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Kurzfassung

Die polaren Eisschilde der Erde sind einzigartige Paläoklimaarchive und spielen im rezenten und zu-

künftigen Klimageschehen eine große Rolle. Ein Abschmelzen dieser großen Süßwasserreservoire

ließe nicht nur den Meeresspiegel deutlich ansteigen, sondern hätte veränderte Meeresströmungen zur

Folge. Daher ist es von großem Interesse, die derzeitig vorhandenen numerischen Klimamodelle ständig

zu verbessern, um Klimaveränderungen und deren Folgen so genau wie möglich darstellen zu können.

In dieser Arbeit wird die Evaluierung von GPS- und Altimeterdaten, sowie deren Anwendungen hin-

sichtlich der Verbesserungen von Modellen beschrieben. Das antarktische Untersuchungsgebiet, Dron-

ning Maud Land (DML), spielt für die deutsche Polarforschung eine große Rolle, da sich sowohl die

Überwinterungsstation Neumayer als auch die Sommerstation Kohnen in diesem Gebiet befinden. Im

Umkreis dieser Stationen wurden in verschiedenen Messkampagnen hochgenaue kinematische GPS

Messungen durchgeführt, welche die Grundlagen für das hier präsentierte Höhenmodell bilden. Da

diese jedoch nur sehr kleinräumig vorliegen, werden sie mit verschiedenen Fernerkundungsdaten ergänzt.

Dazu gehören zwei Methoden der flugzeuggestützten Altimetrie, sowie satellitengestützte Laserhöhen-

messungen des Ice, Cloud, and land Elevation Satellite (ICESat). Wichtigstes Werkzeug für die Kom-

bination dieser Datensätze ist die Kreuzungspunktanalyse. Hierbei werden Höhendifferenzen zwischen

zwei Datensätzen an gleichen Positionen (sogenannten Kreuzungspunkten) ermittelt. Mit Hilfe dieses

Verfahrens werden zum einen die Genauigkeiten der Datensätze und zum anderen die Höhendifferenzen

der Fernerkundungsdaten zu den hochgenauen GPS Daten ermittelt. Diese berechneten Werte werden

dann zur Anpassung der Fernerkundungsdaten an die hochgenauen kinematischen GPS Daten verwen-

det. Mit Hilfe des geostatistischen Interpolationsverfahrens ”Ordinary Kriging” entstand ein verbessertes

Höhenmodell mit der Auflösung von 2.5 km × 2.5 km im Gebiet zwischen 20°W und 20°O sowie 69°S

bis 86°S. Vergleiche mit bereits existierenden Höhenmodellen für die komplette Antarktis zeigen, dass

gerade in der Küstenregion des Untersuchungsgietes sehr große Höhenunterschiede von teilweise

mehreren 100m existieren. Durch die Verwendung von bodengebundenen GPS Daten wird gerade

in den Küstenregionen DMLs die Genauigkeit erheblich verbessert.

Eine Anwendung des Höhenmodells ist die Neupositionierung der im Untersuchungsgebiet existieren-

den Eisscheiden. Eisscheiden sind die Grenzen ziwschen benachbarten Einzugsgebieten und können

mit Hilfe der aus dem Höhenmodell ermittelten Exposition der Topographie bestimmt werden. Ergänzend

dazu wurden statische GPS Messungen ausgewertet, um die Oberflächengeschwindigkeit und daraus
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die Deformation des Eises im Umkreis der Kohnen Station zu ermitteln. Diese Ergebnisse tragen dazu

bei, die Interpretation des zwischen 2001 und 2006 an der Kohnen Station im Rahmen des European

Project for Ice Coring in Antarctica (EPICA) gebohrten Eiskerns (EDML) zu verbessern.

Mit Hilfe der ICESat Altimeterdaten aus verschiedenen Messperioden zwischen 2003 und 2007 wurde

zusätzlich zu den oben beschriebenen Arbeiten der Trend der jährlichen Höhenänderungen im Un-

tersuchungsgebiet berechnet. Aus Kreuzungspunktanalysen wurde das jährliche Mittel der Höhen-

änderungen in der Küstenregion und auf dem Plateau im Inneren Dronning Maud Lands ermittelt. Die

mittleren jährlichen Höhenänderungen von 0.06m (Küstenregion) bzw. -0.02m (Plateau) zeigen einen

abnehmenden Trend der Höhe im Untersuchungsgebiet.

Die neu gewonnenen Datensätze geben Aufschluss über die Gegebenheiten im Untersuchungsgebiet

und können als Eingangsgrößen der numerische Modellierung diese verbessern.
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Abstract

The polar ice sheets are unique paleoclimatic archives and play an important role in recent and future

climate. The melting of the big freshwater reservoirs will not only increase the global sea level, but will

also influence the ocean currents. Therefore, it will be of particular interest to improve the currently

available numeric climate models to achieve more accurate statements about climatic change and its

consequences.

In this work, the evaluation and the different applications of GPS and altimetry data will be described

in respect to enhance models. The antarctic area of investigation, Dronning Maud Land (DML), is of

particular interest for German polar research, because both the overwintering station Neumayer and

the summer station Kohnen are located within it. In the surroundings of these two stations, highly

accurate kinematic GPS measurement were made, which will be the basis for the digital elevation model

presented here. Because these data are spatially limited, they are supplemened with remotely sensed

data. For this purpose, two airborne altimetry data sets and spaceborne laser altimetry data of the

Ice, Cloud, and land Elevation Satellite (ICESat) are used. The basic tool for the combination of these

data sets is the crossover-point analysis. In this process, the elevation differences at equal positions

(crossover points) of two different data sets are determined. On the basis of this process, the vertical

accuracy of the different data sets and the elevation differences to the ground-based kinematic GPS

data are determined. These differences are used to shift the remotely sensed data to the highly accurate

ground-based GPS data. With the aid of the geostatistical interpolation method ”Ordinary Kriging” an

improved digital elevation model with a resolution of 2.5 km × 2.5 km of the region within 20°W to 20°E

and 69°S up to 86°S was generated. A comparison with commonly used digital elevation models,

covering the whole continent, shows high elevation differences up to several 100m in the coastal region.

Due to the use of ground-based highly accurate GPS data, the elevation model could be significantly

improved above all for the coastal region of DML.

An application of this elevation model is the re-locating of the ice divides in the area of investigation.

Ice divides are the lines between two neighboring catchment areas. Their location is determined by

the aspect of the topography. Additionally, static GPS measurements are processed to determine the

surface flow velocity of the ice, which is further used for the calculation of the strain rate in the vicinity

of Kohnen station. These results will improve the interpretation of climate proxies of the deep ice core

(EDML), which was drilled between 2001 and 2006 at Kohnen station within the European Project for
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Ice Coring in Antarctica (EPICA).

On the basis of ICESat ice sheet altimetry data from different measurement periods between 2003 and

2007, the mean annual elevation change trend was calculated. From crossover-point analyses mean

annual elevation change was determined for the coastal region and the plateau. The mean annual

elevation change trend shows decreasing elevations in the coastal region (0.06m) as well as at the

plateau (-0.02m).

The data sets presented here give an explanation about the natural facts in the area of investigation and

may be used as input parameter, to improve numeric modeling.
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1. Introduction

Ice sheets are unique archives for reconstructing the paleoclimate and play an important role in the

Earth’s past, present and future climate system. They have direct and indirect impacts on patterns of

oceanic and atmospheric circulation worldwide. Furthermore, they are sensitive indicators and modu-

lators of climate variability and change. Changes in mass balance of the polar ice sheets resulted in

global sea level change of 1.8mma-1 since 1961 and 3.1mma-1 since 1993 (Intergovernmental Panel

on Climate Change (IPCC), 2007). Several investigations on elevation changes of the Antarctic ice sheet

were carried out for estimating the mass loss and gain (Wingham and others, 1998; Davis and Ferguson,

2004; Zwally and others, 2005; Helsen and others, 2008) and thus estimate Antarctica’s contribution to

sea level change (Arthern and Hindmarsch, 2006; van den Broeke and others, 2006).

Numerical modeling of ice sheets plays a big role in understanding past and future climate and offers

estimations to key questions in geoscience, e.g. estimating the consequence of climate variability, re-

constructing and forecasting of the global sea level. Digital elevation models (DEMs) provide important

boundary conditions for accurate numerical ice sheet modeling (Paterson, 1994; Huybrechts and others,

2000; Huybrechts, 2003). Their accuracy and resolution have a high impact on the quality of ice dynamic

modeling (Alley and others, 2005).

This chapter gives a short introduction in the world’s largest ice sheet and the area of investigation. An

overview of two commonly used digital elevation models and the motivation of this work is also given in

the following sections.

1.1. Antarctica and area of investigation

The world’s southernmost continent Antarctica is nearly completely covered with ice and snow and

stores ∼90 % of the world’s ice which equivalents to ∼70 % of its freshwater. The ice sheet covers an

area of ∼12.4 × 106 km2 and has an average ice thickness of ∼2.4 km. The maximum ice thickness is

4.776 km (www.scar.org/information/statistics/). A melting of the whole Antarctic ice sheet would result

in a global sea level rise of about 65m (Massom and Lubin, 2006).

Antarctica is divided into three parts: (i) East Antarctica, (ii) West Antarctica, which are separated by

the Transantarctic Mountains, and (iii) Antarctic Peninsula. The three largest floating ice masses (ice

shelves) are: Filcher-Ronne Ice Shelf and Ross Ice Shelf in West Antarctica, and the Amery Ice Shelf in

1



Figure 1.1.: Map of the Antarctic continent. The area of investigation is marked with the grey shaded circle slice.

The grounding and coast line are taken from MODIS Mosaic of Antarctica (MOA - Haran and others

(2006)).

East Antarctica (Figure 1.1).

The mass balance of the Antarctic ice sheet is dominated by accumulation, basal melting, and calving of

ice bergs at the ice edges (Rignot and Thomas, 2002). To observe significant effects on mass balance

of the Antarctic ice sheet, long time trends in net balance changes have to be measured. Alley and

others (2007) show that the current warming could result in a slight growth of the ice sheet averaged

over the next century. Because of warmer temperatures, the global evaporation increases, which in turn

increases the snowfall over Antarctica.

The area of investigation is located in Dronning Maud Land (DML) in East Antarctica and covers the

region between 20°W and 20°E and 69°S up to 86°S (shaded area in Figure 1.1). It comprises different

landscapes, the coastal region, the inland ice plateau and the mountainous region in-between. For

geographic names see Figure 1.2.

The focus of the ground-based GPS data is set on two subset regions, marked with blue rectangles in

Figure 1.2. The first region is the area surrounding the German summer station Kohnen, where within

the European Project for Ice Coring in Antarctica (EPICA) a deep ice core (EDML) was drilled. EDML

was drilled between 2000/01 and 2005/06 (EPICA Community Members, 2006) and lies in the immediate

vicinity of an ice divide on the Antarctic plateau (a description of ice divides is given in Section 4.3). The

area can be described as a flat region with slight slopes to the West (Wesche and others, 2007).

The second investigated area is the coastal region in the hinterland of the German overwintering station

2



Figure 1.2.: MODIS Mosaic of Antarctica satellite image of the area of investigation (Haran and others, 2006). The

blue rectangles represent the areas of investigation in publication I and II.

Neumayer. The two grounded ice ridges surrounding the Ekströmisen, on which Neumayer is located (

Søråsen (West) and Halvfarryggen (East)), rise up to a maximum height of 760m (WGS-84) at Søråsen.

Southwards of the ice ridges, the elevation increases to the Ritscherflya up to 1000m (WGS-84). This

area is characterized by steep slopes at the transition from grounded ice to the floating ice of the ice

shelf (grounding zone) and moderate slopes at the remaining parts. The mean slope is 0.75°with a

standard deviation of 0.50°and is thus mostly higher than the slopes at the plateau (0.16 ± 0.14°).

For both regions, DEMs derived from different data sets are presented in Paper I (Wesche and others,

2007) and Paper II (Wesche and others, accepted). Additionally, a flow field based on static GPS

measurements is derived from static GPS measurements for the surrounding of the Kohnen station. To

get a complete picture of central DML, a new improved DEM for the region between 20°W and 20°E

is generated by a combination of ground-based GPS and remotely sensed altimetry data (Paper III -

Wesche and others (in review)).

1.2. Existing elevation models

Currently existing DEMs are based on a multiplicity of different measurement methods are used for

comparison with the newly derived DEM. In this work, two commonly used DEMs. The one published in

1997 by J. L. Bamber and R. A. Bindschadler (Bamber and Bindschadler, 1997), hereafter called JLB97

and the DEM of the Radarsat Antarctic Mapping Project (RAMP), described by Liu and others (2001),

3



are used for comparison with the newly derived DEM. Both data sets are available at the National Snow

and Ice Data Center (NSIDC - http://nsidc.org/).

1.2.1. JLB97

The DEM, generated by Bamber and Bindschadler (1997), is derived from the geodetic phase of the

European Research Satellite 1 (ERS-1). The ERS-1 was launched on 17 July 1991 in a nearly circular

orbit at an altitude of 780 km with an inclination of 98.5°. The nadir-looking radar altimeter onboard op-

erated in Ku-band (13.5GHz) in ocean or ice mode. The accuracy of the radar altimeter was determined

to be 10 cm (Seeber, 2003). The across-track spacing of ERS-1 ground measurements at 70°latitude is

2 km and the along-track spacing of data points is 335m. Bamber and Bindschadler (1997) generated

a 5 km × 5 km resolution surface topography of the whole Antarctic ice sheet up to 81.5°S. The eleva-

tion accuracy of < 1.5m given in Bamber and Huybrechts (1996) is valid for surface slopes less than

0.4°(JLB97 is an improved DEM of the one presented in Bamber and Huybrechts (1996), but in Bamber

and Bindschadler (1997) no detailed accuracy information is given) (Figure 1.3).

Figure 1.3.: The DEM of Bamber and Bindschadler (1997) gridded from the 5 km × 5 km ascii data set.
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1.2.2. RAMP

The DEM of the Radarsat Antarctic Mapping Project (RAMP) consists of satellite altimetry, airborne radar

survey data, updated Antarctic Digital Database (ADD) data (version 2) and large-scale topographic

maps from the U.S. Geological Survey (USGS) and the Australien Antarctic Division (Figure 1.4). The

satellite data are identical with the ones used for the JLB97 DEM. The DEM is available in 1 km × 1 km,

400m × 400m and 200m × 200m resolution. RAMP covers the grounded ice masses of the Antarctic

continent. The absolute vertical accuracy depends on the region. Over rugged mountainous areas the

standard deviation of the vertical accuracy is ± 100m, for steeply sloped coastal regions ±15m, on the

ice shelves ±1m, for the gently sloped interior ±7.5m, for rough and steeply sloped portions of the ice

sheet perimeter ±17.5m and ±50m south of 81.5°S (Liu and others, 1999, 2001).

Figure 1.4.: The RAMP DEM with a resolution of 200m × 200m.
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1.3. Motivation

The EDML deep-drilling site is situated on the plateau of DML, in the direct vicinity of an ice divide.

Being drilled in the Atlantic sector of Antarctica, the deep ice core is used to study the teleconnection of

northern and southern hemisphere climate variability in the past (EPICA Community Members, 2006).

For accurate paleoclimatic interpretation of the ice core, the knowledge of past and present ice dynamics

is essential. The mean flow velocity at the EDML deep-drilling site is 0.76ma-1 (Wesche and others,

2007) and by an estimated age of 128 ka at a depth of 2366m of the ice drilled at EDML (Ruth and others,

2007), the snow would have been deposited 96.8 km upstream (assuming a constant flow velocity).

Based on an accurate DEM the location of topographic ice divides can be determined (see Section 4.3)

and ice dynamic modeling and thus a localization of the deposition area of the snow can be improved.

The surface topography and surface slopes at the steep margins are a crucial input parameter for climate

modeling. Krinner and others (2007) show, that the gradient of decreasing precipitation, towards the

interior of an ice sheet, is bounded by three effects: (i) orographic effect of the steep margins of the

ice sheets, (ii) decreasing oceanic moisture by increasing distance to the coast and (iii) the temperature

gradient towards the plateau regions. To reduce uncertainties of climate modeling and thus improve the

estimation of future mass balance and sea level change an accurate elevation model is an important

boundary condition (Paterson, 1994; Huybrechts and others, 2000; Huybrechts, 2003). Both DEMs

described in the previous section have shortcomings in the mountainous and coastal regions as shown

by Bamber and Gomez-Dans (2005). Elevation differences up to 1000m between the JLB97 and RAMP

DEM make the need of an improved DEM very clear.

In this work, four different data sets were used to generate an improved DEM: (i) ground-based kine-

matic GPS, (ii) airborne radar altimetry, (iii) airborne radio echo sounding, and (iv) spaceborne laser

altimetry. By combining different altimetry measurement methods disadvantages of single data sets can

be reduced. For example, highly accurate ground-based GPS data are not affected by cloud cover or

penetration of the signal into the snow surface, which cause false readings by applying laser, respec-

tively radar altimetry. They are recorded near the surface and give the best approximation of the true

surface. But these data are very limited in their spatial extent due to the time consuming survey speed,

and are therefore be supplemented with remotely sensed data, if larger regions are investigated.

The core of this work is the combination of these data sets with different typical features to a highly

accurate elevation data set for central DML. Furthermore, ice divides were localized in DML and the

spaceborne laser altimetry is used to estimate the mean elevation change between 2003 and 2007.

This thesis answers the following questions:

1. Is it possible to determine annual elevation change from spaceborne laser altimetry data?

2. How can different elevation data sets be combined into one to obtain an improved DEM?
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3. Are there elevation differences between the improved regional DEM and currently existing conti-

nental DEMs?

4. Can the location of the ice divides in DML be confirmed or improved with the new DEM?

5. How fast does the ice move and how large are the strain rates around the EDML deep-drilling site?
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2. Scope of papers

Paper I: Wesche, C., Eisen, O., Oerter, H., Schulte, D. and D. Steinhage. Surface topography and

ice flow in the vicinity of the EDML deep-drilling site, Antarctica.

Journal of Glaciology, Vol. 53, No. 182, pp. 442-448, 2007.

This paper investigates the surface topography in the vicinity of the EDML deep-drilling site derived

from highly accurate ground-based kinematic GPS measurements and spaceborne laser altimetry from

NASA’s Ice, Cloud, and land Elevation Satellite (ICESat). Because of the data point coverage in the

area of investigation, the surface topography has a horizontal resolution of 5 km x 5 km. Additionally,

static GPS measurements were used to determine the flow field around the deep-drilling site. Based on

the surface velocities, a strain-field for the area around the drilling site could be established and con-

tribute to an improved interpretation of EDML ice-core data. I processed most of the data and wrote the

manuscript, which was improved by the co-authors who also contributed to the data base.

Paper II: Wesche, C., Riedel, S. and D. Steinhage. Precise surface topography of the grounded

ice tongues at the Ekströmisen, Antarctica, based on several geophysical data sets.

ISPRS Journal of Photogrammetry and Remote Sensing, accepted.

This publication describes the method of combining different data sets to a DEM. The grounded part of

a coastal region in the hinterland of the German overwintering station Neumayer II is investigated with

highly accurate ground-based kinematic GPS, ICESat laser altimetry and airborne radar altimetry. A new

precise surface topography was generated with a spatial resolution of 1 km x 1 km. The comparison with

existing DEMs show obvious differences. Most of the data were processed by myself. The co-authors

helped with interpreting the data and improved the manuscript I wrote.

Paper III: Wesche, C., Riedel, S., Eisen, O., Oerter, H., Schulte, D. and D. Steinhage. An improved

DEM and refined locations of ice divides for Dronning Maud Land, Antarctica

Journal of Glaciology, in review

In this paper the combination of four altimetry data sets to an accurate elevation data sets in DML is pre-
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sented. The methods established in the first two publications were applied to generate a new improved

DEM for DML within 20°W and 20°E and 69°S to 86°S. Due to the use of ground-based GPS data, the

DEM could be improved, which is shown by a comparison with commonly used DEMs. The DEM has

a resolution of 2.5 km × 2.5 km and was used for the localization of the ice divides in DML. A flow field,

consisting of 18 velocity measurements, shows the flow conditions near the German summer station

Kohnen and the wider surroundings. I processed and interpreted the data and wrote the manuscript.

The co-authors contributed to the data base and improved the manuscript.

Paper IV: Drews, R., Rack, W., Wesche, C. and V. Helm. A new digital elevation model in western

Dronning Maud Land (Antarctica), based on differential SAR Interferometry.

IEEE Transactions on Geoscience and Remote Sensing, accepted.

This study describes the methodology of interferometric SAR analyses and presents a high resolution

(50m × 50m) DEM for the grounded part of coastal DML within 5°to 20°W and up to 76°S. The paper

shows also an accuracy assessment of generated DInSAR DEM, checked by ground-based kinematic

GPS data, laser scanner data, and ICESat data and the JLB97 DEM and RAMP DEM.

Own contributions to Paper IV:

• processing of the GLA12 (see section 3.3) release 24 data, which were used as ground control

points

• processing of the GLA12 release28 data, which were used for comparison with the final DInSAR

DEM

• processing of the ground based kinematic GPS data, including the interpolation of the reference

stations

• contributions to the text
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3. Data and Methods

The focus of this work is the generation of an improved DEM. To achieve an optimal result, four measure-

ment methods are combined in a way that uses the advantages and compensates for the disadvantages

of the single methods.

The DEM consists of four different data sets:

(i) highly accurate ground-based kinematic GPS measurements

(ii) airborne radar altimetry (ARA)

(iii) airborne radio echo sounding (RES)

(iv) spaceborne laser altimetry (ICESat).

In the following sections, the different GPS, ARA, RES and ICESat are presented and discussed with

respect to their advantages and disadvantages.

3.1. Global Positioning System (GPS)

The Global Positioning System (GPS) is part of the Global Navigation Satellite System (GNSS) and

was developed by the US Department of Defense in 1973. The present GPS, which is used here,

is a navigation system with timing and ranging (NAVSTAR) GPS. A detailed description is given in

Hofmann-Wellenhof and others (2008). In the following sections, the principle of positioning, possible

error sources, and the different processing methods are described.

