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Chapter 1

Introduction

The spatial structure of a forest stand is of fundamental importance for forest dynamics,

because the local environment determines competition among the trees, growth, death and

regeneration (see Figure 1.1). Furthermore, the spatial configuration of individual trees in

a forest stand may provide an indirect indication of the underlying ecological processes that

are occurring at the site (Malkinson et al. 2003). Analysis of the spatial configuration of the

trees in a stand is of prime importance, for example, for the development of individual tree

growth models (Goreaud et al. 1996) and to gain an understanding of ecological systems

and the dynamics of plant communities (Greig-Smith 1964, Young et al. 1999). In summary,

the spatial configuration of individuals could be a result of the natural processes occurring

in the stand.

In the literature, a large number of spatial statistical methods have been described that

could be applied to spatial pattern analysis. The principal aim of this study is to apply,

modify and improve these methods in order to determine and to analyze the spatial structure

of tree individuals in a forest stand.

In Chapter 2, I present some classical spatial statistical methods currently applied to

plant ecology, such as: quadrat count methods, first order methods and second order methods

(in particular, the well-known Ripley K-function). They are suitable for the analysis of

spatial configurations and distribution patterns of individuals, such as plants or trees.

Additionally, I present some explicit formulas for an area-based edge effect correction

method (hereinafter Area method). There are some references to this method in the lit-

erature, but the explicit formulas are absent or incompletely described. The edge effect

correction factor is an essential part of those spatial statistical methods that require the

counting of neighbors within a given distance (Goreaud & Pelissier 1999). An appropriate

edge correction can improve the stability of the results obtained from spatial statistical

methods and increase the sensitivity of the spatial statistical tests (Yamada & Rogerson

2003). A number of edge corrections methods are discussed in literature; I compare the Area

method which is the principal focus of this study with another widely used method, the so

called Ripley edge correction method (hereinafter Ripley method).
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Figure 1.1. Interaction between stand spatial structure, tree local environment and natural pro-

cesses. Adapted from (Goreaud et al. 1998)

The aim is to find out which edge correction method produces the better results and is

easier to implement. The aim is to find out which edge correction method produces the best

results and is easiest to implement.

The Chapter 3 is a direct application of the methods presented in Chapter 2. I apply

the Ripley K-function in combination with the Area method in order to analyze the spatial

configuration of the trees at two study sites located in Northwestern Brazil. This dataset is

used through the study. It is hoped by this means to obtain indirect information about the

underlying ecological processes which might be giving rise to the spatial pattern of the trees

observed in these sites.

It is important to list at least two limitations of the methods presented in Chapter

2 and Chapter 3. First of all, they require the homogeneity of the spatial point pattern

being analyzed. The hypothesis of homogeneity means that the point pattern is stationary

(invariant under translation) and isotropic (invariant under rotation). However, it is well-

know that heterogeneity is generally common in the nature. In summary, the second-order

features of the point pattern depends only on the distance between the points, but not on

direction or location (Goreaud et al. 1996, Wiegand & Moloney 2004). Additionally, the

classical methods consider a three dimensional tree as a point. This abstraction is also
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a limitation, because it can lead to misinterpretation of the ecological processes that are

occurring in the stands.

To overcome this limitation, I develop a new method for the spatial analysis of objects

in Chapter 4, which approximates each individual tree as a circle, instead as a point. The

idea of this method is to minimize the bias of the classical methods presented in Chapter

2, which consider a real tree as a point. I then test this method by applying it to the same

dataset analyzed in Chapter 3.

It is important to note that all methods presented in Chapter 2 and also in Chapter 4

have a common limitation. They neglect information about the spatial configuration of the

individuals. These methods (under the hypothesis of homogeneity) are able to distinguish

whether a point pattern or a pattern of objects tends towards complete spatial randomness,

or towards a clumped or regular distribution and at which scale these characteristics occur,

but they are not able to provide information about the spatial location of these features.

Finally inChapter 5, I propose a new methodology that provides spatial-scale informa-

tion (subject to certain restrictions) about the spatial processes occurring in a forest stand.

The main idea is to adapt the Wavelet Transformation method (hereinafterWT) so that this

can be used for the spatial analysis of point patterns and apply this methodology to plant

ecology. In summary, the methodology consists in transforming a point pattern into a density

map using a Kernel density estimation method (hereinafter KDE) and decompose this

map at different scales using Multiresolution Decomposition Analysis (hereinafter MDA)

obtained via WT method. Finally, I compare these results with the results obtained in

Chapter 3 and Chapter 4 in order to demonstrate the power of for studying vegetation

patterns. In Table 1.1 I present a short summary of the principal characteristics of the

statistical methods applied in this study. Additionally, in Figure 1.2 I present a general

description of the structure of the thesis.

Method Data Original Scale Spatial Hypothesis
Type Use Resolution Resolution Test

Quadrat Counts (x, y) Plant Ecology no no no
Nearest Neighbor z Plant Ecology no no yes
Ripley K-function (x, y) Plant Ecology yes no yes

Variogram (x, y, z) Earth Sciences yes no no
Wavelet Transform (x, y, z) Mathematics yes yes possible

Table 1.1. Description of methods for analysis of spatial data. Adapted from Perry et al. (2002).

All graphic figures presented in this work were created using the software R, a language

and environment for statistical computing and graphics. It is a GNU Project which is similar

to the S language and environment which was developed at Bell Laboratories (formerly

AT&T, now Lucent Technologies) by John Chambers and colleagues. The algorithms were

implemented using the applications R, Scilab (a scientific software package for numerical

computation providing a powerful open computing environment for engineering and scientific

applications) and Intel Fortran Compiler 9.1 for Linux.
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Figure 1.2. Thesis structure.
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Chapter 2

Spatial Pattern Analysis

2.1 Introduction

Spatial point pattern analysis is a set of tools used to study the distribution of discrete

points. It is a statistical method applied to obtain and to analyze information about the

spatial structure of individuals dispersed within a study area. The idea is to distinguish

between point patterns which tend toward complete spatial randomness (hereinafter CSR),

clumping or regularity (see Figure 2.1) and at which scale these characteristics occur.
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Figure 2.1. Three point patterns with 100 points representing a (a) CSR pattern, (b) regular pattern and

(c) cluster pattern.

Stand spatial structure is a complicated concept that includes both horizontal and ver-

tical use of space by trees. In order to simplify this approach, I consider only on the horizontal

location of stems in the stand. Thus, the study area is represented by a part of the horizontal

plane bounded by the stand borders, and each individual plants is mapped as a point in whose

position is shown by the Cartesian coordinates (x, y). This simplification or abstraction of

the study area reduces it to a finite set of points, called point pattern. This “point process”

representation of the stand permits us to describe and analyze point patterns, with the aim of

determining global properties (laws) in the random locations of trees in the stand (Goreuad

1997).
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A point process P is a random process, a mathematical object similar to random variable,

whose realizations are point patterns. Its generates random point patterns that share the

same spatial structure, such as CSR, regular and clustered patterns. The properties of the

process define constraints on its realizations (for example, in terms of density, distance

between neighboring points, and structure). The main idea is to assume that there exists an

underlying process P and to use the properties of that process to describe the structure of

the pattern (Goreaud 1999).

2.2 Methods

Now I present some spatial statistical methods in order to analyze the spatial config-

uration of the trees within a study site named Lagoa A. It is located on the coast of the

northeastern Brazilian State of Para, near the town of Bragança at a latitude and longitude

of approximately (01 03’ S, 46 45’ W), (Mehlig 2001). This area is located on the Acarao

Peninsula on the estuary of Caete River, 150 km south of the Amazon delta in northern

Brazil (Berger et al. 1999). It forms part of the world’s second largest continuous area of

mangrove forest, estimated to cover a total area of 1.38 million ha along a coastline of ca.

6800 km (Kjerve et al. 1993).

Applying the “point process” representation to the study site Lagoa A, each tree indi-

vidual is represented by its spatial position inside the stand (see Figure 2.2), species and

radius at breast height in cm (exception for the dead trees). To avoid misunderstanding, it

is important to explain the notation used in this chapter. “Location” means a position (x, y)

inside the study area and “point” means an arbitrary point pi =(xi, yi) of the point pattern

within the area.
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Figure 2.2. Study area Lagoa A with 560 trees. (black dot) Avicennia

germinans and (blue dot) Laguncularia racemosa. The axis x and y are

given in m.

2.2.1 Quadrat counts analysis

The quadrat count method is one of the early methods of spatial point pattern analysis.

The basic procedure is to sample the study site using randomly located quadrates (e.g., a

search circle of radius r centered inside the study area) and to count the number of points

(representing each individual of the stand) that lies inside each one.

Under a hypothesis of CSR, the distribution of the number of points inside a quadrat

with area a is given by a Poisson series with mean λa, where λ is the intensity of the point

pattern inside the whole study area and it is estimated as

λ=
n

A
, (2.1)

where A and n are respectively the area and the number of points of the study area.
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The probability of encountering n points inside a quadrat with area a is given by

Pr(N(a)=n) = e−λa(λa)
n

n!
. (2.2)

To compare the observed values with the expected values, I need to perform a χ2 test of

significance. In this case, point clustering would be evidenced by counts that occurred more

often than expected and regularity would be evidenced by counts that occurred less than

expected.

2.2.1.1 Quadrat count indices

There are a number of indices described in the literature that could be used with the

quadrat count method to detect a significant deviation from a CSR pattern (a Poisson

distribution). The simplest and probably the oldest of these was developed by Fisher et al .

(1922). It is defined as

I1=
V

X̄
, (2.3)

where V and X̄ are the sample variance and the sample mean of the quadrat counts respec-

tively. The method is based on fact that the mean and the variance of a Poisson distribution

are the same, thus the expected value of the indices under CSR hypothesis is I1=1.0, I1>1.0

if I have a clumped pattern and I1< 1.0 if I have a regular or a CSR pattern.

A further index was developed by Douglas (1975) and it is defined as

I2=
X̄ 2

V 2− X̄
, (2.4)

where V and X̄ are defined as above. If I consider that the number of points inside a quadrat

has a Poisson distribution with mean μ=λa (where a is the area of the quadrat), then I2 is

equal to μ for large sample sizes.
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A number of other indices have been described (David & Moore 1954, Lloyd 1967,

Morisita 1959). For a review, see Cressie (1993).

2.2.1.2 Quadrat counts method applied to study site Lagoa A

I apply the quadrat count method to the study site Lagoa A to quadrats with dimensions

1 x 1 m (analysis at small scale), 3 x 3 m (analysis at intermediate scale) and 5 x 5 m (analysis

at large scale) randomly dispersed inside this study area. The results of the analysis obtained

for each scale are summarized in table below.

Quadrat Counts Analysis
Lagoa A (λ= 0.622)

Quadrat Scale a I1 I2 μ=λa Interpretation
1 x 1 m small 1 1.175 0.798 0.622 clustering
3 x 3 m intermediate 9 1.223 5.823 5.598 clustering
5 x 5 m large 25 2.004 16.599 15.55 clustering

Table 2.1. Summary analysis using quadrat count methods applied to Lagoa A.

The results presented in Table 2.1 shown that I1> 1.0 and I2>μ at all scales analyzed.

It means that the point pattern shows clustering at different scales.

2.2.2 First-order analysis

Intensity λ (or density) is the simplest first order property of a point process. If I consider

a homogeneous point pattern (if it is invariant under translation and rotation), λ is a constant

and can be estimated by λ̂=n/A, where n and A are respectively the number of points and

the area of the study site.

To introduce the concept of local density, I define c(x,y)(r) as a circle with radius r

centered on a location (x, y) inside of the study site. Then the local density in a neighborhood

r of a location (x, y) of the study site can be estimated by

λ̂x,y(r) =
N [cx,y(r)]

πr2
, (2.5)

where N [cx,y(r)] is the number of points inside cx,y(r).
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2.2.2.1 Nearest neighbor methods

Nearest neighbor methods are based on the first-order property of a point process. They

are based on the distance between a point and its nearest neighbor. The basic procedure

of these methods is to estimate the mean point density λ̂ (points per unit area) using

information about the mean point-to-point distance. Then this estimated point density λ̂ is

compared with the expected point density λ to classify the point pattern as clumped, regular

or CSR.

An advantage of these methods in comparison to quadrat count methods is that they

make use of precise information about the locations of the points and do not depend on the

size or shape of the quadrats (Cressie 1993).

The simplest index attributed to Fischer et al (1922) is defined as

I3=
Var(d)

d̄
, (2.6)

where d is the nearest neighbor distance over all points of the point pattern and d̄ is the

mean nearest-neighbor distance defined as

d̄ =
1

n

∑
i=1

n

di, (2.7)

where n is the number of points inside the study site and di is the is the nearest neighbor

distance for point i inside the study site. The expected value of the index is 1 for a random

pattern, I3> 1 indicates clustering and I3< 1 indicates regularity.

Another index was developed by Clark and Evans (1954) and it is defined as

I4=
d̄
1

2 λ
√

, (2.8)

where d̄ is as defined in equation (2.6), the denominator
1

2 λ
√ is the expected mean nearest-

neighbor distance under CSR assumption and λ is the density of the points inside the whole

study site. Further indices can be founded in the literature, see Cressie (1993).

2.2.2.2 Nearest neighbor methods applied to study site Lagoa A

I now apply the nearest neighbor method to the study site Lagoa A. The results of the

analysis obtained for each index are summarized in table below.

Nearest Neighbor Analysis
Lagoa A (λ= 0.622)

Indices Result Interpretation
I3 3.565 clustering
I4 1.124 clustering

Table 2.2. Summary analysis using nearest neighbor

methods applied to Lagoa A.
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The results presented in Table 2.2 show that I3 and I4 > 1.0. This indicates that the

point pattern presents clustering.

2.2.3 Second-order analysis

The second order property of a point pattern is related to the density of occurrence

of two points within a given distance from each other (Ripley 1977, Diggle 1983). This

property characterizes the number of points found in the neighborhood of an arbitrary point

of the pattern and permits the spatial structure of these points to be described in terms of

interaction processes: aggregation, repulsion, etc ... (Pelissier & Goreuad 2001).

To calculate second order local neighbor density, I define ci(r) as a circle with radius r

centered on a point pi. Then the second order local neighbor density in a neighborhood r of

an arbitrary point pi of the pattern can be estimated by

λ̂i(r) =
N [ci(r)]

πr2
, (2.9)

where N [ci(r)] corresponds to the number of points within ci(r).

2.2.3.1 Ripley’s K-function

The Ripley K-function is a second order method based on distances between all pairs of

points of the pattern. The advantage of this method in comparison to others (Quadrat Count

Methods and First Order Analysis) is that it preserves information about distances between

all points in the pattern. It can be used to analyze a point pattern at a range of scales and

to determine at which scales these points tend to be regular, clumped or CSR. It can also be

used to describe the relationship between one, two or more types of points contained inside

the point pattern.

The general definition of the Ripley’s K-function for a certain distance r is

K(r)=λ−1E[r], (2.10)

where E[r] is the expected number of points within a distance r from an arbitrary point of

the study region Ω and λ is the density of points inside this area estimated as

λ̂ =
n

A
, (2.11)

where n and A are the number of points inside and the area of the study region Ω, respec-

tively.
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The K-function is defined so that λK(r) is the expected number of points contained at

distance r from an arbitrary point of the pattern inside Ω. In practice, the univariate K-

function (where only one type of point is being considered) is estimated as

K̂ (r)=
A

n2

∑
i=1

n ∑
j� i

n

wij(r)δij(r), (2.12)

where wij(r) is an edge effect correction factor, δij(r) is an indicator function which defines

whether a point pj is inside a neighborhood r of a point pi or not and is defined as

δij(r)=

{
1, if dij� r
0, otherwise

, (2.13)

with

dij = (xi−xj)
2+ (yi− yj)

2
√

, (2.14)

being the Euclidian distance between the points pi = (xi, yi) and pj = (xj , yj) within the

study region Ω.

An advantage of the K-function is that calculated values are independent of the shape

of the study region, providing that adequate adjustments are made for edge effects (Cressie

1991). Furthermore, an appropriate edge effect correction factor can improve the sensibility

of the statistical results in the sampling data and can increase the power of the statistical

tests (Yamada & Rogerson 2003).

Because of its hyperbolic behavior, the interpretation of K-function is not straightfor-

ward. For this reason, a modification called L-function has been proposed to normalize it

(Besag 1977),

L̂(r) =
K̂ (r)

π

√
− r. (2.15)

The expected value of the univariate L-function under CSR is 0 for all r, positive when

the pattern tends to be clustered and negative when the patterns tends to be regular

The bivariate K-function is used to analyze the spatial relation between two or more

different type of points. First, I have to define

K̂12(r) =
A

n1n2

∑
i=1

n1 ∑
j� i

n2

wij(r)δij(r), (2.16)

where wij(r) is an edge effect correction factor, δij(r) is an indicator function which defines

whether a point pj of type 2 is inside a neighborhood r of a point pi of type 1 or not and it

is defined as

δij(r)=

{
1, if dij� r
0, otherwise

, (2.17)

with

dij = (xi−xj)
2+ (yi− yj)

2
√

, (2.18)
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being the Euclidian distance between the points pi
1 = (xi, yi) of type 1 and pj

2 = (xj , yj) of

type 2 within the study region Ω. The associated L-function is defined as

L̂12(r) =
K̂12(r)

π

√
− r. (2.19)

The expected value of the bivariate L-function under spatial independence is 0 for all r,

positive when the two point processes tends to be aggregated and negative when the two

point processes tends to be repulsive.

Similarly, I define the function

K̂21(r) =
A

n1n2

∑
i=1

n2 ∑
j� i

n1

wij(r)δij(r), (2.20)

where wij(r) is an edge effect correction factor, δij(r) is an indicator function which defines

whether a point pj of type 1 is inside a neighborhood r of a point pi of type 2 or not and it

is defined as

δij(r)=

{
1, if dij� r
0, otherwise

, (2.21)

with

dij = (xi−xj)
2+ (yi− yj)

2
√

, (2.22)

being the Euclidian distance between the points pi
1 = (xi, yi) of type 1 and pj

2 = (xj , yj) of

type 2 within the study region Ω, and the its associated L-function is defined as

L̂21(r) =
K̂21(r)

π

√
− r. (2.23)

Then the bivariate K-function is defined as

K̂B =
n1K̂21 +n2K̂12

n1+n2
, (2.24)

and its linearization is defined as

L̂B =
K̂B(r)

π

√
− r. (2.25)

The bivariate K-function is defined so that λK̂B(r) is the expected number of points of

type 2 contained at the distance r of an arbitrary point of type 1 of the point pattern.

2.2.3.2 Simulations interval
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The estimators of the second order functions are random variables with certain variance

and in order to test the null hypothesis of a CSR pattern using real data, I have to take

this uncertainly into account. In our case, I used the Monte Carlo method to estimate these

variations (Besag & Diggle 1977) and to generate the confidence interval.

The methods applied to calculate the confidence interval for the univariate K-function

and the bivariate K-function are completely different and will be explained below.

Univariate K-function

In order to test the deviation from randomness (regularity or clustering) of the point

pattern using the univariate K-function, I computed a 99% confidence interval of L(r) using

the Monte Carlo method (Besag & Diggle 1977) from 1000 simulated CSR patterns with the

same number of points contained inside a region with the same geometry. If the L-function

intercepts the lower bounds of confidence interval and/or the upper bounds of the confidence

interval I have an indication of regularity and/or clustering respectively.

In Figure 2.3 I show examples of the interpretation of the univariate K-function applied

to three different point pattern models, each containing 50 points: a CSR pattern, a regular

pattern and a clumped pattern.
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Figure 2.3. (a) Regular pattern with 50 points, (b) cluster pattern with 50 points and (c)

CSR pattern with 50 points and (d), (e) and (f) are their respective L-function (black) and

99% confidence interval (dashed red). The confidence interval was calculated via Monte Carlo

method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Bivariate K-function

The generation of the simulation envelopes for the bivariate case is more complicated;

for details of the methodology, see Goreaud & Pelissier (2003).

Basically, in order to generate the correct simulation envelope for the bivariate case, I

have to choose one of two different null hypotheses: independence or random labeling.

The independence hypothesis must be chosen if the location of the points of type 1 and

type 2 results from two a priori independent spatial point processes. In this case the location

of the type 1 points is independent from the location of the type 2 points.

