's secret only if

(s ∗ r) ∗ (r ∗ x) = r ∗ (s ∗ x) holds. This identity has not been studied so far.
It is similar to the central duplication law (CD) (r ∗ s) ∗ (s ∗ x) = r ∗ (s ∗ x)
studied in [De02a]. It would be interesting to construct a geometry monoid,
which exists for every identity (even every family of identities) [De93], as
in [De94, De02a] also for this "modi�ed" CD law. Nevertheless, natural
examples are still missing.
At a workshop in Bochum in November 2005 Dehornoy proposed a further
FS-like authentication scheme for LD-systems [De05]. Here Alice's (the
prover) public key is x = s∗s, where s denotes her secret key. Alice and Bob
repeat k times the following three-pass protocol.
1. Alice selects a random element r ∈ S, and she sends the commitment

c = r ∗ x to Bob.
2. Bob chooses a random bit b ∈ {0, 1} and transmits it to Alice.

3.0 If b = 0, then Alice sends r0 = r, and Bob checks c
?
= r0 ∗ x.

3.1 If b = 1, then Alice sends r1 = r ∗ s, and Bob checks c
?
= r1 ∗ r1.

The veri�cation for b = 0 is obvious, and because of r1∗r1 = (r∗s)∗(r∗s)
LD
=

r ∗ (s ∗ s) = r ∗ x = c, Bob veri�es Alice's secret in the case b = 1, too.
This scheme comes naturally from Scheme III in [SDG06], if we replace
conjugacy and the group operation by a general left self-distibutive operation
∗. But accidently, and in contrast to Scheme III in [SDG06], this scheme is
unsuitable, because a cheater achieves a successful impersonation by repeated
transmission of the constant commitment c = x∗x and the constant response
(for b = 0, 1) r0 = r1 = r.
Nevertheless, this authentication scheme can be easily repaired by setting,
e.g., x = s ∗ (s ∗ s), or in general, x = T∗(s, . . . , s), which denotes a planar
rooted binary tree whose leaves are all labelled by s. The subscript ∗ indicates
that the grafting of subtrees of T corresponds to the composition ∗. The tree
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T is publicly known, and Bob has to check c
?
= T∗(r1, . . . , r1) in the case

b = 1. Now, the veri�cation of Alice' secret succeeds because of

T∗(r1, . . . , r1) = T∗(r ∗ s, . . . , r ∗ s) = r ∗ T∗(s, . . . , s) = r ∗ x = c,

where the second equality in this chain is a straightforward consequence of
left self-distributivity.
This authentication scheme is based either on the ShCSP or on the following

Root Finding Problem in (S, ∗):
Input: A planar rooted binary tree T with grafting ∗ and an element x ∈ S

with x = T∗(s, . . . , s) for some unknown s ∈ S.
Objective: Find an element s′ ∈ S such that T∗(s

′, . . . , s′) = x.

While the ShCSP seems to provide much cryptographic security, Dehornoy's
authentication schemes are still the only cryptographic primitives based on
the ShCSP. In particular, it seems that no key agreement scheme which is
based on the ShCSP has been proposed so far. We will close this gap in
section 6.4. In the next section we consider a generalization of the AAG
scheme. The key agreement for LD-systems turns out to be the most natural
special case of this general AAG scheme.

6.3 AAG scheme for magmas

6.3.1 General AAG key agreement protocol

Monoids are proposed as algebraic platform structures for the AAG key
agreement protocol in [AAG99]. But the monoid structure is only used
in the AAG scheme in order to guarantee that the secret key, e.g. Alice's key
a, is an uniquely de�ned product of some given generators {s1, . . . , sm}, i.e.
a = r1 · r2 · · · rk with ri ∈ {s1, . . . , sm} for all i. It is, of course, no problem
to introduce brackets in this expression. Therefore, there exists a straight-
forward generalization of the AAG scheme from monoids to magmas1. We
describe the AAG key establishment protocol in the - for our purposes - most
general manner.
Let (M, •i) and (N, ◦i) be magmas, for i = 1, 2, i.e. there are two operations

1A magma (sometimes also called grupoid) (M, ∗) is a set M equipped with a binary
operation ∗ on M , i.e. a function M ×M → M . Note that there are no relations, which
have to be satis�ed by the elements of M . The notion of a magma was introduced by N.
Bourbaki (see, e.g., [Bo74]).
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on the sets M, N , respectively, and let S be a set. For i = 1, 2, we need
functions

βi : S ×M → N, γi : S ×N → N, pi : S → M

which satisfy the following three conditions:
(1) βi(x, ·) : M → N is for all x ∈ S a magma homomorphism2, i.e.