3.1.1. Positioning with GPS

The core of the NAVSTAR GPS are 32 operational satellites in 20200 km altitude above the Earth’s

surface. Together with a dual frequency GPS receiver, operating with the L1 carrier frequency at

1575.42MHz and L2 at 1227.60MHz, it is possible to determine the precise position of every point

at the Earth’s surface. For position determination, at least four simultaneously operating satellites have

to be visible for the GPS receiver. Basically, the distances (range) between the satellites (equipped with

an atomic clock) and the GPS receiver (equipped with a quartz clock) are determined by the signal run
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Figure 3.1.: Principle of pseudorange positioning with three satellites.

time, whereas the positions of the satellites are always known. The range is defined as the radius of

a sphere, which has the center point at the satellite position. In Figure 3.1 the positioning is presented

schematically. Three satellites (S1-3) are needed for estimating the position (longitude, latitude and el-

evation). Because of the clock offset of the GPS receiver at the Earth’s surface to the satellite’s clock,

the measured range (R’) differs from the true range (R), which results in three possible solutions for

the position (P’). If a fourth satellite is included, the time difference between the measured and the true

range and thus the true position at the surface (P) can be calculated.

3.1.2. GPS errors

GPSmeasurements are affected by several systematic errors, which can be separated into three groups:

(i) satellite-related errors (clock bias and orbital errors), (ii) propagation-medium-related errors (iono-

spheric and tropospheric refraction) and (iii) receiver related errors (antenna phase center variation,

clock bias and multipath). Table 3.1 shows a short summary of the systematic errors and their contribu-

tion to uncertainties of the calculated position. Satellite and receiver specific errors can be eliminated by

differential GPS (DGPS) processing (see following section) and most of the systematic errors are mini-

mized by including precise ephemerides (highly accurate orbital information) and atmospheric models.

Multipath errors are signal delays caused by buildings, surface reflections etc. Because of the use of

a Choke Ring antenna and the typically flat surface, they can be neglected in the area of investigation,

but were mentioned here for the sake of completeness. A more detailed description of the error sources

and their minimization is given for example in Hofmann-Wellenhof and others (2008).
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Table 3.1.: Overview of the ranges of the systematic GPS errors after Hofmann-Wellenhof and others (2008).

Error source Error [m]

Ephemerides data 2.1

Satellite clock 2.0

Ionosphere 4.0

Troposphere 0.5

Multipath 1.0

Receiver error 0.5

3.1.3. Differential GPS processing

Differential GPS processing (DGPS) is a technique, where at least two GPS receivers are required. One

static receiver with known coordinates (longitude, latitude and elevation) as reference station, which

are taken into account when determining the position of the so-called rover. The corrections which

are determined by calculating the fixed position of the reference receiver are applied to the rover. The

distance between the reference station and the rover is called baseline.

Figure 3.2.: Basis concept of differential GPS after Hofmann-Wellenhof and others (2008).

The reference station calculates the pseudorange correction. This can be done in real-time and re-

sults in an improvement of the accuracy of the positions with respect to the reference station imme-

diately. Nevertheless, in real-time there are no precise orbital information (ephemerides) available

(Hofmann-Wellenhof and others, 2008). To reduce the systematic error nearly completely, the DGPS

post-processing technique is used in this work. The DGPS post-processing is performed with post-

processing software packages and several permanent and short-time reference stations. In Figure 3.3

and in Table A.1 and A.2 in the appendix all permanent and short-time references stations are shown.
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Figure 3.3.: A map of GPS reference stations used here. The black lines are the grounding and coast line from MOA

(Haran and others, 2006).

During processing the ionospheric-free solution (reduces the effects of the ionospheric refraction (King,

2004; Hofmann-Wellenhof and others, 2008)) and precise ephemerides were always applied. Two dif-

ferent techniques are used in this investigation: (i) static DGPS processing for point observations and

(ii) kinematic DGPS processing for profile measurements.

Static DGPS processing

Static processing is the determination of the accurate position of a rover assumed stationary. In this work

it is used for establishing local reference stations for kinematic DGPS processing (Wesche and others,

accepted) and for the calculation of surface velocities (Wesche and others, 2007). In the surrounding

of the Kohnen station (see Section 1.1), the positions were determined with Trimble Geometrics Office

(TGO™) and the costal positions were calculated with Waypoint’s static solution GrafNet™. To reduce

systematic GPS errors affected by long baselines (because of the sparse distribution of reference sta-

tions), local reference station have to be set up and their position has been determined by using a net of

several reference stations in all possible directions (Figure 3.4).

A list of static measurements determined during this work is given in Table A.3 in the appendix. In

Wesche and others (2007) a detailed description of the velocity determinations and hence resulting

strain-field analyses around Kohnen is given.
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Figure 3.4.: Schematic illustration of network of reference stations. The rover (R) is nearly ideally surrounded by the

reference stations (RS).

Kinematic GPS processing

During kinematic processing, the rover moves relative to the reference station. As described in the pub-

lications, the kinematic GPS data used here were recorded with the aid of snow vehicles. The recorded

profiles of ground-based kinematic GPS measurements are shown in Figure 3.5. Kinematic raw data

were processed with TGO™ and Waypoint’s kinematic solution GrafNav™. In order to improve the accu-

racy of the rover position, the length of the baselines has been reduced by using local reference stations.

For example, for the leaf like and pentagon profiles on Halvfarryggen and Søråsen (see Figure 3.5) the

local stations DML94 to DML97 (see Figure 3.3 inset and Table A.3 in the appendix) were used, and

therefore the maximum baseline length was 26 km (except for one profile). For GPS profiles using a local

reference, the mean elevation accuracy is 0.03m (in this work: accuracy = the mean absolute elevation

difference calculated by crossover-point analyses) (Wesche and others (2007) and Wesche and others

(accepted)). For profiles in the region of the Ekströmisen, using data collected at the reference station

Vesleskarvet near the South African station SANAE IV, the mean accuracy is 0.06m (Wesche and oth-

ers, in review). For processing of the kinematic data collected on the logistic traverse from Neumayer

station to Kohnen station (Figure 3.5), two different reference stations were used (Vesleskarvet for the

first part and the reference station at the Finnish Aboa station for the second part). Due to a baseline

length of several hundred kilometers, the elevation accuracy is lower compared to the other GPS profiles.

Unfortunately, there are no crossover points for the determination of the elevation accuracy. Therefore,

the accuracies of the processing report, given by Waypoint, were used. All in all, 78% of the data points

are in the accuracy range of 0.05 - 0.40m (Drews and others, accepted; Wesche and others, in review).

Because the ellipsoidal heights of ice shelves are influenced by the ocean tides, all kinematic GPS data

collected there have to be corrected for tidal movement. For this purpose, the global tide model TPXO7.1
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Figure 3.5.: Location of the ground based kinematic GPS profiles. The black lines indicate data processed with a

local reference station (max. baseline length 26 km, except for the long profile around Kohnen station),

whereas the thin grey profiles were processed with remote reference stations (baseline length greater

100 km). The grounding and coast line (bold grey lines) were derived from MOA (Haran and others,

2006). Stations and camps are marked with black rhombi.

(http://www.coas.oregonstate.edu/research/po/research/tide/global.html) was applied by using the Ohio

State University Tidal Prediction Software (OTPS) (Wesche and others, in review).

3.2. Airborne altimetry

Airborne altimetry data were recorded with sensors installed on the AWI research aircraft POLAR2. To

determine the surface elevation from altimetry, several on-board instruments were used: (i) two Trimble

4000SSI GPS receivers with roof mounted GPS antennas each for determining the exact flight track, (ii)

a HONEYWELL AA-300 radar altimeter system for determining the flying altitude above ground and (iii)

a radio echo sounding system, which is specially designed for the use in polar regions.

The airborne data used here are a byproduct of the pre-site survey for the EPICA project, respectively

the VISA survey (Validation, densification, and Interpretation of Satellite data in Antarctica using airborne

and groundborne measurements for the determination of gravity field, magnetic field, ice-mass balance

and crustal structure). Because of their independence of weather conditions, the data are suitable for

extending the ground-based kinematic GPS data.

The basic principle of airborne altimetry is to determine the aircrafts flying altitude above ground and
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subtract it from the GPS heights recorded during the flight (Figure 3.6).

Figure 3.6.: Schematic figure of the basics of airborne altimetry. The solid wave lines represent the emitted radar

signal and the dashed wave lines the backscattered signal.

The different approaches of airborne radar altimetry (ARA) and radio-echo sounding (RES) will be de-

scribed in the following two sections.

3.2.1. Radar altimetry

The basic of this airborne radar altimetry is to calculate the height of the aircraft above surface by

measuring the travel time of the radar signal from its emission to arrival of the backscattered signal.

Since the altimeter emits microwave radiation (C-band, 4.3GHz), the signal penetrates clouds and is

therefore independent of weather conditions. But there are serious limitations of this method. Brenner

and others (1983) show that slopes are influencing the vertical accuracy of the radar altimeters. The so

called ’slope-induced error’ is caused by the reflection of the radar signal from the antenna nearest point

instead of the nadir point. The measured surface lies over the true surface (for more information on the

slope-induced error, see Brenner and others (1983)). Another error source of the radar altimetry is the

penetration of the signal into the snow surface. The absorption of the radar signal is mainly controlled by

the snow temperature and decreases from the coast to the interior of Antarctica. This yields to a spatial

and temporal variation of the penetration depth (Legresy and Remy, 1998).

The operational altitude range above the surface of the HONEYWELL-AA 300 radio altimeter system is

0-2500 ft, which is equivalent to 0-760m (Honeywell AA-300 Manual, 1998). According to the ground

speed of the aircraft of about 240 kmh-1 and a measurement interval of one second, the along track
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Figure 3.7.: Location of the ARA profiles. The grounding and coast line, derived from MOA, are presented in bold

grey lines (Haran and others, 2006). Stations and camps are marked with black rhombi.

spacing of data points is 66.7m. Because of the limited operational range of the radar altimeter, only

two campaigns (1998/99 and 2000/01) with usable data are available (Figure 3.7).

The first step of processing the ARA data is the kinematic DGPS processing (see Section 3.1.3) of the

GPS data, recorded during flight by using TGO™. Reference stations were chosen depending on the

location of the starting point of the flight track and the availability of reference data during the whole flight.

In campaign 1998/99, all profiles were processed with reference data of Vesleskarvet. Data of campaign

2000/01 were processed with reference data collected at the Japanese station Syowa, Vesleskarvet and

Kohnen Reference Station (KRS). Because of the range of the aircraft and the sparse distribution of

reference stations, long baselines could not be avoided during processing, which reduced the accuracy

of the kinematic DGPS processing.

Processing (with TGO™) resulted in a root-mean-square of the positioning accuracy of 0.01m, but this

value is overoptimistic. This software reported error has to be multiplied by 5 to 20 to get a realistic value

for the positioning accuracy (personal communication M. King, 2006).

The mean positioning accuracy of the airborne kinematic GPS can be assumed to range between 0.2

and 0.4m. Because of the aircrafts orientation (roll, pitch and yaw angle) and the resulting elevation

errors, the ARA data have to be processed with regard to the aircrafts orientation. This is done with

a modified Airborne SAR Interferometric Altimeter System (ASIRAS) processor, which was developed

by V. Helm and S. Hendricks from AWI. The processor requires the post-processed GPS data and the

according raw navigation file of the flight. Based on the installation coordinates of the radar altimeter on-
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board the aircraft and the navigation file, which includes the orientation angles, the error of the reflected

radar signal can be estimated. With the aid of the operating time (seconds per day), the GPS height is

corrected by the determined altitude above the ground of the aircraft. However, the elevation accuracy

still depends on the surface slope. The slope-induced-error (ΔH) over a slope (α) with a flying altitude

(H) above ground can be estimated by:

ΔH =
Hα2

2
(3.1)

For α = 0.026rad (1.5°) and H = 760m (flying altitude above ground), the slope-induced error amounts to

0.26m. The maximum slope in the area of investigation is 12°(0.078 rad), which results in a maximum

slope-induced error of 16.59m. To avoid a high slope-induced error, all ARA data recorded over a

surface topography with a slope over 1.5°were removed from this investigation. The vertical accuracy

(2σ corrected) of 1.8m is determined by a crossover-point analysis.

3.2.2. Radio echo sounding

During gravimetry measurements of the VISA campaigns, between 2001 and 2005, the flying altitude

had to be constant during the whole flight. Depending on the surface height along the flight track, the

flight level was chosen between 3600 and 4800m, a.s.l. which was mostly too high above ground to

obtain usable ARA data. Therefore, the radio-echo-sounding system on-board the AWI research aircraft

is used to get surface elevation information over large parts of DML. The RES uses a carrier frequency

of 150MHz and pulse lengths of 60 ns and 600ns. The system is able to measure in ”toggle mode”, thus

the pulse length is switched between 60ns and 600 ns for a different vertical resolution (5m, respectively

50m). A measurement interval of 20Hz at a ground speed of the aircraft of 240 kmh-1 results in an

along-track data point distance of 3.25m, or rather 6.5m for the individual pulse length (Steinhage and

others, 1999). For more details about the RES system see Nixdorf and others (1999).

Analog to the ARA data, the RES data were processed using the kinematic GPS data recorded during

the flight. Because of the different propagation velocities of electromagnetic waves in air, snow and ice,

the onset of the snow surface is clearly visible as a first reflection in the radargram. The result of this

investigations is the ”thickness” of the medium air, i.e. the flying altitude of the aircraft above the surface.

Afterwards, the airborne kinematic GPS data and the altitude were synchronized using the operation

time. The altitude is subtracted from the GPS heights to obtain the surface topography.

In Figure 3.8 the VISA flight lines are shown, but not for every line RES elevation data are available.

The RES data were recorded in a pattern of parallel lines with a profile separation of 10 km, respectively

20 km. Flight lines crossing the parallel lines (tie lines) were flown to obtain crossover points for cor-

rection of magnetic and gravity data and can be used for determining the quality of the RES elevation

measurements. To avoid elevation branches within the RES campaigns, the data were corrected with a

block shift using these tie lines. This first correction was only a statistical approach and may not show
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Figure 3.8.: Location of the VISA flight lines. The grounding and coast line, derived from MOA, are presented in

bold grey lines (Haran and others, 2006). Stations and camps are marked with black rhombi.

the true surface elevations. This data set is provided by Sven Riedel. The accuracy of this data set

is determined by a crossover-point analysis and results in an absolute mean elevation differences at

crossover points (2σ corrected) of 2.25m.

3.3. Ice, Cloud and land Elevation Satellite (ICESat)

The Ice, Cloud and land Elevation Satellite (ICESat) was launched in January 2003 for monitoring inter-

annual and long-term changes in polar ice masses of the Greenland and Antarctic ice sheets among

other objectives. The ICESat is part of NASA’s Earth Observing System (EOS). Since February 20th,

2003 the Geoscience Laser Altimeter System (GLAS), on-board ICESat, provides a multiplicity of data

worldwide. Altogether the GLAS offers 15 different data sets, which can be downloaded at the home-

page of the National Snow and Ice Data Center (NSIDC - http://nsidc.org/data/icesat). The altimetry

measurements are carried out with a near infrared laser (1064 nm) with a pulse repetition rate of 40Hz.

The laser illuminates a footprint of about 70m at the Earth’s surface and the along-track spacing of data

points is about 170m. The height of the surface topography is calculated from the mean of the elevation

in-between the footprint and the coordinates (longitude and latitude) showing the center point of the

illumination spot at the surface. Zwally and others (2002), Brenner and others (2003) and Schutz (2002)

described the concept of GLAS in more detail.

In this investigation the ice sheet elevation data of the GLA12 release 28 data set were used (Zwally and

others, 2007). At the time of writing 11 laser periods were available (Table 3.2).
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Figure 3.9.: A schematic illustration of the basic concept of ICESat laser altimetry.

Table 3.2.: Overview of the GLA12 release 28 laser measurement periods available at the time of writing.

Laser identifier Days in operation Start date End date

1 38 2003-02-20 2003-03-29

2a 55 2003-09-24 2003-11-18

2b 34 2004-02-17 2004-03-21

3a 37 2004-10-03 2004-11-08

3b 36 2005-02-17 2005-03-24

3c 35 2005-05-20 2005-06-23

3d 35 2005-10-21 2005-11-24

3e 34 2006-02-22 2006-03-27

3f 33 2006-05-24 2006-06-26

3g 34 2006-10-25 2006-11-27

3h 34 2007-03-12 2007-04-14

For the final GLA12 data, the IDLreadGLAS tool offered by the NSIDC was used to convert the binary

raw file to an ascii file. Afterwards, a simple shell script extracts all necessary information (longitude,

latitude, elevation, time of measuring, ocean tide, ocean load tide and saturation correction factor). The

saturation correction factor has to be applied to the elevation data, if the return energy is higher than

predicted. The elevation error caused by detector saturation is shown in Fricker and others (2005).

After adding the saturation correction factor to the elevation data, the ocean tide and ocean load tide

correction (component of ocean tides, which is propagated a few kilometer inland on the grounded

ice masses (Riedel, 2003)) is removed from the elevation data. Based on the laser shot time, the

global tide model of TPXO7.1, recommended by King and Padmann (2005), was applied by using

OTPS (http://www.coas.oregonstate.edu/research/po/research/tide/global.html), replacing the routinely
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Figure 3.10.: A 2D-profile of a L2a GLA12 release 24 ground track. The black dots represent the elevation above

the WGS84 ellipsoid, the red dots are the cloud top and the blue dots are the cloud bottom derived by

simultaneous atmospheric measurements with the green laser (532 nm).

Figure 3.11.: A 2D profile of the Release28 ground track of GLA12. Plotted is the longitude against the elevation of

the descending ground track. The red ellipse shows the effect of a cloud.

used tide correction which is based on a less accurate model for Antarctica. A serious error source of

the ICESat altimetry data is clouds. The laser is able to penetrate optically thin clouds, but depending

on the particle size and height of the cloud, the infrared laser (1064 nm) is reflected from the top of the

near surface cloud (Figure 3.10). In release 28 of the GLA12 data, which was used for this investiga-

tion, nearly all clouds were removed by the NSIDC. The few remaining data points affected by clouds

(Figure 3.11) can still distort interpolation of the GLA12 data. To avoid interpolation errors induced by

residuals of clouds, such residuals were removed.

According to different landscapes, the GLA12 data were separated into three main areas: (i) The coastal

region north of the (ii) mountain region and (iii) the plateau region. The smaller the area of investigation,
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the more precise are statements on accuracies. For the estimation of the GLA12 accuracies, crossover-

point analyses within the laser periods and for every single region were performed. The results can be

seen in Table 3.3.

Table 3.3.: Absolute mean elevation differences at crossover points in meter of GLA12 data. Numbers in brackets

are the counts of crossover points contributing the mean value. The mean presented in the last row is

the mean of presented mean elevation differences of the laser periods.

Laser ID Measurement period Coastal Mountainous Plateau

L1 2003-02-20 to 2003-03-29 0.58m (10270) 0.79m (5780) 0.59m (116006)

L2a 2003-09-24 to 2003-11-18 0.53m (576) 0.80m (278) 0.17m (42310)

L2b 2004-02-17 to 2004-03-21 0.81m (172) 0.99m (97) 0.16m (19837)

L3a 2004-10-03 to 2004-11-08 0.68m (384) 0.79m (179) 0.16m (27999)

L3b 2005-02-17 to 2005-03-24 0.57m (358) 0.92m (148) 0.20m (24312)

L3c 2005-05-20 to 2005-06-23 0.57m (385) 0.83m (144) 0.16m (21518)

L3d 2005-10-21 to 2005-11-24 0.07m (2935) 0.07m (2132) 0.14m (24288)

L3e 2006-02-22 to 2006-03-27 0.70m (305) 0.65m (154) 0.15m (23738)

L3f 2006-05-25 to 2006-06-26 0.90m (262) 1.18m (91) 0.16m (14054)

L3g 2006-10-25 to 2006-11-27 0.73m (236) 0.84m (161) 0.16m (20342)

L3h 2007-03-12 to 2007-04-14 0.68m (154) 0.82m (72) 0.14m (12732)

mean 0.62 m 0.79 m 0.20 m

Table 3.3 summarizes the elevation differences of the GLA12 measurements, which are varying with

investigated area and laser period, but the predicted elevation accuracies of 0.15m (Zwally and others,

2002) cannot be achieved. Only over the flat plateau region (mean slope of 0.16°), the accuracies are

close to the predicted value. For the coastal region (mean slope 0.75°) and the mountainous region

(mean slope 1°), the mean elevation differences are about three to four times higher. The standard devi-

ations against the laser periods with regard to the three areas (Figure 3.12 A) and the slope (Figure 3.12

B) confirm this. The standard deviations of the crossover elevation differences is largest in the moun-

tainous regions (except for L3e and L3h). The lowest standard deviation can always be found at the

plateau, where the mean slope is also lowest. This can be confirmed by Figure 3.12 B, where standard

deviations are lowest with slopes between 0 and 0.5°. With increasing slope, the standard deviation

of crossover elevation differences also increases, but in a non-uniform way. Aside from this, it is very

obvious that the laser periods are very different in accuracy and precision.
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Figure 3.12.: Standard deviations against the elevation differences of GLA12 data at crossover point with regard to

the three areas (A) and the different slopes (B).
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4. Applications of the Data

In this chapter the applications of the above presented altimetry and GPS data are presented. The

annual elevation change was calculated from the GLA12 data presented in Section 3.3. The two latest

laser operation periods of the GLA12 data were combined with the airborne altimetry data (ARA and

RES) and the ground-based kinematic GPS data to elevation data sets, which were used to generate an

improved digital elevation model (DEM) for central Dronning Maud Land (DML). Based on this DEM, the

ice divides in the area of investigation were re-located and static GPS data were used to determined a

flow and strain field in the vicinity of the Kohnen station. In the following sections, these applications are

described and results are presented.

4.1. Annual elevation change

Recent elevation-change studies of Antarctica (Wingham and others, 1998; Davis and Ferguson, 2004;

Zwally and others, 2005; Helsen and others, 2008) are based on spaceborne radar-altimetry measure-

ments. Wingham and others (1998) calculated the mean annual elevation change between 1992 and

1996 from ERS-1 and ERS-2 data. Davis and Ferguson (2004) present the mean annual elevation

change from 1995 to 2000 from ERS-2 data. Both investigations have data gaps in the coastal regions

and south of 81.5°S. Furthermore the firn compaction rate is neglected in both cases. Zwally and others

(2005) and Helsen and others (2008) show the elevation changes derived from ERS-1/2 data as well,

but pay attention to the firn compaction. These investigations show different elevation changes in DML.

