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Introduction

In many applications, the objective is to find a meaningful structure in a relationship
between dependent and independent variables through a regression kind of model ex-
pressed by

Y = m(X) + ε,

where m is the so called regression function and ε a random error with zero mean.
Nowadays, many statistical problems are high-dimensional, since it is easier to collect
data and modern computing power allows to consider massive amounts of information.
Complex relations are evolved and evaluated more and more. The present thesis tries to
answer some questions in this context by proposing new multivariate estimates utilizing
shape constraints. Structured relationships in multivariate setups have not been consid-
ered in the literature that much probably due to inherent problems like data sparseness.
Regression analysis is concerned with fitting a curve to a finite set of points in a space.
An estimated regression function enables to predict, evaluate, and interpret a relation-
ship between an explanatory variable and a response variable. In numerous examples,
order restricted inference is a reasonable approach to analyze the regression function.
Order restrictions can model shape constraints like monotonicity or convexity. Consider
a finite set of points (X1, Y1), . . . , (Xn, Yn), where Xj ∈ IRd and Yj ∈ IR. The following
figure illustrates a data set with a two-dimensional predictor variable. As in this data set,
the scatterplot sometimes shows a monotonic trend in one or more directions. In other
words, experimental evidence suggests that the underlying true regression function m
is monotone increasing or decreasing with respect to some variables. In this example, it
makes sense for researchers to suppose that the body fat of a person depends increas-
ingly on weight and decreasingly on height.
To find the appropriate regression model is a challenging task, since there is a broad range
available varying from parametric to nonparametric setups. An easy regression approach
is to fit a linear regression line to the data, but often this simplifies the model too much.
On the other end of the spectrum lies the nonparametric regression approach, where no
assumption is made regarding the particular shape of the regression function. Some-
times further information or physical laws make researchers believe that the underlying
regression curve belongs to an order restricted class of functions. There is a consider-
able amount of literature available about this topic [see Barlow et al. (1972) or Robertson
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Figure 1: Data set Fat from R Package UsingR.

et al. (1988) as introductory compendium]. But most of this statistical inference under order
restrictions refers to the univariate regression model. The pool-adjacent-violators algo-
rithm (PAVA) is the most widely used algorithm for computing the isotonic regression
for a univariate covariate first published by Ayer et al. (1955)1. The PAVA computes for
a given set {(Xj, Yj)}nj=1 with Xj ∈ IR and sorted data {(X(j), Y[j])}nj=1 (Y[j] is ordered
relative to X(j)), respectively, the values {m̂(X(j))}nj=1, which minimize

1

n

n∑
j=1

Ä
Y[j] − m̂(X(j))

ä2
subject to the monotonicity restriction

m̂(X(1)) ≤ m̂(X(2)) ≤ . . . ≤ m̂(X(n)).

There are several extensions and modifications of this algorithm, but multivariate ver-
sions are available only for special cases [see Gebhardt (1970), Dykstra and Robertson
(1982), Lee (1983), or Qian and Eddy (1996), among others].
The main results of this thesis can be divided into two parts, which are detached from
each other. Nevertheless, all results give new insights into nonparametric multivariate
relationships and therefore allow to analyze complex high-dimensional statistical prob-
lems under additional constraints.
In the first part of this thesis, a new strictly monotone increasing regression estimator
with d ≥ 2 explanatory variables is proposed [see Chapter 2]. This estimator is intro-
duced and analyzed in a nonparametric regression context. But as an important feature

1van Eeden (1956) developed independently the same procedure and kindly sent me her paper.
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of this estimate, the fundamental technique can be used in any regression setting. The
idea of this isotonic or antitonic regression approach is developed in the univariate case
by Dette et al. (2006) and extended to higher dimensions in this thesis.
In the second part of this thesis , the focus lies on nonparametric quantile regression mod-
els [see Chapter 3]. In the framework of regression models, conditional quantile models
can be described as

Y = Qα(X) + ε,

where Qα is the quantile function and ε an error term, whose α quantile is zero. The
quantile regression approach originally proposed by Koenker and Bassett (1978) offers
a complete picture of the relationship between variables. Instead of just averaging over
certain values ofXj , regression quantiles give new understanding, since several quantiles
can be computed. Koenker and Bassett (1978) suggest to estimate the conditional quan-
tile by minimizing the check function [see Definition 3.1], while in regression models the
quadratic loss function is used. For each quantile an own model is formulated and the
corresponding minimization problem is solved. In Figure 2, the Prestige data from
the R package effects is analyzed with the lprq function implemented by Koenker
available in the quantreg package. The resulting estimate is a nonparametric quantile
estimator using the check function [see Koenker (2005) as review compendium]. The es-
timation of conditional quantiles via check function suffers from the fact that the quantile
curves may accidently cross each other [see Figure 2], which they are not supposed to do,
since the quantile function fixed on a certain covariate is in fact the inverse of the condi-
tional distribution function and therefore monotone increasing with respect to α. Hence,
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Figure 2: Local linear quantile estimates by check function: 0.5 quantile (straight line),
0.25 quantile (dotted line), and 0.75 quantile (dashed line).



6 INTRODUCTION

we concentrate on a different approach. Dette and Volgushev (2007) recently developed
a nonparametric conditional quantile estimator. Their approach starts with a nonpara-
metric estimate for the conditional distribution function, which is then isotonized and
reversed at the same time using the monotonization idea from Chapter 2. For this reason
the quantile curves do not cross anymore. Again, this idea is extended to a multivariate
setting with the main focus on additive quantile models.
We close the introduction with a quotation by Francis Galton, who formed the notion of
regression as well as the concept of quantiles as one of the first.

The Charms of Statistics.
It is difficult to understand why statisticians commonly limit their inquiries to
Averages, and do not revel in more comprehensive views. Their souls seem
as dull to the charm of variety as that of the native of one of our flat English
counties, whose retrospect of Switzerland was that, if its mountains could be
thrown into its lakes, two nuisances would be got rid of at once.

Sir Francis Galton, Natural Inheritance (1889), p. 62

In this spirit, we conclude that the developed estimates in the multivariate monotone
nonparametric regression model and in the additive conditional quantile model provide
new tools that there is less need to throw mountains in the lake of averages.

Concisely, the outline of this thesis is as follows. In Chapter 1, we start with an overview
of nonparametric regression in the context of an univariate covariate. We introduce ker-
nel regression estimates and discuss their properties. Moreover, we present a procedure
to monotonize a given function. In the literature, this method is called measure preserving
rearrangement [see Ryff (1970)]. Dette et al. (2006) transfered this principle to a nonpara-
metric regression setting under monotonicity constraints. Chapter 2 starts with the gen-
eralization of nonparametric regression models to higher dimensions. Afterwards, the
monotonizing procedure introduced in Chapter 1 is extended to higher dimensional es-
timation problems. This yields a strictly monotone regression estimate in d dimensions in
the framework of nonparametric regression. The asymptotic properties of this estimate
is derived. In the last Chapter 3, we utilize the idea of measure preserving rearrangement
in a different context. Estimates for the additive conditional quantile model are proposed
and analyzed asymptotically. Chapter 2 and Chapter 3 close with finite sample studies
of the developed estimates.



Chapter 1

Nonparametric estimation

1.1 Overview

This chapter starts with a summary of regression models in the context of an univariate
covariate. Motivated by linear regression, nonparametric regression techniques are in-
troduced as a flexible technique to model nonlinear data. In particular, kernel regression
estimators and their properties are regarded to get familiar with this approach in the
univariate case. Furthermore, we explain the difference between external and internal
kernel-type estimators from a bit philosophical point of view. At the end of this chapter,
we present a monotonizing procedure introduced by Dette et al. (2006) in the framework
of nonparametric regression. The basic properties of this procedure are discussed and
ranked among methods for shape constraints. Most of the ideas and procedures in this
chapter are illustrated by data examples.

1.2 Regression models

In statistics, regression analysis is one of the most commonly used technique. The aim
of such an analysis is to study the relationship between an explanatory variable X and
a response variable Y , to measure the influence or the effect of the independent variable
on the dependent variable. The regression function describes this relation between X
and Y , where Y is a function of X . In this section, we will focus on a nonparametric
regression setup, which will provide the framework of this thesis. There exits a a broad
literature on nonparametric regression techniques. We refer to the monographs of Fan
and Gijbels (1996), Wand and Jones (1995), or Härdle (1990) to get an overview of the
existing methods. But before we start to introduce the key idea of local modeling, we
have a brief look at parametric regression models.
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1.2.1 A brief survey of linear Regression

Linear models are a classical methodology in statistics, which is still widely used in many
applied sciences. This technique is well understood, and there are many tools and im-
plementations available. For a given set of data {(Xj, Yj)}nj=1 , one assumes that Yj is a
linear combination of d unknown quantities β1, . . . , βd plus error ε1, . . . , εn,

Yj = Xj1β1 +Xj2β2 + . . .+Xjdβd + εj,

where Xj = (Xj1, . . . , Xjd). The random errors εj have expected value zero

E[εj] = 0, (j = 1, . . . , n),

are uncorrelated, and have all the same variance called homoscedastic

E[εjεi] = σ2δji,

where δji is 0 or 1, according as j 6= i or i = j, respectively. In the classical analysis of
variance, the values Xjk are assumed to be counter or indicator variables which refers to the
presence or absence of the effect βk. In other words, this means Xjk is either 0 or 1. See
Scheffé (1999) for a classical reference on the analysis of variance. Our primary interest
is another case called linear regression, where the Xjk are continuous variables. Under the
above mentioned assumptions on the random error, the conditional mean E[Y |X] is a
linear function:

E[Y |X] = X1β1 + . . .+Xdβd,

where the expectation is conditioned on the vector X = (X1, . . . , Xd)
T . If the independent

variable X is one-dimensional, a straight line is a simple linear regression model,

Yj = β0 + β1Xj + εj, (j = 1, . . . , n).

This model often refers to the term linear regression in contrast to polynomial regression
models where a higher degree polynomial is used as the regression curve. The frame-
work of linear regression includes polynomial regression as well

Yj = β0 + β1Xj + β2X
2
j + . . .+ βpX

p
j + εj (j = 1, . . . , n).

Polynomial regression offers an easy model framework for regression analysis. Fitting
a polynomial regression to data {(Xj, Yj)}nj=1 using the method of least squares means
solving

min
β0,β1,...,βp

n∑
j=1

Ä
Yj − β0 + β1Xj + β2X

2
j + . . .+ βpX

p
j

ä2
. (1.1)
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There is an explicit formula for the solution of the above minimization problem, which is

β̂ = (β̂0, β̂1, . . . , β̂p)
T = (XTX)−1XTY,

where

X =

à
1 X1 X2

1 . . . Xp
1

1 X2 X2
2 . . . Xp

2
...

...
...

...
1 Xn X2

n . . . Xp
n

í
,Y =

à
Y1

Y2
...
Yn

í
.

It is not easy to determine the degree p. A widely used approach is to increase the degree
of the polynomial step by step and find the best model fit. Still the linearity assumption
is often quite restrictive, which will be discussed in the following examples.

Example 1.1 (i) The motorcycle data set mcycle in R contains a series of measure-
ments of head accelerations in a simulated motorcycle accident, used to test crash
helmets. The independent variableX is time (in milliseconds after the impact) and
the dependent variable Y is accel, the acceleration (in g). We fit three parametric
models:

Y = β0 + β1X + ε, (1.2)
Y = β0 + β1X + β2X

2 + ε, (1.3)
Y = β0 + β1X + β2X

2 + β3X
3 + ε. (1.4)

From a first look at the scatterplot in Figure 1.1, it is observable that a polynomial
fit might be problematic. Accordingly, the three polynomial fits have large biases.
Furthermore, polynomial functions have derivatives of all order, which seem to be
not the best approach in this example.

(ii) The data set PublicSchools shows the US expenditure per capita on public schools
Y as a function of the per capita income X by state in 1979. Again, we fit three dif-
ferent polynomials to the data. In parametric regression all observations are treated
the same, which can imply that a single data point has a huge influence on the
curve. Figure 1.2 shows that Alaska is a clear outlier and has large influence on
the fitting of higher degree polynomials.

1.2.2 Nonparametric Regression

Having seen the drawbacks of polynomial regression, the nonparametric regression meth-
ods fit polynomial curves locally to repair the defects of the global parametric approach.
In general, the idea of nonparametric regression is that one is only willing to assume
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Figure 1.1: Scatterplot of the motorcycle data and three polynomial fits (1.2)- (1.4) (from
top right to bottom right).
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data.
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some smoothness condition on the regression function m(·), which is modeled as the
conditional expectation

E[Y |X = x] = m(x).

As in the parametric setup, for given data {(Xj, Yj)}nj=1 we consider the nonparametric
regression model

Yj = m(Xj) + σ(Xj)εj (j = 1, . . . , n),

where the regression function m is twice continuously differentiable, the variance func-
tion σ is positive and continuous, and the random error has zero expectation and is
independent, identically distributed noise. In this model, we allow the variance to be
heteroscedastic by introducing σ(·) as a function of X . In the polynomial regression, a
specific form is used for the regression curve chosen beforehand

m(x) = β0 + β1x+ β2x
2 + . . .+ βpx

p.

Nonparametric regression techniques can be classified into three main groups: Splines,
Orthogonal Series, and Kernels. The spline approach allows discontinuities of derivative
curves, which are located in so called knots, between these knots, e.g., cubic polynomials
are fitted. The knots can be selected by data via smoothing spline method or by a step-
wise deletion method. Another approach is to expand the regression function into an
orthogonal series, where about an appropriate chosen basis function set the coefficients
have to be estimated. The third idea is a local modeling approach, on which we will fo-
cus in this thesis. Instead of fitting a line to the whole data, we fit for any given point x
a linear regression to a fraction of the data around x. The size of the local neighborhood
or local window is called bandwidth h. We are using kernel functions to incorporate
local modeling. Let K be a nonnegative function with compact support. As long as the
kernel function K decays fast enough it does not have to be compactly supported, but to
make things more comprehensible we will assume that K is supported on [−1, 1]. For a
given point x, we assign the weight K

Ä
x−Xj
h

ä
to the observation (Xj, Yj). All data with

Xj ∈ x ± h has positive weight and represent the local window. With these weights the
minimization problem (1.1) can be rewritten in

min
β0,β1

n∑
j=1

{Yj − β0 − β1(Xj − x)}2K
Ç
x−Xj

h

å
for the local linear case. To get a better feeling for this idea, we will illustrate this ap-
proach on the data sets from the last subsection.

Example 1.2 For the motorcycle and the PublicSchools data, the kernel smoothing
approach is applied to fit a linear regression locally. In Figure 1.3, it is abundantly clear
that this method to estimate the regression function in both examples works better. The
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modeling bias is reduced and the relationship between the variables is described more
reasonably as in Example 1.1. In both data sets, we use the so called Epanechnikov kernel

K(u) =
3

4
(1− u2)I[−1,1](u),

where

I[−1,1](u) =

®
1 x ∈ [−1, 1]
0 else

.

For the motorcycle data the local window x± 3.3 is used. In the next subsection, we will
give a precise definition of local polynomial estimates and how to determine the local
window size. Figure 1.3 shows the regression estimates.
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Figure 1.3: Illustrations of the local modeling approach.

1.2.3 Kernel Regression Estimators

In this subsection, we summarize key aspects about kernel estimation in the regression
setting. The exact definition of the estimators and their statistical properties are given.
We restrict ourselves to the case of one-dimensional predictors to get a better understand-
ing for the methodology, which will be helpful for the extension to higher dimensions.
In the subsequent chapters, we strictly focus on the multivariate case.

To start with the statistical framework, we assume that the given data {(Xj, Yj)}nj=1 is
independently and identically distributed (i.i.d.) and comes from the nonparametric het-
eroscedastic regression model

Yj = m(Xj) + σ(Xj)εj, (j = 1, . . . , n),
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where E[εj] = 0 and Var(εj) = 1 that E[Y |X = x] = m(x). Further we define kernels of
order q ∈ IN . Let K be a real-valued function with

∫
IR
ukK(u)du =


1 if k = 0
0 if k = 1, . . . , q − 1
c if k = q

,

||K||22 =
∫
IRK

2(u)du < ∞, and lim|u|→∞ |u|K(u) = 0. Then K is called a kernel of order
q. For q = 2, one usually assumes that K is a symmetric probability density, which
essentially means that above all K(u) ≥ 0. Often additionally, K has to be compactly
supported. IfK is symmetric, the order q is an even number. The following table outlines
some important kernel functions.

Kernel K(u)
Uniform 1

2
I[−1,1](u)

Triangle (1− |u|)I[−1,1](u)
Epanechnikov 3

4
(1− u2)I[−1,1](u)

Biweight 15
16

(1− u2)2I[−1,1](u)
Triweight 35

32
(1− u2)3I[−1,1](u)

Gaussian 1√
2π

exp
Ä
−1

2
u2
ä

Cosine π
4

cos(π
2
u)I[−1,1](u)

Table 1.1: Kernel functions

In the previous subsections, we presented kernel smoothing as the idea of fitting a poly-
nomial regression in a small neighborhood around a given point x. Let h be a posi-
tive number controlling the size of the neighborhood. We call h a bandwidth. Denote
Kh(·) = K(·/h)/h. Local polynomial estimators of degree p are defined via the minimiza-
tion problem

min
β0,β1,...,βp

n∑
j=1

{
Yj −

p∑
k=0

βk(Xj − x)k
}2

Kh(x−Xj). (1.5)

If we denote β̂ = (β̂0, β̂1, . . . , β̂p)
T as the minimizer of (1.5), the estimator for m(ν)(x) is

given by
m̂(ν)(x) = ν!β̂ν (ν = 0, . . . , p).

This relationship is easily motivated by a taylor expansion of the regression function m
since

m(z) ≈
p∑

k=0

m(k)(x)

k!
(z − x)k ≡

p∑
k=0

βk(z − x)k.
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The minimization problem (1.5) can be solved via least square method like the parametric
counterpart. The explicit solution for β̂ is

β̂ = (β̂0, β̂1, . . . , β̂p)
T =

Ä
XTWX

ä−1
XTWY,

where

X =

à
1 (X1 − x) . . . (X1 − x)p

1 (X2 − x) . . . (X2 − x)p

...
...

...
1 (Xn − x) . . . (Xn − x)p

í
, Y =

à
Y1

Y2
...
Yn

í
,

and W = diag(Kh(x−X1), . . . , Kh(x−Xn)), which basically is the solution of a weighted
least squares problem provided the invertibility of XTWX. In this setup, two estimators
are worth mentioning explicitly in the context of the general local polynomial method:
the Nadaraya-Watson estimator and the local linear estimator. The Nadaraya-Watson es-
timate corresponds to the case p = 0 and is sometimes called the local constant estimator,
i.e.

m̂NW (x) =

∑n
j=1Kh(x−Xj)Yj∑n
j=1Kh(x−Xj)

. (1.6)

See Nadaraya (1964) and Watson (1964) for further reference. This estimator is basically a
weighted sum over the response data Yj .To obtain the local linear estimator, where p = 1,
observe that β̂ can be written as

β̂ = (β̂0, β̂1)
T =

Ç
S0(x) S1(x)
S1(x) S2(x)

å−1 Ç
T0(x)
T1(x)

å
,

where

Sk(x) =
1

n

n∑
j=1

(Xj − x)kKh(x−Xj),

Tk(x) =
1

n

n∑
j=1

(Xj − x)kKh(x−Xj)Yj.

This notation yields the explicit expression

m̂LL(x) =
T0(x)S2(x)− T1(x)S1(x)

S0(x)S2(x)− S2
1(x)

.

In principle, the local linear estimate can be expressed as a weighted sum over Yj , but in
contrary to the Nadaraya-Watson estimator the weights are not positive inherently pro-
vided the kernel is positive.
In the following, we discuss some statistical properties of the Nadaraya and Watson es-
timator and the local linear estimate. We start and formulate some basic model assump-
tions.



1.2. REGRESSION MODELS 15

(A1) {(Xj, Yj)}nj=1 form a sample of independent and identically distributed observa-
tions, where Xj has a q times continuously differentiable density p supported on
[0, 1].

(A2) The variance function σ : [0, 1]→ IR+ is continuous.

(A3) The regression function m : [0, 1]→ IR is q times continuously differentiable.

(A4) Xj and εj are independent, and E[εj] = 0, E[ε2
j ] = 1, and E[ε4

j ] <∞ for j = 1, . . . , n.

(A5) K is a kernel of order q supported on [−1, 1]. Define the constant

κs(K) =
(−1)s

s!

∫ 1

−1
usK(u)du. (1.7)

In the following theorem, the asymptotic biases and variances are given. Furthermore,
the asymptotic distribution of the estimators m̂NW (x) and m̂LL(x) is established.

Theorem 1.3 Suppose that the assumptions (A1) - (A5) hold, and the bandwidth fulfills nh →
∞ and h = cn−1/(2q+1) for a constant c ∈ (0,∞). Then for x ∈ (0, 1), we have

(i) for the Nadaraya and Watson estimator

√
nh(m̂NW (x)−m(x)− bNW (x))

D→ N (0, s2(x)),

where

bNW (x) = hqκq(K)
(mp)(q)(x)−mp(q)(x)

p(x)
,

s2(x) = ||K||22
σ2(x)

p(x)
;

(ii) for the local linear estimate

√
nh(m̂LL(x)−m(x)− bLL(x))

D→ N (0, s2(x)),

where s2(x) is defined above and

bLL(x) = hqκq(K)m(q)(x).

For the expression of the bias and variance term of the estimates m̂NW and m̂LL, it is not
necessary that the bandwidth is of order O(n−1/5). In addition, a byproduct of this result
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is the asymptotic mean squared error of both, the Nadaraya-Watson and the local linear
estimate

AMSE(m̂NW (x)|X1, . . . , Xn) =
1

nh
||K||22

σ2(x)

p(x)
+ h2qκ2

q(K)

(
(mp)(q)(x)−mp(q)(x)

p(x)

)2

,

AMSE(m̂LL(x)|X1, . . . , Xn) =
1

nh
||K||22

σ2(x)

p(x)
+ h2qκ2

q(K)(m(q)(x))2.

Minimizing the asymptotic MSE yields the optimal bandwidth h for the two estimators.
In the case of the Nadaraya-Watson estimate, the optimal bandwidth h∗NW is given by

h∗NW =

(
||K||22σ2(x)

2qnκ2
q(K)((mp)(q)(x)−mp(q)(x))

)1/(2q+1)

.

Since the optimal bandwidth depends on the unknown functions m, σ, and p, for a given
estimation problem the bandwidth cannot be determined in this way. A simple rule

of thumb is to estimate the variance function σ and use ĥ∗ =
Ä
σ̂2

n

ä1/(2q+1)
, where σ̂2 is an

estimate ofE[σ2(X)]. Another approach is using cross validation to select the bandwidth.
For this method, one minimizes

CV(h) =
1

n

n∑
i=1

{Yi − m̂−i(Xi)}2,

where the estimate m̂−i(Xi) is a kernel estimator using the bandwidth h and the data
{(Xj, Yj)} but the observation (Xi, Yi). Typically, one tries to minimize CV(h) over an
appropriate interval. The bandwidth selection is an important issue in kernel smoothing
techniques. In the literature, there are different approaches to deal with this problem
[see, e.g., Fan and Gijbels (1996)].
It is worth mentioning that the optimal bandwidth h∗NW gives the rate of convergence
(similarly in the local linear case), which is of order O(n−2q/(2q+1)) for the AMSE slower
than in the parametric regression. In fact, a parametric approach yields better results, if
the underlying parametric model is true. On the other hand, most data cannot be ex-
pected to come from a parametric model. An inaccurate parametric model can create
large modeling biases, which then can lead to wrong conclusions. Nonparametric meth-
ods try to reduce this modeling bias and fit a curve from a larger class [see Fan (2000) for
prospect of nonparametric methods].

1.2.4 External and internal methods

In this subsection, we identify and distinguish between two types of kernel estima-
tors, which will be important in the discussion of Chapter 3. The random variables
Y1, . . . , Yn contain not only information about the regression function m but also about
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the distribution of the X1, . . . , Xn. Basically, the dependent variable Y corresponds to
r(x) ≡ m(x) × p(x). There are many estimators which use the relationship m = mp

p
to

estimate the regression function, e.g. recall the Nadaraya-Watson estimator in (1.6). We
assume for the moment that the density function p is known. Estimators of the form r̂(x)

p(x)

are a natural choice, namely,

m̂E(x) =
1

np(x)

n∑
j=1

Kh(x−Xj)Yj.

This is the prototype estimator of external methods. External refers to the the density
function p which appears in the external denominator. In contrary, the other type of
estimators modifies the data in the first hand. Instead of using Y1, . . . , Yn, the internal
method applies the adjusted dependent variables Y1

p(X1)
, . . . , Yn

p(Xn)
. The prototype of the

internal methods is

m̂I(x) =
1

n

n∑
j=1

Kh(x−Xj)
Yj

p(Xj)
.

Interestingly, if p is assumed to be an uniform density, m̂E(x) and m̂I(x) yield the same
estimates. This is not the case if p is a nonuniform density. The expectation of the two
estimates differs clearly [see Jones et al. (1994) for more details on this subject]. In the
random design case, the density p is unknown and has to be estimated as well. The
Nadaraya-Watson estimator m̂NW (x) (1.6), is the most famous example for external esti-
mates if p is unknown. The estimator for p is the kernel density estimator

p̂(x) =
1

n

n∑
j=1

Kh(x−Xj),

where the same bandwidth is used as for estimating r(x).
Mack and Müller (1989) propose the internal version of the Nadaraya-Watson estimator

m̂INW (x) =
1

n

n∑
j=1

Kh(Xj − x)
Yj

p̂(Xj)
,

where p̂ is the kernel density estimator. This estimator is appealing from a computational
point of view, since the kernel density estimator has to be calculated only for X1, . . . , Xn.
In the following theorem, we demonstrate the asymptotic normality of m̂INW (x). We
obtain that this estimator is less efficient than the usual Nadaraya and Watson estimator.

Theorem 1.4 Under the assumptions (A1)-(A5) from Subsection 1.2.3 and the bandwidth con-
ditions nh→∞ and h = cn−1/(2q+1) for a constant c ∈ (0,∞), we have

√
nh(m̂INW (x)−m(x)− bINW (x))

D→ N (0, s2
I(x)),
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where

bINW = hqκq(K)

(
m(q)(x)− m(x)p(q)(x)

p(x)

)
,

s2
I(x) = ||K||22

σ2(x) +m2(x)

p(x)
.

Mack and Müller (1989) use a slightly slower converging bandwidth hp for the kernel
density estimator in the denominator in contrast to just applying h as well. Under this
additional condition they get rid of the second term in the bias. This causes the same bias
as the local linear estimator.

Remark 1.5 The local linear estimator can be regarded as an estimator of an internal
form. Recall

m̂LL(x) =
1

n

n∑
j=1

S2(x)− (Xj − x)S1(x)

S0(x)S2(x)− S2
1(x)

Kh(x−Xj)Yj.

If the kernel K is of order q = 2, we have S0(x) ∼ p(x), S1(x) ∼ 2h2κ2(K)p′(x), and
S2(x) ∼ 2h2κ2(K)p(x) in terms of expectation. This yields the representation for the
fraction in the above representation of m̂LL(x)Ä

S0(x)S2(x)− S2
1(x)

ä−1 × (S2(x)− (Xj − x)S1(x))

∼ (2h2κ2(K)p2(x))−1(2h2κ2(K)p(x)− (Xj − x)2h2κ2(K)p′(x))

=

Ç
1

p

å
(x)− (Xj − x)

Ç
p′

p2

å
(x)

=

Ç
1

p

å
(x) + (Xj − x)

Ç
1

p

å′
(x) ≈ 1

p(Xj)

To make the result of the above theorem more comprehensible, we give a sketch of the
proof.

Sketch of the Proof of Theorem 1.4 We decompose the internal Nadaraya-Watson esti-
mator in the following way

m̂INW (x) =
1

n

n∑
j=1

Kh(x−Xj)
Yj

p̂(Xj)

Ç
p̂(Xj)

p(Xj)
+ (1− p̂(Xj)

p(Xj)
)

å
=

1

n

n∑
j=1

Kh(x−Xj)
Yj

p(Xj)
+

1

n

n∑
j=1

Kh(x−Xj)
Yj

p̂(Xj)

Ç
p(Xj)− p̂(Xj)

p(Xj)

å
.

For the first term, we can easily derive

E

 1

n

n∑
j=1

Kh(x−Xj)
Yj

p(Xj)

 =
∫
Kh(x− u)m(u)du

= m(x) + hqκq(K)m(q)(x)
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using Yj = m(Xj) + σ(Xj)εj . For the second term, a similar decomposition as in the first
step has to be used, since the term is not negligible, and the kernel density estimator
p̂ can not be just exchanged by the true density as in the case of the Nadaraya-Watson
estimator.

1

n

n∑
j=1

Kh(x−Xj)
Yj

p̂(Xj)

Ç
p(Xj)− p̂(Xj)

p(Xj)

å
= ∆n(x) + op

Ç
hq +

1

nh

å
,

where

∆n(x) =
1

n

n∑
j=1

Kh(x−Xj)

Ç
p(Xj)− p̂(Xj)

p2(Xj)

å
Yj.

To calculate the expectation of ∆n(x), we first condition on Xj and then use the asymp-
totic bias of the kernel density estimator p̂ [see Härdle et al. (2004) p. 47 ff].

E[E[∆n(x)|Xj]] = −hqκq(K)E

 1

n

n∑
j=1

Kh(x−Xj)
p(q)(Xj)

p2(Xj)
m(Xj)


= −hqκq(K)

∫
Kh(x− u)

p(q)(u)

p(u)
m(u)du

= −hqκq(K)
∫
K(v)

p(q)(x− hv)

p(x− hv)
m(x− hv)dv

= −hqκq(K)
p(q)(x)m(x)

p(x)
+ o(hq).

Note that a slightly slower bandwidth for the kernel density estimator p̂ yields ∆n(x) to
be of order o(hq). To estimate the variance of m̂INW (x), we detect that only

1

n

n∑
j=1

Kh(x−Xj)
Yj

p(Xj)

contributes. We compute the variance and obtain

Var

Ñ
1

n

n∑
j=1

Kh(x−Xj)
m(Xj) + σ(Xj)εj

p(Xj)

é
=

1

n

∫
K2
h(x− u)

m2(u) + σ2(u)

p(u)
du

− 1

n
(m(x) + hqκq(K)m(q)(x))

=
1

nh
||K||22

m2(x) + σ2(x)

p(x)
(1 + o(1)).
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1.3 Monotonizing Procedure

In the previous section, the framework of nonparametric regression was briefly sum-
marized. We motivated the kernel smoothing techniques by a local parametric fitting
idea. The polynomial regression globally (parametric) and locally (nonparametric), re-
spectively, are in some sense two methods on either side of the spectrum of fitting a
regression model. The parametric model may be too smooth, while the unrestricted non-
parametric approach is likely to be too erratic. A regression model somewhere in be-
tween these two extremes is in most cases more adequate. However, in implementations
to fit a polynomial is convenient, even though this is for computational reasons than that
one assumes this particular parametric form. Whereas nonparametric regression models
assume that the underlying regression curve belongs to a quite general class of smooth
function, additional shape constraints downsize this class to a often more reasonable and
natural class of functions.
In many situations, researchers strongly believe in a particular form of the regression
function. For example, they investigated that the regression curve has to be unimodal,
convex, or monotone. Unimodality occurs if a regression curve is monotone increasing
up to a certain value and monotone decreasing afterwards. If the covariate is the time
and the response variable counts the outbreaks of a disease, it can be reasonable to as-
sume that at the beginning more and more people get infected until it reaches a peak, and
later on this number goes slowly back. In this thesis, we will discuss monotonic shape
constraints. The vocable monotonic can mean either isotonic or antitonic. Isotonic or
monotone increasing indicates that two variables have the same tone, whereas antitonic
or monotone decreasing says the converse. Monotonic relationships are often important
for interpretation. Actually, if an estimate for a monotone regression function does not
fulfill the monotonicity condition, researchers fail to draw a meaningful conclusion.
In the literature, there is a broad variety of methods to estimate a monotone regression
function. See Barlow et al. (1972) or Robertson et al. (1988) for a comprehensive and
detailed introduction into statistical inference under order restriction. Most of these ap-
proaches only deal with the univariate regression model. In particular, there is a new
method proposed by Dette et al. (2006) in the context of nonparametric regression mod-
els, which compared to other more intrinsic methods is an easy applied methodology.
Actually, the procedure can also be used in other regression settings. In the following,
the basic idea and the application of this monotonizing procedure is described.

Example 1.6 To give an example for a monotone nonparametric regression setup, we
analyze the historical cars data set in the datasets package in R containing speed and
stopping distances of 50 cars. The more speed a car has the longer is the distance taken to
stop. In Figure 1.4, you can compare an unconstrained Nadaraya and Watson estimator
in R implemented through the function ksmooth, the estimate suggested by Dette et al.
(2006) and implemented through monoproc, which is a smooth and monotonized version
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Figure 1.4: Different regression estimates.

of the Nadaraya and Watson estimate, and the isotonic least square regression which is
piecewise constant by the function isoreg. For many examples, a piecewise constant
monotone function may be sufficient for an analysis, but often practitioners disapprove
the “flat” spots of this estimator [see Wright (1978)].