In order to generate the simulation envelope that corresponds to the hypothesis of spatial

independence, I have to hold the point pattern of the points of type 1 and type 2 unchanged

and randomize their relative position in each Monte Carlo simulation. For more details, see

Lotwick & Silverman (1982), Diggle (1983) and Goreuad & Pelissier (2003).

The random labeling hypothesis must be chosen if the location of the points of type 1 and

type 2 is result of events affecting a posteriori individuals of a single population. It means

that the probability that one event occurs is the same for all points and does not depends

on neighbor the identity of the neighboring point (Goreaud & Pelissier 2003).

In order to generate the simulation envelope that corresponds to the hypothesis of random

labeling, I have to simulate point processes with the same observed spatial structure con-

sidering all points without type distinction. Then I hold the simulated pattern and simulate

the point types in the same proportion as that observed in the study area. For more details,

see Diggle (1983) and Goreaud & Pelissier (2003).

In Table 2.3 I present a summary of the main characteristics of the null hypothesis

applied to bivariate K-function.

General Framework Independence Random labeling
Null hypothesis LB(r)= 0 LB(r) =L(r)
Aggregation LB(r)> 0 LB(r)>L(r)
Repulsion LB(r)< 0 LB(r)<L(r)

Simulation procedure Random shifting of type 1 points Random attributions of marks
Biological example Between species or cohorts interaction Disease attack or disturbances

Table 2.3. Table 2.3 Main characteristics of the null hypothesis of spatial independence and random labeling.

Figure 2.4 show an example of the an application of the bivariate K-function applied to

the stand Lagoa A. InTable 2.5 I present a summary of the results presented in Figure 2.4.
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K-function analysis
Point Patter Regularity Clustering
Laguncularia - 1<r< 9
Avicennia - r� 1

Laguncularia & Avicennia r < 4 -

Table 2.4. Summary of K-function analysis applied to study site Lagoa A.

The scale is meter.

The univariate analysis of the point pattern that represents Laguncularia trees shows

clustering at different scales, 1 m< r < 8 m. The univariate K-function analysis applied to

Avicennia shows clumping at scale r�1 meter. But it is important to notice that a repulsion

pattern exists between the Laguncularia and Avicennia trees at scale r < 2 m. In summary,

the trees of the same species tend to occupy the same area and the trees of different species

tends to avoid each other.
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Figure 2.4. Study site Lagoa A. (a) Avicennia, (b) Laguncularia, (c) Avicennia (blue) and

Laguncularia (red). (d) and (e) are the univariate L-function (black) and 99% simulation

envelope for CSR hypothesis (dashed red) for the point pattern in (a) and (b) respectively.

The univariate simulation envelope was calculated via Monte Carlo method (Besag 1977) with

1000 simulations. (f) Bivariate K-function (black) and its simulation envelope for indepen-

dence hypothesis (dashed red) calculated for the point pattern contained in (c). The bivariate

simulation envelope was calculated via random shifting method (Lotwick & Silverman, Diggle

1983) with 1000 simulations.
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2.2.4 Edge effects

The edge effect problem usually occurs when it is necessary to count the number of points

within a search circle ci(r) that intercepts the edges of the study area (see Figure 2.5).

This search circle has a radius r and is centered at a point pi located inside a study area Ω.

It has two distinct parts ci
+(r) and ci

−(r), that respectively mark the regions of the search

circle which belong or do not belong to Ω.

Usually, there is no information about the number of points within ci
−(r). However, if

these points are not considered, ci(r) contains fewer points than expected. The purpose

of edge effect correction factor is to minimize this effect. An alternative is to estimate the

number of points within ci
−(r) using the information of the number of points within ci

+(r).

Figure 2.5. Study area Ω with dimensions [0, a]× [0, b]
and a search circle ci(r) with radius r centered on a point

pi within this region. Ai
−(r) and Ai

+(r) are the area of the

region of ci(r) outside and inside Ω respectively.

In what follows I present some explicit formulas for an area based edge effect correction

method (hereinafter Area method). Some articles refer to this method (Getis & Franklin

1987, Besag 1977, Dale & Powell 2001), but details of the corresponding formulas are missing

or incomplete.

Let define the total number of points within ci(r) as

Ni(r) =Ni
+(r) +Ni

−(r) (2.26)

where Ni
+(r) and Ni

−(r) are the number of points within ci
+(r) and ci

−(r) respectively. By

similarity, the total area of the circle ci(r) can be defined as

Ai(r) =Ai
+(r) +Ai

−(r) =πr2 (2.27)

2.2 Methods 31



where Ai
+(r) and Ai

−(r) are the areas of the regions ci
+(r) and ci

−(r) respectively (see Figure

2.5).

Furthermore, I suppose that the point density within ci
−(r) is equal to the point density

within ci
+(r). Using this argument and the density definition, it follows that

Ni
−(r)

Ai
−(r)

=
Ni

+(r)

Ai
+(r)

⇒Ni
−(r)=

Ai
−(r)

Ai
+(r)

Ni
+(r), (2.28)

and combining the equations (1.26), (1.27) and (1.28), Ni(r) can be estimated as

Ni(r) =
Ai(r)

Ai
+(r)

Ni
+(r) =wi(r)Ni

+(r), (2.29)

with wi(r) being an area based edge effect correction factor (hereinafter area correction

factor).

The area correction factor depends on the relative position of the point pi inside the study

region Ω and on the radius of the search circle ci(r). This feature permits us to redefine the

K-function in equation (2.3) as

K(r)=
A

n2

∑
i=1

n

wi(r)
∑
j� i

n

δij(r). (2.30)

This alteration significantly reduces the number of operations needed for the calculation

of the K-function and consequently reduces the time needed to carry out the analysis, but

without compromising its precision.

2.2.4.1 Area based edge effect correction method

The explicit formulae for the Area method are when the study region Ω is with rectan-

gular and the radius of the search circle ci(r), used for the calculation of the K-function, is

up to half the length of the shorter side of the study site Ω. Four different cases need to be

distinguished and their wi(r) formulas are presented in Table 2.5.

• Case 1. The search circle ci(r) does not intercept the edges of the study region Ω

(see Figure 2.6 and Table 2.5).

• Case 2. The search circle ci(r) intercepts one edge of the study region Ω (see Figure

2.6 and Table 2.5) and

α= arccos(d/r)

e= r2− d2
√ (2.31)
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where d is the distance between the center of the search circle ci(r) to the intercepted

edge of the study area Ω.

• Case 3. The search circle ci(r) intercepts two edges of the study region Ω and r2>

d1
2+ d2

2 (see Figure 2.6 and Table 2.5)

• Case 4. The search circle ci(r) intercepts two edges of the study region Ω and r2�
d1
2+ d2

2 (see Figure 2.6 and Table 2.5).

In both cases 3 and 4 the following equation is valid

αi = arccos(di/r), i=1, 2

ei = r2− di
2

√
, i=1, 2

(2.32)

where d1 and d2 are the distance from the center of the search circle ci(r) to the intercepted

edges of the study area Ω.

Figure 2.6. The four possibilities of intersection between

the search circle ci(r) and the edges of the study region Ω.

Case Condition wi(r)
1 no intersection 1
2 one intersection πr2(ed+(π−α)r2)−1

3 two intersections with r2>d1
2+ d2

2 πr2(d1d2+ 0.5(e1d1+ e2d2) + (0.75π− 0.5α1− 0.5α2)r
2)−1

4 two intersections with r2� d1
2+ d2

2 πr2(e1d1+ e2d2+(π−α1−α2)r
2)−1

Table 2.5. Table 2.5 Edge correction factor wi(r) for the 4 possibilities presented in Figure 2.6.
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2.3 Results

2.3.1 Time processing

To compare the time required to calculate the Ripley K-function using the two methods

presented above I simulated a CSR pattern varying the numbers of point inside a study

area with square geometry [0,1]× [0, 1]. Then I obtained the time necessary to calculate the

Ripley’s K-function for these point patterns using Ripley method (t1) and the Area method

(t2).

The graph in Figure 2.7 shows that the Area method in relation to the Ripley method

is at least 8.50 times faster (see also Table 2.6).
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Figure 2.7. Time processing for the Area’s method

(dashed) and Ripley’s method (filled).

n 100 500 1000 1500
t1 0.17 3.72 11.96 24.59
t2 0.02 0.36 1.13 2.38

t1/t2 8.50 10.33 10.58 10.33

Table 2.6. Table 2.6 Relationship between the

time processing for the Ripley’s method (t1) and

for the Area’s method (t2). The time is given in

seconds.
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2.3.2 Simulation envelope width

The simulation envelope width is the difference between the upper and lower bounds of

the simulation envelope obtained by the Monte Carlo method (Besag & Diggle 1977). Intu-

itively, an edge correction method with a wide simulation envelope width has lower statistical

power to detect clumped and/or regular point patterns. An edge correction method with a

narrower simulation envelope width is more stable under statistical fluctuations and has a

higher statistical power (Yamada & Rogerson 2003).

In this work, a 99% simulation envelope was obtained for different point patterns inside

a study area Ω = [0, 1] × [0, 1] by performing 10.000 simulations. For each data set the

simulation envelope width was calculated using either Ripley method other Area method.

The models used to generate the point pattern are listed below:

1. Complete spatial randomness or CSR model. I simulated a low density scenario

with 50 points and a high density scenario with 200 points.

2. Regular model. This model was simulated using a sequential spatial inhibition

process (Kaluzny et al . 1997) with parameter c=0.01, 0.03 and 0.05 (The parameter

c specifies minimal distance between the points). For each parameter c, I simulated

a low density scenario with 50 points and a high density scenario with 200 points.

3. Clumped model. This model was simulated using an algorithm presented by

Yamada & Rogerson (2003) with parameter c = 0.05, 0.08 and 0.01 (the param-

eter c specifies the mean radius of the cluster). For each parameter c, I simulated

a low density scenario with 50 points and a high density scenario with 200 points.

Figure 2.8 shows the simulation envelope and its respective width calculated for the

CSR model. Figure 2.9 and Figure 2.10 show only simulation envelope widths obtained

for the regular and clumped models respectively. For both cases, the simulation envelope

width obtained by the Area method is more stable than those of Ripley method.
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Figure 2.8. Results obtained for a CSR pattern sim-

ulated within a study region Ω = [0, 1] × [0, 1]. 99%

simulation envelope for the CSR model for n = 50 (a)

and n = 200 (c) with 10000 simulations using the Area

method (filled) and Ripley method (dashed) and (b) and

(d) shows the respective simulation envelope width.
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Figure 2.9. Confidence interval width of a regular model with parameters (a) n=50 and r= 0.01, (b) n=50

and r=0.03, (c) n=50 and r=0.05, (d) n=200 and r=0.01, (e) n=200 and r=0.03, (f) n=200 and r=0.05

obtained by the Area method (filled) and Ripley method (dashed). The simulation envelope width was obtained

via Monte Carlo method (Besag & Diggle 1977) with 10000 simulations.
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Figure 2.10. Confidence interval width for a clumped model with parameters (a) n = 50 and r = 0.05, (b)

n= 50 and r= 0.08, (c) n= 50 and r= 0.1, (d) n= 200 and r= 0.05, (e) n= 200 and r= 0.08 and (f) n= 200

and r= 0.1 obtained by the Area method (filled) and Ripley method (dashed).The simulation envelope width

was obtained via Monte Carlo method (Besag & Diggle 1977) with 10000 simulations.

2.3.3 A Guard Area

A virtual experiment can be carried out to evaluate the quality of the edge correction

factors described above. The idea is to compare the estimated number of points outside the

study region with the “real” number of points occurring in Ai
−(r). For this, the study area

Ω is now divided in two regions: a guard area Ωg which contains the measurable points and

a buffer area Ωb that that contains the points to be estimated (see Figure 2.11).

The K-function for the guard area Ωg can be defined as

KG(r)=
A

ng
2

∑
i=1

ng ∑
j� i

n

δij(r) (2.33)

with the associated L-function

LG(r) =
KG(r)

π

√
− r, (2.34)

where ng and n are the number of points inside the regions Ωg and Ω respectively, whereas

A is the area of Ω. Notice that KG(r) includes all points in the entire study region. It is,

therefore, not necessary to use an edge correction factor in this case, because all necessary
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information is already included. In order to evaluate the error associated with each edge

correction factors, KG(r) is compared with the K-functions calculated for Ωg without using

the information inside Ωb.

The K-function calculated for Ωg using the Area method is

KA(r)=
Ag

ng
2

∑
i=1

ng

wi(r)
∑
j� i

ng

δij(r) (2.35)

and its associated L-function is

LA(r)=
KA(r)

π

√
− r. (2.36)

The K-function calculated for Ωg using the Ripley method is

KR(r)=
Ag

ng
2

∑
i=1

ng ∑
j� i

ng

wij(r)δij(r) (2.37)

and its associated L-function is

LR(r) =
KR(r)

π

√
− r, (2.38)

where ng and Ag are the number of points inside and the area of Ωg respectively.

Figure 2.11. A whole study region Ω = [0, 2] × [0,
2] divided as a guard area Ωg = [0.5, 1.5] × [0.5, 1.5]
(gray region) and an buffer area Ωb (hatched region) sur-

rounding Ωg.
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To measure the deviation of the functions LA(r) and LR(r) from the reference function

LG(r), deviance factors can be defined as

DA =

∫
0

rmax

[LG(r)−LA(r)]
2dr (2.39)

and

DR =

∫
0

rmax

[LG(r)−LR(r)]
2dr, (2.40)

where rmax is the maximal scale of the analysis.

For this test, I simulated a point pattern within a study region Ω=[0,2]× [0,2], separated

into a guard area Ωg=[0.5,1.5]× [0.5,1.5] located in the center and a surrounding buffer area

Ωb. I performed 10.000 simulations for each point pattern model described above. In contrast

to the analyses of the simulation envelope width, for each model two density scenarios were

considered: a low density scenario with 200 points inside Ω and a high density scenario with

800 points inside Ω. These settings mean that an average of 50 and 200 points occur inside

Ωg, in the low and high density scenarios respectively.

Table 2.7 and Table 2.9 show the mean deviance factor (DA and DR) and the cor-

responding variances for all CSR and clumped scenarios. The mean of the deviance factor

obtained shows that the performance of the Area method is better than or equivalent to the

Ripley method. A Student T-test calculated for the results presented for the regular scenarios

in Table 2.8 (LD2.1 and HD2.2) shows that DA and DR are equivalent.

LD scenario mean variance

DR 0.0051 6.834× 10−5

DA 0.0049 6.062× 10−5

HD scenario mean variance

DR 0.001 2.361× 10−6

DA 0.001 2.197× 10−6

Table 2.7. CSR model with 200 points representing a

low density scenario and 800 points representing a high

density scenario. Summary of the statistical results for

the deviance factors DR and DA obtained from 10000

simulations.

2.1. t=-0.016, df=10, p-value=0.987 and 95% confidence interval = (-3.49,3.44).

2.2. t=-0.031, df=10, p-value=0.976 and 95% confidence interval = (-2.95,3.03).
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LD Scenario r=0.01 r=0.03 r=0.08
Deviance mean variance mean variance mean variance

DR 0.0051 5.567× 10−5 0.0047 5.246× 10−5 0.0035 3.410× 10−5

DA 0.0050 5.337× 10−5 0.0046 5.397× 10−5 0.0035 3.639× 10−5

HD Scenario r=0.01 r=0.03 r=0.08
Deviance mean variance mean variance mean variance

DR 0.009 1.567× 10−6 0.0006 5.184× 10−7 0.0002 4.14× 10−8

DA 0.009 1.562× 10−6 0.0005 5.700× 10−7 0.0002 3.41× 10−8

Table 2.8. Summary of the statistical results of the deviance factor DR and DA calculated for the region

Ωg obtained from 10000 simulations. A regular model with 200 points and parameter r=0.01, 0.03 and0.05

representing a low density scenario and a regular model with 800 points and parameters r=0.01,0.03and0.05

representing a high density scenario.

LD scenario c=0.05 c=0.08 c=0.1
Deviance mean variance mean variance mean variance

DR 0.136 0.080 0.442 1.172 0.188 0.923
DA 0.081 0.018 0.303 0.608 0.123 0.399

HD scenario c=0.05 c=0.08 c=0.1
Deviance mean variance mean variance mean variance

DR 0.149 0.202 0.256 2.722 0.094 0.076
DA 0.095 0.045 0.162 1.042 0.059 0.020

Table 2.9. Summary of the statistical results of the deviance factor DR and DA cal-

culated for the region Ωg obtained with 10000 simulations. A clumped model with 200

points and parameter c = 0.05, 0.08 and 0.01 representing a low density scenario and a

regular model with 800 points and parameters r= 0.01, 0.03 and 0.05 representing a high

density scenario.

2.3.4 Real Dataset

The virtual experiment described above is a powerful tool frequently applied in ecology

to evaluate the quality of ecological parameters (see e.g. Berger et al . 1999b or Perner &

Scüler 2004). In this simulation experiment, the guard area methodology applied to a real

data set obtained from a mangrove forest.

The method was applied to the data set obtained from the study site Lagoa A. The site

has geometry: Ω=[0,30]× [0,30]. For the analysis, it was separated into two regions: a guard

area Ωg = [7.5, 22.5]× [7.5, 22.5] and a buffer area Ωb surrounding the area Ωg (see Figure

2.12).

The study site Lagoa A contains 560 trees: 118 trees inside the region Ωg and 442 trees

inside the region Ωb.
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Figure 2.12. Study area Lagoa A with 560 trees: 118

trees inside the guard area Ωg (points) and 442 trees inside

the buffer area Ωb (crosses).

A comparison of the deviance factors DA and DR shows that the performance of the Area

method is better than to Ripley method (see Table 2.10).

Study area DR DA

Lagoa A 1.5032 1.2193

Table 2.10. Deviance factor DR and DA

obtained for the study site Lagoa A.
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2.4 Discussion

The results presented in this Chapter shown some characteristics of the QC and NN

Methods, First Order Methods (Fischer et al. 1922, Douglas 1975, Clark & Evans 1954,

Cressie 1993) based on the First Order Property (mean number of points per unit area at

any arbitrary location in the study region).

The QC Method (Fischer et al. 1922, Douglas 1975) has at least two main limitations.

This method reduces all spatial information of the point pattern into a single one-dimensional

index. This characteristic implies that:

(1) The spatial pattern analysis can be performed only at a single scale. Because the

method provides information about the intensity (number of events per unit area) of the

spatial point pattern using only a single particular size quadrat. However, the choosing of the

quadrat size can be quite complicated, because it depends generally on the scale of interest

in the spatial pattern and/or the changing pattern at the changing scales.

(2) The analysis provides no information about the relative spatial position of the

tree individuals inside the study site. In summary, the QC Method shows only the type of

deviation from point randomness (i.e. regularity and/or clustering) and all other spatial

information of the individuals is completely lost.

In the same way, the results show that the Nearest Neighbor Methods (hereinafter NN

Method) (Fischer et al. 1922, Clark & Evans 1954, Cressie 1993) also have important lim-

itations. All information about individual point-to-point distances is lost and summarized

in a mean. These methods consider only on the closest points (i.e. distance to the nearest

neighbor for each point in the pattern) and the spatial information of the individuals at larger

scales is completely lost. Furthermore, while the indices can show the direction of deviation

from randomness (i.e., toward clumping and/or regularity), the numerical behavior of many

of these indices remains largely unexplored.

In summary, the QC and NN Methods show that the trees within the study site Lagoa

A are clumped (see Table 2.1 and Table 2.2 respectively), but the methods do not provide

the detection of the scale at which this pattern occurs. This is a common limitation of both

QC and NN methods. All information about the spatial localization of the tree individuals

is completely lost.

Recent studies in plant ecology reveal that positive and negative interactions between

individual trees may occur together at different scales and determine simultaneously the

horizontal and vertical structure of the plant community (Malkinson et al. 2003). Thus, to

reduce all spatial information of all scales into one single index, is a critical limitation of the

QC and NN methods. For this, the Ripley K-function (Ripley 1977), a second order method,

was developed to overwhelm some of these limitations.

The main advantage of the Ripley K-Function in comparison the First Order Methods

(Fischer et al. 1922, Douglas 1975, Clark & Evans 1954, Cressie 1993), such as QC and NN

Methods is to preserve distance information and it permits to analyze a point pattern at a
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range of scales and to determine at which scales these points tend to be regular, clumped

or CSR. In this experiment, the analysis obtained by Ripley K-function confirm that the

spatial configuration of trees in Lagoa A are clustered but show in addition that clustering

occurs at lower and intermediate scales. This information was not possible to obtain using

the QC and NN Methods.