Zwally and others (2005) calculate increasing or very slightly decreasing elevation, whereas Helsen and

others (2008) show an obvious decreasing elevation in the coastal region of DML and a slightly increas-

ing at the plateau. This shows that firn correction is crucial for the determination of mass balance trends

from altimetry and a different firn-correction techniques yield different elevation change results.

In this work, a first approach is presented to estimate the mean annual elevation changes in central

DML from 2003 to 2007 based on laser-altimetry data from ICESat. For this purpose, crossover-point

analyses between laser periods (Table 3.2) of an annual interval were performed (L1 minus L2b or L2a

minus l3a, etc.). The annual interval is chosen to investigate always the same seasonal conditions.

The elevation differences at crossover points were then interpolated to a 5 km × 5 km resolution grid to

show annual elevation changes (chapter B, see appendix). Because of the small number of crossover
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points containing data of the L1 laser period (about 10% of the other laser periods) L1 measurements

were not used for further investigations. To calculate the mean annual elevation change and to minimize

the relative errors of this estimation, a crossover-point analysis between L2a and L3h laser periods

was made. The results were divided by the time span between the measurements (3.5 years) and

interpolated on a 5 km × 5 km raster. In Figure 4.1 the annual elevation change derived from GLA12

altimetry data are shown. In addition, the standard deviation was calculated from the annual elevation

changes presented in the appendix (Figure 4.2).

A few regions in the elevation change map are conspicuous due to elevation decreases at the plateau.

Looking at the annual elevation change maps (in the appendix), it is obvious that these locations are

characterized by very high elevation change estimations. The high standard deviations (over 10m) in

elevation changes point to measurement errors (e.g. the reflection of the laser signal on snow particles

in the air during snow drift) of the GLA12 L2a data in these regions, thus the elevation changes in these

areas are not correct.

Detailed information on measured elevation changes in the surrounding of the German Antarctic over-

wintering station (see section 1.1.1) are presented in Figure 4.3 and 4.4. Evidently, this area is divided

into an increasing part, the Halvfarryggen, and a decreasing part, the Søråsen. The main wind direction

in this region is from east to west (König-Langlo and others, 1998), hence air masses reach the Halvfar-

ryggen first. Because of the peninsula character of the Halvfarryggen, it builds a barrier for air masses

coming from the eastern ice shelf region. The body of humid air will snow first over Halvfarryggen. Be-

cause of the closed ice cover of the Ekströmisen, the air masses are not able to restore new humidity

on their way westwards to the Søråsen. The mean elevation change for coastal DML is 0.06 ± 0.20m

(min:-1.06m, max:0.72m) and for the plateau of central DML -0.02 ± 0.10m (min:-2.00m, max:1.41m).

This results in a mass gain of 13.5Gt a-1 at the coast and a mass loss of 19.3Gt a-1 at the plateau (both

values were determined with an assumed ice density of 910 kgm-3). Because the laser is reflected at

the surface and under the assumption that the firn compaction does not change with time, the firn com-

paction is neglected here, because the laser signal does not penetrate into the snow surface and thus

changes in density do not affect the elevation change estimation. Nevertheless, the elevation accuracy

of the GLA12 data at the plateau is 0.20m, which is only slightly smaller than the elevation changes

estimated for this region. The same is true for the coastal region. However, by calculating the mean

annual elevation change from different time spans, a trend of the elevation change could be estimated.

An additional estimation of annual elevation change can be given by calculating the differences between

the JLB97 DEM and the latest GLA12 data (L3h), to get the longest time span possible. The JLB97 DEM

consists of ERS-1 radar altimetry data from the geodetic phase, which provided elevation data between

April 1994 and May, 1995. The L3h data were derived between March 12th and April 14th, 2007. Thus,

there is a time span of 12 years. The calculated elevation differences between these two data were

divided by the time span, to obtain annual elevation change. Afterwards, the annual elevation change
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Figure 4.1.: The mean annual elevation change between 2003 and 2007 of the coastal region and the plateau of

DML based on GLA12 L2a and L3h ICESat data. The black lines show the grounding line and coast

line derived from MOA (Haran and others, 2006).
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Figure 4.2.: The standard deviation of the mean annual elevation change of the coastal region and the plateau of

DML based on GLA12 ICESat data. The black lines show the grounding line and coast line derived

from MOA (Haran and others, 2006).

28



Figure 4.3.: The mean elevation change between 2003 and 2007 of the region surrounding the Ekströmisen ice

shelf. The black lines show the grounding line and coast line derived from MOA (Haran and others,

2006).

Figure 4.4.: The standard deviation of the mean annual elevation change of the region surrounding the Ekströmisen

ice shelf. The black lines show the grounding line and coast line derived from MOA (Haran and others,

2006).
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was interpolated to a 5 km × 5 km raster (Figure 4.5).

Figure 4.5.: Map of the annual elevation change, derived from the elevation differences between the JLB97 DEM

and GLA12 L3h data. The elevation differences are gridded on a 5 km × 5 km raster.

At the plateau region, an obvious trend can be seen. In the north-eastern part shows a decreasing

elevation trend of about -0.3m per year. Further south, the decrease is weakened until in the south-

western region of the plateau an increasing elevation of about 0.3m per year is noticed. Above all, high

elevation declines (below -20m per year) can be seen in the grounding zone, which may be caused

by the slope-induced error, which degrade the JLB97 DEM in this region. Neglecting the decreasing

elevation below -20m per year, the mean elevation decrease at the coast is -0.57m per year and in-

crease is 0.05m per year at the plateau. Comparing the two approaches of elevation-change estimates
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presented here, the mean difference in elevation change is -0.03m per year at the plateau and -2.06m

per year in the coastal region. This shows that the two approaches are comparable at the plateau, but

in the coastal region the elevation differences between JLB97 and GLA12 data are too high to estimate

reliable elevation changes per year.

The investigation is only made with the JLB97 DEM, because the exact time of recording the RAMP data

is not known.

4.2. Generating a DEM

The final DEM consists of four different data sets. Due to the high accuracy of the ground-based kine-

matic GPS data, these were assumed to represent the true surface elevations. The area of investigation

was divided into three regions (coastal, mountainous, plateau) to investigate their specific accuracies

and error sources. The parts of the area of investigation were chosen with a small overlapping area to

alleviate the mosaicing process at the end. To get elevations of 2007 when the latest GPS data were

recorded, the annual elevation change presented in section 4.1 has to be taken into account. The tra-

verse profile (recorded in December 2005) was shifted by 0.02m in coastal region and 0.04m at the

plateau and the investigations around Kohnen station (recorded in January and February 2001) were

shifted by 0.2m.

Because the ARA elevation data are unaffected by the weather conditions, e.g. ground fog or near

surface snow drift, like GLA12 elevations, these data were used to enlarge the number of crossover

points between the ground-based GPS and GLA12. Therefore, the mean penetration depth of the radar

signal was calculated by crossover-point analyses between the ground-based kinematic GPS and ARA

profiles. The search radius of crossover points was arbitrarily chosen to be 10m around the ARA data

point and yield mean penetration depths of 2.25m at the plateau. At the coast, the derived penetration

depth is 2.28m. These values were used to shift the ARA data to the highly accurate GPS elevations.

By shifting the ARA data to the ground-based GPS, the ARA elevations represent also elevations of

2007.

Only the latest GLA12 laser operation periods (L3g and L3h) recorded shortly before and after the GPS

data at the coast, were used. In Table 3.3 the absolute mean difference of these two laser periods

are given. The mean absolute elevation difference at the plateau is very good (0.15m), 0.83m in the

mountainous and 0.70m coastal region. Crossover point analyses between GPS and GLA12 and cor-

rected ARA and GLA12 result in elevation differences at crossover points below the data set accuracies.

Therefore, it is renounced to level the GLA12 data.

The elevation differences between GPS and RES and the corrected ARA, respectively, were also de-

termined by crossover-point analyses. Due to the lower frequency of the RES (150MHz), the signal

penetration depth is larger than for the ARA (4.3GHz) signal (Rott and others, 1993). The analyses
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result in mean penetration depths of 24.02m (plateau), 25.35m (mountain range) and 21.97m (coastal

region). These values were also used to shift the RES data to the other data sets.

After adjusting, all elevation data sets were merged to three data sets: one for the plateau, one for the

coastal region and one for the mountainous region. With the aid of the ”Geostatistical Analyst” of Ar-

cGIS9.2 the geostatistical interpolation method ”Ordinary Kriging” was used, to obtain three DEMs from

the three data sets. The mosaicing of the three single DEMs completed the generation of the final DEM

with a 2.5 km × 2.5 km resolution (Figure 4.6). To get a smooth transition in the overlapping areas during

mosaicing process, a blend of the bordering DEMs is used.

Figure 4.6.: The improved DEM of central DML. The grey line represents the grounding line and coast line derived

from MOA (Haran and others, 2006)

The accuracy of the DEM is estimated by the elevation differences between the ground-based kinematic

GPS data, processed with local reference stations, and the final DEM grid. For this purpose, the GPS

heights within a 2.5 km × 2.5 km raster cell are averaged to observe the differences at the same scale.
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Figure 4.7.: A comparison of the new DEM with JLB97 (A) and the new DEM with RAMP (B). The black lines are

showing the grounding and coast line derived from MOA (Haran and others, 2006).

Another investigation was the standard deviation of the GPS heights within a raster cell. In the coastal

region, the height of the leaf like profiles on Halvfarryggen and Søråsen were compared with the raster

values of the final DEM. On the plateau, the ground-based kinematic GPS profiles in the vicinity of

the EDML deep-drilling site were used. In Table 4.1 the results are shown and a detailed description is

given in Wesche and others (in review). Because of the insufficient comparative values, the mountainous

region is neglected in this investigation.

Table 4.1.: The accuracy of the improved DEM determined by height comparison with highly accurate ground-based

GPS data.

Region Mean difference [m] Standard deviation [m] Minimum [m] Maximum [m]

Coast -2.66 4.45 -33.49 58.29

Plateau -0.65 0.26 -1.77 0.11

A comparison of the new generated with the currently available DEMs presented in section 1.2 was done

by subtracting the JLB97 or RAMP DEM from the new DEM presented here. The results are shown in

Figure 4.7 A and B.

The elevation differences on the plateau north of 81.5°S are small in comparison to the coastal or

mountainous region. However, both commonly used DEMs consist of ERS-1 altimetry data in this region,

but in the north-eastern part, the elevation differences between the improved DEM and JLB97 are larger

than between the improved DEM and RAMP. South of 81.5°S and in the coastal region the RAMP DEM
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consists of ADD data (Liu and others, 1999, 2001). There are larger positive and negative heights than

determined in the improved DEM. In the JLB97 DEM, the variations in lower and higher surface elevation

than the improved DEM are not as large. For more details see Wesche and others (in review).

4.3. Re-location of the ice divides

Ice divides, i.e. ice ridges separating catchment areas, are next to the domes preferred drilling locations,

because the interpretation of paleoclimatic records is simplified by the known origin of the ice (Paterson,

1994). In DML several ice divides are known from former investigations using the DEM of Bamber and

Huybrechts (1996). One distinguishes between two types of ice divides: (i) symmetric or topographic

ice divide and (ii) asymmetric or flow ice divide. The topographic ice divide can be determined by the

surface topography and is located at the highest surface elevation along a cross section of the DEM,

while the asymmetric ice divide is not necessarily at the highest surface elevation. The ice flow near the

topographic ice divide is characterized by a slow flow parallel to the course of the ice divide in-between

a buffer of three to five times the ice thickness around the ice divide (Raymond, 1983; van der Veen,

1999). Apart from this region, the flow velocity becomes faster and more divergent to the course of the

ice divide. The flow ice divide is characterized by a divergent flow at the border of two adjoined catchment

areas. This type of ice divide is not necessarily at the top of the surface topography (Paterson, 1994).

The focus of this work lies on the topographic ice divides. ArcGIS offers several investigation methods,

which help to obtain the location of the ice divides in DML. Based on the calculated aspect of the surface

topography in DML, the inclination of the slopes is illustrated (see appendix, Figure C.2). The aspect of

the topography was mainly used for the localization of the ice divides. Additionally, the theoretical ice

flow direction and the catchment basins were determined also with the ArcGISToolBox. The result is a

new map of ice divides in central DML (Figure 4.8). In most regions the course of the ice divide is only

a few kilometers away from the ones derived from the DEM of Bamber and Bindschadler (1997). Due to

the higher resolution of the improved DEM, it was possible to derive new ice divides, e.g. at the coast

on Halvfarryggen and Kapp Norvegia (see Figure 4.8). The course of the ice divide in the east of the

region of interest could not be confirmed, but a completely new one at ∼12°E was identified. Two ice

divides end at the mountain range, their course through the mountains could not be reliably identified.

The biggest outlet glacier in central DML is the Jutulstraumen. The outlet glacier is fed by ice masses

flowing from the plateau through a deep valley glacier between Kirwanveggen and Mühlig-Hofmann

Gebirge. The Jutulstraumen flows to the north into the Fimbulisen ice shelf. Another big outlet glacier

is the Veststraumen, which is fed by ice masses flowing from the Heimefrontfjiella to the north-west

and ice masses from the Ritscherflya flowing to the west. The Veststraumen drains to the west into the

Riiser-Larsen ice shelf. There are some smaller catchment areas between the Jutulstraumen and the

Veststraumen. They are all draining to the north into small ice shelves. The southern part of central
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DML is draining to the south-west and the western part to the north. Of particular interest is the change

of the ice divide location in the vicinity of the EDML deep-drilling site (see small map in Figure 4.8). This

ice divide is forking in the east of EDML. The southern ice divide based on the DEM is about 12 km

north compared to the one determined with JLB97. The location of the northern ice divide is nearly

unchanged. That means EDML lies directly within two ice divides, only 3 km (southern ice divide) and

4 km (northern ice divide) apart from the location of the ice divides. A more detailed investigation of the

ice divides around EDML is given in Wesche and others (in review).

Figure 4.8.: A map showing the courses of the ice divides in DML. The dark grey lines show the ice divides derived

from the new DEM and for comparison, the light grey dashed line the ice divides derived from JLB97.

The contour lines are from the new DEM, the black lines representing a contour interval of 200m and

the grey 100m. The black lines are showing the grounding and coast line derived from MOA (Haran

and others, 2006). In the inset map, the region around the EDML drilling site (white dot) is shown. The

contour lines intervals are 10m (grey) and 50m (black).

4.4. Determining ice flow and strain rates

The ice flow in central DML is calculated from 18 static GPS measurements. The mean annual surface

velocity is calculated by averaging the flow velocities of different time periods. The results are shown

35



in Table 4.2. The accuracy of the velocity measurements is calculated by the propagation of errors and

has a maximum of 0.06ma-1. A detailed description of the calculation of the precision of the velocity is

given in Wesche and others (2007).

Table 4.2.: The flow velocities of various point measurements on the Antarctic plateau.

Name Longitude Latitude Flow [m a-1] Flow direction [°] Period of averaging

DML01 2.5493° E 74.8564° S 0.54 293.2 Jan. 1997 - Jan. 1999

DML02 3.9185° E 74.9683° S 3.18 153.5 Jan. 1997 - Jan. 1999

DML03 1.9609° E 74.4995° S 7.40 128.9 Jan. 1997 - Jan. 1999

DML05 0.0072° E 75.0024° S 0.66 270.4 Jan. 2001 - Dec. 2005

DML07 3.4306°W 75.5816° S 4.28 229.6 Jan. 1997 - Jan. 2001

DML19 0.9951°W 75.1674° S 1.87 213.3 Jan. 1999 - Jan. 2001

DML25 0.0818° E 75.0060° S 0.83 274.2 Jan. 2004 - Dec. 2005

DML26 0.0099° E 74.8393° S 1.07 335.9 Jan. 2001 - Dec. 2005

DML27 0.7040° E 75.0560° S 0.96 287.5 Feb. 2003 - Dec. 2005

BA01 0.0678° E 75.0017° S 0.68 272.6 Jan. 2003 - Dec. 2005

HM01 0.0078° E 74.9939° S 0.64 273.7 Jan. 2000 - Dec. 2005

HM02 0.0394° E 75.0069° S 0.68 270.0 Jan. 2000 - Dec. 2005

HM03 0.0229°W 75.0074° S 0.67 266.6 Jan. 2000 - Dec. 2005

PEN1 0.0819° E 74.9654° S 0.64 291.3 Jan. 2000 - Dec. 2005

PEN2 0.2296° E 74.9945° S 0.77 282.9 Jan. 2000 - Dec. 2005

PEN3 0.1728° E 75.0393° S 0.86 265.9 Jan. 2000 - Dec. 2005

PEN4 0.0121°W 75.0388° S 0.84 257.9 Jan. 2000 - Dec. 2005

PEN5 0.0659°W 74.9937° S 0.62 269.8 Jan. 2000 - Dec. 2005

Strain is a dimensionless parameter of deformation and the strain rate is a time dependent deformation

of a material. Deformation is caused by stresses acting on e.g. ice masses (Paterson, 1994). The flow of

ice masses causes such stresses and therefore the surface velocities calculated from static GPS mea-

surements were used for the determination of the strain rates. Of particular interest is the deformation

rate around the EDML deep-drilling site. Therefore, five aluminium stakes (PEN1-5) in shape of a pen-

tagon network around the drilling site were fixed in the snow surface in January 2000. Since then, the

stakes were observed in several austral summer campaigns. Simultaneously, a sixth aluminium stake in

the center of the pentagon was observed (BA01). The strain field is shown in Figure 4.9 and a detailed

description is given in Wesche and others (2007) (Paper I).

Because the center point of the pentagon-shaped network is only 93m north-east to the drilling location

of the EDML ice core, the determined weighted mean strain rates (ε̇x = −1.54× 10−5 a−1 - strain rate in

north direction, ε̇y = −5.64× 10−5 a−1 - strain rate in east direction and ε̇z = 1.09× 10−4 a−1 - vertical
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Figure 4.9.: The strain field and velocity vectors around the EDML deep-drilling site taken from Wesche and others

(2007). The thin black ellipses are the strain ellipses for the strain triangles 1-5. The dotted ellipse

represents the weighted mean strain rates for BA01, which is 93m north-east of Kohnen station.

strain rate) are representative for the strain rates for the ice core. The results show layer thinning in the

EDML ice core, which has to be taken into account for yielding a correct interpretation of the ice-core

data.
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5. Summary and Outlook

The evaluation of annual elevation changes between 2003 and 2007, derived from crossover-point anal-

yses between different laser periods of the GLA12 is a first approach for estimating annual changes of

the elevation. By calculating the mean annual elevation change from seven different time spans, a trend

could be determined. However, the GLA12 accuracy is only slightly below the elevation changes and

therefore it is necessary to use longer time spans to minimize the relative errors of elevation change

determination. Nevertheless, the preliminary estimation of annual elevation change shows interesting

results. In coastal DML, the mean elevation change is positive with 0.06m with a standard deviation

of 0.20m. Looking at the area of the Ekströmisen, one can see that the elevation change varies over

this small area. The Halvfarryggen near the Neumayer station shows an increasing surface elevation,

while the Søråsen, located in the west of the Halvfarryggen, shows decreasing elevations. Because

the main wind direction in the coastal region near Neumayer station is east, the Halvfarryggen can be

seen as a barrier for humid air masses. On the plateau, the mean annual elevation change is negative

by -0.02m ± 0.10m, which is contrary to the investigations of Zwally and others (2005) and Helsen and

others (2008). The trend analysis of mean annual elevation change results in a mass loss for the plateau

region of -19.3Gt a-1 and a mass gain of 13.5Gt a-1 for the coastal region.

Other elevation change investigations are predicting an increasing elevation on the plateau and a con-

trary evolution at the coast. Similar results are obtained by investigating JLB97 and GLA12 L3h data, but

the values of elevation change are nearly the same for the plateau region. However, the mean annual

elevation change in the coastal region is dependent on the elevation accuracy of the JLB97 DEM. Firn

compaction is also a factor of high uncertainty in the calculation of elevation change using radar altimetry

as shown in the different results of Zwally and others (2005) and Helsen and others (2008). Therefore,

the comparison of two different altimetry data sets in terms of calculating the annual elevation change

is limited. In regions with relatively constant firn compaction and thus penetration of the radar signal the

results are very good, but in highly variable regions, the annual elevation change should be calculated

with identical sensors.

The improved DEM for central DML presented in this work was derived from a combination of ground-

based kinematic GPS, two types of airborne radar altimetry, and spaceborne laser altimetry. To achieve

the best possible data accuracy and density, the different elevation data were compared to each other,

corrected and combined. Because the ground-based kinematic GPS data are not affected by clouds
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(as laser altimetry) or signal penetration into the snow surface (as radar altimetry) and their high vertical

accuracy of 0.03m, these heights are used as a reference elevation for the remotely sensed altimetry

data.

With regard to the very different surface topography and to obtain a good interpolation result, the area

of investigation was divided into three parts: (i) the coastal region north of the mountain range with its

varying topography, (ii) the mountain range with the steep slopes and outcrops, and (iii) the plateau with

its wide flat topography. Based on several crossover-point analyses, the remotely sensed elevation data

were investigated with regard to the elevation differences to the ground-based kinematic GPS elevations.

Because the ground-based data are spatially limited, the ARA data were used to enlarge the number

of crossover points to the other altimetry data. The ARA data were leveled to the GPS data by the

mean penetration depth. Afterwards, the GLA12 elevation data were investigated with regard to the

height differences to the GPS and ARA data. These differences are below the accuracy of the data set

and thus, the GLA12 data do not need to be shifted to the other data. The RES signal has a higher

penetration depth than the ARA, therefore a crossover-point analysis between the ARA profiles and the

RES data was performed. The obtained elevation differences were used to shift the RES data to the

ARA data. After leveling the remotely sensed data to the ground-based GPS data, the data were merged

into elevation data sets for the coastal, mountainous and plateau region. The geostatistical interpolation

technique ”Ordinary Kriging” was used to interpolate the heights to a 2.5 km × 2.5 km raster for the three

investigation areas. Afterwards, a mosaic of the three separated DEMs was generated. The accuracy

of the improved DEM is checked by the elevation differences between the ground-based GPS profiles

and the DEM grid. The mean elevation differences are -0.65m at the plateau and -2.66m in the coastal

region. The accuracy of this DEM could be further improved by using more ground-based kinematic

GPS data which should be equally distributed over the whole area of investigation. Especially in the

coastal region, where the penetration depth of the radar signal varies, ground-based measurement are

needed to estimate such variations and to improve the radar altimeter data. But the advancement in

accuracy of this DEM compared to the commonly used DEMs is obvious, due to use of highly accurate

ground-based kinematic GPS data (even if they are spatially limited) contributing significantly to the

quality of the DEM.