∀x ∈ S, y1, y2 ∈ M : βi(x, y1 •i y2) = βi(x, y1) ◦i βi(x, y2).

(2) It is, in general, not feasible to determine a secret x ∈ S from the
knowledge of

y1, y2, . . . , yk ∈ M and βi(x, y1), βi(x, y2), . . . , βi(x, yk).

(3) For all a, b ∈ S : γ1(a, β1(b, p1(a))) = γ2(b, β2(a, p2(b))).
Consider an element y of a magma (M, •) which is an iterated product

of other elements in M . Such an element can be described by a planar
rooted binary tree T whose k leaves are labelled by these other elements
y1, . . . , yk ∈ M . We use the notation y = T•(y1, . . . , yk). Here the subscript
• tells us that the grafting of subtrees of T corresponds to the operation •.
Now, it is easy to prove by induction that any magma homomorphism β :
(M, •) → (N, ◦) satis�es

β(T•(y1, . . . , yk)) = T◦(β(y1), . . . , β(yk))

for all y1, . . . , yk ∈ M . In particular, the magma morphisms β1(x, ·), β2(x, ·)
(x ∈ S) ful�ll this property.
Alice and Bob publicly assign sets {s1, . . . , sm}, {t1, . . . , tn} ⊂ M , respec-
tively. The secret key spaces SKA, SKB of Alice and Bob are subsets of S,
and they depend on these public elements. Indeed, we have

SKA = FA(s1, . . . , sm) and SKB = FB(t1, . . . , tn).

Therefore, it is su�cient that β1, β2 ful�ll condition (1) only for all x ∈
SKA, SKB, respectively, and that condition (3) holds for all a ∈ SKA, b ∈
SKB.
Now, Alice and Bob perform the following protocol steps.
1.A. Alice generates her secret key a ∈ SKA.

2More on magmas and magma homomorphisms can be found, e.g. in [Se65, Ge94].
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1.B. Bob chooses his secret key b ∈ SKB.
2.A. Alice computes the elements β2(a, t1), . . . , β2(a, tn) ∈ N , and sends

them to Bob.
2.B. Analogously Bob computes the elements β1(b, s1), . . . , β1(b, sm) ∈ N ,

and sends them to Alice.
3.A. Alice, knowing p1(a) = T•1(r1 · · · rk) with ri ∈ {s1, . . . , sm}, computes

from Bob's public key
T◦1(β1(b, r1) · · · β1(b, rk)) = β1(b, T•1(r1 · · · rk)) = β1(b, p1(a)).

3.B. And Bob, knowing p2(b) = T ′
•2(u1 · · ·uk′) with uj ∈ {t1, . . . , tn}, com-

putes from Alice's public key
T ′
◦2(β2(a, u1) · · · β2(a, uk′)) = β2(a, T ′

•2(u1 · · ·uk′)) = β2(a, p2(b)).

4.A. Alice computes K := γ1(a, β1(b, p1(a))).

4.B. Bob also computes the shared key γ2(b, β2(a, p2(b)))
(3)
= K.

First we consider the most natural special case of this scheme. Let be
M = N = S. This implies that the functions βi, γi, for i = 1, 2, induce
further binary operations on M . In particular, we introduce the notation
x ∗i y = βi(x, y). Now, the homomorphy condition (1) reads as

x ∗i (y1 •i y2) = (x ∗i y1) ◦i (x ∗i y2) ∀x, y1, y2 ∈ M (i = 1, 2).