1.3.1 Motivation

There are two ways to motivate the general idea of the monotonizing procedure from
Dette et al. (2006). In the context of nonparametric estimation, we consider an indepen-
dent and identically distributed sample of uniformly distributed random variables, say
U1, . . . , Un ∼ U([0, 1]). For an arbitrary strictly increasing and continuous function g on
the interval [0, 1] with positive derivative, we define the kernel density estimate for the
random variable g(U1)

1

Nhm

N∑
i=1

Km

Ç
g(Ui)− u

hm

å
,

where Km is a positive kernel function with the corresponding bandwidth hm. The in-
dex m indicates the monotonization aspect of the kernel and its bandwidth and is used
throughout this thesis. The density of g(U1) is in fact (g−1)′(u)I[g(0),g(1)](u), so that the



22 CHAPTER 1. NONPARAMETRIC ESTIMATION

integrated density estimator

1

Nhm

N∑
i=1

∫ t

−∞
Km

Ç
g(Ui)− u

hm

å
du

is in consequence an consistent estimate of the function g−1 at the point t ∈ Im(g) (taken
as a distribution function in some sense). An estimate for g is obtained by reversing the
above estimate, which is strictly increasing with respect to t for t ∈ Im(g). This is the
kernel interpretation of the monotonizing method.
On the other hand, for a strictly monotone function g on [0, 1] the inverse can be calcu-
lated simply by integrating

g−1(t) =
∫ 1

0
I{g(y) ≤ t}dy.

In general for an arbitrary function g measurable on [0, 1] with respect to the Lebesgue
measure,

g−1
I (t) =

∫ 1

0
I{g(y) ≤ t}dy

is called the distribution of g for t ∈ Im(g). The increasing rearrangement

gI(t) = inf
g−1
I (y)≥t

y

has the same distribution function as g, which is basically the generalized inverse of the
distribution function g−1

I . The function g−1
I is non-decreasing and continuous to the right.

Roughly speaking, stretches of constancy of a continuous g correspond to discontinuities
of g−1

I . Two functions with the same distribution function are called equidistributed. In
the literature this approach is called measure preserving rearrangement [see Ryff (1970),
Bennett and Sharpley (1988), or Zygmund (2002)]. This glance at the monotonizing pro-
cedure allows to grasp this approach as shifting the measure of a function to the right. In
the following, we illustrate the idea by examples.

Example 1.7 (i) In the first example, we analyze the function

g(x) =
1

2
I[0, 1

3
)(x) +

1

4
I[ 1

3
, 2
3
)(x) +

3

4
I[ 2

3
,1](x),

which is a piecewise constant function. Note that this function is not continuous.
The distribution function g−1

I is discontinuous in 0.25, 0.5, and 0.75. Outside of
Im(g) = {0.25, 0.5, 0.75}, the distribution function g−1

I is constant. In the following
chapter, we use continuous functions and estimates only in order to obtain a strictly
monotone estimate. Figure 1.5 shows the function g, its distribution function g−1

I ,
and the increasing rearrangement gI . It is easy to see that the blocks are just shifted
in the right order to obtain an increasing rearrangement.
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0.0 0.2 0.4 0.6 0.8 1.0
0.

3
0.

4
0.

5
0.

6
0.

7

x

y

Figure 1.5: The function g, its distribution function g−1
I (dotted line), the increasing rear-

rangement gI (dashed line).

(ii) The decreasing rearrangement is constructed as the inverse of the corresponding
non-increasing distribution function

g−1
A (t) =

∫ 1

0
I{g(y) > t}dy.

In Figure 1.6, the function g(x) = 4(x − 1
2
)2 is displayed with its increasing and
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Figure 1.6: Left panel: The function g, its distribution function g−1
I (dotted line), the

increasing rearrangement gI (dashed line). Right panel: The function g, its distribution
function g−1

A (dotted line), and the decreasing rearrangement gA.



24 CHAPTER 1. NONPARAMETRIC ESTIMATION

decreasing rearrangements.

(iii) The last example shows a more elaborate function

g(x) = x+
1

4
sin(4πx)

with its increasing rearrangement. Figure 1.7 displays the results.
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Figure 1.7: The function g, its distribution function g−1
I (dotted line), the increasing rear-

rangement gI (dashed line).

Since the indicator function I is not continuous, we approximate it continuously by an
integrated kernel function

I{g(y) ≤ t} ≈
∫ t

−∞

1

hm
Km

Ç
g(y)− u
hm

å
du,

where Km is a positive kernel with the bandwidth hm. For hm → 0, the approximation
can be justified. For a continuous function g on the compact interval [0, 1], the right hand
side of the above expression is continuous for t ∈ Im(g). This means that discontinuities
of the left side are approximated continuously by the integrated kernel function. Finally,
to simplify the expression computationally the outer integral is approximated by a sum.
We obtain ∫ 1

0
I{g(y) ≤ t}dy ≈ 1

N

N∑
i=1

∫ t

−∞

1

hm
Km

Ç
g(i/N)− u

hm

å
du.

If hm → 0 and N → ∞ sufficiently fast, it seems clear that both sides behave similarly.
To investigate the differences, we discuss Example 1.7 (i) again. See Figure 1.8, which
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displays the distribution function g−1
I and the increasing rearrangement of the function

g from Example 1.7 (i) using the approximation by an integrated kernel function. We
used a uniform kernel and the bandwidth hm = 0.05. Note that the discontinuities in
Example 1.7 (i) are approximated by a straight line with a positive slope determined by
the bandwidth hm > 0 and the length of the stretches of constancy.
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Figure 1.8: The function g, its continuously approximated distribution function g−1
I (dot-

ted line), the increasing rearrangement gI (dashed line).

1.3.2 Monotonizing Procedure

In order to fix ideas, we illustrate the application of this procedure to construct a strictly
monotone estimate for a regression function. Let g : [0, 1] → IR denote an arbitrary con-
tinuous function or a continuous estimate. We define the smooth monotonized inverse
by

g−1
I (t, hm) =

1

Nhm

N∑
i=1

∫ t

−∞
Km

(
g( i

N
)− u
hm

)
du,

whereKm is a positive twice continuously differentiable, symmetric kernel supported on
[−1, 1] and t ∈ Im(g). The bandwidth hm satisfies hm → 0 with increasing N . Further,
we denote the inverse of g−1

I (t, hm) as gI(t, hm). This inverse is easy obtainable for t ∈
Im(g) since g−1

I (t, hm) is a strictly increasing function as the kernel Km is positive and
continuous. Accordingly, the strictly decreasing transformation is obtained as the inverse
of

g−1
A (t, hm) =

1

Nhm

N∑
i=1

∫ ∞
t

Km

(
g( i

N
)− u
hm

)
du
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for t ∈ Im(g). To keep things simple, we restrict ourselves to the case of increasing re-
arrangements, but the results can be carried over accordingly to the case of a strictly de-
creasing rearrangements. As we have seen in the last subsection, the crucial point to get
a strictly increasing rearrangement is to assume continuity of the unconstrained function
and to apply the monotonzing inversion only for values t ∈ Im(g). Recapitulatory, this
monotonizing procedure is a two-step procedure applied on a given continuous function
or estimate g.

Step 1 Isotonization
Assess

g−1
I (t, hm) =

1

Nhm

N∑
i=1

∫ t

−∞
Km

(
g( i

N
)− u
hm

)
du,

which is a strictly increasing function with respect to t on Im(g) provided N is large
enough.

Step 2 Inversion
The inverse of g−1

I (t, hm) is calculated and denoted by gI(t, hm). This function is
strictly increasing.

Next we present an important result of this smoothed measure preserving rearrange-
ment.

Lemma 1.8 If the function g is strictly increasing and twice continuously differentiable, we have
for any t ∈ Im(g) with g′(g−1(t)) > 0

g−1
I (t, hm) = g−1(t) + κ2(Km)h2

m(g−1)′′(t) + o(h2
m) +O

Ç
1

Nhm

å
,

gI(t, hm) = g(t) + κ2(Km)h2
m

g′′(t)

(g′(t))2
+ o(h2

m) +O

Ç
1

Nhm

å
, (1.8)

where the constant κ2(Km) is defined in (1.7).

The proof of this result can be found in Dette et al. (2006). To prove the second statement
(1.8), the operator which maps a non-decreasing function g to its “quantile” g−1(t), has
to be examined carefully. We briefly describe this operator to make the proofs in the next
chapter more comprehensible. For fixed t ∈ IR and for some open set D ⊆ IR let M
denote the set of all twice continuously differentiable functions of the form g : D → IR,
which contain t in the interior of g(D), and have a positive derivative in a neighborhood
of the point g−1(t). Then we consider the functional

Φ :

®
M→ [0, 1]
g → g−1(t)

,
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and define for g1, g2 ∈M the function

Q :

®
[0, 1]→ IR

λ→ Φ(g1 + λ(g2 − g1))
.

If Q′(0) exists, it is the Gâteaux derivative of the functional Φ at g1 in the direction of
g2 − g1. In particular, Q is twice continuously differentiable with

Q′(λ) = − (g2 − g1)

g′1 + λ(g′2 − g′1)
◦ (g1 + λ(g2 − g1))

−1(t) (1.9)

Q′′(λ) = Q′(λ)

® −2(g′2 − g′1)
g′1 + λ(g′2 − g′1)

+
(g2 − g1)(g

′′
1 + λ(g′′2 − g′′1))

(g′1 + λ(g′2 − g′1))2

´
◦Q(λ), (1.10)

where g′1, g′2, and g′′1 , g′′2 are the first and the second derivatives of g1 and g2, respectively.
The symbol ◦ denotes the composition of functions, i.e., (f ◦ g)(x) = f(g(x)). To apply
this result, consider g1 = g−1 and g2 = g−1

I . For t ∈ (0, 1), we define the quantity ε =

min
{
g(t)−g(0)

2
, g(1)−g(t)

2

}
> 0 and the set D = (g(t) − ε, g(t) + ε). Since the support of g−1

I

contains the set D, we have the following relationship through a Taylor expansion of Q

gI(t)− g(t) = Φ(g−1
I )− Φ(g−1) = Q(1)−Q(0) = Q′(λ∗)

for an appropriate λ∗ ∈ [0, 1] with

Q′(λ∗) = − (g−1
I − g−1)

(g−1)′ + λ∗((g−1
I )′ − (g−1)′)

◦ (g−1 + λ∗(g−1
I − g−1))−1(t).

With this construction the difference gI(t)−g(t) can be expressed in terms of g−1
I and g−1.

For g−1
I an explicit expression is available and we obtain an functioning term for gI to

work with. This is the essential step for all assertion about properties of the monotonized
function gI .
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Chapter 2

Multivariate monotone regression

2.1 Overview

In this chapter, the nonparametric regression setting with a one-dimensional covariate
is extended to higher dimensional covariates. In Section 2.2, kernel regression estima-
tors are introduced for a d-dimensional independent variable X. The corresponding
asymptotic properties in this context are summarized as well. Section 2.3 deals with
the problem of estimating a multivariate regression function under monotonicity con-
straints. So far, partly due to computational difficulties multivariate predicators have not
been considered in regression models under certain shape constraints as much as uni-
variate ones. We propose a strictly monotone regression estimate in d-dimensions which
starts with an unconstrained nonparametric regression estimate and uses successively
the one-dimensional monotonizing procedure from Chapter 1. In the case of a strictly
monotone regression function, it is shown that the new estimate is first order asymptotic
equivalent to the unconstrained kernel estimator, and asymptotic normality of an appro-
priate standardization of the estimate is established. In the last section, the methodology
is also illustrated by means of a simulation study, and two data examples are analyzed.

2.2 Multivariate Regression Estimation

In this section, we extend nonparametric regression models to higher dimensions. In the
previous chapter, the theory for a one-dimensional predictor was developed. For a finite
set {(Xj, Yj)}nj=1 of i.i.d. observations, we consider the following model

Yj = m(Xj) + σ(Xj)εj, j = 1, . . . , n (2.1)

where Xj = (Xj1, . . . , Xjd)
T is a d-dimensional vector of independent variables. The

functions m and σ are the unknown regression and variance function. ε denotes a ran-
dom error with E[εj] = 0 and E[ε2

j ] = 1, such that the regression function is defined as
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the conditional expectation

E[Yj|Xj = x] = m(x) = m(x1, . . . , xd),

where x = (x1, . . . , xd). In the last chapter, nonparametric kernel estimators were intro-
duced. LetK be a d-dimensional kernel function of order 2, this means that

∫
K(u)du = 1

and
1

2

∫
uuTK(u)du = Idκ2(K)

with Id as the d× d identity matrix and κ2(K) ≥ 0. Further we define

KH(u) =
1

det(H)
K(H−1u),

whereH is a nonsingular positive definite d×dmatrix, the so called bandwidth matrix. The
extension of the Nadaraya-Watson estimator to higher dimensions is straightforward as
the weighted average with the d-dimensional kernel function

m̂NW (x) =

∑n
j=1KH(x−Xj)Yj∑n
j=1KH(x−Xj)

.

Analogously, local linear estimators are defined by solving the minimization problem

min
β0,β1,...,βd

n∑
j=1

{
Yj − β0 −

d∑
k=1

βk(Xjk − xk)
}2

KH(x−Xj),

where β0 = m(x) and βk = ∂
∂xk

m(x) for k = 1, . . . , d. The solution to this weighted least
square problem can be written as

β̂ = (β̂0, β̂1, . . . , β̂d)
T = (XTWX)−1XTWY (2.2)

using the notations

X =

à
1 (X11 − x1) . . . (X1d − xd)
1 (X21 − x1) . . . (X2d − xd)
...

...
...

1 (Xn1 − x1) . . . (Xnd − xd)

í
, Y =

Ü
Y1
...
Yn

ê
,

and W = diag(KH(x −X1), . . . , KH(x −Xn)). The multivariate local linear estimator is
then given by

m̂LL(x) = β̂0 (2.3)

provided the invertibility of XTWX.
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Example 2.1 For d = 2 and for fixed x = (x1, x2)
T an explicit formula for the local linear

estimator can be derived. Denote

Slk(x) =
n∑
j=1

KH(x−Xj)(Xj1 − x1)
l(Xj2 − x2)

k,

Tlk(x) =
n∑
j=1

KH(x−Xj)(Xj1 − x1)
l(Xj2 − x2)

kYj.

The least square solution for the local linear estimation problem (2.2) becomes

β̂ =

Ö
S00 S10 S01

S10 S20 S11

S01 S11 S02

è−1Ö
T00

T10

T01

è
.

More precisely, the local linear regression estimator is given by

m̂LL(x) =
(S20S02 − S2

11)T00 + (S10S11 − S01S20)T01 + (S01S11 − S02S10)T10

2S01S10S11 − S02S2
10 − S00S2

11 − S2
01S20 + S00S02S20

.

2.2.1 Asymptotic Properties

In this subsection, we shortly give an overview of the statistical properties of the es-
timates m̂NW (x) and m̂LL(x) in the multivariate case. Similar results as in the one-
dimensional case are stated. A more detailed derivation can be found in Ruppert and
Wand (1994). The following model assumptions regarding (2.1) are needed and formu-
lated in analogy to Chapter 1:

(A1) Xj , j = 1, . . . , n is an i.i.d. sample with a twice continuously differentiable positive
density, say p, supported on [0, 1]d. The gradient of p is denoted by∇p.

(A2) σ : [0, 1]d → IR+ is a continuous variance function.

(A3) The regression function m : [0, 1]d → IR is twice continuously differentiable with
respect to all arguments. We denote the gradient of m as ∇m and the Hessian
matrix of m asH(m).

(A4) The random error εj and Xj are independent, E[εj] = 0, and E[ε2
j ] = 1 for j =

1, . . . , n. For an asymptotic normality result, we further assume E[ε4
j ] < ∞ for

j = 1, . . . , n.

(A5) K is a symmetric d-dimensional kernel of order 2 (see above) compactly supported
on [−1, 1]d.
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(A6) All entries of the bandwidth matrix H and n−1 det(H) tend to zero as n → ∞,
whereas H remains symmetric and positive definite. In addition, there exists a
fixed constant L such that the ratio of its largest to its smallest eigenvalue is at most
L for all n.

Theorem 2.2 Assume that the assumptions (A1)-(A6) are satisfied. Let x be a fixed point in the
interior of supp(p).

(i) Then for the Nadaraya-Watson estimate m̂NW (x), we obtain

E [m̂NW (x)−m(x)|X1, . . . ,Xn] = κ2(K)

Ç
2
∇m(x)THHT∇p(x)

p(x)

+ tr(HTH(m)H)

å
+ op(H

TH)

Var(m̂NW (x)|X1, . . . ,Xn) =
(1 + op(1))

n det(H)
||K||22

σ2(x)

p(x)
.

(ii) Analogously, for the local linear estimate m̂LL(x) we have

E [m̂LL(x)−m(x)|X1, . . . ,Xn] = κ2(K)tr(HTH(m)H) + op(H
TH)

Var(m̂LL(x)|X1, . . . ,Xn) =
(1 + op(1))

n det(H)
||K||22

σ2(x)

p(x)
.

Remark 2.3 The leading terms of the conditional bias and variance of the Nadaraya-
Watson estimator and the local linear one in the above theorem do not depend on X1, . . . ,Xn.
In particular, under some additional conditions m̂NW (x) and m̂LL(x) are asymptotically
normal as the univariate estimates [see Theorem 1.3] with asymptotic bias and variance
given in Theorem 2.2.

Remark 2.4 In this chapter, we assume that the kernel K is of order 2. It is possible
to extend the results for higher order kernels. On the other hand, further smoothness
conditions on m are necessary for kernels of order q > 2 [see Chapter 1]. In Chapter 3,
we apply higher order multivariate kernels in the context of additive quantile models to
obtain the optimal convergence rate.

The asymptotic expressions for the conditional bias and variance in Theorem 2.2 for the
Nadaraya-Watson estimator and the local linear estimate, respectively, yield the follow-
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ing asymptotic expression for the conditional mean squared error

AMSE(m̂NW (x)|X1, . . . ,Xn) =
1

n det(H)
||K||22

σ2(x)

p(x)
(2.4)

+κ2
2(K)

Ç
2
∇m(x)THHT∇p(x)

p(x)
+ tr(HTH(m)H)

å2

AMSE(m̂LL(x)|X1, . . . ,Xn) =
1

n det(H)
||K||22

σ2(x)

p(x)
+ κ2

2(K)
Ä
tr(HTH(m)H)

ä2
(2.5)

The optimal choice of the bandwidth matrixH for the estimate m̂NW (x) or m̂LL(x) would
be a matrix which minimizes (2.4) and (2.5), respectively. We simplify these problem and
consider the bandwidth matrix H = h · Id, where Id is the d × d identity matrix. This
means that all components are treated with the same bandwidth h. In the case of the
Nadaraya-Watson estimate, we obtain

1

nhd
||K||22

σ2(x)

p(x)
+ h4κ2

2(K)

Ç
2
∇m(x)T∇p(x)

p(x)
+ tr(H(m))

å2

.

Differentiating leads to

− 1

nhd+1
||K||22

σ2(x)

p(x)
+ 4h3κ2

2(K)

Ç
2
∇m(x)T∇p(x)

p(x)
+ tr(H(m))

å2

= 0,

so that the optimal bandwidth h∗NW has the following form

h∗NW =

Ç ||K||22σ2(x)p(x)

4nκ2
2(K)(2∇m(x)T∇p(x) + p(x)tr(H(m)))2

å1/(d+4)

.

The optimal bandwidth h depends on n,K, σ, p, andm and converges at the rate n−1/(d+4).
For the asymptotic mean squared error, this implies a convergence rate of n−4/(d+4). The
larger d the slower the speed of convergence, this melts down to the so called curse of
dimensionality. The idea of averaging locally requires enough observations in each local
window which is problematic in higher dimensions due to data sparseness.

Example 2.5 Figure 2.1 shows the Nadaraya-Watson estimate for the two-dimensional
regression function

m(x, y) =
1

2

Ç
x+

1

6π
sin(6πx)

åÄ
1 + (2x− 1)3

ä
on the square [0, 1]2. We simulated 200 observations uniformly distributed, with σ(x, y) =
0.5, and ε ∼ N (0, 1). We used two different bandwidths to demonstrate the phenomena
of over- and under-smoothing.
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Figure 2.1: Two-dimensional Nadaraya-Watson estimates with different bandwidths.

To close this subsection, a strong uniform convergence result for the Nadaraya-Watson
estimator in higher dimensions is presented at the rate

θn =

Ç
log n

n hd

å1/2

,

where again H = h · Id, which will be used in the next section. Further details on this
result can be found in Collomb and Härdle (1986).

Theorem 2.6 Suppose θ−1
n h2 ≤ C < ∞ for all n ∈ IN , Y is bounded, the second derivatives of

p and m · p are uniformly bounded. Then we have for all compact intervals J , where p is bounded
below by a strictly positive number,

θ−1
n sup

x∈J
|m̂NW (x)−m(x)| = O(1) w.p.1.

2.3 Multivariate monotone Regression Estimates

In the previous section, nonparametric methods to estimate a regression function in sev-
eral variables were introduced. In some settings, there are restrictions that the relation-
ship between a dependent random variable Y and an explanatory variable X is order-
preserving. In contrast to linear regression, where a particular functional form of the
relationship is assumed, our aim is to estimate a regression function under monotonicity
constraints with no further specifications except for smoothness conditions. Typical ex-
amples appear in economics where curvature and monotonicity apply to indirect utility,
expenditure, production, profit, and cost function [Gallant and Golub (1984), Matzkin
(1986), or Aı̈t-Sahalia and Duarte (2003) among others], or in medicine where the proba-
bility of contracting a certain disease, say cancer, depends monotonically on certain fac-
tors like smoking frequency, drinking frequency, or weight [see, e.g., Hall et al. (2001)].
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In the following, we propose a new strictly monotone estimate for higher dimensions.
In univariate settings, there are quite a few monotone estimates available. This is dif-
ferent in multivariate regression setups. Because of the computational difficulties in
higher dimensions, several authors propose alternative methodologies such as additive
isotonic regression [see Bacchetti (1989)] or hybrid-type estimators [see Mukarjee and
Stern (1994)].
Since [0, 1]d ⊂ IRd cannot be totally ordered, it is worth to give some thoughts to the def-
inition of monotonicity in higher dimensions. For x and x′ with x ≤ x′, where x ≤ x′

means that xk ≤ x′k for all k = 1, . . . , d, a function m is called monotone increasing if
m(x) ≤ m(x′). Equivalently, we can define a strictly monotone function m with d argu-
ments as a function which is strictly monotone in each argument. This definition allows
a meaningful interpretation for a monotone function in higher dimensions. In regression
models, the variables usually correspond to certain influencing values, e.g. we consider
the body fat of a person as the response variable depending on the height and the weight
as the independent variables. We suspect that the body fat percentage of a person is
higher the fatter and lower the taller a person is. This is an example of a strictly mono-
tone two-dimensional regression model. The regression function m is supposed to be
strictly monotone increasing with respect to weight and strictly monotone decreasing
with respect to height. This quite simple example describes in a more informal way what
we mean by strictly monotone regression in higher dimensions.
In the following, we consider the model (2.1) under additional monotonicity constraints.
The i.i.d. sample {(Xj, Yj)}nj=1 with Xj = (Xj1, . . . , Xjd)

T are realizations from the model:

Yj = m(Xj) + σ(Xj)εj (2.6)
= m(Xj1, . . . , Xjd) + σ(Xj1, . . . , Xjd)εj (j = 1, . . . , N),

where m is assumed to be strictly monotone with respect to each variable. For simplic-
ity, we suppose that m is strictly increasing for each variable X1, . . . , Xd. In the next
subsection, we introduce a strictly monotone estimate for higher dimensions using the
monotonizing procedure presented in Chapter 1.

2.3.1 The strictly monotone estimate

The idea, we will utilize to construct a strictly monotone nonparametric regression es-
timate, is applying the monotonizing procedure introduced in Chapter 1 stepwise. We
start with an unconstrained nonparametric regression estimate m̂(x) for m(x) like the
Nadaraya and Watson estimator m̂NW (x) or the local linear estimate m̂LL(x). Then the
function is monotonized step by step for each variable. To clarify this approach, let
m̂(x1, . . . , xd) be a continuous nonparametric estimate of the regression function. We
denote xk = (x1, . . . , xk−1, xk+1, . . . , xk)

T the vector of all variables but xk. The kernel Km

is positive and supported on [−1, 1] with corresponding bandwidth hm. Furthermore,
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the kernel Km is twice continuously differentiable and K ′m is Lipschitz continuous. Note
that for a strictly increasing function in the kth argument m−1

k (z|xk) is the inverse of m
with respect to xk where xk is fixed. Moreover, ∂

∂xk
m(xk, xk) indicates the partial deriva-

tive regarding the kth argument. Using these notations, the monotonizing procedure is
applied as follows.

Step 1 Isotonization with respect to the first coordinate
For fixed x1 ∈ (0, 1)d−1, define

m̂−1
I1

(z|x1) =
1

Nhm

N∑
i=1

∫ z

−∞
Km

(
m̂( i

N
, x1)− u
hm

)
du,

where m̂ is an unconstrained estimator for m. m̂−1
I1

(z|x1) is a strictly increasing
function of z provided N is large enough on Im(m(·, x1)).

Step 2 Inversion with respect to the first coordinate
For fixed x1, the inverse of the strictly increasing function m̂−1

I1
(z|x1) is computed

and denoted by m̂I1(x1, x1). This function is strictly increasing in x1.

Step 3 Isotonization with respect to the second coordinate
Now we fix x2 ∈ (0, 1)d−1 and define

m̂−1
I1,2

(z|x2) =
1

Nhm

N∑
i=1

∫ z

−∞
Km

(
m̂I1(

i
N
, x2)− u
hm

)
du,

which is again a strictly increasing function in z for fixed x2.

Step 4 Inversion with respect to the second coordinate
For fixed x2 ∈ (0, 1)d−1, the inverse of m̂−1

I1,2
(z|x2) is calculated and denoted by

m̂I1,2(x2, x2).

and so on until the dth coordinate.

Step 2d Inversion with respect to the last coordinate
The estimate after the dth isotonization is denoted by m̂I1,...,d(x1, . . . , xd) which is
again defined as the inverse of m̂−1

I1,...,d
.

It is possible to monotonize just a few directions, e.g. to stop after k monotonizations. Or
it is possible to isotonize some directions and to antitonize others by using

m̂−1
Ak

(z|xk) =
1

Nhm

N∑
i=1

∫ ∞
z

Km

(
m̂( i

N
, xk)− u
hm

)
du

as the antitone version of m̂−1
Ik

to obtain a strictly decreasing estimate in the kth direc-
tion. The inverse of m̂−1

Ak
(z|xk) denoted by m̂Ak(xk, xk) is strictly decreasing with respect
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to xk. To be precise, we indicate the isotonization by the subscript I versus A for the
antitone counterpart. The subscripts of I and A, respectively, name the monotonized
variables. The crucial point of this stepwise construction is that the monotonicity of the
estimate m̂I1(x1, x1) in x1 is not destroyed in the next monotonizing step. The following
two lemmas cover this problem and show that one can use this univariate monotonizing
procedure step by step for each variable.
The first Lemma analyzes Step 1 of the monotonizing procedure with respect to the first
coordinate. By exchanging the order of the coordinates, this result can be applied with
respect to each coordinate.

Lemma 2.7 Assume that the preliminary continuous estimate m̂(x1, x2, . . . , xd) is strictly in-
creasing in x2, then for sufficiently large N the estimate m̂−1

I1
(z|x2, . . . , xd) obtained after the first

step of the monotonizing procedure is

(i) strictly increasing in z ∈ Im(m̂(·, x1)) for fixed x1;

(ii) strictly decreasing in x2 for fixed z ∈ Im(m̂(·, x1)) and fixed x3, . . . , xd.

Proof (i) Fix z < z′ and x1 with z, z′ ∈ Im(m̂(·, x1)) and we have

m̂−1
I1

(z′|x1)− m̂−1
I1

(z|x1)

=
1

Nhm

N∑
i=1

(∫ z′

−∞
Km

(
m̂( i

N
, x1)− u
hm

)
du−

∫ z

−∞
Km

(
m̂( i

N
, x1)− u
hm

)
du

)

=
1

Nhm

N∑
i=1

∫ z′

z
Km

(
m̂( i

N
, x1)− u
hm

)
du > 0.

The last inequality is true, since we can choose N as large as at least one j ∈
{1, . . . , N} exists with

∣∣∣∣ m̂( j
N
,x1)−u
hm

∣∣∣∣ < 1 for u ∈ (z, z′). Recall z, z′ ∈ Im(m̂(·, x1)).

For j with
∣∣∣∣ m̂( j

N
,x1)−u
hm

∣∣∣∣ < 1, we get using the positivity and the continuity of Km

∫ z′

z
Km

(
m̂( j

N
, x1)− u
hm

)
du > 0.

This concludes the assertion of (i).

(ii) This time, we fix z ∈ Im(m̂(·, x1)), x3, . . . , xd and x2 < x′2 and obtain for the differ-
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ence

m̂−1
I1

(z|x′2, x3, . . . , xd)− m̂−1
I1

(z|x2, x3, . . . , xd)

=
1

Nhm

N∑
i=1

Ñ∫ z

−∞
Km

(
m̂( i

N
, x′2, x3, . . . , xd)− u

hm

)
du

−
∫ z

−∞
Km

(
m̂( i

N
, x2, x3, . . . , xd)− u

hm

)
du

é
=

1

Nhm

N∑
i=1

Ñ∫ z−(m̂( i
N
,x′2,x3,...,xd)−m̂( i

N
,x2,x3,...,xd))

−∞
Km

(
m̂( i

N
, x2, x3, . . . , xd)− u

hm

)
du

−
∫ z

−∞
Km

(
m̂( i

N
, x2, x3, . . . , xd)− u

hm

)
du

é
= − 1

Nhm

N∑
i=1

∫ z

z−(m̂( i
N
,x′2,x3,...,xd)−m̂( i

N
,x2,x3,...,xd))

Km

(
m̂( i

N
, x2, x3, . . . , xd)− u

hm

)
du < 0

For we second equation, we used the following substitution

u→ (m̂(
i

N
, x′2, x3, . . . , xd)− m̂(

i

N
, x2, x3, . . . , xd)) + u

to get the same arguments in the kernel function Km. Since m̂( i
N
, x2, x3, . . . , xd) is

supposed to be strictly increasing in its second argument, we have

m̂(
i

N
, x′2, x3, . . . , xd)− m̂(

i

N
, x2, x3, . . . , xd) > 0.

Again, we can choose N so large that there exists at least one j with

Km

(
m̂( j

N
, x2, x3, . . . , xd)− u

hm

)
> 0.

This completes the proof of the lemma. 2

The next lemma finally combines this result and makes sure that the monotonicity of
a variable is not destroyed by monotonizing another variable through this approach.
Therefore it is possible to apply the procedure stepwise for several covariates.

Lemma 2.8 For sufficiently large N and a continuos estimate m̂, the monotonized estimate
m̂I1,...,d(x1, . . . , xd) is strictly increasing with respect to all d arguments.
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Proof To prove this assertion, we apply a mathematical induction on d and use Lemma
2.7. The basis for this induction is somehow clear from the construction of m̂I1(x1) with a
one-dimensional covariate. We obtain m̂I1(x1) as the inverse of a strictly increasing func-
tion m̂−1

I1
for sufficiently large N and a continuous estimate m̂, and therefore m̂I1(x1) is

strictly increasing in x1.
For the inductive step, we assume that the assertion of the Lemma is true for the case d−1.
For fixed xd, we understand m̂I1,...,d−1

(x1, . . . , xd−1, xd) as a d − 1-dimensional function
monotonized in x1, . . . , xd−1. By the induction hypothesis, this function is strictly increas-
ing in all variables for a sufficiently largeN but xd. We apply the monotonizing inversion
with respect to the argument xd. By Lemma 2.7, we conclude that m̂−1

I1,...,d
(z|xd) is strictly

increasing with respect to z ∈ Im(m̂I1,...,d−1
(xd, ·)) and strictly decreasing with respect to

x1, . . . , xd−1. Through the inversion with respect to z and fixed xd, we conserve the strict
monotonicity of the variable xd by construction, i.e. m̂I1,...,d(x1, . . . , xd) is strictly increas-
ing in xd. Suppose that the inverse of the dth monotonizing step, m̂I1,...,d(x1, . . . , xd), is
not strictly increasing with respect to at least one variable xk, k 6= d. Hence, we suppose
there exists xk, x′k ∈ (0, 1) with xk < x′k and

z1 = m̂I1,...,d(x1, . . . , xk, . . . , xd) ≥ m̂I1,...,d(x1, . . . , x
′
k, . . . , xd) = z2

for xk = (x1, . . . , xk−1, xk+1, . . . , xd) ∈ (0, 1)d−1. Reversing this assertion and applying
Lemma 2.7 gives

m̂−1
I1,...,d

(z1|x1, . . . , xk, . . . , xd−1) = xd = m̂−1
I1,...,d

(z2|x1, . . . , x
′
k, . . . , xd−1)

≤ m̂−1
I1,...,d

(z1|x1, . . . , x
′
k, . . . , xd−1)

< m−1
I1,...,d

(z1|x1, . . . , xk, . . . , xd−1),

which yields a contradiction to the assumption

m̂I1,...,d(x1, . . . , xk, . . . , xd) ≥ m̂I1,...,d(x1, . . . , x
′
k, . . . , xd)

for xk < x′k. Therefore m̂I1,...,d is strictly increasing with respect to x1, . . . , xd. 2

Remark 2.9 We will show in the next subsection that the order of monotonization does
not matter asymptotically. Note that for finite sample problems the estimates may differ
slightly. In order to avoid this effect caused by the order of monotonization, the average
estimator can be used

m̂I(x1, . . . , xd) =
1

d!

∑
σ∈perm(1,...,d)

m̂Iσ(x1, . . . , xd).