Elevation difference estimations between the new DEM presented here and the DEMs commonly used

for modeling, JLB97 and RAMP, show very high spatial variations. On the plateau north of 81.5°S,

the elevation differences are within a few meters. North of this region, the elevation differences are

increasing very fast up to several hundred meters. Especially in the coastal region, where the elevation

of large parts was underestimated in earlier DEMs, the improved DEM is a definite advance for numerical

modeling of ice dynamic and mass balance.

Because the new DEM has a higher resolution, the location of ice divides can be determined more

accurately. The location of the ice divides in DML has been calculated from investigations based on the
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DEM of Bamber and Huybrechts (1996). A comparison between the improved and the old ice divides

shows variations mostly within very few kilometers. In the coastal region, the courses of old the ice

divides are complemented by some new ice divides. Altogether, only small changes in the courses

of the ice divides were found. Nevertheless, the knowledge of the ice-divide locations in the area of

investigation is improved by the new DEM.

As presented in Wesche and others (2007), static GPS measurements were not only used for local

reference stations, but also for the calculation of surface velocities. These velocities were used to de-

termine the strain field in the surrounding of the EDML deep-drilling site, which has to be accounted for

to yield a correct interpretation of ice-core data. During the International Partnerships on Ice Core Sci-

ence (IPICS) pre-site survey in the beginning of 2007, four pentagon-shaped deformation figures were

established around possible coastal drilling sites. These deformation figures will be re-surveyed during

the next austral summer campaign in Antarctica. The new positions will be used to determine surface

strain fields around these possible drilling sites. In addition to the accurate DEM presented here, ground

penetrating radar measurements and shallow ice and firn cores, as well as the deformation studies will

give an advice to select a suitable drilling site for a deep coastal ice core.

With the launch of the CryoSat-2, planned for November 2009, a new era of satellite radar altimetry

over ice sheets will begin. The onboard Synthetic-Apertur Interferometric Radaraltimeter (SIRAL) is

specially designed for the measurement above ice sheets. Due to the small footprint of 250m (16 - 20 km

ERS - http://earth.esa.int/object/index.cfm?fobjectid=3999), the elevation radar-altimeter measurements

of elevation will be improved. The footprint of the GLAS on board the ICESat is even smaller (70m),

but the laser is not able to penetrate clouds. The independence from weather conditions and the (for

a spaceborne radar altimeter) small footprint are the big advantages of the CryoSat-2. However, the

SIRAL will also be affected by the slope-induced error and the penetration of the radar signal into the

snow surface. Therefore, it will be essential to validate the CryoSat-2 altimetry data with ground-based

measurements. This improved DEM provides a suitable data set to validate the CryoSat-2 altimetry

products.
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das Interesse an meiner Arbeit, Anne und Pete für die Aufmunterungen und netten Abende bei Werner

und last but not least Melanie, danke für alles!

47





A. Reference stations

Table A.1.: Table of the permanent GPS reference stations, which were described in section 3.1.3. The coordinates

are taken from the Scripps Orbit and Permanent Array Center (SOPAC - http://sopac.ucsd.edu/)

.

Station IGS site code Longitude Latitude Elevation

O’Higgins ohi2 57.90133° W 63.32108° S 32.55m

Palmer palm 64.05112° W 64.77509° S 31.06m

Sanae IV vesl 2.84178° W 71.67380° S 862.36m

Syowa syog 39.58374° E 69.00696° S 50.00m

Mawson maw1 62.87071° E 67.60477° S 59.13m

Davis dav1 77.97261° E 68.57732° S 44.39m

Amundsen/Scott amun 139.19009° E 89.99780° S 2816.26m

Table A.2.: Table of the non-permanent GPS reference stations, which were described in section 3.1.3.

Station Longitude Latitude Elevation

Aboaa 13.40714° W 73.04377° S 468.64m

Trollb 2.53808° E 72.01203° S 1313,53m

Forsterc 11.82506° E 70.77794° S 125.93m

aFinnish Station, data provided by Hannu Koivula of the Finnish Geodetic Institute
bNorwegian Station, data provided by Axel Rülke of the Technical University Dresden
csurvey point next to the former overwintering base Forster, data collected by the Technical University of Dresden

and provided by Axel Rülke
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Table A.3.: Static GPS points in DML. KRS is the Kohnen Reference Station near the EDML deep-drilling site. The

sixth column shows the person in charge of the data processing.

Name Longitude Latitude Elevation Observation period

KRS 0.0667° E 75.0018° S 2897.8m Jan. 2000 - Dec. 2005 D. Schultea, Ch. Wesche

DML01 2.5493° E 74.8564° S 2831.1m Jan. 1997 - Jan. 1999 B. Riedelb, Ch. Wesche

DML02 3.9185° E 74.9683° S 3027.3m Jan. 1997 - Jan. 1999 B. Riedel, Ch. Wesche

DML03 1.9609° E 74.4995° S 2855.4m Jan. 1997 - Jan. 1999 B. Riedel, Ch. Wesche

DML05 0.0072° E 75.0024° S 2890.2m Jan. 2001 - Dec. 2005 Ch. Wesche

DML07 3.4306°W 75.5816° S 2680.1m Jan. 1997 - Jan. 1999 B. Riedel, Ch. Wesche

DML19 0.9951°W 75.1674° S 2849.5m Jan. 1999 - Jan. 2001 Ch. Wesche

DML25 0.0818° E 75.0060° S 2889.2m Jan. 2004 - Dec. 2005 Ch. Wesche

DML26 0.0099° E 74.8393° S 2881.9m Jan. 2001 - Dec. 2005 Ch. Wesche

DML27 0.7040° E 75.0560° S 2909.0m Feb. 2003 - Dec. 2005 Ch. Wesche

DML94 6.6989°W 71.1621° S 690.4m Jan. 2007 Ch. Wesche

DML95 6.6670°W 71.5680° S 538.8m Jan. 2007 Ch. Wesche

DML96 9.9167°W 71.4083° S 654.6m Jan. 2007 Ch. Wesche

DML97 9.5583°W 72.0640° S 760.2m Feb. 2007 Ch. Wesche

BA01 0.0678° E 75.0017° S 2891.1m Jan. 2003 - Dec. 2005 Ch. Wesche

HM01 0.0078° E 74.9939° S 2889.6m Jan. 2000 - Dec. 2005 Ch. Wesche

HM02 0.0394° E 75.0069° S 2889.6m Jan. 2000 - Dec. 2005 Ch. Wesche

HM03 0.0229°W 75.0074° S 2889.4m Jan. 2000 - Dec. 2005 Ch. Wesche

PEN1 0.0819° E 74.9654° S 2891.4m Jan. 2000 - Dec. 2005 Ch. Wesche

PEN2 0.2296° E 74.9945° S 2894.8m Jan. 2000 - Dec. 2005 Ch. Wesche

PEN3 0.1728° E 75.0393° S 2892.5m Jan. 2000 - Dec. 2005 Ch. Wesche

PEN4 0.0121°W 75.0388° S 2887.8m Jan. 2000 - Dec. 2005 Ch. Wesche

PEN5 0.0659°W 74.9937° S 2888.7m Jan. 2000 - Dec. 2005 Ch. Wesche

aAlfred Wegener Institute for Polar and Marine Research
bTechnical University of Braunschweig
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B. Elevation changes

B.1. Coast

Figure B.1.: Annual elevation differences from GLA12 data, recorded in May and June 2005 and 2006.

Figure B.2.: Annual elevation differences from GLA12 data, recorded between September and November in 2003

to 2006.
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Figure B.3.: Annual elevation differences from GLA12 data, recorded between February and April in 2003 to 2007.

B.2. Plateau

Figure B.4.: Annual elevation differences from GLA12 data, recorded in May and June 2005 and 2006.

52



Figure B.5.: Annual elevation differences from GLA12 data, recorded between September and November in 2003

to 2006.
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Figure B.6.: Annual elevation differences from GLA12 data, recorded between February and April in 2003 to 2007.
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C. Maps of DML

Figure C.1.: The surface slopes in DML based on the improved DEM.
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Figure C.2.: Aspect based on the improved DEM.
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Surface topography and ice flow in the vicinity of the EDML
deep-drilling site, Antarctica
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ABSTRACT. Interpretation of ice-core records requires accurate knowledge of the past and present
surface topography and stress–strain fields. The European Project for Ice Coring in Antarctica (EPICA)
drilling site (75.002588 S, 0.06848 E; 2891.7m) in Dronning Maud Land, Antarctica, is located in the
immediate vicinity of a transient and forking ice divide. A digital elevation model is determined from the
combination of kinematic GPS measurements with the GLAS12 datasets from the ICESat. Based on a
network of stakes, surveyed with static GPS, the velocity field around the drilling site is calculated. The
annual mean velocity magnitude of 12 survey points amounts to 0.74ma–1. Flow directions mainly vary
according to their distance from the ice divide. Surface strain rates are determined from a pentagon-
shaped stake network with one center point close to the drilling site. The strain field is characterized by
along-flow compression, lateral dilatation and vertical layer thinning.

INTRODUCTION
Within the framework of the European Project for Ice Coring
in Antarctica (EPICA) a deep ice core (EDML) was drilled in
Dronning Maud Land (DML), Antarctica, near the German
summer station, Kohnen (EPICA Community Members,
2006). To obtain high-resolution climate information of the
last glacial cycle, a drilling site was chosen that provides
comparatively high accumulation rates, large ice thickness
and nearly undisturbed layering of the ice. The EDML
drilling site (75.00258 S, 0.06848 E; 2891.7m above the
World Geodetic System 1984 (WGS84) ellipsoid) is located
in the Atlantic sector of Antarctica (Fig. 1) and is used to
investigate the connection between Northern and Southern
Hemisphere climate variability in the past. The area
surrounding the EDML drilling site is situated between two
transient ice divides which fork at approximately 75.18 S,
18 E, according to the elevation model of Bamber and
Bindschadler (1997). The deep ice-core drilling was carried
out in the austral summer seasons 2000/01 to 2005/06. The
ice thickness in this region is 2782�5m, as measured by
airborne radio-echo sounding, and the total recovered core
length was 2774.15m (personal communication from
F. Wilhelms, 2006). The drilling finished when subglacial
water entered the borehole. The recent accumulation rate in
the surroundings of the EDML drilling site is 64 kgm–2 a–1

(Eisen and others, 2005), with small-scale spatial variability
of �10%.

Accurate interpretation of the EDML ice-core data (e.g.
past accumulation from annual layer thicknesses) requires
knowledge of the complete strain field to correct for dynamic
layer thickness variation. In this paper, we determine the
topography, flow and strain field in the wider surroundings of
the drilling site. Similar investigations were previously made
at several drilling sites in Antarctica and Greenland. For
example, Vittuari and others (2004) present a velocity field at
Dome C (the first EPICA deep-drilling site (EPICA Community
Members, 2004)) in the Indo-Pacific sector of the Antarctic
ice sheet. In Greenland, Hvidberg and others (2002) investi-
gated the ice flow at NorthGRIP, a drilling site that is also

located in the vicinity of a transient ice divide. For the EDML
site, a digital elevation model (DEM) is derived from the
combination of ground-based kinematic GPS (global pos-
itioning system) and ICESat (Ice, Cloud and land Elevation
Satellite) laser altimetry, providing highly accurate surface
topography in the region of interest. This forms, together with
ice velocity data, the basis for estimating and interpreting
deformation in the upper part of the ice sheet.

DATA AND METHODS
Static and kinematic GPS measurements were used for our
investigation. The elevation data derived from the kinematic
GPS data were complemented by NASA’s ICESat satellite
laser altimetry data (US National Snow and Ice Data Center
(NSIDC) http://nsidc.org/data/icesat/).

Kohnen Reference Station (KRS)
Kohnen Reference Station (KRS), which is located at the
German summer station Kohnen (75.00188 S, 0.06678 E), is
used for processing our GPS measurements. This is a non-
permanent GPS station, providing data at 1 s intervals only
during the drilling campaigns 2000/01 to 2005/06 (with
interruptions in the season 2004/05). The KRS GPS antenna
was mounted on the northern corner of the Kohnen station.
With the aid of the International Global Navigation Satellite
Systems Service (IGS) network, the daily position of KRS
was determined using the GPS stations Mawson, Sanae IV,
Syowa, Davis, Casey and O’Higgins (Fig. 1). The KRS
positions were determined with the post-processing soft-
ware GAMIT, assuming motion of the site was negligible
during the processing window (Scripps Institution of Ocean-
ography, http://sopac.ucsd.edu/processing/gamit/).

Surface profiles from kinematic GPS measurements
Kinematic GPS measurements combined with ground-
penetrating radar (GPR) recorded during the 2000/01 field
campaign (Eisen and others, 2005) form the basis for
generating a DEM with a higher accuracy and resolution
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than former DEMs in the surroundings of the EDML drilling
site. A Trimble SSI 4000 GPS receiver was mounted on a
snowmobile which was navigated at a velocity of about
10 kmh–1 along predefined tracks (Fig. 2, solid lines) in the
area of investigation (74.8–75.18 S, 0.28W–0.88 E). There are
two networks of kinematic GPS profiles, both centered on
the EDML drilling site. The length of the edges of the first
grid is 10 km with a profile spacing of 1–3 km. The second
grid is a star-like pattern, which consists of seven 20–25 km
legs. The kinematic GPS data were processed with Trimble
Geomatics OfficeTM (TGOTM), including precise ephemeris
and ionosphere-free solution.

Flow and strain networks using static GPS
measurements
In order to determine horizontal velocities and strain rates,
static GPS measurements around the EDML drilling site were
carried out with Ashtech Z-12 and Trimble SSI 4000 GPS
receivers in the austral summer seasons between 1999/2000
and 2005/06. For the velocity network 13 points in the
surroundings of the EDML drilling site were used (Fig. 2).
These points are marked with aluminium stakes and were
surveyed for approximately 1 hour per season to find their
positions. The static GPS data were also processed with
TGOTM. All determined positions are available in the
PANGAEA database (doi: 10.1594/PANGAEA.611331).

Surface profiles from satellite altimetry
The Geoscience Laser Altimeter System (GLAS) on board
NASA’s ICESat provides global altimetry data with a wave-
length of 1064nm up to 868N and 868 S. The laser footprint
has a diameter of 60m, and the along-track distance between
the footprints is 172m. The positioning error is 35m (Zwally
and others, 2002). In this paper, GLAS12 altimetry data for
the periods L1a (20 February to 20 March 2003) and L2a

(25 September to 18 November 2003) are used to determine
the surface elevation model of the investigated area. The
ground tracks of these measurements across the investigated
area are plotted in Figure 2 as dotted lines. The GLAS12
satellite laser altimetry data and the corresponding NSIDC
GLAS Altimetry elevation extractor Tool (NGAT) are provided
by NSIDC (http://nsidc.org/data/icesat/).

DATA ACCURACY
Knowledge of potential errors is essential for determining the
quality of the kinematic and static GPS data. The general
GPS errors and those of our solutions are presented in this
section. The distance between the reference station and the
survey point or profile is the principal factor affecting the
accuracy of the position to be determined.

GPS errors
GPS observations at high latitudes are affected by the
relatively weak satellite geometry, and hence formal errors
are larger here than at other latitudes. Ionospheric and
tropospheric effects were minimized by adopting the
ionosphere-free linear combination and applying a tropo-
spheric model. Further error reduction occurs through the
double-differencing approach used in TGOTM and the
relatively short baselines.

Kinematic GPS measurements
Since we used KRS, located in the center of the kinematic
GPS profiles, systematic positioning errors are negligible.
The accuracy of the kinematic GPS measurements is

Fig. 2. Data coverage for the DEM derived in the present study. The
solid lines present the kinematic GPS profiles, and the dotted lines
the ICESat GLAS12 ground tracks. Sites used for static GPS
measurements are marked with filled circles; the star marks the
EDML drilling site.

Fig. 1. Location map of the EDML drilling site in Antarctica, marked
with a star. Six International Global Navigation Satellite Systems
Service (IGS) reference stations are indicatedwith filled circles. They
were used for determining the position of the local reference point
Kohnen Reference Station (KRS) adjacent to the EDML drilling site.
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estimated by a crossover-point analysis. The histogram in
Figure 3 shows the elevation differences at the 1615 cross-
over points. The mean elevation difference is 0.03m with a
standard deviation of 0.12m.

Static GPS measurements
All stakes (Fig. 2) were occupied for an observation period of
�1 hour in several campaigns. The length of the baselines to
KRS varied between 0.03 km (BA01) and 19.4 km (DML27).
The positions of all stakes were computed using TGOTM, and
the formal horizontal and vertical errors (Table 1) were
derived for every point in a processing report. The formal
errors issued by GPS software are usually over-optimistic.
Experience shows that these errors need to be scaled by a
factor of 5–20, to be closer to the true uncertainty of the
static GPS (personal communication from M. King, 2007).
We take a factor of 20 as a conservative estimate of the
precision of the GPS positions. As the accuracy depends on
the baseline length, we use the points BA01 and DML27 to
estimate the accuracy of the static GPS measurements.

The positions of these two points were calculated against
KRS for two campaigns. They have quite different horizontal
and vertical errors, which can be attributed to the longer

baseline length between KRS and DML27. However, there
are also significant differences between campaigns for the
same point. For DML27, the horizontal and vertical errors
in 2002/03 are almost an order of magnitude larger than in
2005/06. This may stem from the high sunspot activity in
2002/03 (http://solarscience.msfc.nasa.gov/SunspotCycle.
shtml) in combination with the baseline length, despite
using the ionosphere-free solution of TGOTM. We assume
that the maximum horizontal and vertical errors for our
solutions are given by the values for DML27 of 0.30m and
0.82m, respectively, from the campaign in 2002/03.

GLAS data
ICESat’s positioning precision is stated as 35m and the pre-
dicted elevation data accuracy is 0.15m (Zwally and others,
2002). Shuman and others (2006) presented a new elevation
accuracy assessment of �0.02m for low-slope and clear-sky
conditions. Our area of investigation is a low-slope region,
but clouds during the observation period cannot be
excluded over the whole period. The elevation measure-
ments of the ICESat laser altimeter refer to the TOPEX/
Poseidon ellipsoid. Differences in elevation between the
TOPEX/Poseidon ellipsoid and the WGS84 ellipsoid are
approximately 0.71m in the region of interest (personal
communication from T. Haran, 2005). When transforming to
the WGS84 ellipsoid we subtract this value from all GLAS12
elevation data.

RESULTS
Surface topography
The derived surface topography in the area of investigation
refers to the WGS84 ellipsoid and is a combination of
the GPS and the GLAS12 datasets (Fig. 4, contours). A
crossover-point analysis was performed before combining
the datasets to identify systematic offsets and to estimate the
uncertainties. As crossover points for the GPS data we use
the average of all GPS measurements within the diameter of
the GLAS footprint of about 60m. Considering all crossover
points, the GLAS12 data (transformed to the WGS84
ellipsoid) are found to be 0.119m lower than the GPS data,
on average. This elevation difference was added to the
GLAS12 data, i.e. we corrected the elevations to the GPS

Table 1. Error estimates for BA01 and DML27

Point Campaign Horizontal
1� � error�

Vertical
1� � error�

Baseline
length

m m m

BA01 2002/03 0.01 0.04 29.4
BA01 2005/06 0.01 0.02 29.7
DML27 2002/03 0.30 0.82 19359.7
DML27 2005/06 0.04 0.10 19358.9

�Based on formal errors issued by the GPS software, TGOTM, scaled by a
factor of 20.

Fig. 3. Histogram of elevation differences at 1615 crossover points
of the surveyed kinematic GPS profiles.

Table 2. Calculated mean annual horizontal ice-flow velocities

Point Magnitude Direction Period of averaging

ma–1 8

BA01 0.682 272.6 Jan. 2003–Dec. 2005
DML05 0.660 270.4 Jan. 2001–Dec. 2005
DML25 0.830 274.2 Jan. 2004–Dec. 2005
DML26 1.066 335.9 Jan. 2001–Dec. 2005
DML27 0.963 287.5 Feb. 2003–Dec. 2005
HM01 0.642 273.7 Jan. 2000–Dec. 2005
HM02 0.684 270.0 Jan. 2000–Dec. 2005
HM03 0.674 266.6 Jan. 2000–Dec. 2005
PEN1 0.643 291.3 Jan. 2000–Dec. 2005
PEN2 0.767 282.9 Jan. 2000–Dec. 2005
PEN3 0.859 265.9 Jan. 2000–Dec. 2005
PEN4 0.841 257.9 Jan. 2000–Dec. 2005
PEN5 0.624 269.8 Jan. 2000–Dec. 2005
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profiles. To get sufficient spatial coverage of elevation data
over the whole area of investigation, we interpolated the
combined dataset with a minimum-curvature algorithm
(Wessel and Smith, 1991) on a 5 km�5 km grid (Fig. 4).
With this grid size, at least one data point was available for
each gridcell, even several tens of kilometers away from the
drilling site.

Surface velocity
The velocity magnitude at the survey points between the two
ice divides varies between 0.62ma–1 (PEN5) and 0.96ma–1

(DML27). The flow direction varies between 257.98 (PEN4)
and 291.38 (PEN1). The flow velocity of DML26, north of the
divide, is outside this range, moving in a direction of 335.98
with a magnitude of 1.07ma–1 (Table 2; Fig. 4).

The location of the EDML drilling site was surveyed on
10 January 2001, before the drilling operation started,
yielding 75.00258 S, 0.0688 E and 2891.7m at the snow
surface. As excavation of the drill trench does not allow
accurate remeasurements, we use the mean velocities of the
points next to it, DML25 and BA01. We thus obtain a value
of 0.756ma–1 in the direction of 273.48 for the ice velocity
at the drilling site. The precision of the velocity measure-
ments differs, depending on the period and data used (see
Table 1). We therefore perform a propagation of errors by

dv2 ¼ v
s
dsm

� �2
þ v

t
dt

� �2
: ð1Þ

Only the horizontal errors are used; the vertical errors are
neglected for calculating the propagated error (dv) of the
annual movement. Here, v is the velocity magnitude and

s the horizontal offset of the survey point over the measure-
ment interval (t ). The term dsm is the mean of the horizontal
errors for the survey point of the two campaigns used for the
determination of the velocities. The time error, dt, is assumed
to be a constant of 1 day (1/365.25 years), because the start
and end time is rounded by the day. The resulting errors for
sites DML27 and BA01 are 0.059 and 0.003ma–1, respect-
ively. As discussed above, we take the error at DML27 as the
maximum error of the velocity determination, as it has the
longest baseline.

