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There is a theory which states that if anybody ever discovers exactly the nature of 

AOM, it will instantly disappear and be replaced by something even more bizarre and 

inexplicable. There is another theory which states that this has already happened. 
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Douglas Noel Adams (1952 – 2001) 
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Zusammenfassung 

Zusammenfassung 

Methan, ein starkes Treibhausgas, entsteht bei der mikrobiellen und thermogenen 

Mineralisation von Biomasse unter anoxischen Bedingungen. Über diese Prozesse werden 

im Meeresboden große Mengen des Methans akkumuliert. Dort liegt Methan entweder als 

Gashydrat  vor, ist im Porenwasser gelöst, oder nimmt den Porenraum als Gasphase ein.  

Marine Methanemissionen sind jedoch nur für ca. 3% der atmosphärischen 

Methanzufuhr verantwortlich, da der Kohlenwasserstoff im Sediment von einer 

hocheffektiven Gemeinschaft aerober und anaerober Mikroorganismen oxidiert wird. Diese 

Arbeit befasst sich mit der anaeroben Oxidation von Methan (AOM), die im Meeresboden 

für ca. 80% des Methanabbaus verantwortlich ist. AOM wird von Konsortien 

methanotropher Archaeen und sulfatereduzierenden Bakterien katalysiert, welche Methan 

und Sulfat in syntrophen Reaktionen zu Karbonat und Sulfid umsetzen. 

Im ersten Kapitel wird die Rolle von Methan im Kohlenstoffkreislauf sowie die 

Quellen und Senken von Methan mit besonderer Berücksichtigung von AOM  beschrieben.  

Wichtige Erkenntnisse zur AOM und Methoden zur Erforschung dieses Phänomens, 

insbesondere isotopengeochemische Ansätze, werden vermittelt.  

Im zweiten Kapitel wird die Aktivität verschiedener Gasaustrittsstellen in der 

Nordsee beschrieben. Aufgrund der relativ geringen Wassertiefe von 70 bis 150 Metern ist 

die Methanlöslichkeit im sedimentären Porenwasser relativ gering. Der Methantransport 

findet somit überwiegend in der Gasphase (in Form von Gasblasen) statt. Dabei wird ein 

großer Teil des Methans nicht im Sediment oxidiert, sondern in die Wassersäule abgegeben. 

Der kurze Transportweg zur Wasseroberfläche macht einen direkten Beitrag zum 

atmosphärischen Methanhaushalt wahrscheinlich.  

Zwei der aktivsten Gasaustritte, Gullfaks in der nördlichen Nordsee und 

Tommeliten in der zentralen Nordsee,  wurden zur geochemischen und mikrobiologischen 

Charakterisierung ausgewählt. Die Methanaustritte von Gullfaks liegen in einer mächtigen 
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glazialen Sandschicht. Die Gasaustritte sind in einem Bereich von ca. 0.5 km2 konzentriert, 

in dessen Zentrum von 0.1 km2 ein teils dichter Bewuchs durch schwefeloxidierende 

Bakterien (Beggiatoen) hohe Sulfidflüsse aus dem Sediment anzeigt. Die großen Sulfidmengen 

entstehen bei der anaeroben Methanoxidation.  

Methan steigt durch Risse in einem glazialen Mergel an die Oberfläche auf. Die 

Methanaustritte beschränken sich so auf wenige kleinere Bereiche (<0.3 m2), die meist mit 

dichten Matten sulfidoxidierender Bakterien bedeckt sind. Mit Hilfe eines Tauchroboters 

wurden diese Bakterienmatten und die darunter liegenden Sedimente erstmals beprobt.  

An den untersuchten Methanaustritten der Nordsee wurde im Unterschied zu vielen 

Tiefsee-Methanaustritten keine chemosynthetische Fauna gefunden. Die hohen, 

gezeitenbedingten Transportenergien verhindern offenbar die Besiedlung durch benthische 

Organsimen. Jahreszeitlich schwankende und durchschnittlich höhere Temperaturen in der 

Nordsee sind weitere Unterschiede zu Tiefsee-Methanaustritten. Die mikrobielle 

Gemeinschaft der Methanquellen von Gullfaks und Tommeliten wurde mit Hilfe von 

Lipidbiomarkeranalysen und molekularbiologischen Methoden beschrieben. Die gefundenen 

Bakterien- und Archaeenbiomarker deuten auf eine Dominanz von anaeroben 

Methanoxidierern, deren sulfatreduzierenden Partnerbakterien sowie sulfidoxidierenden 

Bakterien in den Sedimenten hin. Im Durchschnitt sind die Kohlenstoff-Isotopenwerte der 

Lipidbiomarker in den Methanaustrittssedimenten sehr niedrig, wobei insbesondere die 

Archaeenbiomarker mit �13C-Werten bis -120‰ die deutlichsten Abreicherungen in der 

Kohlenstoffisotopie zeigen. Die 13C-abgereicherten Biomarker zeigen die Aufnahme von 

Kohlenstoff aus dem schon isotopisch leichten Methan und eine weitere starke 

Fraktionierung während der Kohlenstofffixierung an. Die auf 16S-rRNA-Gensequenzierung 

basierende Analyse der mikrobiellen Gemeinschaft zeigt, dass sich die Organismen der 

Nordseemethanaustritte von denen der Tiefsee kaum unterscheiden. In den aktiven 
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Zusammenfassung 

Sedimenten dominieren Anaerobe Methanoxidierer (ANME-2), die in Gemeinschaft mit 

Sulfatreduzierern leben. 

Im dritten Kapitel wird ein Durchflusssystem zur Untersuchung der anaeroben 

Methanoxidation in Sedimenten vorgestellt. In der Durchflusszelle wird Sediment 

permanent mit methangesättigtem anaeroben Medium durchströmt. Durch die Messung 

von Methanzehrung und Sulfidbildung wurde die jeweilige Aktivität des Sediments ermittelt. 

Bei gleichbleibenden Methankonzentrationen im Zufluss von ca. 2 mM wurden über 

Monate konstante Methanoxidation gemessen. Ein merkliches Wachstum der 

Bakterienpopulation erfolgte nicht, obwohl weder Methan noch Sulfat limitierend waren. 

Auch in anderen Publikationen wurde oft von sehr geringen Wachstumsraten der anaeroben 

Methanoxidierer berichtet. Ein Grund hierfür wird der besonders geringe Energiegewinn bei 

der anaeroben Methanoxidation (�GR ~ -15 bis -40 kJ mol-1 CH4 Umsatz) sein, der zudem 

von zwei Organismen geteilt werden muss. Aus diesem Grund werden für ein merkliches 

Wachstum der mikrobiellen Population vermutlich Methankonzentrationen im Bereich 

mehrerer Millimolar benötigt.  

Methanotrophe Sedimente wurden über sechs Wochen mit methanfreiem Medium 

durchströmt. Nach der Wiederaufnahme der Methanzufuhr wurden innerhalb weniger Tage 

die vorherigen Methanoxidationsraten gemessen. Substratmangel über lange Zeit zu 

tolerieren scheint eine wichtige Eigenschaft der methanoxidierenden Organismen zu sein, 

um die in der Natur oftmals schwankenden Methankonzentrationen zu überleben. Für die 

Umwelt zeigt es, dass die Mikroorganismen auch bei wechselnden Methanflüssen eine 

Barriere für das aufsteigende Methan darstellen.  

Im vierten Kapitel werden die Methoden der Lipidbiomarkeranalyse mit der 

Isotopenmarkierung von Substraten kombiniert, um die Rolle anorganischen Kohlenstoffs 

und Methans als Kohlenstoffquelle der methanoxidierenden Mikroorganismen zu 

untersuchen. In den Archaeenlipiden wurden der Einbau von 13C-markierten Methans und 
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anorganischen Kohlenstoffs in ungefähr gleichen Mengen beobachtet. Die 

sulfatreduzierenden Bakterien nahmen hingegen ausschließlich 13C-markierten 

anorganischen Kohlenstoff in ihre Lipide auf.  

Die Ergebnisse der Isotopenmarkierungsversuche können die an Umweltproben 

gemessenen sehr niedrigen Isotopien der Bakterienbiomarker (�13C bis ca. -100‰) und  und 

Archaeenlipide (�13C bis ca. -130‰) erklären. Archaeen bauen hauptsächlich stark 13C-

abgereichertes Methan und/ oder direkt aus Methan stammendes CO2 ein. Daneben sorgt 

eine hohe Fraktionierung während der Kohlenstofffixierung für die extrem 13C-

abgereicherte Lipide. Die Sulfatreduzierer bauen ihre Biomasse aus CO2 auf, welches aus 

dem leichter abgereicherten inorganischen Kohlenstoffpools des Porenwasser entstammt.  

Die Ergebnisse zeigen, dass der Energietransfer zwischen den methanoxidierenden 

Archaeen und den Sulfatreduzierern nicht auf Monomeren wie Acetat oder Format 

beruhen. Wären diese Stoffe ein Intermediat, so müsste sich isotopisch markiertes Methan 

auch in der Isotopensignatur der Biomarker der partizipierenden sulfatreduzierenden 

Bakterien wiederfinden. 

Aus den Labelingversuchen konnte eine Wachstumseffizienz ermittelt werden. 

Unter unseren Versuchsbedingungen ist der Biomasseaufbau mit 

Kohlenstoffaufnahmeeffizienz von nur 0,3% bis 1,3% äußerst gering. Diese einzigartig 

niedrige Wachstumseffizienz lässt sich durch die extrem niedrigen Energiegewinn bei der 

anaeroben Oxidation des Methans erklären. 

Im letzten Kapitel werden die Ergebnisse der wissenschaftlichen Arbeit 

zusammengefasst und im Kontext der bisherigen Forschungsarbeiten beschrieben. Zuletzt 

wird ein Ausblick auf weitere Schritte der Erforschung des Kohlenstoffkreislaufs in der 

anaeroben Methanoxidation gegeben. Einen Schwerpunkt bilden dabei Methoden der 

Isotopenmarkierung.
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Summary 

Summary 

Methane, a strong greenhouse gas, is produced by microbial fermentation of organic 

matter under anoxic conditions and by thermal driven decay of organic matter. Both 

biogenic and thermogenic methanogenesis lead to the accumulation of large quantities of 

methane in the seafloor in the form of gas hydrate, dissolved in the pore water, and as gas 

phase.  

Despite the large methane content of the sediment, its contribution to water column 

and atmospheric budgets is rather small (about 3%). This is because aerobic and anaerobic 

microbes consume much of the seafloor methane. In this thesis I focus on the anaerobic 

oxidation of methane (AOM), which is, in the marine context, responsible for about 80% of 

methane consumption. AOM describes the microbially mediated consumption of methane 

and sulfate with products carbonate and sulfide. The responsible microorganisms are 

believed to consist of syntrophic consortia of methanotrophic archaea (ANME) and sulfate 

reducing bacteria (SRB).  

In Chapter I, I discuss methane as part of the marine carbon cycle, including  it’s 

sources and sinks, with the main emphasis on AOM. Important experimental methods, 

including kinetics and growth determination isotope labeling approaches, are discussed in 

detail in Chapter IV. 

In Chapter II, I describe methane emissions at several shallow seep areas (<160m) 

of the North Sea. Because of the shallow water (low pressure), methane solubility is low, 

much lower than necessary for the formation of gas hydrates. This favors the transport of 

methane in the gas phase, which limits the function of the microbial barrier and makes the 

export of methane in the form of bubbles to the water column and atmosphere more likely. 

The two most active seepage areas of the North Sea: Gullfaks in the Northern 

North Sea, and Tommeliten in the center of this basin, were chosen for geochemical and 

microbial characterization. The Gullfaks seep sites were situated on a deep sand layer, 
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deposited within the last glacial maximum. Gas seepage was found in an area of 0.5 km2, 

with the zone of highest seep activity, limited to an area of about 0.1 km2, marked by mats 

of sulfide oxidizing bacteria, which are fueled by the high sulfide fluxes due to AOM activity 

in the sediment layers centimeters below. 

Methane seepage at Tommeliten has been studied for roughly 30 years. At 

Tommeliten the seafloor consists of consolidated marls. Methane emissions to the water 

column was limited to small, densely covered Beggiatoa patches of < 0.3 m2 , which were 

spread over an area of about 0.1 km2. We sampled these patches for the first time using a 

remotely operated vehicle (ROV).  

Chemosynthetic fauna such as (e.g., tube worms and clams), which are often found 

at deep-sea seeps, were not present at the North Sea sites. Presumably this was because of 

the high, tidally induced water movement, which prevented settlement of benthic organisms. 

Water temperatures of the North Sea are higher than in deep water sites and distinct 

seasonal cycles were present.  

 Microbial communities at both seep sites were described using lipid biomarker 

analyses and molecular tools (Fluorescence in situ hybridization (FISH) and 16S rDNA 

based sequence libraries). The bacterial and archaeal biomarker compositions were typical 

for seep sites. Biomarkers characteristic of ANMEs and their partner SRBs and sulfide 

oxidizing bacteria were found. The mean carbon isotope composition of those lipids was 

highly depleted, whereas lowest 13C-values were measured for the archaeal biomarker 

archaeol and sn2-hydroxyarchaeol. This is due to the use of already substantially depleted 

methane as carbon source and further fractionation during carbon assimilation. 

Notwithstanding the highly different physical factors, the microbial communities at Gullfaks 

and Tommeliten were very similar to that of the deep sea. The active seep areas were 

dominated by methanotrophs of the ANME-2 cluster, living in syntrophy with different 

sulfate reducing bacteria.  
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Summary 

In Chapter III, a flow-through system for the investigation of AOM in sediments is 

presented. Sediment columns were constantly percolated with methane saturated anaerobic 

seawater. By measuring the differences in methane and sulfide concentrations between in- 

and outflow, metabolic rates were determined. At constant conditions of about 2mM 

methane in the inflow, no increases in AOM and sulfate reduction rates were measured over 

more than 80 days, although neither methane nor sulfate were limiting. Extremely low 

growth rates of methanotrophic communities were also observed in other studies. This 

might be due to the extremely low energy yield of AOM (�GR ~15 to 40 kJ mol-1 CH4); a 

yield which presumably has to be shared between the two organisms of the AOM 

syntrophy. Additionally, carbon fixation (either reduction of CO2 or oxidation of methane) 

is highly energy intense, therefore allowing only limited growth.  

We found that methanotrophs are highly tolerant to starvation. After 6 weeks of 

methane free percolation, methanotrophs resumed AOM at similar rates as before, when 

methane was re-supplied. This behavior might be important in environments where 

fluctuating methane supply predominates. 

In Chapter IV the roles of inorganic carbon (DIC) and methane as carbon sources 

for the microbial community performing AOM were examined. We combined the methods 

of stable isotope probing (of 13C methane and 13C bicarbonate) with lipid biomarker analyses 

and found carbon uptake of both labeled carbon sources into archaeal lipids. For archaea it 

might be energetically favorable to combine the assimilation of both compounds, because 

the combination of both carbon sources would reduce the input of reducing or oxidizing 

power. The lipid biomarkers assigned to sulfate reducing bacteria, however, were exclusively 

labeled by inorganic carbonate. In an additional experiment we found that this bacterial 

inorganic carbon uptake strictly depends on the oxidation of methane, which shows the 

tight metabolic relationship between archaea and sulfate reducing bacteria within the 

consortia.  
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Our results can explain the natural isotopic compositions of bacterial and archaeal 

markers. With �13C value of down to -130‰, methanotrophic archaea have extremely 

depleted carbon signatures. This is due to incorporation of already strongly depleted 

methane and methane derived CO2 into their biomass and further fractionation in strongly 

13C-discriminating fixation pathways. Sulfate reducers assimilate CO2 from the only slightly 

depleted DIC of the pore water pool. Our results also help in understanding the syntrophic 

relationship between the two organisms. As an example, partner-SRBs do not incorporate 

carbon from methane, from which we can exclude organic monomers (e.g. acetate or 

formate) as shuttled intermediate in AOM. 

From the assimilation into lipids we were able to calculate carbon assimilation 

efficiencies for the methanotrophic community, which were extraordinarily low with only 

0.3% to 1.3%. This low growth yield must be due to the low energy yield of AOM. 

In the last chapter, the results of this thesis are summarized and brought into the 

context of prior work.  At the end I include an outlook to the future of AOM research, with 

a continued emphasis on isotope labeling methods. 
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Introduction 

This chapter starts by introducing the role of methane as part of the global carbon 

cycle. An overview of stable isotope geochemistry, one of the major tools to track fluxes in 

the carbon cycle, particularly of methane, follows. The major sources and sinks of methane 

on earth with emphasis on the biological methane production and consumption are 

described. Methane-rich habitats, particularly cold seeps, are covered. An overview of 

important methods used in the examination of methanotrophy. Stable isotope probing, 

combined with molecular and biomarker tools, is discussed in detail. The chapter concludes 

with an overview of the manuscripts within this thesis, including a description of my 

contributions to these works. 

 

1. Methane in the global and marine carbon cycle 

Methane is the most abundant hydrocarbon on earth. It is a major greenhouse gas 

and plays an important role in tropospheric chemistry (Reeburgh, 2007). Figure 1 illustrates 

important sources of methane as well as their net contributions to the atmospheric methane 

budget (after Reeburgh et al., 2007). Annual methane production on earth is about 

1200×109 kg, with more than half of this (ca. 700×109 kg) consumed by microbial oxidation 

before reaching the atmosphere. Microbial degradation of organic matter under anoxic 

conditions is the largest natural source of methane. Wetlands, tundra and swamps produce 

142×109 kg yr-1 methane, most of which (ca. 115×109 kg yr-1) gets emitted to the 

atmosphere. Methane production by microbial symbionts in animals (e.g., ruminants and 

termites) contributes 80×109 kg yr-1 to the atmosphere. Anthropogenic methane emissions 

account for the dramatic increase of atmospheric methane concentrations from pre-

industrial 700 ppb to about 1700 ppb today. Rice farming represents the major human 

methane source with an annual production of 577×109 kg yr, however, only a fraction of 

this (100×109 kg yr-1) is emitted to the atmosphere. Biomass burning (55×109 kg yr-1) and 
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fossil fuel and gas production (75×109 kg) also have a large impact on the atmospheric 

methane budget.  

Figure 1. Schematic presentation of the global methane budget. All numbers in 109 kg yr-1. Data from 
Hanson and Hanson, 1996; Nedwell, 1996; Reeburgh, 2007  
 

Compared to marine primary production, which is 60000 ×109 kg C yr-1 (del Giorgio 

and Duarte, 2002), the role of the oceans in the global methane budget is rather small, with 

a production of 85 ×109 kg yr-1 and a net flux to the atmosphere of just 10×109 kg yr-1. The 

vast majority of marine organic carbon gets mineralized aerobically in the upper water 

column and only 1% is exported to the seafloor (Ducklow et al., 2001) where conditions 

become anaerobic. In marine sediments this residual organic matter is further degraded by 

microorganisms (fermented to monomers) and mineralized to CO2 using available electron 

acceptors in order of decreasing energy yield: oxygen, nitrate, redox active metals such as 

manganese (MnIV) and iron (FeIII), sulfate and CO2 (Fenchel and Jørgensen, 1977; 

Jørgensen, 2006). Seawater concentration of sulfate exceeds other oxidants by orders of 

magnitude, making sulfate reduction, coupled to the oxidation of a variety of monomeric 

organic compounds (e.g. acetate and lactate, propionate, butyrate; Finke et al., 2007) of 

particular relevance. Sulfate reduction is also coupled to anaerobic oxidation of methane 
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(AOM). In presence of non-limiting sulfate concentrations, sulfate reducers outcompete 

methanogens on the common substrates hydrogen and acetate because of much higher 

energy yields when sulfate and not CO2 is used as terminal electron acceptor (Ward and 

Winfrey, 1985; Widdel, 1988).  

In absence of sulfate, methanogenesis based on microbial reduction of CO2 or 

disproportionation of acetate is a major metabolic process in marine sediments (Capone and 

Kiene, 1988; Nealson, 1997). About 5 to 10% of the marine organic matter reaching the 

seafloor is mineralized via methanogenesis (Canfield, 1993; Hinrichs and Boetius, 2002; 

Canfield et al., 2005). Residual organic matter, consisting mostly of highly complex 

polycyclic hydrocarbons (not previously mineralized by marine microbes), is the major long 

term carbon sink on earth. Deeper in sediments, temperatures between 50 and 180°C 

mobilize this refractory organic matter, forming thermogenic methane and higher alkanes. 

Biogenic and thermogenic methane accumulate in the seafloor, either dissolved in the pore 

water, as a separate gas phase, or condensed as gas hydrates (Reeburgh, 2007). The amount 

of hydrate-bound methane is vast, with estimates converging at 1 to 5×1015 m2 (0.7 to 

3.6×1015 kg; Milkov, 2004 and references therein). 

At even higher temperatures (e.g., ocean crust subduction zones) kerogen (organic 

matter with high molecular weight which is insoluble in usual organic solvents) decays to 

CO2 and hydrogen. This CO2 is then re-supplied to atmospheric carbon cycles via volcanic 

and hydrothermal activity (Sano and Marty, 1995; de Leeuw et al., 2007).  

 

 

2. Carbon isotope analysis as a tool in biogeochemistry 

Most elements, including the main components of organic biomass C, H, N, S, and 

O, are mixtures of atoms with different masses as a result of a variable number of neutrons. 

Isotopes (from Greek ��� [iso] – equal, ����� [topos] – location [in the table of elements]) of 
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each element appear naturally in relatively fixed ratios. Deviations from those values are 

expressed as �-notations [‰], which are defined in Eq. 1: 

� �� � 10001 ���� referencesample RRX	       (1) 

X is the usually less-abundant isotope of an element (e.g., 13C), and R is the corresponding 

ratio of this isotope to its more abundant equivalent (e.g., 13C/12C). The � notation of the 

sample is measured against a reference, which is Vienna PeeDee Belemnite limestone (V-PDB) 

for carbon. Other reference materials are Canyon Diablo Meteorite (CDM) for sulfur, 

(Vienna) standard mean ocean water (V-SMOW) for oxygen and hydrogen, and atmospheric 

N2 for nitrogen.  

Deviations from mean isotope ratios are caused by physical, chemical and 

biological processes and reactions. A purely physical isotope fractionation effect is the 

exchange between CO2 in the air and the dissolved inorganic carbon (DIC = CO3
2- + HCO3

-

+ H2CO3 + CO2) in water, which causes a 1‰ �13C-enrichment of oceanic DIC compared 

to atmospheric CO2 (Mook and Tan, 1991). Plant biomass has about 20 to 25‰ lighter 

�13C-values than atmospheric CO2 (Farquhar et al., 1989). This fractionation includes purely 

physical effects such as CO2 uptake through stomatal pores and diffusion into the water 

phase; these effects are small and cause a 1‰ to 2‰ discrimination in 13C (Farquhar et al., 

1989). In contrast, enzyme driven, biochemical carbon fixation pathways of the cells catalyze 

a carbon isotope fractionation of about -20‰ (Rubisco pathway; Farquhar et al., 1989; Guy 

et al., 1993). 

The carbon isotope compositions of microbial biomass can reveal the organisms’ 

carbon sources and even the carbon fixation pathways they use. Heterotrophic bacteria have 

only slightly lighter �13C-compositions than that of the carbon substrate they have 

consumed (e.g., marine algae), having �13C-values of about -25 to -30‰ (Coffin et al., 1989). 

Autotrophic microorganisms are typically more strongly �13C-depleted owing to their use of 

highly fractionating carbon fixation pathways such as the acetyl-coenzyme A pathway which 
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has �13C-discriminations reaching -47‰ in ammonium-oxidizing bacteria (Schouten et al., 

2004). 

Stable isotope compositions of fossils and limestone, as well as lipid-derived 

hydrocarbons, can be used to reconstruct carbon cycles and dominant redox processes 

during earth’s history. Dickens (2003) examined development of the �13C-composition of 

benthic foraminifera in the Tertiary. The rapid decline of the �13C-composition at the 

PETM (Paleocene/Eocene temperature maximum) in foraminifera was explained by 

massive methane emission during this time. Hayes and Waldbauer (2006) used the �13C-

composition of lipid-derived biomarkers to model the dominant biological redox processes 

throughout early earth history. Elevated 13C-values in carbonate minerals were interpreted as 

an indication of the importance of methanogenesis in the late Archaean (2,500 Mya). 

Understanding the origin of present-day �13C-values of biomass, lipid biomarkers, methane 

and DIC may help to reconstruct the evolution of life throughout earth history, the causes 

of past and present climate changes as well as the functions of organisms.   

 

 

3. Methane: Sources, sinks and isotope composition 

Methane can be produced by biogenic fermentation and thermogenic degradation of 

organic matter. Figure 2 shows isotope compositions for methane from these various 

sources, which are explained in further detail below.  

 

Methane sources  

Methane formed independent of organic matter and microbial catalysis is defined as 

abiogenic. Biogenic methane is formed by heat-induced decay of organic matter 
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(thermogenic methane) or by microbial reduction of CO2 and organic monomers (biogenic 

methane).  

 

Fig. 2. Carbon and hydrogen 
isotope composition of methane 
from different sources (Whiticar, 
1999). 

 

Abiogenic methane 

Abiogenic methane is predominantly formed by alteration of fresh oceanic rocks, 

such as is found at the East Pacific Rise (Welhan and Craig, 1977) and the Mid Atlantic 

Ridge (Rona et al., 1992). It can also be formed from ophiolites (Abrajano et al., 1990) and 

crystalline rocks such as those in the Canadian Shield (Sherwood Lollar et al., 2002). During 

diagenesis of these rocks (e.g., conversion of olivine to serpentine) hydrogen is released 

according to Eq. 2: 

� �� � � �� � 2434523245.05.1 376 HOFeOHOSiMgOHSiOFeMg 

�
   (2) 

Serpentinization is a strongly exothermic reaction involving heating of the rock material. At 

temperatures above 300°C, CO2 and hydrogen react in a Fischer-Tropsch-like reaction on 

the surface of catalysts such as iron or chromium according to Eq. 3 (Foustoukos and 

Seyfried, 2004): 
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 � � OHHC
n

HnmCO mnaqaq 222 21)2/(2 
�

     (3) 

Abiogenic methane is characterized by moderately depleted carbon and strongly 

depleted hydrogen isotope compositions (�13C -34‰, �D < -400‰). Next to methane, 

substantial amounts of C2+-compounds (ethane, propane, etc.) with inversely depleted 

isotope compositions are produced (e.g. butane, �13C -37‰, �D ~ -250‰ ; Sherwood Lollar 

et al., 2002). These isotope compositions have not been found in economically significant 

hydrocarbon reservoirs, suggesting a relatively minor role for abiogenic methane production 

in the global methane cycle (Sherwood Lollar et al., 2002). However, in local areas of sea 

floor spreading such as the Lost City Hydrothermal field (off the Mid Atlantic Ridge), 

abiogenic hydrogen or methane may be important microbial energy sources (Charlou et al., 

2002; Boetius, 2005; Kelley et al., 2005; Proskurowski et al., 2008). 