In this chapter I also provide a complete description of an Area Based Edge Effect Cor-

rection Factor (hereinafter Area Method) (Getis & Franklin 1987, Besag 1977, Dale & Powell

2001) in order to improve the sensibility of the Ripley K-Function to detect deviation from

randomness in spatial point patterns. Momentary, this method is only suitable to analyze

the spatial configuration of a point pattern within a rectangular study area. Additionally,

the maximal scale of the spatial analysis is restricted to a half of the shortest side of the

study site (see Table 2.6).

However, the time processing simulation experiment shows that the Area Method is

about eight times faster (see Table 2.6) than the Ripley Method for edge correction (Ripley

1977, Diggle 1983). The better time performance of the Area Method in comparison to the

Ripley method can be explained by comparing equations (2.3) and (2.30). For a fixed scale

r and n points, the calculation of the Ripley K-function using the Ripley edge correction

method needs at n2 operations. In contrast, the Area Method needs only n operations. This

characteristic of the Area Method enables therefore more simulations to be performed in

calculating the simulation envelope. It thus improves the statistical power and the sensibility

of the Ripley K-function in order to detect clumping and regularity (Yamada & Rogerson

2003). This advantage is also particularly important for the analysis of large data sets,

reducing the time processing of the analysis.

The comparison of the simulation envelope widths shows that the performance of both

methods is similar until r=0.25 (considering rmax=0.5), but the Area Method performs

better performance for r>0.25 (see Figure 2.8, Figure 2.9 and Figure 2.10). This result

provides additional evidence of the greater statistical power and sensibility of the Area

Method in order to analyze spatial point patterns.

The results obtained with the guard area experiment show that spatial analysis per-

formed with the Area Method is better or equivalent in comparison to the Ripley edge

correction method (see Figure 2.7, Figure 2.8, Figure 2.9 and Figure 2.10). Both virtual

experiments (with computed and real field data) demonstrate, furthermore, the greater

precision of the Area Method in relation to the Ripley Method.

Thus, I conclude that it is worthwhile applying this method when the study site is

rectangular. Future studies will provide a complete set of equations also suitable for irregular

study sites and no scale analysis constraints. Additionally, it is important to note that the

Area Method can be applied in combination with any spatial statistical method that requires

the use of an edge effect correction factor. In the next Chapter, I perform a more detailed

analysis of the study sites Lagoa A and Lagoa B, using the Ripley K-function, with the

intention to detect the underlying ecological process determining the spatial configuration

of tree individuals here.
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The algorithm for the calculation of the K-function and the Area Method utilized in this

chapter was implemented in FORTRAN 95 and can be found in the Appendix.
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Chapter 3

Spatial PatternAnalysis - an Application

3.1 Introduction

In this chapter, I perform a more complete analysis of two real data sets obtained from

two mangrove forest stands Lagoa A and Lagoa B. They are located on the coast of the

northeastern Brazilian State of Pará (for more details, see Chapter 2). The two forest study

sites are located about 15 m apart near the lagoon in the central part of the peninsula (see

Figure 3.1).

Site Lagoa A contains two species: Laguncularia and Avicennia. The forest at Lagoa B is

formed by large sized Laguncularia, and a few Rhizophora and Avicennia trees.. Both areas

are inundated once a month during very high tides under the influence of Caete River tidal

regime. The inundation regime is not precisely known but the frequency of inundation is

presumably lower at Lagoa A than at Lagoa B, due to its lower basin (Harum 2004).

The principal aim of this chapter is to analyze the spatial configurations of the trees in

these stands. I interpret these to make inferences about the underlying ecological processes

which are likely to be occurring within the study sites, such as competition or/and facilita-

tion between the trees, seed dispersal (Sterner et al. 1986, Barot et al. 1999), nurse-plant

effects (Tielbörger & Kadmon 2000), intraspecific competition (Kenkel 1998), interspecific

competition (Barot et al. 1999), disturbance (Dale 1999), herbivore pressure (Jetsch et al.

1999), succession (Begon et al. 1976, Connell & Slatyer 1977) and zonation (Roels 2001).

These ecological processes are important factors that determine the spatial structure and

the organization of a community.
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Under the assumption that the spatial heterogeneity of abiotic factors does not predeter-

mine plant distribution, studies in plant ecology have shown that a tendency to regularity

may be a result of competition for limited resources such as water, light and nutrients (King

& Woodel 1973). By contrast, a tendency to clustering may be an indication of facilitation

processes, such as ameliorative environmental conditions (Muller 1953, Haase et al. 1996),

heterogeneous edaphic conditions (Couteron & Kokou 1997), local seed dispersal effects

(Barot et al. 1999), stress gradients in the physical environment (Malkison et al. 2003) or

environmental heterogeneity (Klaas et al. 2000).

Under the assumption that the spatial heterogeneity of abiotic factors does not predeter-

mine plant distribution, studies in plant ecology have shown that a tendency to regularity

may be a result of competition for limited resources such as water, light and nutrients (King

& Woodel 1973). By contrast, a tendency to clustering may be an indication of facilitation

processes, such as ameliorative environmental conditions (Muller 1953, Haase et al. 1996),

heterogeneous edaphic conditions (Couteron & Kokou 1997), local seed dispersal effects

(Barot et al. 1999), stress gradients in the physical environment (Malkison et al. 2003) or

environmental heterogeneity (Klaas et al. 2000).

In summary, regular and clumped patterns can be associated with competition and facil-

itation processes respectively. Recent studies show that positive (facilitation) and negative

(competition) interactions usually occur together simultaneously, exerting a combined affect

on the structure of the plant community. The relative importance of these processes depends

on the intensity of the environmental stress (Bertness & Callaway 1994).

It should be noted that the interpretation of the spatial point pattern depends on the

scale of the observation in comparison to the scale of the study site. Here I assumed that

variations at lower scales can be attributed to plant-plant interactions and that larger scale

variations are due to environmental heterogeneity (Pelissier & Goreaud 2001) or provide

evidence of an invasion process, by a species new to the location (Goreaud et al. 1996).

In Table 3.1 I present a summary of some ecological processes and their possible associ-

ated spatial point patterns. In order to analyze the spatial configuration of individual trees

in the sites Lagoa A and B, I applied the Ripley K-function in combination with the Area

method introduced in Chapter 2.
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Figure 3.1. Coastal zone of norther Brazil where the study sites Lagoa A

and Lagoa B (black dots) are located.
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Spatial Pattern Underlying Process
Clustering (+) Seed-dispersion effect

Nurse-plant effect
Succession
Zonation

Environmental heterogeneity

Regularity (-) Intraspecific competition
Interspecific competition

Table 3.1. Summary of underlying process and an possible associated

spatial point pattern. (+) Positive and (-) negative interaction.

3.1.1 Mangrove Forest

Mangrove forests are defined as associations of woody trees and bushes which prosper

in mangal (mangrove habitat), an inhospitable habitat between land and sea. But they can

also occur in other types of habitats (Hogarth 1999). They are relatively stable ecosystems

dominated by only a few species (Tomlison 1986, Ricklefs & Latham 1993, Duke et al. 1998).

A wide variety of plant species can be found in mangrove habitat, but of the 110 recorded

species only about 54 species, belonging to 20 genera in 16 families, are considered "true

mangroves", that is, species that occur almost exclusively in mangrove habitats and rarely

elsewhere (Hogarth 1999).

Mangrove habitats are constantly changing, growing, reestablishing and regenerating

themselves. The main characteristics that permit mangrove forests to survive, occupy, dom-

inate and stabilize tidal locations are their notable tolerance to saltwater tidal conditions

and the fact that they are highly dispersive plants with floating propagules, which frequently

display vivipary (Tomlison 1986, Duke 2001). They are complex ecosystems that can be

considered at different spatial scales. At tree level scale, they are structurally and physiolog-

ically well adapted to respond to the conditions in the immediate environment, in particular

to physical factors such as salinity. But at large scales, local variation in physical factors

influences the overall structure of the mangrove forest (Hogarth 1999).
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Mangroves have a highly specialized method of propagation. Their seeds germinate into

seedlings while on the parent tree and after an initial period of development, the seedlings

fall down from the parent tree to the sands below. They then can either sprout or be carried

with the tide to colonize other locations. Some propagules remain viable for periods of weeks

or a year or more (Rabinowitz 1978).

Mangroves help to protect coastlines from erosion, storm damage, and wave action. They

prevent shoreline erosion by acting as buffers and trapping alluvial materials, thus stabilizing

land elevations by sediment accretion that balances sediment loss (Hogarth 1999).

Mangrove ecosystems have traditionally been utilized by local populations for the pro-

duction of food, medicines, tannins, fuel wood, and construction materials. For millions

of indigenous coastal residents, mangrove forests provide dependable basic livelihoods and

sustain their traditional cultures (Quarto 2001).

Mangroves are almost exclusively tropical and can be found between the latitudes of 32

degrees north and 38 degrees south, along the tropical coasts of Africa, Australia, Asia, and

the Americas. This distribution is an indication of a limitation by temperature and they

rarely occur outside the winter position of the 20� C isotherm (Hogarth 1999).

In this study, I are particularly interested in the mangroves species found in Northeastern

Brazilian State of Para, the region where the sites Lagoa A and Lagoa B are located. The

main species found in at these sites are Laguncularia racemosa, Avicennia germinans and

Rhizophora mangle and in the following sections I briefly describe these three species.

3.1.1.1 Avicennia germinans

Black mangrove or Avicennia germinans occurs in periodically immersed and fully terres-

trial environments (see Figure 3.2). It tolerates airborne salt and a degree of water salinity,

but favors fresh water environments. It prefers loamy or muddy substrates, but tolerates

sand and it is also reasonably tolerant of cutting back and mild frost conditions. It does not

grow on prop roots; rather it possesses pneumatophores that allow its roots to breathe even

when growing in standing water. It occurs mainly in tropical Atlantic regions where it thrives

on sandy and muddy shores. Like many other mangroves, it reproduces by vivipary. Their

seeds are cased inside a fruit until this falls into the water to release the germinated seedling.

Avicennia expels absorbed salt mainly from its leathery leaves. It is widely distributed along

Atlantic coasts of tropical America and is found in Bermuda, the Bahamas, and the West

Indies, in southeastern USA as far as northern Florida and southeastern Texas, and from

northern Mexico southwards along the Atlantic Coast to Brazil. It is also found on the Pacific

Coast from Mexico to Ecuador including the Galapagos Islands, and as far as northwestern

Peru, and on coasts of western Africa (Little 1983, Kjerfve & Lacerda 1993, Hogarth 1999).

For additional information see, Table 3.2 and Table 3.3.
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Figure 3.2. Black mangrove or Avi-

cennia germinans.

3.1.1.2 Rhizophora mangle

Red mangrove or Rhizophora mangle (see Figure 3.3) can live in water and in peri-

odically immersed environments; it also occurs as a fully terrestrial plant in well-hydrated

conditions. It tolerates fresh, brackish or full seawater but cannot adapt to marked changes

in salinity. It favors fine sand or muddy substrates but can survive on course substrates. It is

the most temperature sensitive of three genera listed here. It requires warmer temperatures

and is also the most sensitive to cutting back. It generally occurs in intertidal areas which

are inundated daily by the tides. Rhizophora has a number of adaptations suited to this

environment, namely propagules that allow them to breath in an anaerobic environment

(Little 1983, Hogarth 1999). For additional information, see Table 3.2 and Table 3.3.

Figure 3.3. Red mangrove or Rhi-

zophora mangle.
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3.1.1.3 Laguncularia racemosa

White mangrove or Laguncularia racemosa (see Figure 3.4) is a fully terrestrial plant

which tolerates airborne salt, but not highly saline water. It is very tolerant of cutting back

and is moderately to very tolerant of occasional frost conditions. It can be found on both

coasts of tropical America, from northern Mexico to Brazil and Ecuador, including the

Galapagos Islands and as far as northwestern Peru, as well as in the West Indies, Bermuda,

in southern and central Florida, and in West Africa from Senegal to Cameroon (Little 1983,

Hogarth 1999). For additional information, see Table 3.2 and Table 3.3.

Figure 3.4. White mangrove or Laguncu-

laria racemosa.

Species Weight (g) Length (cm) Floating (d) Longevity (d)
Avicennia 1.1 1.83 always 110S
Rhizophora 22.1 22.1 - -
Laguncularia 0.4 2.1 23F and 31S 35S

Table 3.2. Table 3.2 Characteristics of propagules of three mangrove species (adapted from Rabinowitz

1978). (S) Salt water conditions and (F) Fresh water conditions.
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Species Shade tolerance Salinity
Avicennia Intolerant 100(MS) and <40(OG)
Rhizophora Intolerant 70(MS)
Laguncularia Intolerant 90(MS)

Table 3.3. Ecological Characteristics of various mangrove species. “Salinity” in

(0/00). MS = Maximum pore water salinity measured in the fields at sites where the

species was growing, OG = Salinity for optimum growth based on culture studies.

Adapted from Smith III (1991).

3.1.2 Mangrove forest evolution

Early studies used a four stage model to describe the development of mangrove stands:

mangrove first establish themselves during a colonization phase and continue through later

phases of early development and maturity. Finally a new cycle of colonization begins during

the senescence stage. The duration of a complete cycle was estimated to be about 80-100

years (Jimenez & Lugo 1985, Fromard et al. 1988). Later Duke (2001) updated this approach

by considering gap dynamics explicitly.

However, recent studies in mangrove forest evolution show that the early development

stage is much longer then assumed in this model. Menezes (2006) has proposed subdividing

the early development stage in two stages, which he denominates "early development” and

"young forest" stages (see Table 3.4).

Development Colonization Early Young Mature Senescence
Stage development Forest Stand

Density low to very high medium low
high high

Biomass low medium medium high high to
low

Self-thinning minimal high high to moderate minimal
moderate to low

Size normal L-shape L-shape normal J-shape
distribution

Table 3.4. A preliminary model of stand development in mangroves. The forest collapses with “senescence”

when the cycle resumes with re-colonization. Adapted from Duke (2001), Silvertown & Doust (1993) and

Menezes et al . (2004).

The colonization stage starts with the establishment of propagules in gaps and on unoccu-
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pied and damaged tidal areas. Recruitment and growth is fast, self-thinning is minimal and

the density of plants increases throughout this stage. Laguncularia racemosa is the dominant

species at this stage. This occurs because Laguncularia presents some characteristics of

pioneer species, including a low shade tolerance and a high nutrient use efficiency. For

this reason, this species is often the first colonizer of newly created mud banks. Under

optimal light or nutrient conditions, Laguncularia overtops Avicennia and Rhizophora in

terms of growth rate (Lovelock & Feller, 2003). As soon as the conditions become suboptimal,

Laguncularia looses this initial advantage. This stage lasts about 4 years, until canopy closure

is largely achieved (Duke 2001, Berger et al. 2006, Menezes et al. 2006).

The early development stage is characterized by very intense self-thinning and a rapid

decline in density while the seedling bank is formed under the closed canopy. During this

stage, the height of the stand increases more slowly until the canopy approaches "site max-

imal canopy height”. and/or appear in the stand. (Duke 2001, Menezes et al. 2006). This

stage lasts about 5 years. It should be noted that this description is derived from studies

undertaken on the Acarao Peninsula (Brazil), where the study sites Lagoa A and Lagoa B

are located (Berger 2006).

In the young forest stage, the number of individuals continues to decrease due to self-

thinning effects. At this point there two possibilities for the future development the stand:

either a change in dominance from Laguncularia racemosa to Rhizophora mangle (Ball 1980)

or a change in dominance from Laguncularia racemosa to Avicennia germinans (Berger et

al. 2006).

The mature stand stage commences when the "site maximal canopy height’ is achieved.

At this stage the trees start to gain biomass while tree density continues to decrease due to

self-thinning effects. Neighborhood competition varies between low and moderate values.

The mean age of the trees varies between 30 - 60 years (Duke 2001, Menezes et al. 2006).

The senescence stage starts when large individuals begin to die standing or they fall over.

At this stage, tree density is expected to be low and self-thinning minimal. (Duke 2001).

During this stage, the stand is dominated by few old and large trees. There are wide gaps in

the canopy and a lack of regeneration. It cannot be considered as an interval development

of the stand, because in this case, the whole forest collapses (Duke 2001, Menezes 2006).

Analysis of the shape of the tree dbh histogram could provide a good indication of the

stage of development a stand. Studies have shown that, initially, plant size (in this case, I

am considering dbh) in dense populations generally has a normal distribution, which quickly

skews to an L-shape distribution with a many small individuals and a few larger ones. As

the trees grow, the mortality caused by the self-thinning may totally remove the smallest

individuals, producing a more symmetrical size distribution once again. In an advanced stage

of the development, the number of small trees decreases and the stand is dominated by old

and large trees and their dbh distribution presents a J-shape (Silvertown & Doust 1993).
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3.2 Results

3.2.1 Lagoa A

Site Lagoa A contains a total of 812 trees (including 252 dead trees) (see Figure 3.5).
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Figure 3.5. All trees at stand site Lagoa A. (black cross)

dead tree, (blue dot) Laguncularia racemosa and (red dot)

Avicennia germinans. The size of dot is proportional to the

dbh of Avicennia and Laguncularia (there’s no information

about the dbh of the dead trees). (scale in meters)
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Type mean(dbh) var(dbh) max(dbh) n n/N
All 4.41* 14.11* 18.46* 812 1.000

Avicennia germinans 3.70 13.37 17.83 309 0.38
Laguncularia racemosa 5.28 13.72 18.46 251 0.31

Dead trees - - - 252 0.31

Table 3.5. Short statistical summary of the mean stem diameter in breast height (dbh) for Lagoa A

site. (-) There’s no information about the dead trees’s dbh. (*) Excluding the dead trees. (dbh in cm).
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Figure 3.6. Lagoa A - Histograms showing the size class distribution of the mean stem diameter in

breast height (dbh) in cm obtained for (a) all trees (excluding dead trees), (b) Avicennia germinans and

(c) Laguncularia racemosa. (scale in cm)
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Figure 3.7. (left) Spatial point pattern relative to all trees of the stand Lagoa A and its (right) respective

L-function (black) and 99% simulation envelope (dashed red). The simulation envelope was calculated via

Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.8. (left) Spatial point pattern relative to the species Avicennia germinans within stand Lagoa A.

Its (right) respective L-function (black) and 99% simulation envelope (dashed red). The simulation envelope

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.9. (left) Spatial point pattern relative to the species Laguncularia racemosa within stand Lagoa A.

Its (right) respective L-function (black) and 99% simulation envelope (dashed red). The simulation envelope

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.10. (left) Spatial point pattern relative to dead trees within stand Lagoa A. Its (right) respective

L-function (black) and 99% simulation envelope (dashed red). The simulation envelope was calculated via

Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.11. The point patterns (a) and (c) represents respectively the big trees (n=232) and small trees (n=328). (b)

and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed red) respectively.

The point pattern (e) represent the large trees (blue) and small trees (red). (f) represents its bivariate L-function

(black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The simulation envelopes were

calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.12. The point patterns (a) and (c) represents respectively the large Avicennia (n=100) and small Avicennia

(n=209). (b) and (d) represent their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed

red) respectively. The point pattern (e) represents the big Avicennia (blue) and small Avicennia (red). (f) represents

its bivariate L-function (black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The

simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.13. The point patterns (a) and (c) represents respectively the large Laguncularia (n=132) and small

Laguncularia (n=132). (b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis

(dashed red) respectively. The point pattern (e) represents the big Laguncularia (blue) and small Laguncularia (red).

(f) represents its bivariate L-function (black) and 99% simulation envelope for spatial independence hypothesis (dashed

red). The simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.14. The point patterns (a) and (c) represents respectively the dead trees (n=252) and living trees (n=560).

(b) and (c) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed red) respec-

tively. The point pattern (e) represents the dead trees (blue) and living trees (red). (f) represents its K1(r)−K2(r)
(black) and 99% simulation envelope for random labeling hyphotesis (dashed red). The simulation envelopes were

calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.15. The point patterns (a) and (c) represents respectively the species Avicennia (n=309) and Laguncularia

(n=251). (b) and (c) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed

red) respectively. The point pattern (e) represents the species Avicennia (blue) and Laguncularia (red). (f) represents

its bivariate L-function (black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The

simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.