Remark 2.10 The behavior of the estimate m̂I1,...,d depends sensitively on the monotonic-
ity properties of the “true” regression function. If the regression function m in (2.6) is



40 CHAPTER 2. MULTIVARIATE MONOTONE REGRESSION

strictly increasing with respect to all d arguments, it is heuristically clear as remarked for
the one-dimensional case in Section 1.3.1 that the estimate from the first step m̂−1

I1
is a

continuous approximation of the quantity

m−1
I1

(z|x1) =
1

Nhm

N∑
i=1

∫ z

−∞
Km

(
m( i

N
, x1)− u
hm

)
du

≈
∫ 1

0
I{m(x1, x1) ≤ z}dx1 =: m−1

1 (z|x1),

where z ∈ Im(m(·, x1)) and the approximation is justified if N →∞, hm → 0 sufficiently
fast. It follows that m−1

1 (·|x1) is the inverse of m(·, x1) for fixed x1 ∈ (0, 1)d−1, and the
inversion in Step 2 of the algorithm reproduces m. Applying the same arguments to
the following d − 1 isotonization steps, it is intuitively clear that m̂I1,...,d is a consistent
estimate of a strictly isotone regression function in d variables utilizing a continuous
unconstrained estimate m̂. These heuristic arguments will be made precise in the next
section, where the asymptotic properties of the new estimate are discussed.

Example 2.11 To recall the example from the beginning of the section, the data set fat in
the UsingR package in R contains the body fat percentage of 252 men from 22 to 81 and
several physical measurements useful to predict the body fat of a person. Roughly mo-
tivated by the body mass index (BMI), we consider the nonparametric regression model
where Y corresponds to the body fat percentage depending on weight (X1) and height
(X2) as independent variables. It is reasonable that the regression function is strictly
monotone increasing in weight and strictly monotone decreasing in height. Two outliers
in the data set are removed since they blow up the estimate unreasonably. In Figure 2.11,
the unconstrained local linear estimate and the monotonized estimate are displayed as
perspective and contour plot. The local linear estimate is implemented in the locfit

package and the strictly monotone estimate can be found in the monoProc package.

2.3.2 Asymptotic Properties

In the following, we discuss the asymptotic behavior of our estimator m̂I1,...,d(x1, . . . , xd).
Therefore we have to specify our preliminary estimator. For the sake of simplicity, we
use the multivariate Nadaraya and Watson estimate

m̂NW (x) = m̂NW (x1, . . . , xd) =

∑n
j=1KH(x−Xj)Yj∑n
j=1KH(x−Xj)

as unconstrained estimator, where we set H = diag(h1, . . . , hd). In particular, hk is the
corresponding bandwidth of the variable xk for k = 1, . . . , d. We will establish asymptotic
normality under an appropriate standardization of the estimate.
Recall m−1

k (z|xk) as the inverse of m with respect to the variable xk, where the arguments
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Figure 2.2: Body fat example: perspective and contour plots. Upper panel: the uncon-
strained regression estimate. Lower panel: the monotone estimate.
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xk = (x1, . . . , xk−1, xk+1, . . . , xd) are fixed.
Throughout this chapter, we assume that Km is a positive kernel of order 2 on [−1, 1],
twice continuously differentiable, and K ′m is Lipschitz continuous. In addition to the
model assumptions (A1)-(A6) of Section 2.2, we need several bandwidth conditions, that
is

(B1) hk → 0, (k = 1, . . . , d), nh1 . . . hd →∞, hm → 0, and Nhm →∞,

(B2) n(h1 + . . .+ hd)
d+4 = O(1), n = O(N),

(B3) limn→∞
hk
hm

=∞ for k = 1, . . . , d

(B4) 1
nh1...hdh2

m
= o(1)

(B5) log(h1+...+hd)
−1

nh1...hdh2
m

= o(1)

The bandwidth condition (B4) is redundant since it is included in (B5). We mention this
condition separately because for the first result condition (B4) is sufficient. Furthermore
it is a slight improvement to the assumptions made in Dette et al. (2006). Note that κ2(K)
is defined in condition (A5) of Chapter 1 and ||K||2 is the L2 norm of the kernel function
K.
In the following, we present several theorems concerning the asymptotic properties of
the estimates of each monotonization step. The first result addresses the estimate m̂−1

I1
(z|x1)

after the Step 1 of the isotonization with respect to the first argument.

Theorem 2.12 Assume that the assumptions (A1)-(A6) and (B1)-(B4) are satisfied. If the re-
gression function m is strictly increasing with respect to x1, then it follows for any fixed x1 and
for all z ∈ (m(0, x1),m(1, x1)) with ∂

∂x1
m(m−1

1 (z|x1)|x1) > 0»
nh1 . . . hd(m̂

−1
I1

(z|x1)−m−1
1 (z|x1) + b1(z, x1))

D→ N (0, s2
1(z, x1)),

where the asymptotic bias and variance are given by

b1(z, x1) =
κ2(K)

∂
∂x1
m(m−1

1 (z|x1)|x1)

d∑
l=1

h2
l

 ∂2

∂x2
l

m(m−1
1 (z|x1)|x1)

+2
∂
∂xl
m(m−1

1 (z|x1), x1)
∂
∂x1
p(m−1

1 (z|x1), x1)

p(m−1
1 (z|x1), x1)

,
s2
1(z, x1) =

σ2(m−1
1 (z|x1), x1)

p(m−1
1 (z|x1), x1)

Ä
∂
∂x1
m(m−1

1 (z|x1), x1)
ä2 ||K||22.

The next result gives a corresponding statement of asymptotic normality for the mono-
tonized estimate m̂I1(x1, x1) with respect to the first coordinate.



2.3. MULTIVARIATE MONOTONE REGRESSION ESTIMATES 43

Theorem 2.13 Suppose the assumptions of Theorem 2.12 and condition (B5) are satisfied, then
it follows for any x = (x1, . . . , xd)

T ∈ (0, 1)d with ∂
∂x1
m(x1, x1) > 0 that»

nh1 . . . hd(m̂I1(x1, x1)−m(x1, x1)− b(x1, x1))
D→ N (0, s2(x1, x1),

where the asymptotic bias and variance are given by

b(x1, x1) = κ2(K)
d∑
l=1

h2
l

 ∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)


s2(x1, x1) =

σ2(x1, x1)

p(x1, x1)
||K||22.

For each monotonization step a corresponding asymptotic normality result can be estab-
lished. The proofs become a bit more complicated since the estimates are only defined
implicitly as the inverse of an operator whereas in the first step the Nadaraya-Watson
estimate is defined explicitly. The following Theorems affirm this conclusion and give
the asymptotic normality for the second and the last monotonization step.

Theorem 2.14 If the assumptions of Theorem 2.13 are satisfied, and the regression function m is
strictly increasing with respect to the first and the second argument, then it follows for all fixed
x2 ∈ (0, 1)d−1 and for all z ∈ (m(x2, 0),m(x2, 1)) with ∂

∂xk
m(x2,m

−1
2 (z|x2)) > 0 for all k = 1, 2»

nh1 . . . hd(m̂
−1
I1,2

(z|x2)−m−1
2 (z|x2) + b2(x2, z))

D→ N (0, s2
2(x2, z)),

where asymptotic bias and variance are given by

b2(x2, z) =
κ2(K)

∂
∂x2
m(x2,m

−1
2 (z|x2))

d∑
l=1

h2
l

 ∂2

∂x2
l

m(x2,m
−1
2 (z|x2)

+2
∂
∂xl
m(x2,m

−1
2 (z|x2))

∂
∂xl
p(x2,m

−1
2 (z|x2)

p(x2,m
−1
2 (z|x2))

,
s2
2(x2, z) =

σ2(x2,m
−1
2 (z|x2))

p(x2,m
−1
2 (z|x2))

Ä
∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2 ||K||22
Corresponding to the second step of the monotonization with respect to the second ar-
gument, we obtain the following result.

Theorem 2.15 If the assumptions of Theorem 2.14 are satisfied, then we have for any x ∈ (0, 1)d

with ∂
∂xk

m(x) > 0 for k = 1, 2»
nh1 . . . hd(m̂I1,2(x)−m(x)− b(x))

D→ N (0, s2(x)),

where the asymptotic bias and variance are given in Theorem 2.13.
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The proof of Theorem 2.15 works with more or less the same arguments as the proof of
Theorem 2.13 and is therefore omitted. The last monotonization gives the final asymp-
totic normality results.

Theorem 2.16 If the assumptions of Theorem 2.13 are satisfied, and the regression function m is
strictly increasing with respect to all d arguments, then it follows for all fixed xd ∈ (0, 1)d−1 and
for all z ∈ (m(xd, 0),m(xd, 1)) with ∂

∂xl
m(xd,m

−1
d (z|xd)) > 0 for all l = 1, . . . , d»

nh1 . . . hd(m̂
−1
I1,...,d

(z|xd)−m−1
d (z|xd) + bd(xd, z))

D→ N (0, s2
d(xd, z)),

where asymptotic bias and variance are given by

bd(xd, z) =
κ2(K)

∂
∂xd

m(xd,m
−1
d (z|xd))

d∑
l=1

h2
l

 ∂2

∂x2
l

m(xd,m
−1
d (z|xd)

+2
∂
∂xl
m(xd,m

−1
d (z|xd)) ∂

∂xl
p(xd,m

−1
d (z|xd)

p(xd,m
−1
d (z|xd))

,
s2
d(xd, z) =

σ2(xd,m
−1
d (z|xd))

p(xd,m
−1
d (z|xd))

(
∂
∂xd

m(xd,m
−1
d (z|xd))

)2 ||K||
2
2

The final result refers to the asymptotic properties of the estimate m̂I1,...,d obtained after
applying the monotonizing procedure for each argument.

Theorem 2.17 If the assumptions of Theorem 2.16 are satisfied, then we have for any x ∈ (0, 1)d

with ∂
∂xl
m(x) > 0 for l = 1, . . . , d»

nh1 . . . hd(m̂I1,...,d(x)−m(x)− b(x))
D→ N (0, s2(x)),

where the asymptotic bias and variance are given in Theorem 2.13.

The proof of this Theorem is omitted since it uses the same arguments as for Theorem
2.13.
A few remarks may be appropriate at this point for a better understanding of these re-
sults.

Remark 2.18 It follows from Theorem 2.17 that the estimate m̂I1,...,d is first order asymp-
totic equivalent to the unconstrained Nadaraya-Watson estimate m̂NW . Similarly by The-
orem 2.13 or Theorem 2.15, the estimates m̂I1 and m̂I1,2 are first order asymptotic equiv-
alent to m̂NW and m̂I1,...,d . Thus each pair of steps in the algorithm produces a first order
asymptotic equivalent estimate with one additional isotonized coordinate. Moreover,
Theorem 2.17 also shows that from an asymptotic point of view the order of isotoniza-
tion in the procedure can be interchanged. In other words, the nonparametric regression
estimate m̂Iσ , where σ is a permutation of {1, . . . , d}, exhibits the same asymptotic behav-
ior as described for the estimate m̂I1,...,d in Theorem 2.17.
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Remark 2.19 It is worthy of mention that similar asymptotic results can be obtained if
alternative unconstrained and continuous nonparametric regression estimates are used
as preliminary estimate m̂. In the last section, we introduced the multivariate local lin-
ear estimate m̂LL [see (2.3)]. A similar analysis as for m̂NW shows that the statement in
Theorem 2.17 is still valid if the bias b(x) is replaced by

b̃(x) = κ2(K)
d∑
l=1

h2
l

∂2

∂x2
l

m(x).

Again the monotonized estimate m̂I1,...,d is first order equivalent to the unconstrained
local linear estimate m̂LL. Because of the better performance at the boundaries, the local
linear estimate is used in the numerical examples [see Section 2.4].

Remark 2.20 It follows from the proofs of the above Theorems that under the slightly
stronger assumption n(h1 + . . . + hd)

d+4 = o(1) [compare condition (B2)] the estimate
m̂I1,...,d has no asymptotic bias. That means that Theorem 2.17 becomes»

nh1 . . . hd(m̂I1,...,d(x)−m(x))
D→ N (0, s2(x))

under the miscellaneous assumptions given in the Theorem. Similar statements hold for
Theorem 2.12-2.16.

2.3.3 Proof of Theorem 2.12

For the sake of simplicity, we assume h1 = h2 = . . . = hd and n = N . Recall that we
specified as preliminary estimator

m̂(x) = m̂NW (x) =

∑n
j=1KH(x−Xj)Yj∑n
j=1KH(x−Xj)

,

where H = diag(h1, . . . , h1). The proof follows by adapting the arguments in Dette et al.
(2006) to the d-dimensional case. These authors discussed the case where h1 and hm are
of the same order, i.e. limn→∞

h1

hm
= c > 0. Hence, we present the proof with full details.

Furthermore, the proof of Theorem 2.12 helps to understand the more intrinsic proofs of
the theorems where the next isotonization steps are applied. We define

m−1
I1

(z|x1) =
1

nhm

n∑
i=1

∫ z

−∞
Km

(
m( i

n
, x1)− u
hm

)
du

as the approximation of the inverse m−1
1 (z|x1) with respect to the first argument. First of

all, we analyze the function

g

(
m̂( i

n
, x1)− z
hm

)
=
∫ ∞
m̂( in ,x1)−z

hm

Km(v)dv =
1

hm

∫ z

−∞
Km

(
m̂( i

n
, x1)− u
hm

)
du.
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By Taylor’s theorem for m̂( i
n
, x1), we obtain the following expansion using ξi(x1, z) be-

tween m( i
n
, x1) and m̂( i

n
, x1)

g

(
m̂( i

n
, x1)− z
hm

)
=

∫ ∞
m̂( in ,x1)−z

hm

Km(v)dv

=
∫ ∞
m( in ,x1)−z

hm

Km(v)dv

− 1

hm
Km

(
m( i

n
, x1)− z
hm

)Ç
m̂(

i

n
, x1)−m(

i

n
, x1)

å
−1

2

1

h2
m

K ′m

Ç
ξi(x1, z)− z

hm

åÇ
m̂(

i

n
, x1)−m(

i

n
, x1)

å2

,

where ξi(x1, z) satisfies for any z ∈ (m(0, x1),m(1, x1)) the inequalities

|ξi(x1, z)−m(
i

n
, x1)| ≤ |m̂(

i

n
, x1)−m(

i

n
, x1)|

for i = 1, . . . , n. We will use similar Taylor expansions for the following proofs.
Now for fixed x1, we derive a decomposition using Lemma 1.8 with hm = o(h1) and the
above expansion

∆n(z|x1) = (m̂−1
I1

(z|x1)−m−1
1 (z|x1))

= (m̂−1
I1

(z|x1)−m−1
I1

(z|x1)) +O

Ç
h2
m +

1

nhm

å
= (m̂−1

I1
(z|x1)−m−1

I1
(z|x1)) + o

Ñ
1»
nhd1

é
=

1

nhm

n∑
i=1

Ñ∫ z

−∞
Km

(
m̂( i

n
, x1)− u
hm

)
du−

∫ z

−∞
Km

(
m( i

n
, x1)− u
hm

)
du

é
+o

Ñ
1»
nhd1

é
= ∆(1)

n (z|x1) +
1

2
∆(2)
n (z|x1) + o

Ñ
1»
nhd1

é
. (2.7)

The third equality uses the bandwidth conditions (B1)-(B4) and the last one defines

∆(1)
n (z|x1) = − 1

nhm

n∑
i=1

Km

(
m( i

n
, x1)− z
hm

)Ç
m̂(

i

n
, x1)−m(

i

n
, x1)

å
,

∆(2)
n (z|x1) = − 1

nh2
m

n∑
i=1

K ′m

Ç
ξi(x1, z)− z

hm

åÇ
m̂(

i

n
, x1)−m(

i

n
, x1)

å2

.
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To conclude the assertion of the theorem, we analyze the terms ∆(1)
n (z|x1) and ∆(2)

n (z|x1).
In the first step, we show that »

nhd1∆(2)
n (z|x1) = op(1). (2.8)

We apply the following estimation using the asymptotic MSE of the Nadaraya-Watson
estimate and the hölder’s inequality

|ξi(x1, z)−m( i
n
, x1)|

hm
≤
|m̂( i

n
, x1)−m( i

n
, x1)|

hm

= Op

(
1

hm

Ç
h4

1 +
1

nhd1

å1/2
)

= op(1),

where the last equation follows from the bandwidth conditions (B1)-(B4). From the Lip-
schitz continuity of K ′m, we obtain finally

∣∣∣∣∣K ′m
Ç
ξi(x1, z)− z)

hm

å
−K ′m

(
m( i

n
, x1 − z
hm

)∣∣∣∣∣ ≤ L
|ξi(x1, z)−m( i

n
, x1)|

hm
= op(1). (2.9)

Now we examine ∆(2)
n (z|x1)

|∆(2)
n (z|x1)| =

1

nh2
m

∣∣∣∣∣ n∑
i=1

K ′m

Ç
ξi(x1, z)− z

hm

åÇ
m̂(

i

n
, x1)−m(

i

n
, x1)

å2
∣∣∣∣∣

=
1

nh2
m

∣∣∣∣∣∣
n∑
i=1

K ′m

(
m( i

n
, x1)− z
hm

)1 +

(
K ′m

(
m( i

n
, x1)− z
hm

))−1

×

(
K ′m

Ç
ξi(x1, z)− z)

hm

å
−K ′m

(
m( i

n
, x1 − z
hm

))Çm̂(
i

n
, x1)−m(

i

n
, x1)

å2
∣∣∣∣∣∣

=
(1 + op(1))

nh2
m

∣∣∣∣∣ n∑
i=1

K ′m

(
m( i

n
, x1)− z
hm

)Ç
m̂(

i

n
, x1)−m(

i

n
, x1)

å2
∣∣∣∣∣

≤ (1 + op(1))

nh2
m

n∑
i=1

∣∣∣∣∣K ′m
(
m( i

n
, x1)− z
hm

)∣∣∣∣∣
Ç
m̂(

i

n
, x1)−m(

i

n
, x1)

å2

=
(1 + op(1))

h2
m

∫ 1

0

∣∣∣∣∣K ′m
Ç
m(x1, x1)− z

hm

å∣∣∣∣∣ Äm̂(x1, x1)−m(x1, x1)
ä2
dx1

=
(1 + op(1))

hm

∫ 1

−1
|K ′m(s)|ds

Ä
m̂(m−1

1 (z|x1), x1)−m(m−1
1 (z|x1), x1)

ä2
∂
∂x1
m(m−1

1 (z|x1), x1)
.
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Taking the expectation of the last expression, we obtain

E[|∆(2)
n (z|x1)|] ≤

1

hm

∫ 1

−1
|K ′m(s)|ds

E
[Ä
m̂(m−1

1 (z|x1), x1)−m(m−1
1 (z|x1), x1)

ä2]
∂
∂x1
m(m−1

1 (z|x1), x1)

= O

Ç
1

hm

Ç
h4

1 +
1

nhd1

åå
= o

Ñ
1»
nhd1

é
,

where we used again the bandwidth conditions (B1)-(B4).
The remaining term ∆(1)

n (z|x1) is decomposed as follows using the specific structure of
the Nadaraya-Watson estimator [for the local linear estimator we obtain a different de-
composition], model (2.6), and |p̂(x1, x1)− p(x1, x1)| = op(1)

∆(1)
n (z|x1) = −(1 + op(1))

n2hm

n∑
i,j=1

Km

(
m( i

n
, x1)− z
hm

)
KH

(Ç
i

n
, x1

åT
−Xj

)
Yj −m( i

n
, x1)

p( i
n
, x1)

= (1 + op(1))(∆(1.1)
n (z|x1) + ∆(1.2)

n (z|x1)) (2.10)

with

∆(1.1)
n (z|x1) = − 1

n2hm

n∑
j,i=1

Km

(
m( i

n
, x1)− z
hm

)
KH

(Ç
i

n
, x1

åT
−Xj

)
×

m(Xj1, Xj1)−m( i
n
, x1)

p( i
n
, x1)

,

∆(1.2)
n (z|x1) = − 1

n2hm

n∑
j,i=1

Km

(
m( i

n
, x1)− z
hm

)
KH

(Ç
i

n
, x1

åT
−Xj

)
σ(Xj)εj
p( i

n
, x1)

.

These terms correspond to bias and variance in Theorem 2.12. To see this, we calculate
the expectation of ∆(1.1)

n (z|x1). The sum over i is interpreted as the approximation of the
corresponding integral which exists. Therefore the remainder term converges to zero.

E[∆(1.1)
n (z|x1)] = −(1 + o(1))

hm

∫
Km

Ç
m(x1, x1)− z

hm

å
KH (x− u)×

m(u1, u1)−m(x1, x1)

p(x1, x1)
p(u1, u1)dx1du1du1

= −(1 + o(1))

hm

∫
Km

Ç
m(x1, x1)− z

hm

å
K(v1, v1)×

m(x1 − h1v1, x1 − h1v1)−m(x1, x1)

p(x1, x1)
p(x1 − h1v1, x1 − h1v1)dv1dv1dx1

= −(1 + o(1))

hm

∫
Km

Ç
m(x1, x1)− z

hm

å
K(v1, v1)×
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d∑
l=1

h2
1

1

2
v2
l

∂2

∂x2
l

m(x1, x1) + v2
l

∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

 dx1dv1dv1

= −(1 + o(1))

hm
h2

1κ2(K)
∫ 1

0
Km

Ç
m(x1, x1)− z

hm

å
×

d∑
l=1

 ∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂x1
p(x1, x1)

p(x1, x1)

dx1

= −(1 + o(1))h2
1κ2(K)

∫ 1

−1
Km(s)

1
∂
∂x1
m(m−1

1 (z + hms|x1), x1)
× (2.11)

d∑
l=1

 ∂2

∂x2
l

m(m−1
1 (z + hms|x1), x1)

+2
∂
∂xl
m(m−1

1 (z + hms|x1), x1)
∂
∂x1
p(m−1

1 (z + hms|x1), x1)

p(m−1
1 (z + hms|x1), x1)

ds
= −(1 + o(1))h2

1κ2(K)
1

∂
∂x1
m(m−1

1 (z|x1), x1)
×

d∑
l=1

 ∂2

∂x2
l

m(m−1
1 (z|x1), x1) + 2

∂
∂xl
m(m−1

1 (z|x1), x1)
∂
∂x1
p(m−1

1 (z|x1), x1)

p(m−1
1 (z|x1), x1)


= −(1 + o(1))b1(z, x1). (2.12)

For the second equation, we apply the substitution vk = uk−xk
h1

for each component k =

1, . . . , d. Equation (2.11) follows by the substitution s =
m(x1,x1)−z

hm
with respect to x1. The

last identity is true, since we set h1 = h2 = . . . = hd. Now we compute the variance of
∆(1.1)
n (z|x1) using similar substitutions as for the expectation.

Var(∆(1.1)
n (z|x1) ≤

1

n3h2
m

E

Ñ n∑
i=1

Km

(
m( i

n
, x1)− z
hm

)
KH

Ç
(
i

n
, x1)

T −Xj

å
×

m(Xj1, Xj1)−m( i
n
, x1)

p( i
n
, x1)

é2
=

(1 + o(1))

nh2
m

∫ Ñ∫ 1

0
Km

Ç
m(x1, x1)− z

hm

å
KH (x− u)×

m(u1, u1)−m(x1, x1)

p(x1, x1)
dx1

é2

p(u1, u1)du1du1

=
(1 + o(1))

n

∫ Ñ∫ 1

−1
Km(s)ds

KH((m−1
1 (z|x1), x1)

T − u)
∂
∂x1
m(m−1

1 (z|x1), x1)
×
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m(u1, u1)−m(m−1
1 (z|x1), x1)

p(m−1
1 (z|x1), x1)

é2

p(u1, u1)du1du1

=
(1 + o(1))

n

∫
K2
H((m−1

1 (z|x1), x1)
T − u)Ä

p(m−1
1 (z|x1), x1)

∂
∂x1
m(m−1

1 (z|x1), x1)
ä2 ×Ä

m(u1, u1)−m(m−1
1 (z|x1), x1)

ä2
p(u1, u1)du1du1

=
(1 + o(1))

nhd1

1Ä
p(m−1

1 (z|x1), x1)
∂
∂x1
m(m−1

1 (z|x1), x1)
ä2 ×∫

K2(v)
Ä
m(m−1

1 (z|x1)− h1v1, x1 − h1v1)−m(m−1
1 (z|x1), x1)

ä2
p(m−1

1 (z|x1)− h1v1, x1 − h1v1)dv1dv1

=
(1 + o(1))

nhd1

1Ä
p(m−1

1 (z|x1), x1)
∂
∂x1
m(m−1

1 (z|x1), x1)
ä2 ×

d∑
l=1

∫
v2
lK

2(v)dv(
∂

∂xl
m(m−1

1 (z|x1), x1))
2p(m−1

1 (z|x1), x1)

= O

Ç
h2

1

nhd1

å
= o

Ç
1

nhd1

å
. (2.13)

Therefore the variance of ∆(1)
n (z|x1) is negligible. We can go ahead and analyze the last

term ∆(1.2)
n (z|x1). This term has expectation 0 since E[εj] = 0 and εj and Xj are indepen-

dent. For the standardized variance of ∆(1.2)
n (z|x1), we obtain

Var(
»
nhd1∆(1.2)

n (z|x1))

=
hd1
n3h2

m

n∑
j=1

Var

Ñ
n∑
i=1

Km

(
m( i

n
, x1)− z
hm

)
KH((

i

n
, x1)

T −Xj)
σ(Xj)εj
p( i

n
, x1)

é
=

(1 + o(1))hd1
h2
m

∫
σ2(u1, u1)

Ñ∫ 1

0
Km

Ç
m(x1, x1)− z

hm

å
KH(x− u)

p(x1, x1)
dx1

é2

p(u1, u1)du1du1

=
(1 + o(1))hd1

h2
m

∫
σ2(u1, u1)

Ñ∫ 1

−1

Km(s)KH(u− (m−1
1 (z + hms|x1), x1)

T

p(m−1
1 (z + hms|x1), x1)

ds

é2

p(u1, u1)du1du1

= (1 + o(1))hd1

∫
σ2(u1, u1)K

2
H((m−1

1 (z|x1), x1)
T − u)Ä

∂
∂x1
m(m−1

1 (z|x1), x1)
ä2
p2(m−1

1 (z|x1), x1)
p(u1, u1)du1du1 (2.14)

= (1 + o(1))
∫
K2(v)

σ2(m−1
1 (z|x1)− h1v1, x1 − h1v1)p(m

−1
1 (z|x1)− h1v1, x1 − h1v1)Ä

∂
∂x1
m(m−1

1 (z|x1), x1)
ä2
p2(m−1

1 (z|x1), x1)
dv1dv1

= (1 + o(1))
σ2(m−1

1 (z|x1), x1)Ä
∂
∂x1
m(m−1

1 (z|x1), x1)
ä2
p(m−1

1 (z|x1), x1)
||K||22 = (1 + o(1))s2

1(z, x1). (2.15)
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The identity in (2.14) of the above equations is true, since we have hm
h1
→ 0 from condition

(B3). This bandwidth condition is crucial to get the right rate of convergence.
As final step, we show the Lyapunov condition for δ = 2 to apply the central limit theo-
rem on ∆(1.2)

n (z|x1).

n∑
j=1

E

»nhd1
n2hm

n∑
i=1

Km

(
m( i

n
, x1)− z
hm

)
KH((

i

n
, x1)

T −Xj)
σ(Xj)εj
p( i

n
, x1)

4

=
(1 + o(1))E[ε4

1]h
2d
1

nh4
m

∫
σ4(u1, u1)×(∫ 1

0
Km

Ç
m(x1, x1)− z

hm

å
KH(x− u)

p(x1, x1)
dx1

)4

p(u1, u1)du1du1

=
(1 + o(1))E[ε4

1]h
2d
1

n

∫
σ4(u1, u1)

(∫ 1

−1
Km(s)

KH((m−1
1 (z + hms|x1), x1)

T − u)

p(m−1
1 (z + hms|x1), x1)

ds

)4

p(u1, u1)du1du1

=
(1 + o(1))E[ε4

1]h
2d
1

n

∫
σ4(u1, u1)

K4
H((m−1

1 (z|x1), x1)
T − u)

p4(m−1
1 (z|x1), x1)

p(u1, u1)du1du1

=
(1 + o(1))E[ε4

1]

nhd1

∫
K4(v)

σ4(m−1
1 (z|x1)− h1v1, x1 − h1v1)

p4(m−1
1 (z|x1), x1)

×

p(m−1
1 (z|x1)− h1v1, x1 − h1v1)dv1dv1

=
(1 + o(1))E[ε4

1]

nhd1
||K||44

σ4(m−1
1 (z|x1), x1)

p3(m−1
1 (z|x1), x1)

= O

Ç
1

nhd1

å
= o(1). (2.16)

In line 4 of these equations, we again used the assumption (B3), namely limn→∞
hm
h1

= 0.
The assertion of Theorem 2.12 follows now from a combination of (2.7), (2.8), (2.10), (2.12),
(2.13), (2.15), and (2.16). 2

2.3.4 Proof of Theorem 2.13

We assume as in the foregoing proof h1 = h2 = . . . = hd and n = N . To prove this
Theorem, we apply the special Taylor expansion for functionals we shortly discussed at
the end of Chapter 1. For fixed x1 ∈ (0, 1) and x1 ∈ (0, 1)d−1, we define

ε = min

®
m(x1, x1)−m(0, x1)

2
,
m(1, x1)−m(x1, x1)

2

´
and set D = (m(x1, x1)− ε,m(x1, x1) + ε). By Theorem 2.6, the estimate m̂ converges a.s.
uniformly to m, so that the support of m̂−1

I (·|x1), which is essentially given by

[ min
x1∈[0,1]

m̂(x1, x1), max
x1∈[0,1]

m̂(x1, x1)],
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contains the set D for all sufficiently large n. Thus, we basically examine the following
decomposition

m̂I1(x1, x1)−m(x1, x1) = Q′(0) +Q′′(λ∗),

where Q′ and Q′′ are defined in (1.9) and (1.10), respectively, with g2 = m̂−1
I1

(·|x1) and
g1 = m−1

1 (·|x1). Q′ and Q′′ are the Gâteaux derivatives of the operator Φ, which maps a
function to its inverse. To be precise, these expressions are given by

Q′(0) = −
(m̂−1

I1
−m−1

1 )
∂
∂x1

(m−1
1 )

◦ (m(x1, x1)|x1) = − ∂

∂x1

m(x1, x1)(m̂
−1
I1
−m−1

1 ) ◦ (m(x1, x1)|x1),

Q′′(λ∗) = 2
(m̂−1

I1
−m−1

1 ) ∂
∂x1

(m̂−1
I1
−m−1

1 )î
∂
∂x1

(m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))
ó2 ◦ (m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1(x1, x1)

−
(m̂−1

I1
−m−1

1 )2 ∂2

∂x2
1
(m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))î
∂
∂x1

(m̂−1
I1

+ λ∗(m̂−1
I1
−m−1

1 ))
ó3 ◦ (m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1(x1, x1).

Later we will show that

Q′′(λ∗) = op

Ñ
1»
nhd1

é
. (2.17)

The assertion of the Theorem can be transformed by this decomposition into something
we already studied.»

nhd1

Ñ
m̂I1(x1, x1)−m(x1, x1)

− κ2(K)h2
1

d∑
l=1

Ñ
∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

éé
= −

»
nhd1

Ñ
∂

∂x1

m(x1, x1)(m̂
−1
I1

(m(x1, x1)|x1)−m−1
1 (m(x1, x1)|x1))

+ κ2(K)h2
1

d∑
l=1

Ñ
∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

éé
+ op(1)

= − ∂

∂x1

m(x1, x1)
»
nhd1

Ñ
m̂−1
I1

(m(x1, x1)|x1)−m−1
1 (m(x1, x1)|x1)

+
κ2(K)h2

1
∂
∂x1
m(x1, x1)

d∑
l=1

Ñ
∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

éé
+ op(1)
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We know from Theorem 2.12 with z = m(x1, x1) that the above expression is asymptoti-
cally normal, i.e.

− ∂

∂x1

m(x1, x1)
»
nhd1

Ñ
m̂−1
I1

(m(x1, x1)|x1)−m−1
1 (m(x1, x1)|x1)

+
κ2(K)h2

1
∂
∂x1
m(x1, x1)

d∑
l=1

Ñ
∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

éé
D→ N

Ç
0,

∂

∂x1

m(x1, x1)
2s2

1(z, x1)

å
.

This yields the assertion of the Theorem:»
nhd1

Ñ
m̂I1(x1, x1)−m(x1, x1)− κ2(K)h2

1

d∑
l=1

Ñ
∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

éé
D→ N (0, s2(z, x1)).

Finally we have to show that the reminder term Q′′(λ∗) is negligible as claimed in (2.17).
We break Q′′(λ∗) into two parts.

Q′′(λ∗) = 2Bn1(x1, x1)−Bn2(x1, x1),

where

Bn1(x1, x1) =
(m̂−1

I1
−m−1

1 ) ∂
∂x1

(m̂−1
I1
−m−1

1 )î
∂
∂x1

(m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))
ó2 ◦ (m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1(x1, x1)

Bn2(x1, x1) =
(m̂−1

I1
−m−1

1 )2 ∂2

∂x2
1
(m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))î
∂
∂x1

(m̂−1
I1

+ λ∗(m̂−1
I1
−m−1

1 ))
ó3 ◦ (m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1(x1, x1).