 

Biogenic methane 

The overwhelming majority of earth’s methane is formed via decay of organic 

matter, which in marine environments is mainly plankton such as diatoms, 

coccolithophorids and foraminifera. When oxygen, nitrate and sulfate are depleted, 

methanogenic microorganisms utilize a limited number of fermentation products (mainly 

hydrogen and acetate) according to Eq. 4 and Eq. 5, to form methane. 

OHCHHCO kJmol
24

131
22 24
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���� ��

��

24
36

3

1

COCHCOOHCH kJmol 
��� ��
��

     (4) 

      (5).  

In biogenic methanogenesis very few higher hydrocarbons are produced as byproducts, 

which leads to characteristic C1/C2+ ratios of >>100 among biogenic hydrocarbon gases 

(Whiticar et al., 1986; Whiticar, 1999). 

Methane derived from carbonate reduction (Eq. 4) is highly �13C-depleted, having 

values of -60 to -110‰ that arise due to a strong fractionation of -46 to -58‰ during CO2 
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reduction (values derived from pore water profiles (Galimov and Kvenvolden, 1983) and 

Rayleigh experiments (Balabane et al., 1987; Krzycki et al., 1987; Whiticar, 1999)). Since 

methanogenic archaea preferentially reduce 12CO2, the remaining DIC pool enriches in 13C, 

which causes positive �13C-DIC-values in highly methanogenic sediments (Blair, 1998). 

Hydrogen in methane derived from CO2-reduction has only moderately depleted �D-values. 

Methanogenesis that proceeds via fermentation-type reactions (Eq. 5) is 

characterized by 13C-fractionation between -22‰ (acetogenic methanogenesis) and -74‰ 

(methane derived from methanol reduction) between carbon source and product (Krzycki et 

al., 1987). Usually, environmental limitation of fermented reactants prevents high 

fractionation. Natural samples attributed to organoclastic methanogenesis have �13C-values 

of -50‰ to -70‰. Hydrogen in methane produced from fermentation is highly depleted, 

with �D-values of -200‰ to -400‰ (Whiticar, 1999). 

 

Thermogenic methane 

Thermogenic methane is formed by the heat-induced decay of organic matter. 

Economically valuable oil and gas reservoirs are formed by this process (Tissot and Welte, 

1984). Subduction- or sedimentation-driven subsidence of sediments leads to export of 

refractory organic material (kerogen) into the deep subsurface. Temperatures rise following 

ambient geothermal gradients, and at depths where temperatures exceed 50°C, kerogen 

slowly releases gaseous and liquid hydrocarbons (Schoell, 1980; Tissot and Welte, 1984), 

which in turn increase C:H ratios in the residual organic matter (an indicator of increasing 

maturity). In the lower temperature range, gas mixtures with high amounts of ethane and 

propane (i.e., wet gases; C2+ >5%) are released. With increasing maturity of the organic 

matter, higher subsidence and increasing temperatures, dryer hydrocarbon gases with C2+ 

contents as low as 1% are produced (Schoell, 1980). Thermogenic methane typically has 

only moderately depleted �13C-values between -55 and -35‰, whereas in general, increasing 
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maturities are associated with less depleted carbon isotope compositions (Schoell, 1980). 

Higher hydrocarbons (C2+) formed during thermogenic methanogenesis have less negative 

�13C-values. Hydrogen isotopy of thermogenic gases can vary greatly, with �2D-values of 

-375 to -100‰. 

 

4. Methane consumption and isotope effects 

Abiotic oxidation of methane 

Within the troposphere and stratosphere, methane is naturally oxidized by 

photochemical radical reactions. UV degradation of ozone leads to the formation of 

hydroxyl radicals that attack methane, forming methyl radicals (Levy, 1971; Le Texier et al., 

1988; Lelieveld et al., 1998), which are ultimately oxidized to formaldehyde (Levy, 1971; 

Grosjean, 1995). Annual photochemical methane oxidation is about 500×109 kg, resulting in 

an average atmospheric lifetime for methane of 10 years (Crutzen, 1994). As a mixture of all 

its source carbon isotope compositions, atmospheric methane has an intermediately 

depleted �13C-value of -48‰. In contrast, hydrogen in atmospheric methane has a �D value 

of -30‰, which is significantly less depleted than any of its source methane (Fig. 2). This 

relatively high value is due to photochemically mediated exchange reactions between 

hydrogen from methane and other atmospheric hydrogen pools (Whiticar, 1993). 

 Combustion represents another abiotic pathway for methane oxidation. Natural 

petroleum gas fires are found in Azerbaijan (azer from Persian “fire”) where constant 

methane seepage from deep fossil fuel sources causes the famous “eternal fires”. However, 

the relevance of naturally occurring methane consuming fires is minor compared to human 

gas extraction and burning of 1.5×1012 kg of methane (United Nation Conference on Trade 

and Development, UNCTAD; 2004; www.unctat.org/infocomm/anglais/ 

gas/market/htm#production). 
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Biogenic methane consumption  

Aerobic methanotrophy. Two-thirds of the biogenic methane produced on earth is 

consumed as an electron donor by aquatic methylotrophic microbes before escaping to the 

atmosphere. In terrestrial habitats, such as swamps and rice paddies, aerobic methanotrophy 

is the main methane sink (Hanson and Hanson, 1996; Reeburgh, 2007), whereas in marine 

environments, aerobic methanotrophy contributes about 20% of the methane consumption 

(Reeburgh, 2007). Additionally, methanotrophic bacteria are known to occur as symbionts 

of fauna living at hydrocarbon seeps such as Bathymodiolus platifrons mussels (Barry et al., 

2002).  

Aerobic methanotrophy can be described by the bulk formula (Eq. 6):  

OHCOOCH kJmolG
22

842
24 22

10


����� ��

���
      (6) 

Methane carbon isotope fractionation factors for different inoculated 

methanotrophic bacteria range from 1.0130 to 1.0252 (Coleman et al., 1981), resulting in a 

shift in methane �13C from 10 to 20‰ after 50% methane consumption (Barker and Fritz, 

1981). Considering hydrogen isotopes, Coleman et al. (1981) measured 8- to 14-fold higher 

fractionation factors for deuterium. However, since aerobic methanotrophy is usually 

limited to the top few millimeters of marine sediments (due to the low dissolved oxygen 

concentrations found there), aerobic oxidation of methane is not recovered in highly 

depleted carbon compositions in the DIC. Diffusive exchange between the pore water in 

the methane oxidation zone and the water column blurs any isotope signal. 

   

Anaerobic oxidation of methane (AOM). For decades, methanotrophy was 

thought to be limited to oxic environments, as described above. However, marine pore 

water data analyzed by Martens and Berner (1974) revealed simultaneous depletions of 

methane and sulfate, which indicated the net AOM reaction (Eq. 7): 
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OHHSHCOSOCH kJmolGR
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    (7) 

This stoichiometry was confirmed in laboratory studies (Iversen and Jørgensen, 1985; 

Nauhaus et al., 2002) and field measurements of methane oxidation (Treude et al., 2003). In 

marine sediments, AOM is the dominant sink of methane, accounting for 80 to 85% of 

marine methane oxidation (Hinrichs and Boetius, 2002). According to Eq. 7, AOM 

increases alkalinity which causes precipitation of carbonates. The other product of AOM, 

sulfide, provides an energy source for sulfide-oxidizing bacteria (e.g., Beggiatoa spp.).  

Anaerobic methanotrophy is found in zones of sediment where methane and sulfate 

are both present. Methanotrophic habitats may be broadly classified according to the 

dominant fluid transport process being either diffusion or advection. Diffusion-driven 

sulfate methane transition zones (SMTZ) are found in shelf and productive ocean 

sediments, within sediments depth of less than a meter (Parkes et al., 2007) down to depths 

of several hundreds of meters (SMTZ of the Eastern Pacific; D'Hondt et al., 2004). The 

position of the often very narrow AOM horizon is mainly determined by the supply of 

methane creating normally steep diffusion gradients. A large number of diffusion-driven 

SMTZs have been studied. Metabolic rates at these sites are in the range of pmol to nmol 

cm-3 d-1 with correspondingly small populations of anaerobic methanotrophs.  

Higher methane fluxes usually depend on advective pore water transport. 

Advection is caused by sediment compression, which is forced by high sedimentation or sea 

floor subduction. Leakage of fossil fuel-derived methane reservoirs or dissolution of gas 

hydrates leads to bubble-driven advective transport. Both processes are found at continental 

slope or margin estuaries, permanently anoxic basins and areas with anoxic histories such as 

the Mediterranean seeps (Judd, 2003).  

Laboratory experiments examining the isotope fractionation of methane in AOM 

metabolism have not been published to date. However, a strong increase of 13C-CH4 values 

from below to above AOM zones, obtained in sediment depth profiles, indicates substantial 

28



Chapter I: Methane in the Marine and Global Carbon Cycle 

discrimination of the heavy isotope during anaerobic methane consumption (Fig. 3; 

Tsunogai et al., 2002; Werne et al., 2004). Corresponding 13C-carbon compositions of DIC 

are depleted due to the transfer of methane isotope into DIC (Werne et al., 2004). 

 

 

5. Key microorganisms in methane production and consumption and 

their carbon composition 

Modern 16S rRNA-based techniques (such as FISH (fluorescence in situ 

hybridization) and full length gene sequencing) have identified many key organisms involved 

in the majority of carbon mineralization processes. Lipid biomarker patterns have also been 

shown to have phylogenetic relevance. Isotopic compositions of lipid biomarkers also 

provide insight into microbial processes (Sinninghe Damste et al., 2002; Pancost and 

Sinninghe Damste, 2003). Diagnostic lipid biomarker carbon signatures for organisms 

performing methanogenesis and methanotrophy in methane rich habitats are summarized in 

Fig. 3 and described in further detail below. 

 

Methanogens. Methanogenesis is limited to archaea, and specifically to the key genera 

Methanobacterium, Methanococcus and Methanosarcina within the Euryarchaeota (Balch et al., 

1979). Most methanogens are capable of CO2 reduction, whereas acetoclastic 

methanogenesis, which is the main methane producing pathway in terrestrial habitats, 

appears limited to the genus Methanosarcina Methanothrix and Methanosaeta. Formate, methanol 

and methylamines are also reduced by methanogens, although those compounds seem to 

have minor environmental relevance (Conrad et al., 2006). Most methanogens discovered to 

date prefer moderate temperatures, but there are also hyperthermophilic genera, such as 

Methanopyrus, which grow at temperatures up to 110°C (Kurr et al., 1991).  
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Fig. 3. Schematic plot of isotope compositions of methane, inorganic carbon and lipid biomarker of the 
dominant microorganism at seep sites. Data from Biddle et al. (2006) (deep biosphere archaea); Galimov 
and Kvenvolden (1983) (fractionation while methane formation); Hinrichs and Boetius (2002) (methane, 
biomarker of ANME and partner-SRB lipids); Peters et al. (1978) (mean kerogen isotopy); Kinnaman et 
al. (2007) (carbon fractionation in aerobic methane consumption); and Werne et al. (2002) (typical 13C-
composition of methane and carbonate and bacterial methanotrophs).  
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The lipid-derived biomarkers of methanogens are the isoprenoidal glycerol diethers 

isoprenoidal glycerol ethers archaeol (2,3-di-O-phytanyl-sn-glycerol) and sn2-

hydroxyarchaeol (2-O-(3'-hydroxy-3',7', 11',15'-tetramethyl)hexadecyl-3-O-phytanyl-sn-

glycerol) as well as the branched hydrocarbon 2,6,10,15,19-pentamethylicosane (PMI) and 

crocetane (Ohtsubo et al., 1993; Schouten et al., 1997). The biomass and lipid biomarker of 

autotrophic methanogens have intermediately depleted carbon compositions (-30 to -60‰). 

Their carbon source, CO2, is most often quite heavy, but assimilation of inorganically fixed 

carbon involves strong isotope fractionation.  

 

Methane oxidizing bacteria are present in all habitats where methane and oxygen 

overlap (King, 1992; Knief et al., 2003). Methane-oxidizing bacteria (MOB) are either 

Gammaproteobacteria (Type I-MOB) or Alphaproteobacteria (Type II-MOB).  Type I-MOB (e.g., 

in Methylomonas, Methylomicrobium and Methylobacter) use the more efficient ribulose 

monophosphate pathway (RMP) for carbon fixation, whereas Type II-MOB (e.g. 

Methlyosinus and Methylocystis) perform carbon fixation via the serine pathway. The latter 

requires additional ATP as a reducing agent for CO2. The higher energy demand of Type II 

manifests in a lower growth yield and a minor ecological relevance of this group (Hanson 

and Hanson, 1996). A dominance of Type-II-MOB was found in slightly acidic 

environments and under nitrogen limitation (Hanson and Hanson, 1996; Jahnke et al., 

1999). Most MOB have a growth optimum between 25 and 35°C at neutral pHs. Growth of 

both groups is limited to temperatures of 50°C.  Recently, a third group of aerobic 

methanotrophs, distantly related to the Verrucomicrobia, was discovered and have the ability 

to perform aerobic methane oxidation under highly acidic conditions (down to pH 1), 

however the ecological relevance of these extremophilic MOB has so far not been evaluated 

(Dunfield et al., 2007).  

31



Methane Oxidation and Carbon Assimilation in Marine Sediments  

Half saturation constants (KM) for methane in aerobic methanotrophy are in the 

range of 25-40 ppmv (i.e., 40-70 nM) for soil samples (Bender and Conrad, 1993), and as 

high as 2 μM for a pure culture of Methylosinus (Jørgensen and Degn, 1983). Such low KM 

values are due to the high efficiency of the methane monooxygenase enzyme, which 

catalyzes the first step of methane assimilation in all aerobic methanogens. 

Methanotrophic bacteria leave characteristic phospholipid-derived fatty acid patterns 

(PLFAs) in sediments. Type I MOB predominantly produce monounsaturated C16 

compounds such as C16:1�5t, C16:1�6c and C16:1�8c, whereas C18:1�8c is diagnostic for Type II 

MOB (Guckert et al., 1991; Sundh et al., 1995; Hanson and Hanson, 1996).  MOB biomass 

usually has 13C-values of -30 to -80‰. The strong depletion is because MOB usually 

consume already-depleted methane, and a further fractionation of about -30‰ occurs while 

assimilating this methane into biomass (as measured for Methylococcus capsulate, Methylomonas 

methanica, both Type I-M. using the RMP cycle (Summons et al., 1994)). Instead of 

assimilated methane carbon isotopy, the hydrogen isotopy of methane does not substantially 

impact the biomass �D composition, since in MOB methane-bound hydrogen is not 

preserved during methane carbon assimilation (Sessions et al., 1999). 

 

Anaerobic methanotrophs (ANMEs) and their partner SRBs. Three major 

groups of methanotrophic archaea, ANME-1, -2 and -3, have been identified (Hinrichs et 

al., 1999; Boetius et al., 2000; Niemann et al., 2006). ANME-1 are distantly related to 

Methanosarcina and Methanomicrobiales (Hinrichs et al., 1999; Knittel et al., 2005) and appear as 

single cells (Valentine, 2002; Knittel et al., 2005), filaments (Niemann et al., 2005), or 

monospecies aggregates (Orphan et al., 2002). ANME-1 was found to dominate diffusion-

driven SMTZs (Niemann et al. 2005), and is a main organism in microbial mats of the Black 

Sea (Michaelis et al., 2002; Knittel et al., 2005). The biomass at most highly active cold seeps 

is dominated by aggregated methanotrophic consortia of ANME-2 or -3 and SRB. In these 
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settings archaea and their partner-SRB comprise up to 90% of the microbial biomass 

(Knittel et al., 2005). ANME-2 belong to the order Methanosarcinales and are usually found in 

consortia with SRB of the order Desulfosarcinales/Desulfococcuales (DSS) (Boetius et al., 2000; 

Knittel et al., 2003, 2005). The recently discovered third group of anaerobic methanotrophs, 

ANME-3, is most closely related to Methanococcoides and Methanolobus and is typically found in 

aggregates with Desulfobulbus-like SRB (Niemann et al., 2006; Lösekann et al., 2007).   

Methanogenic and methanotrophic archaea are both Euryarchaeota. Given this 

phylogenetic overlap, it is not surprisingly that both groups have similar biomarker patterns. 

Hence, typical lipid biomarkers of ANMEs are archaeol and sn2-hydroxyarchaeol, as well as 

crocetane and PMIs and their unsaturated homologues (crocetenes and pentamethylicosenes 

- PMI�), and a number of isoprenoidal glycerol dialkylglycerol tetraethers (GDGTs; 

Niemann and Elvert, in press). In ANME-2 dominated sediments, sn2-hydroxyarchaeol: 

archaeol ratios >3 as well as the presence of substantial amounts of crocetane were reported 

(Nauhaus et al. 2007, Niemann and Elvert, in press). In contrast, distinct production of 

PMI:4 and PMI:5 and dominance of archaeol to sn2-hydroxyarchaeol may be indicative of 

ANME-1 dominated sediments (Blumenberg et al., 2004; Niemann and Elvert, in press). 

ANME lipids characteristically have superlight carbon isotope compositions 

(Hinrichs et al., 1999; Hinrichs et al., 2000; Orphan et al., 2001). Most reported �13C-values 

of archaeol and hydroxyarchaeol are between -90‰ and -130‰ (Hinrichs et al., 1999; 

Elvert et al., 2000; Orphan et al., 2001; Thiel et al., 2001), with a fairly constant methane 

offset of -40‰ to -50‰ (Hinrichs and Boetius, 2002). This suggests that methane is the 

direct carbon source comprising the biomass of anaerobic methanotrophs.   

The consortial partner-SRBs partners produce a diverse lipid pattern of mainly 

unsaturated fatty acids and isoprenoids. However, within those, C16:1�5 and 

cy-(cyclopropane)C17:0�5,6, iso- and anteiso-C15:0 as well as some non-isoprenoidal mono- and 

dialkyl- glycerol ethers (MAGEs, DAGEs) have taxonomic relevance (Niemann and Elvert, 
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in press). All of these compounds were found with substantially depleted stable carbon 

isotope compositions (e.g., �13C C16:1�5c of -75 to -96‰ and �13C C17:0�5,6 of -94 to -103‰ in 

Hydrate Ridge seep sediments; Elvert et al., 2003), suggesting a tight coupling between 

consortial SRB and methane oxidation (Orphan et al., 2001; Elvert et al., 2003). A relatively 

constant offset of -40 to -50‰ between seep specific fatty acids and DIC carbon 

composition was found, which may indicate autotrophic carbon assimilation by the seep 

SRB (Hinrichs and Boetius, 2002). 

 

 

6. Experimental investigation of Methane Oxidation 

Apparent kinetics of methane oxidation 

Since half saturation constants (KM) for methane in aerobic methanotrophy and 

anaerobic methane oxidation are very different, different methods for KM determination 

also need to be chosen. For aerobic methanotrophs, methane oxidation kinetics are typically 

determined in open systems where a constant gas flow provides a defined methane-air 

mixture (Bender and Conrad, 1993). An inline membrane mass spectrometer is used to 

measure concentrations of methane and oxygen in the medium. Half saturation constants 

for methane on the order of 20 to 50 ppmv for non-enriched soil samples (Bender and 

Conrad, 1993), and up to 54,100 ppmv for cultures of Methylococcus (Carlsen et al., 1991) 

were determined using this approach. 

Half saturations of methane in AOM were estimated to be orders of magnitude 

higher than for aerobic methanotrophy. To determine the response of AOM to methane 

pressure far above one atmosphere, Nauhaus et al. (2002) incubated samples in hydrostatic 

pressure chambers. The high methane levels made determination of relatively small methane 

consumptions impossible, thus, changes in the concentration of produced sulfide were 

34



Chapter I: Methane in the Marine and Global Carbon Cycle 

measured. Within these incubations the authors measured no saturation of methane 

dependent SR rate up to methane pressures of 1 MPa (~16mM).  

Using a semi-continuous flow-through reactor, we tested the development of 

methane consumption and sulfide oxidation in the low pressure range from 0 up to about 

0.15 MPa. The advantage of the flow-through setup was its accommodation of repeated 

measurements on the same sediments. This is possible since prior experiments have shown 

that the methane oxidation capacity of the bacterial community, one established, stays 

constant over longer time scales and can resist longer starving periods (see Chapter III).  

 

Experimental investigation of growth and carbon assimilation in methanotrophy 

 Growth rates for methanotrophic bacteria are determined by incubating a pure 

culture in a turbidostatic and oxystatic fermentation system supplying optimized or other 

defined conditions. By monitoring exponentially increasing methane consumption rates in 

the fermenter, growth rates up to 0.37 h-1 were determined for Methylococcus (Jørgensen and 

Degn, 1983). Up to 1 g biomass was formed while oxidizing 1 g methane (Wilkinson et al., 

1974), which is equivalent to a carbon uptake efficiency of almost 50%.  

Growth rate and growth yield determinations for anaerobic methanotrophs must 

tackle very different challenges. Pure cultures of ANMEs do not exist. Hence, experiments 

rely on natural enrichments of organisms from sediments of highly active seep areas 

(Hydrate Ridge, Black Sea, etc.). Organisms performing AOM live at the lower limit of 

energy yields for microbial growth and activity, growth rates are orders of magnitude lower 

than for aerobic methanotrophs. Furthermore, factors that limit the growth of these 

organisms are not known. The first results that were determined showed high half saturation 

constants for methane that were in the range of several mM (Nauhaus et al., 2002), making 

other experimental setups necessary. 
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Subsequent growth experiments were performed in pressure incubations supplying 

about 1MPa CH4 (Nauhaus et al., 2007). From an almost two-year long incubation growth 

rates of 0.021 week-1 were calculated based on (fluorescence in situ hybridization (FISH) 

counts and biomass weights. Based on sulfide concentration data, carbon assimilation 

efficiencies of about 1% were measured. 

 Girguis et al. (2003) examined the dynamics of methanotrophic communities using 

flow-through reactor incubations. Twenty-four weeks of percolation with methane-saturated 

water did not result in significant changes to the composition of the microbial community in 

seep sediments. However, in non-seep sediments, Girguis et al. (2005) were able to quickly 

stimulate the growth of an AOM community. Using gene copy numbers, they calculated 

growth rates of 0.17 week-1 for ANME-2, 0.22 week-1 for ANME-1 and 0.3 week-1 for 

Desulfosarcina relatives. The difference of determined growth rates is so far not explainable. 

An alternative way to determine growth efficiencies or carbon assimilation 

efficiencies in anaerobic methanotrophy involves carbon stable isotope probing and lipid 

biomarker analysis. Using stable isotope probing of methane, Blumenberg et al. (2005) 

found assimilation of methane derived carbon into both archaeal and sulfate reducing 

bacterial lipids. Based on the isotopic shift and metabolic activities, a carbon uptake of 1.9% 

was calculated (Blumenberg et al., 2005). By combining radiotracer incubation, beta 

microimaging and secondary ion mass spectrometry, Treude and coworkers (2007) 

demonstrated also substantial uptake of inorganic carbon into methanotrophic biomass. 

This indicates that carbon assimilation rates, based only on methane uptake, underestimate 

the growth efficiency of AOM.  

Chapter IV describes our calculations of carbon assimilation efficiencies, based on 

results from parallel 13C-labeling of methane and DIC. To determine methane consumption 

rates and to reduce the negative effect of rising product concentrations, we used a flow-
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through column setup for the incubations. Seep sediments from Gullfaks, Hydrate Ridge 

and Black Sea were used as inoculates in these experiments. 

 

Radioactive and stable isotope probing (SIP) as tools to study the ecology of 

methanotrophs 

Carbon isotope probing can be used to trace metabolic activity and carbon 

assimilation in sediments. To link metabolic activity to microbial diversity, labeling is 

combined with a microbial identification tool, such as DNA or RNA sequencing, FISH, or 

lipid biomarker analysis.  

In DNA-SIP and RNA-SIP studies, a pure 13C-labeled potential carbon source is 

added to a sample, usually in relatively high concentrations to support sufficient growth. 

After incubation, nucleic DNA or RNA is extracted. The newly formed, heavy nucleic acids 

are separated from the “old” non labeled DNA or RNA using ultracentrifugation (Morris et 

al., 2002). Separated bands with heavy labeled DNA/RNA are then amplified by polymerase 

chain reaction (PCR).  

A general limit of RNA or DNA-SIP is the generation of sufficient labeled nucleic 

acids, which limits either approach to fast growing organisms. Examples of successful 

applications of DNA.SIP include the identification of aerobic methanol oxidizers 

(Radajewski et al., 2000) and degraders of organic pollutants such as phenol, naphthalene 

(Jeon et al., 2003; Padmanabhan et al., 2003) and the “ozone killer” methylchloride  

(Borodina et al., 2005). 

The combination of stable isotope probing with labeled nitrogen (15N; Cadisch et al., 

2005) and water (H2
18O; Schwartz, 2007) has extended the field of DNA-SIP. Both methods 

are independent from the addition of labeled carbon sources.  

The combination of SIP and RNA analysis can directly demonstrate gene expression 

associated with the use of a carbon source (Manefield et al., 2002). For example, RNA-SIP 
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has been successfully applied in the examination of propionate incorporation into rice field 

microbiota (Lueders et al., 2004) and in the examination of PCP degradation (Mahmood et 

al., 2005).  