If additionally ∗i = •i = ◦i holds for i = 1, 2, then M is an LD-system with
two (left) self-distributive operations ∗1, ∗2. A key agreement using two LD-
structures on the in�nite braid group is described in section 6.4.
Another speci�cation of our general magma-based scheme is discussed in the
next subsection.

6.3.2 AAG-like scheme based on a simultaneous decom-

position problem

We consider the following speci�cations of the AAG scheme for magmas:
Let G = M = N be a group, and set S = G2. The group multiplication
symbol in G will usually be omitted. The operations •i, ◦i (i = 1, 2) on G
are de�ned by

x •1 y = x •2 y = x ◦1 y = x ◦2 y ≡ x • y := xy−1x,
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and the functions β1, β2 : G2 ×G → G are de�ned by
β1((x1, x2), y) = β2((x1, x2), y) ≡ β((x1, x2), y) := x1yx2.

β(x, ·) ful�lls the homomorphy condition (1), for all x = (x1, x2) ∈ G2,
because

β((x1, x2), y1) • β((x1, x2), y2) = (x1y1x2) • (x1y2x2) =

(x1y1x2)x
−1
2 y−1

2 x−1
1 (x1y1x2) = x1(y1y

−1
2 y1)x2 = β((x1, x2), y1 • y2).

Alice and Bob publicly assign sets {s1, . . . , sm}, {t1, . . . , tn} ⊂ G, respec-
tively. The secret key spaces of Alice and Bob are SKA = G × SA and
SKB = SB × G, where SA = 〈s1, . . . , sm〉• and SB = 〈t1, . . . , tn〉• denote
submagmas of (G, •) generated by the publicly assigned elements.
The projections p1, p2 : G2 → G and the functions γ1, γ2 : G2 × G → G are
de�ned by
p1(x, y) = y, p2(x, y) = x and γ1((x1, x2), y) = x1y, γ2((x1, x2), y) = yx2.

These de�nitions satisfy condition (3), because
γ1(a, β(b, p1(a))) = γ1(a, β(b, ar)) = γ1(a, blarbr) = al(blarbr)

= (alblar)br = γ2(b, alblar) = γ2(b, β(a, bl)) = γ2(b, β(a, p2(b)))

for all a = (al, ar), b = (bl, br) ∈ G2.
Now, consider the right part of Alice's key ar = T•(r1, . . . , rk) ∈ SA with
ri ∈ {s1, . . . , sm}. If we view ar as a word in the si's, then we observe that ar

is self-reverse and the exponent signs of ar alternate, beginning and ending
with a positive sign. For example, we have

(r1 • r2) • (r3 • (r4 • r5)) = r1r
−1
2 r1r

−1
3 r4r

−1
5 r4r

−1
3 r1r

−1
2 r1.

While in this scheme alternating exponent signs are essential to gurantee
that condition (1) holds, the self-reverse property turns out to be super�ous.
Therefore, we give up this restricted key choice and de�ne modi�ed secret
key spaces by SKA = G× SK

(r)
A and SKB = SK

(l)
B ×G with

SK
(r)
A = {r1r

−1
2 r3r

−1
4 · · · r−1

2l r2l+1 | ri ∈ {s1, . . . , sm} ∀1 ≤ i ≤ l, l ∈ N},
SK

(l)
B = {u1u

−1
2 u3u

−1
4 · · ·u−1

2l′ u2l′+1 | uj ∈ {t1, . . . , tn} ∀1 ≤ j ≤ l′, l′ ∈ N}.

Alice and Bob have to perform the following protocol steps.
1.A. Alice generates her secret key (al, ar) ∈ G× SK

(r)
A .
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1.B. Bob chooses his secret key (bl, br) ∈ SK
(l)
B ×G.

2.A. Alice computes the elements alt1ar, . . . , altnar, and sends them to Bob.
2.B. Analogously Bob computes the elements bls1br, . . . , blsmbr, and sends

them to Alice.
3.A. Alice, knowing ar = r1r

−1
2 r3r

−1
4 · · · r−1

2l r2l+1 with ri ∈ {s1, . . . , sm},
computes from Bob's public key

(blr1br)(blr2br)
−1(blr3br) · · · (blr2lbr)

−1(blr2l+1br)

= bl(r1r
−1
2 r3 · · · r−1

2l r2l+1)br = blarbr.