Observe that for fixed z

(m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))(z|x1)
P→ m−1

1 (z|x1),

which follows from Theorem 2.12 and the Chebyshev’s inequality. Furthermore, we have
for fixed x1

tn(x1, x1) = (m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))−1(x1, x1)
P→ m(x1, x1),

because of the following

|tn(x1, x1)−m(x1, x1)| = |(m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))−1(x1, x1)−m(x1, x1)|
= |(m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1(m−1
1 (u|x1), x1)− u| (2.18)

= |(m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))−1(m−1
1 (u|x1), x1)

−(m−1
1 + λ∗(m̂−1

I1
−m−1

1 )−1 ◦ (m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))(u|x1)|
= |((m−1

1 + λ∗(m̂−1
I1
−m−1

1 ))−1)′(ξn)× (2.19)
(m−1

1 (u|x1)− (m−1
1 + λ∗(m̂−1

I1
−m−1

1 ))(u|x1))|.
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In line (2.18) of the above equations, we set u = m(x1, x1) and in line (2.19), we applied
a first order Taylor expansion. Note that the derivative of (m−1

1 + λ∗(m̂−1
I1
− m−1

1 ))−1 is
bounded and (m−1

1 +λ∗(m̂−1
I1
−m−1

1 ))(u|x1)
P→ m−1

1 (u|x1). To deal with the term ∂
∂x1

(m̂−1
I1
−

m−1
1 )(ξn|x1), which occurs in the enumerator and the denominator of Bn1(x1, x1) and

Bn2(x1, x1), we note first that

|m̂(x1, x1)−m(x1, x1)| = Op

Ç
log n

nhd1

å1/2

[see Theorem 2.6 and Collomb and Härdle (1986) for more details on that strong uniform
convergence rate]. In total, we have using Lemma 1.8

∂

∂x1

(m̂−1
I1
−m−1

1 )(ξn|x1) =
∂

∂x1

(m̂−1
I1
−m−1

I1
)(ξn|x1) +

∂

∂x1

(m−1
I1
−m−1

1 )(ξn|x1)

=
∂

∂x1

(m̂−1
I1
−m−1

I1
)(ξn|x1) +O

Ç
h2
m +

1

nhm

å
=

1

nh2
m

n∑
i=1

[
Km

(
m̂( i

n
, x1)− ξn
hm

)
−Km

(
m( i

n
, x1)− ξn
hm

)]

+O

Ç
h2
m +

1

nhm

å
=

1

nh3
m

n∑
i=1

K ′m

Ç
ηi(ξn, x1)− ξn

hm

å
(m̂(

i

n
, x1)−m(

i

n
, x1))

+O

Ç
h2
m +

1

nhm

å
,

where ηi(ξn, x1) has the following property∣∣∣∣∣ηi(ξn, x1)−m
Ç
i

n
, x1

å∣∣∣∣∣ < ∣∣∣∣∣m̂
Ç
i

n
, x1

å
−m

Ç
i

n
, x1

å∣∣∣∣∣ = Op

Ç
log n

nhd1

å1/2

.

By the bandwidth condition (B5) and the Lipschitz continuity of K ′m, we can exchange

K ′m
(
ηi(ξn,x1)−ξn

hm

)
by K ′m

Å
m( i

n
,x1)−ξn
hm

ã
as in the proof of Theorem 2.12 [see (2.9)] and get the

following

∂

∂x1

(m̂−1
I1
−m−1

1 )(ξn|x1) =
(1 + o(1))

h3
m

∫ 1

0
K ′m

Ç
m(x1, x1)− ξn

hm

å
(m̂(x1, x1)−m(x1, x1))dx1

+O

Ç
h2
m +

1

nhm

å
=

(1 + o(1))

h2
m

m̂(m−1
1 (ξn|x1), x1)−m(m−1

1 (ξn|x1), x1)
∂
∂x1
m(m−1

1 (ξn|x1), x1)
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+O

Ç
h2
m +

1

nhm

å
= Op

(Ç
log n

nhd1h
2
m

å1/2

+ h2
m +

1

nhm

)
= op(1),

where the last inequality follows again by bandwidth condition (B5). From Theorem
2.12, we derive Ä

m̂−1
I1

(m(x1, x1)|x1)−m−1
1 (m(x1, x1)|x1)

ä
= Op

Ñ
1»
nhd1

é
.

So basically, we have

Bn1(x1, x1) = Op

Ñ
1»
nhd1

(Ç
log n

nhd1h
2
m

å1/2

+ h2
m +

1

nhm

)é
= op

Ñ
1»
nhd1

é
Bn2(x1, x1) = Op

Ç
1

nhd1

å
= op

Ñ
1»
nhd1

é
,

where the last equation is true since the second derivative ∂2

∂x2
1
m(x1, x1) is bounded. 2

2.3.5 Proof of Theorem 2.14

Again we assume h1 = h2 = . . . , hd and n = N . Since the estimate m̂I1(x1, . . . , xd) is
defined only implicitly, the decomposition is more extensive than in the proof of Theorem
2.12. We analyze the following difference and apply Lemma 1.8 with hm = o(h1) and
x2 = (x1, x3, . . . , xd)

T , the vector without the component x2:

∆n(z|x2) = (m̂−1
I1,2

(z|x2)−m−1
2 (z|x2))

= (m̂−1
I1,2

(z|x2)−m−1
I2

(z|x2)) +O

Ç
h2
m +

1

nhm

å
,

where

m−1
I2

(z|x2) =
1

nhm

n∑
i=1

∫ z

−∞
Km

(
m(x2,

i
n
)− u

hm

)
du

is an approximation of m−1
2 (z|x2). The approach is similar to the proof of Theorem 2.12,

but it is more elaborate to unravel the bias and variance part of this statistic. We obtain
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none the less the following decomposition using the bandwidth conditions (B1)-(B4)

∆n(z|x2) = (m̂−1
I1,2

(z|x2)−m−1
I2

(z|x2)) + o

Ñ
1»
nhd1

é
=

1

nhm

n∑
i=1

(∫ z

−∞
Km

(
m̂I1(x2,

i
n
)− u

hm

)
du−

∫ z

−∞
Km

(
m(x2,

i
n
)− u

hm

)
du

)

+o

Ñ
1»
nhd1

é
= ∆(1)

n (z|x2) +
1

2
∆(2)
n (z|x2) + o

Ñ
1»
nhd1

é
, (2.20)

where the terms ∆(1)
n (z|x2) and ∆(2)

n (z|x2) are derived by a Taylor expansion and defined
as follows

∆(1)
n (z|x2) = − 1

nhm

n∑
i=1

Km

(
m(x2,

i
n
)− z

hm

)Ç
m̂I1

Ç
x2,

i

n

å
−m

Ç
x2,

i

n

åå
,

∆(2)
n (z|x2) = − 1

nh2
m

n∑
i=1

K ′m

Ç
ξi(x2, z)− z

hm

åÇ
m̂I1

Ç
x2,

i

n

å
−m

Ç
x2,

i

n

åå2

.

Note that these terms correspond to the terms ∆(1)
n (z|x1) and ∆(2)

n (z|x1) in the proof of
Theorem 2.12, but m̂ is exchanged by m̂I1 . The number ξi(x2, z) fulfills the estimation∣∣∣∣∣ξi(x2, z)−m(x2,

i

n
)

∣∣∣∣∣ ≤
∣∣∣∣∣m̂I1(x2,

i

n
)−m(x2,

i

n
)

∣∣∣∣∣
for all i = 1, . . . , n and all z ∈ (m(x2, 0),m(x2, 1)). Since m̂I1(x1, . . . , xd) has the same
asymptotic properties as the Nadaraya-Watson estimate m̂(x1, . . . , xd), we have a similar
behavior in terms of stochastic order symbols

(m̂I1(x)−m(x))2 = Op

Ç
h4

1 +
1

nhd1

å
.

Therefore the remainder term ∆(2)
n (z|x2) can be handled as the corresponding term in the

proof of Theorem 2.12 using the Lipschitz continuity of K ′m and the bandwidth condi-
tions (B1)-(B4) [see (2.9)].

|∆(2)
n (z|x2)| =

1

nh2
m

∣∣∣∣∣ n∑
i=1

K ′m

Ç
ξi(x2, z)− z

hm

åÇ
m̂I1(x2,

i

n
)−m(x2,

i

n
)

å2
∣∣∣∣∣

≤ (1 + op(1))

h2
m

∫ 1

0

∣∣∣∣∣K ′m
Ç
m(x2, x2)− z

hm

å∣∣∣∣∣ Äm̂I1(x2, x2)−m(x2, x2)
ä2
dx2
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=
(1 + op(1))

hm

∫ 1

−1
|K ′m(s)|ds

(m̂I1(x2,m
−1
2 (z|x2))−m(x2,m

−1
2 (z|x2)))

2

∂
∂x2
m(x2,m

−1
2 (z|x2)

= Op

Ç
1

hm

Ç
h4

1 +
1

nhd1

åå
= op

Ñ
1»
nhd1

é
. (2.21)

Now we turn to the term ∆(1)
n (z|x2). In the following, we will fractionalize this term

gradually to get a feeling how it is composed. Using the decomposition from the proof
of Theorem 2.13, we have

m̂I1(x)−m(x) = − ∂

∂x1

m(x)
Ä
m̂−1
I1

(m(x)|x1)−m−1
1 (m(x)|x1)

ä
+ op

Ñ
1»
nhd1

é
.

This yields

∆(1)
n (z|x2) = (1 + op(1))∆(1.1)

n (z|x2), (2.22)

where

∆(1.1)
n (z|x2) =

1

nhm

n∑
i=1

Km

(
m(x2,

i
n
)− z

hm

)
∂

∂x1

m(x2,
i

n
)×Ç
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I1

Ç
m

Ç
x2,

i

n

å ∣∣∣ i
n
, x3, . . . , xd

å
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1

Ç
m

Ç
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i

n

å ∣∣∣ i
n
, x3, . . . , xd

åå
= ∆(1.1.1)

n (z|x2) + ∆(1.1.2)
n (z|x2) (2.23)

with

∆(1.1.1)
n (z|x2) =
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nhm
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(
m(x2,

i
n
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)
∂
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m(x2,
i

n
)×Ç
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I1

Ç
m

Ç
x2,

i

n

å
| i
n
, x3, . . . , xd

å
−m−1

I1

Ç
m

Ç
x2,

i

n

å
| i
n
, x3, . . . , xd

åå
∆(1.1.2)
n (z|x2) =

1

nhm

n∑
i=1

Km

(
m(x2,

i
n
)− z
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)
∂

∂x1

m(x2,
i

n
)×Ç

m−1
I1

Ç
m

Ç
x2,

i

n

å
| i
n
, x3, . . . , xd

å
−m−1

1

Ç
m

Ç
x2,

i

n

å
| i
n
, x3, . . . , xd

åå
.

The second term ∆(1.1.2)
n (z|x2) is basically of order h2

m + 1
nhm

by applying Lemma 1.8 and
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therefore asymptotically negligible. The first term has an explicit representation

∆(1.1.1)
n (z|x2) =

1

n2h2
m

n∑
i,j=1

Km

(
m(x2,

i
n
)− z

hm

)
∂

∂x1

m(x2,
i

n
)×

∫ m(x2,
i
n

)

−∞
Km

(
m̂( j

n
, i
n
, x3, . . . , xd)− u
hm

)
du

−
∫ m(x2,

i
n

)

−∞
Km

(
m( j

n
, i
n
, x3, . . . , xd)− u
hm

)
du


= ∆(1.1.1.a)

n (z|x2) +
1

2
∆(1.1.1.b)
n (z|x2). (2.24)

The terms ∆(1.1.1.a)
n (z|x2) and ∆(1.1.1.b)

n (z|x2) are defined by a Taylor expansion as the terms
(2.7) in the proof of Theorem 2.12 or the terms ∆(1)

n (z|x2) and ∆(2)
n (z|x2) in (2.20) at the be-

ginning of this proof. Since we applied two monotonization steps, the kernelKm appears
two times in these expressions. To be precise, we have

∆(1.1.1.a)
n (z|x2) = − 1

n2h2
m

n∑
i,j=1

∂

∂x1

m(x2,
i

n
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n
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, x3, . . . , xd)−m(x2,

i
n
)

hm

)
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Ç
j

n
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n
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å
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Ç
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åå
,

∆(1.1.1.b)
n (z|x2) = − 1

n2h3
m
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∂

∂x1

m(x2,
i

n
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i
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×
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n
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å
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.

The number ξij(x3, . . . , xd) fulfills
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.
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First, we can show that ∆(1.1.1.b)
n (z|x2) is negligible similarly as for ∆(2)

n (z|x2).

|∆(1.1.1.b)
n (z|x2)| ≤

(1 + op(1))
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m
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0
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Ç
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)
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Ñ
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é
. (2.25)

The other term ∆(1.1.1.a)
n (z|x2) can be split up into bias and variance term in a similar

manner as in the proof of Theorem 2.12 [see (2.10)]

∆(1.1.1.a)
n (z|x2) = (1 + op(1))(∆(1.1.1.a.a)
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where
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.

Now we calculate the expectation and the variance of the first term. For n → ∞, we
approximate the sums by the corresponding integrals.
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T − v)
m(v)−m(u1, x1)

p(u1, x1)
p(v)dx2du1dv

= −(1 + o(1))

h2
m

∫
∂

∂x1

m(x2, x2)Km

Ç
m(x2, x2)− z

hm

å
×
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Km

Ç
m(u1, x1)−m(x2, x2)

hm

å
K(w)×

m(u1 − h1w1, x1 − h1w1)−m(u1, x1)

p(u1, x1)
p(u1 − h1w1, x1 − h1w1)dx2du1dw

= −(1 + o(1))κ2(K)

h2
m

∫
∂

∂x1

m(x2, x2)Km

Ç
m(x2, x2)− z

hm

å
×

Km

Ç
m(u1, x1)−m(x2, x2)

hm

å
×

h2
1

d∑
l=1

 ∂2

∂x2
l

m(u1, x1) + 2
∂
∂xl
m(u1, x1)

∂
∂xl
p(u1, x1)

p(u1, x1)

dx2du1

= −(1 + o(1))κ2(K)

hm

∫
Km

Ç
m(x2, x2)− z

hm

å
Km(s)ds (2.27)

h2
1

d∑
l=1

 ∂2

∂x2
l

m(x1, x1) + 2
∂
∂xl
m(x1, x1)

∂
∂xl
p(x1, x1)

p(x1, x1)

dx2

= −(1 + o(1))
κ2(K)h2

1
∂
∂x2
m(x2,m

−1
2 (z|x2))

× (2.28)

d∑
l=1

 ∂2

∂x2
l

m(x2,m
−1
2 (z|x2)) + 2

∂
∂xl
m(x2,m

−1
2 (z|x2))

∂
∂xl
p(x2,m

−1
2 (z|x2))

p(x2,m
−1
2 (z|x2))


= −(1 + o(1))b2(x2, z).

In line (2.27), the substitution s =
m(u1,x1)−m(x2,x2)

hm
is applied. By the substitution, the

derivative ∂
∂x1
m(x2, x2) disappears. Finally, the substitution w =

m(x2,x2)−z
hm

is used in line
(2.28) and provides the factor 1

∂
∂x2

m(x2,m
−1
2 (z|x2))

in the bias. This term only contributes to

the bias. When we compute its variance, we can show that it is asymptotically negligible.

Var(∆(1.1.1.a.a)
n (z|x2))

=
1

n6h4
m

Var

Ñ
n∑

i,j,k=1

∂

∂x1

m(x2,
i

n
)Km

(
m(x2,

i
n
)− z

hm

)
Km

(
m( j

n
, i
n
, x3, . . . , xd)−m(x2,

i
n
)

hm

)

KH

Ç
(
j

n
,
i

n
, x3, . . . , xd)

T −Xk

å
m(Xk)−m( j

n
, i
n
, x3, . . . , xd)

p( j
n
, i
n
, x3, . . . xd)

é
≤ 1

n5h4
m

E

Ñ n∑
i,j=1

∂

∂x1

m(x2,
i

n
)Km

(
m(x2,

i
n
)− z

hm

)
Km

(
m( j

n
, i
n
, x3, . . . , xd)−m(x2,

i
n
)

hm

)

KH

Ç
(
j

n
,
i

n
, x3, . . . , xd)

T −Xk

å
m(Xk)−m( j

n
, i
n
, x3, . . . , xd)

p( j
n
, i
n
, x3, . . . xd)

é2
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=
(1 + o(1))

nh2
m

∫ Ñ∫
∂

∂x1

m(x2, x2)Km

Ç
m(x2, x2)− z

hm

å
Km

Ç
m(v1, x1)−m(x2, x2)

hm

å
KH((v1, x1)

T − u)
m(u)−m(v1, x1)

p(v1, x1)
dv1dx2

é2

p(u2, u2)du

=
(1 + o(1))

nhm

∫ Ñ∫ ∂
∂x1
m(x2, x2)

∂
∂x1
m(m−1

1 (m(x2, x2) + hmw1|x1), x1)
Km

Ç
m(x2, x2)− z

hm

å
Km(w1)KH

Ä
(m−1

1 (m(x2, x2) + hmw1|x1), x1)
T − u

ä
m(u)−m(m−1

1 (m(x2, x2) + hmw1|x1), x1)

p(m−1
1 (m(x2, x2) + hmw1|x1), x1)

dw1dx2

é2

p(u2, u2)du

=
(1 + o(1))

n

∫ Ñ∫
Km(w2)

∂
∂x2
m(x2,m

−1
2 (z + hmw2|x2))

KH((x2,m
−1
2 (z + hmw2|x2))

T − u)

m(u)−m(x2,m
−1
2 (z + hmw2|x2))

p(x2,m
−1
2 (z + hmw2|x2))

dw2

é2

p(u2, u2)du

=
(1 + o(1))

n

∫
K2
H((x2,m

−1
2 (z|x2))

T − u)Ä
∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2 Ä
m(u)−m(x2,m

−1
2 (z|x2))

ä2
p2(x2,m

−1
2 (z|x2))

p(u2, u2)du

=
(1 + o(1))

nhd1

∫ K2(v)
Ä
m(x2 − h1v2,m

−1
2 (z|x2)− h1v2)−m(x2,m

−1
2 (z|x2))

ä2Ä
∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2
p2(x2,m

−1
2 (z|x2))

p(x2 − h1v2,m
−1
2 (z|x2)− h1v2)dv2dv2

= O

Ç
1

nhd−2
1

å
= o

Ç
1

nhd1

å
.

In the first equation, we used the i.i.d. assumption of the data. Then we applied succes-
sively the following substitutions: w1 =

m(v1,x1)−m(x2,x2)

hm
with respect to v1, w2 =

m(x2,x2)−z
hm

with respect to x2, and finally v =
(x2,m

−1
2 (z|x2))T−u

h1
componentwise. Note that for the first

two substitutions we need hm = o(h1).
The remaining term ∆(1.1.1.a.b)

n (z|x2) has obviously zero expectation. We calculate its vari-
ance standardized with

»
nhd1 by using similar substitutions as for Var(∆(1.1.1.a.a)

n (z|x2)).

Var(
»
nhd1∆(1.1.1.a.b)

n (z|x2))

=
hd1
n5h4

m

Var

Ñ
n∑

i,j,k=1

∂

∂x1

m(x2,
i

n
)Km

(
m(x2,

i
n
)− z

hm

)
Km

(
m( j

n
, i
n
, x3, . . . , xd)−m(x2,

i
n
)

hm

)

KH

Ç
(
j

n
,
i

n
, x3, . . . , xd)

T −Xk

å
σ(Xk)εk

p( j
n
, i
n
, x3, . . . , xd)

é
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=
hd1
n4h4

m

∫ Ñ n∑
i,j=1

∂

∂x1

m(x2,
i

n
)Km

(
m(x2,

i
n
)− z

hm

)
Km

(
m( j

n
, i
n
, x3, . . . , xd)−m(x2,

i
n
)

hm

)

KH

Ç
(
j

n
,
i

n
, x3, . . . , xd)

T − u

å
σ(u2, u2)

p( j
n
, i
n
, x3, . . . , xd)

é2

p(u2, u2)du2du2

=
(1 + o(1))hd1

h4
m

∫ Ñ∫
∂

∂x1

m(x2, x2)Km

Ç
m(x2, x2)− z

hm

å
Km

Ç
m(v1, x1)−m(x2, x2)

hm

å
KH((v1, x1)

T − u)
σ(u2, u2)

p(v1, x1)
dv1dx2

é2

p(u2, u2)du2du2

=
(1 + o(1))hd1

h2
m

∫ Ñ∫
Km

Ç
m(x2, x2)− z

hm

å
Km(w1)KH((x1, x1)

T − u)
σ(u2, u2)

p(x1, x1)
dw1dx2

é2

p(u2, u2)du2du2

= (1 + o(1))hd1

∫ Ñ∫
Km(w2)KH((x2,m

−1
2 (z|x2))

T − u)
∂
∂x2
m(x2,m

−1
2 (z|x2))

σ(u2, u2)

p(x2,m
−1
2 (z|x2)

dw2

é2

p(u2, u2)du2du2

= (1 + o(1))hd1

∫
K2
H((x2,m

−1
2 (z|x2))

T − u)Ä
∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2 σ2(u2, u2)

p2(x2,m
−1
2 (z|x2))

p(u2, u2)du2du2

= (1 + o(1))
∫

K2(v)σ2(x2 − h1v2,m
−1
2 (z|x2)− h1v2)Ä

∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2
p2(x2,m

−1
2 (z|x2))

p(x2 − h1v2,m
−1
2 (z|x2)− h1v2)dv2dv2

= (1 + o(1))
σ2(x2,m

−1
2 (z|x2))Ä

∂
∂x2
m(x2,m

−1
2 (z|x2))

ä2
p(x2,m

−1
2 (z|x2))

||K||22

= (1 + o(1))s2
2(x2, z).

To conclude the assertion of the Theorem, we have to prove the Lyapunov condition with
δ = 2 for the term ∆(1.1.1.a.b)

n (z|x2).

n∑
k=1

E

Ñ»nhd1
n3h2

m

n∑
i,j=1

∂

∂x1

m(x2,
i

n
)Km

(
m(x2,

i
n
)− z

hm

)
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(
m( j

n
, i
n
, x3, . . . , xd)−m(x2,

i
n
)

hm

)

KH

Ç
(
j

n
,
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n
, x3, . . . , xd)

T −Xk

å
σ(Xk)εk

p( j
n
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n
, x3, . . . , xd)

é4
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E[ε4
1](1 + o(1))h2d

1

nh8
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∂x1

m(x2, x2)Km

Ç
m(x2, x2)− z

hm

å
Km

Ç
m(v1, x1)−m(x2, x2)
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å
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KH

Ä
(v1, x1)

T − u
ä σ(u)

p(v1, x1)
dv1dx2

é4

p(u2, u2)du2du2

=
E[ε4

1](1 + o(1))h2d
1

nh4
m

∫ Ñ∫
Km

Ç
m(x2, x2)− z

hm

å
KH((x1, x1)

T − u)
σ(u)

p(x1, x1)
dx2

é4

p(u2, u2)du2du2

=
E[ε4

1](1 + o(1))h2d
1

n

∫
K4
H((x2,m

−1
2 (z|x2)

T − u)
σ4(u)

p4(x2,m
−1
2 (z|x2)

p(u2, u2)du2du2

=
E[ε4

1](1 + o(1))

nhd1

Å∫
K4(v)dv

ã σ4(x2,m
−1
2 (z|x2))

p3(x2,m
−1
2 (z|x2)

= O

Ç
1

nhd1

å
.

The asymptotic normality of the random variable
»
nhd1∆(1.1.1.a.b)

n (z|xd) follows by the
Lyapunov’s theorem, i.e.,»

nhd1∆(1.1.1.a.b)
n (z|xd)

D→ N (0, s2
2(x2, z)),

where the quantity s2
2(x2, z) is defined in Theorem 2.14. The assertion of the Theorem fol-

lows now by combining (2.20), (2.21), (2.22), (2.23), (2.24), (2.25), (2.26), and the detailed
analysis of the terms ∆(1.1.1.a.a)

n (z|xd) and ∆(1.1.1.a.b)
n (z|xd). 2

2.3.6 Sketch of the Proof 2.16

The proof of Theorem 2.16 follows in a similar manner as the proof of Theorem 2.14. As
in the other proofs of this section, we assume h1 = h2 = . . . = hd and n = N . Using
Lemma 1.8 with hm = o(h1) and xd = (x1, . . . , xd−1)

T , the vector without xd, shows that it
is sufficient to analyze

∆̃n(z|xd) = (m̂−1
I1,...,d

(z|xd)−m−1
Id

(z|xd))

with

m−1
Id

(z|xd) =
1

nhm

n∑
i=1

∫ z

−∞
Km

(
m(xd,

i
n
)− u

hm

)
du

as the approximation of m−1
d (z|xd). The difference ∆̃n(z|xd) can be further decomposed

by a Taylor expansion and we obtain

∆̃n(z|xd) = ∆̃(1)
n (z|xd) +

1

2
∆̃(2)
n (z|xd),

where

∆̃(1)
n (z|xd) = − 1

nhm

n∑
i=1

Km

(
m(xd,

i
n
)− z

hm

)Ç
m̂I1,...,d−1

Ç
xd,

i

n

å
−m

Ç
xd,

i

n

åå
,

∆̃(2)
n (z|xd) = − 1

nh2
m

n∑
i=1

K ′m

Ç
ξi(xd, z)− z

hm

åÇ
m̂I1,...,d−1

Ç
xd,

i

n

å
−m

Ç
xd,

i

n

åå2
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for a number ξi(xd, z) between m̂I1,...,d−1

Ä
xd,

i
n

ä
and m

Ä
xd,

i
n

ä
. As in the proof of Theorem

2.14, the term ∆̃(2)
n (z|xd) is asymptotically negligible. The term ∆̃(1)

n (z|xd) can be broken
down into an expression with m̂ as the term ∆(1)

n (z|x2) in the proof of Theorem 2.14.
Therefore one has to go back all the monotonizing steps by applying a Taylor expansion
in each step which results in something similar to ∆(1.1.1.a)

n (z|x2) in the proof of Theorem
2.14 where the kernel Km appears d times for d monotonizing steps. In this sketch of the
proof, we just give a heuristic intuition for that. Roughly, we can approximate ∆̃n(z|xd)
in the following way

∆̃(1)
n (z|xd) = − 1

nhm

n∑
i=1

Km

(
m(xd,

i
n
)− z

hm

)Ç
m̂I1,...,d−1

Ç
xd,

i

n

å
−m

Ç
xd,

i

n

åå
≈ − 1

hm

∫ 1

0
Km

Ç
m(xd, xd)− z

hm

åÄ
m̂I1,...,d−1

(xd, xd)−m(xd, xd)
ä
dxd

≈ −
∫ 1

−1
Km(v)

Ä
m̂I1,...,d−1

(xd,m
−1
d (z + hmv|xd))−m(xd,m

−1
d (z + hmv|xd))

ä
∂
∂xd

m(xd,m
−1
d (z + hmv|xd))

dv

≈ −
Ä
m̂I1,...,d−1

(xd,m
−1
d (z|xd))−m(xd,m

−1
d (z|xd))

ä
∂
∂xd

m(xd,m
−1
d (z|xd))

.

One has to be careful with the approximation in the last line. But in this manner, we can
describe the asymptotic behavior of m̂−1

I1,...,d
in terms of m̂I1,...,d−1

evaluated in the pointÄ
xd,m

−1
d (z|xd)

äT
and standardized by 1

∂
∂xd

m(xd,m
−1
d

(z|xd))
. If we assume that m̂I1,...,d−1

has the

same behavior as m̂I1,2 the assertion of the Theorem follows easily [see Theorem 2.15]. 2

2.4 Finite sample properties and data analysis

In this section, we investigate the performance of the new multivariate monotone esti-
mate in the two-dimensional case by means of a simulation study and data examples. We
emphasize two aspects, to analyze the difference of the monotone estimates due to the
order of monotonization and the improvement made by incorporating the monotonicity
constraints versus the unconstrained estimator.

2.4.1 A small simulation study

In the following, we simulate i.i.d. data belonging to the nonparametric regression model

Yj = m(Xj1, Xj2) + σ(Xj1, Xj2)εj, (2.29)

where it is known that m(x1, x2) is strictly monotone increasing in x1 and x2. In order
to avoid boundary effects, the local linear estimator m̂LL(x1, x2) is used as unconstrained
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estimator [see Example 2.1 for an explicit expression] implemented with a product kernel
based on two Epanechnikov kernels, i.e.

K(x) = K(x1, x2) =
3

4
(1− x2

1)
3

4
(1− x2

2)I[−1,1](x1)I[−1,1](x2).

The bandwidth is set to

h1 = h2 =

Ç
σ̃2

n

å1/6

,

where σ̃2 =
∫
σ2(u1, u2)du1du2 denotes the integrated variance and n is the sample size.

For the kernel of the monotonization procedure Km the Epanechnikov kernel is used as
well. The number of nodes N for evaluating the integral is chosen as N = 51 and the
bandwidth is given by hm = h3

1.

Example 2.21 In the first study, we consider the regression model with

m(x1, x2) =
1

2

Ç
x2 +

1

6π
sin(6πx2)

åÄ
1 + (2x1 − 1)3

ä
, (2.30)

which is a strictly increasing function with respect to both arguments. For the error dis-
tribution in model (2.29), a standard normal distribution is used, whereas the variance
function is constant and given by σ2 = 0.1. The sample size is n = 400, and the design
density is a uniform distribution on the square [0, 1]2. In Figure 2.3, a typical result of one
simulation run is displayed. In order to avoid the domination by boundary effects, all
graphics in this example will be presented on the square [0.05, 0.95]2.
We observe that the local linear estimate is obviously not isotone with respect to both
arguments (see the upper right panel in Figure 2.3). The estimates m̂I1 and m̂I2 look
substantially different because isotonization is only performed with respect to one co-
ordinate (the middle panel in Figure 2.3). On the other hand, substantial differences
between the isotone estimates m̂I1,2 and m̂I2,1 (obtaining by interchanging the order of
isotonization) are not visible as predicted by our asymptotic theory (see lower panel in
Figure 2.3).

For a better understanding of our procedure and a direct comparison of the two esti-
mates m̂I1,2 and m̂I2,1 , we present two-dimensional plots of the estimates of the regres-
sion function m(x1, x2), where one coordinate has been fixed. In Figure 2.4, we show
three typical simulations of the estimates m̂I1,2 and m̂I2,1 , and the “true” curve, where the
coordinate x2 is fixed at 0.3, 0.5, and 0.7. The left part of the figure corresponds to the
curves obtained by the estimate m̂I1,2 , whereas the right part shows the curves for the
estimate m̂I2,1 . The corresponding results for fixed x1 = 0.3, 0.5, and 0.7 are depicted in
Figure 2.5. We observe a reasonable performance of the estimates in all cases and again
no substantial difference between the estimates m̂I1,2 and m̂I2,1 obtained by interchanging
the order of isotonization.
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Figure 2.3: The regression function (2.30) and its different estimates. Upper panel: the
regression function m (left) and the local linear estimator m̂ (right) based on n = 400
observations with variance σ2 = 0.1. Middle panel: monotone estimate m̂I1 with respect
to the first coordinate (left) and monotone estimate m̂I2 with respect to the second coor-
dinate (right). Lower panel: monotone estimates with respect to both coordinates m̂I1,2

(left) and m̂I2,1 (right).
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Figure 2.4: The regression function m and its monotone estimates m̂I1,2 (dotted lines)
and m̂I2,1 (dashed lines) in comparison to each other. The three estimates m̂I1,2 and m̂I2,1 ,
respectively, are obtained from three different simulation runs. The figure shows the two
dimensional functions fixed in x2: x2 = 0.3 (upper panel), x2 = 0.5 (middle panel), and
x2 = 0.7 (lower panel). The solid curve corresponds to the “true” regression function.
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Figure 2.5: The regression function m and its monotone estimates m̂I1,2 (dotted lines)
and m̂I2,1 (dashed lines) in comparison to each other. The three estimates m̂I1,2 and m̂I2,1 ,
respectively, are obtained from three different simulation runs. The figure shows the two
dimensional functions fixed in x1: x1 = 0.3 (upper panel), x1 = 0.5 (middle panel), and
x1 = 0.7 (lower panel). The solid curve corresponds to the “true” regression function.



2.4. FINITE SAMPLE PROPERTIES AND DATA ANALYSIS 69

Example 2.22 In this example, we compare the isotonized estimates with the uncon-
strained local linear estimates. Again to avoid the domination by boundary effects, we
calculate the mean squared error of both estimates over the square [0.1, 0.9]2. In Figure
2.6, we display the ratios

r(x1, x2) =
MSE[m̂(x1, x2)]

MSE[m̂I1,2(x1, x2)]

in this region for the regression function (2.30) and the functions

m(x1, x2) =
1

2

ñ
x1 + x2 +

1

6π
sin(6π(x1 + x2))

ô
, (2.31)

m(x1, x2) = sin
Åπ

4
(x1 + x2)

ã
, (2.32)

m(x1, x2) =

Ç
2x1x2 +

1

2
x2

1 − 2x2
2 + 2x2 −

1

2

å
I{1 ≤ 2x2 ≤ x1 + 1} (2.33)

+

Ç
2x2x1 −

1

2
x2

1

å
I{x1 ≤ 2x2 < 1}+ 2x2

2I{2x2 < x1}+ x1I{x1 + 1 ≤ 2x2}.