All RNA/DNA SIP studies to date have been performed with terrestrial aerobic 

inoculates; similar studies for marine environments are lacking. Application of SIP 

techniques in marine sediments have failed presumably due to the limited microbial growth 

that occurs in these environments. This is especially true in the case of anaerobic 

methanotrophy, where cell doubling times are the order of months to years (Nauhaus et al., 

2007).  

MAR-FISH links microautoradiography (MAR) and FISH. Samples are incubated 

with radiolabeled carbon sources, similarly as in SIP. Incubated samples are fixed and 

simultaneously analyzed with FISH and microautoradiography (Lee et al., 1999). Few 14C 

labeled compounds are commercially available, limiting this method to a few carbon 

sources. MAR-FISH studies have been performed on aerobic methane-consuming cultures 

(Stoecker et al., 2006), in addition to other studies where organic monomers such as acetate 

were incorporated into biomass (Ginige et al., 2005).  

Lipid biomarker-SIP, also known as PLFA-(phospholipid derived fatty acids)-

SIP combines carbon isotope labeling with lipid biomarker analysis. Lipid biomarker 

patterns have taxonomic significance (Kaneda, 1991; Moore et al., 1994; Brocks and 

Pearson, 2005) and the development of chromatography (combustion) isotope ratio mass 

spectrometry (GC-(c)-IRMS) allows highly accurate isotope composition analysis of lipid 

compounds (Hayes et al., 1990; Brenna et al., 1997). Using this combination, uptake of 

minute carbon quantities into lipids can be determined. The limitation of this method is 

making phylogenetic inferences from lipid derived carbon assimilation data; this is not 

always possible, especially given the influences of environmental parameters such as 

temperature, salinity and nutrient supply on microbial lipid patterns (Hazel, 1995; Nicolaus 
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et al., 2001). Parallel PLFA-SIP and DNA-SIP experiments that combine advantages of 

both methods (sensitivity and quantification vs. specificity) as shown by Webster et al. 

(2006) or Singh and Tate (2007) may offer the best way forward. 

Successful applications of lipid biomarker-SIP began with pioneering work on 

coastal North Sea sediments, where Boschker et al. (1998) examined the growth of sulfate-

reducing bacteria on certain substrates. Wuchter et al. (2003) showed mainly autotrophic 

growth of Crenarchaeota in North Sea sediments. An in situ 13C-pulse-chase experiment by 

Middleburg et al. (2000) followed inorganic carbon flow into algae and bacterial biomass. 

Various studies have examined plant-microbe interactions using lipid biomarker-SIP 

(Treonis et al., 2004; Prosser et al., 2006). 

Lipid biomarker SIP with 13CH4 was applied by Deines et al. (2007) to track the 

carbon flow from methane via methylotrophic bacteria into the larvae of Stictochironomus 

pictulus, an abundant gnat species. Maxfield et al. (2006) and Singh and Tate (2007) described 

activity of methanotrophic bacteria in fertilized farmland and forests soils, and documented 

methane carbon flows in these systems. 

Besides carbon isotopes, hydrogen isotope compositions of lipid biomarker can 

also be analyzed by GC-IRMS.  Deuterium labeling of styrene (vinyl benzene) was used by 

Alexandrino et al. (2001) to investigate degradation and assimilation of this anthropogenic 

compound by Pseudomonas spp. The deuterium label from styrene was recovered in strongly 

deuterium labeled bacterial biomarkers. 

The only prior stable carbon isotope labeling study focusing on anaerobic 

methanotrophy was performed by Blumenberg et al. (2005) who examined the assimilation 

of methane into biomass under anaerobic conditions. Chapter IV compares the carbon 

incorporation of labeled methane and inorganic carbon into lipid biomarkers from archaea 

and their partner SRBs. We incubated sediments from three seepage sites (Black Sea, 
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Hydrate Ridge and Gullfaks) in a flow-through setup that was developed for anaerobic 

experiments, and is described in Chapter III. 

 

 

7. Structure and main objectives of the thesis 

A dominant role in the carbon cycle has been attributed to the anaerobic oxidation 

of methane (AOM). In marine environments AOM contributes between 80% and 85% of 

the methane consumption. This PhD thesis combines the investigation of methanotrophic 

habitats with laboratory studies that together focus on the biogeochemistry and physiology 

of methanotrophic consortia. Chapter I reviews the current knowledge on methane 

biogeochemistry and the molecular signatures of microorganisms involved in methane 

production and consumption. Chapter II presents a study of microbial communities at 

methane seeps at Gullfaks and Tommeliten (Northern and central North Sea) that applies 

biogeochemical methods, lipid biomarker analysis and 16S rRNA-based molecular methods. 

Chapter III describes a flow-through reactor and presents first results from incubations 

using naturally enriched seep sediments from Gullfaks and other sites; it investigates the 

short term response of anaerobic methane oxidizing communities to different methane and 

sulfate concentrations. The flow-through setup was also used for experiments presented in 

Chapter IV, which examines the relevance of methane and inorganic carbon as carbon 

sources for microbial communities mediating AOM, work that combines stable isotope 

probing with lipid biomarker analysis. 

In summary, three research projects were performed to answer the following questions: 

1. What are the geochemical and the biomarker patterns and the microbial 

characteristics of coastal seep habitats, and how do they compare to deep sea 

habitats? 
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2. How do changing availabilities of methane and sulfate influence the activity of 

anaerobic methanotrophic communities?  

3. What are the carbon sources for organisms performing AOM? How can we 

integrate this knowledge into prior hypotheses on the functioning of AOM? 

 

8. Publication outline 

Biogeochemical Processes and Microbial Diversity of Gullfaks and Tommeliten 

Methane Seeps (Northern North Sea)  

G. Wegener, M. Shovitri, K. Knittel, H. Niemann, M. Hovland and A. Boetius 

Online at Biogeosciences Discussions (review process for Biogeosciences Journal) 

 

This study was performed in the EU project METROL (Methane flux control in ocean 

margin sediments), which aims to describe the biological and geochemical controls of 

methane fluxes. This study describes methane fluxes and the composition and distribution 

of key microbial communities at various methane seepage systems in the North Sea. 

Comparison of those shallow water sites to deep-sea seep systems forms part of this 

manuscript.  

Bathymetric measurements and sonar gas flare imaging were carried out as a service 

by the company Innomar during five research cruises with R/V Heincke (HE 169, HE 180, 

HE 208) and R/V Alkor (AL 267). Samples for microbiological and geochemical studies 

were taken during HE 208 and AL 267 by G. Wegener and A. Boetius. Organic and 

inorganic geochemical analyses were performed by G.Wegener. Molecular methods were 

performed in by M Shovitri as part of her M.Sc. thesis, supervised by G. Wegener and K. 

Knittel. The manuscript was written by G. Wegener with input from A. Boetius, K. Knittel 

and H. Niemann.  
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Short-Term Responses of Anaerobic Methane-Oxidizing Microbial Communities 

from Submarine Cold Seeps to Variations in Methane and Sulfate 

G. Wegener, T. Ferdelman and A. Boetius.  

In preparation for submission to Biogeosciences Journal 

 

Laboratory experiments on short-term responses of methane oxidation and sulfate 

reduction were performed in a flow-through system ensuring stable conditions and non-

invasive sampling of pore waters. The flow-through setup was developed and operated by 

G. Wegener. Sediment samples were obtained by G. Wegener (Gullfaks, HE 208); additional 

samples were provided from earlier expeditions. All rate measurements and data analyses 

were carried out by G. Wegener. Writing of the manuscript was done by G. Wegener with 

input from T. Ferdelman and A. Boetius. 

 

 

Assimilation of Methane and Inorganic Carbon by Microbial Communities 

Mediating the Anaerobic Oxidation of Methane 

Submitted to Environmental Microbiology  

G. Wegener, H. Niemann, M. Elvert, K.-U. Hinrichs and A. Boetius  

 

This study was undertaken to investigate methane and carbonate assimilation by 

microorganisms mediating AOM. The project was initiated by G. Wegener, the setup was 

developed and samples were taken by G. Wegener. Rate measurements and lipid biomarker 

analyses were performed by G. Wegener with the help of H. Niemann and M. Elvert. Data 

analysis was carried out by G. Wegener. The manuscript was written by G. Wegener with 

input from H. Niemann, A. Boetius, K.-U. Hinrichs and M. Elvert. 
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Abstract: Fluid-flow related seafloor structures and gas seeps were detected in the 

North Sea in the 1970s and 1980s by acoustic sub-bottom profiling and oil rig 

surveys. A variety of features like pockmarks, gas vents and authigenic carbonate 

cements were found to be associated with sites of oil and gas exploration, indicating 

a link between these surface structures and underlying deep hydrocarbon reservoirs. 

In this study we performed acoustic surveys and videographic observation at 

Gullfaks, Holene Trench, Tommeliten, Witch’s Hole and the giant pockmarks of the 

UK Block 15/25, to investigate the occurrence and distribution of cold seep 

ecosystems in the Northern North Sea. The most active gas seep sites, i.e. Gullfaks 

and Tommeliten, were investigated in detail:  at both sites gas bubbles escaped 

continuously from small holes in the seabed to the water column, reaching the upper 

mixed surface layer as indicated by acoustic images of the gas flares. At Gullfaks a 

0.1 km² large gas emission site was detected on a flat sandy seabed, covered by 

filamentous sulfide-oxidizing bacteria. At Tommeliten we found a patchy 

distribution of small bacterial mats indicating sites of gas seepage. Here the seafloor 

consists of layers of sand and stiff clay, and gas emission was observed from small 

cracks in the seafloor. At both sites the anaerobic oxidation of methane (AOM) 

coupled to sulfate reduction is the major source of sulfide. Molecular analyses 

targeting specific lipid biomarkers and 16S rRNA gene sequences identified an 

active microbial community dominated by sulfide-oxidizing and sulfate-reducing 

bacteria (SRB) as well as methanotrophic bacteria and archaea. Carbon isotope 

values of specific microbial fatty acids and alcohols were highly depleted, indicating 

that the microbial community at both gas seeps incorporates methane or its 

metabolites. The microbial community composition of both shallow seeps show 

high similarities to the deep water seeps associated with gas hydrates such as 

Hydrate Ridge or Eel River basin. 
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1. Introduction: 

The North Sea is a marginal sea of the Atlantic on the European continental shelf. 

Its sedimentary basin, especially the Western and Northern areas, hosts large gas and oil 

fields which are exploited since the 1970s. Leaking methane reservoirs are a major source 

for shallow gas accumulations and emission into the water column and atmosphere 

(Hovland and Judd, 1988, Rehder et al., 1998; Judd and Hovland 2007). In the North Sea, 

eruptive gas ebullition through impermeable seabed consisting of stiff glacial clays leads to 

the formation of small craters at the seafloor, also known as pockmarks (Hovland and Judd, 

1988). These pockmarks have diameters in the range of few to several hundred meters and 

are widespread in gas and oil fields of the central and northern North Sea. Intensive 

bathymetric and videographic surveys by the British Geological Survey and oil industry have 

led to a good understanding of the distribution of these and other gas escape structures in 

the North Sea (Judd and Hovland, 2007). As part of the 5th EU framework project 

METROL “Methane fluxes in ocean margin sediments: microbiological and geochemical 

control” we have studied the distribution, biogeochemistry and microbiology of gas seepage 

in the North Sea, to identify potential sites of methane emission to the atmosphere, and to 

better understand the functioning of the associated shallow water seep ecosystems. 

 Although methane is abundant in the seafloor, the oceans account for only 3 to 5% 

of the global atmospheric methane flux (Reeburgh, 2007). Aerobic and anaerobic microbial 

methane consumption almost completely control the gas flux into the water column and 

atmosphere, except at sites of high fluid flow and free gas ebullition (Valentine and 

Reeburgh, 2000). The anaerobic oxidation of methane with sulfate as terminal electron 

acceptor is the dominant biogeochemical process in gassy sediments (Hinrichs and Boetius, 

2002). Its net reaction can be described according to equation (1), but the underlying 

biochemistry of this process remains unknown (Widdel et al., 2007). 

OHHSHCOSOCH 23
2
44 

���
 ���       (1) 
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 Several phylogenetic clades of archaea related to the order Methanosarcinales were 

identified as anaerobic methanotrophs by analyses of 16S rRNA gene sequences and of 

stable isotope signatures of specific biomarkers (Hinrichs et al., 1999; Boetius et al., 2000; 

Orphan et al., 2001b, Niemann et al., 2006). In most seep habitats archaea form consortia 

with sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus or Desulfobulbus groups 

(Knittel et al., 2003; Niemann et al., 2006; Lösekann et al., 2007). These associations are 

commonly attributed to obligate syntrophy, in which the archaeal partner activates and 

metabolizes methane, providing an intermediate that is scavenged by the sulfate-reducing 

partner (Nauhaus et al., 2002; 2007). Analyses of carbon isotopes in seep ecosystems have 

shown a tight link between methane, the microbial consortia, authigenic carbonate 

precipitates and higher trophic levels in the food web (Hovland et al., 1985; Ritger et al., 

1987, Hinrichs and Boetius, 2002; Hovland et al., 2002; Levin, 2005). Deep water gas seeps 

often support an enormous biomass of free-living and symbiotic microbial life that is 

nourished by the oxidation of methane and the product of its anaerobic oxidation, sulfide. A 

prominent feature of such seeps are mat-forming chemoautotrophic bacteria using sulfide as 

energy source, including Beggiatoa (Treude et al., 2003; Joye et al., 2004), and Arcobacter 

(Omoregie et al., in review). Furthermore, authigenic carbonates related to anaerobic 

oxidation of methane (AOM) are found at many seeps. The precipitation of these 

carbonates is possibly related to an increase of pore water alkalinity due to AOM (Luff and 

Wallmann, 2003). Carbonate outcrops attract a variety of hardground fauna like corals, 

ophiurids, sponges and bivalves (Hovland and Risk, 2003, Niemann et al., 2005). Ultimately, 

the carbonate precipitation associated with AOM can fill and seal gas escape conduits 

(Hovland, 2002). 

 Biogeochemical research efforts on cold seeps during the last decade mainly focused 

on deep water systems, especially those associated with gas hydrates. As a consequence, 

much more is known about these systems than about shallow water seeps in estuaries and 
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shelf seas, despite their potential relevance for gas emission to the atmosphere. Specifically 

in the Northern North Sea, where the water column is frequently mixed by storms, methane 

emission from the seabed is likely to result in an export of this greenhouse gas to the 

atmosphere. However, well constrained estimates of the methane flux from the seabed to 

the atmosphere are still missing for the North Sea. 

 Here we investigated several pockmarks and potential sites of gas seepage of the 

Northern North Sea. Sediments were sampled from sulfide oxidizing bacterial mats which 

were associated with gas ebullition. Based on the concentration and carbon isotopy of 

specific lipid biomarkers, as well as by 16S rRNA sequence analysis, we describe the 

microbial communities of the two active shallow water seeps in the North Sea (Gullfaks and 

Tommeliten). Furthermore, their phylogenetic and biogeochemical characteristics are 

compared with those of known deep water cold seep communities to investigate whether 

shallow and deep seeps are populated by different types of methanotrophs. 

 

2. Material and methods 

Sampling sites 

Figure 1 gives an overview on the cold seep sites in the North Sea visited during the 

METROL cruises (R/V Heincke cruises HE169, HE180, HE208 and R/V Alkor cruise 

AL267; also see Tab. 1). For all investigated sites detailed background information was 

obtained previously during extensive geological surveys including seismic and sonar 

monitoring of seabed and water column features, as well as by videographic exploration 

using towed cameras and ROVs (Hovland and Judd, 1988). Gas emissions at Tommeliten 

and Gullfaks have been documented for a period over 25 years (Niemann et al., 2005, Judd 

and Hovland, 2007).   

 Gullfaks is one of the four major Norwegian oil and gas fields, located in the 

northeastern edge of the North Sea Plateau. The water depth in this area is ca. 140 m and 
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deepens northeastwards towards the Norwegian trench (Hovland, 2007). During the last 

glacial maximum the plateau was exposed and coastal sands were deposited. Younger 

sediments of the Holocene have not been found in this area because tidal currents prevent 

deposition (Eisma and Kalf, 1987). The Gullfaks hydrocarbon reservoir is situated in a 

depth of nearly 3 km (Hovland and Judd, 1988). Shallow gas accumulations formed above 

the leaky reservoir at depths between 300 and 450 meters below the seafloor (mbsf) (Judd 

and Hovland, 2007).  

Fig. 1. Tommeliten, Gullfaks and other 
potential gas escape structures 
investigated for current gas emission 
during the METROL research 
expeditions HE 169, HE 180, HE 208 
and Alkor 267. 

 

 Tommeliten lies in the greater Ekofisk area north of the central North Sea (Hovland 

and Judd, 1988; Hovland, 2002; Judd and Hovland, 2007) at a water depth of 75 m. This gas 

field is associated with salt diapirs at about 1 km bsf, and has already been fully exploited 

(Hovland, 2002). Seismic profiles indicate extensive gas escape pathways in the seabed 

above the deposit. Eruptive discharge of free gas probably formed the shallow pockmarks 

which lie 0.5-1 meter below the surrounding seabed level (Hovland and Sommerville, 1985). 

The sediments consist of sands, silt and marl (Niemann et al., 2005). Associated with gas 
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leakage pathways are calcareous cements, some of which extend above the seafloor and 

form reefs populated by diverse anthozoa and other hardground fauna (Hovland and Judd, 

1988; Niemann et al., 2005). Acoustic turbidity indicated the presence of free gas in the 

seabed in an area of about 0.12 km2. Sonar surveys revealed gas escape to the water column, 

and accordingly, numerous gas seeps associated with whitish bacterial mats were observed 

during ROV surveys (Hovland et al. 1993; Judd and Hovland, 2007, Niemann et al., 2005). 

Gas seepage was confined to about 120 individual bubble streams in an area of 6500 m2. An 

emission of 47g CH4 m-2 was estimated for this seepage area (Hovland et al., 1993). In the 

vicinity of the gas vents, elevated methane concentrations and gas bubbles were found in the 

seabed, at a sediment depth of 1-5 mbsf, associated with layers of carbonate precipitates and 

cements (Niemann et al. 2005). These observations and biogeochemical rate measurements 

indicate that most methane may be consumed in the seafloor, but that considerable gas 

escape to the water column occurs through cracks and fissures (Niemann et al., 2005). The 

carbon isotope signature of methane emitted from the seafloor of -45.6‰ indicates its 

thermogenic origin (Hovland and Sommerville, 1985; Hovland and Judd, 1988). 

 

Seafloor observations 

During the cruises HE 169, HE 180, HE 208 and AL267 (Tab. 1), several seep 

locations of the North Sea were visited (Fig. 1). Gas flares were detected using the sediment 

echo sounder system SES-2000 provided by INNOMAR (Rostock, Germany). The emitter 

induces two primary frequencies near 100 kHz to generate secondary bandwidths of 4 and 

15 kHz. The long waves were used to visualize shallow sea floor structures and layering. 

Water depth and gas flares were recorded with the 15 kHz spectrum, while sediment 

features were observed with a 4 kHz spectrum. Several acoustic transects were evaluated to 

quantify the gas flares and their extensions, and to localize the flare source at the seafloor. 

Video observations were performed with the ROV Sprint (Alfred Wegener Institute for 
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Polar and Marine Research, Bremerhaven; HE169), the towed camera system of the AWI 

(HE180) or the MPI (Spy, Mariscope, Kiel; HE208), or via a remotely operating vehicle at 

Tommeliten (ROV Cherokee, MARUM, Bremen; AL267).  

Table 1. Visited gas escape structures and the presence of gas flares and methane-derived carbonates. 
The cruises took place in June 2002 (HE169), October 2002 (HE180), May 2004 (HE208), and 
eptember 2005 (AL267). n.a. – bottom observations were not available, #described in Judd and Hovland 2007 S 

Structure Latitude Longitude Water depth Cruise gas escape  
authigenic 
carbonates 

Gullfaks seep 61°10.40' 02°14.50' 150 m HE 169, HE 180, 
Al 267 HE208 

yes no 

Holene Trench 59°19.60' 01°57.60' 130 - 145 m HE 169 no yes# 
UK 15/25 
pockmarks 

58°17.00' 00°58.50' 155 - 170m HE 180, HE 208 yes yes 

Witch's Hole 57°56.50' 00°23.30' 135 m HE 208 no yes# 
Snow White’s 
Hole 

57°58.81' 00°23.30' 145 m HE 208 yes n.a. 

Tommeliten 56°29.90' 02°59.80' 75 m HE 169, HE 180, 
AL267 

yes yes 

Skagerrak 
pockmarks 

58°00.00' 09°40.00' 120 -150 m HE 208 no no# 

 

Sediment sampling 

At Gullfaks sediments were sampled in May 2004 (HE208) using a video-guided 

multiple corer system (MUC; Octopus, Kiel). The samples were recovered from an area 

densely covered with bacterial mats where gas ebullition was observed. The coarse sands 

limited MUC penetration depth to max 30 centimeters. The highly permeable sands did not 

allow vertical subsampling of the MUCs at high resolution, because porewater was lost 

during subsampling. 

 The gas flare mapping and videographic observation at Tommeliten indicated an 

area of gas emission, which consisted of a few small patches of bacterial mats with diameters 

< 50 centimeters, spaced apart by 10-100 m, from most of which a single stream of gas 

bubbles emerged. Sampling of these patchy gas vents was only possible with the ROV 

Cherokee to which we mounted 3x 3.8cm diameter push cores. The cores were sampled in 

3 cm intervals.  
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 Sediment porosity, sulfate and methane concentrations were determined following 

the METROL protocol (http://www.metrol.org/index.php?bereich=1). In situ methane 

concentrations were calculated using PHREEQC, Version 2, US Geological Survey, 2007. 

Samples for molecular, microbiological and biomarker analyses were processed as described 

below. 

 

Radiotracer based in vitro measurements of AOM and SR were performed in the home 

laboratory. Sediment samples stored anoxically in wide mouth bottles with artificial, 

anaerobic seawater medium (28 mM Sulfate, 30 mM carbonate, 1 mM sulfide, equilibrated at 

a pH of 7.2; see also Widdel and Bak, 1992) were transferred into Hungate tubes, refilled 

with medium and brought into equilibrium with one atmosphere of methane (Krüger et al., 

2005). Controls without methane addition were prepared to determine methane 

independent SR. Rates were determined from replicate incubations (n �3). After one day of 

equilibration, 35SO4 (50 kBq dissolved in 10μl water) for SR and 14CH4 (10 kBq dissolved in 

50 μl water) for AOM were injected into the Hungate tubes through a butyl rubber septum. 

Samples were incubated for 7 days at in situ temperatures (8°C). The reactions were stopped 

by transferring the samples into zinc acetate and NaOH solution, respectively (Treude et al., 

2003). Further processing of AOM and SR samples was carried out as described previously 

(Treude et al., 2003; Kallmeyer et al., 2004), respectively. Concentrations and activities of the 

reactants (methane or sulfate) and the activities of the products (sulfide or carbonate) were 

measured to determine AOM and SR rates according to the following formulas:  

� �
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In equation (2) [CH4] is the concentration of methane, a14Cmethane and a14Ccarbonate the 

activity of the reactant and the product of AOM (Treude et al., 2003). In equation 3, [SO4] 

is the concentration of sulfate, aTRIS the activity of the total reduced inorganic sulfur, aTOT 

is the total activity of sulfide and sulfate and t is the reaction time. The factor 1.06 accounts 

for the discrimination of the heavier radio nucleotide 35S (Jørgensen and Fenchel, 1974). 

 

Total organic carbon content (TOC) and carbon nitrogen ratios (C/N) were analyzed 

from freeze-dried samples. Briefly, inorganic carbon (carbonate) was removed via HCl 

acidification. Subsequently, 20 to 30 mg of homogenized samples were filled in zinc 

cartridges and organic carbon and nitrogen was measured in a CNS analyzer (Carlo Erba 

NA 1500 CNS analyzer).  

 

Biomarker analyses. Lipid biomarker extraction from 10 - 17 g wet sediment was carried 

out as described in detail elsewhere (Elvert et al., 2003). Briefly, defined concentrations of 

cholestane, nonadecanol and nonadecanolic acid with known �13C-values were added to the 

sediments prior to extraction as internal standards for hydrocarbons, alcohols and fatty 

acids, respectively. Total lipids were extracted from the sediment by ultrasonification with 

organic solvents of decreasing polarity. Esterified fatty acids were cleaved by saponification 

with methanolic KOH solution. From this mixture, the neutral fraction (mainly 

hydrocarbons and alcohols) was extracted with hexane. After subsequent acidification, fatty 

acids were extracted with hexane. For analysis, fatty acids were methylated using BF3 in 

methanol yielding fatty acid methyl esters (FAMES). 

 The neutral fraction was further separated into hydrocarbons, ketones and alcohols 

on a SPE cartridge with solvents of increasing polarity (Niemann et al., 2005). The ketone 

fraction was not further analyzed. Shortly before analyses alcohols were methylated to 

trimethylsilyl (TMS) ethers using bis(trimethylsilyl)triflouracetamid (BSTFA). Concentration 
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and identity of single lipid compounds was determined by gas chromatography (GC) and 

gas chromatography-mass spectrometry (GC-MS) analysis, respectively (Elvert et al., 2003, 

2005; Niemann et al, 2005). Double bound positions of monoeonic fatty acids were 

determined analyzing their dimethyl disulfide (DMDS) adducts according to Moss and 

Labert-Faeir (1989). �13C-values of single lipid compounds were determined by GC-IRMS 

analyses according to Elvert et al. (2003). Concentration and isotopic signatures of fatty acid 

and alcohol were corrected for the additional carbon atoms added during derivatisation.  

  

DNA extraction, PCR amplification and clone library construction. From both sites 

DNA was extracted from 2 g of wet sediment (1-3 cm depth) using bio101 soil kit (Bio101, 

La Jolla, California). Domain-specific primers were used to amplify almost full-length 16S 

rRNA genes from the extracted chromosomal DNA by PCR. For Bacteria, primers GM3F 

(Muyzer et al., 1995) and EUB1492 (Kane et al., 1993) were used, for Archaea, the primers 

ARCH20F (Massana et al., 1997) and Uni1392 (Lane et al., 1985) were used. PCRs were 

performed (30 cycles) and products purified as described previously (Ravenschlag et al., 

1999). DNA was ligated in the pGEM-T-Easy vector (Promega, Madison, WI) and 

transformed into E. coli TOP10 cells (Invitrogen, Carlsbad, CA) following manufacturer’s 

recommendation.  