3.B. Bob, knowing bl = u1u
−1
2 u3u

−1
4 · · ·u−1

2l′ u2l′+1 with uj ∈ {t1, . . . , tn},
computes from Alice's public key

(alu1ar)(alu2ar)
−1(alu3ar) · · · (alu2l′ar)

−1(alu2l′+1ar)

= al(u1u
−1
2 u3 · · ·u−1

2l′ u2l′+1)ar = alblar.

4.A. Alice computes K := al(blarbr).
4.B. Bob also computes the shared key (alblar)br = K.

In order to break this scheme an attacker obviously has to solve the
following
Base Problem:
Input: Element pairs (s1, s

′
1), . . . , (sm, s′m) ∈ G2 and (t1, t

′
1), . . . , (tn, t

′
n) ∈

G2 with s′i = blsibr ∀1 ≤ i ≤ m and t′j = altjar ∀1 ≤ j ≤ n for some
(unknown) al, br ∈ G, bl ∈ SK

(l)
B , ar ∈ SK

(r)
A .

Objective: Find K = alblarbr.
A successful attack on Alice's secret key requires the solution of the fol-

lowing
n-SDP (n-Simultaneous Decomposition Problem):
Input: Element pairs (t1, t

′
1), . . . , (tn, t

′
n) ∈ G2 with t′j = altjar ∀1 ≤ j ≤ n

for some (unknown) al ∈ G, ar ∈ SK
(r)
A .

Objective: Find elements a′l ∈ G, a′r ∈ SK
(r)
A with a′ltja

′
r = t′j for all

j = 1, . . . , n.
A solution (a′l, a

′
r) to this n-SDP satis�es the property a′lya′r = alyar for all

y ∈ SK
(l)
B .

Analogeously, a successful attack on Bob's secret key requires the solution of
the following
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m-SDP (m-Simultaneous Decomposition Problem):
Input: Element pairs (s1, s

′
1), . . . , (sm, s′m) ∈ G2 with s′i = blsibr ∀1 ≤ i ≤ m

for some (unknown) bl ∈ SK
(l)
B , br ∈ G.

Objective: Find elements b′l ∈ SK
(l)
B , b′r ∈ G with b′lsib

′
r = s′i for all i =

1, . . . ,m.
A solution (b′l, b

′
r) to this m-SDP satis�es the property b′lxb′r = blxbr for all

x ∈ SK
(r)
A .

Therefore, a solution to both problems provides the attacker with the shared
secret, because

(a′lb
′
la
′
r)b

′
r = (alb

′
lar)b

′
r = al(b

′
larb

′
r) = al(blarbr) = K.

Here the �rst and the last equality hold, because b′l ∈ SK
(l)
B and ar ∈ SK

(r)
A ,

respectively. Alternatively, we can use equality chain

a′l(b
′
la
′
rb
′
r) = a′l(bla

′
rbr) = (a′lbla

′
r)br = (alblar)br = K,

where here the �rst and the last equality hold, because a′r ∈ SK
(r)
A and

bl ∈ SK
(l)
B , respectively. Further, the �rst equality chain shows us, that it

is su�cient to �nd a solution (a′l, a
′
r) ∈ G2 to the n-SDP and a solution

(b′l, b
′
r) ∈ SK

(l)
B × G to the m-SDP. Analogously, the second equality chain

shows us, that it is su�cient to �nd a solution (a′l, a
′
r) ∈ G × SK

(r)
A to the

n-SDP and a solution (b′l, b
′
r) ∈ G2 to the m-SDP.

Nevertheless, such observations seems to have no practical relevance. A solu-
tion (a′l, a

′
r) to Alice's n-SDP satis�es (for all 1 ≤ j ≤ n) a′ltja

′
r = altjar which

is equivalent to t−1
j (a−1

l a′l)tj = ar(a
′
r)
−1. For "generic" instances, it seems to

be completely unprobable that nontrivial solutions (a′l, a
′
r) with a′l 6= al and3

a′r 6= ar exist.
But it is very important to note that the knowledge of one secret key, e.g.
Alice's key (al, ar) ∈ G×SK

(r)
A , is not su�cient for an attacker to obtain the

shared secret K, because he needs not only ar expressed in the generators of
the group G, but rather an expression of the form

ar = r1r
−1
2 r3r

−1
4 · · · r−1

2l r2l+1 with ri ∈ {s1, . . . , sm}.