Surface strain rates
Strain rates were determined from a pentagon-shaped
network (PEN1–PEN5) with BA01 as the center reference
pole (Fig. 5). Using the horizontal surface velocities in
Table 2, with the geodetical nomenclature of y as the
eastward and x as the northward components, we determine
the strain-rate components from (Paterson, 1994)

_"x ¼ �vx
�x

, _"y ¼
�vy
�y

, ð2Þ

and the combined strain rate as

_"xy ¼ 1
2

�vx
�y

þ�vy
�x

� �
, ð3Þ

where �vx and �vy are the differences of the x and y
velocity components of the considered pair of survey points,
and �x and �y are the distances between the stakes in the x
and y directions. Distances from the reference pole to each
pentagon point vary between 3961.85m (BA01–PEN5) and
5173.28m (BA01–PEN3). Using Equation (3) the combined
surface strain rate is calculated for every pair of neighboring
points (west–east and south–north), yielding ten values
(Table 3).

To determine the strain rates, we divide the pentagon into
five strain triangles (Fig. 5) and assume the strain is constant
over the area of the triangle. We calculate the average of the
strain for each triangle (e.g. the mean of BA01/PEN1, BA01/
PEN2 and PEN1/PEN2 for the northeastern triangle, num-
bered 1). The principal components are calculated using the

Fig. 5. Velocity vectors of the pentagon-shaped network (PEN1–
PEN5) and BA01. Strain ellipses are plotted for the five strain
triangles, indicated by numbers 1–5. The mean strain ellipse
(dotted) is centered on BA01. See text for the calculation of the
mean strain ellipse. The elevation contour interval is 2m.

Fig. 4. Surface flow-velocity vectors in the area of interest, plotted
on the contour map of the combined and gridded (5 km� 5 km)
GPS/GLAS12 elevation model. The contour interval is 2m. The
dotted curves indicate the ice divide corresponding to the DEM of
Bamber and Bindschadler (1997).
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rotation, �, of the x and y axes

tan 2� ¼ 2 _"xy
_"x � _"y

: ð4Þ

This provides one of two values for �, which are 908 apart.
One gives the direction of the maximum strain rate, _"max, the
other of minimum strain rate, _"min. The strain-rate magni-
tudes along these directions follow from

_"max,min ¼ _"x cos2�max,min þ _"y sin2�max,min

þ 2 _"xy sin �max,min cos �max,min: ð5Þ
This calculation is repeated for every strain triangle. The
direction of maximum strain rate varies between 30.18 and
75.08. Using the incompressibility condition (Paterson, 1994)

_"x þ _"y þ _"z ¼ 0, ð6Þ
we estimate the flow-induced vertical strain rate _"z . It varies
between 1.31�10–6 and 3.79�10–4 a–1 (Table 4), with a
standard variation of 6.49� 10–5 a–1. To estimate a strain rate
representative of the EDML drilling site, we determine the
average horizontal deformation and its direction at BA01. For
this purpose, the arithmetic means of _"xy , _"x and _"y from the
strain triangles are calculated and used in Equations (4)

and (5) (Table 4). The maximum rate is –1.85�10–4 a–1,
acting in the direction of 65.88. The minimum rate,
2.32� 10–5 a–1, acts in the direction of 155.88. In addition
to the arithmetic mean, we determine the weighted mean for
the directional and vertical strain-rate components ( _"x, y, z ),
using the strain-rate error weights (Table 4). The arithmetic
mean of the vertical strain rate, _"z , is (1.62� 1.25)�10–4 a–1,
and the weighted mean is (1.09�1.25)� 10–4 a–1.

DISCUSSION
The DEM presented here is compared with the DEM
generated by Bamber and Bindschadler (1997) from Euro-
pean Remote-sensing Satellite-1 (ERS-1) radar altimetry,
which is also available on a 5 km� 5 km grid. For com-
parison, we subtract the Bamber and Bindschadler (1997)
DEM from our combined GPS/GLAS12 DEM. The north-
eastern edge of the area of investigation is striking, where the
elevations of the Bamber and Bindschadler (1997) DEM are
about 2m higher than those in our DEM (Fig. 6). Calculating
the mean difference between the combined GPS/GLAS12
DEM and the Bamber and Bindschadler (1997) DEM for
every 5 km�5 km gridcell, we determine a mean elevation
difference of –0.33m. That is, the DEM of Bamber and

Table 3. Strain rates for pairs of survey points

Pair of points _"xy _"x d _"x _"y d _"y �vx �vy

a–1 a–1 a–1 a–1 a–1 ma–1 ma–1

BA01/PEN1 –2.20� 10–4 –2.02�10–5 1.47�10–5 –9.61�10–4 2.85� 10–4 –0.08 –0.20
BA01/PEN2 –5.44� 10–5 6.73�10–5 5.83�10–5 –2.74�10–5 1.29� 10–5 0.07 –0.13
BA01/PEN3 –1.57� 10–5 –4.35�10–5 1.49�10–5 2.86�10–5 1.86� 10–5 –0.18 0.09
BA01/PEN4 –5.81� 10–5 –3.32�10–5 1.41�10–5 –9.90�10–5 2.87� 10–5 –0.14 –0.21
BA01/PEN5 –3.12� 10–5 –8.24�10–5 8.63�10–5 –8.49�10–5 1.54� 10–5 –0.06 –0.03
PEN1/PEN2 –4.73� 10–5 –4.97�10–5 1.97�10–5 1.70�10–5 1.36� 10–5 –0.15 0.08
PEN1/PEN5 –3.79� 10–5 –7.38�10–6 1.78�10–5 –5.73�10–5 1.46� 10–5 –0.02 –0.24
PEN2/PEN3 –5.96� 10–5 –2.10�10–5 1.18�10–5 –1.57�10–4 4.28� 10–5 –0.11 –0.22
PEN3/PEN4 –2.71� 10–4 1.65�10–4 2.87�10–4 –2.16�10–5 1.13� 10–5 0.03 –0.11
PEN4/PEN5 –3.72� 10–5 –4.01�10–5 1.21�10–5 9.63�10–5 3.32� 10–5 –0.20 0.17

Note : Combined ( _"xy ) and directional ( _"x and _"y ) strain rates with conservative error estimates (d _"x and d _"y ); differences of the velocity components in north–
south (�vx) and east–west (�vy) direction for BA01 and PEN1–PEN5. In this work, the differences of the velocity components were calculated by west minus
east values, and south minus north values. Negative strain rates thus correspond to compression, and positive strain rates to extension.

Table 4. Strain rates for the strain triangles

Strain
triangle

_"xy _"x d _"x _"y d _"y _"z d _"z _"max �max _"min �min

a–1 a–1 a–1 a–1 a–1 a–1 a–1 a–1 8 a–1 8

1 –9.30�10–5 –8.70� 10–7 3.66�10–5 –3.24�10–4 1.65� 10–4 3.25�10–4 1.69� 10–4 –3.49�10–4 75.03 2.40� 10–5 165.03
2 –4.32�10–5 9.60� 10–7 3.54�10–5 –5.18�10–5 2.80� 10–5 5.09�10–5 4.51� 10–5 –7.61�10–5 60.71 2.52� 10–5 150.71
3 –1.15�10–4 2.94� 10–5 1.66�10–4 –3.07�10–5 2.08� 10–5 1.31�10–6 1.67� 10–4 –1.20�10–4 52.32 1.18� 10–4 142.32
4 –4.22�10–5 –5.19� 10–5 5.10�10–5 –3.74�10–6 2.68� 10–5 5.56�10–5 5.76� 10–5 –7.64�10–5 30.13 2.07� 10–5 120.13
5 –9.63�10–5 –3.67� 10–5 5.18�10–5 –3.42�10–4 1.65� 10–4 3.79�10–4 1.73� 10–4 –3.70�10–4 73.89 –8.83� 10–6 163.89

Arithmetic mean
–7.80�10–5 –1.18� 10–5 3.76�10–5 –1.50�10–4 4.74� 10–5 1.62�10–4 6.05� 10–5 –1.85�10–4 65.83 2.32� 10–5 155.83

Weighted mean –1.54� 10–5 –5.64�10–5 1.09�10–4

Note : Combined ( _"xy ), directional ( _"x and _"y ), vertical strain rate ( _"z ), maximum and minimum strain rate ( _"max and _"min) and the direction of maximum and
minimum strain rate (�max and �min). The conservative error estimates for the directional and vertical strain rates for the five triangles are denoted by d _" x;y;zð Þ.
Weighted mean refers to the weighting by corresponding errors. See text for the calculation of the arithmetic and weighted means.
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Bindschadler (1997) is about 0.3m higher than our com-
bined GPS/GLAS12 DEM.

The topography in the region of interest shows a smooth
surface, slightly sloping down to the west. One major feature
is a transient ice divide, which splits �20 km upstream of the
drilling location, thus separating three drainage basins. Of
our 13 survey points, 12 are located between the two
branches of the ice divide; only DML26 is located north of
both ice branches (Fig. 4). As it represents a different
drainage basin and flow regime, we exclude DML26 from
further analysis. The ice divide and the local surface
elevation are the largest factors determining the flow and
strain field. This is evident from comparison of the mean
slope direction at the drilling site with the mean flow
direction of 273.58 from the GPS-based velocity measure-
ments. Small differences in magnitude and direction of the
horizontal ice-flow velocities of the survey points are
likewise mainly caused by the relative location of the survey
point in respect to the ice divide. Points very close to the ice
divide are generally slower and the direction of movement is
nearly parallel to the course of the divide (Fig. 4 and Table 2,
e.g. PEN1). The magnitude of the flow velocity increases
with increasing distance from the divide, and the northward
flow component is reduced (Fig. 4; Table 2). An exception is
PEN5, which has a slightly lower velocity (0.624ma–1) than
PEN1 (0.643ma–1) despite the greater distance from the
divide. Although this difference is smaller than the estimated
conservative maximum velocity error of 0.059ma–1, we try
to identify the origin of this variation.

Investigating the local bedrock topography in the vicinity
of PEN5, available from airborne radio-echo soundings
(Steinhage and others, 1999), PEN5 is found to be located
above a depression of the subglacial topography (Fig. 7). The
depression is �5 km wide and several tens of meters deep,
with respect to the surrounding average bedrock elevation.
Because of the smoothing effect of ice dynamics, the surface
elevation is much smoother than the bedrock topography.
Surface topography varies only in the order of meters. The
depression therefore simply causes locally increased ice
thickness, but not a significant feature at the surface. The
slightly lower velocity at PEN5, compared to the other
stakes, is thus a consequence of the flux balance required by
the larger ice thickness.

The surface strain rate at BA01, averaged from the strain
triangles of the five pentagon points (PEN1–PEN5), is
considered to be representative for the EDML ice core, as
BA01 is only 93m to the northeast of the drilling site. Most
error estimates for the strain rates (Tables 3 and 4) are about
equal to or smaller than the nominal value of the strain rate.
For some strain rates with very small nominal values, the
error is more than one order of magnitude larger (e.g. _"x
triangle 3, Table 4). We emphasize that the velocity errors
are very conservative estimates, so the strain-rate errors are
also conservative estimates. The average maximum principal
component of the strain rate at BA01 is negative (–1.85�
10–4 a–1). It acts as a compressing force in the direction of
65.88. The minimum principal component of the strain rate
at BA01 is positive (2.32� 10–5 a–1). It therefore corresponds
to a dilatational force and acts along an axis in the direction
of 155.88. This results from the low magnitude of the
velocity at PEN5. Both BA01 and PEN2 (upstream of PEN5)
are moving faster than PEN5, which induces the along-flow
compression of the ice mass. The average vertical strain rate,
as calculated above, shows that the compression in the
northwest–southeast direction only partly compensates the
dilatational component of the strain field in the northeast–
southwest direction, perpendicular to the ice flow at EDML,
and layer thinning is required in the vertical component to
achieve balance.

Fig. 6. Elevation differences of our GPS/GLAS12 DEM minus the
Bamber and Bindschadler (1997) DEM. The contour interval is 1m.
Kinematic GPS and GLAS12 data coverage used in this paper
(Fig. 2) are plotted as white dotted (GLAS12) and solid (GPS) lines.

Fig. 7. Subglacial topography of the area of investigation gridded on
a 500m� 500m raster after Steinhage and others (1999). The
spacing between the contours is 50m. The dotted line represents
the ice divide corresponding to Bamber and Bindschadler (1997).
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CONCLUSION
We provide an improved dataset for the surface topography
and flow velocity in the vicinity of the EDML drilling site. A
DEM of high accuracy was derived from a combination of
kinematic surface GPS measurements and satellite laser
altimetry from ICESat’s GLAS12 data. Static GPS measure-
ments at 13 stakes between the austral summer seasons
1997/98 and 2005/06 provided the basis for deriving the flow
velocity field and resulting strain rates. The flow velocity field
is, in general, divergent along the course of and in between
the two branches of the ice divide. On top of this general
field, small velocity variations are superimposed, which are
caused by local variations in ice thickness resulting from
undulations in bedrock topography. The horizontal strain
field, calculated from the velocities, shows lateral extension
and smaller longitudinal compression. This results in layer
thinning in the EDML ice core, which has to be accounted for
to yield a correct interpretation of ice-core data.
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Abstract

As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core

drilling contributing to the International Partnerships in Ice Core Sciences (IPICS),

ground based kinematic GPS measurements were conducted in early 2007 in the

vicinity of the German overwintering station Neumayer (8.25°W and 70.65° S).

The investigated area comprises the regions of the ice tongues Halvfarryggen and

Søråsen, which rise from the Ekströmisen to a maximum of about 760m surface

elevation, and have an areal extent of about 100 km x 50 km each. Available digital

elevation models (DEMs) from radar altimetry and the Antarctic Digital Database

show elevation differences of up to hundreds of meters in this region, which ne-

cessitated an accurate survey of the conditions on-site. An improved DEM of the

Ekströmisen surroundings is derived by a combination of highly accurate ground

based GPS measurements, satellite derived laser altimetry data (ICESat), airborne

radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here

achieves a vertical accuracy of about 1.3m and can be used for improved ice dy-

namic modeling and mass balance studies.

Key words: GPS, ICESat, radar altimetry
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1 Introduction

Ice sheets play a major role in the climate system and changes in their mass

balance affect the global sea level. Currently, the absolute mass balances of

the ice sheets are only slightly above the measurement uncertainties and

changes in mass balance may even be below the precision of the measure-

ments (Wingham et al., 1998; Abdalati et al., 2002; Zwally et al., 2002). The

Antarctic ice sheet covers an area of about 12.4×106 km2 with an average

ice thickness of about 2.4 km (Massom and Lubin, 2006). The steep margins

of the Antarctic ice sheet form the transition zone between the grounded

flat interior and the floating ice shelves which are very sensitive for cli-

mate variability. The knowledge of the surface topography of the Antarc-

tic ice sheet is an important input parameter for ice dynamic modeling

and mass balance studies. Recent mass balance studies (Alley et al., 2007;

Krinner et al., 2007) and ice dynamic modeling (Bamber and Huybrechts,

1996; Huybrechts et al., 2000) use digital elevation models (DEMs) derived

from satellite and airborne altimetry. For the grounded part of Dronning

Maud Land (DML), these models are not in agreement with each other, at

least in coastal Dronning Maud Land (DML).

The area of investigation comprises the two grounded ice tongues of Halv-

farryggen and Søråsen (Fig. 1) surrounding the Ekströmisen and reaches

inland up to 72.3° S. In the past, this region has been rarely surveyed by

∗ Corresponding author.
Email address: christine.wesche@awi.de (D. Steinhage).
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Fig. 1. A RADARSAT image of the investigated area. The black frame in the in-set

shows the location of the area of investigation. The satellite picture (RAMP v2 mo-

saic - Jezek and RAMP Product Team (2002)) shows a zoom on Halvfarryggen and

Søråsen. The shading shows the backscattered intensities converted in grey values

between 0 (low backscatter amplitudes) and 255 (high backscatter amplitudes).

ground based measurements, and different currently available DEMs show

differences in elevations of several tenths up to hundreds of meters. Kine-

matic GPS measurements were recorded on Halvfarryggen and Søråsen

within the framework of the International Partnerships in Ice Core Sciences

(IPICS) pre-site survey for an ice-core drilling and the CryoSat Calibration

and Validation activities (Fig. 2). By combining these ground based GPS

measurements with laser altimeter measurements from NASA’s Ice Cloud

and Elevation Satellite (ICESat), airborne radar altimetry (ARA), and ra-

dio echo sounding (RES) a precise DEM has been constructed by referenc-

ing the remotely sensed data onto the ground based data. In this work,

the different data sets were leveled and combined to achieve a DEM of
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the area of investigation. The extent of the ice tongues was defined us-

ing the grounding line derived from SAR interferometry (pers. comm. R.

Drews, 2007). For the north-east flank of Halvfarryggen, the grounding line

(dashed grey line) was taken from the Antarctic Digital Database 4.0 (ADD4

- http://www.add.scar.org). To evaluate the quality of the new DEM, a

comparison with already existing DEMs is shown later beside a crossover

analysis of the various leveled input data.

2 Data and Methods

2.1 Kinematic GPS measurements

The kinematic GPS measurements were recorded during the field cam-

paign in January and February of 2007. A Trimble SSI 4000 GPS receiver

was mounted on a snow vehicle which was navigated along predefined

tracks at a velocity between 10 and 12 kmh-1 (Fig. 2 - black lines). Using 1 s

observation intervals, the along track distance between the data points is

approximately 3m, which is slightly larger than the length of the vehicle.

All kinematic GPS measurements were processed using local reference sta-

tions (Tab. 1). The local reference stations (DML94 to DML97, Tab. 1) were

non-permanent GPS stations, which provided reference data with a record-

ing interval of 1 s only for local survey period. The position of each local

reference station was determined with the aid of the International GNSS

Service (IGS) network data and commercial post-processing software, in-

cluding precise ephemerides, and the ionosphere-free solution. In order to

check the stationarity of the local reference stations, a kinematic process-
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Fig. 2. Coverage of kinematic GPS (black) and ICESat (thin grey) data. The bold

grey line represents the grounding line, derived from SAR interferometry (pers.

comm. R. Drews, 2007), the dashed grey line is the grounding line which is taken

from ADD4 data (http://www.add.scar.org) and the fine black line shows the ice

shelf extent also taken from ADD4 data.

ing of the data has been done. The resulting positions are scattered within

2mm around the averaged position, so stationarity during the survey pe-

riod can be assumed. The kinematic GPS measurements were processed in

kinematic mode in the same manner as the static measurements. The sys-

tematic errors have been minimized by using the local reference stations

described above (King, 2004). The baselines between the local reference sta-

tions and the rover never exceeded 26 km.

A crossover-point analysis was performed to check the uncertainties in

the kinematic ground based GPS measurements. The histogram in figure 3

shows the distribution of the elevation differences. Two outliers with an el-

evation difference greater than 0.1m are located at the flanks of the profiles,

5



Table 1

Local reference stations.

station longitude latitude elevation period

[WGS84]

DML94 6.6989°W 71.1621° S 690.4m 14.01.-18.01.07

DML95 6.6670°W 71.5680° S 538.8m 21.01.-23.01.07

DML96 9.9167°W 71.4083° S 654.6m 25.01.-30.01.07

DML97 9.5583°W 72.0640° S 760.2m 31.01.-01.02.07

where the surface roughness is high, which cause large elevation differ-

ences. Removing these outliers from further investigations, the mean error

at intersection points is 0.03m with a standard deviation of 0.02m.

2.2 Satellite laser altimetry

To generate the DEM, the Geoscience Laser Altimetry System (GLAS) on-

board NASA’s ICESat is used. The GLAS provides, amongst 14 other pa-

rameters, ice sheet elevation data (GLA12) between 86°N and 86° S. Al-

timetry data were received with a 1064 nm laser pulse, with a footprint of

about 70m and an along-track spacing of 172m. The predicted accuracy

of the elevation measurements is 15 cm averaged over the diameter of the

footprint (Zwally et al., 2002). Positioning errors are quoted to be 1 arcsec

(Schutz et al., 2005). The elevation measurements from the GLAS are refer-

enced to the TOPEX/Poseidon (T/P) ellipsoid, whereas the GPS data refer
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Fig. 3. Histogram of elevation differences at internal crossover points (666) of the

ground based kinematic GPS measurements.

to the WGS84 ellipsoid. The minimum difference between these two ellip-

soids is 70 cm at the equator and the maximum difference is 71.4 cm at the

poles. In the region of interest one can assume that the elevation differences

between T/P and WGS84 are approximately 71 cm and the GLA12 eleva-

tions have been corrected according to the WGS84 ellipsoid.

The ICESat data included GLA12 Release 28 Laser-3g (2006-10-25 to 2006-

11-27) and Laser-3h (2007-03-12 to 2007-04-14) (Zwally et al., 2003) (Fig. 2

- thin grey lines). The altimetry data, provided by the National Snow and

Ice Data Center (NSIDC - http://nsidc.org/data/icesat/), were processed

with the NSIDC GLAS Altimetry elevation extractor Tool (NGAT).

The main error source for ICESat altimetry data is clouds. Fricker et al.

7



(2005) show that the quality of ICESat measurements with the 1064 nm laser

is highly degraded by cloudy conditions, because the infrared laser pulses

were unable to penetrate clouds. The GLA12 data used here were split into

ascending and descending ground tracks. A simple script is used, to find

and remove elevation leaps greater than 50m comparing neighbouring data

points along track with a maximum space of 500m between each other. Af-

terwards, an additional visual checkwasmade. Hence, the cloud degrading

factor can be barred from this investigation.

Another accuracy degrading feature is the surface slopes in the region of in-

terest. A 2° slope, combined with the 1 arcsec positioning error results in an

elevation error of 10 cm (Martin et al., 2005). Based on the new DEM pre-

sented here, the slopes at Halvfarryggen and Søråsen were calculated for

1 km x 1 km grid cells. The GLA12 data were recorded over a mean slope

of 0.77° and 77% of the data points were recorded over slopes smaller than

1°. According to this the slope induced error is between 4 and 5 cm, which

has to be added to the predicted elevation accuracy of 15 cm of Zwally et al.

(2002). Therefore, the predicted elevation accuracy is about 20 cm on aver-

age.