 

Sequencing and phylogenetic analysis. Sequencing was performed by Taq cycle 

sequencing with a model ABI377 sequencer (Applied Biosystems). The presence of chimeric 

sequences in the clone libraries was determined with the CHIMERA_CHECK program of 

the Ribosomal Database Project II (Center for Microbial Ecology, Michigan State 

University, http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=SSU). Sequence data were 

analyzed with the ARB software package (Ludwig et al., 2004).  Phylogenetic trees were 

calculated with the ODP 204 sequences from this project together with reference sequences, 

63



Methane Oxidation and Carbon Assimilation in Marine Sediments 

which were available in the EMBL, GenBank and DDJB databases by maximum-likelihood 

and neighbor-joining analysis with different sets of filters.  

 

Cell counts and CARD-FISH (Catalyzed reporter deposition - fluorescence in situ 

hybridization). The fixation for total cell counts and CARD-FISH were performed on-

board directly after sampling. For both methods 2 ml of the sediment were added to 9ml of 

2% formaldehyde artificial seawater solution, respectively. After fixation for two hours 

CARD-FISH samples were washed three times with 1xPBS (10mM sodium phosphate 

solution, 130 mM NaCl, adjusted to a pH of 7.2 by titration with Na2HPO4 or NaH2PO4) 

and finally stored in 1:1 PBS:ethanol solution at -20°C until further processing. Samples for 

total cell counts were stored in formalin at 4°C. 

 For the sandy samples the total cell count/CARD-FISH protocol were optimized to 

separate the sands particles from the cells. Cells were dislodged from sediment grains and 

brought into solution with the supernatant by sonicating each samples on ice for 2 min at 

50W. This procedure was repeated four times and supernatants were combined.  Total cell 

numbers were determined from the supernatant using acridine orange direct counting 

(AODC; Meyer-Reil, 1983). 

 CARD-FISH was performed following the protocol of Pernthaler (2002). The 

sediment samples were brought to a final dilution of 1:2000 to 1:4000 and filtered onto 

0.2μm GTTP filters (Millipore, Eschbonn, Germany). The probes used in this study (all 

purchased from biomers.net GmbH, Ulm, Germany) were EUB 338 I-III specific for most 

Bacteria (Amann et al., 1990; Daims et al., 1999), DSS658 specific for Desulfosarcina spp., 

Desulfococcus spp. and closely related clone sequences (Manz et al., 1998), Arch915 specific 

for most Archaea (Stahl and Amann, 1991), and probes ANME1-350 (Boetius et al., 2000), 

ANME2a-647, ANME2c-622 (Knittel et al., 2005) and ANME3-1249 (Niemann et al., 

2006) specific for ANME-1, -2a, -2c, and -3 archaeal cells, respectively. Cell 
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permeabilization and probe hybridization were performed according to the author’s 

instructions. For reference cell numbers, samples were also stained with 4’6’-diamidino-2-

phenlyindole (DAPI) for 15minutes (1μg/ml) and washed with sterile filtered water and 

ethanol for 60 and 30 seconds, respectively. Air-dried filters were imbedded in Citifluor 

(Citifluor Ltd., Leicester, UK). Cells were counted using an epifluorescence microscope 

(Axioplan, Zeiss, Germany). At least 1000 cells in randomly chosen fields were counted per 

sample. To quantify aggregates of ANME-2a, -2c and -3 up to 250grids were counted under 

400-fold magnification. Dual hybridizations for sulfate reducers (DSS) and archaea (ANME-

2a and -2c) were performed using different fluorescence dyes (cy3 and cy5) and images were 

taken with a confocal laser scanning microscope (LSM510; Carl Zeiss, Jena, Germany). 

 

3. Results and discussion 

Distribution of active seeps in the Northern North Sea 

The presence of gas flares indicating active methane seepage from the seabed was 

detected at different fluid flow-related seafloor structures visited during the METROL 

cruises. Large and abundant gas flares were found at Tommeliten, Gullfaks, Snow White’s 

Hole and the giant pockmarks of UK block 15/25 (Fig. 1, 2; Tab. 1).  

The pockmarks of UK Block 15/25, Snow White’s Hole and Witch’s Hole are part 

of the Witch Ground formation, northwest of the Tommeliten seep area (Fig. 1, Hovland 

and Judd, 1988). During our cruises (HE180 and HE208), most of the 5 giant (Scanner, 

Scotia and Challenger formation) and two medium sized pockmarks of the UK Block 15/25 

showed active seepage of methane from the deepest part of each depression (up to 17 m 

below the surrounding seafloor; Fig. 2c). Hovland et al. (1993) estimated the average flux at 

this location with 26 g CH4 m-2 yr-1. In the center of the pockmarks we also observed 

carbonate outcrops which were populated with benthic organisms, mostly sea anemones. 

Unfortunately we were not able to sample the surface and subsurface cements at the bottom 
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of the steep pockmarks because the gravity corer and multiple corer could not penetrate. 

The methane venting and the carbonate cements have been observed previously (Hovland 

and Judd, 1988) and during all expeditions to this site, indicating that the UK 15/25 

pockmarks may have been continuously emitting methane to the hydrosphere for at least 

two decades. The gas flares at the UK 15/25 pockmarks reached up to 80 m below the sea 

surface. In contrast to earlier observations (Hovland and Judd 1998), the Witch’s Hole 

structure itself was presently dormant, but we found an active pockmark southwest of it, 

which we named Snow White’s Hole (Fig. 2d). This structure emits a large gas flare 

extending about 80 m from the seafloor. However sampling directly at the flare was not 

possible most likely because of the presence of carbonate cements. Sampling in the vicinity 

of the gas flare at the edge of the pockmark recovered only oxidized non-seep sediments. 

The Holene Trench is an open channel of ca. 1 km width located on the Norwegian 

Plateau in about 120 m water depth. Previous surveys showed an acoustic turbidity in the 

top most 30 m of the surface sediments indicating gas charged sediments (Hovland and 

Judd, 1988). During our survey, two places were found where the turbidity extends to the 

surface of the sea floor, which could be related to active seep sites. However, during 

HE-169 we could not find any traces for active seepage (Fig. 2b) and only beige, oxidized 

clay sediments were recovered by multiple corer sampling. The western slope of the 

Norwegian Trench hosts several pockmark-like structures, which do not show carbonate 

outcrops (Hovland and Judd, 1988). Our survey during cruise HE-169 did not reveal any 

traces of seepage and one grab sample recovered beige, oxidized sandy-silty sediments. 

Previous surveys in the Skagerrak found several pockmarks with active gas escapes and 

seepage related fauna (Dando et al., 1994; Rise et al., 1999). During HE-208 we did not 

observe gas seepage from the positions reported in Dando et al. 1994 (Fig. 2f).  
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Fig. 2. Survey tracks and exemplary SES-2000 echo images showing gas flares and sea floor 
structures of the sites Gullfaks with the ‘Heincke’ seep area (A), Holene Trench (B), Scanner 
pockmark (UK 15/25 field) (C), Snow White’s Hole (D), Tommeliten (E).and Skagerrak (F). 

 

 For further investigations of the biogeochemistry and microbiology of shallow water 

cold seeps in the North Sea we focused on the Tommeliten and Gullfaks sites. The results 

from subsurface sampling of the Tommeliten seeps with help of a vibrocorer were already 

reported in Niemann et al. (2005). Here we focused on the hot spots for microbial methane 

turnover and methane emission which were associated with bacterial mats at both sites. 
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Gullfaks  

Seafloor observations. The Gullfaks field is located on the North Sea Plateau (~150 m 

water depth) and on an ancient beach (140 – 190m), respectively. The submerged beach was 

formed during the sea-level low of the last glacial maximum (Hovland and Judd 1988). 

Pockmark-like depressions were absent, which may be explained by the sediment properties 

of this area. Pockmark formation is believed to be limited to silty or clayish seafloor with 

low permeability and may not occur in highly permeable sandy seafloors (Hovland and Judd, 

1988; Judd, 2003).The flat seafloor of the Gullfaks seep area is composed of coarse sand 

and gravel. However, ripple structures observed during the ROV dives indicate episodically 

high bottom water current velocities. Several gas flares were found within an area of about 

0.5 km2, which was named ‘Heincke seep area’ (Hovland 2007). The flares extended up to 

120 meters above the seafloor, reaching the mixed water layer (Fig. 2a). Visual observations 

of the seafloor showed 1-2 bubble streams escaping from the sands every 5 m2 within a 

smaller area of 0.1 km2 covered by microbial mats (Fig. 3a). The macroscopic appearance 

resembled mats formed by giant filamentous sulfide oxidizing bacteria, such as Beggiatoa, 

which establish above zones of high sulfide flux (Nelson et al., 1986). No megafauna was 

observed to populate the seep site or to graze upon the bacterial mats, but many large cod-

like fish were observed in this area. Considering the solubility of methane in situ at a water 

depth of 150m (equivalent to ~16 bar modeled with PREEQC, USGS), methane 

concentrations in the seabed should exceed 26 mM. 

Multicorer sampling was conducted at Gullfaks in the bacterial mat field (Fig. 3a). 

Upon recovery, the sediment cores degassed strongly, releasing streams of methane bubbles 

into the overlaying water. The sediments smelled strongly of sulfide. The top 30 cm of 

sediment retrieved by multiple coring was unsorted, coarse to medium grained sands. 

Sediment porosity was on average 33%. Only the top surface layer of 1 to 5 centimeters was 

of beige color mixed with black particles, probably marking the oxygen penetration depth. 

68



Chapter II: Methane Seepage in the North Sea 

The color shift to blackish sediments below indicated the change of redox conditions to 

negative values and the presence of free sulfide and iron sulfide precipitations. Within the 

gassy sediment abundant ferromagnetic minerals, probably magnetite or greigite, were 

found, indicating a connection of methane and iron fluxes. Total organic carbon showed 

average values of only 0.17%, indicating that the main source for the observed high sulfide 

concentrations may be methane rather than deposited organic material.  

Fig. 3a. Mats of giant sulfide-oxidizing bacteria covering coarse sands and pebbles at the Heincke 
seep area at Gullfaks (left panel). The mats coincide with the area of gas ebullition and cover an area 
of about 0.1 km2 (right panel). 3b. Bacterial mats of the Tommeliten gas seep. Left panel: Sampling of 
a mat patch with a diameter of about 30cm. Gas ebullition was observed during sampling. Right 
panel: Map showing the distribution of mats, gas flares and carbonates (after Niemann et al. 2005). 
 

Microbial methane oxidation and sulfate reduction. From all six multicorer samples 

retrieved from the mat covered area, methane oxidation and sulfate reduction rate 

measurements were performed using replicate subsamples of the bulk sediments from the 

top 25 cm. Methane oxidation rates ranged from 0.006 μmol g-1 to 0.18 μmol g-1 dry weight 
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d-1 and sulfate reduction rates (SRR) from 0.05μmol g-1 to 0.3 μmol g-1 dry sediment d-1. In 

control measurements without methane, SRR was negligible, indicating that methane was 

the dominant electron donor for sulfate reduction. The integrated methane oxidation rates 

averaged 12.5 mmol m-2 d-1 and the integrated SRR 18.5 mmol m-2 d-1. These are 

comparatively high rates which fall within the range of other measurements from bacterial 

mat covered seep sites like Hydrate Ridge (5.1 to 99 mmol m-2 d-1; (Treude et al., 2003) or 

Haakon Mosby Mud Volcano (4.5 mmol m-2 d-1; (Niemann et al., 2006)). Using the mean 

methane oxidation rate from our incubations, a methane consumption of 15 t yr-1 can be 

roughly calculated for an area of 0.1 km2. Based on quantifications of single gas bubble 

streams (Hovland et al., 1993) we estimated a gas flux to the water column of 76 t yr-1 for 

this area, which means that the microbial filter could consume at least 16% of the total gas 

flux. Of course, these are only rough estimates, as the gas streams may vary strongly in 

intensity and methane content. 

  

Biomarker and carbon isotope signatures. The 13C-carbon compositions of methane at 

Gullfaks cover a range from -44.4‰ vs. PDB (Pee Dee Belemnite) at reservoir level (2,890 

m below seafloor) to -70‰ at seafloor level (Judd and Hovland, 2007). The abundance of 

specific biomarker lipids and their stable carbon isotope signatures were analyzed to reveal 

the distribution of chemoautotrophic and methanotrophic microbial communities. The lipid 

concentrations and isotopic signatures of the Gullfaks microbial communities (Core 766) are 

shown in Table 2. In comparison to highly active seep sites such as Hydrate Ridge, 

concentrations of lipid biomarkers at Gullfaks and Tommeliten were low. 

 In surface sediments of Gullfaks monounsaturated fatty acids were strongly 

dominant. Although these fatty acids are produced by a wide range of gram negative 

bacteria (Fang et al., 2005), their relative abundance can be used to trace specific microbial 

groups. The measured ratio for C16:1�7c, C18:1�7c and C16:0 of 68:18:14 was close to the ratio of 
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73:18:9 previously reported for Beggiatoa filaments covering cold seep sediments of the Gulf 

of Mexico (Zhang et al., 2005). The �13C-values of the FA C16:1�7c and C18:1�7c (-59 and -41‰, 

respectively) extracted from the bacteria covered sands, indicate a substantial contribution 

of autotrophic carbon fixation as previously found for several species of giant filamentous 

sulfide oxidizers (Nelson and Jannasch, 1983; Nelson et al., 1986; Nelson et al., 1989). In 

addition to signatures of sulfide oxidizing bacteria, substantial amount of diplopterol were 

found. This hopanoid is synthesized by several aerobic bacteria including methanotrophs 

(Rohmer et al., 1984). A methanotrophic origin of this biomarker at Gullfaks is likely 

because of its highly depleted stable carbon composition (-84‰).  

Table 2. Biomarker concentrations and their isotopic signatures in sediments from bacterial mat 
covered sands (Gullfaks Station 766), and sediments (Tommeliten Station 1274-K3) as well as from 
the subsurface SMTZ of Tommeliten (155 cm data by Niemann et al., 2005). n.d. = not detected; n.a. = 
not available. 

 

Gullfaks 
Station 766 
(0-10cm) 

Tommeliten  
1274-K3 

   (0-10cm) 

Tommeliten   
Core 1904 

155cm SMTZ 

Compound μg gdw-1 � 13C 
VPDB μg gdw-1 � 13C 

VPDB μg gdw-1 �13C 
VPDB 

C14:0 1.27 -60 0.64 -30 0.15 -28 
i-C15:0 0.61 -41 0.30 -35 0.06 -43 
ai-C15:0 0.64 -42 0.43 -34 0.14 -43 
C15:0 0.40 -48 0.22 -38 0.07 -37 
C16:1�7c 24.04 -59 2.54 -38 0.02 -38 
C16:1�5c 3.79 -77 0.39 -51 0.01 n.a. 
C16:0 6.17 -46 1.93 -32 0.60 -31 
10Me-C16:0 0.45 -39 0.21 -33 0.02 n.a. 
i-C17:0 0.12 n.d. 0.06 -39 0.04 n.a. 
ai-C17:0 0.09 n.d. 0.07 -37 0.04 n.a. 
cy-C17:0 0.24 -97 0.27 -59 n.a. n.a. 
C17:0 0.16 -36 0.08 -29 0.04 n.a. 
isoprenFA-C19:0 0.38 -34 0.13 -27 n.a. n.a. 
C18:1�9c 0.91 -37 0.65 -26 0.27 n.a. 
C18:1�7c 6.65 -41 1.60 -45 0.06 -32 
C18:0 0.35 -37 0.32 -30 0.35 -34 
       
Diplopterol 0.43 -84 n.d. n.d. n.a. n.a. 
archaeol 0.05 -115 0.05 -86 0.47 -61 
sn2-hydro.arch 0.16 -117 0.31 -90 0.08 -80  

 

 Characteristic lipids for seep associated sulfate reducing proteobacteria are C16:1�5c, 

cy-C17: 0�5,6, (Blumenberg et al., 2004; Elvert et al., 2003; Niemann et al., 2005, Niemann and 
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Elvert in press). We found a biomarker pattern with a clear dominance of C16:1�5c relative to 

iC15:0 previously identified as a typical signature for populations of sulfate reducers 

associated to ANME-2 and -3 dominated communities (Niemann and Elvert, in press). 

Specifically the �13C-value of C16:1�5c, of -77‰ strongly indicates an incorporation of 

methane-derived carbon. Previously, Niemann et al. (2006) reported an association of 

Desulfobulbus related bacteria to ANME-3. We did not find the typical biomarker C17:1�6 of 

this group, nor the related sequences in the Gullfaks sediments (Lösekann et al., 2007). 

Instead, substantial amounts of the 13C-depleted FA cy-C17:0�5,6 (-97‰,) provides evidence 

for a dominance of SRB of the Seep-SRB1 cluster associated with ANME-2 (Elvert et al., 

2003; Niemann et al., 2006, Niemann and Elvert in press).  The fatty acids iso- and 

anteiso-C15:0 were less depleted with isotope compositions of -41 to -42‰. From the 

difference in the carbon isotope composition of these two groups of sulfate reducing 

bacteria, it appears likely that a diverse community of sulfate reducers is present in the 

Gullfaks sediments, of which only some are coupled to the anaerobic methanotrophs.  

Several clades of ANME produce 13C-depleted archaeol and sn2-hydroxyarchaeol 

which are used as biomarkers for AOM (Orphan et al., 2001a; Michaelis et al., 2002; 

Blumenberg et al., 2004). At Gullfaks, sn2-hydroxyarchaeol was 2.2-2.9 fold more abundant 

than archaeol, indicating the dominance of ANME-2 populations (Blumenberg et al., 2004; 

Niemann and Elvert, in press). Both compounds were highly depleted in 13C, with �13C-

values of -115‰ and -117‰. Assuming that methane was the sole carbon source (	13C-

methane ~-70‰ (Judd and Hovland, 2007) for the synthesis of archaeol and sn2-

hydroxyarchaeol, this is equivalent to a 13C-fractionation of -45 to -47‰. This is in the range 

of isotope fractionation factors previously reported for anaerobic methanotrophic archaea 

from different marine settings (Hinrichs and Boetius, 2002; Niemann and Elvert, in press).  
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Microbial diversity and community composition based on 16S rRNA gene analyses. 

The bacterial 16S rRNA gene library from the gassy sands at Gullfaks comprised 69 gene 

sequences and was clearly dominated by microorganisms associated with seep ecosystems. 

We found different groups of sulfate-reducing bacteria and thiotrophic as well as 

methylotrophic bacteria (Tab. 3, Fig. 4). 15 sequences belonged to relatives of sulfur-

oxidizing symbiotic Gammaproteobacteria usually hosted by different marine worms or 

mussels.  No closely related sequences of filamentous sulfide oxidizers were found, although 

these were visually present in the sample from which DNA was extracted. Sequences related 

to methylotrophic bacteria (Methylomonas and Methylophaga relatives) were also abundant (6 

sequences) matching our results from the biomarker studies. We found 10 sequences of 

Deltaproteobacteria, which were all related to SRB of the Desulfosarcina/Desulfococcus group 

(Seep-SRB-1), which is the partner of ANME-1 and -2 (Knittel et al., 2003). 19 clones were 

related to the cluster of Cytophaga – Flavobacterium – Bacteriodetes (CFB) which is a diverse 

group of bacteria commonly found in the plankton and sediment involved in the 

degradation of complex organic matter, but which also occur at cold seep ecosystems 

(Knittel et al., 2003). 

The archaeal 16S rRNA sequence library was strongly dominated by Euryarchaeota 

sequences. Sixty three of 69 analyzed clones were affiliated with ANME-2a (Tab. 3, Fig. 5), 

the most common group of anaerobic methane oxidizers in gas hydrate bearing 

environments (Knittel et al., 2005). The ANME-2a clones were highly similar to sequences 

from other seep sites (Fig. 5), e.g. the  Santa  Barbara  Basin  Orphan  et al., 2001a), Hydrate  

Ridge (Knittel et al., 2005), the Gulf of Mexico seeps (Mills et al., 2003), and a Pacific 

carbon dioxide seep (Inagaki et al., 2006). Sequences related to other groups performing 

AOM, such as ANME-1, -2c, -3, were not found in our library. The only other 

euryarchaeotal sequence belonged to the Marine Benthic Group D. 
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Table 3. Overview of bacterial and archaeal 16S rRNA gene libraries and number of clones retrieved 
for the individual phylogenetic groups. Gullfaks (HE208, MUC766, 0-10 cm); Tommeliten (Bacterial 
patch 4-6cm, AL267 1274 K3-2) and Tommeliten deep SMTZ sulfate methane transition zone 
(HE180 1904, 160cm, Niemann et al., 2005). 
 

  Gullfaks 
Tommeliten 
(bact. patch) 

Tommeliten 
(deep SMTZ)

Bacteria    
Alphaproteobacteria 1 1   
Gammaproteobacteria Methylomonas 4     
  Methylophaga 2     
  Rel. of sulfur-oxidizing symbionts  15    
 Thioalkalivibrio, Thioploca rel.  18  
  Oceanospirillales   1   
Deltaproteobacteria Seep-SRB1 1 3 51 
  Seep-SRB2    3 
  Seep-SRB3 3     
  Seep-SRB4 1     
 Desulfobacterium aniline rel. 4 3 4 
  Desulfobacterium rel.   1 2 
  Desulfobulbus rel. 1 29   
  Myxobacteriales rel.    12  
  Desulfuromonas rel. 1     
Epsilonproteobacteria 3 2   
Spirochaeta     1   
Cytophaga/Flavobacterium/Bacteriodetes 19 4 3 
Planctomycetales     3 4 
Verrucomicrobia Victivalliaceae  3 1  36 
Nitrospira     1 6 
Holophaga/Acidobacterium 4 10   
Nitrospina   2     
OP11    1     
Actinobacteria   2 7   
Firmicutes Desulfotomaculum rel. 3 1   
Thermomicrobia    4   
Cyanobacteria     1   
unaffiliated    4 5  3 
  Total bacterial clones analyzed 69 107 117 

Archaea         
Euryarchaeota ANME-1  17 16 
  ANME-2a 63     
  ANME-2c  83   
  Marine Benthic Group D 1   1 
  Methanococcoides   1   
Crenarchaeota Marine Benthic Group B 3 1   
  Marine Group 1 2     
  Total archaeal clones analyzed 69 102 17 
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Fig. 4. Phylogenetic tree showing the affiliations of bacterial 16S rRNA clone sequences from 
Gullfaks and Tommeliten to selected references of the Deltaproteobacteria. The tree was calculated 
on a subset of nearly full length sequences by maximum-likelihood analysis in combination with 
filters, which considered only 50% conserved regions of the 16S rRNA of 	-proteobacteria to 
exclude the influence of highly variable positions.  Partial sequences were inserted into the 
reconstructed tree by using parsimony criteria with global-local optimization, without allowing 
changes in the overall tree topology. Probe specificity is indicated by brackets. The bar represents 
10% estimated sequence divergence. Sequences from this study are written in bold.  
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Fig. 5. Phylogenetic tree showing the affiliations of archaeal 16S rRNA gene sequences retrieved 
from sediments underlying the microbial mats of Gullfaks and Tommeliten to selected references of 
the domain Archaea. Besides cultivated organisms, at least one representative per phylogenetic group 
of all previously published clone sequences from methane-rich sites is included as references. The 
tree was constructed by using maximum-likelihood analysis in combination with filters excluding 
highly variable positions. Partial sequences were inserted into the reconstructed tree by using 
parsimony criteria with global-local optimization, without allowing changes in the overall tree 
topology. Probe specificity is indicated by brackets. The bar represents 10% estimated sequence 
divergence. Sequences from this study are written in bold. 

 Five clones belonged to the phylum Crenarchaeota including three clones of the 

Marine Benthic Group B which is regularly found at seeps (Knittel et al., 2005). The 

biogeochemical function of members of both archaeal marine benthic groups has not been 

identified yet. A study based on isotopic composition of lipid biomarkers suggests that 

subsurface Crenarchaeota of the Marine Benthic Group B could be heterotrophic, although 

they are commonly associated with methane sulfate transition zones (Biddle et al., 2006). 

 Total cell numbers in surface sediments at Gullfaks were quite high with 6.7×109 

and 7.9×109 single cells ml-1 sediment in the uppermost 10 cm at station 771 and 766, 
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respectively (Tab. 4). These cell numbers are higher than previously reported for non-seep 

sandy sediments (Llobet-Brossa et al., 1998; Wieringa et al., 2000; Rusch et al., 2001, 2003) 

and underline the stimulating effect of methane seepage on the microbial community 

inhabiting sands. The only other published cell counts from methane percolated sands 

showed numbers similar to those found at Gullfaks (Ishii et al., 2004). At a depth of 

20-30 cm cell numbers decreased considerably to 0.85×109 and 1.3×109 cells ml-1, indicating 

that the peak of microbial activity is in the upper 10 cm. The ratio of bacterial and archaeal 

cells were quantified by CARD-FISH. Bacteria comprised 29-50% and Archaea 8-16% of the 

DAPI stained cells. We found relatively high numbers of ANME 2a- and ANME 2c- cell 

aggregates; however, they did not reach the size and abundance of deep sea sites such as 

Hydrate Ridge (Nauhaus et al., 2002, 2007; Knittel et al., 2005). ANME-2a cells were 

clustering in dense, typically spherical aggregates associated with sulfate reducing bacteria in 

diameters of up to 10 μm (Fig. 6). ANME-2c cells were detected in less dense, small 

aggregates. The highest counts of ANME aggregates (8.4×106 ANME-2c aggregates at 

station 766, 6.6×106 ANME-2a-aggregates at 771) and ANME single cells (1.6×108 cells 

ml-1) were also found in the top 10 cm, matching the distribution of total cell numbers. The 

abundance of methanotrophic microorganisms strongly decreased with depth, providing 

evidence for a near surface peak of AOM activity. This may indicate that the highest 

availability of both methane and sulfate as main energy source is generally found in the 

surface sediment horizon. Interestingly, this horizon is likely to experience temporary 

flushing with oxygenated bottom waters, as indicated by the observed ripple structures on 

the seafloor, which are presumably caused by high bottom water currents. This should have 

a negative effect on the anaerobic microbial communities. However, it is possible that the 

high upward advection of gas may restrict the downward diffusion of oxygenated bottom 

waters at the seep site. 
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 The Gullfaks seep is the first site at which abundant single cells of ANME-2a and 

ANME-2c were detected. Previously, only ANME-1 (Orphan et al., 2002; Niemann et al., 

2005) and ANME-3 (Lösekann et al., 2007) were found as single cells. Monospecific 

ANME-2a or ANME-2c aggregates have been previously reported from Eckernförder Bay 

(Treude et al, 2005) and Eel River Basin (Orphan et al., 2002). ANME-2 cells aggregates 

without bacterial partner were also found to dominate specific regions of a microbial mat 

from the Black Sea (Treude et al., 2007).   