Again the sample size is n = 400 and the errors are standard normal with constant vari-
ance σ2 = 0.1. The ratio of the mean squared errors are estimated by 1000 simulation runs
and is larger than 1 if and only if the monotonized estimate has a better performance. We
observe that for all regression functions the surfaces usually exceed the value 1, which in-
dicates that the additional information of monotonicity in the nonparametric regression
estimate can improve its finite sample properties. In most cases, the improvement can be
substantial. For example in model (2.30), there are several regions in [0.1, 0.9]2, where the
ratio is larger than 1.7. The improvement caused by the monotonization in model (2.31)
and (2.32) is not so large but still clearly visible.
Note that model (2.33) corresponds to the distribution function of the random variable
Z = 1

2
(X1 + X2), where X1, X2 are independent with an uniform distribution on the in-

terval [0, 1]. This model does not satisfy the assumptions of our theoretical results since
for 2x2 ≥ x1 + 1, we have m(x1, x2) = x1, and this function is not strictly increasing with
respect to x2. Similarly, we have m(x1, x2) = 2x2

2 if 2x2 < x1 in the model (2.33). Ob-
serve also that there are some (small) areas where the unconstrained local linear estimate
yields a smaller mean squared error in model (2.33). Nevertheless, in most cases, the in-
corporation of the additional information of monotonicity yields a reduction of the mean
squared error, in particular, if the regression function is strictly increasing with respect to
both arguments.

2.4.2 Data examples

To explore the performance of the strictly monotone estimates in terms of real data ex-
amples, we present to typical settings for monotonicity constraints in applications. These
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Figure 2.6: The simulated ratio of the mean squared errors of the local linear estimate and
its monotonization with respect to the x1 and x2 coordinate. The four surfaces correspond
to the regression functions (2.30): upper left panel, (2.31): upper right panel, (2.32): lower
left panel, and (2.33): lower right panel.
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examples are implemented with the R package monoProc [see Scheder (2007) in R Devel-
opment Core Team (2007)] and can be reproduced by the reader. The difficulty in the
implementation of nonparametric kernel techniques is to assign the parameters like the
bandwidth or the kernel function.
As in the simulation study before, we apply the local linear estimator as unconstrained
estimator for its superiority in the asymptotic behavior compared to the Nadaraya and
Watson estimator. To get an estimate for the variance function σ in model (2.29), we
use Spokoiny’s variance estimate for high-dimensional regression models [see Spokoiny
(2002)] to get an estimate σ̂2 of the integrated variance. The Epanechnikov kernel is used
as kernel function. After that a two-step cross validation is implemented to determine
the bandwidths h1 = h2 and hm. In the first step, the bandwidths h1, h2 are chosen.
The cross validation is performed as a leave-one-out-cross validation procedure over an

appropriate interval centered at the point
Ä
σ̂2

n

ä1/6
determining h1 = h2, where n is the

sample size of the data. For more details on this method to assign the bandwidth for
regression smoothers see Härdle (1990), p.152. In the second step of the cross validation,
we determine the bandwidth hm using the bandwidths h1 = h2 from the first step. This
time the cross validation function is defined by

CV(hm) =
1

n

n∑
j=1

(Yj − m̂I,j(Xj1, Xj2))
2

with m̂I,j(x1, x2) =) = (m̂I1,2,j(x1, x2) + m̂I2,1,j(x1, x2))/2 as the average of the two mono-
tone estimates m̂I1,2,j(x1, x2) and m̂I1,2,j(x1, x2) (obtained by interchanging the order of
isotoniziation) in which the jth observation is left out (denoted by the subscript j).

Example 2.23 A reasonable criterion for obesity is to calculate the body fat percentage
of a person. The most accurate techniques like underwater weighing to obtain the body
fat percentage are time consuming and expensive. Other methods to estimate this per-
centage suggest certain predictive equations depending on, e.g., weight, height, age, and
several simple body measurements. The fat data set in the UsingR package contains
these information of 252 men from 22 to 81 years [see Penrose et al. (1985)]. To simplify
this problem, we consider weight and height as independent variables motivated by the
body mass index (BMI)

BMI =
weight(kg)

height(m)2
.

This is an restrictive simplification, but on the other hand there are also problems with
the accuracy of body circumference measurements. Weight and height are in contrast
to that, easily obtained quantities. Moreover, it is reasonable that in an average group
of men, body fat should depend monotonically increasing on weight and monotonically
decreasing on height. It has to be mentioned that two outliers in this data set have been
disregarded (observation 39 and 42). For the fat data set, we obtain σ̂2 = 39.48902 using
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Spokoiny’s variance estimation. The cross validation function suggest the bandwidth
h1 = h2 = 0.5 for the unconstrained local linear estimator. In the second cross validation,
the bandwidth hm = 0.75 for the monotonizing procedure is chosen out of the set [0.1, 3.0]
with CV(0.75) = 30.9634. In this example, there is a slight difference between the cross
validation value of m̂I1,2 (31.063877) and m̂I2,1 (30.862941). The choice hm = 0.75 corre-
sponds also the minimum of CV(hm) if only m̂I1,2 is under consideration. By comparison,
the local linear estimator leads in this setup to a cross validation value of 30.952571. The
monotone estimate of the regression function (body fat percentage as a function of weight
and height) is depicted in Figure 2.7.

Bodyfat Percentage
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65
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40
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200
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Figure 2.7: Monotone estimate of the body fat percentage as a function of weight and
height.

Example 2.24 Often a monotone dependency between education and work experience
and the corresponding salary is assumed. To examine the monotonic relationship be-
tween the frequency to of earning more than $50 000 per year as response and education
and age as explanatory variables, we analyze a reasonably clean extract of the 1994 Cen-
sus data base found in Blake and Merz (1998) [see also Kohavi (1996)]. This data set
consists of 48813 instances after removing duplicates. Since we are only interested in
age, education, and the frequency of earning more than $50 000 a year, we derive a data
set with 639 observations, where age ranges from 19 to 90, and education level from 1 to
16. This extract includes only age groups in which at least one person earns more than
$50 000 per year. Furthermore, we restrict age to 27-70 and analyze therefore a sample
of 516 observations. Spokoiny’s variance estimation leads to σ̂2 = 0.02563633, and we
obtain the bandwidths h1 = h2 = 0.169 by cross validation. Again we used a second
cross validation to find the bandwidth hm.
The cross validation function CV (hm) was minimized over the set [0.001, 0.03]. In the fol-
lowing table, a part of these results for the different estimates are recorded. Note that the
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impact of the choice of the bandwidth hm on the cross validation function is very small.
We decided to use hm = 0.017 for the further analysis, which is a minimizer of CV (hm)
for the average of the two monotonized procedures m̂I = (m̂I1,2 + m̂I2,1)/2. But the dif-
ference to the minima of the estimates m̂I1,2 and m̂I2,1 , which are attained at hm = 0.013
and in hm = 0.019, respectively, is negligible.

m̂I m̂I1,2 m̂I2,1 hm m̂I m̂I1,2 m̂I2,1 hm
0.0331355 0.034175 0.032096 0.009 0.033113 0.03419 0.032036 0.02
0.033126 0.034169 0.032083 0.01 0.0331165 0.034196 0.032037 0.021
0.033119 0.034167 0.032071 0.011 0.03312 0.034203 0.032037 0.022
0.033114 0.034166 0.032062 0.012 0.0331245 0.03421 0.032039 0.023
0.0331105 0.034165 0.032056 0.013 0.0331315 0.034221 0.032042 0.024
0.0331085 0.034166 0.032051 0.014 0.03314 0.034233 0.032047 0.025
0.0331065 0.034167 0.032046 0.015 0.033149 0.034246 0.032052 0.026
0.0331055 0.034169 0.032042 0.016 0.033159 0.03426 0.032058 0.027
0.0331055 0.034172 0.032039 0.017 0.03317 0.034275 0.032065 0.028
0.033107 0.034177 0.032037 0.018 0.0331815 0.03429 0.032073 0.029
0.0331095 0.034183 0.032036 0.019 0.033194 0.034307 0.032081 0.03

Table 2.1: Scores of the cross validation function for the different estimates with h1 = h2 = 0.169.

The estimates for the regression function are displayed in Figure 2.8. Since the differ-
ence between m̂I1,2 and m̂I2,1 was not significant, only the estimate m̂I is shown. The
monotonization with respect to the education level appears to be more influential than
the monotonization with respect to age.
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Figure 2.8: The results of the Census-Income Example. The estimates for the regression
function and their corresponding Contour Plots from top to bottom with h1 = h2 = 0.169
and hm = 0.017: m̂I , m̂I1 , m̂I2 , and m̂.



Chapter 3

Additive quantile regression

3.1 Overview

This chapter is concerned with quantile regression models, which give a more sophisti-
cated picture of a relationship between a predictor and a response variable. In particular,
we consider additive conditional quantile models with high-dimensional predictors. In
the following three sections, some fundamental aspects of the theory of conditional quan-
tile models with high-dimensional covariates are summarized. First of all, the model it-
self is introduced. Then an estimator for the conditional quantile model is derived. Here
we benefit again from the monotonizing procedure, since we use the first step to obtain
an isotonized inverse of a possibly non-increasing estimate of the conditional distribu-
tion function [see Section 1.3 in Chapter 1]. To avoid the curse of dimensionality, additive
models are utilized in Section 3.4. In Section 3.5, estimates for different contrasts in the
additive conditional quantile model are developed and analyzed. Asymptotic normality
of the estimates is established with the optimal one-dimensional rate of convergence. In
the last section finally, some finite sample studies and data examples are given to illus-
trate the theory. Furthermore a comparison with the procedure introduced by De Gooijer
and Zerom (2003) is conducted, which is most similar in spirit with the presented esti-
mates.

3.2 Quantile regression models

In contrast to traditional regression models, quantile regression models offer a deeper in-
sight into the relationship of the response variable Y and the one- or higher-dimensional
explanatory variable X. The regression model

Y = Q(α|X) + ε
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is formulated as quantile model for fixed α ∈ (0, 1). The error ε is defined as a random
variable, whose α-quantile given X = x is zero for almost every x, so that Q(α|X) is the
α-quantile of Y given X = x. The quantile model is specified for each α separately.
The median is the most common empirical quantile with α = 0.5. For a simple numerical
sample, it is defined as the number dividing the higher half of a sample, a population, or
a probability distribution from the lower half. The median of a finite list of numbers can
be found by ordering all observations from lowest value to highest value and picking
the middle one. If there are an even number of observations, one often takes the mean
of the two middle values. The median exemplifies easily why quantiles are more robust
compared to the mean value of a sample. One outlier is enough to change the mean value
substantial, whereas the median is not shifted noticeable. There are many data sets which
suffer from this phenomena; e.g. salaries and wages are often skewed with few salaries
at the extreme high end of the range, who have a strong influence on the average salary.
This “average salary” conveys a false impression of how much an average person earns.
The conditional quantile function of Y given X = x allows to consider several quantiles
and provides a deep insight into the relationship. In economics and finance, the value at
risk (VaR) is a measure of market risk to a given confidence level 1−α, which is basically
the quantile at α of the sample [see Pflug (2000) or Umantsev and Chernozhukov (2001)].
In general, there are two ways to define conditional quantiles.

Definition 3.1 For fixed α ∈ (0, 1), the α-conditional quantile of Y given x = (x1, x2, . . . , xd)
T

is defined as the value Q(α|x) such that

(i)
Q(α|x) = inf{t ∈ IR | F (t|x) ≥ α},

where F (·|x) denotes the conditional distribution function of Y given X = x or equiva-
lently,

(ii)
Q(α|x) = arg min

a∈IR
E[ρα(Y − a)|X = x],

where ρα(u) = |u|+ (2α− 1)u is the so-called “check-function”.

Koenker and Bassett (1978) introduced quantile regression using the check-function as a
supplement to least squares methods, which are used for estimating conditional mean
functions. Their approach was a cornerstone in quantile regression. In the meantime,
several authors worked on methodological and practical aspects of this method. Koenker
(2005) summarized the results about quantile regression in a recent monograph.
Lately, nonparametric methods have found considerable interest in the context of con-
ditional quantiles [see Yu and Jones (1998) or Yu and Jones (1997)]. Motivated by the
observation that many one-dimensional nonparametric estimates of conditional quan-
tiles are not monotone with respect to α ∈ (0, 1) [see e.g. He (1997), Yu et al. (2003), or
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Koenker (2005), Chapter 7], which is an embarrassing phenomenon in applications, we
pursue a new approach. In the following, we construct the conditional quantile func-
tion via inversion of the distribution function. To estimate the conditional distribution
function, we focus on nonparametric approaches. Many estimators of the distribution
functions obtained by nonparametric regression techniques are not inherently monotone
or positive, so the inverse cannot be obtained in a straightforward manner. We use the
first step of the monotonizing procedure described in Chapter 1 to avoid these problems
in a very practical way. The concept of non-increasing rearrangements has been success-
fully applied by Dette and Volgushev (2007) and Chernozhukov et al. (2007) in quantile
regression. The last named authors use this concept to isotonize parametric (possibly
crossing) quantile estimates. Dette and Volgushev (2007), however, isotonize and invert
a nonparametric estimate of the conditional distribution function simultaneously in the
context of a one-dimensional covariate. In the next section, we will extend this method
to high-dimensional covariates. To deal with the curse of dimensionality, we consider
additive models.

3.3 The conditional Quantile function

In this section, we discuss a method for estimating conditional quantile functions through
reversing the conditional distribution function introduced by Dette and Volgushev (2007)
in the case of a one-dimensional covariate. First of all, estimators for distribution func-
tions are analyzed. Given the random sample {(Xj, Yj)}nj=1, where the explanatory vari-
able Xi is a d-dimensional vector, the estimation problem can be viewed as a regression
of Zj on Xj , where Zj = I{Yj ≤ y} and E[Zj|Xj = x] = P (Yi ≤ y|Xi = x) = F (y|x). So
we can consider

Zj = F (y|Xj) + σ(y|Xj)εj (3.1)

as a nonparametric regression model, where the variance function depends on y [see Hall
et al. (1999)]. The variance function σ(y|x) can be specified in terms of F (y|x). Precisely,
we have

σ2(y|x) = E[(Zj − F (y|x))2|Xj = x] = F (y|x)(1− F (y|x)),

since Z2
j = Zj . In this framework, many estimators for the conditional distribution func-

tion arise from the theory of nonparametric estimation techniques. Using kernel regres-
sion estimators, we derive a Nadaraya-Watson type estimator

F̂NW (y|x) =

∑n
j=1KH(Xj − x)I{Yj ≤ y}∑n

j=1KH(Xj − x)
(3.2)

as in Chapter 2. In a similar manner the local linear estimator of the conditional distribu-
tion function is defined. In this chapter, we define K as a d-dimensional kernel of order
q ≥ 2 supported on [−1, 1]d. Let ν = (ν1, . . . , νd) be a multi-index of integers with νl ≥ 0,
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so that xν = xν11 . . . xνdd . Moreover, define |ν| =
∑d
l=1 νl. Then the kernel K satisfies the

following conditions

(i)
∫
[−1,1]d K(x)dx = 1,

(ii)
∫
[−1,1]d |xν ||K(x)|dx <∞ for |ν| ≤ q,

(iii)
∫
[−1,1]d xνK(x)dx = 0 for 1 ≤ |ν| ≤ q − 1,

(iv)
∫
[−1,1]d xνK(x)dx 6= 0 for some |ν| = q.

Sometimes one assumes that the kernel function K is symmetric, i.e.,

K(−x) = K(x), x ∈ [−1, 1]d,

which implies that q is even. Note that the kernel K is not a probability density function
anymore for q > 2. In particular, the kernel K is not positive anymore. Therefore we
run into the problem that the estimate F̂NW (y|x) violates the isotonicity constraint of
a distribution function with respect to y. The same thing happens for the local linear
estimate F̂LL(y|x), since the local linear estimate can be expressed as a weighted average,
where the weights are not necessarily positive even for a positive kernel K of order q = 2
[see Remark 1.5 in the univariate case]. Hall et al. (1999) suggest a reweighted Nadaraya
and Watson estimator for the conditional distribution function with a kernel of order 2
achieving the more attractive bias of the local linear estimate. Basically, their estimate
has the following form in the case of a one-dimensional covariate

F̂RW (y|x) =

∑n
j=1 pj(x)Kh(x−Xj)I{Yj ≤ y}∑n

j=1 pj(x)Kh(x−Xj)
,

where pj(x) denote weights depending on the data X1, . . . , Xn satisfying pj ≥ 0 for j =
1, . . . , n,

∑n
j=1 pj = 1, and

n∑
j=1

pj(x)(x−Xj)Kh(x−Xj) = 0.

The weights pj are chosen by maximizing
∏n
j=1 pj .

Internal methods yield other estimates for the conditional distribution function. In the
context of estimating an additive quantile function with high-dimensional covariates,
the internalized estimator of the conditional distribution function is interesting from a
computational point of view, that is

F̂INW (y|x) =
n∑
j=1

KH(x−Xj)I{Yj ≤ y}∑n
i=1KH(Xj −Xi)
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[see Jones et al. (1994) or Kim et al. (1999)]. The main advantage of the internalized
estimator is observable by writing it as a weighted sum

F̂INW (y|x) =
1

n

n∑
j=1

KH(x−Xj)Ỹj

over the adjusted data Ỹj = I{Yj ≤ y}/p̂(Xj), where

p̂(x) =
1

n

n∑
i=1

KH(x−Xi).

On the other hand, as we have seen in Theorem 1.4 of Chapter 1, this estimate yields an
additional bias and variance term.
There are other estimators for the conditional distribution function, but we will focus
on the above mentioned nonparametric kernel estimators. The aim of this chapter is to
derive an estimator for the conditional quantile function with many covariates from an
estimator of the conditional distribution function as motivated by Definition 3.1. With
this approach we have to deal with the problem that some estimates of the conditional
distribution function are not monotone increasing with respect to y and the generalized
inverse cannot be computed. To overcome this defect of some estimators, we propose a
method which deals simultaneously with this lack and the problem of inversion. We ap-
ply the first step of the monotonizing procedure, which produces a monotonized inverse
of the estimator of the conditional distribution function [see Section 1.3.2]. In order to fix
ideas, let G : IR → [0, 1] be a strictly increasing distribution function, which will be used
as a transformation to the compact interval [0, 1], since F (·|x) might have unbounded
support. The kernel Km denotes a positive kernel with compact support on [−1, 1], and
hm denotes a bandwidth, then we define for a nonparametric estimator of the conditional
distribution function F̂ (y|x)

ĜI(α|x) =
1

Nhm

N∑
i=1

∫ α

−∞
Km

Ñ
F̂ (G−1( i

N
)|x)− u

hm

é
du. (3.3)

If F̂ (y|x) is uniformly consistent and N →∞, hm → 0, it is intuitively clear that

ĜI(α|x) ≈ GN(α|x) :=
1

Nhm

N∑
i=1

∫ α

−∞
Km

(
F (G−1( i

N
)|x)− u

hm

)
du

≈
∫
I{F (G−1(s)|x) ≤ α}ds = G(Q(α|x)),

where Q(α|x) := F−1(α|x). The last approximation follows for hm → 0 and N → ∞
sufficiently fast as motivated before in Section 1.3.1. Consequently, we define

Q̂I(α|x) = G−1(ĜI(α|x)) (3.4)
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as the estimate of the conditional quantile Q(α|x), and

QN(α|x) = G−1(GN(α|x)) (3.5)

as a deterministic approximation of the conditional quantile Q(α|x). It will be demon-
strated in the following sections that the choice of the function G has no impact on the
asymptotic properties of the estimate. See Dette and Volgushev (2007) for a detailed
proof. Moreover, even for realistic sample sizes the impact of the choice of G is negligi-
ble. Some practical recommendations regarding this choice will be given in Section 3.6.
Note that the estimate ĜI(α|x) and Q̂I(α|x), respectively, are monotone increasing with
respect to α provided that the kernel Km is positive on its support.

3.4 Additive Models

Additive Models are a natural generalization of linear regression models. Let Y be the
dependent variable and X the d-dimensional vector of explanatory variables. The addi-
tive structure of the regression function can be modeled by

m(X) = g1(X1) + g2(X2) + . . .+ gd(Xd) + c,

provided

E[gk(Xk)] =
∫
gk(xk)pk(xk)dxk = 0 (k = 1, . . . , d)

for identifiability of the individual components, where pk is the marginal density of Xk.
These identification assumptions yield E[Y ] = c. For high-dimensional estimation prob-
lems, additive models circumvent the curse of dimensionality. Stone (1985) showed that
the additive regression function can be estimated with the optimal convergence rate of
the one-dimensional case. This rate is n−s/(2s+1), where s is an index of smoothness of m,
explicitly it indicates how often m is differentiable [usually one assumes s = 2].
The conditional quantile model focused in this chapter can be modeled through an addi-
tive model for α ∈ (0, 1) by

Q(α|x) = Q1(α|x1) +Q2(α|x2) + . . .+Qd(α|xd) + c(α), (3.6)

where for identifiability

E[Qk(α|Xk)] = 0 (k = 1, 2, . . . , d) and E[Q(α|X)] = c(α). (3.7)

In contrast to the additive regression model, note that the constant term depends on α.
Several authors have recommended this model for high-dimensional quantile regression
[see e.g. Doksum and Koo (2000), De Gooijer and Zerom (2003), and Horowitz and Lee
(2005) among others].
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Essentially, there are three approaches to estimate the additive components of such mod-
els. The backfitting algorithm is proposed by Breiman and Friedman (1985) and Buja
et al. (1989). Tjøstheim and Auestad (1994) and Linton and Nielsen (1995) introduced
a marginal integration method. Finally, Andrews and Whang (1990) and Li (2000) con-
sidered splines to estimate additive models. An overview of the additive models and
marginal effects can be found in Chapter 8 of Härdle et al. (2004).
In the following, we summarize the backfitting approach and the marginal integration
method in the context of regression models. Both methods can be combined with kernel
regression techniques, but are substantially different from each other.

3.4.1 Backfitting Algorithm

Originally, the backfitting algorithm was developed by Breiman and Friedman (1985) and
Buja et al. (1989). It is a widely-used method to approximate the additive components.
Hastie and Tibshirani (1990) motivate the backfitting algorithm as follows. Consider the
optimization problem

min
m

E
î
(Y −m(X))2

ó
such that m(X) = c+

d∑
l=1

gl(Xl).

The solution of this problem is the best (in terms of the expected squared distance) addi-
tive predictor for E[Y |X]. By the projection onto Xk, the optimization problem changes
to

E[(Y −m(X))|Xk] = 0,

which yields

gk(Xk) = E

ÑY − c−∑
l 6=k

gl(Xl)

é ∣∣∣∣∣∣Xk

 (3.8)

for k = 1, . . . , d. This system of equations can be formulated equivalently asà
I P1 P1 · · · P1

P2 I P2 · · · P2
...

...
... . . . ...

Pd Pd Pd · · · I

íà
g1(X1)
g2(X2)

...
gd(Xd)

í
=

à
P1Y − c
P2Y − c

...
PdY − c

í
, (3.9)

where Pk = E[·|Xk]. For the empirical version of (3.9), the conditional expectation Pk is
replaced by smoothers Sk on Xk and c by ĉ = Ȳ . The smoother matrices Sk depend only
on the component Xk and change the problem to a one-dimensional smoothing problem.
More precisely, the basic backfitting algorithm works as follows.
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Backfitting Algorithm

initialization ĉ = Ȳ , ĝ
(0)
k ≡ 0 for k = 1, . . . , d,

repeat for k = 1, . . . , d the cycles
rk = Y − ĉ−∑k−1

l=1 ĝ
(s+1)
l −∑d

l=k+1 ĝ
(s)
l ,

ĝ
(s+1)
k (·) = Sk(rk)

until convergence is reached

The backfitting estimate is an iterative solution and therefore not easy to analyze theo-
retically. Mammen et al. (1999) proposed a smoothed backfitting version, where they can
develop asymptotic theory for their backfitting estimators. They write (3.8) as

gk(Xk) = E[Y |Xk]− c−
∑
l 6=k

E[gl(Xl)|Xk]

and estimate the conditional expectation “correctly” in some sense. The population
quantityE[Y |Xk] is replaced by one-dimensional nonparametric estimates. For the Nadaraya-
Watson estimate m̂, it can be shown in a straightforward manner that∫

m̂(x)
p̂(x)

p̂k(xk)
dxk =

1
n

∑n
j=1Kh(xk −Xjk)Yj

p̂k(xk)
= m̂k(xk),

where p̂(x) = 1
n

∑n
j=1

∏d
l=1Kh(xl − Xjl) is the empirical pdf of X and p̂k(xk) the corre-

sponding empirical pdf of Xk for k = 1, . . . , d. So the above equation system becomes
to

gk(xk) = m̂k(xk)− Ȳ −
∑
l 6=k

∫
gl(xl)

p̂(xk, xk)

p̂k(xk)
dxk,

which means that the smoothing is done over the whole vector X instead of using only
the subvector Xk as in the classical backfitting. This estimator achieves full oracle effi-
ciency which means that it has the same bias and variance as the oracle estimator based
on knowing the other components. A similar result can be attained for a local linear
version [see Mammen et al. (1999) or Nielsen and Sperlich (2005)]. Since the backfitting
approach relies on one-dimensional smooths, it is free from the curse of dimensionality.
In particular, the smoothed backfitting estimator features the univariate rate of conver-
gence.

3.4.2 Marginal Integration Approach

The basic idea of marginal integration is motivated again by looking at the identifiability
assumptions. For k = 1, . . . , d, it is assumed that

E[gk(Xk)] =
∫
gk(x)pk(x)dx = 0,
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where pk is the marginal density of Xk. Let

Xk = (X1, . . . , X(k−1), X(k+1), . . . , Xd)

be the vector of all explanatory variables but Xk and pk their joint pdf. For the additive
regression function, we have∫

m(x)pk(xk)
∏
l 6=k

dxl = EXk [m(Xk, Xk)]

= EXk [
∑
l 6=k

gl(Xl) + gk(Xk) + c]

= gk(Xk) + c.

The fundamental idea of the marginal integration approach is substantially different
from the backfitting algorithm. If the underlying true model is not exactly additive, the
two methods estimate different things. The backfitting algorithm fits the best additive
model to the data, whereas the marginal impact is estimated by the marginal integration
method. This marginal effect of Xk shows how Y changes on average while varying Xk.
In the model

Y = m(X) + ε = g1(X1) + g2(X2) + . . .+ gd(Xd) + c+ ε,

the marginal effect is the conditional expectation E[Y |Xk], where the expectation is taken
on the error distribution as well as on all other regressors. For estimation, we use this
relation. First estimate the multidimensional regression function, which is denoted by m̂,
then integrate out the variables different from Xk. To create a general framework, let W
be a deterministic weighting function with

∫
dW (x) = 1. We allow W to be discrete or

continuous, so that the density w of W is either Lebesgue or a counting measure. In this
case, the following contrast can be estimated

γW (xk) =
∫
m(xk, xk)dW (xk) = gk(xk) + ck,

where ck =
∫ ∑

l 6=k gl(xl)dW (xl) and xk = (x1, . . . , xk−1, xk+1, . . . , xd)
T .

A special case of W is the marginal probability measure of Xk. In a typical estimation
problem, this measure is unknown and the empirical distribution of Xk is used instead.
In these cases, the constants ck = c are independent of W , which follows from the identi-
fiability assumptions.
For the empirical distribution of Xk, we obtain¤�gk(xk) + c =

1

n

n∑
i=1

m̂(xk, Xik)

as estimator of the marginal effects.
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3.5 Estimates of additive conditional quantiles

In this section, we utilize the marginal integration method to estimate contrast in quantile
models. As underlying true model, we assume an additive quantile model of the form

Q(α|x) = Q1(α|x1) +Q2(α|x2) + . . .+Qd(α|xd) + c(α),

where α ∈ (0, 1) and x = (x1, . . . , xd)
T . As a first approach, we start with a d − 1-

dimensional known weighting function W on xk, the vector of all variables but xk, and
define the following contrast

γW (α|xk) =
∫
Q(α|x)W (dxk) =

∫
Q(α|xk, xk)W (dxk) (3.10)

= Q(α|xk) + ck(α),

where

ck(xk) =
∫ ∑

l 6=k
Ql(α|xl)dW (xk).

In Section 3.3, estimators for the conditional quantile function are introduced as the in-
verse of the distribution estimates. Recall the definition for this estimate in (3.4). In the
case of a conditional distribution function F (y|x) supported on the compact interval [0, 1],
the function G corresponds to the uniform distribution, and the estimate (3.4) simplifies
to

Q̂I(α|xk, xk) =
1

Nhm

N∑
i=1

∫ α

−∞
Km

Ñ
F̂ ( i

N
|xk, xk)− u
hm

é
du,

where F̂ ( i
N
|xk, xk) is a nonparametric estimator of the distribution function for instance

a local polynomial estimator. For the sake of transparency, we restrict ourselves to the
classical Nadaraya-Watson estimate, which is a local constant estimator [see definition
(3.2)]. To distinguish between the variable of interest and the other ones, we use two
different kernels, i.e.

F̂NW (y|xk, xk) =

∑n
i=1Kh1(xk −Xik)LH2(xk −Xik)I{Yi ≤ y}∑n

j=1Kh1(xk −Xik)LH2(xk −Xik)
,

where K(·) and L(·) are the kernel functions. L(·) is a d− 1-dimensional kernel. h1 is the
bandwidth of the variable xk andH2 = diag(h2, . . . , h2) is a diagonal (d−1)×(d−1)-matrix
with h2 as diagonal elements, which is the bandwidth of the other variables.
To estimate (3.10) using the marginal integration method, we consider

γ̂W (α|xk) =
∫
Q̂I(α|xk, xk)W (dxk)
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as an estimate and

γW,N(α|xk) =
∫
QN(α|xk, xk)W (dxk)

as an approximation of (3.10) [see (3.5) for a definition of QN(α|x)]. We show in the
following subsection that this estimate converges at the optimal one-dimensional rate.
Through the monotonizing inversion step, we have to deal with an additional bandwidth
hm, which makes things a bit more complicated than in a usual marginal integration
application. It will turn out that even for the two-dimensional case one has to trade
off between taking h1 = h2 = O(n−1/5) and keeping the approximation error between
γW (α|xk) and γW,N(α|xk) small. So the monotonizing inversion adds some problems. On
the other hand, all applications of marginal integration in a nonparametric setting run
into this problem. For higher dimensions it is not possible to use h2 at the rate n−1/5. We
explain this phenomenon in the following in deeper details.

3.5.1 Asymptotic Theory

To derive the asymptotic behavior of γ̂W (α|xk), some conditions on the model, the band-
widths hm, h1, and h2, and the kernels Km(·), K(·), and L(·) are required. We assume
model (3.1) for the conditional distribution function F (y|x). Many model assumptions
are related to the ones in Chapter 2, and we emphasize the analogy.

(A1’) Xj , j = 1, . . . , n is an i.i.d. sample with a q times continuously differentiable pos-
itive density, say p, supported on [0, 1]d, i.e. p ∈ Cq([0, 1]d). The partial derivatives
with respect to the covariates x = (x1, . . . , xd)

T are denoted by ∂s

∂xs
k

(s = 1, . . . , q; k =

1, . . . , d).

(A2’) For any x ∈ [0, 1]d and F (·|x) : D → [0, 1] with D ⊆ IR, we assume F (·|x) ∈
C1(D) andQ′(α|x) > 0, where the functionQ′ denotes the derivative of the quantile
function Q(α|x) with respect to α. Its existence in a neighborhood of the quantile of
interest is assumed.

(A3’) For any y ∈ D, we have F (y|·) ∈ Cq([0, 1]d) and again the partial derivatives with
respect to xk are denoted by ∂s

∂xs
k

for s = 1, . . . , q and k = 1, . . . , d.

(A4’) The random error εj and Xj are independent, and E[εj] = 0, E[ε2
j ] = 1, and E[ε4

j ] <
∞.

(A5’) The kernels K(·), L(·), and Km(·) have compact support. K(·) is a one-dimensional
kernel of order 2, and L(·) is a (d − 1)-dimensional kernel of order q [see Section
3.3]. The order q is determined by the bandwidth conditions. Recall the definitions
of the scalars κ2(K) = 1

2

∫
v2K(v)dv and ||K||22, which is the squared L2-norm of

K. Km(·) is supposed to be a positive kernel of order 2 and twice continuously
differentiable. Further K ′m(·) is assumed to be Lipschitz-continuous.
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The bandwidths h1, h2, and hm fulfill the following conditions

(B1’) nh1 →∞, nhd−1
2 →∞, nh1h

d−1
2 →∞, and nhm →∞

(B2’) nh5
1 = O(1), N = O(n)

(B3’) hm
h1

= o(1)

(B4’) nh2q+1
2 = O(1)

(B5’) 1

nh1h
2(d−1)
2 h2

m

= o(1)

The last bandwidth condition (B5’) determines the order q of the kernel L(·). Under the
above assumptions, we can state the following theorem.

Theorem 3.2 If the assumptions (A1’)-(A5’) and (B1’)-(B5’) are satisfied, then we have for all
α ∈ (0, 1) and k = 1, . . . , d»

nh1(γ̂W (α|xk)− γW (α|xk) + bk(α|xk))
D→ N (0, s2

k(α|xk)),

where

bk(α|xk) = κ2(K)h2
1

∫  ∂2

∂x2
k

F (Q(α|xk, xk)|xk, xk)

+2
∂
∂xk

F (Q(α|xk, xk)|xk, xk) ∂
∂xk

p(xk, xk)

p(xk, xk)

 1

F ′(Q(α|xk, xk)|xk, xk)
dW (xk),

s2
k(α|xk) = ||K||22

∫
α(1− α)w2(xk)

(F ′(Q(α|xk, xk)|xk, xk))2p(xk, xk)
dxk.