After the cloud correction, crossover-point analyses within and between the

various GLA12 laser measurement periods were performed. The arithmetic

means of the absolute elevation differences at crossover points of the laser

periods are 0.24m (L3g) and 0.22m (L3h). For determining the accuracy of a

combined GLA12 elevation data set, the number of crossover points, which

were involved in determining the arithmetic means above, were used to

calculate a weighting factor. The weighted mean of the arithmetic means

is calculated, resulting in a crossover error of 0.23m. For further investiga-

tions, the mean of elevations at crossover point is used.
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Fig. 4. Coverage of the ARA (black) and RES (thin grey) data. The bold grey line

represents the grounding line, derived from SAR interferometry (pers. comm. R.

Drews, 2007) and the dashed grey line is the grounding line which is taken from

ADD4 data (http://www.add.scar.org) and the fine black line shows the ice shelf

extent also taken from ADD4 data.

2.3 Airborne radar altimetry and radio echo sounding

Airborne kinematic GPS combined with ARA and RES provides almost

complete coverage for DML. In order to generate a reference DEM of the

grounded ice surrounding the Ekströmisen, data from several campaigns

(1998/99 to 2004/05 - Fig. 4) were used. The AWI research aircraft POLAR2

is equipped with Trimble SSI 4000 GPS receivers, a HONEYWELL AA-300

radar altimeter (4.3GHz carrier frequency - ARA) and a RES system op-

erating at 150MHz, which was specially designed for the use in polar re-

gions (Nixdorf et al., 1999). For generating an elevation model, available

post-processed airborne kinematic GPS and ARA data from the campaigns

9



1998/99 and 2000/01 were used. For this purpose, the radar altimeter data

were corrected with regard to the attitude of the aircraft using a modi-

fied Airborne SAR Interferometric Altimeter System (ASIRAS) processor

(pers. comm. V. Helm, 2006). The derived flight altitude of the aircraft was

then subtracted from the GPS height. A crossover-point analysis was per-

formed and results in a mean elevation precision of the ARA measurements

of 0.44m.

On the campaigns for the ”Validation, densification, and Interpretation of

Satellite data in Antarctica using airborne and groundborne measurements

for the determination of gravity field, magnetic field, ice-mass balance, and

crustal structure” (VISA) 2001/02 to 2004/05, (see Fig.4), the ARA could

not be applied due to the flight level of about 4000m of the aircraft (the

HONEYWELL radar altimeter has an operation altitude of 0 to 760m above

ground). In these cases data from surface reflections of the ice thickness

measurements of the RES data were used. A detailed description of the

RES equipment is given in Nixdorf et al. (1999). The absolute position of

the aircraft is determined from post-processed kinematic GPS data. The

distance from the RES antenna to the surface was determined by the on-

set of the reflected electromagnetic wave (Steinhage et al., 2001) and was

then subtracted from the GPS height to obtain the surface topography. This

calculation was done for every campaign and by means of crossover-point

analyses, the data were leveled to minimize elevation branches between the

different campaigns. Afterwards, a second crossover-point analysis of the

leveled RES data over grounded icewasmade, and an elevation uncertainty

of 0.60m was obtained.
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2.4 Generating the DEM

The new DEM is a combination of four different data sets. By using dif-

ferent data sets, the advantages of the data sets could be used to minimize

their disadvantages.

In contrast to both satellite based altimetry and ARA/RES, ground based

GPS measurements are unaffected by the atmosphere and signal penetra-

tion into the snow surface. Furthermore, systematic errors of the ground

based GPS measurements have been minimized, by using the short base-

lines during the post-processing (King, 2004). These represent the best

possible surface topography measurements. On this account, the ground

based GPS measurements were used as reference elevations. To determine

the mean elevation difference between the GPS and the other data sets,

crossover-point analyses have been made for leveling. For comparing GPS

and GLA12, the elevations of GPS were averaged over the area of the

GLA12 footprint (diameter of about 70m) at crossover points. The analy-

ses result in mean elevation differences of -0.11m for GPS minus GLA12,

0.78m for GPS minus ARA and 23.17m for GPS minus RES.

The GLA12 elevations differences oscillate around the mean difference of

-0.11m with one obvious exception. At one crossover point, the GPS eleva-

tion lies 1.46m above the GLA12 elevation. This crossover point is situated

on GLA12 ground track 309. A closer look on track 309 reveals a detrended

along track elevation (Fig. 5 - black line). The roughness of the surface (Fig. 5

- black dots) is determined by the subtraction of detrended elevation from

the GLA12 elevations, which results in a mean roughness of 0.17m. The

crossover point (Fig. 5 - bold cross) is located in region with a roughness of
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0.37m, which is distinctly above themean roughness. Additionally, the GPS

elevations show a trend within the GLA12 footprint with a difference be-

tween maximum and minimum elevation of 1.55m. This indicates that this

crossover point can be regarded as an outlier. It was excluded during the

determination of the mean elevations difference to the kinematic GPS data.

The GLA12 elevations data were shifted vertically by 0.11m to level them

to the GPS heights. Looking at the mean elevation difference between GPS

Fig. 5. 2-D profile of GLA12 track 309 (L3g). The plot shows the elevation and

the surface roughness against the distance [km] along the ground track elevations

(diamonds). The bold cross represents the location of the crossover point between

GPS and GLA12. The black line shows the second order polynominal fit to the

GLA12 elevations along track. The black dots show the roughness of the surface

at the GLA12 ground track and the dashed line the mean roughness along the

profile. The dash-dot line shows the direct connection between the roughness dots

for better visibility.

and ARA (0.78m), it can be seen, that the ARA elevations are below the GPS

measurements. This can be attributed to the penetration of the radar signal

into the snow surface (Ridley and Partington, 1988). In addition, radar al-

timetry is highly affected by the slope, because the radar signal is not re-

flected from the nadir point to the antenna, but rather from that point from
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the surface, which is nearest to the antenna (Brenner et al., 1983). For this

reason the ARA data were filtered for slopes larger than 1.5 °.

TheHONEYWELL radar altimeter of the aircraft has amaximum squint an-

gle of 6° in flight direction and this causes a divergence between true and

measured elevation at the position of the aircraft. In case the flight direction

is inland with increasing elevations, the radar altimeter looks uphill. This

results in an error in determining the vertical distance of the aircraft at a

particular position to the ground and an error in determining the elevation

at this point. If the flight direction is from grounded to floating ice with de-

creasing elevations, the radar altimeter looks downhill, which results also

in large elevation differences.

The elevation differences between GPS and RES data are much larger

(23.17m) than between GPS and ARA data. This is simply due to the fact,

that the electromagnetic waves of the RES penetrate deeper into the firn

than the higher frequency signal of the ARA (Hofer and Mätzler, 1980).

Other limiting factors are on the one hand the small-scale variability in sur-

face properties, which also changes the penetration depth of the signal, and

on the other hand the subjective definition of the onset of the surface re-

flectance signal. These two factors affect the elevation accuracy, but to a

minor degree than the penetration depth in total. Both, ARA and RES were

leveled to the GPS measurements by the determined mean elevation differ-

ences (0.78m for ARA and 23.17m for RES).

After these corrections, all data sets were combined into one. The evalua-

tion of crossover points of different periods of GLA12 measurements do not

reveal any temporary trend. Therefore, the elevations of the ARA and RES

were leveled to the ground based GPS elevations even though they have

been acquired in different austral summer seasons. The final data set was
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gridded with an Ordinary Kriging (OK) on a 1 km x 1km grid (Fig. 6). OK

is a geostatistical interpolation method, which determines the interpolated

value as a function of the distance to neighbouring data points and the as-

sociated variance, and relies on the spatial correlation structure to calculate

the weighting values during interpolation (Chaplot et al., 2006). Because of

Fig. 6. New DEM of the investigated area. The spacing of the contour lines (black)

is 100m. The bold grey line represents the grounding line, derived from SAR inter-

ferometry (pers. comm. R. Drews, 2007) which is complemented by the the dashed

grey line from ADD4 data (http://www.add.scar.org). The fine black line shows

the ice shelf extent and is also taken from ADD4 data.

the tidal movement and flexure, the ice shelf is not included in this DEM.

A reliable model of the tidal flexure of the ice shelf would enable the ex-

tension of this work, but the development of such a model lies beyond the

scope of this paper. For estimating the accuracy of the DEM presented here,

the uncertainties of the different data sets were summed up. The accuracies
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are 0.03m (GPS), 0.23m (GLA12), 0.44m (ARA), and 0.60m (RES). The con-

servative estimated accuracy of the DEM presented here is therefore 1.30m.

3 Discussion

Using highly accurate GPS data as elevation reference, resulted in 14

crossover points for validating laser altimetry data from NASA’s ICESat.

To obtain a larger number of crossover points between non-satellite-based

and satellite based data, ARA and airborne RES (leveled to GPS) were used

additionally. Though the combination of all data sets, it can be assured, that

for every 1 km x 1 km grid cell at least one data point is available. The OK

interpolation method yields the best estimations for landscapes with strong

spatial structure (Chaplot et al., 2006), like the coastal areas of the Antarctic

ice sheet.

In coastal regions, currently existing DEMs show large differences with

each other (Bamber and Gomez-Dans, 2005). The focus of comparing the

new DEM with existing DEMs relies on two available DEMs, the one from

Bamber and Bindschadler (1997) (JLB97) and the Radarsat Antarctic Map-

ping Project Version 2 (RAMP v2 1 km resolution) (Liu et al., 2001). While

the JLB97 DEM is derived from ERS-1 radar altimetry data, the RAMP v2

DEM is a combination of different data sets. In the area of investigation

the RAMP v2 elevation data were complemented by data of the ADD4

(http://www.add.scar.org) (Liu et al., 2001). As the DEMpresented here fo-

cuses on a coastal region, the differences between JLB97 and RAMP v2 and

the new DEM were determined. For the comparison all data was sampled

the same grid cell size as the DEM presented here. Afterwards, JLB97 and
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Fig. 7. Map of the elevation differences between the new DEM and JLB97 (left) and

new DEM and RAMP v2 (right). The contour interval is 100m. The bold grey lines

represents the grounding line from SAR interferometry (pers. comm. R. Drews)

and the dashed grey line is the grounding line which is taken from ADD4 data

(http://www.add.scar.org) and the fine black line shows the ice shelf extent also

taken from ADD4 data.

RAMP v2, were subtracted from the new DEM (Fig. 7). Figure 7 (left) shows

the differences between the new DEM and JLB97, and one can see good

agreement in the southern part of the investigated area, while the north-

ern parts of Halvfarryggen and Søråsen show large elevation differences.

At the eastern flank of Halvfarryggen and the northern part of Søråsen the

new DEM is about 400m higher than JLB97. In some regions in the vicinity

of the grounding line, the JLB97 DEM is about 200m to 400m higher than

the newly derived DEM. At the margins of Halvfarryggen and Søråsen, the

slopes are larger than 1° and the elevation difference and its standard de-

viation increases with the slope (slope-induces error (Brenner et al., 1983)).

The negative elevation differences can be attributed to this error. The reason

for the large positive differences between this new DEM and JLB97 at the
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east flank of Halvfarryggen and Søråsen can not be explained.

In figure 7 (right) RAMP v2 DEM was subtracted from the newly derived

DEM. The highest differences are about 300m in large parts of Halvfar-

ryggen and the southern part of Søråsen. The new DEM and RAMP v2

agree only with each other in small parts of the grounded ice in the

south of the investigated area. As mentioned before, in the region of in-

terest the RAMP v2 DEM is supplemented with ADD4 data (Liu et al.,

2001). Bamber and Gomez-Dans (2005) compared the RAMP v2 DEM with

GLA12 and found, that the errors in the coastal regions of the ice sheet are

in the order of ± 100m. This investigation shows, that the discrepancies are

even more, between -200m to 300m.

4 Conclusion

The usage of remote sensing data (especially for altimetry) requires ground

based data for validation. The coastal regions of the Antarctic continent

are not well covered with ground based elevation measurements, but in

combination with airborne data, reliable reference measurements for satel-

lite data are available. The new DEM is a combination of ground based

GPS measurements, airborne, and satellite altimetry. By combining differ-

ent data sets the inherent errors of the single data sets can be reduced by

taking advantage of the unique features of the individual data sets, and an

accurate DEM can be constructed.

Airborne and satellite data have to be validated with ground based mea-

surements, especially in sloped regions, where airborne and satellite al-

timetry is imprecise due to the prevailing surface slopes. A combination
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of ground based measurements with remote sensing data provides suffi-

cient data coverage for the construction of a reliable digital elevation model

of the surface topography.

Comparisons with already existing DEMs show large elevation differences

on Halvfarryggen and Søråsen. Current available DEMs do not provide the

accuracy requirements for reliable ice sheet modeling, because they show

very high elevation differences with each other in coastal regions. By using

highly accurate ground based GPS data as true reference elevations, the ap-

proximation of the real surface of the DEM presented here is much higher

than at the RAMP v2 DEM. JLB97 shows, apart from Halvfarryggen and

Søråsen, a very good agreement with the new DEM.

The aim is to generate an accurate DEM of whole DML from geophysical

data sets. Bothmass balance studies and ice dynamicmodelingwith respect

to the sea level change and paleoclimatic reconstruction, will benefit from

the in the future derived and improved surface topography.

5 Acknowledgement

The authors thank Dr. Doris and Martin Bertges for their support. Prepara-

tion of this work was supported by the Bundesministerium für Wirtschaft

(BMWi) through the CryoVEx activities 50EE0505. The airborne data

mapped within the VISA project were supported by Deutsche Forschungs-

gemeinschaft (DFG), founded under grants Di 473/17-1 and Jo 191/8-1.

Thanks to the National Snow and Ice Data Center (NSIDC) for providing

the ICESat data, the NGAT elevation extraction tool and the RAMP v2 data.

18



The authors also thank the editor O. Hellwich and the two anonymous re-

viewers for their helpful comments.

References

Abdalati, W., Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag,

J., Swift, R., Thomas, R., Wright, W., Yungel, J., 2002. Airborne laser al-

timetry mapping of the Greenland ice sheet: application to mass balance

assessment. Journal of Geodynamics 34, 391–403.

Alley, R. B., Spencer, M. K., Anandakrishnan, S., 2007. Ice-sheet mass bal-

ance: assessment, attribution and prognosis. Annals of Glaciology 46, 1–7.

Bamber, J. L., Bindschadler, R. A., 1997. An improved elevation dataset for

climate and ice-sheet modelling: validationwith satellite imagery. Annals

of Glaciology 25, 439–444.

Bamber, J. L., Gomez-Dans, J. L., 2005. The accuracy of digital elevation

models of the Antarctic continent. Earth and Planetary Science Letters

237, 516–523.

Bamber, J. L., Huybrechts, P., 1996. Geometric boundary conditions for

modelling the velocity field of the Antarctic ice sheet. Annals of Glaciol-

ogy 23, 364–373.

Brenner, A. C., Bindschadler, R. A., Thomas, R. H., Zwally, H. J., 1983. Slope-

induced errors in radar altimetry over continental ice sheets. Journal of

Geophysical Research 88 (C3), 1617–1623.

Chaplot, V., Darboux, F., Bourennane, H., Leguedois, S., Silvera, N., Pha-

chomphon, K., 2006. Accuracy of interpolation techniques for the deriva-

tion of digital elevation models in relation to landform types and data

density. Geomorphology 77, 126–141.

19



Fricker, H. A., Borsa, A., Minster, B., Carabajal, C., Quinn, K., Bills, B., 2005.

Assessment of ICESat performance at the salar de Uyuni, Bolivia. Geo-

physical Research Letters 32 (L21S06).

Hofer, R., Mätzler, C., 1980. Investigations of snow parameters by radiom-

etry in the 3-to 60-mm wavelength region. Journal of Geophysical Re-

search 85 (C1), 453–459.

Huybrechts, P., Steinhage, D., Wilhelms, F., Bamber, J., 2000. Balance veloc-

ities and measured properties of the Antarctic ice sheet from a new com-

pilation of gridded data for modeling. Annals of Glaciology 30, 52–60.

Jezek, K., RAMP Product Team, 2002. RAMP AMM-1 SAR Image Mosaic of

Antarctica. Fairbanks, AK Alaska Satellite Facility, in association with the

National Snow and Ice Data Center, Boulder, CO, Digital media.

King, M., 2004. Rigorous GPS data-processing strategies for glaciological

applications. Journal of Glaciology 50 (171), 601–607.

Krinner, G., Magand, O., Simmonds, I., Genthon, C., Dufresne, J.-L., 2007.

Simulated Antarcitc precipitation and surface mass balance at the end of

the twentieth and twnty-first centuries. Climate Dynamics 28, 215–230.

Liu, H., Jezek, K. C., Li, B., Zhao, Z., 2001. Radarsat antarctic mapping

project digital elevation model version 2. Boulder CO National Snow and

Ice Data Center, Digital media.

Martin, C. F., Thomas, R. H., Krabill, W. B., Manizade, S. S., 2005. ICE-

SAT range andmounting bias estimation over precisely-surveyed terrain.

Geophysical Research Letters 32 (L21S07), doi:10.1029/2005GL023800.

Massom, R., Lubin, D., 2006. Polar Remote Sensing. Vol. II Ice Sheets.

Springer Verlag, Berlin Heidelberg New York.

Nixdorf, U., Steinhage, D., Meyer, U., Hempel, L., Jenett, M., Wachs, P.,

Miller, H., 1999. The newly developed airborne radio-echo sounding sys-

20



tem of the AWI as a glaciological tool. Annals of Glaciology 29, 231–238.

Ridley, J. K., Partington, K. C., 1988. A model of satellite radar altimeter

return from ice sheets. International Journal of Remote Sensing 9 (4), 601–

624.

Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., DiMarzio, J. P.,

2005. Overview of the ICESat Mission. Geophysical Research Letters

32 (L21S01), doi:10.1029/2005GL024009.

Steinhage, D., Nixdorf, U., Meyer, U., Miller, H., 2001. Subglacial topogra-

phy and internal structure of central and western Dronning Maud Land,

Antarctica, determined from airborne radio echo sounding. Journal of

Applied Geophysics 47, 183–189.

Wingham, D., Ridcout, A., Scharroo, R., Arthern, R., Shum, C., 1998. Antarc-

tic elevation change from 1992 to 1996. Science 282, 456–458.

Zwally, H., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A.,

Bufton, J., Dezio, J., Hancock, D., Harding, D., Herring, T., Minster, B.,

Quinn, K., Palm, S., Spinhirne, J., Thomas, R., 2002. ICESat’s laser mea-

surements of polar ice, atmosphere, ocean, and land. Journal of Geody-

namics 34, 405–445.

Zwally, H. J., Schutz, R., Bentley, C., Bufton, T., Herring, T., Minster, J., Spin-

hirne, J., Thomas, R., 2003. GLAS/ICESat L2 Antarctic and Greenland

Ice Sheet Altimetry Data V001. Boulder, CO National Snow and Ice Data

Center, Digital media.

21





PAPER III

An improved DEM and refined ice divides location for central

Dronning Maud Land, Antarctica

In review at Journal of Glaciology

93





Journal of Glaciology, Vol. 00, No. 000, 2008 1

An improved DEM and refined ice divides location for1

Dronning Maud Land, Antarctica2

Christine Wesche1, Sven Riedel1,2, Daniel Steinhage1, Olaf Eisen1 and Hans Oerter13

1 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany4

2 Institute for Geosciences, Division Geophysics, Christian Albrechts University, Kiel, Germany5

email: christine.wesche@awi.de6

ABSTRACT. The knowledge of ice sheet surface topography and the location of the ice divides7

are essential for ice dynamic modeling. An improved digital elevation model (DEM) of Dronning8

Maud Land (DML), Antarctica, is presented in this paper. It is based on ground-based kinematic9

GPS profiles, airborne radar altimetry, and data of the airborne radio-echo sounding system, as well10

as spaceborne laser altimetry from NASA’s Ice, Cloud and land Elevation Satellite (ICESat). The11

accuracy of ICESat ice sheet altimetry data in the area of investigation is discussed. The location12

of the ice divides is derived from aspect calculation of the topography and is verified with several13

velocity data derived from repeated static GPS measurements.14

INTRODUCTION15

The knowledge of the present state of the Antarctic ice sheet is essential for an accurate interpretation of ice cores as well as16

for modeling of ice dynamic processes. A comparison of the digital elevation models (DEMs) of Bamber and Bindschadler17

(1997) (JLB97) and Liu and others (2001) (RAMP Version 2) shows elevation differences of up to several hundred meters18

in the region north of the coastal mountains of Dronning Maud Land (DML), which yield in different results using these19

DEMs for calculating ice volumes. The ice volume will strongly affect future sea-level modeling (Clark and Mix, 2002;20

Huybrechts, 2003) and thus the need of an improved elevation model in this area is obvious.21

Ice cores are favourably drilled near low-velocity zones as ice divides or ice domes. The construction of the velocity22

field requires accurate knowledge of the ice divide position, because of high sensitivity of the transition from divide23

flow to flank flow at an ice divide. The interpretation, e.g. agemodel, of the deep ice core (EDML), drilled within the24

European Project for Ice Coring in Antarctica (EPICA) near the German summer station Kohnen (0.0667° E, 75.0018° S)25

(Wesche and others, 2007) will be improved by taking into account the new derived ice divide position presented here,26

because Kohnen station is located between two ice divides, which fork in the east of the station. Therefore, the position of27

the forking and the course of the two ice divides are of particular interest.28

In this work, an improved digital elevation model (DEM) of DML is generated from several ground-based kinematic29

GPS measurements, airborne altimetry data and satellite laser altimetry data. Based on the new surface topography and30

an extended as to Wesche and others (2007) net of point measurements of the surface flow velocity, the location of the ice31

divides is determined.32
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Fig. 1. Map of Dronning Maud Land. The area of investigation and its separation in three parts is shown in the overview

map of Antarctica. The grounding and coast lines are taken from MODIS Mosaic of Antarctica (MOA) (Haran and others,

2006).