 

Tommeliten seeps 

Seafloor observations. The Tommeliten seep site lies at 75 m water depth and is 

part of the greater Ekofisk area of the Norwegian Block 1/9. In this area, the sedimentary 

rocks host a now exploited hydrocarbon reservoir. This reservoir is pierced by a salt diapir 

at about 1 km depth below the sea floor, and disturbances on seismic profiles indicate that 

free gas migrates to the sea floor (Hovland and Judd, 1988; Hovland, 2002).  Within an area 

of 0.5 km2 at the Tommeliten site we observed several gas flares, which extended from the 

seafloor to the sea surface (Fig. 2f). Many of these flares were concentrated in a small area of 

about 0.06 km2, which we assume to be the centre of the subsurface gas escape pathway. 

The distribution of the gas flares in 2005 (AL 267) was similar to the observations made in 

2002 (HE180; Niemann et al., 2005). Previous expeditions to the Tommeliten seepage area 

used remotely operated vehicles (ROVs) for bottom observations and sampling, and 

documented streams of single methane bubbles of thermogenic origin (�13C -45.6‰), small 

patches of microbial mats and methane derived authigenic carbonates outcropping at the sea 

floor (Hovland and Sommerville, 1985; Hovland and Judd, 1988; Trasher et al., 1996; 

Niemann et al., 2005). 
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Fig. 6: Dual hybridizations with fluorescently 
labeled rRNA targeting oligonucleotide probes. 
a) Consortia of ANME 2a/DSS from Gullfaks 
(probes ANME2a-647 [red] and DSS658 
[green]); b) Consortia of ANME2c/DSS from 
Tommeliten (probes ANME2c-622 [red] and 
DSS-658 [green]) 
. 

 Our observations by ROV in 2005 confirmed that most gas flares originated from 

small holes (1-5 cm diameter) in the seafloor emitting single streams of bubbles. They were 

associated with small patches of bacterial mats (30-50 cm in diameter, Fig. 3b). We sampled 

three cores from such bacterial mats. The recovered sediments below the mats were highly 

gassy and consisted of fine sands. In contrast, sediments a few meters away from the gas 

flares consisted of consolidated, hardly permeable marls enclosing layers of unsorted silt and 

sands above carbonate cements (Niemann et al., 2005). Accordingly, gas migration from the 

subsurface to the seabed may be limited to sandy horizons between the impermeable clays, 

and the gas bubbling may further erode the fine grain fraction. Upon recovery, the cores 

from these sediments continued to release methane gas as verified by GC measurements. 

This indicates a high in situ gas pressure in the seabed. At a water depth of 75 m the 

equilibrium methane concentrations in the interstitial waters in the direct vicinity of the gas 

ebullition sites could be around 12 mM.  
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Methane and sulfate turnover. The sample from a black patch from which gas 

escape was observed was composed of silty sediments, and contained little TOC with 0.22 

to 0.32% w/w. Due to the small amount of recovered sediment, we could not measure 

AOM and SR rates. It can be assumed that the rates are locally very high due to the 

saturation with gas and the flux of sulfate from overlying bottom water into the bubble sites. 

However, for the subsurface sulfate methane transitions zones (SMTZ) associated with the 

gas-migration pathways at Tommeliten, Niemann et al. (2005) showed low AOM and SR 

rates of a few nmol cm-3 d-1, resulting in ca 50 g CH4 m-2 yr-1, or 0.3 t yr-1 for the whole seep 

area of ca. 6500 m2. In comparison, the gas ebullition from the same site was estimated with 

47 g CH4 m-2 yr-1 (Hovland et al., 1993) suggesting a 50% efficiency of the microbial filter 

against methane. The higher methane consumption efficiency compared to Gullfaks could 

be due to the impermeable nature of the Tommeliten sediments allowing only for few gas 

leakage pathways.  

Biomarker and carbon isotope composition. Similar to surface sediments at 

Gullfaks, monounsaturated fatty acids were also the dominant biomarker fraction in the 

surface sediments from the Tommeliten gas vents (Tab. 2). However, concentrations of 

these and other bacteria lipids were lower in comparison to the mat-covered sands at 

Gullfaks. The fatty acid distribution suggests the presence of sulfide oxidizing bacteria, but 

the ratio of C16:1�7c to C18:1�7c to C16:0 (42: 32: 26) indicated a lower contribution to total 

bacterial biomass than in the Gullfaks sands.  

 In comparison to the Gullfaks seeps, the sediments from the Tommeliten gas vents 

contained similar amounts of archaeol but even more sn2-hydroxyarchaeol, indicating the 

dominance of ANME-2 populations. Both archaeol and sn2-hydroxyarchaeol were less 

depleted than at Gullfaks with �13C-values of -86‰ and -90‰. However, considering the 

heavier isotope composition of the source methane at Tommeliten (�13C CH4 -46‰ 

81



Methane Oxidation and Carbon Assimilation in Marine Sediments 

Hovland 2002), a stable carbon isotope fractionation of the lipid biomass relative to source 

methane of more than 40‰ typical for AOM and comparable to that at Gullfaks was found.  

 The specific biomarkers for SRB associated with AOM such as C16:1�5c, i-C15:0, and 

cy-C17:0 were similar in ratio but less abundant than at Gullfaks. The �13C-values of C16:1�5c 

and cy-C17:0 were relatively depleted with -51‰ and -59‰, respectively, whereas ai-C15:0 

showed a substantially less depleted �13C-value of -34‰. Interestingly, the surface seep 

sediments at Tommeliten resembled the biomarker signatures in the authigenic carbonate 

outcrops, but differed substantially from subsurface sediments (Niemann et al., 2005). In the 

deep SMTZ Niemann et al. (2005) found a dominance of ANME-1 communities as 

indicated by the dominance of archaeol over hydroxyarchaeol and a typical fatty acid pattern 

typical for sulfate reducing partners of ANME-1 (Blumenberg et al. 2004; Niemann and 

Elvert, in press; Niemann et al., 2005). These results correlated with 16S rRNA and FISH 

analyses (Niemann et al., 2005). We conclude that ANME-1 could be better adapted to the 

low energy conditions characteristic for deep sulfate methane transition zones, whereas 

ANME-2 dominates the advection driven highly active surface zones as already observed in 

some deep water seeps (Knittel et al., 2005). 

 

Microbial diversity and community composition based on 16S rRNA gene analyses.  

 Similar to Gullfaks, the bacterial 16S rRNA gene sequence library (Tab. 3.) and the 

selected sequences in the phylogenetic tree (Fig. 4) obtained from sediments of Tommeliten 

showed a relatively high diversity of sulfate reducing bacteria including relatives of the 

uncultured Seep-SRB1 (ANME-2 partners), Seep-SRB2 (Eel2), and of Desulfobacterium anilini. 

Seep-SRB2 organisms have been retrieved from nearly all seep sediments (e.g. Knittel et al., 

2003; Lösekann et al., 2007; Mills et al., 2005; Orphan et al., 2001b). However, their function 

remains unknown since no isolates are available. Desulfobacterium anilini relatives have been 

shown to oxidize different aromatic hydrocarbons such as naphthalene or xylene and could 
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also have a function in hydrocarbon degradation at this site (for an overview see Widdel et 

al., 2007). Also a high number of clones related to Desulfobulbus were found. In cold seep 

sediments of the Haakon Mosby mud volcano (Barents Sea), the SRB community was 

dominated by such relatives of Desulfobulbus, which formed aggregates with anaerobic 

methanotrophs of the ANME-3 cluster (Niemann et al., 2006, Lösekann et al., 2007). Single 

ANME-3 cells and a few aggregates occurred in the Tommeliten cold seep sediments, but 

their abundance was too low to analyze the potential bacterial partners. 

 As predicted by the biomarker signatures, the archaeal gene sequence library of 

Tommeliten contained mainly relatives of ANME-1 and ANME-2c (Fig. 5). These were 

most closely related to sequences retrieved from gas hydrate bearing sediments such as the 

Eel River Basin, Hydrate Ridge, and the Gulf of Mexico. ANME-2a sequences were not 

represented in the clone library, although ANME-2a aggregates were detected by CARD-

FISH (see below).  

 Cell counts in the cores 1274 K1 to K3 ranged from 4.1 to 5.8×109 cells ml-1 in the 

top layer of sediment and hence were comparable to the cell numbers at Gullfaks. With 

depth, cell numbers decreased to 3.0×109 cell ml-1 (6-10cm). Quantification with CARD-

FISH indicated the presence of ANME-2a, ANME-2c and low numbers of ANME-3 single 

cells and aggregates. Sulfate reducing bacteria were highly abundant comprising up to one 

third of total single cells.  

 Hence, the microbial communities in gassy sediments below thiotrophic mats of 

both seep sites in the North Sea were dominated by anaerobic methanotrophs of the 

ANME-2 cluster, and their partner sulfate reducing bacteria. At Tommeliten, the AOM 

community in the mat covered surface sediments resembled more that of the Gullfaks seep 

and of the Tommeliten authigenic carbonates than that of the subsurface SMTZ community 

(Niemann et al., 2005). The microbial communities also comprised sequences from other 

microorganisms typically occurring in methane rich deep-water seep ecosystems such as the 
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crenarchaeotal Marine Benthic Group B. Gene libraries and CARD-FISH counts indicated 

also differences between Gullfaks and Tommeliten AOM communities – such as the 

dominance of the ANME 2a cluster in Gullfaks cold seep sediments and the dominance of 

ANME 2c at Tommeliten, which may be a result of the different geological and hydrological 

features of both sites.  

 

The North Sea seeps in comparison to deep water cold seeps 

 At the shallow water seeps of the Northern North Sea, methane emission from deep 

reservoirs has been observed for more than 20 years. The habitats investigated here are 

characterized by locally high advection of gaseous methane and ebullition of gas bubbles to 

the hydrosphere. Both Tommeliten and Gullfaks likely contribute to methane emission to 

the atmosphere as indicated by gas flares reaching to the upper mixed water layers. It would 

be an important future task to attempt quantification of gas emission to the atmosphere by 

monitoring flares and methane concentrations in the flares and the overlying surface waters. 

In the interstitial porewaters of the Tommeliten and Gullfaks seeps, dissolved 

methane can reach concentrations of 12 mM and 25 mM, respectively. The highly 

permeable sands at Gullfaks allow the migration of gas bubbles through the sediment, 

leading to a relatively large seep area populated by methanotrophs and thiotrophs. The high 

upward advection of gas may restrict the downward diffusion of oxygenated bottom waters 

below a few cm, protecting the anaerobic methanotrophic communities, which showed very 

high activities in the top 10 cm. In contrast, the compact silty sands of Tommeliten allow 

gas migration only through small cracks in the seafloor sediments, restricting the distribution 

of methanotrophs and thiotrophs to small patches around the gas vents. Phylogenetic 

analysis of Deltaproteobacteria and Euryarchaeota at Gullfaks and Tommeliten indicate a high 

similarity of these to sequences from deep water seep sites, such as Hydrate Ridge (Boetius 
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et al., 2000; Knittel et al., 2003; Knittel et al., 2005), Eel River Basin (Orphan et al., 2001b) 

or Guyamas Basin (Teske et al., 2002). 

 The concentrations of most of the AOM specific biomarker were about one order 

of magnitude lower at the investigated sites compared to deep water seep ecosystems such 

as Hydrate Ridge (Elvert et al., 2003) and Haakon Mosby Mud Volcano (Niemann et al., 

2006). This finding was reflected in the low number of ANME aggregates of around 106 cm-

3. In deep water cold seeps such as Hydrate Ridge, Haakon Mosby and Eel River Basin, 

ANME aggregate numbers reach 108, comprising a large fraction of the total microbial 

biomass (>90%) (Knittel et al., 2005). A reason for this difference in ANME biomass could 

be the higher availability of dissolved methane in deep water seeps due to the increased 

solubility of methane at high hydrostatic pressures. Previous experiments indicate that AOM 

rates and the energy yield available for growth are higher at elevated methane concentrations 

(Nauhaus et al., 2002; 2007), which may support higher biomasses of AOM consortia. A 

second explanation for lower aggregate sizes in the North Sea may be the high bottom water 

currents causing relocation of particles, as well as sporadic oxygen influx into the sandy 

sediments. The only shallow water seeps known with higher biomass of ANME are the 

conspicuous methanotrophic microbial reefs of the Black Sea (Blumenberg et al., 2004; 

Treude et al., 2005). These lie in permanently anoxic waters and are hence protected from 

grazing.   

 

4. Conclusions 

Several gas seepages were mapped during the METROL cruises with R/V Heincke 

and Alkor. From these, we chose the two most active and accessible seepage areas, 

Tommeliten and Gullfaks, for detailed surveys using geochemical and molecular tools. At 

Gullfaks a seepage area of about 0.1 km2 was characterized by a high density of gas vents 

and extensive coverage by thiotrophic bacterial mats. At Tommeliten gas vents were less 
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dense and the bacterial mat covered areas were limited to small patches around small holes 

in the seafloor emitting gas. The different permeability of the seabed at both seep sites could 

explain the observed differences in the efficiency of the microbial filter against methane. 

From both sites considerable amounts of methane are emitted, some of which may reach 

the atmosphere as indicated by large gas flares reaching the upper mixed water layers. 

Specific biomarker and carbon isotope compositions, as well as 16S rDNA gene sequences 

and fluorescence in situ hybridization of specific microbial groups indicated that the 

bacterial mat covered sediments were populated by active communities of ANME-2 and 

their sulfate reducing partner bacteria. Archaeal biomarkers were about 40 to 50‰ depleted 

in 13C relative to the carbon source methane. Specific fatty acids of sulfate reducers involved 

in AOM were also considerably depleted in 13C indicating that they partially assimilate 

methane derived carbon. The 16S rRNA based gene libraries of both sites mostly included 

sequences from known groups of deep water cold seep microorganisms, indicating that 

water depth or other oceanographic conditions may not be limiting the dispersal of these 

groups. In contrast, distinct differences were found between the microbial community in the 

mat covered surface sediments (dominated by ANME-2) to those of the subsurface sulfate 

methane transition zone at Tommeliten (dominated by ANME-1), suggesting that different 

energy availabilities may select for different methanotrophic communities. 
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Abstract: A major role in global methane fluxes has been attributed to the process 

of anaerobic oxidation of methane, which is performed by consortia of 

methanotrophic archaea and sulfate reducing bacteria. An important question 

remains how these very slow growing microorganisms with generation times of 3-7 

months respond to natural variations in methane fluxes at cold seeps. Here, we used 

an experimental flow-through column system filled with cold seep sediments 

naturally enriched in methanotrophic communities, to test their response to short-

term variations in methane and sulfate fluxes. At stable methane and sulfate 

concentrations of ~2 mM and 28 mM, respectively, we measured constant rates of 

anaerobic oxidation of methane (AOM) and sulfide production (SR) during up to 

160 days of incubation. When percolated with methane free media, the anaerobic 

methanotrophs ceased to oxidize methane and to produce sulfide. After a starvation 

phase of 40 days, the addition of methane restored former AOM and SR rates 

immediately. At methane concentrations between 0-2.3 mM we measured a linear 

correlation between methane availability, AOM and SR. At constant fluid flow 

rates of 30 m yr-1, ca. 50% of the methane was consumed by the ANME population. 

In contrast, reducing the sulfate concentration from 28 to 1 mM, only a 35% 

decrease in AOM and SR was observed. The marine anaerobic methanotrophs 

(ANME) appear to be capable to consume substantial amounts of methane rising 

from the subsurface seabed to the hydrosphere over a wide range of fluxes of 

methane and sulfate.  

 

1. Introduction 

Between 5 to 10% of the organic matter deposited on the seafloor is converted to 

methane by a sequence of microbial processes in which methane production is the terminal 
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degradation step (Canfield, 1993, Canfield et al., 2005). The dissolved concentrations of 

methane in the ocean range from a few nM in seawater to about hundred mM in hydrate-

bearing subsurface sediments (Reeburgh, 2007). With about 4×1015 m3 methane, submarine 

gas hydrates bind more methane than all other reservoirs on earth (Milkov, 2004). However 

methane emission is rather low, contributing an estimated 3-5% of the atmospheric methane 

budget. This is due to the consumption of methane by anaerobic and aerobic 

microorganisms in the seabed which represent an effective filter against this potential 

greenhouse gas (Reeburgh, 1996; 2007).  

The principles and regulation of aerobic methane consumption are well understood 

(reviews: Hanson and Hanson, 1996; Trotsenko and Khmelenina, 2005). Due to the limited 

penetration of oxygen into the seabed, AOM is considered the globally more relevant sink 

for methane in the ocean (Hinrichs and Boetius, 2002; and literature therein). The net 

reaction for AOM with sulfate is: 

OHHSHCOSOCH 23
2
44 

���
 ���      (R 1) 

This process is performed by consortia of methanotrophic archaea and sulfate reducing 

bacteria (Boetius et al., 2000; Orphan et al., 2001). Unfortunately, the detailed reaction 

pathways have not been fully understood. 

Sedimentary methane oxidation rates range from a few pmol cm-3 day-1 in diffusion 

driven deep sulfate methane transition zones (e.g., Blake Ridge; Wellsbury et al., 2000) up to 

3 μmol cm-3 day-1 at cold seeps of Hydrate Ridge (Treude et al., 2003), and up to 

10 μmol cm-3- day-1 in the methanotrophic microbial mats of the Black Sea (Treude et al., 

2007). In vitro incubation studies with enriched ANME communities showed that AOM 

rates predominantly depend on methane concentrations, and suggested extraordinary high 

apparent methane half-saturation constants (kM-values) in the range of several mM 

(Nauhaus et al., 2002; 2005; 2007).  

95



 Methane Oxidation and Carbon Assimilation in Marine Sediments 

First budgets for total methane fluxes, including microbial oxidation, at cold seep 

systems were calculated for Hydrate Ridge (Cascadia margin; Boetius and Suess 2004) and 

the Haakon Mosby Mud Volcano (Barents Sea; Niemann et al., 2006). At fluid flow rates of 

10-250 cm yr-1, microbial methane oxidation removed about 50% of total methane flux in 

the sulfate penetrated surface sediments. In the transition from high to low fluid flow rates, 

the efficiency of the microbial filter increased at both sites, until no methane emission from 

the seabed was measured and all methane was consumed within the seabed (e.g. Acharax 

fields at Hydrate Ridge, Pogonophora fields, HMMV). Less is known about the control of 

AOM by sulfate fluxes. The apparent kinetics of AOM with regard to concentrations of 

methane and sulfate in the natural range are not yet known, but field data indicate that 

AOM decreases at sulfate concentrations < 1mM. The most significant problem in 

constraining budgets of methane emission at cold seeps is the lack of quantitative in situ 

methods to measure gaseous and dissolved methane emission to the hydrosphere, as well as 

subsurface transport processes of methane and sulfate. In addition, cold seeps show an 

extreme spatial and temporal variation in gas ebullition and fluid flow (Tryon et al., 2002; 

Sauter et al., 2006). It is not known how the slow growing methanotrophs respond to 

variations in methane and sulfate supply.  

Here we used continuous flow-through incubation of sediments from different cold 

seep ecosystems to test the response of ANME communities to short-term (2-40 days) 

variations in methane and sulfate fluxes. Flow-through reactors have been used previously 

for the study of growth patterns of ANME communities (Girguis et al., 2003; 2005). Our 

main questions were 1) how does the availability of methane and sulfate influence AOM, 2) 

what is the efficiency of the ANME communities in consuming methane at high fluid flow 

rates, 3) does the community retain its activity after starvation periods. 
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2. Material and Methods: 

Sediments from the Gullfaks (Heincke seep area, Hovland, 2007) in the northern 

North Sea (61°10.44’ N, 2°14.65’ E, 150 m water depth) were sampled on Heincke cruise 

208 in May 2004 using TV-guided multicorer. The sandy sediments were widely covered 

with mats of sulfide oxidizing bacteria which indicate the area of strong methane based 

sulfate reduction below the mats. The recovered sediments were highly permeable, and 

consisted of medium to coarse grained sands. For the incubations we sampled the blackish 

sediment horizon between 2 and 15 cm, omitting the oxic top layer. Methane consumption 

rates, measured in in vitro incubations (using 14C-labeled methane according to Krüger et al., 

2005), were on average 0.15 μmol g-1 day-1. Molecular analyses showed that the 

methanotrophic community was dominated by consortia of ANME-2a and -2c and their 

sulfate reducing partner bacteria of the Desulfosarciana/ Desulfococcus cluster (Wegener et al., 

2008).  

Hydrate Ridge sediment (44°34.20’ N, 125°08.77’ E; 776 m water depth) was 

retrieved on Sonne cruise SO165-2 in 2002 via push core sampling. The seafloor was 

covered with Beggiatoa indicating a high flux of sulfide from AOM (Treude et al., 2003).  

Black Sea sediment was obtained from the Dniepr basin (44°46.41’ N, 31°58.20’ E, 

326 m water depth) on R/V Poseidon cruise 317/3 in 2004 by pushcoring with the 

submersible JAGO. Samples were taken from the direct vicinity of a methane seep; 

degassing of methane during recovery and authigenic carbonate precipitates indicated a high 

AOM activity in the recovered sediments (Treude et al., 2005).  

After recovery, all sediments were immediately transferred to gas tight Duran bottles 

and supplied with sulfate reducer medium (Widdel and Bak, 1992) as well as a methane 

headspace. Seawater medium was repeatedly replaced with new medium when sulfide 
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concentrations exceeded 20 mM. All further handling of sediment was performed in an 

anaerobic glove box. 

 

The flow-through setup. Sediments were filled into glass columns onto glass frits.  

(Ochs Glasgerätebau, Bovenden, Germany) (Fig.1). In the first setup columns with a 

diameter of 40 mm were filled with sediments from Gullfaks to a height of 120 mm (total 

volume 151 ml, ca. 250 gram dry weight (gdw)). In the second setup, columns with a 

diameter of 40 mm were filled with different sediments to a height of 50 mm (total volume 

63 ml), including inoculates from Gullfaks (sandy sediments, 95 gdw), Black Sea and 

Hydrate Ridge (clay sediments, 25 gdw). All concentrations and rates were normalized to dry 

weight of sediment.  

 

Fig. 1.  Flow-through system with the sediment column (A), medium reservoir (B) and  the peristaltic 
pump (C). System pressure is stabilized via a second medium reservoir (D) which is pressurized by 
nitrogen (F). Sampling was done in inflow (F) and outflow (G). 
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The columns were closed with 2.5cm thick butyl rubber stoppers and GL45 screw 

caps. Medical needles and tubing with lowest gas transmissibility (Viton®; DuPont 

Performance Elastomers, Willmington, US) connected the columns with the reservoir of 2 l 

(1 l in the short column experiment setup) artificial sea water medium. Oxygen 

transmissibility of the tubing was qualitatively tested with Resazurin (C12H6NO4Na, 1mg/l) 

labeled seawater media and was not visible.  The setup was operated as a closed system with 

medium recycling through a large reservoir. A high precision peristaltic pump (IP-N®, 

Ismatec SA, Glattbrugg, Switzerland) circulated the seawater media between the reservoir 

and the sediment column. In all experiments a flow rate of 0.025 ml min-1 (36 ml d-1) was 

adjusted.  

 

Experimental procedure. The filled flow-through cells were mounted into the 

tubing system and sediment was allowed to settle for two days. The sediments were then 

percolated for at least 20 days with methane saturated media before starting the 

measurements. Samples were taken directly from in- and outflow of the columns to 

determine concentrations of methane and sulfide. Sulfide concentrations were determined 

by the copper sulfate method (Cord-Ruwisch, 1985). Briefly, 0.1 ml of the aliquot was added 

to 4ml copper sulfate solution (5mmol CuSO4 in 0.05N HCl). The liquids absorption of 

monochromatic light (wavelength of 480nm) was measured immediately on a spectrometer. 

Absolute concentrations were determined by the calibration with sulfide standard solutions 

and blanks. Three replicate measurements were performed for each sample. An error value 

of 5% was reported for the copper sulfide method (Cord-Ruwisch, 1985). From the 

concentrations, sulfide production rates per g dry weight are calculated according to Eq. 1, 

� �
dw
F

SHSHSRR day
inout ��� 22  [μmol gdw-1d-1]   (1) 
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with the concentrations of H2S (μM) in the out- and inflow, the volume of percolated media 

per day (ml day-1, Fday) and the dry weight (gdw). We assume that sulfide production is 

equivalent to sulfate reduction (SR). However, in all experiments we observed a consistent 

offset between sulfide production and methane oxidation in the presence of methane. The 

difference between sulfide production and methane oxidation is most likely due to a 

contamination of the methane gas with another electron donor (e.g. carbon monoxide), 

because background sulfide production without methane was as low as 0.01 μmol gdw-1 

day-1. This low background cannot explain the offset between SR and AOM of ca. 

0.07 μmol gdw-1 day-1 arising from saturation of the medium with methane. 

For methane concentrations, subsamples of 0.5ml media were added into gas tight 

6ml exetainers filled with 0.5ml NaOH. Methane concentrations were determined from the 

100μl headspace triplicates using a GC-FID (Hewlett Packard 5890A, equipped with 

Porapak-Q column, 6ft, 0.125', Agilent Technologies, Sta. Clara, CA), which was calibrated 

with methane standards. The AOM rate is calculated according to Eq. 2  

AOM � CH4 in �CH4 out�
Fday
dw

 [μmol gdw-1d-1]    (2) 

with the methane concentrations of the in- and the outflow (CH4 in/ out), the flow rate per day 

Fday as well as the dry weight dw of the sediment in the column. Sulfate concentrations were 

measured using nonsuppressed ion chromatography according to according to Ferdelman et 

al. (1997). 