We close with the trivial remark that Alice can choose the left part of her
secret al from any arbitrary secret subgroup Hl of G. Analogously, Bob can
select br from any arbitrary secret Hr ⊂ G.

3Note that a′l = al ⇔ a′r = ar.
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6.4 Key agreement based on shifted conjugacy

Recall from section 6.1 the shifted conjugacy operation ∗ and the "reverse"
shifted conjugacy operation ∗̄ in BN de�ned by

x ∗ y = shx−1 · σ1 · shy · x and x∗̄y = xshy · σ1shx−1.

Both operations satisfy the left self-distributive law.
We propose a key establishment protocol using these LD-structures in BN,
where Alice and Bob have to perform the following protocol steps.
0.A. Alice publicly assigns elements s1, . . . , sm ∈ BN.
0.B. Bob publicly assigns elements t1, . . . , tn ∈ BN.
1.A. Alice generates her secret key a ∈ SA, where SA = 〈s1, . . . , sm〉∗ denotes

the sub-LD-system of (BN, ∗) generated by {s1, . . . , sm}. Therefore
she chooses a planar rooted binary tree T with k leaves and elements
r1, . . . , rk with ri ∈ {s1, . . . , sm} such that a = T∗(r1, . . . , rk).

1.B. Bob chooses his secret key b ∈ SB, where SB = 〈t1, . . . , tn〉∗̄ denotes
the sub-LD-system of (BN, ∗̄) generated by {t1, . . . , tn}. Therefore he
chooses a planar rooted binary tree T ′ with k′ leaves and elements
u1, . . . , uk′ with uj ∈ {t1, . . . , tn} such that b = T ′

∗̄(u1, . . . , uk′).
2.A. Alice computes the elements a−1∗̄t1, . . . , a−1∗̄tn, and sends them to

Bob.
2.B. Analogously Bob computes the elements b−1∗s1, . . . , b

−1∗sm, and sends
them to Alice.

3.A. Alice, knowing a = T∗(r1, . . . , rk) for some planar rooted binary tree T
and ri ∈ {s1, . . . , sm}, computes from Bob's public key

T∗(b
−1 ∗ r1, . . . , b

−1 ∗ rk) = b−1 ∗ T∗(r1, . . . , rk) = b−1 ∗ a.

3.B. Bob, knowing b = T∗̄(u1, . . . , uk′) for some planar rooted binary tree T ′

and uj ∈ {t1, . . . , tn}, computes from Alice's public key
T∗̄(a

−1∗̄u1, . . . , a
−1∗̄uk′) = a−1∗̄T∗̄(u1, . . . , uk′) = a−1∗̄b.

4.A. Alice computes K := a−1(b−1 ∗ a) = a−1(shb · σ1sha · b−1).
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4.B. Bob also computes the shared key4

(a−1∗̄b)b−1 = (a−1shb · σ1sha)b−1 = K.

This scheme can be obtained from the AAG key agreement protocol for
magmas (section 6.3.1) speci�ed by M = N = S = BN, •1 = ◦1 = ∗,
•2 = ◦2 = ∗̄, p1 = p2 = id,

β1(x, y) = x−1 ∗ y, β2(x, y) = x−1∗̄y, γ1(x, y) = x−1y, γ2(x, y) = yx−1,

and SKA = 〈s1, . . . , sm〉∗, SKB = 〈t1, . . . , tn〉∗̄.

In order to break this scheme an attacker obviously has to solve the
following
Base Problem:
Input: Pairs (s1, s

′
1), . . . , (sm, s′m) ∈ B2

N and (t1, t
′
1), . . . , (tn, t

′
n) ∈ B2

N with
s′i = b−1 ∗ si = shb · σ1shsi · b−1 ∀1 ≤ i ≤ m and t′j = a−1∗̄tj =
a−1shtj ·σ1sha ∀1 ≤ j ≤ n for some (unknown) a ∈ SA = 〈s1, . . . , sm〉∗,
SB = 〈t1, . . . , tn〉∗̄.