All trees in Lagoa A present clustering at scales r = 2 m and r = 4 m and a certain

tendency to regularity at scale r = 0.20 m. This pattern is probably a result of a superposition

of various ecological processes that occur at different scales within the same community.

Because of this, an interpretation of the overall pattern is not straightforward. More infor-

mation can be obtained by analysing the patterns exhibited by different species and different

groups, as follows. (see Figure 3.7)

Avicennia germinans trees exhibit clustering at scale r = 0.5 m (see Figure 3.8).

Laguncularia racemosa trees exhibit clustering at different scales, with a maximum at

scale r = 4 m (see Figure 3.9).
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Dead trees exhibit clustering at lower and intermediate scales, with maxima at scales r

= 1 m and r = 4 m (see Figure 3.10).

Large trees generally exhibit CSR but with a tendency to regularity at scale r = 2 m and

small trees tends to be clumped at lower and intermediate scales, in particular at scale r =

4 m (see Figure 3.11). The spatial relation between the large and small trees shows some

tendency to repulsion at lower scales (see Figure 3.11).

Large Avicennia trees tend to be clumped at scale r = 1 m and small Avicennia trees

tend to be clumped at scales r = 1 m and r = 3 m (see Figure 3.12). The spatial relation

between large and small Avicennia trees additionally presents a tendency to repulsion at

scale r = 2 m (see Figure 3.12).

Large Laguncularia trees tend to exhibit CSR and Laguncularia trees exhibit clumping at

all scales (with a maximum at scale r = 4 m) (see Figure 3.13). The spatial relation between

large and small Laguncularia trees exhibits spatial independence (see Figure 3.13).

Living trees exhibit clumping at scales between r = 1 m and r = 4 m (see Figure 3.14).

The spatial relation between dead and living trees exhibits aggregation at lower scales (with

a maximum at r = 2 m) (see Figure 3.14).

The spatial relation between Laguncularia and Avicennia trees exhibits a tendency to

repulsion at lower scales (in particular at scale r = 0.50 m) (see Figure 3.15).

InTable 3.6 and Table 3.7 I present a summary of the results obtained from the spatial

statistical analyses described above.

Lagoa A - Univariate Case
Type L(r)

All Regularity (r� 0.2m)�

Clumping at LS (r� 1m and r� 4m)��

Avicennia Clumping at r� 1m.
Laguncularia Clumping at all scales (r� 4m)��

Dead trees Clumping at LS (r� 1m and r� 4m)��

Table 3.6. Summary of the univariate L-function analysis obtained for the site

Lagoa A. (*) tendency and (**) in particular. LS (Lower Scales), IS (Interme-

diate Scales) and HS (Higher Scales).
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Lagoa A - Bivariate Case
Type L1(r) L2(r) L12(r)

1 Large trees Regularity� Clumping at LS Repulsion� at LS
2 Small trees (r� 2 m) and IS (r� 4 m)�� (r� 2 m)��

1 Large Avi� Clumping Clumping Repulsion� at LS
2 Small Avi� (r� 1 m) (r� 1 m and r� 3 m) (r� 2 m)��

1 Large Lag� Spatial Clumping at all scales Spatial
2 Small Lag� independence (r� 4 m)�� independence
1 Dead trees Clumping at LS Clumping at LS Aggregation at LS
2 Alive trees (r� 1 m and r� 4 m)�� and IS (r� 4 m)�� (r� 2 m)��

1 Avi� Clumping Clumping at all scales Repulsion�

2 Lag� (r� 1 m) (r� 4 m)�� (r� 1 m)

Table 3.7. Summary of the univariate and bivariate L-function analysis obtained for the site Lagoa A. small =

(dbh� 5 cm) and large = (dbh>5 cm).(*) tendency and (**) in particular. LS (Lower Scales), IS (Intermediate

Scales) and HS (Higher Scales).
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3.2.2 Lagoa B

Site Lagoa B contains a total of 543 trees (including 116 dead trees) (see Figure 3.16).
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Figure 3.16. All trees of the stand Lagoa B. (black cross)

dead tree, (blue dot) Laguncularia racemosa and (red dot)

Avicennia germinans and (green dot) Rhizophora mangle.

The size of dot is proportional to the dbh of Avicennia and

Laguncularia (there’s no information about the dbh of the

dead trees).
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Type mean(dbh) var(dbh) max(dbh) n n/N
All 5.18* 25.54* 24.83* N=550 1.000
Avicennia germinans 2.77 6.81 13.05 256 0.47
Laguncularia racemosa 8.79 31.93 24.83 171 0.31
Rhizophora mangle 5.73 16.79 13.69 7 0.01
Dead trees - - - 116 0.21

Table 3.8. Short statistical summary of the mean stem diameter in breast height (dbh) for Lagoa B site.

(-) There’s no information about the dead trees’s dbh. (*) Excluding the dead trees. (dbh in cm).
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Figure 3.17. Lagoa B - Histograms showing the size class distribution of mean stem diameter in breast

height (dbh) in cm obtained for (a) all trees (excluding dead trees), (b) Avicennia germinans and (c)

Laguncularia racemosa.
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Figure 3.18. (left) Spatial point pattern relative to all trees of the stand Lagoa B and its (right) respective

L-function (black) and 99% simulation envelope (dashed red). The simulation envelope was calculated via

Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.19. (left) Spatial point pattern relative to the species Avicennia germinans within stand Lagoa B.

Its (right) respective L-function (black) and 99% simulation envelope (dashed red). The simulation envelope

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.20. (left) Spatial point pattern relative to species Laguncularia racemosa within stand Lagoa B.

Its (right) respective L-function (black) and 99% simulation envelope (dashed red). The simulation envelope

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.21. (left) Spatial point pattern relative to dead trees within stand Lagoa A. Its (right) respective

L-function (black) and 99% simulation envelope (dashed red). The simulation envelope was calculated via

Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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Figure 3.22. The point patterns (a) and (c) represents respectively the large trees (n=179) and small trees (n=255).

(b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed red) respec-

tively. The point pattern (e) represents the big trees (blue) and small trees (red). (f) represents its bivariate L-function

(black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The simulation envelopes were

calculated via Monte Carlo method (Besag 1977) with 10000 simulations.

3.2 Results 69



0 5 10 20 30

0
5

1
0

2
0

3
0

a

x

y

0 2 4 6 8 10

−
2

−
1

0
1

2

b

r

L
1
(r)

0 5 10 20 30

0
5

1
0

2
0

3
0

c

x

y

0 2 4 6 8 10

−
0

.4
0

.0
0

.4

d

r

L
2
(r)

0 5 10 20 30

0
5

1
0

2
0

3
0

e

x

y

0 2 4 6 8 10

−
0

.5
0

.0
0

.5
1

.0

f

r

L
1

2
(r)

Figure 3.23. The point patterns (a) and (c) represents respectively the large Avicennia (n=46) and small Avicennia

(n=210). (b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed

red) respectively. The point pattern (e) represents the big Avicennia (blue) and small Avicennia (red). (f) represents

its bivariate L-function (black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The

simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.24. The point patterns (a) and (c) represents respectively the large Laguncularia (n=129) and small

Laguncularia (n=42). (b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis

(dashed red) respectively. The point pattern (e) represents the big Laguncularia (blue) and small Laguncularia (red).

(f) represents its bivariate L-function (black) and 99% simulation envelope for spatial independence hyphotesis (dashed

red). The simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.25. The point patterns (a) and (c) represents respectively the dead trees (n=116) and living trees (n=434).

(b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed red) respec-

tively. The point pattern (e) represents the dead trees (blue) and living trees (red). (f) represents its K1(r)−K2(r)
(black) and 99% simulation envelope for random labeling hyphotesis (dashed red). The simulation envelopes were

calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.26. The point patterns (a) and (c) represents respectively the species Avicennia (n=256) and Laguncularia

(n=171). (b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hyphotesis (dashed

red) respectively. The point pattern (e) represents the species Avicennia (blue) and Laguncularia (red). (f) represents

its bivariate L-function (black) and 99% simulation envelope for spatial independence hyphotesis (dashed red). The

simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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Figure 3.27. The point patterns (a) and (c) represents respectively the species Laguncularia (n=171) and dead trees

(n=171). (b) and (d) represents their L-function (black) and 99% simulation envelope for CSR hypothesis (dashed

red) respectively. The point pattern (e) represents the species Laguncularia (blue) and dead trees (red). (f) represents

its bivariate L-function (black) and 99% simulation envelope for spatial independence hypothesis (dashed red). The

simulation envelopes were calculated via Monte Carlo method (Besag 1977) with 10000 simulations.
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All trees in Lagoa B exhibit clustering at lower scales (with a maximum at scale r = 1

m) (see Figure 3.18).

Avicennia germinans trees exhibit clustering at lower and intermediate scales (with a

maximum at scale r = 4 m) (see Figure 3.19).

Laguncularia racemosa trees exhibit clustering at lower, intermediate and higher scales

(with a maximum at scale r = 1 m) (see Figure 3.20).

Dead trees exhibit clustering at lower, intermediate and higher scales (see Figure 3.21).

Large trees exhibit clustering at scale r = 1 m and small trees exhibit clustering at

intermediate scales (with a maximum at scale r = 4 m) (see Figure 3.22). The spatial

relation between the large and small trees exhibits a tendency to repulsion at scale r = 6 m

(see Figure 3.22).

Large Avicennia trees exhibit CSR. Small Avicennia trees exhibit clustering at interme-

diate scales (with a maximum at scale r = 4 m) (see Figure 3.23). The spatial relation

between large and small Avicennia trees exhibits a tendency to aggregation at lower and

intermediate scales (with a maximum at r = 4 m) (see Figure 3.23).

The spatial relation between large and small Laguncularia trees exhibits aggregation at

scale r = 1 m (see Figure 3.24).

Living trees exhibit clustering at lower scales (with a maximum at r = 1 m) (see Figure

3.25). The spatial relation between the dead and living trees exhibits aggregation at inter-

mediate and higher scales (see Figure 3.25).

The spatial relation between Avicennia and Laguncularia trees exhibits repulsion at scale

r = 1 m and a tendency to repulsion at scale r = 4 m (see Figure 3.26).

The spatial relation between Laguncularia and dead trees exhibits aggregation at lower

scales (see Figure 3.27).

In Table 3.9 and Table 3.10 I present a summary of the results obtained from the

spatial statistical analyses described above.
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Lagoa B - Univariate Case
Type L(r)

All Clumping at lower scales (r� 1m)��

Avicennia Clumping LS and IS (r� 4m)��

Laguncularia Clumping at all scales (r� 1m)��

Dead trees Clumping at all scales

Table 3.9. Summary of the univariate L-function analysis obtained for the

site Lagoa B. (*) tendency and (**) in particular. LS (Lower Scales), IS

(Intermediate Scales) and HS (Higher Scales).

Lagoa B - Bivariate Case
Type L1(r) L2(r) L12(r)

1 Large trees Clumping Clumping at IS Repulsion�

2 Small trees (r� 1 m) (r� 4 m)�� (r� 6 m)
1 Large Avi� CSR Clumping at IS Aggregation� at LS
2 Small Avi� pattern (r� 4 m)�� and IS (r� 4 m)��

1 Large Lag� Clumping at LS Clumping at LS Aggregation
2 Small Lag� and IS (r� 2 m)�� (r� 2 m)�� (r� 1 m)
1 Dead trees Clumping at Clumping at LS Aggregation at LS
2 Alive trees all scales (r� 1 m)�� and IS
1 Avi� Clumping at LS Clumping at all scales Repulsion
2 Lag� and IS (r� 4 m)�� (r� 1 m)�� (r� 1 m)
1 Lag. Clumping at all scales Clumping at Aggregation at LS
2 Dead trees (r� 1m)�� all scales (r� 1 m)��

Table 3.10. Summary of the univariate and bivariate L-function analysis obtained for the site Lagoa B. small =

(dbh�5 cm) and large = (dbh>5 cm). (*) tendency and (**) in particular. LS (Lower Scales), IS (Intermediate

Scales) and HS (Higher Scales).

3.3 Discussion

The results in Table 3.5 and Table 3.8 provide some important information about the

probable stages of the development of mangrove forests at sites Lagoa A and Lagoa B. It

should be noted that is very difficult to obtain this information about a mangroves forest.

The problem is that mangroves show a high degree of plasticity in response to environmental

conditions. If conditions are harsh, the trees grow more slowly. Thus, trees can be small

because they are young or because of poor conditions for growth in the stand . The same

argument applies to the succession stages (Hogarth 1999). Moreover I have no information

about the inundation regimes and abiotic conditions at these sites. For these reasons, the
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discussion presented below can be no more that a preliminary interpretation of probable

underlying ecological processes occurring at sites Lagoa A and Lagoa B. Four points can be

made:

First, tree density at the sites Lagoa A and Lagoa B is 0.90 ind/m2 and 0.61 ind/m2

respectively (see Table 3.5 and Table 3.8). Silvertown & Dourt (1993) show that the

density of the trees generally tends to decrease during the development of a forest stand, ,

due to self-thinning effects.

Second, some individuals of Rhizophora mangle are present at Lagoa B and by contrast,

none were found at Lagoa A (see Table 3.5 and Table 3.8). Ball (1980) shows that Rhi-

zophora mangle generally colonizes a mangrove forest only in relatively advanced stages of

the development.

Third, mean(dbh) of trees at Lagoa A and Lagoa B present = 4.41 cm and 5.18 cm

respectively (seeTable 3.5 and Table 3.8). Jimenez et al. (1985) and Fromard et al. (1988)

show that, during the development of a forest stand, the mean dbh of the trees generally

increases.

Finally, the sites Lagoa A and Lagoa B contain the same proportion of Laguncularia

racemosa trees in the stands (31%). However, the proportion of Avicennia germinans at

sites Lagoa A and Lagoa B is 38% and 47% of respectively (see Table 3.5 and Table 3.8).

Duke (2001) and Menezes (2006) show that, during the development of a stand, Avicennia

germinans is the second species to establish itself.

Taken together, the results and their interpretation presented above provide a strong

indication that the mangrove forest at Lagoa A is at an earlier stage of development than

at site Lagoa B. Site Lagoa A contains a high proportion of Laguncularia racemosa and no

specimens of Rhizophora mangle (see Table 3.5). The dbh histogram calculated for all trees

in this site presents a L-shape distribution (see Figure 3.6). On this basis, I surmise that

the forest at site Lagoa A could be at an early development stage (Ball 1980).

Site Lagoa B also contains a high proportion of Laguncularia racemosa, but in contrast to

the site Lagoa A, it also contains some individuals of Rhizophora mangle, which is starting

to colonize the stand (see Table 3.8). The dbh histogram calculated for all trees in this site

presents a L-shape distribution. On this basis, I surmise that the forest at site Lagoa B is

also at an early development stage.

In summary, the sites Lagoa A and Lagoa B seem to be in the same stage of development,

but Lagoa B seems to be more advanced in relation to the site Lagoa A.

Now I move on to consider the underlying ecological processes at the two sites, basing

our inferences on the statistical analysis of the spatial configuration of the trees in sites

presented in Chapter 2. It is important to note that these methods have some limitations.

They assume that the spatial patterns being analyzed are homogeneous. The hypothesis of

homogeneity means that the second-order characteristics of a point pattern are invariant

under translation and rotation. But it is well-known that heterogeneity is common in nature

and it is unlikely that the sites Lagoa A and Lagoa B are exceptions to this rule.
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The spatial configuration of all trees in sites Lagoa A and Lagoa B is probably a result

of the superposition of different ecological processes occurring at different scales within the

same community (see Figure 3.7 and Figure 3.18). In order to try to isolate and identify

these different processes, I performed univariate and bivariate L-function analyses, separating

the trees into different species and groups.

In site Lagoa A, Avicennia germinans show clustering at lower scales (see Figure 3.8).

This could be either a seed dispersal (Sterner et al. 1986) or a nurse-plant effect (Tielbörger

& Kadmon 2000). By contrast, Avicennia germinans in site Lagoa B exhibits clustering at

intermediate scales (see Figure 3.19). This could be result of environmental heterogeneity

within the stand (Klaas et al. 2000).

Laguncularia racemosa in site Lagoa A exhibits clustering at higher scales (see Figure

3.9). On the other hand, Laguncularia racemosa in site Lagoa B exhibits clustering at inter-

mediate scales (see Figure 3.20). These results could be the result of spatial environmental

heterogeneity within the stands (Klaas et al. 2000). Although the L-function has no spatial

resolution, visually it is possible to make out large regions with a high density of Laguncularia

racemosa trees, both in Lagoa A (see Figure 3.9) and Lagoa B (see Figure 3.20). The

indication of clumping at the scale r = 4 m in Lagoa A is result of a cluster located at the

bottom right of the site (see Figure 3.9).

Dead trees in site Lagoa A don’t exhibit heterogeneity (see Figure 3.10). This means

that the death of trees at this site has been a homogeneous process. By contrast, dead trees

of the site Lagoa B exhibit clustering at higher scales (see Figure 3.21). This could be a

result of environmental heterogeneity (Klaas et al. 2000). Probably, the death of the trees

is a process that has occurred at specific locations within this site.

The regular pattern of large trees in site Lagoa A (see Figure 3.11) could be a result

of a competition effect (Wiegand & Moloney 2004). In contrast, the small trees present

clustering (see Figure 3.11). The spatial relationship between the large and small trees (see

Figure 3.11) indicates probably the existence of light gaps (Duke 2001), where the small

trees tends to occupy the space that exists between the big trees. In contrast, the large trees

in site Lagoa B exhibit clustering, and small trees in the Lagoa B exhibit the same spatial

pattern (see Figure 3.22). But the spatial relationship between these large and small trees

exhibits repulsion at intermediate scales (see Figure 3.22). In summary, in site Lagoa B,

trees of the same group tends to form clusters, but there is a tendency to repulsion between

trees of different groups. That could be result of a succession process (Begon et al. 1976,

Connel & Slatyer 1977) or invasion by a species new to the location (Goreaud et al. 1996).

Large and small Avicennia in site Lagoa A exhibit clumping at lower scales (see Figure

3.12). But in contrast, the spatial relationship between the large and small Avicennia

presents some tendency to repulsion at lower scales (see Figure 3.12). This could be a

indication of intra-specific competition (Kenkel 1988). In site Lagoa B, the large Avicennia

trees exhibit CSR (see Figure 3.23). On the other hand, small trees exhibit clumping

at intermediate scales (see Figure 3.23). The spatial relationship between large and small

Avicennia trees (see Figure 3.23) shows some tendency to aggregation, in particular at
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an intermediate scale, providing an indication of environmental heterogeneity within the

stand (Klaas et al. 2000).

In site Lagoa A, large Laguncularia exhibit CSR and small Laguncularia exhibit

clumping (see Figure 3.13). This could be result of environmental heterogeneity in the

stand (Klaas et al. 2000). Additionally, these large and small Laguncularia trees exhibit

spatial independence at all scales (see Figure 3.13). In site Lagoa B, large Laguncularia

exhibit clustering at intermediate scales (see Figure 3.24). This could be indication of

environmental heterogeneity within the stand (Klaas et al. 2000). Large and small Lagun-

cularia presents aggregation at lower scales (see Figure 3.24). This could be an indication

of nurse-plant effect (Tielbörger & Kadmon 2000) or a seed-dispersion effect (Sterner 1986).

In site Lagoa A, dead and living trees present clumping pattern at lower scales (see

Figure 3.14). But the spatial relationship between dead and living trees shows aggregation

at lower scales (see Figure 3.14). The death of the trees has probably occurred homo-

geneously within this site. In site Lagoa B, dead and living trees (see Figure 3.25) show

indications of environmental heterogeneity within the stand (Klaas et al. 2000). In contrast

with site Lagoa A, the death of the trees has not occurred homogeneously within this site.

Visually, it is easy to notice that dead trees seem to occur more frequently in areas with a high

density of Laguncularia trees (see Figure 3.27). The spatial relation between Laguncularia

and dead trees shows aggregation at lower scales, confirming our hypothesis.

In the sites Lagoa A and Lagoa B, the spatial relationship between the species Avicennia

germinans and Laguncularia racemosa exhibits a tendency to repulsion at lower and interme-

diate scales (see Figure 3.15 and Figure 3.26 respectivelly). This could be an indication of

inter-specific competition occurring within the stand (Barot et al. 1999), succession (Begon

et al. 1976, Connel & Slatyer 1977) or evidence of invasion by a new species (Goreaud et al.