DATA AND METHODS33

The improved DEM was generated from a combination of different data sets: (i) ground-based kinematic GPS data, which34

provide the best approximation to the true surface elevation, (ii) airborne altimetry from several surveys, and (iii) laser35

altimeter measurements of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat). In addition to the elevation data,36

flow velocities in the plateau region were determined from repeated static GPS measurements to verify the (re-)location37

of the ice divides in central DML. In the following sections an introduction to the data sets and their accuracy is given.38

Satellite laser altimetry39

ICESat is equipped with the Geoscience Laser Altimety System (GLAS), which provides worldwide altimetry and atmo-40

spheric data. For generating the DEM, the ice sheet altimetry data (GLA12) release 28 were used (Zwally and others, 2007).41

The footprint of the GLAS is about 70m and the elevation data are averaged over this region. For a detailed description42

of GLAS see Zwally and others (2002) and Brenner and others (2003).43

The GLA12 elevation data were corrected for detector saturation from returned pulse energy (Fricker and others, 2005)44

and for ocean tides using the global ocean tide model GOT99.2 (Ray, 1999). This tide model does not perform well around45

Antarctica, whereas the TPXO6.2 global tide model (Egbert and Erofeeva, 2002) is the best available model for this region46

(King and Padmann, 2005). Therefore, the routinely applied tide correction was removed and the actual release TPXO7.147
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Table 1. Absolute mean elevation differences and standard deviations of GLA12 data at crossover points given in meters.

Numbers of crossover points are given in brackets. The mean in the last line is the pooled mean elevation difference.

Laser Period Coast Mountain Plateau

Laser3g 2006-10-25 to 2006-11-27 0.73± 0.71m (236) 0.84± 1.08m (161) 0.16± 0.25m (20342)

Laser3h 2007-03-12 to 2007-04-14 0.68± 1.97m (154) 0.82± 1.33m (72) 0.14± 0.17m (12732)

Mean 0.70 m 0.83 m 0.15 m

global ocean tide model was applied. In the next step the data were divided into three parts, the coastal region (north of48

the coastal mountain range, Fig. 1 diagonal banded area), the mountainous region (separating the coastal region from the49

interior, Fig. 1 checkered area) and the plateau region (south of the coastal mountain range, Fig. 1 irregular dotted area).50

The elevation differences within every single data set were determined by crossover-point analyses. The search diameter51

of comparable elevations is equal the footprint of 70m. The internal accuracies of the laser periods are given in Table 1. It52

summarizes the elevation differences of the GLA12 measurements, which are varying depending on the investigated area53

and laser period. The predicted elevation accuracy of 0.15m (Zwally and others, 2002) was only achieved for the plateau54

region with a mean slope of 0.16± 0.14°. The slope was calculated from the surface topography with a cell size of 2.5 km55

× 2.5 km. For the coastal region (mean slope 0.75± 0.51°) and the mountainous region (mean slope 1± 1.10°), the mean56

absolute elevation differences (here accuracy) are about four to five times higher. Plotting the 3-sigma corrected elevation57

differences (all elevation differences larger than 3-sigma were removed to avoid outliers) against the slope (Fig. 2) there is58

no slope dependence for elevation differences at crossover points visible.59

Fig. 2. 3-sigma corrected elevation differences of the L3g and L3h GLA12 measurements against the slope, which is aver-

aged over 2.5 km2.

The coefficient of determination is 0.19, which means that only 19% of the elevation differences can be explained by60

the slope. Quite another picture shows Figure 3, where standard deviation of the elevation differences in the separated61

regions (coastal, mountainous and plateau) for laser periods L3g and L3h (Fig. 3(A)) are shown. The standard deviations62

are larger in the regions with higher mean slopes, but there are also variations in the two laser periods. It can not be63

confirmed that in the mountainous region (mean slope of 1°) are always the largest standard deviations of the elevation64

differences. A similar picture is shown in Figure 3 (B). The mean elevation differences at crossover points for four slope65

classes are variable with the laser period. The smallest mean elevation difference is always in low slope regions below66
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Fig. 3. Bar charts showing the GLA12 L3g and L3h standard deviation of the elevation differences with regard to the

investigation area (A) and the mean elevation differences for different slopes (B).

0.5°, but apart from this the largest mean elevation differences are not necessarily in regions with slopes between 1.5 and67

2°.68

Airborne altimetry data69

In this work, two different airborne based altimetry data sets are used. Basic purpose of both is to determine the altitude70

of aircraft above the snow surface, which is later subtracted from the derived GPS height of the flight track. The data71

were recorded between 1998 and 2005 and are a by-product of the pre-site survey of the EDML deep-drilling site and72

the VISA (Validation, densification, and Interpretation of Satellite data in Antarctica using airborne and groundborne73

measurements for the determination of gravity field, magnetic field, ice-mass balance and crustal structure) survey. The74

radar signal is its independence from weather conditions. This advantage makes them a good supplementation to ground-75

based kinematic GPS and spaceborne laser altimetry.76

The on-board HONEYWELL-AA 300 radar altimeter (4.3GHz carrier frequency) has an operational altitude of 760m77

above ground (Honeywell AA-300 Manual, 1998), for that reason the airborne radar altimetry (ARA) data are only avail-78

able for the campaigns 1998/99 and 2000/01. During gravimetry measurements within the VISA project (between 200179

and 2005), the altitude during the flight was between 3600 and 4800m a.s.l., and thus mostly too high for useable ARA80

data. Therefore, the radio echo sounding (RES) data are used. The RES system (150MHz carrier frequency) was actually81

designed for ice thickness measurements. The reflection of the pulse at the air-ice interface yields in a surface response82

of the signal, because of the different velocity of propagation of the radar signal in air and ice. An overview of the data83

coverage is given in Figure 4.84
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Fig. 4. The coverage of airborne altimetry data. The black lines representing the ARA and the grey lines are the RES flight

lines. Grounding and coast lines are taken from MOA (Haran and others, 2006).

Not for all RES flight lines elevation data are available. To minimize the slope-induced error all ARA data, recorded85

over a slope higher than 1.5°, were removed (4.5%). Thus, the maximum theoretical slope-induced error is about 0.26m86

(determined by the equation given in Brenner and others (1983)).87

Kinematic GPS measurements88

Three different kinematic GPS data sets were used. For two of them, a Trimble SSi4000 GPS receiver was mounted on a89

snow vehicle, which was navigated along pre-defined tracks in austral summer season 2000/01 near the German summer90

station Kohnen (0.07° E, 75.00° S) and in the vicinity of the German overwintering station Neumayer (8.25°W, 70.65° S)91

in January and February 2007 (Wesche and others, 2007, submitted). These profiles were processed with local reference92

stations (Fig. 5, black lines) to shorten the baselines between the reference and the rover. This improves data quality by93

reducing systematic errors (King, 2004). Kinematic GPS profiles in the hinterland of Neumayer station, processed with94

remote reference stations, were added (Fig. 5, grey lines). The accurate positions of these profiles were determined by95

using the data of the permanent reference station Vesleskarvet near the South African station SANAE IV or the Finnish96

station Aboa (Fig. 1 and 5).97

Because the recording interval at the reference stations is 30 s (Vesleskarvet) or 15 s (Aboa), these data were interpolated98

to an interval of 1 s to retain the data density of the ground-based GPS data, which were recorded with an interval of99

1 s. The software tool INTERPO of the National Geodetic Survey (NGS) offers the possibility to resample the data of the100

remote reference stations. After processing all GPS data located on the Ekström ice shelf were corrected for ocean tides101

with the TPXO7.1 model (Egbert and Erofeeva, 2002).102

The accuracy (mean absolute elevation difference) of every single data set was determined with crossover-point anal-103

yses. The analyses revealed an accuracy of 0.03m for the measurements using local references and 0.06m for the coastal104

measurements using Vesleskarvet. Unfortunately, there are no crossover points within the traverse data, therefore only105
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Fig. 5. Coverage of kinematic GPS data. The black lines represent the GPS profiles processed with a local reference sta-

tion (Wesche and others, 2007, submitted), the grey lines indicate profiles processed with remote reference stations. The

grounding and coast lines (bold grey) are taken from MOA (Haran and others, 2006).

the quality check of the post-processing software GrafNav (Waypoint) gives an estimate of the accuracy. According to the106

software’s quality check, all data points with an accuracy worse than 1.0m were removed.107

Static GPS measurements108

Repeated static GPS measurements were made in DML over several years using aluminium stakes as marker. Firstly,109

the purpose of static GPS measurements is the usage as a local reference station and secondly, to determine the surface110

velocity. Such an approach is presented in Wesche and others (2007) and five new velocity measurements are presented111

here.112

The post-processing of the static GPS data was done using several reference stations, precise ephemerides and113

ionospheric-free solution. Local reference stations were used for the determination of the stake positions. Thir-114

teen velocity-point measurements in the direct vicinity of the German Kohnen station were already presented in115

Wesche and others (2007). The five additional velocities measurements are shown in Table 2. A detailed description of116

the accuracy estimation procedure of 0.06ma-1 of the static GPS data is given in Wesche and others (2007).117

An improved DEM for DML118

The investigations described here were made for the three regions, presented in relation to the satellite altimetry data. The119

new DEM is a combination of four different data sets. The ground-based kinematic GPS data are the best approximation120

to the real surface topography and were used as reference elevations. Several crossover-point analyses were performed to121

level the remotely sensed data to the ground-based GPS data. First of all, the error induced by the penetration of the ARA122
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Table 2. The flow velocities of various point measurements on the Antarctic plateau. The positions are available in the

PANGAEA database (doi: xxx)

Name Longitude Latitude Surface flow [m a-1] Flow direction [°] Period of averaging

DML01 2.5493° E 74.8564° S 0.54 293.2 Jan. 1997 - Jan. 1999

DML02 3.9185° E 74.9683° S 3.18 153.5 Jan. 1997 - Jan. 1999

DML03 1.9609° E 74.4995° S 7.40 128.9 Jan. 1997 - Jan. 1999

DML07 3.4306°W 75.5816° S 4.28 229.6 Jan. 1997 - Jan. 2001

DML19 0.9951°W 75.1674° S 1.87 213.3 Jan. 1999 - Jan. 2001

signal into the snow surface is determined by a crossover-point analysis with the ground-based GPS data, which is 2.25m123

on the plateau and 2.28m in the coastal region. The ARA data were then shifted by these values. Indeed, the penetration124

depth of the ARA signal has a spatial variation, but the GLA12 data are highly affected by surface fog or surface snow125

drift, which cannot be avoided completely. Thus a crossover-point analysis between the ARA (previously shifted to the126

GPS data) and GLA12 was performed and resulted in elevation differences at crossover points, which are below the data127

sets accuracy. Therefore, the GLA12 data were not leveled to the ARAdata. Because of the lower frequency, the penetration128

depth of the RES data is higher than the one of the ARA signal (Rott and others, 1993). A crossover-point analysis between129

these two data sets resulted in elevation differences of 21.97m in the coastal region, 25.35m in the mountainous region,130

and 24.02m at the plateau. The RES data were shifted by these values.131

Afterwards, the corrected data sets were merged into data sets for the coastal, mountainous and plateau region. Each132

spatial data set was interpolated with the "Ordinary Kriging" routine on a 2.5 km x 2.5 km raster and mosaiced to the final133

improved DEM for central DML (Fig. 6).134

RESULTS AND DISCUSSION135

The improved DEM is a result of four different elevation data sets, they all have different accuracies and spatial coverage.136

Because the above presented ground-based kinematic GPS data have a vertical accuracy of 0.03m and were not affected137

by weather conditions and penetration of the signal into the surface, they are used as reference to determine the accuracy138

of the final improved DEM at two locations. For this purpose, the elevation differences between the DEM and the ground-139

based kinematic GPS data (processed with local reference stations - black lines in Fig. 5) are calculated. To this end heights140

within a raster cell of the DEM were averaged. In the coastal region, the heights of the leaf-like profiles in Figure 5 were141

used. The elevation differences are varying between -33.49 and 58.29m with a mean of -2.66m and a mean standard142

deviation within the raster cells of 4.45m. The maximum and minimum elevation differences are quite large, but this143

can be contributed to the smoothing effect of the interpolation. The slopes in the coastal region were flattened by the144

interpolation. The mean standard deviation is also large, which is caused by the resolution of 2.5 km × 2.5 km of the145

DEM. The GPS heights are varying within a raster cell and show a rough surface (Fig. 7 A). The roughness is calculated146

over 2.5 km by the absolute difference of the GPS derived surface elevation to a calculated fit (70m running average). The147

surface in the coastal region has a mean roughness of 0.1m with a maximum of 0.4m. But what is clearly shown is, that the148

elevation of the GPS data decreases by about 14m, which is the main reason for the large standard deviation of the GPS149
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Fig. 6. The improved DEM for DML. The spacing of the contour lines is 100m. Grounding line and the coast line, repre-

sented as a bold grey lines, are taken from MOA (Haran and others, 2006).

height within the 2.5 km × 2.5 km raster cell. On the plateau, the ground-based kinematic GPS data in the vicinity of the150

Kohnen station were used. The mean elevation differences averaged over a 2.5 km raster cell is -0.65m with a maximum of151

0.11m and a minimum of -1.77m. The mean standard deviation within a raster cell is 0.26m. As demonstrated in Figure 7152

B, the surface measured with the ground-based GPS is flat (variation of 0.4m) and the roughness is very small (mean153

roughness is 0.03m). The mean elevation differences show a very good agreement of the improved DEM to the highly154

accurate ground-based GPS data.155

For comparing the improved DEM presented here with commonly used DEMs (JLB97 and RAMP) the volume differ-156

ences are used. The differences were calculated by the difference in elevation.157

The volume differences purports, that the differences between the improved DEM and the commonly used DEMs158

(JLB97 and RAMP) are not very large. But a direct comparison of the elevation differences shows that the differences can159

reach up to several hundreds of meter (Fig. 8 A to F).160

Table 3. Volume differences between the improved DEM and JLB97 and RAMP, respectively.

Coast Mountain Plateau

DEM Difference Difference Difference

RAMP +2976 km3 +1903 km3 -47145 km3

JLB97 -339 km3 +1448 km3 -17234 km3
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Fig. 7. The elevations along a distance of 2.5 km (thick black lines) in the coastal region (A) and in the plateau region (B).

The thin black lines show the 70m running average to the elevation data and the grey line shows the roughness of the

surface. Note: The elevations and roughnesses of the surface have different scales.

The histograms in Figure 8 show different distributions of the elevation differences. Because the JLB97 has a resolution161

of 5 km × 5 km the improved DEM was sampled on this cell size. The other way around, the RAMP DEM has a higher162

resolution than the new DEM, so it was sampled down to a cell size of 2.5 km × 2.5 km. Figure 8 A shows, compared to163

D, a narrow peak of elevation differences and the number of differences above 100m and below -100m is also smaller.164

In the coastal region the RAMP DEM (Figure 8 B) shows higher elevation differences and a slightly shift to the negative165

differences. This can be attributed to the use of large scale topographic maps for generating the RAMP DEM. The elevation166

differences between the new DEM and JLB97 can be explained by the slope-induced error (Brenner and others, 1983). In167

the mountainous region the elevation differences between the improved DEM and JLB97 and RAMP, respectively, show168

a similar distribution. Also in this case, the distribution of the differences between the improved DEM and RAMP is169

wider than the distribution obtained from the comparison with the JLB97 DEM. But both show elevation differences up to170

± 600m. A wider distribution of elevation differences calculated using the RAMP DEM can also be found in the plateau171

region (Fig. 8 F). There is one prominent peak representing elevation differences between zero and five meter. Apart from172

that there is a flat distribution. Elevation differences calculated using JLB97 (Fig. 8 C) show a wide maximum and a rapid173

decrease of quantity. The large differences in the plateau region are basically in the area south of 81.5° S. In this region, the174

RAMP DEM consists of airborne altimetry, with a precision of ± 50m (Liu and others, 2001).175
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Fig. 8. Histograms of elevations differences between the improved DEM and JLB97 (A-C) and RAMP (D-F) for the three

investigation regions (coastal region A and D, mountainous region B and E and plateau region C and F). The thin black

lines are the Gaussian fits of the elevation difference distributions.

(Re-)location of the ice divides in central DML176

An ice divide separates two neighboring catchment areas. The topographic ice divide, on which is focussed here, is located177

on the highest surface elevation along a cross section of the DEM. The flow regime near an ice divide is characterized by178

slow parallel flow along the course of the ice divide. This effect can be found up to three to five times of the ice thickness179

apart from its course (Raymond, 1983; van der Veen, 1999). With increasing distance to the divide, the flow velocity be-180

comes less affected and the ice flows more divergent to the course. Ice divides and domes are preferred ice-core drilling181

locations, because of their the minimally disturbed internal layering, which simplifies the paleoclimatic interpretation of182

the ice (Raymond, 1983).183

In this work, the locations of the ice divides in DML are derived by the improved DEM and the calculated aspect184

of the topography in DML (Fig. 9). The "old" ice divide (Fig. 9 - grey dashed line) was derived from the DEM of185

Bamber and Huybrechts (1996) which has a resolution of 5 km × 5 km. In most parts, the courses of the "old" and new ice186

divides are less than 5 km apart from each other, which is about 1.5 to 2 times the ice thickness. In the east of the region of187

interest, one position of an ice divide cannot be confirmed, in return a more western one is found. In the coastal region, a188
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Fig. 9. A map of the re-located ice divides (bold black lines) and the location of the ice divides, based on the DEM of

Bamber and Huybrechts (1996) (dashed grey lines). The thin black line showing the grounding line and the coastline

based on MOA (Haran and others, 2006). The white dot in the small map shows the location of EDML.

few additions were made. Some ice divides end at the mountain range, because their course cannot be traced through the189

mountains.190

The re-location of an ice divide may change the direction of the flow at a given point. Therefore, the re-location is of191

particular interest near the EDML deep-drilling site, because it helps to interpret the climate proxies derived from ice-core192

analyses. Because of the higher resolution of the improved DEM, the location of the transient ice divide near Kohnen193

station and thus near EDML is also improved.194

The location of the northern ice divide in Figure 10 changes only slightly. The forking is shifted about 15 km down-195

stream, which results in a 10 to 15 km shift westwards of the southern ice divide. Further on, EDML is located between196

two ice divides, being about 4 km apart from the northern divide and about 2.5 km from the southern one. With an ice197

thickness of 2782 ± 5m, EDML is in-between the region, which is affected by the flow near ice divides. The surface ve-198

locity measurements presented in Table 2 and in Wesche and others (2007) show the flow field around EDML. Looking at199

DML07 and DML27, both are about 4 km apart from the ice divides, the flow directions are parallel to the course of the ice200

divide, which confirms the basic principle of flow near an ice divide. DML02 (25 km apart) and DML26 (8 km apart) show201

a divergent flow to the location of the ice divide, which shows that the area around the ice divide, which is influenced by202

the special flow regime, is about three times the ice thickness.203

CONCLUSIONS204

The improved DEM presented in this investigation is a combination of four different data sets. The accuracy assessment205

of ICESat ice sheet altimetry data shows the realistic valuation of the spaceborne laser altimetry. Since the remotely sensed206

data are leveled to high accurate ground based GPS data, the DEM represents the true surface elevation very well. Using207

this DEM, ice dynamic modeling will be improved significantly. Another important part is the localization of the topo-208

graphic ice divides in DML. Due to the 2.5 km × 2.5 km resolution of the DEM, the course of the ice divides could be209
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Fig. 10. A zoom to the static GPS measurements. The graduated arrows present the flow velocities of the 18 static points.

In the small map it is zoomed to the rectangle marked in the big map. The black lines represent the new ice divide, the

dashed grey lines the old. In the background, the new DEM with 100m contour lines.

determined more precisely than using JLB97 with an resolution of 5 km × 5 km (Bamber and Bindschadler, 1997). With210

the aid of the new ice divides, the estimation of the origin of the ice, drilled at Kohnen station (Huybrechts and others,211

2007), can be improved, which contributes to the accurate paleoclimatic interpretation of the climate proxies.212
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A spatially adjusted elevation model in Dronning
Maud Land, Antarctica, based on differential

SAR Interferometry

Reinhard Drews, Wolfgang Rack, Member, IEEE Christine Wesche, Veit Helm

Abstract—In this study we derived a new digital elevation model (DEM) in western Dronning Maud Land (Antarctica) by

using differential interferometric SAR (DInSAR). It is based on acquisitions from the European Remote Sensing satellites

ERS-1/2 in combination with IceSAT’s geoscience laser altimeter (GLAS). The DEM is compiled out of 116 scenes from

the ERS-1 ice phase and the ERS-1/2 (tandem) mission between 1994 and 1997. Profiles from laser altimetry of the

IceSAT satellite were taken in 2003 and served as ground control for the DEM generation. By using three different SAR

processors we separate internal processing errors from external errors such as an unknown atmospheric contribution.

The mosaicked DEM includes the grounded ice sheet on the gently sloped catchment basins of the Ekströmisen and

the Veststraumen as well as parts of the Heimefront Fjella mountain range. It covers an area of approximately 130 000

km2 on a (50x50) m grid. For the uncertainty estimation independent IceSAT tracks from 2004-2007 were used together

with GPS and airborne LIDAR data. The height error varies spatially in average from 1-2 meters up to 15-20 meters. No

systematic changes were detected over the 10 year period. Also the data set does not allow easily to assess variations

in radar penetration depth into snow. The DEM was filtered and resampled iteratively in order to account for the spatial

variation of noise. It mostly outperforms other DEMs currently available in the region and will serve for future elevation

models from the Cryosat and the Terra SAR-X tandem mission as the late 1990s baseline to monitor temporal changes

in ice sheet elevation.

Index Terms—Digital Elevation Model, Differential SAR Interferometry, Dronning Maud Land, Antarctica, GLAS, IceSAT

✦

1 INTRODUCTION

THE surface elevation on the coastal mar-
gins of the Antarctic ice sheet is largely

unknown at the required accuracy to mon-
itor short term temporal changes. Currently
available Digital Elevation Models (DEMs) in
our area of interest are the RAMPv2 [14], the
GLAS/IceSAT-model [6], and the JBL97-model
[10]. The RAMPv2 originates from the Radarsat
Mapping Project and is mainly deduced from
ERS-1’s radar altimeter. It is gridded to 200
meters. In areas of steep relief it is combined
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Institute for Polar and Marine Research, Am Handelshafen 12,
Bremerhaven, Germany.
E-mail: rdrews@awi.de
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with terrestrially derived data like airborne
data and GPS measurements from the Antarctic
Digital Database. JBL97 is a DEM with 5 km
postings and is based on ERS-1 radar altimetry
as well [3]. The GLAS/IceSAT DEM is deduced
from IceSAT’s laser altimeter and was released
from the National Snow and Ice Data Cen-
ter (NSIDC) in 2007. In our area of interest
RAMPv2 deviates partly more than 150 meters
from JBL97, GLAS/IceSAT and GPS profiles
(see Fig. 1). Glas/IceSAT performs better than
JBL97 especially in the vicinity of underlying
IceSAT tracks.