Objective: Find K = a−1(b−1 ∗ a) = (a−1∗̄b)b−1 = a−1shb · σ1sha · b−1.
But a successful attack on Bob's secret key requires the solution of the

following
m-SGShCSP (m-Simultaneous Generalized Shifted Conjugacy Search Problem):

Input: Pairs (s1, s
′
1), . . . , (sm, s′m) ∈ B2

N with s′i = b−1 ∗ si = shb · σ1shsi · b−1

∀1 ≤ i ≤ m for some (unknown) b ∈ SB.
Objective: Find an element b′ ∈ SB with b′−1 ∗ si = b−1 ∗ si for all i =

1, . . . ,m.
Analogously, Alice's secret can be attacked by solving a n-simultaneous (re-
verse) shifted conjugacy search problem.
n-SGShCSP (n-Simultaneous Generalized Shifted Conjugacy Search Problem):

Input: Pairs (t1, t
′
1), . . . , (tn, t

′
n) ∈ B2

N with t′j = a−1∗̄tj = ashtj · σ1sha−1

∀1 ≤ i ≤ n for some (unknown) a ∈ SA.
Objective: Find an element a′ ∈ SA with a′−1∗̄tj = a−1∗̄tj for all j =

1, . . . , n.
4If we de�ne the shifted commutator as [a, b]sh = a−1shb−1 · σ1sha)b, then the shared

key is K = [a, b−1]sh.
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Since a solution b′ ∈ SB to the m-SGShCSP satis�es the property b′−1 ∗
x = b−1 ∗ x for all x ∈ SA, a solution to both problems (m-SGShCSP and
m-SGShCSP) provides the attacker with the shared secret, because

a′−1(b′−1 ∗ a′) = a′−1(b−1 ∗ a′) = (a′−1∗̄b)b−1 = (a−1∗̄b)b−1 = K.

Here the last equality holds, because b ∈ SB. We observe that it is su�cient
to �nd a solution a′ ∈ BN to the n-SGShCSP and a solution b′ ∈ SB to the
m-SGShCSP.
Analogously, a solution a′ ∈ SA to the n-SGShCSP satis�es the property
a′−1∗̄y = a−1∗̄y for all y ∈ SKB. Therefore, we can also use the equality
chain

(a′−1∗̄b′)b′−1 = (a−1∗̄b′)b′−1 = a−1(b′−1 ∗ a) = a−1(b−1 ∗ a) = K.

Here the last equality holds, because a ∈ SA. We observe that it is su�cient
to �nd a solution a′ ∈ SA to the n-SGShCSP and a solution b′ ∈ BN to the
m-SGShCSP.
Nevertheless, as in section 6.3.2, such observations seems to have no practical
relevance. A solution a′ to Alice's n-SGShCSP satis�es (for all 1 ≤ j ≤ n)
a′−1∗̄tj = a−1∗̄tj which is equivalent to

a′shtj · σ1sha′−1 = ashtj · σ1sha−1 ∀1 ≤ j ≤ n.

For "generic" instances, it seems to be unprobable to us that there exists a
nontrivial solution a′ with a′ 6= a.
But it is very important to note, that the knowledge of one secret key, e.g.
Alice's key a ∈ SA, is not su�cient for an attacker to obtain the shared secret
K, because he needs not only a expressed in the generators of BN, but rather
an expression of the form

a = T∗(r1, . . . , rk) with ri ∈ {s1, . . . , sm}

where T is a planar rooted binary tree with grafting ∗.

Since the base problem of our key agreement scheme is a multi-simultaneous
search problem, where several shifted conjugated pairs are given, length at-
tacks may apply very well against this problem. Nevertheless, at the current
stage, pure length attacks do not seem to a�ect the SCSP (a related problem)
for cryptographically relevant parameters [GK+02, GK+06].
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