1996).

In summary, analysis of the spatial configuration of individual trees at the sites Lagoa A

and Lagoa B shows few similarities between the two sites, despite the short distance between

them (about 15 m). This could be a result of the different inundation conditions occurring

at these sites. The frequency of inundation is presumably lower at Lagoa A than at Lagoa

B, due to its lower basin (Harum 2006).

There are more indications of spatial heterogeneity at site Lagoa B that at Lagoa A.

This could be an indication of greater environmental heterogeneity at Lagoa B (Klaas et al.

2000). This hypothesis is difficult to prove, because I have no information about the abiotic

conditions at the study sites Lagoa A and Lagoa B, but the spatial configuration exhibited

by the trees could be a indication of environmental heterogeneity and so I cannot exclude

this possibility.

The results provide an indication of a probable succession process (Begon et al. 1976,

Connel & Slatyer 1977) occurring among the Avicennia and Laguncularia trees within sites

Lagoa A and Lagoa B. If I consider that mangrove forests are in a continuous process of

growth and constantly establishing and renewing themselves (Duke 2001), the hypothesis

of succession occurring among the individuals of species Avicennia and Laguncularia within
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the stands is a plausible one. The results suggest a certain tendency among Laguncularia

and Avicennia trees to occupy specific regions of the stand (i.e they exhibit repulsion). But

the Ripley K-function cannot detect this because it has no spatial resolution. That is a

limitation of the Ripley K-function. The method provides information about the scales which

the ecological processes occur, but no information about where these processes occur.

Despite the heterogeneity presented within sites Lagoa A and Lagoa B and the inability

of the Ripley K-function (hypothesis of heterogeneity) to provide information about this,

the Ripley K-function did provide important information about the underlying ecological

processes occurring in these stands.

Later in Chapter 4, I present a methodology that can be used in combination with the

standard spatial statistical methods applied to spatial pattern analysis (Ripley K-function,

for example), in order to overcome these limitations and provide, under certain conditions,

scale-spatial information about the ecological processes that occur in the stand.
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Chapter 4

Object Pattern Analysis

4.1 Introduction

In plant ecology, each individual plant is mapped as a point with the Cartesian coor-

dinates (x, y) representing the center of their stems. But, depending on the dimensions of

the individuals in relation to the scale that I want to analyze, this transformation can cause

problems. To analyze the spatial configuration of individuals (trees, coral, etc...) using tradi-

tional statistical spatial methods (quadrat counts and the Ripley K-function, for example),

each individual within the study site Ω is represented as a point (x, y)∈Ω⊂R
2, for the two

dimensional case. Problem can arise due to the loss of information during the transformation,

which involves the following steps: The first step T1 represents a three dimensional plant

individual as a two dimensional abstraction, representing only its stem and crown. The

second step T2 transforms this two dimensional representation into a single point (see Figure

4.1).

Figure 4.1. Steps of a transformation of a tridimensional object (tree) tree into a point. (left) Real

trees, (middle) bidimensional abstraction of a real tree with crown (green) and stem (brown) and

(right) point pattern representing the bidimensional abstraction.

The limitations of this procedure whic considers a three dimensional plant individual as

a point, affect the interpretation of results obtained via standart spatial methods, which can

not correspond to what is really happening at the study site. For example, this procedure can

indicate regularity at lower scales instead of a significant small-scale aggregation (Simberloff

1979, Prentice & Werger 1983) (see Figure 4.2).
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Figure 4.2. The circle-to-point transformation T2 indicates regularity

at lower scales, instead of small-scale aggregation.

One way of minimizing the effects of this limitation, could be to utilize the definition of

functional scale4.1 adopted by Malkinson et al (2003). The lower boundary of the functional

scale can be estimated by calculating the mean plant rbh of the plants in the community.

Then, only the ecological processes that occur above this scale should be considered. For

example, tree interactions would be considered as occuring at distances of between one and

ten meters (Stoyan & Penttinen 2000). However this can lead to information being lost due

to the failure to take of account of information about interactions at smaller scales.

Furthermore, Wiegand et al. (2006) proposed a methodology, based on a grid-based

approach, to perform the analysis of spatial configuration of objects of finite size and irregular

shape. The method basically consists to discretize each individual in a grid and utilizes grid-

based versions of the bivariate functionsK12(r),L12(r) and g12(r) (Wiegand &Moloney 2004)

to analyze the spatial relationship of these tree individuals within a study site.

Similarly, the main objective of this chapter is to provide a suitable method to perform

spatial analysis of individuals, considering these individuals as a circular objects, rather

than points. The idea behind the method is to approximate each individual as a circle and

to perform the spatial analysis considering these individuals as circular objects.

There exists at least two basic differences among the method proposed by Wiegand et al .

(2006) and the method proposed in this chapter. The first discretizes the individuals in a grid

and do not permits the overlaping among these individuals. On the other hand, our method

represents each individual analytically as a circle and permits the overlaping between these

objects. Of course, these method is only applicable if the shape of the analysed individuals

are approximately circular.

The methodology was applied to the stand sites Lagoa A and Lagoa B and compared

with the results obtained in the Chapter 2.

Additionally, I want to know if the method has sufficient sensibility to detect a probable

succession process occurring among the trees of species Avicennia germinans and Laguncu-

laria racemosa within these stands.

4.1. The scales at which interactions among plants occur in each study site.

82 Object Pattern Analysis



4.2 Method

The idea was to adapt the Ripley K-function to analyze the spatial pattern of objects

(circles, in our case). This procedure considers the spatial distribution of circular objects,

rather than points. Here ci(ri) and cj(rj) are defined respectively as a circle of radius ri

centered at a point pi and a circle of radius rj centered at a point pj and ci(r) is a search

circle with radius r centered at a point pi. These circles are located inside a study region Ω.

(see Figure 4.3).

Figure 4.3. Two circular objects ci(ri) and cj(rj) and a

search circle ci(r) inside a study region Ω.

4.2.1 Univariate Analysis

I define Kc(r), a function adapted to perform spatial analysis of circular objects, as

Kc(r) = μ−1E[Aij(r)]= μ−1 1

n

∑
i=1

n

wi(r)
∑
j=1

n

Aij(r), (4.1)

where wi(r) is an edge effect correction factor based on area. The parameter μ is the specific

area. It is the area of the circular objects per unit of area of the study region under consid-

eration (Cressie 1991). It is defined as

μ=
Ac

AΩ
, (4.2)
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where Ac is the area of all circles inside the study region Ω and AΩ is the area of the study

region Ω. The function Aij(r), is the area of the interception between the search circles ci(r)

and the circular object cj(rj), separated by a distance d, and it is defined as

Aij(r) = rj
2cos−1

(
d2+ rj

2− r2

2drj
2

)
+ r2cos−1

(
d2+ r2− rj

2

2dr2

)
−

− 1

2
(− d+ rj − r)(d+ rj − r)(d− rj+ r)(d+ rj+ r)
√

. (4.3)

The idea of the method is to estimate the area of the objects contained within a distance

r of an arbitrary circular object inside region Ω and compare this result with the expected

area, considering that μ is homogeneous inside Ω or μ(x, y)=μ,∀(x, y)∈Ω (see Figure 4.4).

Figure 4.4. Estimating the expected specific area within

a distance r of an arbitrary circular object of the study

region Ω.

The expected intercepted area within a circle of radius r is

E[Aij(r)] =πr2μ. (4.4)

Substituting equation (4.4) in the equation (4.1) I obtain

E[Kc(r)]= μ−1E[Aij(r)] = μ−1πr2μ= πr2. (4.5)

If the estimated area for a fixed scale r is greater than the expected area, the circular

objects exhibit aggregation at this scale. If the area for a fixed r is smaller than the expected

area, they exhibit repulsion.

The interpretation of the Kc(r) is show in Table 4.1.

84 Object Pattern Analysis



Kc(r)= πr2 Kc(r)>πr
2 Kc(r)<πr

2

CSR Clustering Repulsion

Table 4.1. Interpretation of the Kc(r) function.

Now I propose a modified function Lc(r) to normalize the function Kc(r). It is defined as

Lc(r)=
Kc(r)

π

√
− r, (4.6)

and the interpretation is shown in Table 4.2 below.

Lc(r)= 0 Lc(r)>0 Lc(r)<0
CSR Clustering Repulsion

Table 4.2. Interpretation of the Lc(r) function.

Several studies show that the classical cumulative Ripley K-function can confuse effects

at large distances with effects at short distances (Getis & Franklin 1987, Condit et al . 2000,

Revilla & Palomares 2002). The function Kc(r) has the same limitation. One way of avoiding

this problem is to use rings, rather than circles (Wiegand & Moloney, 2004).

Than I define a function Rε(r) (hereinafter object ring method) as

Rε(r) = μ−1 1

n

∑
i=1

n ∑
j=1

n

wi(r+ ε/2)Aij(r+ ε/2)−

−wi(r− ε/2)Aij(r− ε/2), (4.7)

where μ is the specific area, n is the number of circular objects, wi is an edge effect correction

factor based on area and Aij is the function defined in equation (4.3).

The expected intercepted area for the ring in Figure 4.5 is defined as

E[Aij(r+ ε/2)−Aij(r− ε/2)] = [π(r+ ε/2)2−π(r− ε/2)2]μ=

=πμ(r2+ rε+ ε2/4− r2+ rε− ε2/4)= 2πμrε, (4.8)

and substituting in the equation (4.5) I obtain

E[Rε(r)]= μ−1π2μrε=2πεr. (4.9)

The interpretation of the Rε(r) function is shown in Table 4.3 below.
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Rε(r) = 2πεr Rε(r)> 2πεr Rε(r)< 2πεr
CSR Clustering Regularity

Table 4.3. Interpretation of the function Rε(r).

The normalization of the function Rε(r) is obtained as

R̄ε(r) =
Rε(r)

2πrε
, (4.10)

and its interpretation is shown in Table 4.4.

Figure 4.5. Estimating the expected specific area inside

a ring.

R̄ε(r) = 1 R̄ε(r)> 1 R̄ε(r)< 1
CSR Clustering Regularity

Table 4.4. Interpretation of the function R̄ε(r).

The function R̄ε(r) is similar to the pair-correlation g(r) associated to the K-Ripley

function K(r) and it can be defined also as

R̄ε(r)=
1

2πr

dKc(r)

dr
. (4.11)
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4.2.2 Bivariate Analysis

In a similar way, I define the bivariate version of the function Rε(r). First of all, I have to

define the function Rε
12(r). This function estimates the area of the objects of type 2 contained

within a distance r of an arbitrary circular object of type 1 inside region Ω. It is defined as

Rε
12(r)= μ2

−1 1

n1

∑
i=1

n1 ∑
j=1

n2

wi(r+ ε/2)Aij(r+ ε/2)−

−wi(r− ε/2)Aij(r− ε/2), (4.12)

where n1 and n2 are the number of objects of type 1 and type 2 respectively, wi is an edge

correction factor based on area, Aij is the function defined in the equation (4.3) and μ2 is

the specific area of the objects of type 2. It is defined as

μ2=
Ac

2

AΩ
, (4.13)

where Ac
2 and AΩ are the area of the circles of type 2 and the area of the study site respec-

tively.

Similarly, I define the function Rε
21(r). This function estimates the area of the objects of

type 1 contained within a distance r of an arbitrary circular object of type 2 inside region

Ω. It is defined as

Rε
21(r)= μ1

−1 1

n2

∑
i=1

n2 ∑
j=1

n1

wi(r+ ε/2)Aij(r+ ε/2)−

−wi(r− ε/2)Aij(r− ε/2), (4.14)

where n1 and n2 are the number of objects of type 1 and type 2 respectively, wi is an edge

correction factor based on area, Aij is the function defined in the equation (4.3) and μ1 is

the specific area of the objects of type 1. It is defined as

μ1=
Ac

1

AΩ
, (4.15)

where Ac
1 and AΩ are the area of the circles of type 1 and the area of the study site respec-

tively. Now I define the bivariate version of the Rε(r) function as

R̂ε
B =

n1R
ε

21 +n2R
ε

12

n1+n2
, (4.16)
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where n1 and n2 are the number of objects of type 1 and type 2 respectively. The interpre-

tation of the functions R̂ε
B is similar to the functionRε(r) and its normalization is obtained by

R̄ε
B(r)=

R̂ε
B(r)

2πrε
, (4.17)

and its interpretation is shown in Table 4.5.

R̄ε
B(r)= 1 R̄ε

B(r)> 1 R̄ε
B(r)< 1

CSR Aggregation Repulsion

Table 4.5. Interpretation of the function RB
ε(r).

It is interesting to notice that the expected values of the functions Rε(r) and R̂ε
B do not

depend on the value of the parameters μ, μ1 and μ2.

4.2.3 Simulations Envelope

In order to detect if a tendency to clustering/aggregation or regularity/repulsion is statis-

tically significant, I have to compare the observed function value observed with an adequate

null model.

Now I define the ZOI (Zone of influence) of each tree as a circular zone surrounding each

tree, within which a tree influences its neighbors and is influenced by its neighbors (Berger

& Hildenbrandt 2000). The equation that defines the radius of the ZOI is

RZOI = a∗ rbhb, (4.18)

where rbh stands for the stem radius at breast height in meters. The parameters a and b are

scaling parameters specific for each specie of tree. In this case, I use the same parameters,

a= 7.113 and b= 0.654, for both species Avicennia germinans and Laguncularia racemosa,

following Berger & Hildenbrandt (2000).

The object pattern model used to obtain the simulation envelope via Monte Carlo method

(Besag 1977) for the univariate case is very similar to a soft core model (Tomppo 1986). First

I have to simulate a CSR point pattern with the same number of objects as the study site

and the radii of the objects having a normal distribution N(RZOI,var(RZOI)), where RZOI and

var(RZOI) are respectively the mean RZOI and the variance of RZOI for the observed object

pattern (Goreaud et al . 1996). Hereinafter, I define this model as Model I.

The simulation of the envelope in the bivariate case is very similar and it is obtained by

simulating a CSR point pattern with the same number of the objects of type 1 and type 2.
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The radii of type 1 objects has normal distribution N(RZOI1, var(RZOI1)) and the radii of

type 2 objects has a normal distribution N(RZOI2,var(RZOI2)), where RZOI1 and RZOI2 are the

means RZOI of type 1 and type 2 objects and var(RZOI1) and var(RZOI2) are the variances of

RZOI of type 1 and type 2 objects respectively. Hereinafter, I define this model as Model II.

Information about the parameters used for the calculation of the simulation envelopes

can be found at the Table 4.6 and Table 4.7.

4.3 Results

Now I apply the methodology to the datasets Lagoa A and Lagoa B, obtained from the

study sites which have alreadybeen described inChapter 2. But in this case, I consider only

the trees with dbh> 0. I also exclude the dead trees, because lack of information about the

dbh for group. It is also important to note that, for this analysis of these two study sites, I

applied only the ring functions R̄ε(r) and R̄ε
B(r).

4.3.1 Lagoa A

The Table 4.6 and Figure 4.6 provides a summary of the basic statistics and shows

the resulting histogram for each group analyzed in this simulation experiment.

Group n R̄ZOI var(RZOI) min(RZOI) max(RZOI)
All 402 0.71 0.05 0.24 1.50

Small 171 0.51 0.01 0.24 0.63
Large 231 0.86 0.03 0.64 1.50
Avic. 201 0.67 0.05 0.30 1.46
Lag. 201 0.74 0.05 0.24 1.50

Small Avic. 101 0.51 0.01 0.30 0.62
Small Lag. 70 0.52 0.01 0.24 0.63
Large Avic. 100 0.85 0.04 0.64 1.46
Large Lag. 131 0.86 0.03 0.64 1.49

Table 4.6. Basic statistics for Lagoa A. R̄ZOI, min(R̄ZOI) and max(R̄ZOI) in m and

var(R̄ZOI) in m2.

4.3 Results 89



a

RZOI(m)

F
re

q
u

e
n

c
y

0.2 0.6 1.0 1.4

0
2

0
4

0
6

0
8

0

d

RZOI(m)

F
re

q
u

e
n

c
y

0.4 0.8 1.2

0
1

0
3

0
5

0

g

RZOI(m)

F
re

q
u

e
n

c
y

0.2 0.6 1.0 1.4

0
1

0
2

0
3

0

b

RZOI(m)

F
re

q
u

e
n

c
y

0.2 0.4 0.6
0

1
0

2
0

3
0

4
0

e

RZOI(m)

F
re

q
u

e
n

c
y

0.30 0.40 0.50 0.60

0
5

1
0

2
0

h

RZOI(m)

F
re

q
u

e
n

c
y

0.2 0.4 0.6

0
5

1
0

1
5

c

RZOI(m)

F
re

q
u

e
n

c
y

0.6 1.0 1.4

0
1

0
3

0
5

0

f

RZOI(m)

F
re

q
u

e
n

c
y

0.6 1.0 1.4

0
5

1
5

2
5

i

RZOI(m)

F
re

q
u

e
n

c
y

0.6 1.0 1.4

0
5

1
5

2
5

Figure 4.6. Histogram calculated for the RZOI distribution relative to (a) all trees, (b) small trees (dbh<5

cm), (c) large trees (dbh�5cm), (d) Avicennia germinans , (e) small Avicennia (dbh<5 cm), (f) large Avicennia

(dbh � 5 cm), (g) Laguncularia racemosa, (h) small Laguncularia (dbh<5 cm) and (i) large Laguncularia

(dbh� 5 cm).
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Figure 4.7. (a) Object pattern relative to all trees within study site Lagoa A. (b) Object ring analysis (blue)

and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag 1977) for the Model I

hypothesis with 200 simulations.
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Figure 4.8. (a) Object pattern relative to Avicennia germinans within study site Lagoa A. (b) Object ring

analysis (blue) and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag 1977)

for the Model I hypothesis with 200 simulations.
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Figure 4.9. (a) Object pattern relative to Laguncularia racemosa within study site Lagoa A. (b) Object ring

analysis (blue) and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag 1977)

for the Model I hypothesis with 200 simulations.
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Figure 4.10. (a) Object pattern relative to small (dbh<5 cm) (red) and large (dbh�5 cm) (blue) trees within
study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope (red)

obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.11. (a) Object pattern relative to Avicennia germinans (red) and Laguncularia racemosa (blue) trees

within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.12. Object pattern relative to small (dbh<5 cm) (red) and large (dbh�5 cm) (blue) Avicennia trees

within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.13. Object pattern relative to small (dbh<5 cm) (red) and large (dbh� 5 cm) (blue) Laguncularia
trees within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.

The pattern presented by all trees shows a tendency to regularity at scales r�1,5and8 m.

However they show a tendency to clustering at loIr and intermediate scales (see Figure 4.7).

The pattern presented by the group Avicennia germinans shows regularity at scale r�
2 m. This regular pattern at loIr scales could be associated with competition between the

trees (King & Woodel 2004) (see Figure 4.8).

The pattern presented by the group Laguncularia racemosa shows clustering at scale

r�3m and at larger scales. This result could be an indication of environmental heterogeneity

(Klass et al. 2000) (see Figure 4.9).

The spatial relation between individuals of groups of small (dbh < 5 cm) and large

(dbh�5 cm) trees exhibits some tendency to clustering at lower scales. However, the pattern

shows some tendency to repulsion at scales r � 5 and 8 m. This could be an indication of

intraspecific competition (Kenkel 1998) and/or light gaps (Duke 2001) (see Figure 4.10).

The spatial relation between individuals of species Avicennia germinans and Lagun-

cularia racemosa exhibits repulsion at scales r � 5 m. Again, this could be a indication of

succession (Begon et al. 1976) and/or interspecific competition (Begon et al. 1976, Connel

& Slattier 1977) (see Figure 4.11).

The spatial relation between individuals of groups of small (dbh < 5 cm) and large

(dbh� 5 cm) Avicennia germinans exhibits some tendency to repulsion at scales r� 2 and 4

m. This could be an indication of intra-specific competition (Kenkel 1988) (see Figure 4.12).
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The spatial relation between individuals of groups of small (dbh<5 cm) and large (dbh�
5 cm) Laguncularia racemosa exhibits aggregation at intermediate scales and repulsion at

large scales. This result could be a indication of either intra-specific competition (Kenkel

1988) and/or environmental heterogeneity (Klass et al. 2000).