 

 3. Results and Discussion 

The first task in the series of experiments was to reach stable conditions in the two 

different flow-through setups with long and short columns, both with regard to between 

column comparisons and temporal evolution. In the experiment using five replicate long 
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columns, Gullfaks sediments were percolated for more than 100 days with constant 

methane concentrations of around 1.6 mM. The flow rate was 36 ml d-1, (32 m yr-1), and the 

passage time for the medium entering at the bottom of the column (inflow) to the outflow 

was 36 hours. A fluid flow velocity of 30 m yr-1 is at the higher end of transport rates at cold 

seep ecosystems and was previously observed e.g. in active settings like those above gas 

hydrate at stability limits (Linke et al., 1994; Torres et al., 2002). 

 Fig 2 shows the results for one replicate column of Gullfaks seep sediments. Both 

sulfide production and methane oxidation were relatively stable. Methane oxidation was on 

average 0.16 ± 0.04 μmol per gram dry weight (gdw) -1. The offset between sulfide 

production and methane oxidation in the experiments of ca 30% was consistently observed 

when medium was saturated with methane, which was most likely contaminated with 

another electron donor such as carbon monoxide or higher hydrocarbons. 

 

Fig. 2. Comparison of methane oxidation and sulfide production in a long term continuous flow 
through experiment. The data shown are from one of five similar replicates (Gullfaks seep 
sediments). a) The development of methane and b) sulfide (inflow concentration (filled circles) and 
outflow concentrations (open circles) as well as c) the calculated methane oxidation (grey bars) and 
sulfide production rates (black bars). 
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In the short column setup, inoculates from the Black Sea, from Hydrate Ridge and 

Gullfaks were tested in parallel incubations. The sulfate reduction and methane oxidation 

rates stayed constant for a period of 160 days. We measured average methane consumption 

rates of 0.42 (±0.15), 0.34 (±0.15) and 0.08 (±0.03) μmol gdw-1 d-1 and sulfate reduction 

rates of 0.58 (0.18), 0.47 (±0.016) and 0.07 (±0.03) μmol gdw-1 d-1 for Black Sea, Hydrate 

Ridge and Gullfaks, respectively. The AOM rates match well with measurements directly 

obtained after sampling for the sediment horizons used as inoculate for the flow through 

columns (data not shown). 

At the given methane and sulfate concentrations, we did not observe a significant 

increase of metabolic activity over time, which would have indicated population growth 

(Nauhaus et al., 2007). We can exclude that a lack of nutrients has limited growth since they 

were added to the medium in substantial amounts (Widdel and Bak, 1992). However, similar 

observations of constant AOM rates over long incubation times were published by Girguis 

et al. (2003, 2005). In their investigation, seep sediments were percolated with methane-

saturated seawater at atmospheric pressure for 24 weeks, however no growth-related 

increase AOM activity was observed. Reasons for this stagnation of population size may be 

energy limitation by methane supply at atmospheric pressure. In high pressure batch 

incubations (~1.4 MPa CH4), Nauhaus et al. (2007) increased the microbial activity by the 

factor of ten within almost two years. (growth rate of 0.021 week-1). Hence, growth of 

anaerobic methanotrophs is extremely slow, probably with generation times of >7 months 

at atmospheric pressure (Girguis et al., 2005; Nauhaus et al., 2007).  

In conclusion, we could show that flow through columns can be used as a stable set 

up for short (days to weeks) and long term experiments (months) for physiological 

experiments using seep sediments naturally enriched in ANME populations from a variety 

of locations with different sediment grain sizes. The total mass balance calculated either via 

accumulated rate measurements (methane oxidation), or via the difference in sulfide 
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concentrations in the reservoir at beginning and end of the experiments match rather well 

(ca 15 μmol H2S gdw-1 sediment in 83 days).  

 

Reaction of SR and methane consumption to a methane pulse.  

The results of a 40 days methane pulse experiment are presented in Fig. 3. We only 

show the results of one column (C1) filled with sediments from Gullfaks, the other 4 

replicate columns with Gullfaks sediments gave similar results. The columns were run for 

120 days at 2 mM methane and 28 mM sulfate, before methane was removed for 36 days 

(Fig 3a).  After  

 

Fig. 3. Changing activities of a methanotrophic community in response to a methane pulse. a) 
Methane concentrations, b) sulfide concentrations. Filled circles represent the measurements at the 
inflow and open circles those at the outflow; c) the resulting methane oxidation rates and d) sulfide 
production.  
 

36 days of starvation, methane concentration in the medium was increased to 2 mM within 

2 days. The outflow showed increasing sulfide concentrations immediately after methane 
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was percolated through the column (day 38, Fig. 3b). Immediately after methane was reset 

to 2 mM, AOM (Fig 3c) and SR (Fig. 3d) returned to similar rates as before the starvation 

phase, with 0.19±0.03 μmol gdw-1 d-1 and 0.24±0.05 μmol gdw-1 d-1, respectively. During the 

36 days starvation phase, background SR dropped to rates as low as ~0.04 μmol g-1 day-1. 

After 40 days of exposure to methane, the medium was again degassed. Within 6 days, the 

methane concentration in the outflow fell below 50 μM and both methane oxidation and 

sulfate reduction rates decreased almost completely to zero. This proves the direct coupling 

between methane oxidation and sulfide production in AOM. However, it remains unknown 

whether the electron transfer from methane to sulfide is carried out within one or between 

two organisms. 

 Previous investigations found that anaerobic methanotrophs produce large amounts 

of methyl-coenzyme M reductase (MCR), which is most likely the enzyme responsible for 

the first step in methane oxidation. For example, this MCR constituted 7% of the total 

environmental protein extract in methanotrophic mats of the Black Sea (Krüger et al., 2003). 

It may be a good strategy to maintain a high amount of functional proteins in the extremely 

slow growing cells, to utilize a wide range of methane concentrations. For example, in our 

experiment, the present methanotrophic population utilized the same fraction of methane 

over 2 orders of magnitude in substrate availability without any delay.   

Furthermore, the results of the methane pulse experiment support previous 

observations on the longevity of seep methanotrophs kept under anoxic conditions at in situ 

temperature without substrate. Even after storage of months to years, immediate sulfide 

formation can be observed directly after methane addition, reaching similar rates as in the 

field, at the time of sampling. The ability of anaerobic methanotrophs to survive long 

starvation periods could be an important advantage, especially with regard to the high spatial 

and temporal variability of methane fluxes at seeps, and also when considering their slow 

growth. 
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Sulfate reduction and methane oxidation at different methane and sulfate 

concentrations.  

At the low energy yield of AOM, efficient use of the natural range of methane and 

sulfate concentrations is critical to the anaerobic methanotrophs. In nature, AOM is often 

limited to a narrow zone where methane and sulfate overlap (SMTZ), in which both 

reactants show very low concentrations. At seeps, methane concentrations and fluxes may 

be extremely high, but very often sulfate is depleted within the top few cm, and its 

penetration from the overlying bottom water can be suppressed by high upward fluxes of 

sulfate free subsurface fluids (Niemann et al., 2006). Previous environmental observations 

suggested a strong dependence of AOM rates on the fluxes of sulfate (Treude et al., 2003). 

To examine the kinetic effect of AOM reactant availability, we incubated two replicate 

columns from Gullfaks with a series of different methane and sulfate concentrations. After 

an adjustment time of � 8 days for each concentration, three to five measurements of 

methane and sulfide concentrations were performed within about ten days. Figure 4 and 5 

show AOM and SR rates at different concentrations of methane and sulfate and constant 

flow velocities of 30 m yr-1.  

In Fig. 4 the metabolic activities without methane and at different methane 

concentrations between 0.3 and 2.3 mM are plotted. In the absence of methane, a 

background sulfide production of about 0.02 μmol gdw-1 d-1 was determined. Sulfide 

production increased to 0.17 μmol gdw-1 d-1 at 1.35 mM CH4 and to 0.21 μmol gdw-1 day-1 at 

methane concentrations of 2.3 M. Methane oxidation followed the trend of sulfate reduction 

with rates of 0.02, 0.10, 0.17 μmol gdw-1 day-1 at 0.33 mM, 1.35 mM and 2.3 mM CH4, 

respectively. The relation between methane concentration and methane consumption as well 

as sulfide production was linear in this range. The 20-30% offset between SR and AOM is 

explained as above. 
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A methane saturation effect (indicated by a declining slope) was not observed in our 

experiments, which suggests AOM KM-values beyond 2 mM. Nauhaus et al. (2002) observed 

a linear relationship between methane oxidation and sulfide production below methane 

pressures of 0.1 MPa (about 1.5 mM), and suggested a high methane KM in the range of 

several mM for AOM and methane-fueled SR. In comparison, for hydrogenotrophic sulfate 

reduction, half saturation constants for H2 are as low as 141 Pa (~1 μmol; Lovley et al., 

1982), but the energy yield of this process is orders of magnitudes higher than in AOM. The 

high half saturation constant for methane in AOM may be due to predicted reverse 

operation of the methanogenic methyl-coenzyme M reductase, producing a methyl radical as 

a first step in AOM (Krüger et al., 2003; Hallam et al., 2004; Shima and Thauer, 2005).  

Fig. 4. Effect of different 
methane concentrations on rates 
of methane oxidation (open 
symbols) and sulfate reduction 
(filled symbols). Data are shown 
for two replicate columns 
marked as circles (C1) and 
triangles (C2)   
 

 The influence of sulfate concentration on the oxidation of methane was examined 

by percolating two other replicate columns with reduced seawater medium containing 28, 3, 

2 and 1 mM sulfate (Fig. 5). Within the tested low sulfate concentrations from 3 to 1 mM a 

weak decline of metabolic rates was determined. However the scattering within the data was 

quite strong. We conclude that the half saturation for sulfate in methanotrophy is below the 

examined concentrations, around 0.5 mM. In comparison, organoclastic sulfate reducers 

show half saturation constants between 70 μM (Desulfovibrio salexigens) and 200 μM 

(Desulfobacter postgatei) (Ingvorsen and Joergensen, 1984; Ingvorsen et al., 1984). These sulfate 

reducers have different strategies to achieve low kM-values; e.g. Desulfovibrio desulfuricans 
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shows intracellular sulfate enrichment up to the factor of 5000 compared to its environment 

(Cypionka, 1989). Hence, the anaerobic methanotrophs from cold seep ecosystems 

investigated here appear to have a relatively high kM for sulfate. It remains unknown if the 

methanotrophic populations of the ubiquitous sulfate methane transition zones in the 

seabed are better adapted to low sulfate concentrations than their relatives inhabiting the 

cold seeps.  

 

Fig. 5. Effect of different sulfide 
concentrations on rates of 
methane oxidation (open 
symbols) and sulfide production 
(filled symbols). Data are shown 
for two replicate columns 
marked as circles (C1) and 
triangles (C2)   

 

 

4. Conclusions:  

At a constant methane supply of about 2 mM, different marine methanotrophic 

communities enclosed in continuous flow through columns resulted in a stable rate of 

anaerobic oxidation of methane during 160 days. A tight link between methane oxidation 

and sulfate reduction was clearly shown by providing pulses of methane to environmental 

methanotrophic communities. An interruption of the methane supply led to an immediate 

decline of sulfate reduction. After percolation with methane free media for more than 

40 days, former methane oxidation and sulfate reduction rates were reached immediately 

without a lag phase. Hence, the methanotrophic populations seem to be able to survive 

relatively long starving periods. Rates of anaerobic oxidation of methane were strongly 

regulated by methane concentrations. Between 0.3 and 2.3 mM CH4 we found an almost 

linear increase of methane oxidation and sulfide production. This suggests half saturations 
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(kM values) for methane of several mM in AOM. Sulfate concentrations below 3 mM 

decreased methane oxidation rates, the kM for sulfate is estimated at around 0.5 mM. 

Apparently, the high level of functional proteins maintained by the anaerobic 

methanotrophs allows for immediate responses to a wide range of concentrations of both 

electron donor and acceptor in the anaerobic oxidation of methane. 

 

References 

Boetius, A., and Suess, E.: Hydrate Ridge: a natural laboratory for the study of microbial life 
fueled by methane from near-surface gas hydrates. Chem. Geol., 205: 291-310, 2004. 

Boetius, A. Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., 
Jørgensen, B.B., Witte, U. and Pfannkuche, O.: A marine microbial consortium 
apparently mediating anaerobic oxidation of methane. Nature, 407: 623-626, 2000. 

Canfield, D. (1993) Organic matter oxidation in marine sediments. Interactions of C, N, P 
and S biogeochemical cycles and global change. NATO ASI Series, 14: 33–363. 

Canfield, D., Kristensen, E. and Thamdrup, B. Aquatic Geomicrobiology. San Diego, 
California: Elsevier, 656pp, 2005. 

Cord-Ruwisch, R.: A quick method for the determination of dissolved and precipitated 
sulfides in cultures of sulfate-reducing bacteria. Microbiol. Meth., 4(1): 33-36, 1985. 

Cypionka, H.: Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch. 
Microbiol., 152(3): 237-243, 1989. 

Ferdelman, T. G., Lee, C., Pantoja, S.,  Harder, J., Bebout, B. M. and Fossing, H.: Sulfate 
reduction and methanogenesis in a Thioploca-dominated sediment off the coast of 
Chile. Geochim. Cosmochim Ac., 61(15): 3065-3079, 1997. 

Girguis, P. R., Cozen, A. E. and DeLong, E. F.: Growth and population dynamics of 
anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-
flow bioreactor. Appl. Environ. Microb., 71(7): 3725-3733, 2005. 

Girguis, P. R., Orphan, V., Hallam, S. and DeLong, E. F.: Growth and methane oxidation 
rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl. 
Environ. Microb., 69(9): 5472-5482, 2003. 

Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M. and 
DeLong, E. F.: Reverse methanogenesis: Testing the hypothesis with environmental 
genomics. Science 305(5689): 1457-1462, 2004. 

Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria. Microbiol. Rev., 60: 439-471, 
1996. 

Hovland, M.: Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. 
Geo-Mar. Lett. 27: 197-201, 2007. 

108



Chapter III: Responses of AOM to Variations in Methane and Sulfate 

Ingvorsen, K. and Joergensen, B.B.: Kinetics of sulfate uptake by freshwater and marine 
species of Desulfovibrio. Arch .Microbiol., 139: 61-66, 1984. 

Ingvorsen, K., Zehnder, A.J.B. and Jørgensen, B.B.: Kinetics of sulfate and acetate uptake 
by Desulfobacter postgatei. Appl. Environ. Microb., 47: 403-408, 1984. 

Krüger, M., Anke Meyerdieks, A., Glöckner, F.O., Amann, R., Widdel, F., Kube, M., 
Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R. K. And Shima, S.: A conspicuous 
nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426: 
878-881, 2003. 

Krüger, M. Treude, T., Wolters, H., Nauhaus, K. and Boetius, A.: Microbial methane 
turnover in different marine habitats. Palaeogeogr. Palaeocl., 227(1-3): 6-17, 2005. 

Linke, P., Suess, E., Torres, M., Martens, V., Rugh, W. D., Ziebis, W., Kulm, L. D.:  In situ 
measurement of fluid flow from cold seeps at active continental margins. Deep-Sea 
Res., 41: 721–739, 1994 

Lovley, D. R., Dwyer, D. F. and Klug, M. J.: Kinetic analysis of competition between sulfate 
reducers and methanogens for hydrogen in sediments. Appl. Environ. Microbiol., 
43(6): 1379-1379, 1982. 

Milkov, A.V.: Global estimates of hydrate-bound gas in marine sediments: how much is 
really out there? Earth-Sci. Rev., 66(3-4): 183-197, 2004. 

Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A. and Widdel, F.: In vitro cell growth of 
marine archaeal-bacterial consortia during anaerobic oxidation of methane with 
sulfate. Environ. Microbiol., 9(1): 187-196, 2007. 

Nauhaus, K., Boetius, A., Krüger, M. and Widdel, F.: In vitro demonstration of anaerobic 
oxidation of methane coupled to sulphate reduction in sediments from a marine gas 
hydrate area. Environ. Microbiol., 4(5): 296-305, 2002. 

Nauhaus, K., Treude, T., Boetius, A. and Kruger, M.: Environmental regulation of the 
anaerobic oxidation of methane: a comparison of ANME-I and ANME-II 
communities. Environ. Microbiol., 7(1): 98-106, 2005. 

Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., 
Sauter, E. J., Schlüter, M., Klages, M., Foucher, J. P. and Boetius, A.: Novel 
microbial communities of the Haakon Mosby mud volcano and their role as a 
methane sink. Nature, 443(7113): 854-858, 2006. 

Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D. and DeLong, E.F. Methane-
consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. 
Science, 293(5529): 484-487, 2001. 

Reeburgh, W. S.: Oceanic methane biogeochemistry. Chem. Rev., 107(2): 486-513, 2007. 

Reeburgh, W.S.: 'Soft spots' in the global methane budget. In: M.E. Lidstrom and F.R. 
Tabita (Editors), Microbial Growth on C1 Compounds. Kluwer, Dordrecht, pp. 
334–342, 1996. 

Shima, S., and Thauer, R. (2005) Methyl-coenzyme M reductase and the anaerobic oxidation 
of methane in methanotrophic Archaea. Curr. Opin. Microbiol., 8: 643-648. 

Sauter, E., Muyakshin, S., Charlou, J., Schlüter, M., Boetius, A., Jerosch, K. et al. Methane 
discharge from a deep-sea submarine mud volcano into the upper water column by 
gas hydrate-coated methane bubbles. Earth Planet. Sc. Lett., 243: 354-365, 2006. 

109



 Methane Oxidation and Carbon Assimilation in Marine Sediments 

Torres, M. E., McManus, J., Hammond, D. E., de Angelis, M. A., Heeschen, K.U., Colbert, 
S. L., Tryon, M. D., Brown, K. M. and Suess, E.: Fluid and chemical fluxes in and 
out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: 
Hydrological provinces. Earth Planet. Sc. Lett. 201: 525-540, 2002. 

Treude, T., Boetius, A., Knittel, K., Wallmann, K. and Jorgensen, B. B.: Anaerobic oxidation 
of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar. Ecol.-
Prog. Ser., 264: 1-14, 2003. 

Treude, T., Knittel, K., Blumenberg, M., Seifert, R. and Boetius, A.: Subsurface microbial 
methanotrophic mats in the Black Sea. Appl. Environ. Microb., 71(10): 6375-6378, 
2005. 

Treude, T., Orphan, V., Knittel, K., Gieseke, A., House, C. and Boetius, A. Consumption of 
methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic 
Black Sea. Appl. Environ. Microb. 73: 2271-2283, 2007. 

Trotsenko, Y.A. and Khmelenina, V.N.: Aerobic methanotrophic bacteria of cold 
ecosystems. FEMS Microbiol. Ecol., 53(1): 15-26, 2005.  

Tryon, M.D., Brown, K.M., and Torres, M.E.: Fluid and chemical flux in and out of 
sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological 
processes. Earth Planet. Sc. Lett., 201: 541-557, 2002 

Wegener, G., Shovitri, M., Knittel, K., Niemann, H., Hovland, M. and Boetius, A.: 
Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten 
methane seeps (Northern North Sea). Biogeosciences Discuss., 5: 971-1015, 
www.biogeosciences-discuss.net/5/971/2008/, 2008. 

Wellsbury, P., Goodman, K., Cragg, A. and Parkes, R.J.: 36. The geomicrobiology of deep 
marine sediments from Blake Ridge containing methane hydrate (site 994, 995 and 
997) Proceedings of the Ocean Drilling Program. Scientific results. 164: 379-391, 
2000. 

Widdel, F. and Bak, F., Gram-negative mesophilic sulfate-reducing bacteria. In: T.H. Balows 
A, Dworkin M, Harder W, Schleifer KH (Editor), The prokaryotes. Springer, Berlin 
Heidelberg New York, pp. 3352-3378, 1992. 

 

110



Chapter IV: Methane and Inorganic Carbon Assimilation in Anaerobic Methanotrophy 
 

 

 

 

Chapter IV 

 

Assimilation of Methane and Inorganic Carbon by Microbial 

Communities Mediating the Anaerobic Oxidation of Methane 

 

Gunter Wegener1*, Helge Niemann1#, Marcus Elvert2, Kai-Uwe Hinrichs2 and Antje 

Boetius1,3,4 

 

1Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany. 
2Research Center Ocean Margins, University of Bremen, Leobener Str., 28359 Bremen, 

Germany 
3Jacobs University Bremen gGmbH, Campusring 1, 28759 Bremen, Germany 

4Alfred Wegener Institute for Polar and Marine Research,27515 Bremerhaven, Germany 

 
 
 
 

 

 

#Present address: Institute for Environmental Geosciences, University of Basel, Bernoullistr. 
30, 4056 Basel, Switzerland 

 

 

 

111



Methane Oxidation and Carbon Assimilation in Marine Sediments 
 
 
Abstract: The anaerobic oxidation of methane (AOM) is a major sink for methane on 

Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate 

reducing bacteria (SRB). Here we present a comparative study using in vitro stable 

isotope probing to examine methane and carbon dioxide assimilation into microbial 

biomass. Three sediment types comprising different methane-oxidizing 

communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate 

Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-

through systems with methane-enriched anaerobic seawater medium for 5-6 months 

amended with either 13CH4 or H13CO3
-. In all three sediment types methane was 

anaerobically oxidized in a 1:1 stoichiometric ratio compared to sulfate reduction. 

Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal 

lipids, indicating a direct assimilation of both carbon sources into ANME biomass. 

Specific bacterial fatty acids assigned to the partner SRB were almost exclusively 

labeled by 13CO2, but only in the presence of methane as energy source and not 

during control incubations without methane. This indicates an autotrophic growth 

of the ANME-associated SRB and supports previous hypotheses of an electron 

shuttle between the consortium partners. Carbon assimilation efficiencies of the 

methanotrophic consortia were low, with only 0.25-1.3 mol% of the methane 

oxidized. 

 

 

Introduction: 

Methane is an important greenhouse gas. In spite of the high production rates and 

large reservoirs of methane in marine sediments, the oceans contribute only little to the 

atmospheric budget (Judd et al., 2002; Reeburgh, 2007). This is because the microbially 

mediated anaerobic oxidation of methane (AOM), with sulfate as the terminal electron 
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acceptor, removes the largest fraction of methane before it can reach the hydrosphere and 

atmosphere (Martens and Berner, 1974; Reeburgh, 1976; Iversen and Jørgensen, 1985; 

Hinrichs and Boetius, 2002).  

 Marine AOM is mediated by archaea in consortium with sulfate reducing bacteria 

(SRB) (Boetius et al., 2000; Hinrichs et al., 2000; Orphan et al., 2001a; Knittel et al., 2005). 

The three known phylogenetic groups of marine anaerobic methanotrophs (ANME-1, -2, 

and -3) are distantly related to methanogens of the order Methanosarcinales and 

Methanomicrobiales (Hinrichs et al., 1999; Boetius et al., 2000; Orphan et al., 2002; Knittel et 

al., 2005; Niemann et al., 2006; Lösekann et al., 2007). The known sulfate reducing partners 

of the of ANME-1 and -2 groups belong to the Desulfosarcina/Desulfococcus (DSS) group 

(Boetius et al., 2000; Orphan et al., 2001b; Michaelis et al., 2002; Knittel et al., 2003), 

whereas ANME-3 was recently found in association with SRB related to the Desulfobulbus 

cluster (Niemann et al., 2006; Lösekann et al., 2007). These consortia of anaerobic 

methanotrophic microorganisms dominate microbial biomass and biogeochemical processes 

at shallow and deep water cold seeps, in gas hydrate environments, and in ubiquitous 

methane sulfate transition zones of the sediments (Knittel et al., 2005).  

 Today, none of the methanotrophic consortia have been obtained in pure culture, 

and physiological studies have relied on in vitro experimentation with sediment samples 

naturally enriched in methanotrophic communities (Nauhaus et al. 2002, 2005, 2007; Girguis 

et al. 2003, 2005; Blumenberg et al. 2005; Moran et al., 2008). In addition to their 16S rRNA 

gene-based phylogenetic classification, each of these groups can be recognized according to 

profiles of specific 13C-depleted lipid biomarkers (Hinrichs and Boetius 2002; Blumenberg et 

al. 2004; Niemann and Elvert in press). A direct evidence for this link was provided by the 

combination of fluorescence in situ hybridization with secondary ion mass spectrometry 

(FISH-SIMS; Orphan et al. 2001a). To further investigate the relation between 

concentrations, ratios and �13C-values of specific microbial lipids to the distribution of 
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active methanotrophic communities, three approaches have been used previously: (1) the 

correlation of lipids with cell counts in field samples (Boetius et al. 2000; Elvert et al., 2003, 

2005; Orcutt et al., 2005; Niemann et al. 2006), (2) the in vitro growth of ANME consortia 

with subsequent lipid analysis of the biomass yield (Nauhaus et al. 2007); (3) lipid analysis 

coupled to stable isotope probing of an active methanotrophic microbial mat (Blumenberg 

et al. 2005). Among the archaeal lipids, 13C-depleted archaeol and hydroxyarchaeol as well as 

crocetane and penthamethylicosane have been repeatedly shown to correlate with the 

presence of different active ANME consortia (Blumenberg et al. 2004; Nauhaus et al. 2007; 

Niemann and Elvert, in press). Among the bacterial lipids, several types of ester linked fatty 

acids (e.g. C16:1�5c; cy(cyclopropane)C17:0�5,6) and abundances of monoalkyl and dialkyl 

glycerol ethers have been suggested as specific biomarkers for partner SRB of 

methanotrophic consortia (Hinrichs et al., 2000; Elvert et al. 2003; Blumenberg et al. 2004; 

Nauhaus et al. 2007; Niemann and Elvert, in press).  