Remark 3.3 At this point it might be appropriate to explain the conditions regarding the
bandwidths to a greater extent. The condition nh1h

d−1
2 → ∞ is crucial for the marginal

integration approach. For d > 4 it is not possible to choose h2 = O(n−1/5). Therefore, in
some respect this approach still suffers from the curse of dimensionality. The way out is
to reduce the bias in the directions not of interest by taking L to be a higher order kernel
and over-smooth the variables xk by using h2 at the rate n−

1
2q+1 for q > 2. Otherwise,

the bias term in the directions not of interest dominates the asymptotic properties of the
estimate.
The condition (B3’) is necessary to get the approximation error between γW (α|xk) and
γW,N(α|xk) small. It is possible to reduce this condition to hm

h1
= O(1), but in this case one

gets an additional bias-term. There is a remark after the proof of the above theorem about
how to weaken this bandwidth condition. The last bandwidth condition determines the
order q of the kernel L and depends on hm as well. Through the additional smoothing
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parameter hm, even for d = 2 one has to use higher order kernels for the variable not of
interest. One can argue that this estimate suffers more from the curse of dimensionality
than usual marginal integration estimates. But on the other hand, all other approaches in
the additive quantile regression suffer from similar or other problems so far. De Gooijer
and Zerom (2003) suggest an estimate which uses a reweighted Nadaraya-Watson esti-
mate with positive kernel functions as estimate for the conditional distribution function,
and obtain the superior bias properties of the local linear estimates. This estimates is
monotone increasing because of the positive kernels. For d > 4, it is not possible to use
positive kernel functions, since one has to use higher order kernels due to the condition
nh1h

d−1
2 → ∞. This means that their estimate works only for d ≤ 4. Other approaches

which apply the check function have the difficulty of crossing quantile curves. In other
words, despite the drawbacks of our estimate it is easy applicable, works for d > 4, and
produces monotone increasing contrast estimates for additive quantile models.

Remark 3.4 The theorem is formulated with the Nadaraya-Watson estimator as initial
estimate for the conditional distribution function. There are many alternative estimators
which can be used. Hall et al. (1999) proposed a reweighted Nadaraya-Watson estimate
for the conditional distribution function, which comes with the superior bias properties
of the local linear estimates. Local polynomial techniques provide tools for many other
nonparametric estimators. For all these estimators, similar results can be formulated. In
particular, if the conditional distribution function is estimated by a local linear estimate
[see Masry and Fan (1997)]. Then the asymptotic normality of the resulting estimate is
still true, but the bias term in Theorem 3.2 has to be replaced by

bk(α|xk) = κ2(K)h2
1

∫ ∂2

∂x2
k
F (Q(α|xk, xk)|xk, xk)

F ′(Q(α|xk, xk)|xk, xk)
dW (xk).

In the usual marginal integration applications, one often refers to internally normalized
multivariate regression smoother as initial estimators. These estimates are computation-
ally easier to integrate than the external estimates where the Nadaraya-Watson estimator
belongs to. We discuss this extensively in the next subsection.

Remark 3.5 Note that we can relax the assumption of independent data. In a more gen-
eral setup, we assume that the process {(Xj, Yj)}∞−∞ is α-mixing or strongly mixing, that
is

sup
A∈F0

−∞,B∈F∞k
|P (AB)− P (A)P (B)| = α(k)→ 0 as k →∞ ,

where F ba denotes the σ-algebra generated by the random variables {(Xj, Yj), a ≤ j ≤ b}
[see Rosenblatt (1956)]. To retain the assertion of Theorem 3.2 for dependent data, we
assume that the mixing coefficients α(k) fulfill

∞∑
j=1

ja(α(j))1/2 <∞
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for a > 1
2

and that there exists a sequence {vn} of positive integers satisfying vn →∞ and
vn = o

(»
nhd1

)
such that  

n

hd1
α(vn)→ 0, as n→∞.

With these two additional assumptions, the assertion of Theorem 3.2 remains valid. For
more details and a discussion of strongly mixing data in multivariate nonparametric re-
gression settings see Masry (1996).

3.5.2 Non-crossing estimates of the marginal effects

In this section, we focus on estimates for the marginal effects qk(α|xk) = Qk(α|xk) +
c(α) for k = 1, . . . , d in the additive conditional quantile model. In the last section, the
marginal integration estimates for a deterministic weighting function W were analyzed.
Now we require a weighting function to estimate the marginal effects explicitly. Since
the distribution pk of Xk is unknown, we use the empirical version of it which yields the
following estimate

q̂k(α|xk) = ¤�Qk(α|xk) + c(α) =
1

n

n∑
j=1

Q̂I(α|xk, Xjk),

where Q̂I(α|xk, Xjk) is defined in (3.4). The estimate q̂k(α|xk) can be regarded as the
expectation of Q̂I(α|X) with respect to the empirical distribution of

Xk = (X1, . . . , Xk−1, Xk+1, . . . , Xd)
T .

It is obviously monotone in α for fixed xk. Note that by the strong law of large numbers
and from the normalizing condition (3.7), we have

1

n

n∑
k=1

QN(α|xk, Xjk)
a.s.−→

∫
Q(α|x)pk(xk)dxk = Qk(α|xk) + c(α) =: qk(α|x1),

1

n

n∑
j=1

Qk(α|Xjk)
a.s.−→

∫
Qk(α|xk)pk(xk)dxk = E[Qk(α|Xk)] = 0,

where pk denotes the marginal density of Xk = (X1, . . . , Xk−1, Xk+1, . . . , Xd)
T and pk the

marginal density of Xk. Consequently, if Q̂I(α|x) is a (uniformly) consistent estimate of
Q(α|x) it follows that q̂k(α|xk) is a consistent estimate of qk(α|xk) := Qk(α|xk) + c(α).
Eventually,

Q̂k(α|xk) = q̂k(α|xk)−
1

n

n∑
j=1

q̂k(α|Xjk)
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defines a consistent estimate of Qk(α|xk). An estimate of the additive quantile function
in (3.6) is given by

Q̂add(α|x) :=
d∑

k=1

q̂k(α|xk)−
Ç

1− 1

d

å d∑
k=1

1

n

n∑
j=1

q̂k(α|Xjk).

To get the asymptotic behavior of the estimate q̂k(α|xk), some more sophisticated calcula-
tions are necessary as in the case of a deterministic weighting function. In the following
theorem, we state the asymptotic results for q̂k(α|xk), where the Nadaraya-Watson esti-
mator is used to estimate the conditional distribution function in (3.4) and (3.3), respec-
tively.

Theorem 3.6 If the assumptions (A1’)-(A5’) and (B1’)-(B5’) are satisfied, then we have for any
α ∈ (0, 1) and for k = 1, . . . , d»

nh1(q̂k(α|xk)− qk(α|xk) + bk(α|xk))
D→ N (0, s2

k(α|xk)),

where

bk(α|xk) = κ2(K)h2
1

∫  ∂2

∂x2
k

F (Q(α|xk, xk)|xk, xk)

+2
∂
∂xk

F (Q(α|xk, xk)|xk, xk) ∂
∂xk

p(xk, xk)

p(xk, xk)

 1

F ′(Q(α|xk, xk)|xk, xk)
pk(xk)dxk,

s2
k(α|xk) = ||K||22

∫ α(1− α)p2
k(xk)

(F ′(Q(α|xk, xk)|xk, xk))2p(xk, xk)
dxk,

and κ2(K), ||K||22 are defined as in Theorem 3.2.

It is again worth to mention that the local linear estimate as the initial estimate for the
distribution function yields an improved bias term, which is

bk(α|xk) = κ2(K)h2
1

∫ ∂2

∂x2
k
F (Q(α|xk, xk)|xk, xk)

F ′(Q(α|xk, xk)|xk, xk)
pk(xk)dxk.

Remark 3.7 The asymptotic properties of the additive quantile function

Q̂add(α|x) =
d∑

k=1

q̂k(α|xk)−
Ç

1− 1

d

å d∑
k=1

1

n

n∑
j=1

q̂k(α|Xjk)

can be derived as well. The asymptotic bias of Q̂add(α|x) is

d∑
k=1

bk(α|xk)−
Ç

1− 1

d

å ∫
bk(α|xk)pk(xk)dxk,
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where bk(α|xk) is the bias of q̂k(α|xk). The asymptotic variance is the sum of the variances
of q̂k(α|xk), since the terms in Qadd(α|x) are asymptotically uncorrelated.

Now we state a similar result for the internal estimator. This estimator is particularly
interesting in the context of marginal integration, since the usual marginal integration
estimate is computationally not very appealing. The internalized Nadaraya-Watson esti-
mate of the conditional distribution function is of the following form

F̂INW (y|xk, xk) =
n∑
i=1

Kh1(xk −Xik)LH2(xk −Xik)I{Yi ≤ y}∑n
j=1Kh1(Xjk −Xik)LH2(Xjk −Xik)

,

which is as we have seen in Section 3.3 basically a weighted sum over the adjusted data

Ỹi =
I{Yi ≤ y}

1
n

∑n
j=1Kh1(Xjk −Xik)LH2(Xjk −Xik)

=
I{Yi ≤ y}
p̂(Xik, Xik)

.

The corresponding estimate for qk(α|x1) is defined by

q̃k(α|xk) =
1

n

n∑
j=1

Q̃I(α|xk, Xjk),

where F̂INW (y|xk, xk) is used to calculate the monotonized inverse Q̃I(α|xk, Xjk).

Theorem 3.8 If the assumptions of Theorem 3.6 are satisfied, then we have for α ∈ (0, 1) and
k = 1, . . . , d»

nh1(q̃k(α|xk)− qk(α|xk) + b̃1k(α|xk)− b̃2k(α|xk))
D→ N (0, s̃2

k(α|xk)),

where

b̃1k(α|xk) = κ2(K)h2
1

∫ ∂2

∂x2
k
F (Q(α|xk, xk)|xk, xk)

F ′(Q(α|xk, xk)|xk, xk)
pk(xk)dxk

b̃2k(α|xk) = κ2(K)h2
1α
∫ ∂2

∂x2
k
p(xk, xk)

F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)
pk(xk)dxk

s̃2
k(α|xk) = ||K||22

∫ αp2
k(xk)

p(xk, xk)(F ′(Q(α|xk, xk)|xk, xk))2
dxk

The internalized marginal integration estimate q̃k(α|xk) is less efficient than the estimate
q̂k(α|xk), since it has an additional term in its bias and variance. Compare with Theorem
1.4 and Theorem 3.6, we obtain

σ2(Q(α|x)|x) + F 2(Q(α|x)|x) = α(1− α) + α2 = α ≥ α(1− α).
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There is some theory about the difference between external and internal approaches [see
Chapter 1 for a discussion]. When using externalized methods, one smoothes the data
first at hand, and then modifies the result to obtain an estimator. In the other case, one
first modifies the data, or at least the empirical distribution function to get something
like unbiasedness, and then smoothes. So the difference of this two approaches is quite
fundamental. Jones et al. (1994) give some more explanation why internal methods are
preferable.

Remark 3.9 Note that similar remarks can be stated as in Section 3.5. This means, e.g.,
that the assumptions of independent data can be relaxed.
The comparison of the estimate q̂k(α|xk) and the estimate suggested by De Gooijer and
Zerom (2003) is interesting since the two estimate are for all intents and purposes similar
in spirit. Recall Remark 3.3, which applies for q̂k(α|xk) as well. From asymptotic theory,
the estimate of De Gooijer and Zerom (2003) behaves better in low-dimensional problems
(d ≤ 4), since less assumptions on the smoothness of the functions p and F (y|x) have to
be made. On the other side, the estimate q̂k(α|xk) works for high-dimensional settings in
contrast to the estimate of De Gooijer and Zerom (2003), which requires positive kernel
functions. In Section 3.6, we conduct a comparison of this two estimates in terms of finite
sample properties.

3.5.3 Proof of Theorem 3.2

For the sake of simplicity, we assume N = n, and that the transformation function G

corresponds to the uniform distribution. Recall the definitions of Q̂I(α|x) and QN(α|x).
As in the proof of Theorem 2.12 in previous chapter, we analyze the function

g

Ñ
F̂ ( i

n
|xk, xk)− α
hm

é
=
∫ ∞
F̂ ( in |xk,xk)−α

hm

Km(v)dv =
1

hm

∫ α

−∞
Km

Ñ
F̂ ( i

n
|xk, xk)− u
hm

é
du,

where this time we utilize the conditional distribution function F (y|x) and its estimate,
respectively. With a Taylor expansion of degree 1, we obtain for ξi = ξi(α, xk, xk) between
F ( i

n
|xk, xk) and F̂ ( i

n
|xk, xk):

g

Ñ
F̂ ( i

n
|xk, xk)− α
hm

é
=

∫ ∞
F̂ ( in |xk,xk)−α

hm

Km(v)dv

=
∫ ∞
F ( in |xk,xk)−α

hm

Km(v)dv

− 1

hm
Km

(
F ( i

n
|xk, xk)− α
hm

)Ç
F̂

Ç
i

n
|xk, xk

å
− F

Ç
i

n
|xk, xk

åå
−1

2

1

h2
m

K ′m

Ç
ξi − α
hm

åÇ
F̂

Ç
i

n
|xk, xk

å
− F

Ç
i

n
|xk, xk

åå2

,
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where we have the following inequality for all α ∈ (0, 1) and i = 1, . . . , n

∣∣∣∣∣ξi − F
Ç
i

n
|xk, xk

å∣∣∣∣∣ ≤ ∣∣∣∣∣F̂ Ç in |xk, xkå− F Ç in |xk, xkå∣∣∣∣∣ . (3.11)

γW (α|xk) can be approximated by γW,n(α|xk) since hm fulfills (B3’):

γW (α|xk)− γW,n(α|xk) =
∫ Ä

Q(α|xk, xk)−Qn(α|xk, xk)
ä
W (dxk) (3.12)

=
∫ 1

2

Å∫
v2Km(v)dv

ã
h2
mQ

′′(α|xk, xk)

+ o(h2
m) +O

Ç
1

nhm

åW (dxk)

= o

Ç
1√
nh1

å
.

This is the expansion derived in Lemma 1.8. Taking the above approximation into ac-
count, it is enough to consider γ̂W (α|xk)− γW,n(α|xk):

γ̂W (α|xk)− γW (α|xk) = γ̂W (α|xk)− γW,n(α|xk) + o

Ç
1√
nh1

å
=

∫ î
Q̂I(α|xk, xk)−Qn(α|xk, xk)

ó
W (dxk) + o

Ç
1√
nh1

å
=

∫
1

n

n∑
i=1

[∫ ∞
F̂ ( in |xk,xk)−α

hm

Km(v)dv −
∫ ∞
F ( in |xk,xk)−α

hm

Km(v)dv

]
W (dxk)

+o

Ç
1√
nh1

å
= ∆(1)

n (α|xk) +
1

2
∆(2)
n (α|xk) + o

Ç
1√
nh1

å
,

where the terms ∆(1)
n (α|xk) and ∆(2)

n (α|xk) are defined by a Taylor expansion of order 1,
i.e.

∆(1)
n (α|xk) = − 1

nhm

∫ n∑
i=1

Km

(
F ( i

n
|xk, xk)− α
hm

)Ç
F̂ (

i

n
|xk, xk)− F (

i

n
|xk, xk)

å
W (dxk),

∆(2)
n (α|xk) = − 1

nh2
m

∫ n∑
i=1

K ′m

Ç
ξi − α
hm

åÇ
F̂ (

i

n
|xk, xk)− F (

i

n
|xk, xk)

å2

W (dxk).
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In the first step, we show that ∆(2)
n (α|xk) = op

(
1√
nh1

)
for a number ξi, which fulfills (3.11).

|∆(2)
n (α|xk)|

=
1

nh2
m

∣∣∣∣∣
∫ n∑

i=1

K ′m

Ç
ξi − α
hm

åÇ
F̂ (

i

n
|xk, xk)− F (

i

n
|xk, xk)

å2

W (dxk)

∣∣∣∣∣
=

1

nh2
m

∣∣∣∣∣
∫ n∑

i=1

K ′m

(
F ( i

n
|xk, xk)− α
hm

)1 +

(
K ′m

(
F ( i

n
|xk, xk)− α
hm

))−1

×

(
K ′m

Ç
ξi − α
hm

å
−K ′m

(
F ( i

n
|xk, xk)− α
hm

))ÇF̂ (
i

n
|xk, xk)− F (

i

n
|xk, xk)

å2

W (dxk)

∣∣∣∣∣
=

(1 + op(1))

nh2
m

∣∣∣∣∣
∫ n∑

i=1

K ′m

(
F ( i

n
|xk, xk)− α
hm

)Ç
F̂ (

i

n
|xk, xk)− F (

i

n
|xk, xk)

å2

W (dxk)

∣∣∣∣∣ (3.13)

≤ (1 + op(1))

nh2
m

∫ n∑
i=1

∣∣∣∣∣K ′m
(
F ( i

n
|xk, xk)− α
hm

)∣∣∣∣∣
Ç
F̂ (

i

n
|xk, xk)− F (

i

n
|xk, xk)

å2

W (dxk),

where line (3.13) follows from the Lipschitz continuity of K ′m, the bandwidth condition
(B5’), and (3.11), since∣∣∣∣∣K ′m

Ç
ξi − α
hm

å
−K ′m

(
F ( i

n
|xk, xk)− α
hm

)∣∣∣∣∣ ≤ L

∣∣∣∣∣ξi − F ( i
n
|xk, xk)

hm

∣∣∣∣∣
≤ L

∣∣∣∣∣∣ F̂ ( i
n
|xk, xk)− F ( i

n
|xk, xk)

hm

∣∣∣∣∣∣
= Op

Ç
log n

nh1h
d−1
2 h2

m

å1/2

= op(1).

For the last identity, the uniform convergence rate of F̂ ( i
n
|xk, xk) is used, which can be

found in Collomb and Härdle (1986) for higher dimensions.
Using the bandwidth condition (B5’), we obtain for the term ∆(2)

n by the theorem of
Tonelli approximating the sum over i by the corresponding integral

E[|∆(2)
n (α|xk)|] ≤

(1 + o(1))

h2
m

∫ ∫ 1

0

∣∣∣∣∣K ′m
Ç
F (t|xk, xk)− α

hm

å∣∣∣∣∣×
E
ïÄ
F̂ (t|xk, xk)− F (t|xk, xk)

ä2ò
dtW (dxk)

=
(1 + o(1))

hm

∫ ∫ 1

0
|K ′m(s)| ds 1

F ′(Q(α|xk, xk)|xk, xk)
× (3.14)

E
ïÄ
F̂ (Q(α|xk, xk)|xk, xk)− F (Q(α|xk, xk)|xk, xk)

ä2ò
dtW (dxk)

= O

Ç
1

hm

Ç
1

nh1h
d−1
2

åå
= op

Ç
1√
nh1

å
.



94 CHAPTER 3. ADDITIVE QUANTILE REGRESSION

In line (3.14), the substitution s =
F (t|xk,xk)−α

hm
is applied. The last identity follows from

the condition (B5’).
Now we can turn to the remaining term ∆(1)

n (α|xk). This term can be separated into
a bias and a variance term. Again, we interpret the sum over i as approximation of
the corresponding integral. Furthermore, we decompose (F̂ (t|xk, xk) − F (t|xk, xk)) and
exchange p̂ by p since |p̂(xk, xk)− p(xk, xk)| = op(1).

∆(1)
n (α|xk) = −(1 + op(1))

nhm

n∑
j=1

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
×

Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä(I{Yj ≤ t} − F (t|xk, xk)
p(xk, xk)

)
dtW (dxk)

= −(1 + op(1))

nhm

n∑
j=1

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä
×

(
F (t|Xjk, Xjk)− F (t|xk, xk) + σ(t|Xjk, Xjk)εj

p(xk, xk)

)
dtW (dxk)

= (1 + op(1))
Ä
∆(1.1)
n (α|xk) + ∆(1.2)

n (α|xk)
ä
,

where

∆(1.1)
n (α|xk) = − 1

nhm

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å n∑
j=1

Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä
×

(
F (t|Xjk, Xjk)− F (t|xk, xk)

p(xk, xk)

)
W (dxk)dt,

∆(1.2)
n (α|xk) = − 1

nhm

n∑
j=1

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1(xk −Xjk)LH2(xk −Xjk)×

σ(t|Xjk, Xjk)εj
p(xk, xk)

dtW (dxk).

Recall the explicit definition of

σ2(t|Xjk, Xjk) = F (t|Xjk, Xjk)(1− F (t|Xjk, Xjk)), (3.15)

which is motivated in Section 3.3. The first term represents basically the bias term. To
calculate the expectation and the variance, we use the following multi-index notation for
the differential operator D and the multi-index ν = (ν1, . . . , νd)

T

Dνk := Dν1
1 . . . D

νk−1

k−1 D
νk+1

k+1 . . . D
νd
d =

∂ν1

∂xν11

. . .
∂νk−1

∂x
νk−1

k−1

∂νk+1

∂x
νk+1

k+1

. . .
∂νd

∂xνdd
.
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First we calculate the expectation

E[∆(1.1)
n (α|xk)]

= −(1 + o(1))

hm

∫ ∫ 1

0

∫
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk − uk)LH2

Ä
xk − uk

ä
×(

F (t|uk, uk)− F (t|xk, xk)
p(xk, xk)

)
p(uk, uk)W (dxk)dtdukduk

= −(1 + o(1))

hm

∫ ∫ 1

0

∫
Km

Ç
F (t|xk, xk)− α

hm

å
K(vk)L(vk)p(xk − h1vk, xk − h2vk)×(

F (t|xk − h1vk, xk − h2vk)− F (t|xk, xk)
p(xk, xk)

)
W (dxk)dtdvkdvk

= −(1 + o(1))

hm

∫ ∫ 1

0

∫
Km

Ç
F (t|xk, xk)− α

hm

å
K(vk)L(vk)×1

2
h2

1v
2
k

∂2

∂x2
k

F (t|xk, xk) + h2
1v

2
k

∂
∂xk

F (t|xk, xk) ∂
∂xk

p(xk, xk)

p(xk, xk)
+
hq2
q!

∑
|νk|=q

v
νk
k

p(xk, xk)
×Ä

Dνk
Ä
F (t|xk, xk)p(xk, xk)

ä
− F (t|xk, xk)Dνkp(xk, xk)

äW (dxk)dtdvldvl

= −(1 + o(1))
Å∫

v2K(v)dv
ã ∫ ∫ 1−α

hm

−α
hm

Km(t′)dt′
1

F ′(Q(α|xk, xk)|xk, xk)
× (3.16)1

2
h2

1

∂2

∂x2
k

F (Q(α|xk, xk)|xk, xk) + h2
1

∂
∂xk

F (Q(α|xk, xk)|xk, xk) ∂
∂xk

p(xk, xk)

p(xk, xk)

W (dxk)

+Op(h
q
2)

= −(1 + o(1))h2
1µ2(K)

∫
1

F ′(Q(α|xk, xk)|xk, xk)
×1

2

∂2

∂x2
k

F (Q(α|xk, xk)|xk, xk) +
∂
∂xk

F (Q(α|xk, xk)|xk, xk) ∂
∂xk

p(xk, xk)

p(xk, xk)

W (dxk)

+Op(h
q
2)

= −(1 + o(1))bk(α|xk).

In the second equation, we apply the substitution vk = xk−uk
h1

and vk =
xk−uk
h2

componen-

twise. In line (3.16), we use the substitution t′ =
F (t|xk,xk)−α

hm
. The bounds of integration

with respect to t′ converge towards ±∞ that the integral is 1. We show in the following
that the variance of this random variable is negligible.
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Var(∆(1.1)
n (α|xk)) = Var

Ñ
1

nhm

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
×

n∑
j=1

Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä(F (t|Xjk, Xjk)− F (t|xk, xk)
p(xk, xk)

)
W (dxk)dt

é
=

1

n2h2
m

n∑
j=1

Var

Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä
×

(
F (t|Xjk, Xjk)− F (t|xk, xk)

p(xk, xk)

)
W (dxk)dt

é
=

1

nh2
m

V ar

Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk −X1k)K

Ä
xk −X1k

ä
×

(
F (t|X1k, X1k)− F (t|xk, xk)

p(xk, xk)

)
W (dxk)dt

é
≤ 1

nh2
m

∫ Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk − uk)LH2

Ä
xk − uk

ä
×

(
F (t|uk, uk)− F (t|xk, xk)

p(xk, xk)

)
W (dxk)dt

é2

p(uk, uk)dukduk

=
1

nh2
mh1

∫
K2(vk)p(xk − h1vk, uk)

Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
LH2

Ä
xk − uk

ä
×

(
F (t|xk − h1vk, uk)− F (t|xk, xk)

p(xk, xk)

)
W (dxk)dt

é2

dvkduk

=
1

nh1

∫
K2(vk)p(xk − h1vk, uk)

Ñ∫ ∫ 1−α
hm

−α
hm

Km(t′)dt′LH2(xk − uk)×

(
F (Q(α|xk, xk)|xk − h1vk, uk)− F (Q(α|xk, xk)|xk, xk)

F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)

)
W (dxk)

é2

dvkduk

=
1

nh1

∫
K2(vk)p(xk, uk)

w2(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p2(xk, uk)

Ñ∫
L(vk)×Ä

F (Q(α|xk, uk)|xk − h1vk, uk)− F (Q(α|xk, uk)|xk, uk + h2vk)
ä
dvk

é2

dvkduk
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=
(1 + o(1))

nh1

∫
K2(vk)p(xk, uk)w

2(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p2(xk, uk)

Ñ
−h1vk

∂

∂xk
F (Q(α|xk, uk)|ξk, uk)

− hq2
q!

∑
|νk|=q

Å∫
v
νk
k L(vk)dvk

ã
DνkF (Q(α|xk, uk)|xk, ξk)

é2

dvkduk

= O

Ç
1

nh1

(h1 + hq2)
2

å
= o

Ç
1

nh1

å
.

For this derivation similar substitutions are applied as for calculating the expectation.
Recall that w is the density of the weighting function W .
Since εi and Xi are independent and E[εi] = 0 , we obtain E[∆(1.2)

n (α|xk)] = 0 for the
second term. We show that the second term represents the variance term.

Var(
»
nh1∆

(1.2)
n (α|xk)) =

h1

nh2
m

n∑
j=1

Var

Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
×

Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä σ(t|Xjk, Xjk)εj
p(xk, xk)

dtW (dxk)

é
=

h1

h2
m

∫ Ñ∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk − uk)LH2

Ä
xk − uk

ä
×

σ(t|uk, uk)
p(xk, xk)

dtW (dxk)

é2

p(uk, uk)dukduk

= h1

∫
p(uk, uk)

Ñ∫ ∫ 1−α
hm

−α
hm

Km(t′)
σ(Q(α + hmt

′|xk, xk)|uk, uk)
F ′(Q(α + hmt′|xk, xk)|xk, xk)

dt′ × (3.17)

Kh1 (xk − uk)LH2

Ä
xk − uk

ä 1

p(xk, xk)
W (dxk)

é2

dukduk

= h1

∫
p(uk, uk)K

2
h1

(xk − uk)

Ñ∫
LH2

Ä
xk − uk

ä
×

σ(Q(α|xk, xk)|uk, uk)
F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)

W (dxk)

é2

dukuk

= h1

∫
p(uk, uk)K

2
h1

(xk − uk)×Ñ∫
L(vk)

σ(Q(α|xk, uk + h2vk)|uk, uk)w(uk + h2vk)p(xk, uk + h2vk)dvk
F ′(Q(α|xk, uk + h2vk)|xk, uk + h2vk)p2(xk, uk)

é2

dukduk
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= (1 + o(1))
∫
σ2(Q(α|xk, uk)|xk − h1vk, uk)K

2(vk)w
2(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk − h1vk, uk)
dvkduk

= (1 + o(1))
∫
K2(v)dv

∫
σ2(Q(α|xk, uk)|xk, uk)w2(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk, uk)
duk

= (1 + o(1))
∫
K2(v)dv

∫
α(1− α)w2(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk, uk)
duk,

where w is the density of the probability measure W , and the definition of the variance
function σ in the nonparametric model of the conditional distribution function is used
[see (3.15)]. Line (3.17) shows why the condition limn→∞

h1

hm
=∞ does not affect the con-

vergence rate, as the argument in the kernel functions is not changed by the substitution
t′ =

F (t|xk,uk)−α
hm

. In other words, the arguments of the kernel functions are independent
of t.

Finally, the weak convergence of»
nh1∆

(1.2)
n (α|xk)

D→ N (0, s2
k(α|xk))

follows as a consequence of the Lyapunov’s Theorem for δ = 2 since

n∑
j=1

E

√nh1

nhm

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä
×

σ(t|Xjk, Xjk)εj
p(xk, xk)

dtW (dxk)

4

=
h2

1

n2h4
m

n∑
j=1

E

∫ ∫ 1

0
Km

Ç
F (t|xk, xk)− α

hm

å
Kh1 (xk −Xjk)LH2

Ä
xk −Xjk

ä
×

σ(t|Xjk, Xjk)εj
p(xk, xk)

dtW (dxk)

4

=
h2

1E[ε4
1]

n

∫
K4
h1

(xk − uk)

Ñ∫ σ(Q(α|xk, xk)|uk, uk)LH2

Ä
xk − uk

ä
F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)

W (dxk)

é4

×

p(uk, uk)dukduk

=
E[ε4

1]

nh1

∫
K4(vk)p(xk − h1vk, uk)×Ñ∫
σ(Q(α|xk, xk)|xk − h1vk, uk)LH2(xk − uk)

F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)
W (dxk)

é4

dvkduk

= (1 + o(1))
E[ε4

1]

nh1

Å∫
K4(v)dv

ã ∫
p(xk, uk)×
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L(vk)σ(Q(α|xk, uk + h2vk)|xk, uk)w(uk + h2xk)

F ′(Q(α|xk, uk + h2vk)|xk, uk + h2vk)p(xk, uk + h2vk)
dvk

é4

duk

= (1 + o(1))
E[ε4

1]

nh1

Å∫
K4(v)dv

ã ∫ σ4(Q(α|xk, uk)|xk, uk)w4(uk)

(F ′(Q(α|xk, uk)|xk, uk))4p3(xk, uk)
duk

= (1 + o(1))
E[ε4

1]

nh1

Å∫
K4(v)dv

ã ∫ α2(1− α)2w4(uk)

(F ′(Q(α|xk, uk)|xk, uk))4p3(xk, uk)
duk = O

Ç
1

nh1

å
.

This completes the proof of the theorem. 2

Remark 3.10 In equation (3.12), the bandwidth condition (B3’) comes into play. This
quite strong condition can be weakened by assuming h3

m

h2
1

= o(1) and hm
h1

= O(1). This
means that an additional bias term appears in the expansion of γ̂W (α|xk) − γW (α|xk),
which is

c(α|xk) = κ2(Km)h2
m

∫
Q′′(α|xk, xk)dW (xk).

The first term of the second line of (3.12) adds to the bias term, and the remainder is
o
(

1√
nh1

)
.

3.5.4 Proof of Theorem 3.6

Again we assume N = n and G be a uniform distribution to simplify the proof. By the
law of the iterated logarithm, we observe

qk(α|xk) =
1

n

n∑
j=1

Q(α|xk, Xjk) +O

( 
log log n

n

)
P − a.s.

Furthermore, Q(α|xk, Xjk) can be approximated by Qn(α|xk, Xjk), which is defined in
(3.5). Applying Lemma 1.8 and using the bandwidth condition (B3’), we obtain

qk(α|xk) =
1

n

n∑
j=1

Qn(α|xk, Xjk) +
1

n

n∑
j=1

Ä
Q(α|xk, Xjk)−Qn(α|xk, Xjk)

ä
+ op

Ç
1√
nh1

å
=

1

n

n∑
j=1

Qn(α|xk, Xjk) + op

Ç
1√
nh1

å
.

Hence to derive the asymptotic behavior of q̂k(α|xk)− qk(α|xk), we apply a Taylor expan-
sion to the simplified difference

q̂k(α|xk)− qk(α|xk) =
1

n

n∑
j=1

î
Q̂I(α|xk, Xjk)−Qn(α|xk, Xjk)

ó
+ op

Ç
1√
nh1

å
= ∆(1)

n (α|xk) +
1

2
∆(2)
n (α|xk) + op

Ç
1√
nh1

å
,
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where

∆(1)
n (α|xk) = − 1

n2hm

n∑
j=1

n∑
i=1

Km

(
F ( i

n
|xk, Xjk)− α
hm

)Ç
F̂ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å
,

∆(2)
n (α|xk) = − 1

n2h2
m

n∑
j=1

n∑
i=1

K ′m

Ç
ξi − α
hm

åÇ
F̂ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å2

,

and ξi = ξi(α, xk, Xjk) satisfies |ξi − F ( i
n
|xk, Xjk)| ≤ |F̂ ( i

n
|xk, Xjk) − F ( i

n
|xk, Xjk)| for

i = 1, . . . , n. In the first step, we show that ∆(2)
n (α|xk) = op

(
1√
nh1

)
. We observe as in the

proof of Theorem 3.2 using the Lipschitz continuity of K ′m(·)

|∆(2)
n (α|xk)| =

1

n2h2
m

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

K ′m

Ç
ξi − α
hm

åÇ
F̂ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å2
∣∣∣∣∣∣

=
1

n2h2
m

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

K ′m

(
F ( i

n
|xk, Xjk)− α
hm

)1 +

(
K ′m

(
F ( i

n
|xk, Xjk)− α
hm

))−1

×

(
K ′m

Ç
ξi − α
hm

å
−K ′m

(
F ( i

n
|xk, Xjk)− α
hm

))ÇF̂ (
i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å2
∣∣∣∣∣∣

=
(1 + op(1))

n2h2
m

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

K ′m

(
F ( i

n
|xk, Xjk)− α
hm

)Ç
F̂ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å2
∣∣∣∣∣∣ .