4.3.2 Lagoa B

The Table 4.7 and Figure 4.14 present a summary of the basic statistics and the

histogram calculated of each analyzed groups at this experiment respectively.

Group n R̄ZOI var(RZOI) min(RZOI) max(RZOI)
All 330 0.75 0.10 0.30 1.82

Small 151 0.49 0.01 0.30 0.62
Large 179 0.96 0.08 0.64 1.81
Avic. 163 0.57 0.03 0.30 1.19
Lag. 161 0.93 0.12 0.30 1.82

Small Avic. 117 0.49 0.01 0.30 0.62
Small Lag. 32 0.50 0.01 0.30 0.62
Large Avic. 46 0.78 0.01 0.64 1.19
Large Lag. 129 1.03 0.09 0.64 1.82

Table 4.7. Basic statistics for Lagoa B. R̄ZOI, min(R̄ZOI) and max(R̄ZOI) in m and

var(R̄ZOI) in m2.
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Figure 4.14. Histogram calculated for the RZOI distribution relative to (a) all trees, (b) small trees (dbh<5

cm), (c) large trees (dbh�5cm), (d) Avicennia germinans , (e) small Avicennia (dbh<5 cm), (f) large Avicennia

(dbh � 5 cm), (g) Laguncularia racemosa, (h) small Laguncularia (dbh<5 cm) and (i) large Laguncularia

(dbh� 5 cm).
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Figure 4.15. (a) Object pattern relative to all trees within study site Lagoa B. (b) Object ring analysis (blue)

and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag 1977) for the Model I

hypothesis with 200 simulations.
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Figure 4.16. (a) Object pattern relative to Avicennia germinans within study site Lagoa B. (b) Object ring

analysis (blue) and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag 1977)

for the Model I hypothesis with 200 simulations.
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Figure 4.17. (a) Object pattern relative to Laguncularia racemosa within study site Lagoa B. (b) Object

ring analysis (blue) and respective 90% simulation envelope (red) obtained via Monte Carlo Method (Besag

1977) for the Model I hypothesis with 200 simulations.
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Figure 4.18. (a) Object pattern relative to small (dbh<5 cm) (red) and large (dbh�5 cm) (blue) trees within
study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope (red)

obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.19. (a) Object pattern relative to Avicennia germinans (red) and Laguncularia racemosa (blue) trees

within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.20. Object pattern relative to small (dbh<5 cm) (red) and large (dbh�5 cm) (blue) Avicennia trees

within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.
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Figure 4.21. Object pattern relative to small (dbh<5 cm) (red) and large (dbh� 5 cm) (blue) Laguncularia
trees within study site Lagoa A. (b) Bivariate object ring analysis (blue) and respective 90% simulation envelope

(red) obtained via Monte Carlo Method (Besag 1977) for the Model II hypothesis with 200 simulations.

The spatial relation presented by all trees exhibits regularity at intermediate and larger

scales. This pattern could be result of environmental heterogeneity (Klass et al. 2000) (see

Figure 4.15).

The trees of group Avicennia germinans exhibits clustering at lower, intermediate and

higher scales. This could be an indication of either environmental heterogeneity within the

stand (Klass et al. 2000) (see Figure 4.16).

The trees of group Laguncularia racemosa shows clustering at lower and intermediate

scales. This could be an indication of environmental heterogeneity (Klass et al. 2000)

(Figure 4.17).

The spatial relation between individuals of groups of small (dbh < 5 cm) and large

(dbh� 5 cm) trees exhibits repulsion at small, intermediate and large scales. This could be

an indication of either environmental heterogeneity (Klass et al. 2000) and/or succession

(Begon et al. 1976) (Figure 4.18).

The spatial relation between individuals of species Avicennia germinans and Laguncu-

laria racemosa shows repulsion at all range of scales. This could be an indication of either

environmental heterogeneity (Klass et al. 2000) or succession (Begon et al. 1976) (Figure

4.19).
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The spatial relation between small (dbh< 5 cm) and large (dbh� 5 cm) Avicennia race-

mosa exhibits aggregation at lower scales. That could be an indication of either seed dispersal

(Barot et al. 1999) and/or nurse-plant effects (Tielbörger & Kadmon 2000). Additionally,

they also show clustering at larger scales. This could be a indication of either succession

(Begon et al. 1976) or environmental heterogeneity (Klass et al. 2000) (Figure 4.20).

The spatial relation between small (dbh < 5 cm) and large (dbh � 5 cm) Laguncularia

racemosa presents aggregation at scale r � 3 m and at large scales. This could be a result

of either succession (Begon et al. 1976) or environmental heterogeneity (Klass et al. 2000)

(Figure 4.21).

4.4 Discussion

It is very difficult to compare the results described in this chapter with the results in

Chapter 3 and there are at least two reasons for this.

First, I applied a different analytical approach. Secondly, the dataset is completely dif-

ferent, because I excluded the trees with dbh > 0 and the dead trees from the analysis. This

procedure significantly reduced the number of individuals compared to our original dataset.

But despite the differences between the two methods (Ripley K-function and object ring

function R̄ε(r)), some of the results obtained were equivalent in qualitative sense.

The analysis was applied to different groups of trees in the sites Lagoa A and Lagoa B.

The main aim of our study was to see whether the object ring function R̄ε(r) is sufficiently

sensitive to detect the spatial interactions occurring between trees of species Laguncularia

racemosa and Avicennia germinans within these study sites. A particular interest was to

see whether the method could provide indirect evidence of the succession processes that are

probably occurring in these stands.

The spatial relation between trees of species Laguncularia racemosa and Avicennia ger-

minans exhibits repulsion at intermediate scale in Lagoa A and repulsion at all scales in

Lagoa B (Figure 4.11 and Figure 4.19 respectively). These results are equivalent to the

results observed in Figure 3.15 and Figure 3.26 of the Chapter 3 respectively. These

results shows only a tendency to repulsion between the species Laguncularia and Avicennia.

The result in Figure 4.19, shows that the ring method displays greater sensitivity

in detecting the repulsion process between trees of species and within the sites Lagoa A

and Lagoa B. These patterns could be a result of either succession (Begon et al. 1976) or

environmental heterogeneity (Klass et al. 2000).

The hypothesis of environmental heterogeneity is difficult to prove, because I have no

information about abiotic conditions in the two studies sites Lagoa A and Lagoa B; however

the spatial heterogeneity exhibited by the trees could be a indication of environmental

heterogeneity and so I cannot exclude this possibility.

Mangroves forests are in a continuous process of growth and constantly establishing and

renewing themselves (Duke 2001). Therefore, the hypothesis of succession occurring among

the individuals of species and in the stands is a plausible one.
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It’s important to emphasize that both hypotheses could be correct and the spatial dis-

tribution of the trees could be a result of their combined action.

The main characteristic of the ring function R̄ε(r) is that is considers individual trees

as circles, rather than points. This procedure overcomes the problems associated with the

reduction of a three dimensional individual into a point, minimizing the loss of information

caused by the transformation step T2. It is important to note the method can only be applied

when the shape of the individuals considered by the analysis is approximately circular.

Otherwise, the method can not to be applied.

I considered just two simple models to simulate the spatial distribution of circular objects

and to generate the simulation envelope using the Monte Carlo method (Besag 1977). Other

null models could be used to test other hypothesis, but at this stage this is no more than an

idea for future work.

Finally, the object ring method, like the Ripley K-function, has the limitation that

although it can provide information about the scale of processes occurring in the stands,

it does not provide information where the where these processes are occurring; or in other

words, neither method has spatial resolution. In the next chapter, I present a method that

can provide spatial-scale information, (under certain conditions) about the processes that

are occurring in a study site.
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Chapter 5

Wavelet Transform applied to Ecology

5.1 Introduction

Traditional spatial statistical methods, such as the Ripley K-function, provide informa-

tion about whether individual plants exhibit clumped, regular or randomly distribution in

the plot and at which scale these patterns occur. However, this information is insufficient

when the location of certain distribution patterns has to be taken into account, because these

methods have no spatial-scale resolution.

The majority of spatial statistical methods used to analyze spatial point patterns

(including the Ripley K-function) were developed to deal with homogeneous point pat-

terns, but spatial heterogeneity5.1 is a common feature of natural ecosystems (Kolasa &

Pickett 1991). The use of such methods to analyze a heterogeneous point pattern can thus

lead to misinterpretation of the spatial point process that occurs in a study area (Pelissier

& Goreaud 2001).

Spatial heterogeneity in plant distribution can occur when abiotic factors (soil, climate,

nutrients, etc) vary significantly from one location to another (Pelissier & Goreaud 2001).

Additionally, natural processes (birth, development, reproduction, competition, predation

and senescence) can also produce spatial heterogeneity in ecological populations (Sterner et

al. 1986, Kenkel 1988, Forget 1994, Blate et al. 1998, Couteron 1998, Desouhant et al. 1998).

The analysis of spatial variations of point locations depends on the scale of observation

in relation to the size of the study site. In this study, I consider spatial variations in point

position occurring at higher scales as spatial heterogeneity, whereas lower and intermediate

scale variations can be considered as elements of the structure (Wiens 1989, Kolasa & Rollo

5.1. If a spatial point pattern varies from location to location, it is thus called heterogeneous (Ripley 1981).
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1991, Holling 1992, He et al. 1994, Goreaud 2000). For example, the patchy distribution of

individual trees can give rise repeated structures in a study area, whereas a single patch can

display heterogeneity at a finer scale (Pelissier & Goreaud 2001).

In this chapter, I considerer a number of possible approaches to the statistical analysis

of spatial heterogeneity. One possible would be to apply a multiresolution method to analyze

and decompose a spatial point pattern at different scales. A possibility is to apply the well

known Fourier Transform method (FT hereinafter) to obtain this multiscale representation

of a spatial point pattern. This method represents a signal as the sum of a serie of sines and

cosines. It permits all the frequencies present in a time-series to be detected, but does not

provide information about the location of the frequencies. That is the main limitation of

this method. It has only frequency resolution and no time resolution and therefore the FT

can be only used for decomposition of stationary signals. But ecological and environmental

time series observed in nature are typically aperiodic, noisy and transient and the analysis

of such time series by means of FT can lead to problems in the interpretation of the results.

For example, Figure 5.5 shows two different signals (Figures 5.5a and 5.5b) and their

respective FT analysis (Figures 5.5c and 5.5d). The results show that the FT is not

able to differentiate the signals and only provides information about the existence of two

frequencies that in these signals.

To overcome these limitations of the FT method, the natural choice would be to apply

the Multiresolution Decomposition Analysis (hereinafter MDA) obtained via the Wavelet

Transform method (hereinafter WT). The WT method is a mathematical tool that permits

spatial information to be obtained about the structures contained within an image at dif-

ferent scales. The method decomposes an image into various maps and each map represents

a range of scales contained in the original image.

The MDA is obtained via DWT (Discrete Wavelet Transform), the discrete version

of the WT method. The main advantage of this method in comparison to other spectral

methods, such as Fourier Transform (hereinafter FT), is its spatial-scale resolution.

Subject to certain restrictions (connected with the Heisenberg uncertainty principle5.2),

the MDA provides information about the scale of the point processes occurring in the study

site and their respective spatial-location. This singular capability permits allows the method

to be used to analyze the scale and positions of heterogeneous point pattern configurations.

But it is important to mention that the MDA method can not be directly applied to a

spatial point pattern. The first step required is to transform this spatial point pattern into

a density map (an image) using a Kernel Density Estimation Method (hereinafter KDE).

This density map provides spatial information about the density of the points over the study

site (see Figure 5.1).

5.2. The uncertainty principle states that the time-position and frequency cannot both be measured, exactly,

at the same time (Werner Heisenberg 1901-1976).
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The second and final step is to decompose the density map obtained via KDE method

at different scales using the MDA obtained via WT method (see Figure 5.1). This enables

us to obtain spatial information about the density of the points within the study site at

different scales and positions.

Additionally, I calculate the variogram to verify the decomposition of the density map

during each step of the MDA. The variogram is a geostatistical that provides information

about the scales of the structures contained in an image.

Figure 5.1. Representation of the steps of our methodology. (left)

Point Pattern⇒ (middle) Density Map⇒ (right) Multiresolution Anal-

ysis.

I perform three applications of the methodology. The first methodology is applied to

decompose a heterogeneous study area into smaller homogeneous regions that can subse-

quently be analyzed individually using classical spatial statistical methods that require a

hypothesis of homogeneity.

A second application is performed to see if the method is sufficiently sensitive to detect

the repulsive spatial pattern between the trees of species Laguncularia and Avicennia within

Lagoa A and Lagoa B that was detected by the spatial statistical methods presented in

Chapter 2 and Chapter 3.

The idea behind the final application is to obtain scale-position information about the

spatial point processes occurring at heterogeneous study site and use this information to

simulate spatial point patterns using an inhomogeneous Poisson process.
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5.2 Methods

The first step of the methodology (see Figure 5.2) is to transform a spatial point pattern

that represents the spatial structure of a forest stand into a density map using a Kernel

Density Estimation (Diggle, 1985). This first step is required, because is not possible to apply

the MDA directly to spatial point patterns.

5.2.1 Kernel Density Estimation Method

Consider (s1, s2,� , sn) the spatial position of n=N(A) events in a study region Ω⊂R
d.

The KDE method (Cressie 1993) is generally defined as

λĥ(s) =
1

ph(s)

{∑
i=1

n

κh(s− si)

}
, s∈Ω, (5.1)

where κh( · ) is a kernel function symmetrical about the origin, h>0 is the kernel bandwidth

which determines the amount of smoothing of the density map and ph(s)=
∫

Ω
κh(s−u)du

is an edge correction factor (Diggle 1985).

The selection of an appropriate h depends on the estimation of λ( · ) (Silverman 1978).

But it is important to notice, that the choice of an appropriated kernel bandwidth h is

also directly related to the scales that I want to analyze and will depend on the level of

decomposition I want to achieve using the MDA via WT method.

To analyze structures with dimension scale s, the discretization of our density map must

be at least equal to s/2 (Nyquist frequency).

Additionally, if our density map is a matrix with dimensions 2d× 2d, the maximal level

of decomposition that is achievable is d. In this case, I consider that the algorithm used to

perform the MDA is dyadic (Mallat 1988).

In this study, I consider the Quartic Kernel defined in two dimensions as κh = ρh(u1) ·
ρh(u2), where

ρh(u) =

{
0.9375h−1[1− (u/h)2]2, − h�u�h,
0, otherwise.

(5.2)

In Figure 5.1, I present an application of the method. It shows a density map obtained

from a spatial point pattern via KDE method using a Quartic Kernel.
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Figure 5.2. The Kernel Density Estimation method transforms a spatial point pattern (left) into a density

map (right). The scale of the study site is provided in m and of the unity of the density map is points/m2.

5.2.2 Variogram Analysis

The variogram5.3 function γ(h) calculated for the density map and for each step in the

decomposition of the density map obtained via MDA. This function provides an indication

of the spatial correlation between measurements taken at sample locations. It is a crucial

parameter in geostatistics (Matheron 1963) and is commonly represented as a function that

shows the variance in measurements of distance between all pairs in sampled locations. The

classical estimator of the Variogram function is defined as

γ̂ (h)≡ 1

2|N(h)|
∑
N(h)

(Z(u)−Z(u+h))2, (5.3)

where u is the vector of spatial coordinates (a point on the density map), Z(u) is the variable

under consideration as a function of spatial location (in this case, density), Z(u + h) is

the lagged version of the variable under consideration, h is the lag vector representing the

separation between two spatial locations and N(h) is the number of pairs separated by lag h.

The main characteristics of a variogram function are presented below:

• Sill is the semivariance value at which the variogram levels off (C∞).

• Range is the lag distance at which the semivariogram (or semivariogram component)

reaches the sill value. Presumably, autocorrelation is essentially zero beyond the

range.

• Nugget is the semivariogram value at the origin (C0). In theory this value at the

origin (0 lag) should be zero. If it is significantly different from zero for lags very

close to zero, then this semivariogram value is referred to as the nugget. The nugget

5.3. Hereinafter I define the classical semivariogram as variogram.
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represents variability at distances smaller than the typical sample spacing, including

measurement error.

These characteristics are represented graficaly in Figure 5.3.

Figure 5.3. Characteristics of a Variogram.

5.2.3 Wavelet Transform

The second step of the methodology (Figure 5.4) is to use the MDA obtained via WT

method in order to decompose an image (the density map generated by the KDE method)

at different “scales”.

Figure 5.4. The Multiresolution Decomposition Analysis performed to decompose a density map (left) in

different scales (right). The unit of the study site is provided in m and of the density map is points/m2.
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Figure 5.5. The graphic (a) represents a time serie that contains a superposition of a low frequency signal

(sin10t) and a high frequency signal (sin20t). The graphic (b) represents a time serie that contains a low

frequency signal (sin10t) in the first half and a signal with high frequency signal (sin20t) in the second half.

The graphics (c) and (d) represent the response of the FT to the time series represented at the graphics

(a) and (b) respectively. The graphics (e) and (f) are represent the response of the WT to the time series

represented at graphics (a) and (b) respectively.

5.2.3.1 Continuous Wavelet Transform

The WT method was developed to investigate and analyze the temporal development of

a non-stationary time-series. It is able to perform a time-frequency analysis of a time series

and to estimate the spectral characteristics of the signal as a function of time (Meyers 1993,

Torrence & Compo 1998). The main advantage of the WT in relation to other spectral

analysis methods (like FT, for example), is its capacity to detect the frequencies that exist

in the signal and their respective temporal-localization. In summary, WT uses a multires-

olution technique to analyze different frequencies at different resolutions.

The WT method is an integral transformation whose integration kernels are called

wavelets (Chi 1992, Daubechies 1992, Mallat 1998). These wavelets have the properties

of being located in time and frequency (space and wave number if I are considering the

spatial case), which permits us to analyze signals that contain non-stationary power at

different frequencies (Daubechies 1990). The WT decomposes a signal f(x) using scaled
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and shifted versions of a function called mother wavelet and it is generally defined as

Wf(λ, t)=

∫
−∞

+∞
f(u)ψλ,t(u)du, (5.4)

where f(t) is the signal to be analyzed and ψλ,t(u) is a family of functions defined as

ψλ,t(u) =
1

λ
√ ψ

(
u− t

λ

)
, (5.5)

and λ is a scale parameter (related to the frequency), t is a shifting parameter (related to

time position) and ψ(u) is a mother wavelet .

The choice of a wavelet function ψ(t) is not arbitrary and it has to satisfy two conditions:

that the function ψ(t) is normalized or
∫ |ψ(t)|2 dt=1 and

∫
ψ(t)dt=0. The factor λ

√

maintains the variance of the shifted and scaled wavelet identical to those of the mother

wavelet .

Changes in the values of scale parameter λ modify the wavelet width. Large values of λ

dilate the wavelet width, while small values of λ compress the wavelet width. Compressed

versions of the mother wavelet are used to detect high frequency components (or low scale

features) contained within the analyzed signal and dilated version of the mother wavelet are

used to detect low frequency components (or high scale features) that are contained within

the analyzed signal (see Figure 5.6). The parameter t controls the shifting of the mother

wavelet over the entire signal f(x) (see Figure 5.7). In summary, it controls the position

of the wavelet in the signal.

Further features of the WT are that the method preserves the variance of the analyzed

signal f(t), or

∫
−∞

+∞
|f(t)|2 dt= 1

Cg

∫
−∞

+∞ ∫
0

∞
|Wf(λ, t)|2 ψλ,t(u)du

dλ

λ2
, (5.6)

and that the original signal f(t) can be recovered by the inverse wavelet transform defined as

f(t) =
1

Cg

∫
−∞

+∞ ∫
0

+∞ 1

λ2
Wf(λ, t)ψλ,t(u)dtdλ, (5.7)

where

Cg =

∫
−∞

+∞
∣∣∣ψ̂(f)
∣∣∣2

f
df , (5.8)

and

ψ̂(f)=

∫
−∞

+∞
ψ(t)e−i2πf tdt. (5.9)
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There is a relation between frequency (or pseudo-frequency) and scale (Abry 1997)

defined as

Fa =
ΔFc

a
, (5.10)

where a is the scale of the wavelet, Δ is the sample period, Fc is the central frequency in Hz

of the wavelet (that value is specific for each wavelet family) and Fa is the pseudo-frequency

associated with the scale a in Hz.