 In the present study, we aimed at investigating the assimilation of methane and 

inorganic carbon as by members of methanotrophic communities using stable isotope 

probing of their lipid biomarkers. For this in vitro experiment, we used flow-through 

reactors, which showed constantly high rates of sulfate-driven AOM when filled with 

sediment slurries naturally enriched in methanotrophic communities from three different 

cold seep sites in the Black Sea (BS), at Hydrate Ridge (HR) and Gullfaks (GF). The main 

advantage of flow-through reactors is the option to monitor the concentration of the 

reactants and end products of AOM (i.e. sulfide and bicarbonate), dilute products of AOM 

in a large medium pool, and to provide relatively high growth rates at comparatively low 

methane partial pressures (Girguis et al. 2005). Based on results from previous experiments 

with highly enriched ANME-2/DSS and ANME-1/DSS communities (Nauhaus et al. 2002, 

2005, 2007), we tested the following hypotheses: (1) ANME cell biomass is formed by 

assimilation of both methane and CO2 (2) the syntrophic sulfate reducing partners are 
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autotrophs; (3) different AOM communities show different lipid patterns, but the 

stoichiometry of methane and inorganic carbon assimilation is similar. 

 

Results 

Biogeochemical rate measurements  

Replicate sediment samples naturally enriched in AOM communities from cold 

seeps of the BS, HR and GF were incubated at methane concentrations of 1.8-2.2 mM in 

flow-through reactors. The experiments started with a sulfide inflow concentration of about 

1 mM. During incubation, the sulfide concentration did not exceed 4 mM in all six flow-

through reactors. All inoculates showed relatively stable rates of sulfate reduction and 

methane oxidation, calculated from the difference from inflow and outflow sulfide and 

methane concentrations. In incubations with 13C-methane, average rates of SR and AOM 

were 0.58 and 0.42 μmol per gram dry weight (gdw-1) (BS), 0.47 and 0.34 μmol gdw-1 (HR), 

and 0.07 and 0.08 μmol gdw-1 (GF), respectively. Similar SR and AOM rates were calculated 

for the bicarbonate labeling experiment using unlabeled methane with 0.58 and 0.53 μmol 

gdw-1 (BS), 0.73 and 0.57 μmol gdw-1 (HR) and 0.06 and 0.07 μmol gdw-1 (GF), respectively.  

 

Concentrations and carbon isotopic compositions of fatty acids and isoprenoidal glycerol diethers 

Table 1 shows the average concentrations of selected bacterial and archaeal 

biomarkers in the three different sediment slurries used for the flow reactors. No substantial 

changes of lipid concentrations were observed. At BS, saturated fatty acids (FAs) comprised 

almost 80% of the FAs (C14:0-C18:0), followed by their �7-derivatives with 17%. At HR and 

GF, saturated FAs comprised 21% and 47%, respectively, and monounsaturated FAs 

accounted for 45% and 35%, respectively. In all three inoculates substantial amounts of 

C16:1�5, ai- and i-C15:0 FAs acids as well as archaeol and hydroxyarchaeol were present with 

characteristically 13C-depleted carbon isotopic compositions. Table 1 shows the �13C-values 

115



Methane Oxidation and Carbon Assimilation in Marine Sediments 
 
 
of these compounds at the beginning of the experiment, as well as after inoculation with 

13C-labeled methane and 13C-labeled bicarbonate. 
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Although lipid concentrations did not change substantially during the incubation, 

the uptake of 13C-labeled substrate was significant. Those lipid biomarkers that were most 

strongly depleted in 13C prior to the experiment, i.e., archaeol and hydroxyarchaeol for 

ANME and C16:1�5c, cyC17:0�5,6, and C16:1�7c for SRB, were most strongly labeled with 13C in the 

presence of methane as energy source (Fig. 1, Tab. 1). Interestingly, archaeal biomarkers 

showed an incorporation of both 13C labeled carbon sources, while bacteria FAS showed 

only a substantial assimilation of 13CO2.  

Figure 1. Development of �13C (in ‰) of bacterial fatty acids and archaeal glycerol diethers, 
expressed as weighted averages, in experiments with 13C-labeled methane ( ) and bicarbonate ( ). 
 

Uptake of inorganic carbon and methane into bacterial and archaeal biomass  

The incubation with 13C-bicarbonate was carried out for 176 days with subsampling 

for lipid extractions after 58 and 114 days. The replicate incubation with 13C-methane ran 

for 159 days and was sampled at day 49 and 110. In the 13C-methane labeling experiment we 

added ~12% 13CH4 to reach a methane �13C-value of about +11000‰. During the course of 

the incubation, oxidation of labeled 13CH4 led to an accumulation of 13C in DIC with �13C-
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values reaching +900‰ at the end of the experiment. This may have caused a small 

proportion of indirect labeling of lipids by methane-derived DIC. For the 13C-inorganic 

carbon labeling experiment, 11% of labeled bicarbonate was added, resulting via carbonate 

equilibrium in a �13C of ~+10000‰ in the whole carbonate pool including CO2. Figure 1 

shows the development of the mean isotopic compositions of bacterial and archaeal lipids 

over time in the incubations  with  13C-methane  and  13C-bicarbonate.  The  carbon   

isotopic  compositions and concentrations of individual lipids (Table 1) were used to 

calculate the weighted mean isotopy of both archaeal and bacterial lipids as follows: �C
13	

� ��
�

� �
n

i
LDnLDsumLDn CconcConcC

1

1313 */ 		        (1)  

Here, concLDn is the concentration of the individual lipids, �13CLDn the isotopic composition 

of these compounds and concLDsum the summed concentration of the quantified lipids, i.e.  

glycerol diethers (archaea) and fatty acids (bacteria), respectively.  

A continuous carbon isotopic change to more positive �13C-values was measured in 

all incubations, indicating a transfer of added 13C into lipid biosynthesis by the 

methanotrophic communities. However, in the three inoculates amended with 13C-methane, 

only minor changes in �13C of bacterial FAs were observed (��13C�FAs T0-T3 +9‰ (BS); 

+21‰ (HR) and +24‰ (GF)). In contrast, 13C-bicarbonate labeling led to a much stronger 

13C-incorporation into FAs. Isotopic changes between the start and end of the incubation 

were ��13C�FAs T0-T3 +65‰ for BS, +145‰ for HR and +763‰ for the GF inoculate.  

The ��13C �T0-T3 of archaeal lipids showed a different pattern. In the BS slurry, 

labeling with 13C-methane or 13C-bicarbonate resulted in similar isotopic changes of +59‰ 

and +58‰, respectively. Likewise, methane and bicarbonate labeling led to a similar 13C 

incorporation (��13C +70‰ and +91‰, respectively) in HR slurries. These values indicate 

that the archaeal communities assimilate both carbon sources in a ratio of about 1:1. From 

the GF slurries, only two measurements of archaeol derivatives were successful, because 
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overall concentrations were very low (Table 1). However, these results differ from those 

found for BS and HR slurries, showing incorporation of 13C-methane to 13C-bicarbonate 

with a ratio of about 1:10. The reason for the much higher bicarbonate incorporation in GF 

slurries is not clear, but could be related to differences in the specific types of anaerobic 

methanotrophs present (Table 3).  

 Figure 2 (left panel) shows the relative change in carbon isotopic compositions 

(��13C)  of  individual biomarker lipids from the start to the end of the  experiment  for  all  

Figure 2. Left panel: Carbon isotopic change of individual fatty acids and archaeal glycerol diethers 
after incubation with 13C-labeled bicarbonate for 176 days (grey) and 13C-labeled methane for 159 
days (black) in Black Sea, Hydrate Ridge and Gullfaks sediment slurries. Right panel: Carbon 
assimilation into biomarker lipids based on carbon isotopic changes during the course of the 
experiment. 
 
replicate incubations amended with 13C-methane or 13C-bicarbonate. The strongest label 

incorporation resulted from the 13C-bicarbonate amendments. However, the incorporation 

of label was different for each FA. Highest changes in the carbon isotopy were found for 
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C16:1�5c with ��13C-values of +247‰ (BS), +418‰ (HR) and +2097‰ (GF). But also C16:1�7c 

(HR, GF, BS), C14:0 (HR, GF) and cyC17:0�5,6 (HR) were highly labeled. Except for C14:0, these 

FAs are usually associated with ANME-2 dominated microbial communities (Hinrichs et al., 

2000; Orphan et al., 2001a; Elvert et al., 2003; Niemann and Elvert, in press). Intermediate 

changes were found for C16:0, but also for i-C15:0 and ai-C15:0. In all three samples, the lowest 

carbon isotopic change was found for C18:0.  

Since carbon was mainly assimilated from the inorganic carbon pool (q.v. Table 1, 

Fig. 1), the uptake into individual FAs during incubation times (�CLD) (Fig. 2, right panels) 

were calculated as follows: 

 LD
Carb

13
LD

13

LD conc
C�
C���C ��        (2) 

where ��13CLD is the isotopic change of the individual lipid as a result of carbonate labeling, 

�13CDIC the isotopic composition of inorganic carbon in the medium (~ +10,000‰) and 

concLD the concentration of the individual lipids. Considering the above results, we assumed 

a mixed carbon assimilation of 1:1 of CO2 and methane for the archaeal lipids, and hence 

multiplied �CLD by two for the calculation of carbon assimilation by ANME. 

 Samples from GF and HR showed a very similar carbon assimilation pattern. 

Highest carbon uptake was measured for C16:1w5c (71 and 125 ng C gdw-1), followed by 

C16:1w7c (25 and 121 ng C gdw-1). Intermediate uptake was found for the saturated fatty acids 

C14:0 and C16:0. In the BS inoculate, highest uptake was found for C16:1w7c (192 ng gdw-1) and 

C18:1w7c (154 ng gdw-1), followed by C16:1w5c (75 ng gdw-1). In all sediments, almost no carbon 

uptake was found for C18:0. The calculated carbon uptake into archaeol and hydroxyarchaeol 

was overall lower with 10 and 20 ng gdw-1 (BS), 68 and 93 ng gdw-1 (HR) and 8 and 19 ng 

gdw-1 (GF).  
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Dependence of inorganic carbon assimilation on methane as energy source. 

The dependence of inorganic carbon assimilation into microbial lipids on methane 

as energy source was tested in an additional batch experiment. Under a methane atmosphere 

of 3.1 mM, high SR rates of 0.8 μmol gdw-1 d-1 were measured for BS and HR sediments. In 

contrast, low SR rates (0.07 and 0.02 μmol gdw-1 d-1, respectively) were determined in 

methane-free control samples. Due to material limitation, a less active GF inoculate was 

used, which reached SR rates of only 0.05 μmol gdw-1 d-1 with methane, and 0.02 μmol gdw-1 

d-1 in the control experiment with N2/CO2.  

 Table 2 shows the carbon isotopic change of selected fatty acids and archaeol 

derivatives after 50 days of incubation with a 13C enriched carbonate pool (�13C 

~ + 10,000‰).   In all three incubations with methane, high isotopic shifts in AOM-specific  

Table 2. Assimilation of inorganic carbon by methanotrophic communities with and without 
methane as energy source. Sediment slurries from Black Sea, Hydrate Ridge and Gullfaks were 
incubated for 50 days with labeled bicarbonate �13C ~+10000‰.  

 Black Sea Hydrate Ridge Gullfaks 

 ��13C (‰) ��13C (‰) ��13C(‰) 

Bacterial lipids 
+ CH4 Control + CH4 control + CH4 Control 

C14:0 6 -1 446 6 212 77 
i-C15:0 7 4 9 10 151 13 

Ai-C15:0 25 1 23 -4 51 29 
C16:1�7c 116 7 155 69 59 3 
C16:1�5c 226 10 836 7 614 45 

C16:0 13 -1 150 45 52 7 
cyC17:0�5,6 76 -2 203 11 159 14 

isoprenFA19:0 21 1 -5    
C18:1�7c 163 2 61 44 11 -1 

C18:0 18 -3 8 6 11 16 

Archaeal lipids       

Archaeol 37 34 106 38 40 5 
sn2-hydroxyarch 16 23 99 24 1 6  

 

fatty acids were observed, indicating de novo synthesis of microbial lipids. Especially C16:1�5c 

showed a high carbon uptake with 
�13C +225‰ (BS), +836‰ (HR) and +614‰ (GF). 

Other highly labeled compounds were cyC17:0�5,6, C14:0, C16:1�7c and C16:1�7c. In the control 

experiment without methane, the incorporation of 13C-label was orders of magnitudes lower 
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and not specific for AOM biomarkers. The archaeal community of HR and GF took up 

considerably more 13C-labeled CO2 into archaeol when methane was supplied as energy 

source. However, no effect of methane supply on assimilation of 13C-labeled CO2 into sn2-

hydroxyarchaeol was detected in the GF community. Inorganic carbon assimilation by the 

archaeal community of the BS sediments was not affected by methane supply.  

 

 

Discussion 

Patterns of microbial lipids and their carbon isotopic compositions in cold seep sediments from Black Sea, 

Hydrate Ridge and Gullfaks 

Cold seep sediments generally show a characteristic pattern of extremely 13C-

depleted specific archaeal and bacterial lipids, which originate from methanotrophic archaea 

and sulfate reducing bacteria involved in AOM (Hinrichs et al. 1999, 2000; Elvert et al. 

1999, 2000; Boetius et al. 2000; Thiel et al. 2001).  

Previous phylogenetic studies based on 16S rRNA gene analysis showed a 

dominance of ANME-2a/DSS consortia in seep sediments of HR (Boetius et al., 2000; 

Knittel et al., 2005) and of ANME-2c/DSS for GF (Wegener et al., 2008, this thesis, chapter 

II). The biomarker patterns found at both sites resembles those at other ANME-2/DSS 

dominated seep areas (Blumenberg et al., 2004, Elvert et al., 2005; Niemann and Elvert, in 

press). Specifically the ratios >3 of the FAs C16:1�5c relative to i-C15:0 and the presence of 

substantial amounts of cyC17:0�5,6 are in good agreements with a dominance of ANME-2 

partner SRBs of the DSS cluster (Niemann and Elvert, in press). Similarly, a ratio of >1.5 of 

the archaeal lipids sn2-hydroxyarchaeol relative to archaeol are indicative for ANME-2 

archaea (Blumenberg et al., 2004; Niemann and Elvert in press). Prior to the labeling 

experiments, the weighted average carbon isotope compositions of the dominant FAs in 

sediments of HR and GF were comparatively low with �13C-values of -43‰ (HR) and -51‰ 
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(GF). Typical biomarkers of bacteria associated with AOM communities such as the FAs i-

C15:0, ai-C15:0, C16:1�5 and cyC17:0�5,6 as well as the archaeal compounds archaeol and sn2-

hydroxyarchaeol showed highly depleted �13C-values (Tab. 1). Also more common lipids 

such as the ubiquitous FAs C16:1�7c and C18:1�7c showed relatively negative �13C-values, 

indicating a substantial uptake of methane-derived carbon by the microbial community.  

 The BS biomarker pattern strongly deviated from that of the other two sites. 

Saturated fatty acids like C16:0, C14:0 and C18:0 accounted for almost 70% of the extracted fatty 

acids. Monounsaturated fatty acids represent only about 20% of the fatty acid fraction. The 

Seep-SRB specific FAs a- and ai-C15:0 for C16:1�5c and cyC17:0�5,6 account for 0% of the total 

FAs analyzed. With a weighted mean FA �13C-value of -32‰, the FA fraction was only 

slightly depleted compared to marine non-seep FAs. The sediments of the Dniepr cold 

seeps used here showed a higher proportion of ANME-2 over ANME-1, and a large ratio of 

diverse unidentified bacteria (Arnds, unpublished data). A comparably high contribution of 

ANME-2 and associated SRB partner is also reflected in the biomarker pattern as shown by 

high rations of sn2-hydroxyarchaeol relative to archaeol (1.8) and the presence of substantial 

amounts of cyC17:0�5,6. (Blumenberg et al., 2004; Niemann and Elvert, in press).  

 

Carbon assimilation by microorganisms performing AOM 

The very low �13C-values of lipids from archaea and SRB involved in AOM have 

been explained by the assimilation of 13C-depleted methane carbon associated with a strong 

carbon isotopic fractionation during methane uptake into biomass (Hinrichs et al., 1999; 

Elvert et al. 1999; Pancost et al. 2000; Thiel et al. 2001; Orphan et al., 2001a). Archaeol and 

hydroxyarchaeol of anaerobic methanotrophs are depleted in 13C by around -50‰ relative to 

methane as carbon source (Hinrichs and Boetius, 2002; Niemann and Elvert, in press). 

Similar isotopic relationships were found for the investigated microbial communities from 

HR and GF (Table. 1; �13C-CH4 at HR -64.5‰ to -67.5‰ (Kastner et al., 1998); �13C-CH4 at 
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GF: -73.9‰ (Hovland, 2007)). Assuming an archaeal biomass composition of C4H8O2N 

(Harder and van Dijken, 1975), Nauhaus et al. (2007) suggested an approximately equal 

incorporation of methane and CO2 by archaeal methanotrophs, simply because microbial 

biomass is more oxidized relative to methane according to eq. 3. 

    (3). 


 

�

 HOHNOHCNHCOCH 814881517 2284424

The observed change in the isotopic composition by labeling both carbon sources, 

methane and inorganic carbon, could be explained by the stoichiometry shown in this 

formula. Additionally an assimilation of both carbon sources would reduce the energy 

demands of CO2 reduction, which would be in particular favorable for ANMEs as they 

operate at minimal energy yields (Hoehler et al., 1994). However, it is also possible that the 

ANME assimilate only CO2 similar to the phylogenetically related autotrophic methanogens 

(Sprott, 1993). Although our flow-through setup effectively dilutes 13C-labeled bicarbonate 

produced from 13C-methane oxidation, the oxidation of methane and the assimilation of 

methane-derived CO2 could be coupled within the cell. 

Like their archaeal partners, SRB involved in AOM have strongly depleted lipid 

biomarkers (Table 1), suggesting that they directly assimilate methane or indirectly as a 

methane-derived carbon intermediate. Hinrichs and Boetius (2002) pointed out that specific 

archaeal and bacterial lipid biomarker show relatively constant isotopic offsets to methane 

and porewater DIC, suggesting autotrophic carbon fixation as possible explanation for the 

carbon isotopic difference between archaeal and SRB biomarker lipids. Published �13C-

values of seep porewater DIC are rare, however the isotope compositions of authigenic 

carbonates corresponds to the isotopic composition of pore water DIC while precipitation. 

The offset between carbonate precipitates and the biomass or lipid biomarker of the SEEP-

SRBs is about -40 to -50‰ (Hinrichs et al., 2000; Orphan et al., 2002; Hinrichs and Boetius, 

2002), which is in agreement with carbon fractionation by autotrophic SRB using the acetyl-
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CoA-carbon monoxide dehydrogenase pathway (Preuß et al. 1989; Londry and Des Marais, 

2003; Londry et al., 2004). Our data from stable isotope probing using 13C-labelled methane 

and bicarbonate confirm that CO2 is the main carbon source of the partner SRB involved in 

AOM and that direct methane uptake or uptake of methane-derived organic intermediates is 

not significant in lipid biosynthesis of syntrophic SRB involved in AOM.  

 

Carbon assimilation efficiency of methanotrophic communities 

As indicated above, we can assume an autotrophic CO2 uptake by the partner SRB 

and a mixed uptake of methane and CO2 by the methanotrophic archaea. Hence, we can use 

carbon isotope compositional changes of lipid biomarkers to calculate yield and growth 

efficiency of the methanotrophic communities according to eq. 2.  

For the relation between specific lipid biomarker and cell biomass, we used data 

from a two-year pressure incubation with HR sediments by Nauhaus et al. (2007). During 

their experiment, a yield of 23 mg C of consortia biomass corresponded to a yield of 0.7 mg 

of the FA C16:1w5c. For our HR sediment incubations of 176 days with labeled bicarbonate, 

we calculated an increase of 0.13 μg C16:1�5c per gram sediment. Using the biomass/lipid 

ratios from Nauhaus et al. (2007), this corresponds to an increase in methanotrophic 

consortia biomass of 4.1 mg C gdw-1. A similar calculation resulted in values of 0.5 for C14:0, 

0.3 for archaeol, and 1.3 μmol C gdw-1 for hydroxyarchaeol, as carbon biomass yield of the 

methanotrophic community. Similarly, we calculated carbon incorporation yields between 

0.1 and 1.4 for BS and 0.1 to 1.1 μmol gdw-1 for GF inoculate. These estimates have to be 

considered as rough approximations, as lipid/biomass ratio may be variable across different 

populations and environmental conditions.  

During six months of incubation of HR sediments, 60 μmol C gdw-1 of methane 

were oxidized, of which, based on the yield of C16:1�5c, 0.4 μmol C gdw-1 were assimilated 

into biomass, corresponding to a carbon assimilation efficiency of 0.6%. This value is 
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slightly lower than that found by Nauhaus et al. (2007). The higher methane pressure 

applied by these authors has likely resulted in higher growth yields due to more favorable 

thermodynamic conditions. Using the same approach, we calculated a carbon uptake 

efficiency of 1.3% for GF and only 0.3% for the BS inoculate. As previously suggested (e.g., 

Bian et al. 2001), the remarkably low growth rate and carbon assimilation efficiency of 

ANMEs and their syntrophic partners likely reflects the low energy yield of AOM, especially 

when considering the high energy demand of autotrophic growth. 

 

Metabolic relations between methanotrophic archaea and sulfate reducing bacteria  

Previous studies combining lipid biomarker analyses and microscopy suggested a 

syntrophic interaction between the archaeal methanotrophs and the SRB (Boetius et al., 

2000; Orphan et al. 2001a; Niemann et al., 2006; Nauhaus et al. 2007). No known cultivated 

sulfate reducing bacteria or sulfate reducing archaea (i.e., Archaeoglobus fulgidus) are capable of 

using methane as sole electron donor. The coupling of methane oxidation to sulfate 

reduction likely involves a transfer of electrons from methanotrophic archaea to SRB. Here 

we found evidence for an AOM-dependent uptake of inorganic carbon into fatty acids of 

partner SRB. In contrast, we found no evidence of a significant assimilation of methane, or 

a direct intermediate thereof, by the SRB. This finding excludes methane-derived 

intermediates such as formate, acetate, methanol, or methylamines as carbon source, as well 

as heterotrophic growth on ANME biomass. However, our experiments do not exclude that 

these potential intermediates are used as energy sources, although it seems unlikely that such 

intermediates would only serve in catabolic and not in anabolic processes. As an energy 

source for the energetically expensive autotrophic fixation of CO2, an electron transfer by 

membrane bound redox shuttles or a potential transduction via cytochromes seems most 

likely. Hydrogen transfer was previously excluded by other physiological experiments 

(Nauhaus et al. 2002; 2005; Moran et al., 2008). Based on chemical equilibrium calculations, 
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Widdel and Rabus (2001) postulated an electric potential for electron shuttles of -0.25 to -

0.29 Volts. They proposed potential candidates such as the cofactor methanophenazine 

(estimated mid-point potential close to -0.255 V). The direct transport via cell membrane 

connections would avoid the diffusion loss of electron acceptors. Electron transfer from 

cells to solid minerals is known from iron reducing bacteria such as Geobacter (Bond et al., 

2002; Bond and Lovley, 2003). These organisms use cell membrane cytochromes and 

nanowires to connect between cell and mineral (Mehta et al., 2005). Similar mechanisms 

may be used in the coupling of methane oxidation and sulfate reduction. Experiments using 

electrodes as alternatively electron acceptor might be promising in examining the metabolic 

connection within the AOM consortia. 

 

Conclusions: 

Anaerobic methanotrophic communities from three different cold seep sites 

incorporated methane-derived carbon into lipid membranes, when provided with methane 

as the sole energy source. We estimated that 0.25-1.3% of the total methane oxidized was 

assimilated into bulk methanotrophic biomass. Archaeal lipids showed a direct uptake of 

13C-labeled methane in a 1:1 ratio to CO2. In the presence of methane as sole energy source, 

fatty acids from the syntrophic SRB were labeled with 13CO2 but not with 13C-methane, 

indicating an autotrophic life style of the SRB. We did not find evidence for a direct uptake 

of methane-derived carbon by SRB. This supports previous hypotheses of an electron 

transfer via redox active electron shuttles between the archaeal and bacterial partners in 

AOM. 
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Experimental procedures 

Set up of flow through reactors 

Preincubated sediment slurries from three different cold seep habitats, namely BS 

(1), HR (2) and GF (3) (for details, see Table 3) were used in the flow-through incubations. 

The BS sediment was sampled with the submersible JAGO in the vicinity of an active 

carbonate chimney. The sediments from HR as well as GF were retrieved by multiple corer 

sampling from 

Table. 3: Origin and characterization of the inoculated seep sediments from the Black Sea, Hydrate 
Ridge and Gullfaks oil field. 
 

 

 

 

 

 

 

 

 

  Black Sea Hydrate Ridge Gullfaks 

Expedition R/V Poseidon      
Pos217/3    

R/V Sonne cruise 
SO165-2  

R/V Heincke     
HE208 

Sampling 2004 2002 2004 

Location 44°46.413’ N   
031°58.201’ E 

44°34.203' N  
125°08.771’ W 

61°28.860' N  
002°40.500' E  

Area Dniepr NE-Pacific Northern North 
Sea 

Water depth 326m 776m 150m  

Sediment type clay with authigenic 
carbonates clay medium grained 

sand 
Methanotrophic 
community Mixed ANME-1/2 ANME-2a    

dominated 
ANME-2c    
dominated 

Reference Arnds 
(unpublished) Knittel et al., 2005 Wegener et al., 

2008 
 

mats of thiotrophic bacteria (Beggiatoa sp.). All three seep habitats were sulfide rich (>5 mM) 

and characterized by high methane-driven sulfate reduction. The clayish sediments from the 

BS were not covered by thiotrophic mats because bottom waters of the BS are devoid of O2 

and NO3
- (Murray et al., 1991).  

Sediment samples from three different seep habitats were transferred to Duran 

bottles and kept under an anoxic methane atmosphere on a rolling table at temperatures of 

4°C until use in flow through incubations. All processing of sediment slurries was 

performed in an anaerobic glove box to avoid contact with oxygen. The columns were filled 
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with sediment slurries diluted ~ 1:2 with sulfate reducer medium (Widdel and Bak, 1992), 

except for the coarse sandy sediments from GF which were used at in situ density. 