Finally, we get from the bandwidth condition (B5’)

E
î
|∆(2)

n (α|xk)||Xjk = xk
ó
≤ (1 + op(1))

n2h2
m

n∑
j=1

n∑
i=1

∣∣∣∣∣K ′m
(
F ( i

n
|xk, xk)− α
hm

)∣∣∣∣∣×
E

ÇF̂ (
i

n
|xk, xk)− F (

i

n
|xk, xk)

å2
∣∣∣∣∣∣Xjk = xk


= Op

Ç
1

hm

Ç
1

nh1h
d−1
2

åå
= op

Ç
1√
nh1

å
.

Thus, we can concentrate on the remaining term ∆(1)
n (α|xk) which can be decomposed

into bias and variance part. The sum over i is interpreted as approximation of the corre-
sponding integral. We obtain observing the representation (3.1) and exchanging p̂ by p
since |p̂(xk, Xjk)− p(xk, Xjk)| = op(1)

∆(1)
n (α|xk) = −(1 + o(1))

nhm

n∑
j=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

åÄ
F̂ (t|xk, Xjk)− F (t|xk, Xjk)

ä
dt

= −(1 + op(1))

n2hm

n∑
j=1

n∑
m=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

å
Kh1 (xk −Xmk)×
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LH2

Ä
Xjk −Xmk

ä I{Ym ≤ t} − F (t|xk, Xjk)

p(xk, Xjk)
dt

= −(1 + op(1))

n2

n∑
j=1

n∑
m=1

∫ 1−α
hm

− α
hm

Km(t′)Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
×Ñ

F (Q(α + hmt
′|xk, Xjk)|Xmk, Xmk)− F (Q(α + hmt

′|xk, Xjk)|xk, Xjk)

F ′(Q(α + hmt′|xk, Xjk)|xk, Xjk)p(xk, Xjk)

+
σ(Q(α + hmt

′|xk, Xjk)|Xmk, Xmk)εm
F ′(Q(α + hmt′|xk, Xjk)|xk, Xjk)p(xk, Xjk)

é
dt′

= −(1 + op(1))

n2

n∑
j=1

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
×Ñ

F (Q(α|xk, Xjk)|Xmk, Xmk)− F (Q(α|xk, Xjk)|xk, Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

+
σ(Q(α|xk, Xjk)|Xmk, Xmk)εm

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

é
= (1 + op(1))

Ä
∆(1.1)
n (α|xk) + ∆(1.2)

n (α|xk)
ä
, (3.18)

where

∆(1.1)
n (α|xk) = − 1

n2hm

n∑
j=1

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
×

(
F (Q(α|xk, Xjk)|Xmk, Xmk)− F (Q(α|xk, Xjk)|xk, Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

)
,

∆(1.2)
n (α|xk) = − 1

n2hm

n∑
j=1

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
× (3.19)

(
σ(Q(α|xk, Xjk)|Xmk, Xmk)εm

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

)
.

The terms ∆(1.1)
n and ∆(1.2)

n are now investigated separately. First of all, ∆(1.1)
n (α|xk) can

be written as

∆(1.1)
n (α|xk) = − 1

n

n∑
j=1

ηj(α|xk),

where

ηj(α|xk) =
1

n

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
(F (Q(α|xk, Xjk)|Xmk, Xmk)− F (Q(α|xk, Xjk)|xk, Xjk))

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)
.
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Now we break ηj into two uncorrelated terms: E[ηj(α|xk)|Xj] and (ηj(α|xk)− E[ηj(α|xk)|Xj]).
For the conditional expectation of ηj(α|xk), we have

E[ηj(α|xk)|Xj] =
∫
Kh1 (xk − uk)LH2

Ä
Xjk − uk

ä
×

(F (Q(α|xk, Xjk)|uk, uk)− F (Q(α|xk, Xjk)|xk, Xjk))

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)
p(uk, uk)dukduk

=
∫
K(vk)L(vk)p(xk − h1vk, Xjk − h2vk)

(F (Q(α|xk, Xjk)|xk − h1vk, Xjk − h2vk)− F (Q(α|xk, Xjk)|xk, Xjk))

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)
dvkdvk

= (1 + op(1))h2
1κ2(K)

Ñ
∂2

∂x2
k
F (Q(α|xk, Xjk)|xk, Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)

+2
∂
∂xk

F (Q(α|xk, Xjk)|xk, Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

é
+Op(h

q
2).

It is easy to see that

E[∆(1.1)
n (α|xk)] =

∫ ∫
(F (Q(α|xk, wk)|xk − h1vk, wk − h2vk)− F (Q(α|xk, wk)|xk, wk))

K(vk)L(vk)p(xk − h1vk, wk − h2vk)

F ′(Q(α|xk, wk)|xk, wk)p(xk, wk)
pk(wk)dvkdvkdwk

= (1 + o(1))h2
1κ2(K)

∫ Ñ ∂2

∂x2
k
F (Q(α|xk, wk)|xk, wk)

F ′(Q(α|xk, wk)|xk, wk)

+ 2
∂
∂xk

F (Q(α|xk, wk)|xk, wk)
F ′(Q(α|xk, wk)|xk, wk)p(xk, wk)

é
pk(wk)dwk +O(hq2)

= −(1 + o(1))bk(α|xk) + o

Ç
1√
nh1

å
.

For the variance of ∆(1.1)
n (α|xk), we observe

E[(ηj(α|xk)− E[ηj(α|xk)|Xj])
2|Xj]

≤ 1

n

∫ Ñ Kh1 (xk − uk)LH2

Ä
Xjk − uk

ä
F ′(Q(α|xk, Xjk)|xk, Xjk)p(x1, xk, Xjk)

é2

(F (Q(α|xk, Xjk)|uk, uk)− F (Q(α|xk, Xjk)|xk, Xjk))
2dukduk

=
1

nh1h
d−1
2

∫
K2(vk)L

2(vk)

(F ′(Q(α|xk, Xjk)|xk, Xjk))2p2(xk, Xjk)

(F (Q(α|xk, Xjk)|xk − h1vk, Xjk − h2vk)− F (Q(α|xk, Xjk)|xk, Xjk))
2dvkdvk
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= Op

Ç
1

nh1h
d−1
2

(h2
1 + h2

2)

å
.

SinceE[E[ηj(α|xk)|Xj](ηj(α|xk)−E[ηj(α|Xj])] = 0, we can estimate the variance of ∆(1.1)
n (α|xk)

by

Var(∆(1.1)
n (α|xk)) = Var

Ñ
1

n

n∑
j=1

E[ηj(α|xk)|Xj] +
1

n

n∑
j=1

(ηj(α|xk)− E[ηj(α|xk)|Xj])

é
= Var

Ñ
1

n

n∑
j=1

E[ηj(α|xk)|Xj]

é
+ Var

Ñ
1

n

n∑
j=1

(ηj(α|xk)− E[ηj(α|xk)|Xj])

é
.

For the first term, we have

Var

Ñ
1

n

n∑
j=1

E[ηj(α|xk)|Xj]

é
=

1

n
Var (E[ηj(α|xk)|Xj]) ≤

1

n
E[(E[ηj(α|xk)|Xj])

2]

=
1

n

∫ Ñ∫
K(vk)L(vk)p(xk − h1vk, uk − h2vk)

(F (Q(α|xk, uk|xk − h1vk, uk − h2vk)− F (Q(α|xk, uk), xk, uk))
F ′(Q(α|xk, uk)|xk, uk)p(xk, uk)

dvkdvk

é2

pk(uk)duk

=
(1 + o(1))

n

∫ Ñ
h2

1κ2(K)

Ñ
1
2
∂2

∂x2
k
F (Q(α|xk, uk)|xk, uk)

F ′(Q(α|xk, uk)|xk, uk)
+

∂
∂xk

F (Q(α|xk, uk)|xk, uk)
F ′(Q(α|xk, uk)|xk, uk)p(xk, uk)

é
+
hq2
q!

∑
|νk|=q

∫
v
νk
k L(vk)dvk

Ñ
Dνk(F (Q(α|xk, uk)|xk, uk)p(xk, uk))
F ′(Q(α|xk, uk)|xk, uk)p(xk, uk)

+
F (Q(α|xk, uk)|xk, uk)Dνkp(xk, uk)

F ′(Q(α|xk, uk)|xk, uk)p(xk, uk)

éé2

pk(uk)duk

= O

Ç
(h2

1 + hq2)
2

n

å
= o

Ç
1

nh1

å
.

On the other hand, we obtain for the second term

Var

Ñ
1

n

n∑
j=1

(ηj(α|xk)− E[ηj(α|xk)|Xj])

é
= E

ñ
1

n
E
î
(ηj (α|xk)− E[ηj(α|xk)|Xj])

2 |Xj

óô
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≤ 1

n2h1h
d−1
2

∫
K2(vk)L

2(vk)

(F ′(Q(α|xk, uk))2p2(xk, uk)
×Ä

F (Q(α|xk, uk)|xk − h1vk, uk − h2vk)− F (Q(α|xk, uk)|xk, uk)
ä2
dvkdvkduk

= O

Ç
(h1 + h2)

2

n2h1h
d−1
2

å
= o

Ç
1

nh1

å
.

This shows
∆(1.1)
n (α|xk) + bk(α|xk) = op

Å 1√
nh1

ã
. (3.20)

We consider the term ∆(1.2)
n in (3.19), which has expectation E[∆(1.2)(α|xk)] = 0. To calcu-

late the variance, we decompose ∆(1.2)
n into

∆(1.2)
n (α|xk) = − 1

n

n∑
m=1

Kh1 (xk −Xmk) εmβm(α|xk),

where

βm(α|xk) =
1

n

n∑
j=1

LH2

Ä
Xjk −Xmk

ä
σ(Q(α|xk, Xjk)|Xmk, Xmk)

p(xk, Xjk)F ′(Q(α|xk, Xjk)|xk, Xjk)
.

Now we treat βm(α|xk) similar as ηj(α|xk) and break it intoE[βm(α|xk)|Xm] and βm(α|xk)−
E[βm(α|xk)|Xm]. The conditional expectation yields

E[βm(α|xk)|Xm] =
∫ LH2

Ä
uk −Xmk

ä
σ(Q(α|xk, uk)|Xmk, Xmk)pk(uk)

p(xk, uk)F ′(Q(α|xk, uk)|xk, uk)
duk

=
σ(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)

p(xk, Xmk)F ′(Q(α|xk, Xmk)|xk, Xmk)
+Op(h

q
2).

Furthermore we have

E
î
(βm(α|xk)− E[βm(α|xk)|Xm])2|Xm

ó
≤ 1

n

∫ ÑLH2

Ä
uk −Xmk

ä
σ(Q(α|xk, uk)|Xmk, Xmk)

p(xk, uk)F ′(Q(α|xk, uk)|xk, uk)

é2

pk(uk)duk

=
(1 + op(1))

nhd−1
2

Ä∫
L2(vk)dvk

ä
σ2(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)

p2(xk, Xmk)
Ä
F ′(Q(α|xk, Xmk)|xk, Xmk)

ä2
= op(1).

To calculate the variance of ∆(1.2)
n (α|xk)), we use a similar decomposition as for ∆(1.1)

n (α|xk))

Var(
»
nh1∆

(1.2)
n (α|xk))

= Var

(√
nh1

n

n∑
m=1

Kh1 (xk −Xmk) εmE[βm(α|xk)|Xm]

)

+Var

Ñ√
nh1

n

n∑
m=1

Kh1 (xk −Xmk) εm(βm(α|xk)− E[βm(α|xk)|Xm])

é
.
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The first term yields

Var

(√
nh1

n

n∑
m=1

Kh1 (xk −Xmk) εmE[βm(α|xk)|Xm]

)

= h1

∫
K2
h1

(xk − vk)

Ñ∫ LH2

Ä
uk − vk

ä
σ(Q(α|xk, uk)|vk, vk)pk(uk)

p(xk, uk)F ′(Q(α|xk, uk)|xk, uk)
duk

é2

p(vk, vk)dvkdvk

=
∫
K2(wk)p(x1 − h1wk, vk)(∫ L(u′k)σ(Q(α|xk, vk − h2u

′
k)|xk − h1wk, vk)pk(vk − h2u

′
k)

p(xk, vk − h2u′k)F
′(Q(α|xk, vk − h2u′k)|xk, vk − h2u′k)

du′k

)2

dwkdvk

= (1 + o(1))
∫
K2(wk)σ

2(Q(α|xk, vk)|xk − h1wk, vk)p(xk − h1wk, vk)Ñ
pk(vk)

p(xk, vk)F ′(Q(α|xk, vk)|xk, vk)
+ hq2

∑
|νk|=q

Ä∫
u′
νk
k L(u′k)du

′
k

ä
Dνkpk(vk)

p(xk, vk)F ′(Q(α|xk, vk)|xk, vk)

é2

dwkdvk

= (1 + o(1))
Å∫

K2(wk)dwk

ã ∫ σ2(Q(α|xk, vk)|xk, vk)p2
k(vk)

p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dvk + o(1)

= (1 + o(1))
Å∫

K2(wk)dwk

ã ∫ α(1− α)p2
k(vk)

p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dvk + o(1)

= (1 + o(1))s2
k(α|xk) + o(1)

and the second term

Var

(√
nh1

n

n∑
m=1

Kh1 (xk −Xmk) εm(βm(α|xk)− E[βm(α|xk)|Xm])

)

=
h1

n
E

E
( n∑

m=1

Kh1 (xk −Xmk) εm(βm(α|xk)− E[βm(α|xk)|Xm])

)2
∣∣∣∣∣∣Xm


= h1E

E
K2

h1
(xk −Xmk) (βm(α|xk)− E[βm(α|xk)|Xm])2

∣∣∣∣∣∣Xm


≤ h1

nhd−1
2

∫ K2
h1

(xk − uk) (
∫
L2(vk)dvk)σ

2(Q(α|xk, uk)|uk, uk)pk(uk)
p2(xk, uk)(F ′(Q(α|xk, uk)|xk, uk))2

p(uk, uk)dukduk

=
1

nhd−1
2

Å∫
K2(vk)dvk

ãÅ∫
L2(vk)dvk

ã α(1− α)pk(uk)

p2(xk, uk)(F ′(Q(α|xk, uk)|xk, uk))2

= O

Ç
1

nhd−1
2

å
.

Combining these results, we obtain

Var(
»
nh1∆

(1.2)
n (α|xk)) = s2

k(α|xk) + o(1).
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A similar calculation shows that Lyapunov’s condition for δ = 2 is satisfied for the lead-
ing term of ∆(1.2)

n , that is

n∑
m=1

E

√nh1

n
Kh1 (xk −Xmk) εmE[βm(α|xk)|Xm]

4

=
E[ε4

1]h
2
1

n

∫
K4
h1

(xk − uk)σ4(Q(α|xk, vk)|uk, uk)p(uk, uk)Ñ
pk(uk)

p(xk, uk)F ′(Q(α|xk, uk)|xk, uk)
+
hq2
q!

∑
|νk|=q

Ä∫
v
νk
k L(vk)dvk

ä
Dνkpk(vk)

p(xk, uk)F ′(Q(α|xk, vk)|xk, vk)

é4

dukduk

=
E[ε4

1]

nh1

Å∫
K4(v)dv

ã ∫ α2(1− α)2p4
k(uk)

(F ′(Q(α|xk, uk)|xk, uk))4p3(xk, uk)
duk +O

Ç
hq2
nh1

å
= O

Ç
1

nh1

å
,

which establishes the weak convergence»
nh1∆

(1.2)
n (α|xk)

D−→ N (0, s2
k(α|xk)).

A combination with (3.18) and (3.20) yields the assertion of Theorem 3.6.
2

3.5.5 Proof of Theorem 3.8

As in the previous proofs, we assumeN = n, and that the transformation functionG is in
fact a uniform distribution . We use again the law of the iterated logarithm and Lemma
1.8 to approximate qk(α|xk). The following decomposition is derived and is analyzed
more precisely in the rest of the proof

q̃k(α|xk)− qk(α|xk) =
1

n

n∑
j=1

Ä
Q̃I(α|xk, Xjk)−Qn(α|xk, Xjk)

ä
+ op

Ç
1√
nh1

å
= ∆̃(1)

n (α|xk) +
1

2
∆̃(2)
n (α|xk) + op

Ç
1√
nh1

å
,

where

∆̃(1)
n (α|xk) = − 1

n2hm

n∑
j=1

n∑
i=1

Km

(
F ( i

n
|xk, Xjk)− α
hm

)Ç
F̃ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å
,

∆̃(2)
n (α|xk) = − 1

n2h2
m

n∑
j=1

n∑
i=1

K ′m

(
ξ̃i − α
hm

)Ç
F̃ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)

å2

are obtained by a Taylor expansion with the number ξ̃i = ξ̃i(α, xk, Xjk) satisfying

|ξ̃i − F (
i

n
|xk, Xjk)| ≤ |F̃ (

i

n
|xk, Xjk)− F (

i

n
|xk, Xjk)|
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for i = 1, . . . , n. The second term ∆̃(2)
n (α|xk) can be treated as in the proof of Theo-

rem 3.6 and it follows that ∆̃(2)
n (α|xk) = op

(
1√
nh1

)
. Now we turn to the remaining term

∆̃(1)
n (α|xk), which requires a more sophisticated treatment and decomposition using the

special structure of the internalized Nadaraya-Watson estimate

∆̃(1)
n (α|xk) = −(1 + o(1))

nhm

n∑
j=1

Km

Ç
F (t|xk, Xjk)− α

hm

åÄ
F̃ (t|xk, Xjk)− F (t|xk, Xjk)

ä
dt

= (1 + o(1))(∆̃(1.1)
n (α|xk) + ∆̃(1.2)

n (α|xk) + ∆̃(1.3)
n (α|xk)),

where

∆̃(1.1)
n (α|xk) = − 1

nhm

n∑
j=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

å
×

 1

n

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
σ(t|Xmk, Xmk)εm

p̂(Xmk, Xmk)

 dt,
∆̃(1.2)
n (α|xk) = − 1

nhm

n∑
j=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

å
×

 1

n

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
(F (t|Xmk, Xmk)− F (t|x1, Xjk))

p̂(Xmk, Xmk)

 dt,
∆̃(1.3)
n (α|xk) = − 1

nhm

n∑
j=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

å
F (t|xk, Xjk)× 1

n

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
p̂(Xmk, Xmk)

− 1

 dt.
This is a similar decomposition as in Kim et al. (1999). Now we study these terms step
by step. The first term ∆̃(1.1)

n (α|xk) has apparently zero expectation, since E[εm] = 0 for
m = 1, . . . , n. To calculate the variance, we use a similar analysis as in Chen et al. (1996).

∆̃(1.1)
n (α|xk) = − 1

n2hm

n∑
j=1

n∑
m=1

∫ 1

0
Km

Ç
F (t|xk, Xjk)− α

hm

å
Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
σ(t|Xmk, Xmk)εm

p̂(Xmk, Xmk)
dt

= − 1

n2

n∑
j=1

n∑
m=1

∫ 1−α
hm

− α
hm

Km(t′)×

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
σ(Q(α + hmt

′|xk, Xjk)|Xmk, Xmk)εm

F ′(Q(α + hmt′|xk, Xjk)|xk, Xjk)p̂(Xmk, Xmk)
dt′
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= −(1 + op(1))

n2
×

n∑
j=1

n∑
m=1

Kh1 (xk −Xmk)LH2

Ä
Xjk −Xmk

ä
σ(Q(α|xk, Xjk)|Xmk, Xmk)εm

F ′(Q(α|xk, Xjk)|xk, Xjk)p̂(Xmk, Xmk)

= −(1 + op(1))

n

n∑
m=1

Kh1 (xk −Xmk) εmηm(α|xk)
p(Xmk, Xmk)

,

where

ηm(α|xk) =
1

n

n∑
j=1

LH2

Ä
Xjk −Xmk

ä
σ(Q(α|xk, Xjk)|Xmk, Xmk)

F ′(Q(α|xk, Xjk)|xk, Xjk)
.

To understand why we can substitute p̂ in the denominator by p, we multiply by

p̂(Xmk, Xmk)

p(Xmk, Xmk)
+

(
1−

p̂(Xmk, Xmk)

p(Xmk, Xmk)

)

and use the fact that

(p(Xmk, Xmk)− p̂(Xmk, Xmk))
2 = Op

Ç
h4

1 + h2q
2 +

1

nh1h
d−1
2

å
.

Then the term ηm(α|xk) is split up into two terms

ηm(α|xk) = E[ηm(α|xk)|Xm] + (ηm(α|xk)− E[ηm(α|xk)|Xm]),

which yields two uncorrelated terms decomposing ∆̃(1.1)
n (α|xk) by

∆̃(1.1)
n (α|xk) = (1 + op(1))(∆̃(1.1.a)

n (α|xk) + ∆̃(1.1.b)
n (α|xk)),

where

∆̃(1.1.a)
n (α|xk) = − 1

n

n∑
m=1

Kh1 (xk −Xmk)E[ηm(α|xk)|Xm]εm
p(Xmk, Xmk)

,

∆̃(1.1.b)
n (α|xk) = − 1

n

n∑
m=1

Kh1 (xk −Xmk) (ηm(α|xk)− E[ηm(α|xk)|Xm]) εm
p(Xmk, Xmk)

.
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For the first term, we calculate E[ηm(α|xk)|Xm]

E[ηm(α|xk)|Xm] =
∫
LH2(wk −Xmk)σ(Q(α|xk, wk)|Xmk, Xmk)

F ′(Q(α|xk, wk)|xk, wk)
pk(wk)dwk

=
∫
L(vk)σ(Q(α|xk, Xmk + h2vk)|Xmk, Xmk)pk(Xmk + h2vk)

F ′(Q(α|xk, Xmk + h2vk)|xk, Xmk + h2vk)
dvk

=
∫
L(vk)σ(Q(α|xk, Xmk)|Xmk, Xmk)

F ′(Q(α|xk, Xmk)|xk, Xmk)
×Ö

pk(Xmk) +
∑
|νk|=q

hq2v
νk
k

q!
Dνkpk(Xmk)

è
dvk

=
σ(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)

F ′(Q(α|xk, Xmk)|xk, Xmk)
+

hq2
q!
σ(Q(α|xk, Xmk)|Xmk, Xmk)

∑
|νk|=q

Ä∫
v
νk
k L(vk)dvk

ä
Dνkpk(Xmk)

F ′(Q(α|xk, Xmk)|xk, Xmk)

=
σ(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)

F ′(Q(α|xk, Xmk)|xk, Xmk)
+Op(h

q
2).

We obtain for v = (vk, vk)

Var(
»
nh1∆̃

(1.1.a)
n (α|xk))

=
nh1

n

∫ (
Kh1(xk − vk)E[ηm(α|xk)|Xm = v]

p(vk, vk)

)2

p(vk, vk)dvkdvk

= h1

∫ K2
h1

(xk − vk)E[ηm(α|xk)|Xm = v]2

p(vk, vk)
dvkdvk

=
∫ K2(wk)σ

2(Q(α|xk, vk)|xk − h1wk, vk)p
2
k(vk)

p(xk − h1wk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dwkdvk

+
hq2
q!

∫
K2(wk)σ

2(Q(α|xk, vk)|xk − h1wk, vk)pk(vk)

p(xk − h1wk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
×

∑
|νk|=q

Å∫
w
νk
k L(wk)dwk

ã
Dνkpk(vk)dwkdvk

+
h2q

2

(q!)2

∫
K2(wk)σ

2(Q(α|xk, vk)|xk − h1wk, vk)

p(xk − h1wk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
×Ö ∑

|νk|=q

Å∫
w
νk
k L(wk)dwk

ã
Dνkpk(vk)

è2

dwkdvk

= ||K||22
∫

σ2(Q(α|xk, vk)|xk, vk)pk(vk)
p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2

dvk +O(h1 + hq2)
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= ||K||22
∫

α(1− α)pk(vk)

p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dvk +O(h1 + hq2).

Furthermore we can show the Lyapunov condition for the leading term of ∆̃(1.1.a)
n (α|xk)

with δ = 2

n∑
m=1

E

(√nh1

n

Kh1 (xk −Xmk)σ(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)εm
p(Xmk, Xmk)F ′(Q(α|xk, Xmk)|xk, Xmk)

)4


=
E[ε4

1]h
2
1

n

∫ (
Kh1 (xk − wk)σ(Q(α|xk, wk)|wk, wk)pk(wk)

p(wk, wk)F ′(Q(α|xk, wk)|xk, wk)

)4

p(wk, wk)dwkdwk

=
E[ε4

1](1 + o(1))

nh1

Å∫
K4(wk)dwk

ã ∫ p4
k(wk)σ

4(Q(α|xk, wk)|xk, wk)
p3(xk, wk)(F ′(Q(α|xk, wk)|xk, wk))4

dwk

=
E[ε4

1](1 + o(1))

nh1

Å∫
K4(wk)dwk

ã ∫ p4
k(wk)α

2(1− α)2

p3(xk, wk)(F ′(Q(α|xk, wk)|xk, wk))4
dwk.

Therefore, we have»
nh1∆̃

(1.1.a)
n (α|xk)

D→ N
(

0, ||K||22
∫

α(1− α)pk(vk)

p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dvk

)
.

For the second term, we use

E
î
(ηm(α|xk)− E[ηm(α|xk)|Xm])2|Xm

ó
≤ 1

n

∫ (
LH2(wk −Xmk)σ(Q(α|xk, wk)|Xmk, Xmk)

F ′(Q(α|xk, wk)|xk, wk)

)2

pk(wk)dwk

=
1

nhd−1
2

∫
L2(vk)σ

2(Q(α|xk, Xmk + h2vk)|Xmk, Xmk)pk(Xmk + h2vk)

(F ′(Q(α|xk, Xmk + h2vk))2
dvk

=
1

nhd−1
2

||L||22
σ2(Q(α|xk, Xmk)|Xmk, Xmk)pk(Xmk)

(F ′(Q(α|xk, Xmk)|xk, Xmk))2

+Op

Ç
1

nhd−2
2

å
.

Using the leading part of E [(ηm(α|xk)− E[ηm(α|xk)|Xm])2|Xm], we get

Var(∆̃(1.1.b)
n (α|xk)) ≤

(1 + o(1))

n2h1h
d−1
2

||L||22
∫
K2(wk)σ

2(Q(α|xk, vk)|xk − h1wk, vk))pk(vk)

p(xk − h1wk, vk)((F ′(Q(α|xk, vk)|xk, vk))2
dwkdvk

= O

Ç
1

n2h1h
d−1
2

å
= o

Ç
1

nh1

å
.

This means that ∆̃(1.1.b)
n (α|xk) has no further influence on the variance and we have»

nh1∆̃
(1.1)
n (α|xk)

D→ N
(

0, ||K||22
∫

α(1− α)pk(vk)

p(xk, vk)(F ′(Q(α|xk, vk)|xk, vk))2
dvk

)
.
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Now we turn to the term ∆̃(1.2)
n (α|xk)

∆̃(1.2)
n (α|xk) = −(1 + op(1))

n2

n∑
j=1

n∑
m=1

Kh1(xk −Xmk)LH2(Xjk −Xmk)

p(Xmk, Xmk)F ′(Q(α|xk, Xmk)|xk, Xmk)
×

(F (Q(α|xk, Xjk)|Xmk, Xmk)− F (Q(α|xk, Xjk)|xk, Xjk))

= −(1 + op(1))

n

n∑
j=1

β̃j(α|xk),

where

β̃j(α|xk) =
1

n

n∑
m=1

Kh1(xk −Xmk)LH2(Xjk −Xmk)

p(Xmk, Xmk)F ′(Q(α|xk, Xmk)|xk, Xmk)
×

(F (Q(α|xk, Xjk)|Xmk, Xmk)− F (Q(α|xk, Xjk)|xk, Xjk)).

Again we break ∆̃(1.2)
n (α|xk) into two uncorrelated parts

∆̃(1.2)
n (α|xk) = (1 + op(1))(∆̃(1.2.a)

n (α|xk) + ∆̃(1.2.b)
n (α|xk))

with

∆̃(1.2.a)
n (α|xk) = − 1

n

n∑
j=1

E[β̃j(α|xk)|Xj],

∆̃(1.2.b)
n (α|xk) = − 1

n

n∑
j=1

Ä
β̃j(α|xk)− E[β̃j(α|xk)|Xj]

ä
.

First we calculate the expectation.

E[β̃j(α|xk)|Xj] =
∫
Kh1(xk − wk)LH2(Xjk − wk)
F ′(Q(α|xk, wk)|xk, wk)

×

(F (Q(α|xk, Xjk)|wk, wk)− F (Q(α|xk, Xjk)|xk, Xjk)dwkdwk

=
∫

K(vk)L(vk)

F ′(Q(α|xk, Xjk − h2vk)|xk, Xjk − h2vk)
×

(F (Q(α|xk, Xjk)|xk − h1vk, Xjk − h2vk)− F (Q(α|xk, Xjk)|xk, Xjk)dvkdvk

=

∫
v2
kK(vk)dvk

F ′(Q(α|xk, Xjk)|xk, Xjk)

Ç
h2

1

2

∂2

∂x2
k

F (Q(α|xk, Xjk)|xk, Xjk) +Op(h
q
2)

å
It is straightforward to see that

E[∆̃(1.2)
n (α|xk)] = (1 + o(1))E[∆̃(1.2.a)

n (α|xk)]

= −(1 + o(1))κ2(K)h2
1

∫ ∂2

∂x2
k
F (Q(α|xk, xk)|xk, xk)

F ′(Q(α|xk, xk)|xk, xk)
pk(xk)dxk

= −(1 + o(1))b̃1k(α|xk).
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To estimate the variance of ∆̃(1.2)
n (α|xk), we have for the first term

Var(∆̃(1.2.a)
n (α|xk))

≤ 1

n

∫ Ñ∫
K(vk)L(vk)

F ′(Q(α|xk, wk − h2vk)|xk, wk − h2vk)
×Ä

F (Q(α|xk, wk)|xk − h1vk, wk − h2vk)− F (Q(α|xk, wk)|xk, wk)
ä
dvkdvk

é2

pk(wk)dwk

=
1

n

∫ Ñ
h2

1κ2(K)

∂2

∂x2
k
F (Q(α|xk, wk)|xk, wk)

F ′(Q(α|xk, wk)|xk, wk)
+

hq2
q!

∑
|νk|=q

Å∫
v
νk
k L(vk)dvk

ã DνkF (Q(α|xk, wk)|xk, wk)
F ′(Q(α|xk, wk)|xk, wk)

é2

pk(wk)dwk

= o

Ç
1

nh1

å
.

For the second term, we use

E[(βj(α|xk)− E[βj(α|xk)|Xj])
2|Xj]

≤ 1

n

∫ (
Kh1(xk − wk)LH2(Xjk − wk)

p(wk, wk)F ′(Q(α|xk, Xjk)|xk, Xjk)

)2

(F (Q(α|xk, Xjk)|wk, wk)− F (Q(α|xk, Xjk)|xk, Xjk))
2p(wk, wk)dwkdwk

=
1

nh1h
d−1
2

∫
K2(vk)L

2(vk)

p(xk − h1vk, Xjk − h2vk)(F ′(Q(α|xk, Xjk)|xk, Xjk))2

(F (Q(α|xk, Xjk)|xk − h1vk, Xjk − h2vk)− F (Q(α|xk, Xjk)|xk, Xjk))
2dvkdvk

=
(1 + op(1))

nh1h
d−1
2

∫
K2(vk)L

2(vk)

p(xk, Xjk)(F ′(Q(α|xk, Xjk)|xk, Xjk))2Ñ
−h1vk

∂

∂xk
F (Q(α|xk, Xjk)|xk, Xjk)− h2

∑
l 6=k

vlD
lF (Q(α|xk, Xjk)|xk, Xjk)

é2

dvkdvk

= Op

Ç
(h1 + h2)

2

nh1h
d−1
2

å
.

Then it is easily estimated that Var(∆̃(1.2.b)
n (α|xk)) = o

Ä
1
nh1

ä
. The term ∆̃(1.2)

n (α|xk) charac-
terizes the first part b̃1k(α|xk) of the bias term.
Finally we turn to the last term ∆̃(1.3)

n (α|xk). We use a similar trick as in the sketch of the
proof of Theorem 1.4, multiply the summand by

1 =

(
p̂(Xmk, Xmk)

p(Xmk, Xmk)
+

(
1−

p̂(Xmk, Xmk)

p(Xmk, Xmk)

))
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and obtain using the fact that

F (Q(α|xk, Xjk)|xk, Xjk) = α

as the quantile function is the inverse of the distribution function

∆̃(1.3)
n (α|xk) = −(1 + op(1))

n

n∑
j=1

α

F ′(Q(α|xk, Xjk)|xk, Xjk)
×

[
1

n

n∑
m=1

Kh1(xk −Xmk)LH2(Xjk −Xmk)

p̂(Xmk, Xmk)
− 1

]

= −(1 + op(1))

n

n∑
j=1

α

F ′(Q(α|xk, Xjk)|xk, Xjk)
×

1

n

n∑
m=1

Kh1(xk −Xmk)LH2(Xjk −Xmk)

p̂(Xmk, Xmk)
×(

p̂(Xmk, Xmk)

p(Xmk, Xmk)
+

(
1−

p̂(Xmk, Xmk)

p(Xmk, Xmk)

))

+
(1 + op(1))

n

n∑
j=1

α

F ′(Q(α|xk, Xjk)|xk, Xjk)

= (1 + op(1))(∆̃(1.3.a)
n (α|xk) + ∆̃(1.3.b)

n (α|xk)),

where

∆̃(1.3.a)
n (α|xk) = −α

n

n∑
j=1

γ
(1)
j (α|xk)

∆̃(1.3.b)
n (α|xk) = − 1

n

n∑
j=1

αγ
(2)
j (α|xk)

F ′(Q(α|xk, Xjk)|xk, Xjk)

γ
(1)
j (α|xk) =

1

n

n∑
m=1

Ñ
Kh1(xk −Xjk)LH2(Xmk −Xjk)

p(Xjk, Xjk)F ′(Q(α|xk, Xmk)|xk, Xmk)

− 1

F ′(Q(α|xk, Xjk)|xk, Xjk)

é
γ

(2)
j (α|xk) =

1

n

n∑
m=1

p(Xmk, Xmk)− p̂(Xmk, Xmk)

p2(Xmk, Xmk)
Kh1(xk −Xmk)LH2(Xjk −Xmk).