Figure 5.6. The graphics (a),(b) and (c) represent the same mother wavelet with parameter λ=1, λ=0.5

and λ= 0.25 respectively.

Figure 5.7. The graphics (a) and (b) represent the samemother wavelet with parameter t=0 and t=−0.25

respectively.

The coefficients Wf(λ, t) measure the match between the signal and the wavelet at

the position t and scale λ. In summary, large values of Wf(λ, t) indicate a high degree

of similarity between the wavelet ψ with scale λ and the signal f(x) at the position t. In
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contrast, low values of Wf(λ, t) indicate a low degree of similarity between the wavelet ψ

with scale λ and the signal f(x) at the position t and finally, negative values of Wf(λ, t)

indicates an out-of-phase association between the wavelet ψ with scale λ and the signal f(x)

at the position t.

TheWT computed over a continuous range of values t and λ is called ContinuousWavelet

Transform (hereinafter CWT) and the result is a three dimensional surface Wf(λ, t) called

as scalogram.

5.2.3.2 Discrete Wavelet Transform

The WT computed over a discrete range of parameters λ and t is called DWT. The

DWT will provide us with the MDA, the multiscale decomposition of an image at different

scales. It is a special case of the WT and it provides a compact representation of a signal

in time and frequency that can be computed efficiently. In this case the scale parameter

is λ = λ0
m, where m is an integer and λ0 is a fixed scale parameter greater than 1, and the

shifting parameter is assumed to be t= n t0 λ0
m, where t0> 0 and depends on ψ(t) and n is

an integer. Then, I can define the CWT applied to a signal f(t) as

Wf(λ, t)=

∫
f(t)ψm,n(t)dt, (5.11)

where

ψm,n(t)=λ0
−0.5mψ(λ0

−mt−nt0). (5.12)

In practice, the DWT is performed considering the parameters λ0 = 2 and t0 = 1

(Orthogonal Wavelet Transform). Then I have

ψm,n(t) = 2−0.5mψ(2−mt−n). (5.13)

It is possible to construct a class of orthogonal wavelets ψm,n(t) satisfying the following

condition ∫
ψj ,k(t)ψm,n(t)dt= δjmδjm, (5.14)

where δij is the Kronecker Delta function defined as

δij =

{
1, if i= j
0, otherwise

. (5.15)

Now I can approximate a function f(t) with a linear combination of orthogonal wavelets

ψm,n(t) (Kumar & Fourfola 1988) as

f(t) =
∑

m=−∞

+∞ ∑
n=−∞

+∞
Dm,nψm,n(t), (5.16)
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where m and n are the scale and temporal index respectively, with

Dm,n =

∫
f(t)ψm,n(t)dt. (5.17)

Supposing now there are intermediate scales m1andm2, I can redefine the equation 5.15

as

f(t)=
∑

m=m2+1

+∞ ∑
n=−∞

+∞
Dm,nψm,n(t) +

∑
m=m1

m2 ∑
n=−∞

+∞
Dm,nψm,n(t)+

+
∑

m=−∞

m1−1 ∑
n=−∞

+∞
Dm,nψm,n(t),

(5.18)

that represents the decomposition of the signal f(t) at three range scales: the first summation

represents the higher scales characteristics of the signal (r >m2), the second one represents

the intermediate scales characteristics (m2� r�m1) and the final one represents the lower

scale characteristics (r <m1).

In practice, the MDA of a signal at different scales is performed by successive use of

lowpass and highpass filters. In this case, the function φ(t) or scale function corresponds

to the discrete lowpass filter, that retains the low frequencies features of the signal and the

function ψ(t) corresponds to the discrete highpass filter, that retains the high frequencies of

the signal (Daubechies & Mallat 1998).

In summary, theMDA is performed by decomposing the original signal into two parts: a

part named “detail” that contains the high frequency features (D) of the signal and another

one named “approximation” that contains the low frequencies features (A) of the signal.

The MDA generally (depending on the type of the filter used at the decomposition)

permits a perfect reconstruction (Mallat 1998) of the original signal f(t). The MDA at one

level (see Figure 5.8) can be defined as

f(t) =A0=A1+D1, (5.19)

where A0 is the original signal f(t), A1 and D1 are respectively approximation and detail at

level 1.

Figure 5.8. MDA applied to a signal f(t). A1 is the approximation at level 1

and D1 is the detail at level 1.
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The same decomposition process can be repeated with the approximation A1 (see Figure

5.9). Thus, I have

A1=A2+D2, (5.20)

where A2 and D2 are respectively approximation and detail at level 2.

Figure 5.9. MDA applied to A1. A2 is the approximation at level 2 and D2 is

the detail at level 2.

Then combining Equation 5.18 and Equation 5.19, I obtain

f(t)=A0=A2+D1+D2, (5.21)

and by induction, a decomposition performed at level n can be represented as

f(t) =A0=An +D1+� +Dn =An +
∑
i=1

n

Di, (5.22)

where An is the approximation at level at level n and Di is the detail at level i. In summary,

to decompose an image at level n I need to apply the highpass and lowpass filters to the

image successively n times (see Figure 5.10).

Figure 5.10. MDA at level n applied to a signal f(t) =A0.
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It is important to note that the methodology can be also applied to a 2D signal (Image)

without loss of generality. For more details, see Mallat (1998).

Figure 5.11 shows an example of an image decomposition performed by MDA at level

two (higher, intermediate and lower scales). This decomposition can be represented as

Original Image=A0=A2+D1+D2, (5.23)

where A2,D2 andD1 contains the higher, intermediate and lower scale characteristics of the

original image. In fact, the Equation 5.22 is equivalent to Equation 5.15.

Figure 5.11. MDA applied to an image (density map). The original image (a density map)

was decomposed at its higher, intermediate and lower scale components.

5.2.4 Inhomogeneous Poisson Process

The classical K-function requires the assumption that the point pattern is spatially homo-

geneous (stationary and/or isotropic). It supposes that the first order intensity over the entire

area Ω is constant: that is, it is the same for all locations, or formally that λ(x, y)≡λ,∀(x,
y) ∈ Ω. The problem occurs when the point pattern does not show homogeneity and then

the analysis of this pattern obtained via the classical K-function can lead sometimes to a

misinterpretation of the spatial point processes that occur inside the study area (Pelissier &

Goreaud 2001).

A possibility way to analyze an inhomogeneous point pattern is to use the inhomogeneous

K-function, a semi-parametric method that supposes that the point pattern was generated

by a inhomogeneous Poisson process (Baddeley et al 2000). This method assumes that the

first order intensity λ(x, y) over the entire study area Ω is a function that depends on the

location (x, y). Formally the inhomogeneous K-function is defined as

Ki(r)=
1

A

∑
i=1

n

wi(r)
∑
j=1

n

δij(r)
1

λiλj
, (5.24)
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where A is the area of the study region Ω, wi(r) is an area based edge correction factor, δij(r)

is an indicator function defined as

δij(r)=

{
1, if dij� r
0, otherwise

, (5.25)

with

dij = (xi−xj)
2+ (yi− yj)

2
√

, (5.26)

as the Euclidian distance between the points of the point pattern (xi, yi) and (xj , yj) and λi

and λj are the local densities calculated at the locations (xi, yi) and (xj , yj) respectively.

To simulate a point pattern inside a study area Ω and subject to a first order intensity

λ(x, y), I have first to define the constant

λ0= max
(x,y)∈Ω

(λ(x, y)), (5.27)

and I then simulate a point (x, y) following a classical homogeneous Poisson process inside

the area Ω and I accept this point as the location of a tree with probability
λ(x, y)

λ0
(Diggle

1983, Tomppo 1986). The information about the local density λ(x, y) is obtained using the

MDA method.

5.2.5 Density Map Generation

To generate the density map, I applied a KDEmethod to the spatial point pattern using

a Quartic Kernel. I computed the local density with a kernel bandwidth of h= 1 m at the

nodes of a 0.47 m x 0.47 m systematic grid covering the whole stand in order to obtain a

density map with 64 x 64 cells. This enables us to decompose the density map at 7 levels

using the MRA method.

The kernel bandwidth was chosen in order to preserve structures with scales greater than

or equal to 2 m (Nyquist frequency).

In order to decompose the density map generated at different scales, I applied a classical

MDA method using an algorithm implemented in the software R, a language and envi-

ronment for statistical computing and graphics. The multiresolution analysis of the density

maps are based on a Daubechies D8 wavelet performed using the R package Waveslim.

The multiresolution decomposition was obtained up to level 4. This corresponds to filters

out all the structures with scales up to 12 m. It corresponds to 40% of the dimensions of our

study sites Lagoa A and Lagoa B.
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5.3 Results

5.3.1 Heterogeneity detection

First I apply the MDA method in order to decompose a heterogeneous site into smaller

homogeneous subplots that can be analyzed using classical statistical methods. In this case,

I are considering heterogeneity as a deviance of the point pattern from a CSR pattern at

large scales.

5.3.1.1 Laguncularia racemosa - Lagoa A

The results obtained from the L-function (Figure 3.9) show that the spatial configura-

tion of the trees of species Laguncularia racemosa within stand Lagoa A exhibit clustering at

large scales (r� 10 m). This could be an indication of heterogeneity in the stand (Goreaud

& Pelissier 2001).

The first step of the methodology was to transform this point pattern (Figure 3.9) into

a density map (Figure 5.12) using the KDE method. The variogram calculated (Figure

5.12) indicates that the density map shows structures with scales greater than 2 meters. It

is interesting to note, that the density of the point pattern inside this stand is λp = 0.279,

while the mean value obtained for the density map is λd = 0.281. This means that the

transformation performed by the KDE preserved the global density of the stand.
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Figure 5.12. (a) Density map obtained from spatial point pattern relative to Laguncularia racemosa within

stand Lagoa A. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).
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The second step was to decompose the density map into different scales using the MDA

method. I applied the decomposition up to level 4 and in the following I describe the steps

of the decomposition.

The approximation A1 obtained at the first step of the decomposition shows no visible

changes in the variogram (Figure 5.13). The mean density calculated for the image A1 is

λd = 0.281.
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Figure 5.13. (a) Approximation A1 relative to the density map at the Figure 5.13. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).

The approximation A2 obtained at the second step of the decomposition now presents

changes in the variogram (Figure 5.14). This shows that the decomposition filtered all

structures with scales smaller then or equal to 3 meters out the density map. The mean

density calculated for the image A2 is λd = 0.281.
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Figure 5.14. (a) Approximation A2 relative to the density map at the Figure 5.13a. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).
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The variogram calculated for the approximation A3 (Figure 5.15) shows that the

decomposition filtered out all structures with scales smaller then or equal to 6 meters.

The mean density calculated for the image A3 is λd = 0.281.
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Figure 5.15. (a) Approximation A3 relative to the density map at the Figure 5.13. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).

The variogram calculated for the approximation A4 shows that the decomposition fil-

tered out all structures with scale smaller than or equal to 10 meters (Figure 5.18). That

is the scale of our interest and the decomposition stops here. The mean density calculated

for the image A4 is λd = 0.281.

Visually I can see from the image A4 (Figure 5.16) that there is a large region located

at the left side of the stand with a high density of trees. The density cutoff chosen to separate

this region from the rest of the stand was λcutoff = 0.353. The Figure 5.17 shows the study

site Lagoa A divided into two regions.
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Figure 5.16. (a) Approximation A4 relative to the density map at the Figure 5.13a. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).
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To complete the analysis, I calculated the L-function for the points contained within the

red and yellow regions (Figure 5.17) separately. The result obtained for the L-function

calculated for the point pattern within the red region (Figure 5.17) shows clustering at

lower scales (r� 5 m). It is interesting to note that the point pattern contained within the

yellow region exhibits a CSR pattern.
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Figure 5.17. (a) Point pattern relative to Laguncularia racemosa whit-in stand Lagoa A, now divided at

two regions (red and yellow). (b) and (c) represents the the L-function (black) and 99% simulations interval

(dashed red) calculated for the point pattern inside the red and yellow respectively. The simulations interval

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.

Considering that low and intermediate scale variations in the structures of the study site

can be considered as elements of the structure (Wiens 1989, Kolasa & Rollo 1991, Holling

1992, He et al. 1994, Goreaud 2000). I can affirm that I divided the whole stand site with a

strong indication of heterogeneity into two subsets that exhibited homogeneity.

5.3.1.2 Laguncularia racemosa - Lagoa B

The trees of the species Laguncularia racemosa within the stand Lagoa B also exhibit

clustering at larger scales (see Figure 3.20). This could be an indication of heterogeneity

in the stand (Pelissier and Goreaud 2001). I applied the same methodology described above

with this group of trees, but in the following I do not describe all the intermediate steps,

just the final result.

The variogram in Figure 5.18 shows that the density map presents structures with

scales greater than 3 meters. The density calculated for the point pattern inside this stand

is λp = 0.190, while the mean value obtained for the density map is λd = 0.191.
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Figure 5.18. (a) Density map obtained from spatial point pattern relative to Laguncularia racemosa within

stand Lagoa B. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).

The variogram relative to the approximation A4 shows that the decomposition filtered

out all structures with scale smaller then or equal to 12 meters (Figure 5.19). The mean

density calculated for the image A4 remains λd = 0.191. Visually I can see from the image

A4 (Figure 5.19) that there are some areas in the stand with a high density of trees. The

cutoff, chosen visually to divide the stand, was λcutoff = 0.249 and the Figure 5.20 shows

the study site Lagoa B divided into two distinct regions.
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Figure 5.19. (a) Approximation A4 relative to the density map at the Figure 5.18. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).

The result obtained for the L-function calculated for the point pattern within the red

region (Figure 5.20) presents clustering at lower scales (r � 1 m). The point pattern

contained within the yellow region (Figure 5.20) presents clustering at lower scales (r� 5

m). Again, I separated a large region that presents heterogeneity at two regions that presents

some homogeneity.
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Figure 5.20. (a) Point pattern relative to Laguncularia racemosa whit-in stand Lagoa B, now divided at

two regions (red and yellow). (b) and (c) represents the the L-function (black) and 99% simulations interval

(dashed red) calculated for the point pattern inside the red and yellow respectively. The simulations interval

was calculated via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.

5.3.1.3 Dead Trees - Lagoa B

The dead trees within stand Lagoa B (Figure 3.21) also exhibit clustering at larger

scales. This could be an indication of heterogeneity in the stand (Pelissier and Goreaud 2001).

The variogram in Figure 5.21 indicates that the density map shows structures with

scales greater than 2 meters. The density calculated for the point pattern inside this stand

is λp = 0.128, while the mean value obtained for the density map is λd = 0.129. Again the

transformation performed by the KDE preserved the global density of the stand.
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Figure 5.21. (a) Density map obtained from spatial point pattern relative to dead trees within stand Lagoa

A. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map in (a).
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The variogram relative to the approximation A4 shows that the decomposition filtered

out all structures with scale smaller then or equal to 12 meters (Figure 5.22). The mean

density calculated for the image A4 remains λd = 0.128. Visually I can see from the image

A4 (Figure 5.22) that there are some area in the stand with a high density of dead trees.

The cutoff chosen was λcutoff = 0.152 and the Figure 5.23 shows the study site Lagoa B

divided into two regions.
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Figure 5.22. (a) Approximation A4 relative to the density map at the Figure 5.25a. (b) and (c) are

respectively the Histogram and the Variogram obtained from this density map in (a).

The result obtained for the L-function calculated for the point pattern within the red

region (Figure 5.26) exhibits a CSR pattern. The point pattern in the yellow region (Figure

5.22) exhibits clustering at lower scales (r�1 m) and regularity at intermediate scales (r�5

m). Again I divided a large region that shows heterogeneity into two regions that exhibit

some homogeneity.
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Figure 5.23. (a) Point pattern relative to dead trees whit-in stand Lagoa B, now divided at two regions

(red and yellow). (b) and (c) represents the the L-function (black) and 99% simulations interval (dashed red)

calculated for the point pattern inside the red and yellow respectively. The simulations interval was calculated

via Monte Carlo method (Besag 1977) for the CSR hypothesis with 10000 simulations.
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5.3.2 Spatial-Scale Resolution

Now the main objective of this experiment is try to provide evidence from spatial pat-

terns of the probable succession processes occurring among the trees of species Laguncularia

racemosa and Avicennia germinans within studies sites Lagoa A and Lagoa B.

5.3.2.1 Spatial relationship between Laguncularia racemosa and Avicennia ger�

minans - Lagoa A

The results presented at Figure 3.15 show that Avicennia trees tends to be clumped

at scales r � 1 m. Laguncularia trees exhibit clumping at all scales, with a maximum at

scale r� 4 m. The spatial relation between the Avicennia and Laguncularia trees exhibits

a tendency to repulsion at lower scales, in particular at scale r� 0.50 m.

The variogram presented in Figure 5.24 (Avicennia germinans) indicates that the den-

sity map presents structures with scales greater than 2 meters. The density calculated for the

point pattern inside this stand is λp = 0.343, while the mean value obtained for the density

map is λd = 0.345.
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Figure 5.24. (a) Density map obtained from spatial point pattern relative to Avicennia germinans within

stand Lagoa A. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).

The variogram presented in Figure 5.25 (Laguncularia racemosa) indicates that this

density map also shows structures with scales greater than 2 meters. The density calculated

for the point pattern inside this stand is λp = 0.279, while the mean value obtained for the

density map is λd = 0.281.

124 Wavelet Transform applied to Ecology



a

x

y

0 10 20 30

0
1
0

2
0

3
0

0
1

2
3

4

b

dmap$v

D
e
n
s
it
y

0 1 2 3 4
0
.0

0
.5

1
.0

1
.5

0 2 4 6 8 12

0
.0

2
0
.0

8
0
.1

4

c

r

γ(
r)

Figure 5.25. (a) Density map obtained from spatial point pattern relative to Laguncularia racemosa within

stand Lagoa A. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).

The variogram relative to the approximation A4 shows that the decomposition filtered

out all structures with scales smaller then or equal to 12 meters (Figure 5.26). The mean

density calculated for the image A4 remains λd = 0.345. Visually I can see from the image

A4 (Figure 5.26) that there are some areas in of the stand with a high density of trees of

species Avicennia germinans.
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Figure 5.26. Avicennia germinans (a) Approximation A4 relative to the density map at the Figure 5.24.

(b) and (c) are respectively the Histogram and the Variogram obtained from this density map in (a).

The variogram relative to the approximation A4 shows that the decomposition filtered

out all structures with scales smaller then or equal to 12 meters (Figure 5.27). The mean

density calculated for the imageA4 remains λd=0.281. Visually I can see from the imageA4

(Figure 5.37) that there are some area in the stand with a high density of trees of species

Laguncularia racemosa.
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Figure 5.27. Laguncularia racemosa (a) Approximation A4 relative to the density map at the Figure 5.25.

(b) and (c) are respectively the Histogram and the Variogram obtained from this density map in (a).

The result presented in Figure 5.28 shows a repulsive spatial pattern at larger scales

exhibited by trees of species Laguncularia and Avicennia. Visually, it can be clearly observed

that there is a high density of Laguncularia trees in places with a low density of Avicennia

tress and vice-versa.

Figure 5.28. (a)ApproximationA4 relative to the density map obtained

for the Avicennia germinans and (b) Approximation A4 relative to the

density map obtained for the Laguncularia racemosa within Lagoa A.

5.3.2.2 Spatial relationship between Laguncularia racemosa and Avicennia ger�

minans - Lagoa B

The result shows that Avicennia trees exhibit clustering at lower and intermediate scales,

with a maximum at r � 4 m. The Laguncularia trees exhibit clumping at lower and inter-

mediate scales, in with a maximum at r� 1 m. The spatial relation between Avicennia and

Laguncularia trees exhibits repulsion at scale r� 1 m and a tendency to repulsion at scale

r� 4m (see Figure 3.26).
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The variogram in Figure 5.29 indicates that the density map shows structures with

scales greater than 2 meters. The density calculated for the point pattern inside this stand

is λp = 0.284, while the mean value obtained for the density map is λd = 0.286. Again the

transformation performed by the KDE preserved the global density of the stand.
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Figure 5.29. (a) Density map obtained from spatial point pattern relative to Avicennia germinans within

stand Lagoa B. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).