 A semi-continuous flow-through system was set up according to Figure 3. Sediment 

slurries were filled in glass cylinders onto glass frits. Columns were filled completely with 

anaerobic seawater medium (0.5 mM H2S, 28 mM SO4
2- and 30 mM HCO3

-, enriched with 

sulfate reducer vitamins, rare elements; according to Widdel and Bak, 1992). Anaerobic 

medium was used for the circulation between reservoirs and replicate sediment columns. 

This setup preserved stable conditions and ensured the dilution of reaction products, 

primarily methane based bicarbonate, in a large DIC pool. For the methane enrichment, the 

headspace of the reservoir was filled with 0.15 MPa methane:CO2 mixture (96:4),  keeping a  

 

Figure 3. Simplified flow-through setup used 
for the carbon incorporation experiments with 
the sediment column (left) supplied with 
circulating medium from a reservoir (right). 
 

 

methane concentration of about 2mM in the column inflow and a pH of 7.2. Gas-tight 

material (Viton®, DuPont Performance Elastomers, Willmington, US; and Tygon® HC, 

Saint-Gobain Performance Plastics Corporation, Akron, US) was used for all tubing to 

avoid contamination with oxygen or a loss of methane or CO2. Resazurin (NaC12H6NO4) 

was added to the medium as oxygen indicator. Metabolic activity was measured as changes 
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in the methane and sulfide concentrations of the in- and outflowing medium, respectively. 

Methane concentrations were measured from NaOH fixed water samples (0.5 ml) by gas 

chromatography (Hewlett Packard, 5890A with flame ionization detector, details Treude et 

al., 2003). Sulfide was determined using copper sulfate method from 0.1 ml triplicates 

(Cord-Ruwisch, 1985). 

 

Labeling with 13C-methane and -bicarbonate 

Two replicate flow-through columns were set up from each of the three sediment 

slurries. In one experiment, the inorganic carbon pool of the reservoir medium was labeled 

with 11% 13C-bicarbonate (calculated �13C ~+10000‰). In the other experiment, the 

methane atmosphere of the reservoir headspace was labeled with about 12% 13C-methane 

(�13C ~+11000‰; measured on GC-IRMS - Thermo Finnigan, Delta V Advantage). The 

flow through columns of both experiments were subsampled three times within a time span 

of 176 (�13C-HCO3
- incubations) and 159 days (�13C-methane incubations) for lipid 

biomarker analyses. The loss of sediment in each column due to subsampling (~ 8 g / 20g 

dry weight per sampling) was taken into account in the calculation of metabolic activities. 

 As a control experiment, the assimilation of 13CO2 was compared in a batch incubation 

of a subsample of the three sediment slurries with 10% 13C-labeled bicarbonate in the total 

bicarbonate pool and in the presence of methane (0.25 MPa ~ 3.1 mM) or N2/CO2 in the 

headspace of the reaction vessels. The experiment was carried out incubating duplicates of 7 

g (BS and HR) and 20 g sediment (GF) dry weight in 100 ml of sulfate reducer medium 

(Widdel and Bak, 1992) in 250-ml Duran bottles filled closed with butyl stoppers. 

 

Extraction and derivatization of lipids  

Lipid extraction was carried out according to previously described methods (Elvert 

et al., 2003; Niemann et al., 2005). Briefly, total lipid extracts (TLE) were obtained by 
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suspending and sonicating wet sediments in organic solvents of decreasing polarity. Internal 

standards (n-nonadecanol and n-nonadecanoic acid) of known concentration and carbon 

isotopic composition were added prior to extraction. TLEs were saponified with methanolic 

KOH-solution (6%). After extraction of the neutral fraction from this mixture, FAs were 

methylated using BF3 (14%) in methanol, yielding fatty acid methyl esters (FAMEs). Double 

bound positions of monoeoic FAs were determined by analyzing the dimethyl disulfide 

(DMDS) adducts of FAs according to a previous published method (Moss and Lambert-

Fair, 1989).  

 

Lipid analyses 

FAs and archaeal glycerol diethers were quantified by gas chromatography-flame 

ionization detection (GC-FID), identified by gas chromatography-mass spectrometry (GC-

MS, ThermoFinnigan, San Jose, CA), and their stable carbon isotopic compositions were 

determined by gas chromatography-combustion isotope ratio mass spectrometry (GC-

IRMS). Instrument specifications and operation modes of the GC-FID and GC-MS systems 

can be found in Elvert et al. (2003) with modifications made by Niemann et al. (2006). For 

GC-IRMS measurements, a Finnigan Delta plus IRMS was used, connected via a Finnigan 

Combustion Interface III to a HP 6890 Series GC, equipped with a VF-5ms column (30 m, 

ID 0.25mm, film thickness 0.25 μm; Varian, Palo Alto, US). Selected samples were 

measured twice to control reproducibility. Standard deviations for replicate lipid analysis 

were on average 10%. Stable carbon isotope ratios of lipid compounds are given in the �-

notation against Vienna PeeDee Belemnite (V-PDB) with a precision of 1‰. 
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Conclusions 

My doctoral thesis investigated anaerobic oxidation of methane (AOM) with a focus 

on the microbial ecology of shallow methane seep habitats, the physiology of AOM and the 

determination of carbon sources used by the organisms performing AOM. 

In the first research manuscript of this thesis I presented our results on gas 

emissions, biogeochemistry and molecular ecology of several seepage areas in the North 

Sea, which we studied during 5 research cruises. Prior research on the ecology of methane 

rich habitats mainly focused on deep-sea cold seeps, such as Eel River Basin (Hinrichs et al., 

1999; Orphan et al., 2002; Levin, 2005), Hydrate Ridge (Boetius et al., 2000; Knittel et al., 

2003; Knittel et al., 2005) and Haakon Mosby Mud Volcano (Niemann et al., 2006; 

Lösekann et al., 2007),  or seepage sites in the Gulf of Mexico (Orcutt et al., 2004; Orcutt et 

al., 2005). Studies on shallow water seep sites are rare (e.g., Santa Barbara hydrocarbon 

seeps (Montagna et al., 1986), and Skagerrak seeps (Dando et al., 1994)). 

In the North Sea shallow gas accumulations, mostly sourced by leakage from deep 

thermogenic reservoirs, are common. Above several of these shallow gas accumulations we 

detected gas flares in the water column. Gas hydrate formation is not possible in the 

shallow sea because of low gas solubility at low pressure, therefore, gas flux in the North 

Sea seepage sites is due to quickly rising bubbles. Hence, the microbial barrier to methane 

loss to hydrosphere is less effective in these areas compared to deep sea seep areas, where 

free gas is rare. From rate measurements and bubble stream counts, we estimate that less 

than 20% of the rising methane was oxidized within the sediment of Gullfaks. This 

methane consumption is even less efficient than that estimated for the Beggiatoa fields of 

Haakon Mosby (~40%; Niemann et al., 2006), where methane oxidation efficiency is 

reduced by high pore water velocities, which prevent the intrusion of sulfate into the 

sediment. This highlights the particular relevance of shallow seep sites to the marine and 

global methane budget.  
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The active centers of the gas emissions at Gullfaks and Tommeliten are 

characterized by coverage with mats of sulfide oxidizing bacteria. At Gullfaks, we found 

those filamentous bacteria covering an area of about 0.1 km2, representing the largest 

currently known active seep of the North Sea. At Tommeliten, methane leakage was limited 

to small patches (<0.3 m2), which cover sand filled faults in the otherwise impermeable 

sediment. Chemosynthetic macrofauna, (e.g., bacterial symbiont hosting tube worms and 

bivalves), which are characteristic of deep sea vents, were absent at the North Sea seep sites. 

This might be due to the tidally forced, high bottom water currents, which prevent 

settlement of benthic organisms. 

The lipid biomarker patterns of Gullfaks and Tommeliten were indicative of typical 

seep microorganisms: aerobic methanotrophs, anaerobic methanotrophs plus their partner 

SRBs and sulfide oxidizers. The very light average carbon isotope values of the lipid 

biomarker at both sites emphasized the importance of methane as an energy and carbon 

source in the seep sediments. Alternative carbon energy sources were rare at Gullfaks and 

Tommeliten, since we found low organic carbon sands at both seep sites. Also, we found a 

rather constant offset between the �13C carbon composition of methane and archaeal 

biomarkers and between inorganic carbon and biomarkers of sulfate reducing bacteria. This 

offset represents 40‰ to 50‰ in each case and is due to the carbon uptake patterns of 

those organisms, which were examined and discussed in chapter IV.  

At both seepage sites, 16S rRNA based archaeal gene sequences were dominated by 

methanotrophs (ANME-2c at Gullfaks and ANME-2a at Tommeliten), which were highly 

similar to those from deepwater seepage sites. Bacterial 16S rRNA gene libraries from both 

sites contained sequences of the different Seep-SRB clusters. At Tommeliten many 

sequences were attributed to Desulfobulbus, though we found only a few single cells of their 

typically associated partner ANME. In summary, the lower pressure, seasonal cycles, and 

on-average higher temperature of the North Sea did not appear to affect microbial seep 
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communities of Tommeliten and Gullfaks – i.e. a unique phylogenetic group of coastal or 

shallow-water methane oxidizers was not detected. In fact, sequences were highly similar to 

those observed in distant deep sea seep sites such as the Eel River Basin (coast of 

California), Hydrate Ridge (coast of Oregon), Black Sea and Gulf of Mexico. Without 

having statistical analysis, it seems that geographical distance is of minor importance for the 

distribution pattern of the ANME strains. Rather, other geochemical factors appear to be 

the crucial factor regulating the distribution of the different methanotrophs. For example, 

the methanotrophic community pattern in the Tommeliten bacterial patches was completely 

different from the Tommeliten subsurface SMTZ. Because of the limited sediment 

sampling and the small sample sizes we obtained in this project, an extensive geochemical 

characterization was not possible. For further studies comprehensive geochemical analysis 

should be performed to outline the factors selecting for the different ANME groups. 

In the second research project, I set up an anaerobic flow-through system, in which 

physiological parameters of methanotrophy were examined. At steady conditions of ~1.5 

atm CH4, methane oxidation and sulfate reduction were constant and at high levels, 

although the reactants were not depleted at any time. We argue that threshold methane 

concentrations, probably in the range of several atmospheres, are necessary to stimulate 

detectable growth (with doubling times < 1 year). Similar behavior was found for aerobic 

soil methanotrophs, however at different scales of methane. Below a methane concentration 

of 7000 pm, linear methane consumption was measured, indicating a non growing 

community. At higher methane concentrations methane consumption increased 

exponentially, showing exponential growth (Bender and Conrad, 1995).   

A nearly linear relationship between methane concentration (up to 2.3 mM) and 

methane consumption was observed for our inoculates, indicating extraordinarily high half 

saturation (KM) values above the tested concentrations. In contrast, the KM value for H2 in 

hydrogenothrophic sulfate reduction is orders of magnitudes lower with 141 Pa (~1 μM; 
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Lovley et al., 1982). The high KM values are due to enzymes catalysis of methane activation. 

These enzymes are very similar to those which efficiently catalyze the final step of 

methanogenesis (Krüger et al., 2003). Hence, catalyses with this enzyme package in the 

reverse direction must be of restricted efficiency. 

Future growth and half saturation experiments should be performed over wide 

methane ranges (the upper limit is determined by gas hydrate stability) to cover 

environmentally possible conditions. Recently, a high pressure flow-through setup was 

developed which successfully reproduced high methane consumption rates (Deusner, 

unpublished). This setup combines the advantages of large methane pressure ranges with 

constant low AOM product concentrations. Further kinetic studies, especially those 

examining the KM values of methane should be performed using this setup. Preferentially, 

enrichments with a clear dominance of a single ANME strain should be tested, since 

different strains have shown different growth characteristics (Holler, unpublished). 

In the third research project we focused on the role of methane and CO2 as carbon 

sources for microorganisms performing AOM. With a combination of stable isotope 

probing and lipid biomarker isotope analyses, even low-level carbon assimilation into 

biomass was detectable. This was necessary as prior growth experiments  indicated 

extremely low carbon assimilation rates during AOM (Girguis et al., 2003, 2005; Niemann et 

al., 2006).  

We inoculated sediments from three well-described seep areas (Hydrate Ridge, 

Black Sea, Gullfaks) with 13C labeled methane or 13C labeled bicarbonate for approx. 6 

months. For all inoculates we observed that lipids attributed to sulfate reducing bacteria 

were almost exclusively labeled by inorganic carbon. In an additional experiment we showed 

clearly that the inorganic carbon fixation by the SRB is strictly methane oxidation 

dependent. In contrast, methanotrophic archaea showed similar carbon assimilation from 
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both carbon sources. These results suggest that methanotrophic archaea combines both 

carbon sources to form biomass whereas the partner SRB is autotrophic.  

The observed carbon assimilation patterns explain the carbon isotope relationship 

between carbon sources and lipid derived biomarker found in active AOM zones. For lipids 

derived from SRB, constant offsets relative to carbonate are due to inorganic carbonate 

assimilation. The carbon in archaeal lipids derives to about 50‰ from methane, which is, in 

natural sediments, expressed in extremely 13C depleted carbon compositions.  

We argue that the reductive acetyl-CoA-carbon monoxide dehydrogenase pathway 

(CODH; also known as Wood-Ljungdahl pathway; Morton et al., 1991) is the anabolic 

pathway of the consortial SRB. The CODH pathway catalyzes carbon fixation in many 

other sulfate reducing bacteria (Preuß et al., 1989) and also shows the highest carbon 

fractionation known for autotrophy (Londry and Des Marais, 2003; Londry et al., 2004).  

It is likely that ANMEs also use the CODH-pathway, as this is true for most other 

Euryarchaeota, especially methanogens (Bhatnagar et al., 1991; Thauer, 1998; Lindahl and 

Chang, 2001). In metagenome surveys Meyerdierks et al. (2005) found several ORFs (open 

reading frames) encoding for the CODH pathway. If this is true, carbon monoxide uptake 

and direct incorporation of acetate into the cell biomass must also be possible as previously 

demonstrated for methanogens (Sprott et al., 1993). Facultative uptake of acetate may also 

explain the less depleted carbon isotope compositions of archaeal biomarkers in less active 

methane seep areas. 

The formation of biomass using the CODH pathway could explain the observed 

direct incorporation of methane into ANME biomass. In methanogens carbon fixation 

using CODH it involves the formation of methyl groups by CO2 reduction (fig. 1). 

Methanotrophic archaea might able to shuttle methyl groups directly from their catabolic 

pathway which presumably starts with the methylization of methane catalyzed by a methyl-

CoA-reductase (MCR) catalyzed radical reaction (Krüger et al., 2003). 
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Future work on AOM physiology should include labeling of alternative carbon 

sources such as acetate, the end product, and carbon monoxide, the intermediate in the 

CODH pathway. The comparison of deuterium labeling of water and methane might also 

raise interesting results. Knowledge about the origin of hydrogen in biomass might help to 

reconstruct carbon assimilation in ANMEs. The analyses of carbon stable isotope probing 

experiments with Nano-SIMS (secondary ion mass spectrometry) coupled with in situ 

hybridization (ISH) would allow the tracking of carbon flows on the spatial resolution of 

cells (discussed in the perspectives below).  

 

Fig. 1. Carbon fixation in methanogenic and methanotrophic archaea using the CODH (carbon 
monoxide dehydrogenase) pathway (after Hallam et al., 2004; Lessner et al., 2006; Ragsdale, 2007). 
Acetate is synthesized in CODH/ACS complexes from carbon monoxide and a methyl group. In 
methanogens the methyl group is formed by the reduction of CO2 (Lessner et al., 2006). 
Methanotrophic archaea may channel methyl group from CH4 as suggested by Hallam et al. (2004). 
The dashed arrows mark the uptake possibilities of alternative carbon sources. 
(Fdr, reduced ferredoxin; MF, methanofuran; THMPT, Tetrahydromethan-opterin; HSCoM, 
coenzyme M , F420, H2 dehydrogenase complex; MP, methanophenazine) 
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We calculated carbon assimilation efficiency into microbial biomass of 0.3% to 

1.3% (mol% organic carbon/ mol carbon oxidized) in AOM. This is consistent with earlier 

studies of Nauhaus et al. (2007) who calculated, based on enrichment attempts, carbon 

uptake efficiency of about 1%. The extremely low carbon uptake efficiencies of AOM 

demonstrate the challenge of enriching anaerobic methanotrophs. In comparison, slow 

growing methanogens show carbon uptake efficiencies of ~5% (acetogenic M; Weimer, 

1978) to ~7.5% (CO2-reduction; Lupton and Zeikos, 1984). 

Our results indicate that the transfer of organic intermediates such as formate, 

acetate or methylamine between ANME and SRB is unlikely, as the use of those 

compounds in catabolism, but not anabolism, would be energetically counterproductive. 

Additionally, previous experiments also excluded hydrogen as an intermediate (SRB do not 

instantly oxidize hydrogen (Nauhaus et al., 2002), and methane consumption was not 

inhibited by hydrogen addition (results not shown)). Furthermore, extracellular redox 

shuttles have been tested, but did not influence methanotrophy (Basen and Holler, 

unpublished). Hence, direct electron transfer seems to be the most likely mechanism for the 

connection between sulfate reducers and methanotrophic archaea. Terminal electron 

transfer to solid metal phases is known in the iron reducer Geobacter, which uses outer 

membrane cytochromes (Mehta et al., 2005) or nanowires (Reguera et al., 2005) to directly 

transfer electrons to mineral surfaces. Reguera and coworkers speculate that electron 

transfer through nanowires is also possible for cell-cell interactions, which could include 

AOM. Electron transfer between methanotrophic archaea and sulfate reducing bacteria 

would present novel way of tight syntrophy between organisms. Experiments examining 

extracellular electron transfer are in progress. Basen and coworkers try to describe the 

potential terminal electron transfer from ANMEs to bacterial sulfate reducers by charged 

electrodes (see below). 
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Perspectives: Stable isotope probing in AOM research. 

Research on AOM has progressed significant within the last few years. However, 

the metabolic relationship within the consortia, carbon flows into the consortia, and the 

accompanied stable isotope pattern of the consortial biomass are not fully understood. 

Stable isotope probing has strong potential to contribute to this topic. Some interesting 

experimental possibilities are cited here and described in detail below: 

 
� Acetate labeling to test an alternative carbon source for organisms performing 

AOM   

� Hydrogen labeling of water and methane to distinguish archaeal carbon sources in 

methanotrophic aggregates  

� Combination of stable isotope labeling and electron transfer to electrodes  to  

describe the electron transfer gap 

� Nano-SIMS, ISH and SIP (stable isotope probing) combination to describe carbon 

source assimilation on phylogenetic levels 

 

Acetate incorporation into archaeal biomass. 

Acetate is not the primary energy source for methanotrophic archaea, but might be 

assimilated as an alternative carbon source if present. Acetate incorporation would 

potentially save energy for those organisms living on substrates with extremely low energy 

yields. Heterotrophic growth is widespread in the Kingdom Euryarchaeota, even in CO2-

reducing methanogens. Acetate uptake might also explain the different carbon isotope 

patterns of the different ANME groups. As a carbon source acetate might explain the 

preferential growth of one or other archaeal groups of archaea in methanotrophic 

environments. To unravel this question I recommend lipid biomarker studies that compare 

13C based carbon uptake on acetate, methane and carbonate.  
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Hydrogen labeling of water and methane to test autotrophy.  

In our carbon source labeling study, we demonstrated mixed incorporation of 

methane and carbonate into the archaeal biomass at a ratio of 1:1. This is consistent with a 

redox state equilibration of both compounds to organic biomass (Nauhaus et al., 2007). 

However, the measured carbon source assimilation might also be an artifact of autotrophic 

CO2 fixation, since DIC is a product of AOM.  

To determine the pathways of carbon fixation, parallel incubations of anaerobic 

methanotrophs while labeling deuterium of methane and water might be a promising 

approach. If the archaea incorporate methane-derived methyl groups into biomass (as 

indicated by our results, and illustrated in fig. 1), then a deuterium labeling signal in the 

biomass should be predominantly found while D-labeling of methane. If, in contrast, the 

archaeal methanotroph fixes only CO2, the deuterium labeling of methane will not be 

recovered in the archaeal biomass (lipids).  

 

Closing the electron transfer gap. Combining stable isotope labeling with electron 

transfer to electrodes  

Numerous studies have proposed that AOM is performed in a tight syntrophic 

coupling of archaeal methane oxidation and bacterial sulfate reduction. However, the 

electron sharing mechanism is not understood; in fact, most theoretically possible energy-

sharing mechanisms have been excluded (Nauhaus et al., 2002; Wegener unpublished). 

Hence, extra-cellular electron transfer, performed via cytochromes or nanowires is the most 

likely mechanism to couple the metabolism of ANME and SRB. Extra-cellular electron 

transfer has been described in the last decade for several organisms, including Geobacter spp., 

which generates ATP by using solid phase iron oxides as the terminal electron acceptor. 

These organisms create microanodes which transfer the electrons from the cell directly to 

the minerals. It is also possible to harvest energy from Geobacteraceae (fuel cell) or let these 
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organisms grow providing a positively charged electrode as the sole electron acceptor (Bond 

et al., 2002). A similar mechanism is conceivable for methanotrophic consortia. The 

incubation of AOM enrichments without sulfate but with a cathode providing an electric 

potential, suitable for electron transfer, is a promising approach to investigate this theory. 

Currently a setup is in use to test this theory. This could also be combined with lipid isotope 

probing experiments in combination with lipid biomarker analyses or NanoSIMS (discussed 

below) to show activity and carbon uptake of archaeal methanotrophs decoupled from 

sulfate reducing bacteria. 

 

New technologies: The combination of Nano-SIMS, ISH and SIP 

The coupling of in situ oligonucleotide hybridization and secondary ion mass 

spectrometry (SIMS) has been demonstrated as a powerful tool for resolving the origin and 

spatial distribution of isotopic signals on the AOM-aggregate level (Orphan et al., 2001). 

The recent further development to Nano-SIMS enhances the resolution of this method to 

the cell and sub-cell level. In combination with in situ oligonucleotide labeling this can be a 

new powerful tool, to link identity and carbon or nutrient uptake into microorganisms 

(Kuypers and Jørgensen, 2007). Instead of a fluorescent dye, oligonuclides are labeled with 

rare halogen ions or radionucleotides, whose mass can be detected via SIMS. Although a 

name for this new method combination does not exist yet, this approach has a huge 

potential for helping to understand carbon flows within the organism. Coupling of SIMS 

with 16S rRNA-based oligonucleotide methods can resolve carbon or other elemental 

uptake by cells at defined phylogenetic levels as recently shown in pioneering work by Li et 

al. (2008). For mixed cell cultures Li and coworkers showed preferred uptake of glucose 

(13C-labeled) and ammonium (15N-labeled) into Escherichia coli cells  

In AOM research the final goals of this new method are: determination of carbon 

sources in different, phylogenetically defined methanotrophic organisms, clarification of 
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metabolic relationship within the consortia and finally, the determination of factors for the 

different environmental ANME/SRB associations. 
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Field experiences and presentations

Field Experience 
 
Mar. 2006 RV SONNE Cruise, SO191-2 IfM-GEOMAR (COMET/MUMM) 

Investigation of new methane driven habitats on the New Zealand continental 
margin using biogeochemical and microbiological methods 

 
Apr. 2006 RV METEOR/ROV QUEST Cruise M67/2b, RCOM Bremen 

Quantification of microbial activity in different habitats of the Campeche Asphalt 
Volcano sulfate reduction measurements by “In situ incubation (Insinc)”  

 
Nov. 2005 RV Heincke Cruise HE 242, BGR Hannover. (DFG project RE 2424/1-1 

‘Nordsee’) Mapping of potential seep structures in the North Sea. 
 
Sept. 2005 RV Alkor Cruise AL267: (MUMM test cruise) 

Microbial turnover at North Sea seep sites Tommeliten and Gullfaks, Organic 
geochemistry, biogeochemistry and microbial ecology, sea floor mapping 

 
May 2004 RV Heincke Cruise HE208 

Investigation of microbial communities at different seep sitesof the North Sea with 
emphasis on Gullfaks seep (METROL) 
 
 
 
 

Presentation List 
 
Oral presentation: G.Wegener, H. Niemann, M. Elvert, K.-U. Hinrichs, & A. Boetius (2008) 

Assimilation of methane and inorganic carbon by microbial communities mediating 
the anaerobic oxidation of methane. AMO-meeting, Aselage, Germany. 

 
Oral presentation: G. Wegener, H. Niemann, M. Elvert, K.-U. Hinrichs, & A. Boetius 

(2007): The combination of isotope labeling and biomarker analyses to trace carbon 
flows in anaerobic methanotrophy. Geologische Vereiningung 

 
Oral presentation: G. Wegener, M. Bowles, J. Felden, F. Wenzhöfer, F. Schubotz, K.-U. 

Hinrichs, M. Zabel, G. Bohrmann and A.Boetius. (2007) Microbial activity 
associated with asphalt volcanism at the Campeche Knolls, Gulf of Mexico (Results 
from research cruise Meteor M67/2b), Goldschmidt Conference, Cologne, 
Germany 

 
Oral presentation: G. Wegener, H. Niemann, M. Elvert & A. Boetius: (2007) Which 

microorganisms benefit from methane oxidation in seep sediments: Tracing carbon 
sources by isotope labeling experiments. EGU, Vienna, Austria 

 
Poster presentation: G. Wegener, M. Shovitri, H. Niemann, K. Knittel, M. Hovland, A. 

Boetius (2007) Active methane seepage in the North Sea: Gullfaks and Tommeliten, 
EGU, Vienna, Austria 

 
Poster presentation: Gunter Wegener, M. Shovitri, H. Niemann, K. Knittel, M. Hovland, A. 

Boetius (2007) Active methane seepage in the North Sea: Gullfaks and Tommeliten, 
EGU, Vienna, Austria  
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Oral presentation: G. Wegener (2007) Methane based ecosystems in the deep sea. Auckland 
University of Technology. Host: Dr. Lindsey Zemke-White  

 
Poster presentation: G. Wegener, M. Shovitri, H. Niemann, M. Hovland, G. Wendt, A. 

Boetius (2005) Gullfaks seep area: Anaerobic oxidation of methane in marine 
sediments. EGU, Vienna, Austria 

 
Oral Presentation: G. Wegener (2005): Life without oxygen. Max Planck PhD Earth Science 

Seminar. Jena, Germany 
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