Note that we changed the indexing for the second term in ∆̃(1.3.a)
n (α|xk), which is helpful

for the further analysis. We treat both terms as before and split them up into two uncor-
related terms induced by E[γ

(l)
j (α|xk)|Xj] and

(
γ

(l)
j (α|xk)− E[γ

(l)
j (α|xk)|Xj]

)
for l = 1, 2.
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For ∆̃(1.3.a)
n (α|xk), we calculate E[γj(α|xk)|Xj] in the first step

E[γ
(1)
j (α|xk)|Xj] =

∫ Ñ
Kh1(xk −Xjk)LH2(uk −Xjk)

p(Xjk, Xjk)F ′(Q(α|xk, uk)|xk, uk)

− 1

F ′(Q(α|xk, Xjk)|xk, Xjk)

é
pk(uk)duk

=
∫

Kh1(xk −Xjk)L(vk)pk(Xjk + h2vk)

p(Xjk, Xjk)F ′(Q(α|xk, Xjk + h2vk)|xk, Xjk + h2vk)
dvk

− 1

F ′(Q(α|xk, Xjk)|xk, Xjk)

=
1

F ′(Q(α|xk, Xjk)|xk, Xjk)

(
Kh1(xk −Xjk)pk(Xjk)

p(Xjk, Xjk)
− 1

)

+
hq2
q!

Kh1(xk −Xjk)

p(Xjk, Xjk)
×

∑
|νk|=q

Å∫
v
νk
k L(vk)dvk

ã
Dνk

(
pk(Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)

)
.

By the rule of iterated expectation, we obtain

E[∆̃(1.3.a)
n (α|xk)]

= −E

α
n

n∑
j=1

E
[
γ

(1)
j (α|xk)|Xj

]
= −

∫
αp(wk, wk)

F ′(Q(α|xk, wk)|xk, wk)

(
Kh1(xk − wk)pk(wk)

p(wk, wk)
− 1

)
dwkdwk

+
hq2α

q!

∫
Kh1(xk − wk)

∑
|νk|=q

Å∫
v
νk
k L(vk)dvk

ã
Dνk

(
pk(wk)

F ′(Q(α|xk, wk)|xk, wk)

)
dwkdwk

= −
∫

αK(w′k)pk(wk)

F ′(Q(α|xk, wk)|xk, wk)
dw′kdwk −

∫
αpk(wk)

F ′(Q(α|xk, wk)|xk, wk)
dwk +O(hq2)

= o(1).

To obtain the total expectation of ∆(1.3)
n (α|xk), we have to analyze ∆(1.3.b)

n (α|xk). First, we
calculate E[γ

(2)
j (α|xk)|Xj]. Hence, we apply the same trick as in the sketch of the proof of

theorem 1.4 and use the asymptotic expectation of the kernel density estimator p̂.
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E[γ
(2)
j (α|xk)|Xj] = −E

 1

n

n∑
m=1

Kh1(xk −Xmk)LH2(Xjk −Xmk)

Ñ
h2

1κ2(K) ∂2

∂x2
k
p(Xmk, Xmk)

p2(Xmk, Xmk)

+

hq2
q!

∑
|νk|=q

Ä∫
w
νk
k L(wk)dwk

ä
Dνkp(Xmk, Xmk)

p2(Xmk, Xmk)

é∣∣∣∣∣∣Xj


= −

∫ h2
1κ2(K) ∂2

∂x2
k
p(uk, uk) +

hq2
q!

∑
|νk|=q

Ä∫
w
νk
k L(wk)dwk

ä
Dνkp(uk, uk)

p(uk, uk)
×

Kh1(xk − uk)LH2(Xjk − uk)dukduk

= −
∫ h2

1κ2(K) ∂2

∂x2
k
p(xk − h1vk, Xjk − h2vk)

p(xk − h1vk, Xjk − h2vk)
K(vk)L(vk)dvkdvk +Op(h

q
2)

= −h2
1κ2(K)

∂2

∂x2
k
p(xk, Xjk)

p(xk, Xjk)
+ op(h

2
1) +Op(h

q
2).

For the expectation of ∆(1.3.b)
n (α|xk), we obtain

E[∆(1.3.b)
n (α|xk)] = (1 + o(1))h2

1κ2(K)α
∫ ∂2

∂x2
k
p(xk, xk)pk(xk)

F ′(Q(α|xk, xk)|xk, xk)p(xk, xk)
dxk

= (1 + o(1))b̃2k(α|xk).

Moreover, we have E[∆(1.3)
n (α|xk)] = (1 +o(1))b̃2k(α|xk). This means that the bias is given

by

E[∆̃(1.2)
n (α|xk) + ∆̃(1.3)

n (α|xk)] = −(1 + o(1))(b̃1k(α|xk)− b̃2k(α|xk)).

To get the variance of ∆̃(1.3)
n (α|xk), we consider at first the term ∆̃(1.3.a)

n (α|xk). We break
this term into two uncorrelated terms

∆̃(1.3.a)
n (α|xk) = ∆̃(1.3.a.1)

n (α|xk) + ∆̃(1.3.a.2)
n (α|xk),

where

∆̃(1.3.a.1)
n (α|xk) = −α

n

n∑
j=1

E[γ
(1)
j (α|xk)|Xj],

∆̃(1.3.a.2)
n (α|xk) = −α

n

n∑
j=1

(
γ

(1)
j (α|xk)− E[γ

(1)
j (α|xk)|Xj]

)
.
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To calculate the variance, we observe

Var(
»
nh1∆̃

(1.3.a.1)
n (α|xk))

=
h1α

2

n

n∑
j=1

Var
(
E[γ

(1)
j (α|xk)|Xj]

)

≤ h1α
2
∫ Ñ

1

F ′(Q(α|xk, uk)|xk, uk)

(
Kh1(xk − uk)pk(uk)

p(uk, uk)
− 1

)

+
hq2
q!

Kh1(xk − uk)
p(uk, uk)

∑
|νk|=q

Å∫
v
νk
k L(vk)dvk

ã
Dνk

(
pk(uk)

F ′(Q(α|xk, uk)|xk, uk)

)é2

p(uk, uk)dukduk

= h1α
2
∫ (

Kh1(xk − uk)pk(uk)
p(uk, uk)

− 1

)2
p(uk, uk)

(F ′(Q(α|xk, uk)|xk, uk))2
dukduk +O(hq2)

= h1α
2
∫ (

K2
h1

(xk − uk)p2
k(uk)

p2(uk, uk)
− 2

Kh1(xk − uk)pk(uk)
p(uk, uk)

+ 1

)
×

p(uk, uk)

(F ′(Q(α|xk, uk)|xk, uk))2
dukduk +O(hq2)

= ||K||22α2
∫

pk(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk, uk)
duk +O(h1 + hq2).

For the second term, we first compute

E[(γ
(1)
j (α|xk)− E[γ

(1)
j (α|xk)|Xj])

2|Xj]

≤ (1 + op(1))

n

∫ Ñ
Kh1(xk −Xjk)LH2(uk −Xjk)

p(Xjk, Xjk)F ′(Q(α|xk, uk)|xk, uk)
− 1

F ′(Q(α|xk, Xjk)|xk, Xk)

é2

pk(uk)duk

=
(1 + op(1))

nhd−1
2

||L||22
K2
h1

(xk −Xjk)

p2(Xjk, Xjk)(F ′(Q(α|xk, Xjk)|xk, Xjk))2
pk(Xjk)

−2
(1 + op(1))

n

Kh1(xk −Xjk)

p(Xjk, Xjk)(F ′(Q(α|xk, Xjk)|xk, Xjk))2
pk(Xjk)

+
(1 + op(1))

n

1

(F ′(Q(α|xk, Xjk)|xk, Xjk))2
.

We obtain for the variance of ∆̃(1.3.a.2)
n (α|xk)

Var(∆̃(1.3.a.2)
n (α|xk)) ≤

α2

n2

n∑
j=1

E
[
E[(γ

(1)
j (α|xk)− E[γ

(1)
j (α|xk)|Xj])

2|Xj]
]

=
(1 + o(1))α2

n2

∫
p(uk, uk)

(F ′(Q(α|xk, uk)|xk, uk))2
×
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(
||L||22
hd−1

2

K2
h1

(xk − uk)pk(uk)
p2(uk, uk)

+
Kh1(xk − uk)pk(uk)

p(uk, uk)
+ 1

)
dukduk

= O

Ç
1

nh1

Ç
1

nhd−1
2

+
h1

n

åå
= o

Ç
1

nh1

å
.

Now we analyze the term ∆̃(1.3.b)
n (α|xk). We can split this term up like we did before

∆̃(1.3.b)
n (α|xk) = ∆̃(1.3.b.1)

n (α|xk) + ∆̃(1.3.b.2)
n (α|xk),

where

∆̃(1.3.b.1)
n (α|xk) = −α

n

n∑
j=1

E[γ
(2)
j (α|xk)|Xj]

F ′(Q(α|xk, Xjk)|xk, Xjk)

=
α

n

n∑
j=1

h2
1κ2(K)

F ′(Q(α|xk, Xjk)|xk, Xjk)

Ö
∂2

∂x2
k
p(xk, Xjk)

p(xk, Xjk)
+ op(1)

è
∆̃(1.3.b.2)
n (α|xk) = −α

n

n∑
j=1

(γ
(2)
j (α|xk)− E[γ

(2)
j (α|xk)|Xj])

F ′(Q(α|xk, Xjk)|xk, Xjk)
.

For the first term, we use only the leading term indicated in the representation above

Var(∆̃(1.3.b.1)
n (α|xk)) ≤

h4
1κ2(K)2α2

n2
E

 n∑
j=1

∂2

∂x2
k
p(xk, Xjk)

F ′(Q(α|xk, Xjk)|xk, Xjk)p(xk, Xjk)

2

=
h4

1κ2(K)2α2

n

∫ Å
∂2

∂x2
k
p(xk, wk)

ã2

(F ′(Q(α|xk, wk)|xk, wk))2p2(xk, wk)
pk(wk)dwk

= O

Ç
h4

1

n

å
= o

Ç
1

nh1

å
.

For the second term, we obtain using the asymptotic mean squared error of the kernel
density estimator p̂

Var(∆̃(1.3.b.2)
n (α|xk)) =

α2

n2
E

ñ n∑
j=1

E[(γ
(2)
j (α|xk)− E[γ

(2)
j (α|xk)|Xj])

2|Xj]

(F ′(Q(α|xk, Xjk)|xk, Xjk))2

ô
≤ α2

n

∫ ∫ h4κ2(K) ∂2

∂x2
k
p(wk, wk) +O(h2q

2 ) + 1

nh1h
d−1
2

||K||22||L||22p(wk, wk)

(F ′(Q(α|xk, uk)|xk, uk))2p3(wk, wk)

K2
h1

(xk − wk)L2
H2

(uk − wk)dwkdwkpk(uk)duk

=
α2

nh1h
d−1
2

||K||22||L||22
∫

pk(uk)

(F ′(Q(α|xk, uk)|xk, uk))2
×
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h4κ2(K) ∂2

∂x2
k
p(xk, uk) +O(h2q

2 ) + 1

nh1h
d−1
2

||K||22||L||22p(xk, uk)

p3(xk, uk)
duk

= O

(
h3

1

nhd−1
2

+
1

nh1nh1h
2(d−1)
2

)
= o

Ç
1

nh1

å
,

where the last identity follows by bandwidth condition (B5’). For the variance of ∆̃(1.3)
n (α|xk),

we observe applying the Cauchy-Schwarz inequality for variances

Var(
»
nh1∆̃

(1.3)
n (α|xk)) = Var(

»
nh1∆̃

(1.3.a)
n (α|xk)) + nh1Var(∆̃(1.3.b)

n (α|xk))
+nh1Cov(∆̃(1.3.a)

n (α|xk), ∆̃(1.3.b)
n (α|xk))

≤ Var(
»
nh1∆̃

(1.3.a)
n (α|xk)) + nh1Var(∆̃(1.3.b)

n (α|xk))

+nh1

√
Var(∆̃

(1.3.a)
n (α|xk))Var(∆̃

(1.3.b)
n (α|xk))

= (1 + o(1))||K||22
∫

α2pk(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk, uk)
duk

+O (h1 + hq2) +O

Ç
1

nhd−1
2

+
h1

n

å
+O

Ç
h4

1

n
+

h4
1

hd−1
2

+
1

nh1h
d−1
2

å
+O

ÑÇ
h4

1

n
+

h4
1

hd−1
2

+
1

nh1h
d−1
2

å1/2
é

= (1 + o(1))||K||22
∫

α2pk(uk)

(F ′(Q(α|xk, uk)|xk, uk))2p(xk, uk)
duk + o(1),

where the last identity follows by the bandwidth conditions (B1’)-(B5’). Moreover we
show that ∆̃(1.3)

n (α|xk) fulfills the Lyapunov condition for δ = 2, where we focus on the
dominating term in the variance

n∑
m=1

E

( 1

n

α

F ′(Q(α|xk, Xmk)|xk, Xmk)

(
Kh1(xk −Xmk)pk(Xmk)

p(Xmk, Xmk)
− 1

))4


=
1

n3

∫
α4

(F ′(Q(α|xk, wk)|xk, wk))4

[
Kh1(xk − wk)pk(wk)

p(wk, wk)
− 1

]4

p(wk, wk)dwkdwk

=
1

n3

∫
α4

(F ′(Q(α|xk, wk)|xk, wk))4

Ñ
1

h3

K4(wk)p
4
k(wk)

p3(xk − h1wk, wk)
− 4

h2
1

K3(wk)p
3
k(wk)

p2(xk − h1wk, wk)

+
6

h1

K2(wk)p
2
k(wk)

p(xk − h1wk, wk)
− 4K(wk)pk(wk) + p(wk, wk)

é
dwkdwk

= O

Ç
1

n3h2
1

+
1

n3h2
1

+
1

n3h1

+
1

n

å
= o(1).
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Hence, applying the Central Limit Theorem for ∆̃(1.3)
n (α|xk), it follows that»

nh1(∆̃
(1.3)
n (α|xk)− b̃2k(α|xk))

D→ N
(

0, ||K||22α2
∫ p2

k(wk)

(F ′(Q(α|xk, wk)|xk, wk))2p(xk, wk)
dwk

)

The terms ∆̃(1.1)
n (α|xk) and ∆̃(1.3)

n (α|xk) are uncorrelated which gives by the Cramér-Wold
device »

nh1(∆̃
(1.1)
n (α|xk) + ∆̃(1.3)

n (α|xk) + b̃2(α|xk))
D→ N (0, s̃2

k(α|xk)).

Actually, the terms ∆̃(1.2)
n (α|xk) and ∆̃(1.3)

n (α|xk) are correlated, but the covariance can be
estimated by o

Ä
1
nh1

ä
using the Cauchy-Schwarz inequality, since the variance of ∆̃(1.2)

n (α|xk)

is of order O
Å
h4
1

n
+ (h1+h2)2

n2h1h
d−1
2

ã
= o

Ä
1
nh1

ä
. Finally, combing all the results for ∆̃(1.1)

n (α|xk),

∆̃(1.2)
n (α|xk), and ∆̃(1.3)

n (α|xk) the assertion of the Theorem follows. 2

3.6 Finite sample properties and data analysis

In this section, we compare the distinct estimates of the marginal effects of additive con-
ditional quantiles and of the additive component itself, respectively, in terms of finite
sample properties. In particular, we contrast our estimator q̂k(α|xk) with a procedure
proposed by De Gooijer and Zerom (2003). The estimate of De Gooijer and Zerom (2003),
called an average quantile estimator, works in a similar manner as q̂k(α|xk) and uses the
reweighted Nadaraya-Watson estimator for a conditional distribution function

F̂RW (y|x) =

∑n
j=1 pj(x)Kh1(xk −Xjk)LH2(xk −Xjk)I{Yj ≤ y}∑n

j=1 pj(x)Kh1(xk −Xjk)LH2(xk −Xjk)

with high-dimensional covariates proposed by Hall et al. (1999). The weights pj(x) are
constructed as in section 3.3, but the weights solve the equation

n∑
j=1

pj(x)(Xjk − xk)Kh1(xk −Xjk)LH2(xk −Xjk) = 0

with respect to the kth covariate in order to construct an estimate for the kth additive
component. Since this estimate is positive and increasing with respect to y provided
the kernel functions K and L are positive, the inverse is easily obtained, which marks
a huge advantage of this estimate in contrast to other non-increasing estimates of the
conditional distribution function. On the other hand, this method works only as long
as the dimension of the covariates d < 5. When d ≥ 5 the bias of the estimate has to
be reduced by using negative kernels, which unfortunately destroys the monotonicity
property of the reweighted estimator F̂RW (y|x). The estimate of De Gooijer and Zerom
(2003) is calculated by reversing the reweighted Nadaraya-Watson estimate and applying
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the marginal integration method as for q̂k(α|xk). We denote this estimate for the marginal
effect of the conditional quantile function by q̆k(α|xk) and the estimate of the additive
component Q̆k(α|xk), respectively.
In the additive quantile regression setting, the estimate of the additive component can be
derived from the estimator of the corresponding marginal effect by computing

Q̂k(α|xk) = q̂k(α|xk)−
1

n

n∑
j=1

q̂k(α|Xjk).

The same works to construct Q̃k(α|xk). In the following, we investigate the finite sample
properties of the estimates:

• q̂k(α|xk) with F̂LL(y|x) as the preliminary estimate for the conditional distribution
function, and the additive component estimate Q̂k(α|xk) as defined above;

• the computational interesting internalized estimate q̃k(α|xk) with additive compo-
nent estimate Q̃k(α|xk);

• the estimate of De Gooijer and Zerom (2003), q̆k(α|xk), and the corresponding esti-
mate of the additive component Q̆k(α|xk).

For the sake of convenience, we use a uniform distribution function on the interval

[min(Xj1),max(Xj1)]× . . .× [min(Xjd),max(Xjd)]

for the functionG in (3.4) to transform the data onto [0, 1]d as a simple and practical choice
ofG denoted byGuni. Sometimes we also use a normal transformation forG calledGnorm

which is adjusted by an estimated mean and variance through the data.

3.6.1 Simulation studies

The goal of the following studies is to analyze the performance of the proposed methods
to estimate an additive conditional quantile function. Some of the models are investi-
gated by other authors as well and seemed to us as an appropriate simulation study. In
general, we used Epanechnikov kernels to estimate the conditional distribution function
either by local constant or linear techniques. In higher dimensional problems, this means
we use a product kernel of several univariate Epanechnikov kernels. In all cases, we
apply the Epanechnikov kernel for the monotonizing inversion as well.

Example 3.11 We consider the two-dimensional model

Y = 0.75X1 + 1.5 sin(0.5πX2) + ε, (3.21)
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where ε ∼ N (0, 0.252). We assume that the covariates (X1, X2)
T are bivariate normal

with mean 0, variance 1, and correlation ρ. For the correlation, we distinguish two cases:
a weak correlation ρ = 0.2 and a strong correlation ρ = 0.8. This experiment was orig-
inally carried out by De Gooijer and Zerom (2003). The Epanechikov kernel is used to
estimate the local linear estimate and the internalized estimate of the conditional distri-
bution function [F̂LL(y|x) and F̂INW (y|x), respectively] as well as to compute the mono-
tonizing inversion, i.e.

K(x) = L(x) = Km(x) =
3

4
(1− x2)I[−1,1](x).

In order to make our results comparable to De Gooijer and Zerom (2003), we chose the
bandwidths h1 = 3σ̂1n

−1/5 and h2 = σ̂2n
−1/5, where σ̂i is the standard deviation of the

corresponding covariate. The quantile estimates are computed for α = 0.5 and sample
sizes n = 100, 200, and 400. 41 simulation runs are performed and for each scenario the
mean absolute deviation error (MADE) is collected, whereas the observations outside the
square [−2, 2]2 are disregarded to avoid boundary effects.
In Table 3.1, we display the results for the finite sample study of the model (3.21) for two
cases of G. The results of the performance of Q̆k(.5|xk) for k = 1, 2 are extracted from
De Gooijer and Zerom (2003).
We observe that the internalized marginal integration estimate yields a larger MADE
than the local linear approach in all cases. A comparison with the estimates of De Gooi-
jer and Zerom (2003) shows only advantages for the internalized marginal integration
estimate, if the second (more oscillating) component is estimated and the data is strongly
correlated. In all other cases the estimate of De Gooijer and Zerom (2003) yields a smaller
MADE. On the other hand the local linear estimate has a smaller MADE than the esti-
mate of De Gooijer and Zerom (2003), except in the case ρ = 0.8, n = 100, 200 and 400 for
Q1(.5|x1) = 0.75x1. The different choices of the transformation function G do not yield
large differences. The larger the sample size the smaller the difference. Still for small
sample sizes Gnorm is slightly better than Guni.

Example 3.12 To discuss the impact of the choice of the function G, we simulated a data
set with n = 250 observations from the following model

Y = X2
1 − 1 +

X2

2
+ εj,

where X1, X2 ∼ N (0, 1) and Cov(X1, X2) = 0.2. The error variable ε is generated by a
N (0, 0.52) distribution. In the first step, the conditional distribution function F (y|x1, x2)
is estimated by local linear techniques with the bandwidth h1 = 0.5 and h2 = 1.5 . For
the conditional quantile function estimate defined in (3.4), we tried two different choices
for H . In the first scenario, we use a uniform distribution function; in the second sce-
nario, the normal distribution is used with µ = Ȳ and σ2 = Var(Y ). For each scenario,
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Approaches local linear internalized De Gooijer/Zerom
Q̂k(.5|x1) Q̃k(.5|xk) Q̆k(.5|xk)

ρ n Component k=1,2 Guni Gnorm Guni Gnorm

.2 100 .75x1 0.1176 0.0905 0.2661 0.1865 0.1374
1.5 sin(.5πx2) 0.2112 0.2059 0.3543 0.3457 0.1818

200 .75x1 0.0630 0.0580 0.1971 0.1617 0.1066
1.5 sin(.5πx2) 0.0969 0.1545 0.1849 0.2637 0.1272

400 .75x1 0.0474 0.0378 0.1570 0.1013 0.0734
sin(.5πx2) 0.1169 0.1191 0.2138 0.1868 0.0936

.8 100 .75x1 0.1939 0.1867 0.4145 0.3902 0.1365
1.5 sin(.5πx2) 0.2801 0.2692 0.4611 0.4514 0.4865

200 .75x1 0.1882 0.1628 0.4385 0.3781 0.1272
1.5 sin(.5πx2) 0.2305 0.2151 0.3646 0.4108 0.4350

400 .75x1 0.1829 0.1646 0.4207 0.3735 0.0985
sin(.5πx2) 0.2152 0.2045 0.3871 0.3803 0.4009

Table 3.1: The mean absolute deviation error of the different approaches.

we estimated each component for 450 replications and calculated the absolute deviation
error for the observations restricted to the square [−2, 2]2. The results of this simulation
are displayed in Table 3.2. In Figure 3.1, a typical picture of the additive conditional
quantile estimates is displayed based on three simulation runs. Figure 3.2 shows the
mean squared error of 100 simulation runs evaluated in 20 points between -0.5 and 0.5
and confirms the results from Table 3.2, which gives the average over the different eval-
uation points. The normal distribution as transformation function does a better job for
the first component, whereas the uniform distribution is slightly better for the second
component.

G Q1(0.5|·) Q2(0.5|·)
Normal 0.2416 0.0961
Uniform 0.2960 0.3107

Table 3.2: The average absolute deviation error of two different choices of G evaluated
over 20 points between -0.5 and 0.5.

Example 3.13 As a demonstration of the applicability of the presented method to esti-
mate additive conditional quantile function in higher dimension than d = 2, we consider
the model

Y =
4∑

k=1

sin(Xk) + ε, ε ∼ N (0, 1),X ∼ N (0,Σ) (3.22)
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Figure 3.1: The additive conditional quantile function and their estimates. The addi-
tive component Qk(.5|xk) (solid line), the estimates using the normal distribution (dotted
line), and the estimates using the uniform distribution (dashed line).
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with two choices for Σ (for low and high correlation among the variables)

Σ1 =

á
1.0 0.3 0.5 0.1
0.3 1.0 0.3 0.5
0.5 0.3 1.0 0.3
0.1 0.5 0.3 1.0

ë
and Σ2 =

á
1.0 0.5 0.8 0.3
0.5 1.0 0.5 0.8
0.8 0.5 1.0 0.5
0.3 0.8 0.5 1.0

ë
,

which was originally discussed by Hengartner and Sperlich (2005) in the context of tra-
ditional additive regression models. n = 250 observations are generated from this model
for each of the 250 replications. Since the additive components and the marginal distri-
butions are the same, we can average over all components at the same time. In the fol-
lowing table, the mean absolute deviation error and the mean squared error of the new
estimate Q̂k(.5|xk) and the estimate Q̆k(.5|xk) proposed by De Gooijer and Zerom (2003)
is recorded for the observations restricted to the square [−2, 2]4. Note that the estimates

AADE(Q̂·(0.5|xk)) AADE(Q̆·(0.5|xk)) MSE(Q̂·(0.5|xk)) MSE(Q̆·(0.5|xk))
Σ1 0.08443 0.15315 0.01019 0.05624
Σ2 0.08384 0.15989 0.01272 0.06094

Table 3.3: AADE and MSE averaged over the four components Q̂1(0.5|xk), . . . , Q̂4(0.5|xk) and
Q̆1(0.5|xk), . . . , Q̆4(0.5|xk), respectively, in the low and high correlation model (3.22).

behave slightly better in the model with low correlation among the covariates. Further-
more, a comparison of the two estimates with respect to both criteria shows that the new
estimate Q̂k(.5|xk) performs substantially better than the estimate Q̆k(.5|xk) suggested by
De Gooijer and Zerom (2003).

3.6.2 Data examples

Example 3.14 To illustrate the performance of this method, we estimated the marginal
effects in a real data example. The Boston housing data contains the housing values of
suburbs of Boston and 13 variables/criteria, which might have an influence on the hous-
ing prices like pollution, crime, and urban amenities. This data set has been analyzed by
several authors, also in the context of quantile regression [see e.g. De Gooijer and Zerom
(2003)]. We focus on four covariates

• per capita crime rate (crime),

• average number of rooms per dwelling (rooms),

• weighted mean of distance to five Boston employment centers (distance),
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• lower status of the population (econstatus),

and fit an additive conditional quantile model. We applied cross validation to determine
the bandwidth for the four different variables. To simplify this problem, we set

h1 = σ̂crimek, h2 = σ̂roomsk, h3 = σ̂distancek, h4 = σ̂econstatusk,

minimized the cross validation criteria for k ∈ [1/11, 30/11] for each marginal effect
separately. Since the values are quite similar, we set k = 1 for all covariates. In Fig-
ure 3.3, we display five different curves of the marginal effects qk(α|Xk) for fixed α =
0.05, 0.25, 0.5, 0.75, 0.95. Note that the marginal effects are monotone in α.
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Figure 3.3: Boston housing data set: The marginal effects of four covariates at five differ-
ent levels of α.

Example 3.15 The baseball data set in the package corrgram in R contains data from
322 major league baseball regular and substitute hitters in 1968. The data set covers 22
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variables. For this example, we analyze the salary on the opening day 1987 conditioned
on four covariates by fitting an additive quantile model. The covariate years collects
the number of years in the major leagues, which measures the experience of the athlete.
The covariate runs contains the number of runs in the career of the hitter until 1986. In a
similar manner, the variables hits and homeruns describe the number of hits and home
runs, respectively, in career. To determine the bandwidth of the local linear estimator
for the conditional distribution function a cross validation is performed. As in the last
example, we set

h1 = σ̂yearsk, h2 = σ̂runsk, h3 = σ̂hitsk, h4 = σ̂homerunsk,

and minimize over (0, 2). In this way, we obtain k = 1.326733. The following Figure
describes the marginal effects for different levels of α for each of the four covariates.
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Figure 3.4: Baseball data set: The marginal effects of four covariates at five different levels
of α.
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List of Symbols

Scalars, Vectors, and Functions
Xj jth univariate covariate 8
Xj = (Xj1, . . . , Xjd)

T jth d-dimensional covariate 8
Yj j-th response variable 8
X(j) ordered statistic 4
Y[j] ordered statistic relative to X(j) 4
n sample size 8
εj error variable 8
δij Kronecker delta 8
m(·) regression function 11, 29
σ(·) variance function 11, 29
p(·) density function of the random variable Xj 15
∇m gradient of m 31
H(m) Hessian matrix of m 31
xk notation for all variables but xk 36
m−1
k (z|xk) inverse with respect to xk 36
∂
∂xk

m(xk, xk) derivative with respect to xk 36
Q(α|x) α-quantile of Y given X = x 77
ρα(u) check-function 78
F (y|X) conditional distribution function of Y given X = x 79
σ(y|X) conditional variance function 79
G(·) distribution function to transform data onto the com-

pact interval [0, 1]
81

gk(xk) additive component of the kth covariate in the addi-
tive regression model

82

pk(xk) marginal density of Xk 82
Qk(α|xk) additive component of the kth covariate in the addi-

tive quantile model
82

c, c(α) constant term in the additive regression model and
quantile model, respectively

82, 82

pk(xk) marginal density of Xk 85
γW (xk), γW (α|xk) contrast with respect to the measure W 85, 86
qk(α|xk) marginal effect of the kth variable 90
Dνk the differential operator multi-indexed by νk 97
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Estimates

β̂ = (β̂0, β̂1, . . . , β̂p)
T estimated coefficient for the polynomial regres-

sion and the local polynomial regression, respec-
tively

9, 14

m̂NW (·) Nadaraya-Watson estimator 14, 30
m̂LL(·) local linear estimator 14, 30
m̂E , m̂I external and internal regression estimator 17, 17
p̂ kernel density estimator 17
m̂INW internalized Nadaraya-Watson estimator 17
g−1
I and g−1

A isotonic and antitonic distribution function 22, 23
g, g−1

I (·, hm), gI(·, hm) function g, isotonized inverse and isotonized g 26
m̂I1 , m̂I1,2 , m̂I1,...,d isotonized estimate with respect to the first, the

first and the second, and all d variables, respec-
tively

36, 36, 36

F̂NW (y|x) Nadaraya-Watson estimate of the conditional
distribution function

79

F̂RW (y|x) reweighted Nadaraya-Watson estimate of the
conditional distribution function

80

F̂INW (y|x) internalized Nadaraya-Watson estimate of the
conditional distribution function

80

ĜI(α|x), Q̂I(α|x) isotonized estimate of the quantile function 81
GN(α|x), QN(α|x) approximation of the conditional quantile 82
p̂, p̂k empirical pdf of X and Xk, respectively 84
γ̂W (α|xk) estimate of the contrast γW (α|xk) 86
γW,N(α|xk) approximation of the contrast γ(α|xk) 87
q̂k(α|xk) estimated kth marginal effect 90
Q̂k(α|x) estimate of the kth additive component 91
Q̂add(α|x) estimated additive quantile function 91
q̃k(α|xk) internalized estimator of the kth marginal effect 92
Q̃k(α|xk) internalized estimate of the kth additive quantile

component
123

q̆k(α|xk) kth marginal effect estimate of De Gooijer and
Zerom (2003)

123

Q̆k(α|xk) estimate of the kth additive component by
De Gooijer and Zerom (2003)

123
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Convergence

D→ convergence in distribution 15
O(·) Landau symbol Big O, i.e. a = O(b) iff a/b →

constant as n→∞ or h→ 0
16

o(·) Landau symbol Small O, i.e. a = o(b) iff a/b → 0
as n→∞ or h→ 0

19

op(·) stochastic order symbol, i.e. X = op(Y ) iff for all
ε > 0 holds P (|X/Y | > ε)→ 0

19

Op(·) stochastic order symbol, i.e. X = Op(Y ) iff for all
ε > 0 exists c > 0 such that P (|X/Y | > c) < ε as
n is sufficiently large or h is sufficiently small

47

Kernels and Bandwidths

K kernel function 11, 13, 30, 80
||K||2 L2-norm of the kernel function 13
Kh scaled kernel function, i.e. Kh(·) = K(·/h)/h 13
h bandwidth 13
h∗ optimal bandwidth in terms of AMSE 16
κs(K) constant depending on the sth moment of the

kernel K
15

Km and hm kernel and bandwidth of the monotonizing
operator

21

Id d× d identity matrix 30
H bandwidth matrix 30
KH scaled multivariate kernel function, i.e. KH(·) =

1
det(H)

K(H−1·)
30

h1, . . . , hd bandwidths for the corresponding variables
x1, . . . , xd

40
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Härdle, W. (1990). Applied nonparametric regression, volume 19 of Econometric Society Mono-
graphs. Cambridge University Press, Cambridge.



BIBLIOGRAPHY 133
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