The variogram in Figure 5.30 (Laguncularia racemosa) indicates that the density map

also shows structures with scales greater than 2 meters. The density calculated for the point

pattern inside this stand is λp = 0.190, while the mean value obtained for the density map

is λd = 0.191. Again the transformation performed by the KDE preserved the global density

of the stand.
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Figure 5.30. (a) Density map obtained from spatial point pattern relative to Laguncularia racemosa within

stand Lagoa B. (b) and (c) are respectively the Histogram and the Variogram obtained from this density map

in (a).

The variogram relative to the approximation A4 (Figure 5.31) shows that the decom-

position filtered out all structures with scale smaller then or equal to 12 meters. The mean
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density calculated for the image A4 remains the same (λd = 0.236). Visually I can see from

the image A4 (Figure 5.31) that there are some areas in the stand with a high density of

trees of species Avicennia germinans.
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Figure 5.31. Avicennia germinans (a) Approximation A4 relative to the density map at the Figure 5.29.

(b) and (c) are respectively the Histogram and the Variogram obtained from this density map in (a).

This decomposition was also performed up to level 4. The variogram relative to the

approximationA4 shows that the decomposition filtered out all structures with scale smaller

then or equal to 12 meters (Figure 5.32). The mean density calculated for the image A4

remains the same (λd = 0.191). Visually I can see from image A4 (Figure 5.32) that there

are some areas of the stand with a high density of trees of species Laguncularia racemosa.
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Figure 5.32. Laguncularia racemosa (a) Approximation A4 relative to the density map at the Figure 5.30.

(b) and (c) are respectively the Histogram and the Variogram obtained from this density map in (a).

The results presented inFigure 5.33 also show a repulsive spatial pattern at larger scales

exhibited by the trees of species Laguncularia and Avicennia. The pattern is the same as in

Lagoa A. There are areas with a high density of Laguncularia trees located in regions with

low density of Avicennia trees and vice-versa.

128 Wavelet Transform applied to Ecology



Figure 5.33. (a) Approximation A4 relative to the density map obtained

for the Avicennia germinans and (b) Approximation A4 relative to the

density map obtained for the Laguncularia racemosa within Lagoa B.

5.3.3 Simulating an Inhomogeneous Poisson Process

5.3.3.1 Laguncularia racemosa - Lagoa B

In this experiment, I simulated an inhomogeneous Poisson process to reproduce the point

pattern presented by the Laguncularia trees in the site Lagoa B. The local density λ(x, y)

required for this simulation was the approximation A4 already shown in Figure 5.19.
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Figure 5.34. Inhomogeneous L-function (black) and 90% simulations interval

(dashed red) calculated for the Laguncularia trees inside Lagoa B. The simu-

lations interval was calculated via Monte Carlo method (Besag 1977) for the

inhomogeneous Poisson process hypothesis with 1000 simulations.
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The results shown in Figure 5.34 shows that the Laguncularia trees in the site Lagoa

B can be simulated as an inhomogeneous Poisson process.

5.3.3.2 Dead trees - Lagoa B

Then I simulated an inhomogeneous Poisson process reproducing the point pattern pre-

sented by dead trees in the site Lagoa B. The local density λ(x, y) required for this simulation

was the approximation A4 already shown in Figure 5.21.
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Figure 5.35. Inhomogeneous L-function (black) and 90% simulations interval

(dashed red) calculated for the dead trees inside Lagoa B. The simulations

interval was calculated via Monte Carlo method (Besag 1977) for the inhomo-

geneous Poisson process hypothesis with 1000 simulations.

The results shown in Figure 5.35 shows that the dead trees in the site Lagoa B can be

simulated as an inhomogeneous Poisson process.
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5.4 Discussion

The main proposal of this Chapter was to present a new methodology (Kernel-MDA

Method) to be applied to the analysis of spatial configuration of tree individuals in plant

ecology. This methodology combines Kernel Density Estimation Method andWavelet Trans-

form, in order to supply some limitations of the classical spatial statistical methods (Quadrat

Count Method, Nearest Neighbor Method and Ripley K-function, for example), such as no

spatial-scale resolution.

The results presented in Chapter 3 and Chapter 4 show that the spatial configuration of

the Laguncularia racemosa trees contained in study sites Lagoa A and Lagoa B, as well as

the configuration of dead trees inside Lagoa B is clustered at higher scales (see Figure 3.9,

Figure 3.20 and Figure 3.21 respectively). This is a strong indication of heterogeneity

of exogenous (soil, climate, nutrient, etc.) and/or endogeneous (life history, competition,

facilitation, etc.) factors occurring inside these stands (Pelissier & Goreaud 2001).

Heterogeneity of point patterns is a main problem when using classical spatial statistical

methods, such as Quadrat Count Method, Nearest Neighbor Method and Ripley K-Function)

because these methods base on the assumption of homogeneity inside the stands.

In the first experiment, the MDA obtained via CWT and KDE Methods enabled the

heterogeneous study site Lagoa A and Lagoa B to be divided into homogeneous subplots

(Pelissier & Goreaus 2001). This methodology provides the direct application of classical

spatial statistical methods within these subplots. The Ripley K-Function shows that the

point processes present variation only at lower and intermediate scales (see Figure 5.17,

Figure 5.20 and Figure 5.23 respectively). These variations can be addressed to plant-

plant interactions, such as seed dispersion, nurse-plant effect, sucession, zonation, inter and

intra-specific competion, etc... (Pelissier & Goreaud 2001, Malkinson et al . 2003).

In the second application, the MDA Method reveals a repulsive process determining

the spatial location of Laguncularia recemosa and Avicennia germinans trees inside Lagoa

A and Lagoa B. This could be an indication of succession and/or zonation because such

ecological processes are characterized by strong inter-specific competition which might lead

to an exclusion of trees in presence of another species at a given location. The experiments

described in Chapter 3 and Chapter 4 detect this spatial pattern, but they were not able

to indicate where it occurred. However, they clearly indicate the existence and show also

the location of the preferential zones occupied by each of the species.

The third and last experiment shed light on another interesting feature of the Kernel-

MDAMethod. The mean density of each approximation map obtained using was very nearly

the same as the mean density of the original density map. This aspect is very important, if

I am considering using these maps to simulate an Inhomogeneous Poisson Process (Baddeley

et al. 2000). This characteristic guarantees that the number of points simulated inside the

virtual stand will be approximately the same number presented inside the real study site,

here used as reference data for the simulation. This is an interesting aspect which shows the

great potential of this method together with spatial point pattern modeling methods that
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requires the use of a density map to simulate the spatial configuration of individuals (Clausen

et al. 2000, Jensen et al. 2000, Jensen et al. 2001).

All the results described above demonstrate quite well the power of the obtained via

Wavelet Transform method to analyze heterogeneous stands. This method was able to show

aspects of the point processes occurring in the sites Lagoa A and Lagoa B that are not

revealed by classical spatial statistical methods (Fischer 1922, Clark & Evans 1954, Cressie

1993, Ripley 1977). In general, the methodology described in this chapter demonstrates its

potential and direct applicability for the analysis of spatial point patterns in plant ecology.

At present, there are few examples of the application of the Wavelet Transform in plant

ecology, but there are an increasing number of studies directly related to this area and

I believe that my work has made an important contribution to this ongoing work. It is

important to note, however, that methodology presented is not a substitute of the classical

methods, but a complementary approach to be used together with them.
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Chapter 6

Conclusion

In this study, I proposed some modifications, methodologies and alternatives to the

classical spatial statistical methods applied to plant ecology. The intention was to improve

the statistical power and the sensitivity of these methods, and thereby to enable the under-

lying ecological processes occurring within a forest stand to be inferred from the spatial

configuration of individual trees.

At the start of Chapter 2, I presented a short summary of some classical spatial sta-

tistical methods widely used in plant ecology, such as Quadrat Count Analysis, First-Order

and Second-Order methods. I then presented some practical examples of the application of

these methods to a real dataset collected from two forest stands, called site Lagoa A and

site Lagoa B, located in Northeastern Brazil. These sites exhibit structural differences;

abiotic conditions at the two sites are also certainly different but information on this aspect

is unavailable.

The main advantage of Quadrat Count Analysis and Nearest Neighbor Methods (First-

Order Method) is their simplicity of application. However, these methods have at least one

serious limitation. They reduce all spatial information about the individual trees in a forest

stand to a single one-dimensional index. This characteristic leads to at least two problems.

First, these methods are not able to provide information about the scales of the underlying

ecological processes taking place in a stand. Second, the spatial positions of the trees in the

stand are completely lost. These methods can only indicate if the point pattern associated

with the individual trees in the stand exhibits complete spatial randomness (hereinafter

CSR), or a regular or clumped distribution. But in plant ecology, depending on the objective

of the analysis, the information about the scales of these ecological processes is often very

important and has to be taken into consideration.

I then moved on to present the Ripley K-function, a Second-Order Method developed to

overcome some of the limitations associated with the Quadrat Count Analysis and Nearest

Neighbor Methods. The main feature of the Ripley K-function it that it preserves information

about the distances between individuals. It provides not only information about the point

processes (CSR, regular or clumped pattern) occurring within a stand, but also provides

information about the scales at which these point processes are occurring. This informa-

tion is very relevant for plant ecology, if I consider, for example, that facilitation (positive

interaction among the tree individuals) and competition (negative interaction among the

tree individuals) are ecological processes that are usually occurring at different scales at any

given time within the stand.
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Additionally, I provided explicit formulas for an edge correction factor method based on

area (Area Method). This method was used in combination with the Ripley K-function, in

order to improve its sensitivity for the analysis of the spatial configurations of point patterns.

It is important to note that the application of the Area Method is not restricted to the

Ripley K-function. The method can be applied in combination with any spatial statistical

method that requires the use of an edge effect correction factor. Comparison of the Area

method and the Ripley method, a widely edge effect correction used in plant ecology, clearly

showed clearly the greater sensitivity of the Area method in detecting clustering and/or

regularity in spatial point patterns. Additionally, the Area method needed less processing

time to obtain better results than those obtained via the Ripley method. This is an important

advantage of the method, which enables the spatial analysis of large datasets to be performed.

Additionally, this characteristic of the method permits the generation of statistically more

robust simulation envelopes .

InChapter 3 I present the explicit formulas provided for the Area method can be applied

only to a rectangular study site and the maximum scale of observation of the analysis is

half the shortest dimension of the forest stand. But in future, the intention is to provide a

complete set of formulas that permits the analysis of irregular stands of any shape and at

all scales of observation.

In Chapter 3, I applied the Ripley K-function and the Area method presented in

Chapter 2 to perform a more complete analysis of the spatial configuration of the tree

individuals in the sites Lagoa A and Lagoa B. The particular challenge of this chapter

was to try to make valid inferences about the underlying ecological processes occurring

in these stands from the spatial configurations exhibited by the individual trees.

The results obtained from this analysis were noteworthy and, despite the lack of infor-

mation about the abiotic conditions in the two forest stands and the probable spatial environ-

mental heterogeneity at sites Lagoa A and Lagoa B, the Ripley K-function was still able

to provide important information about the ecological processes which are likely to be occur-

ring at these sites.

In this chapter, I was particularly interested in detecting the succession processes that

are probably occurring between the species Laguncularia racemosa and Avicennia germinans.

Mangrove forests are in a continuous process of growth and constantly establishing and

renewing themselves. Therefore, it is plausible to suppose that succession processes are

occurring among trees of the species Avicennia and Laguncularia at these sites. The Ripley

K-function detected a tendency to repulsion at different scales between tree individuals

of Laguncularia racemosa and Avicennia germinans. This could be a result of succession

processes occurring at the sites Lagoa A and Lagoa B.

In Chapter 4, I described Object Pattern Analysis. This method was proposed in order

to overcome some of the limitations of the methods in Chapter 2 and Chapter 3. The

main feature of Object Pattern Analysis is its capacity to perform the spatial analysis of

tree individuals considering them as circles, instead of points. The idea was to overcome the

problems that arise when I consider a three dimensional individual as a single point.
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The results obtained by Object Pattern Analysis showed greater sensitivity for the detec-

tion of the ecological processes occurring at the study sites Lagoa A and Lagoa B. In

particular, the method was better able to characterize the probable succession processes

occurring between trees of species Laguncularia racemosa and Avicennia germinans.

In this chapter I considered just two simple models that can be used to simulate a spatial

distribution of circular objects. This procedure starts by generating a simulation envelope

using the Monte Carlo method (Besag 1977). This simulation envelope is used to detect the

tendency of an object pattern to CSR, regularity or clustering. An alternative procedure,

using a different null model, would be to simulate the position of the trees following a CSR

distribution and randomize the observed radius in the study site for the simulated "trees”.

But at the moment, this is no more than an idea for a future study.

It is important to note that the Object Pattern Analysis also has its limitations. The

application of the method is only possible, if the shape of the individuals to be analyzed is

approximately circular. Additionally, Object Pattern Analysis shares with the Ripley K-

function the limitation that neither method provides spatial resolution of the ecological

processes occurring in the stand. In order to overcome this limitation, I presented a new

methodology in the next chapter.

InChapter 5 I described the application ofMDA obtained viaKDE andWTmethods

to the analysis of the spatial configuration of trees in plant ecology. The main advantage of

the MDA method is its capability to provide spatial-scale information (subject to certain

restrictions related to the Heisenberg’s uncertainly principle). The method was shown to

be able to detect both the scale of ecological processes occurring in the study sites Lagoa A

and Lagoa B and show where these ecological processes are occurring. This is a important

characteristic, if I consider that mangrove forest stands commonly exhibit environmental

heterogeneity.

The MDA method enabled a heterogeneous study site to be divided into subplots that

could be considered as homogeneous. In this case, I suppose that spatial variability at

lower scales and higher scales is associated with plant-plant interactions and environmental

heterogeneity respectively. This procedure permits the subsequent application of classical

statistical methods (that require the hypothesis of heterogeneity) to analyze each one of these

subplots individually.

The MDA method identified and determined the spatial location of succession processes

probably occurring among the trees of species Laguncularia and Avicennia in the sites Lagoa

A and Lagoa B. This information is not obtainable using the classical spatial statistical

methods presented in Chapters 2, 3 and 4. The result obtained via MDA method clearly

showed the existence of preferential zones being occupied by each one of the species Lagun-

cularia and Avicennia in the study site.

Additionally, the MDA method successfully generated the large scale density maps

necessary for the simulation of the point patterns of tree individuals at the sites Lagoa A and

Lagoa B, assuming the hypothesis of heterogeneity within the stand. The results revealed

that the spatial configuration of the tree individuals in these forest stands can be simulated

Conclusion 135



using an Inhomogeneous Poisson process. This result could be a strong indicator of the

heterogeneity of abiotic factors in these forest stands.

In summary, all simulations performed in these experiments revealed the power of the

MDA method obtained via the WT method when applied to the study and analysis of het-

erogeneous study sites. This procedure was shown to be able to detect aspects of the spatial

configuration that were not revealed by the classical spatial statistical methods (Ripley K-

function, for example). These results confirmed the potential and the applicability of the

MRA method for the analysis of spatial point patterns in plant ecology.

In general, all the experiments performed and described in this study were successful and

I have no doubt that, the methods described provide important tools for use in combination

with classical spatial statistical methods applied to plant ecology. All the proposed modifica-

tions and new methodologies substantially improved the statistical power and the sensitivity

of these methods. Additionally, the Object Ring and MDA methods were able to overcome

some of the limitations of these classical statistical methods. The Object Ring Analysis now

permits us to analyze the spatial configuration of tree individuals considering them as circles,

instead of points. This procedure avoids the tree-point transformation problem described in

Chapter 3. Finally, the MDA method permits us to analyze the spatial configuration of

the tree individuals within a forest stand. The method does not require the hypothesis of

homogeneity of the spatial configuration of the point pattern of trees individuals in a forest

stand.

In future, the idea is to develop Object pattern method to perform the analysis consid-

ering environmental heterogeneity within the study sites. Additionally, I intend to develop

or adapt the spatial statistical methods presented in this work to perform also the point

pattern analysis over the time (Spatial temporal analysis).
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Chapter 9

Appendix

cc -------------------------------------------

cc Joao Marcelo Brazao Protazio

cc Biologiedoktorand an die Bremen Universität

cc Zentrum für Marine Tropenökologie

cc Büro 207

cc Fahrenheitstrasse 6

cc 28359 Bremen

cc Deutschland

cc Tel 00 49 0421 2380058

cc Fax 00 49 0421 2380050

cc marcelo.protazio@uni-bremen.de

cc mprotazio@gmail.com

cc -------------------------------------------

function ka(x,y,r,xmin,ymin,xmax,ymax,nr,np,k)

real x,y,r,k

real xmin,ymin,xmax,ymax,pi

integer np,nr dimension

x(np),y(np),r(nr),k(nr)

parameter (pi = 3.1415927)

cc -----------------------------

cc Ripley L-function calculation

cc -----------------------------

call kfun(x,y,r,xmin,ymin,xmax,ymax,nr,np,k)

k = sqrt(k/pi)-r

end

cc ---------------------------

cc Function 01

cc ---------------------------

cc Distance between two points

cc ---------------------------

cc p1 = (x1,y1)

cc p2 = (x2,y2)
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cc ---------------------------

function dist(x1,y1,x2,y2)

real x1,y1,x2,y2

dist = sqrt((x1-x2)**2+(y1-y2)**2)

end

cc ---------------------------

cc Function 02

cc ---------------------------

cc Indicator function

cc ---------------------------

cc p1 = (x1,y1)

cc p2 = (x2,y2)

cc id = 1 if d(p1,p2) <= r

cc id = 0 otherwise

cc ---------------------------

function ind(x1,y1,x2,y2,r)

real x1,y1,x2,y2,r

d = dist(x1,y1,x2,y2)

if (d.le.r) then

ind = 1

else

ind = 0

endif

end

cc ---------------------------

cc Function 03

cc ---------------------------

cc Area edge correction

cc ---------------------------

cc p = (x,y)

cc xmin,ymin,xmax,ymax

cc w = area edge correction

cc ---------------------------

function edge(x,y,xmin,ymin,xmax,ymax,r) integer c,i real

x,y,xmin,ymin,xmax,ymax,r

real alpha,alpha1,alpha2,e,e1,e2,d,d1,d2,dd,pi,t1,t2

dimension dd(2)

parameter (pi = 3.1415927)

c = 0

if ((x-xmin).lt.r) then

c = c + 1
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dd(c) = x - xmin

endif

if ((y-ymin).lt.r) then

c = c + 1

dd(c) = y - ymin

endif

if ((xmax-x).lt.r) then

c = c + 1

dd(c) = xmax - x

endif

if ((ymax-y).lt.r) then

c = c + 1

dd(c) = ymax - y

endif

if (c.eq.0) then

edge = 1

elseif (c.eq.1) then

d = dd(1)

e = sqrt((r**2)-(d**2))

alpha = acos(d/r)

edge = pi*(r**2)*(1/(e*d+(pi-alpha)*(r**2)))

else d1 = dd(1)

d2 = dd(2)

e1 = sqrt((r**2)-(d1**2))

alpha1 = acos(d1/r)

e2 = sqrt((r**2)-(d2**2))

alpha2 = acos(d2/r)

if ((r**2).gt.((d1**2)+(d2**2))) then

t1 = e1*d1+e2*d2

t2 = 0.75*pi-0.5*alpha1-0.5*alpha2

edge = pi*(r**2)*(1/(d1*d2+0.5*t1+t2*(r**2)))

else

edge = pi*(r**2)*(1/(e1*d1+e2*d2+(pi-alpha1-alpha2)*(r**2))) endif

endif

end

cc ---------------------------

cc Function 04

cc ---------------------------

cc Ripley K-function

cc ---------------------------

cc p(x,y)
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cc xmin,ymin,xmax,ymax

cc nr - r discretization

cc np - number of points

cc ---------------------------

subroutine kfun(x,y,r,xmin,ymin,xmax,ymax,nr,np,k)

real x,y,r,w,xmin,ymin,xmax,ymax,area,pi,k

integer nr,np,i,j,q,c

dimension x(np),y(np)

dimension r(nr),k(nr)

parameter (pi = 3.1415927)

area = (xmax-xmin)*(ymax-ymin)

do 10 q = 1,nr

k(q) = 0

do 20 i = 1,np

w = edge(x(i),y(i),xmin,ymin,xmax,ymax,r(q))

c = 0

do 30 j = 1,np

c = c + ind(x(i),y(i),x(j),y(j),r(q))

30 continue

c = c - 1

k(q) = w * c + k(q)

20 continue

k(q) = area*k(q)/(np*np)

10 continue

end
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