Precise and highly resolved DEMs are
needed for a variety of glaciological applica-
tions, such as mass balance and accumulation
studies [1], input for numerical flow models,
mapping of displacement fields, or ice core
analysis [18]. The previously mentioned DEMs
often do not offer the needed horizontal res-
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olution and vertical accuracy. This motivates
the derivation of a DEM through a differ-
ential interferometric approach. Satelliteborne
interferometric SAR (InSAR) is a well known
technique to derive area-wide, fine resolution
DEMs and velocity fields. Detailed introduc-
tions can be found for example in [15], [7] or
[17]. Similar studies with respect to icesheets
were previsously performed in [13], [11], or [2].

The authors in [2] reported localized residual
elevation discrepancies between the DInSAR
DEMs and IceSAT altimetry and speculated on
the origins such as atmospheric contribution
and varying penetration depth. Our interest
is to derive a larger scale DEM using the
same technique, quantify the obtainable accu-
racy, and link deviations to two kinds of er-
rors: Firstly internal errors due to uncertainties
within the radar/INSAR processing and sec-
ondly to external errors such as an atmospheric
contribution. Secondly, we present a DEM with
a varying spatial resolution which accounts for
the spatial variation of noise.

2 METHODOLOGY

In an interferometric multipass procedure two
acquisitions are combined to derive a mixed
interferogram which contains a topographical
contribution as well as a contribution from the
ice sheet’s displacement in-between the two
acquisitions. In order to separate these two
parameters a differential approach (DInSAR) as
described in [13] is chosen: Under the assump-
tion of a constant velocity flow, the displace-
ment is canceled by differencing two interfero-
grams of the same scene. The main processing
steps comprise the SAR processing of the raw
data, coregistration of the scenes, interferogram
formation, phase unwrapping, differencing of
the interferograms, the baseline refinement and
the rectification to the resulting height map. As
previously done in [21], the baseline refinement
uses GCPs from IceSAT’s laser altimeter (GLA
12 Release 24, Laser 1 (20.02.2002 - 29.02.2002)
and Laser 2a (24.09.2003 - 18.11.2003) [22]) as
tiepoints. Limitations are the restricted avail-
ability of coherent SAR image pairs and the
lack of real GCPs. An unknown atmospheric
contribution as well as a varying penetration

depth may deteriorate the quality of the result-
ing DEM.

Following a user based approach we in-
vestigate the robustness and sensitivity of the
SAR raw data processing by analyzing SLC
data from three different SAR processors with
varying scene length in azimuth. Some DEMs
were derived from SLC frames from the Ger-
man Processing and Archiving Facility (D-PAF;
processing date between 2003 and 2007). Re-
sulting DEMs often show phase discontinuities
on the boarder of adjacent frames which cannot
fully be explained by baseline inaccuracies. In
order to enable strip-line processing we used
Gamma’s Modular SAR processor (MSP), and
for comparison EarthView’s advanced preci-
sion processor (APP). All other steps were per-
formed with Gamma’s interferometry software
[19].

Fig. 1 displays the ERS frames which were
used in this study. Alltogether 19 DEMs were
separately derived and mosaicked to a final
DEM. In overlapping areas, a weighted average
was applied which reduced the overall noise
level. The weights cc were given by the es-
timated coherence of the respective DEM. In
detail:

DEM(i,j) =

∑N
k cck

(i,j)demk
(i,j)∑N

k cck
(i,j)

(1)

with

cck
i,j =

{
cck

i,j if cck
i,j > 0.6

0 otherwise.

}

where k indexes the individual DEMs and N
is the number of DEMs that overlap at the
location (i,j). Usually N is in between 2 and 4.
A threshold for coherence was chosen to avoid
areas of high noise where phase unwrapping
errors are likely.

For the uncertainty estimation the final DEM
is compared to IceSAT tracks as well as in-
dependent GPS and LIDAR profiles. Whereas
these cover only a relatively small area, the
differencing of the individual DEMs in over-
lapping areas gives an estimate of the DEM’s
accuracy on a larger scale. In order to isolate
processing errors we compare independently
processed raw data. This will be investigated
in the next section.
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3 ACCURACY ANALYSIS

3.1 SAR raw-data and DInSAR processing

The SAR raw-data processing aims to recon-
structs an image out of several reflected pulses,
by using the Doppler history of the individ-
ual targets (see for example [8] or [9]). The
resulting high resolution image is a single look
complex (SLC) file which stores a complex
number (in-phase and quadrature) correspond-
ing to phase and amplitude. After the double-
differencing of 4 SLCs the conversion from dif-
ferential phase to height can be approximated
by [16]:

z =
λr0 sin(θ0)

4π

Δφf

B⊥,0
(2)

where the unwrapped and flattened phase φf

is turned into height z (above a reference el-
lipsoid) by using the perpendicular component
of the refined baseline B, as well as the look
angle θ0, the slant range distance r0 and the
wavelength λ. Apart from the wavelength all
parameters have a range and azimuth depen-
dency which is not marked explicitly.

Processing uncertainties can be visualized
(1) by comparing overlapping areas of adjacent
frames which were processed individually or
(2) by comparing DEMs which are based on
a set of SLCs from different SAR processors.
In both cases the resulting DEMs rely on the
same raw data and deviations can be entirely
attributed to the SAR processing.

As a specific example we consider two adja-
cent frames (5157 and 5175) in track 407 which
is marked with 4 in Fig. 1. From this raw data
strip we derived 5 DEMs (D1,D2,Ev1,Ev2,G)
which are listed in table 1. D1 and D2 are based

TABLE 1
Comparison of IceSAT GCPs to DEMs from
track 407 based on SLCs from different SAR

processors

id SLCs frame sIce [m]
D1 D-PAF 5157 −0.32 ± 3.1

D2 D-PAF 5175 −0.35 ± 7.0

Ev1 APP 5157 0.29 ± 2.0

Ev2 APP 5175 0.40 ± 5.1

G MSP 5157-5175 0.00 ± 3.7

on 8 SLCs from the german D-PAF, Ev1 and

Ev2 are based on 8 SLCs from Earth-View’s
APP. G is based on 4 SLCs from the MSP
where the raw data of the two frames was
concatenated.

At first, the individual DEMs are compared
with the corresponding GCPs which were used
for the baseline refinement. The mean deviation
sIce in all cases scatters around zero with a
standard deviation of 2 to 7 meters (see table
1). Many long IceSAT tracks show random
deviations from 1 to 2 meters which points out
the generally high quality of those particuar
DEMs. However, in some localized areas the
deviations are systematic and reach up to 10 to
15 meters which is illustrated in Fig. 2. Char-
acteristic dents are for instance visible in the
upper right and lower left corner of D2. These
dents are evident in many DEMs and cannot be
removed with low order polynoms in a global
fit over an entire frame. From a perspective of
a user it is interesting to know whether these
localized deviations have geophysical reasons
or if they are due to the processing. In our case
many of them are due to the processing, since
depending on which set of SLCs has been used
they appear in different places. This can be seen
in Fig. 2 where the previously mentioned dents
from D2 are not visible in G.

For further investigation the 5 DEMs are dif-
ferenced. The difference fields of D1, Ev1,and
G as well as the difference fields of D2,Ev2,
and G show deviations of up to 15 meters in
some areas. Similar deviations can be seen in
the overlapping area of D1 and D2. This em-
phasizes that most of the localized deviations
along the IceSAT tracks are processing artifacts.

The magnitude of processing uncertainties
can be explained with deviations in the differ-
ential phase and baselinemodels. The typical
INSAR approach to correct for both inaccura-
cies in the state vectors and phase tilts due to
SAR processing is an overall fit of GCPs to the
unwrapped differential phase. This alters the
baseline in a way that the resulting orbit model
complies best to the used set of GCPs. As a
result, deviations in the final baseline model
are partly interconnected with SAR process-
ing phase uncertainties. As an example serves
Fig. 3 where the deviations in the differential
phase, differential baseline, and height are plot-
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ted along a range profile (indicated in Fig. 2)
which intersects D1,D2, Ev2, and G. It becomes
evident that the various DEMs are tilted with
respect to each other. The largest tilts can be
seen in the pairs D2-G and D2-D1. Similar
results are obtained for the case that the two
frames in G are processed seperatly.

The height differences from Fig. 3 can be
modeled using equation 2. If only differences
of the refined differential baseline and the dif-
ferential phase are considered, the height devi-
ation z − z′ can be approximated as

z− z′ =
λr0 sin Θ0

4π
·

(
ΔφfB

′

⊥,0 −Δφ
′

fB⊥,0

B
′

⊥,0B⊥,0

)
(3)

by using formula 2. The + in the lowest plot
of Fig. 3 indicate that this analytical deviation
predicts the observed height deviation well.
It supports the idea that differences in the
baseline model and phase are in fact the main
parameters for the deviation.

The deviations in the differential phase are
rooted in the SAR processing. If SLCs from dif-
ferent SAR processors are compared (as done
in [4]) they sometimes exhibit a small residual
phase ramp in our case. This can be shown
via auto-interferograms between APP and D-
PAF SLCs ( the MSP SLCs are not processed
to a zero Doppler geometry and thus are not
directly comparable to APP and D-PAF SLCs).
Also some parameters, as for example the
Doppler Centroid and its range dependency,
are estimated for each individual frame so that
phase discontinuities can be observed on the
boarders, even if the same SAR processor has
been used. In case of G we processed the SLC
pairs to a common Doppler for maximum spec-
tral overlap. Possibly tilts and dents in phase
of the single SLCs are caused by differences
in the estimation of the Doppler Centroid and
its range dependency. For the latter, the D-
PAF SLCs are usually based on a quadratic
function whereas MSP’s representation tends
to be linear. The low contrast within the scenes
as well as larger squint angles in the southern
hemisphere [19] may be an explanation why
the precise estimation of the Doppler Centroid
is limited. What is seen in Fig. 3 as the devia-
tion in differential phase is the summation of
tilts from the individual SLCs.

It should be noted that in other examples the
differences in a similar comparison did not ex-
ceed the general noise level. Also a comparison
with independent GCPs which is shown in a
section below points to a higher accuracy in
other areas of the DEM. However, from a per-
spective of a user it must be assumed that pro-
cessing uncertainties are not always negligible.
Although strip-line processing removes discon-
tinuities between frame boundaries it does not
necessarily raise the overall accuracy. Also the
global comparison with IceSAT GCPs alone
does not reflect the DEMs accuracy. We also
investigated if localized deviations between the
DEM and GCPs may be attributed to the level
of backscattered power and penetration depth.
The absence of any dependence may be an
indication that a varying depth of the effective
point of scattering cannot be detected or is
only of minor importance compared to the
previously mentioned processing artifacts.

We globally adjusted each individual DEM
with a third order polynomial to the GCPs,
which generally improves the DEM’s quality
and diminishes differences in overlapping ar-
eas. However, only in few cases it is possible
to completely remove dents using polynomial
fits.

3.2 Atmospheric Contribution

Variations in tropospheric water vapour con-
tent are a source of lateral inhomogenities in
refractivity ([20], [7]) which is often neglected
for the comparable dry polar atmosphere. This
is illustrated in Fig. 4 showing a residual DEM
which was derived from frame 5661 of track 31
and track 45. The mean elevation of that area
is 1800 m. Track 31 was recorded several times
in March 1994 (ERS-1 ice phase), track 45 is a
combination from interferograms of 1996 and
1997. A wave like pattern with an amplitude
of about 20 meters and a wavelength of about
10 km can be seen in the difference field. In
this obvious case the pattern can be recognized
in single interferograms from track 31 (9-12
and 12-15 March 1994), and the pattern can be
traced to the data acquisition of 12 March 1994,
1:40 UTC. A NOAA AVHRR satellite image
(11 March 1994, 23:17 UTC) shows a dominant

Page 4 of 12Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

high cloud band in the area of the image frame,
which is related to a deep pressure system
with its centre located off the coast at about
12W/68S (24 hour polar MM5 reanalysis fore-
cast, Byrd Polar Research Center). It causes
a strong south-easterly flow over the Heime-
frontfjella mountain range. Wavelike structures
in the AVHRR image with similar spatial scales
cannot be spotted exactly in the area of the
ERS SAR image but in the area to the north-
west. This is probably because the two hour
time difference in data acquisition between
the AVHRR and the SAR image. Temperature
differences indicate a close sequence of high
and low clouds with significant differences in
water vapour content and precipitable water.
The wave amplitude in the March 12 SAR
image corresponds to a total path delay of 9
mm. This particular frame was not considered
for the DEM, but it is a showcase that in gen-
eral atmospheric contributions could be large
and cannot be neglected, especially for low
baselines. Because the data base for differential
interferograms in this area is limited, we cannot
assume that this contribution is cancelled out
by our stacking procedure.

3.3 Validation with GCPs from IceSAT, kine-

matic GPS, and airborne laser altimetry

For the comparison the DEM is sampled to
a 50 m grid. As GCPs serve IceSAT tracks,
profiles from Airborne Laser Altimetry and
GPS measurements.

IceSAT · The comparison includes indepen-
dent IceSAT tracks from GLA12 Release 28
(L3b - L3h) which were recorded in 2004-2007.
A comparison with the individual laser peri-
ods in each year does not reveal a systematic
change in surface elevation compared to our
DEM. Therefore we combine all laser periods
for further comparison. The height error of the
laser altimetry varies in-between 14 to 59 cm
as a function of surface slope [5]. The mean
deviation compared to our DEM is sIceSAT =
(−0.9 ± 9.6) m. For the comparison areas with
a coherence below 0.8 were masked. This ex-
cluded about 10% of the GCPs. Additionally a
minor part (∼ 0.01%) of the points with devi-
ations larger than 50 m were excluded and re-
garded as outliers caused for example by phase

unwrapping errors in areas with high noise.
The corresponding histogramm is displayed in
Fig. 5. The deviations do not follow a Gauss
distribution, but have longer tails in the posi-
tive and negative domain. This can be caused
amongst others by hidden phase unwrapping
errors, unnoticed atmospheric contributions, or
by an actual change of heights in between the
acquisitions of the ERS scenes and the Ice-
SAT tracks. Generally the deviations to IceSAT
tracks in areas of good coherence (> 0.9) are
about 1-2 meters, whereas in areas of lower
coherence the standard deviation increases up
to 15-20 m. The localized nature of deviations
which was already considered in section 3.1
is still apparent in the mosaicked DEM and
are probably often due to residual processing
errors. Further independent measurements are
given by GPS and airborne laser altimetry. Both
data sets enable the evaluation of the DEM in-
between IceSAT tracks.

Airborne Laser Altimetry · The airborne
laser scanner altimetric survey took place De-
cember 2007. The position of the profile is
illustrated in Fig. 1. It was flown with the
POLAR5, the new polar scientific aircraft of
the Alfred Wegener Institute. Apart from the
primary laser scanner instrumentation (RIEGL
LMS-Q280), the POLAR5 was equipped with
a Honeywell inertial navigation system (INS),
4 GPS receivers and ASIRAS (ESA’s Airborne
SAR Interferometric Altimeter System). The
laser instrumentation scanned at an approxi-
mate off nadir angle of +/-22.5 with a scan
rate of 80 Hz. Each scan consisted of 113 single
laser shots. The average flight level of 700 m
above ground together with an average ground
speed of 67 m/s result in an along- and across-
track laser point seperation of 1 m and 6 m
respectively. As reference for the differential
GPS post-processing a GPS ground station was
set up at Novo station, Sanae. The geocoded
laser scanner DEM of the 115 km long profile
was determined using post-processed GPS, INS
and the calibrated laser scanner range measure-
ments. The accuracy of the DEM, including the
GPS uncertainty, is within 10 cm, with smaller
errors at the vicinity of the nadir scan angle.
This is a similar to the results obtained by [12]
over Greenland.
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After filtering the DInSAR DEM with a co-
herence threshold of 0.8, which excluded 10%
of the DInSAR grid points, the difference of
the laser scanner DEM and the DInSAR DEM
reveals a deviation of sALS = (2.9± 4.1) m. The
constant offset may be due to the processing or
possibly to a real change of height as the ALS
data is from 2007. The small standard deviation
emphasizes the good quality of the DInSAR
DEM in that region. Local deviations are not
apparent. A corresponding histogram is illus-
trated in Fig. 5 and shows that the deviations
follow a Gauss distribution.

GPS · An approximately 400 km long GPS
traverse is illustrated in Fig. 1. It connects the
german over-wintering station Neumayer with
Kohnen and was collected in 2005. The GPS
antenna was mounted on top of a dragged
living container. A recording interval of 1 s
and the along track velocity of about 10 - 12
km/h results in an along track spacing of 3 m.
The GPS data was processed with a commercial
post-processing software including reference
stations, precise ephemerides, and ionospheric-
free solutions. As reference stations served the
South African station Sanea IV (2.84◦W and
71.67◦S) and the Finnish station Aboa (13.41◦W
and 73.04◦S). Because of their recording in-
terval of 30 s and 15 s, the reference data
was interpolated to an 1 s interval by using
INTERPO from the National Geodetic Survey.
The mean accuracy is taken from the process-
ing report of the software, since no crossover
points can be found. Overall 78 % of the data
points have an accuracy in between (0.05 - 0.40)
m and all data points have have deviations
smaller than 1 m. For the comparison the GPS
points are sampled to the respective cell sizes
of the DInSAR DEM, JBL97, GLAS/IceSAT,
and RAMPv2. The DInSAR DEM was filtered
with a threshold in coherence of 0.8 which
excluded approximately 10 % of the avail-
able grid points. In this example JBL97 and
GLAS/IceSAT show smaller variances (0-30)
m compared to RAMPv2 which deviates over
large areas more than 100 m. The DInSAR DEM
shows localized deviations as already observed
in the comparison with IceSAT tracks, how-
ever it approximates the GPS traverse better
in shape as well as absolute value compared

to the other DEMs. The deviation is sGPS =
(−1.2 ± 8.0)m. A corresponding histogram is
illustrated in figure 5. The longer tails in the
positive and negative domain are likely to be
caused by the same effects as already men-
tioned during the comparison with the IceSAT
data.

4 SPATIAL VARIATION OF NOISE

As discussed above, the quality of the DEM
varies spatially with the present coherence,
atmospheric contribution and possibly varying
penetration depth. With decreasing coherence
the general noise level increases. Averaging
the DEM by a factor of n × n decreases the
standard deviation by a factor of n at the cost of
spatial resolution. We chose a simple algorithm
to resample the DEM iteratively to lower the
standard deviation under a threshold of 5 m.
Therefore we estimated the standard deviation
on the 50 meter grid in detrended 750x750 m
windows. If the standard deviation was below
the threshold the sub-windows were excluded,
otherwise the DEM was resampled with a 50
m increment up to a maximum cell size of 500
m. This results in a DEM with a varying spatial
resolution which is shown in Fig. 6. Especially
areas with steep relief in the Heimefront Fjella
mountain range and some coastal areas had a
lower coherence and needed higher resampling
or were completely masked out. The largest
part of the DEM however remains on a 50 m
grid.

5 CONCLUSION

In this study 19 independent DEMs were de-
rived through a differential interferometric ap-
proach. The mosaicked DEM covers an area of
approximately 1.30 ·105km2. Overlapping parts
of the adjacent frames and auto-interferograms
were used to separate different error sources.
In that process a cross comparison between
DEMs, which are based on the same raw data
but on different SLCs was performed. It could
be shown that processing errors are not always
negligible, and often depend on the process-
ing history of the used SLCs. From a user
perspective it is difficult to evaluate and ad-
just possible inaccuracies within the processing
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which superimpose geophysical effects such
as a varying penetration depth. Large obvious
errors from atmospheric contributions are only
visible in a small part of the DEM. The over-
all coherence is high, but also areas of lower
coherence are well mapped. The DEM was
resampled iteratively with a spatially varying
resolution and an estimated standard deviation
below 5 m. The largest part of the DEM is on a
50-m grid. For future work more sophisticated
methods will be applied to smooth the DEM.

A comparison with an approximately 400 km
long GPS traverse on the 50-m grid reveals an
error of sGPS = (−1.2 ± 8) meters. The devia-
tions to the airborne laser altimetry profiles are
sALS = (2.9 ± 4.1) meters and towards IceSAT
GCPs sIce = (0.7±9.7) meters. Since other avail-
able DEMs show larger deviations, this DEM
can be considered to have the best horizontal
and vertical resolution currently available in
that region. Although the overall accuracy is
high, the used data sets and methods do not
easily allow to assess a variation of radar pen-
etration depth into snow.
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id track frame date differential B̄⊥ (m)
1 450 5139-5193 2/3 Nov-23/24 Mar 95/96 67
2 35 5157-5193 12/15/18 Mar 94 101
3 221 5103-5139 5/6 Mar-9/10 Apr 1996 233
3 221 5157-5175 17/18 Oct-9/10 Apr 95/96 86
4 407 5139-5175 30/31 Oct-18/19 Mar 95/96 235
5 17 5607-5643 14/17/20 Mar 94 27
6 31 5661-5697 06/09/12 Mar 1994 81
7 45 5661-5679 22/23 Mar-13/14 Mar 96/97 193
8 2 5679 15/16 Jan-19/20 Feb 1996 230
9 460 5679-5715 16/17 Feb-22/23 Mar 96 159

Fig. 1. Overview of the used ERS satellite frames. White solid line: GPS traverse from
Neumayer to Kohnen. White dashed line: the airborne laser scanner profile.
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Fig. 2. Comparison of IceSAT ground control points with DEMs based on different SAR
processors. Localized dents appear as processing artifacts for instance in the upper left and
lower right corner of D2.

Page 10 of 12Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



F
o
r P

eer R
eview

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

−0.3

0

0.3

B
⊥
 −

 B
‘ ⊥
 [
m

]

−4

−1

2

Ψ
 −

 Ψ
‘ ⊥
 [
ra

d
]

0 20 40
−25

−5

15

z
 −

 z
‘  [

m
]

slant range [km]

D1 − D2

D1 − G

D2 − G

D1 − D2

EV2 − D1

D1 − G

D2 − G

D1 − D2

D1 − G

D2 − G

EV2 − D1

EV2 − D1

Fig. 3. Comparison of differential perpendicular Baseline B⊥, differential phase φ, and height
z for a profile in range within the overlapping areas of independently processed DEMs
(D1,D2 with D-PAF, Ev1 with EarthView, and G with MSP). The + in the lowest plot mark
the predicted height error according to equation 3. The profiles are gridded to a 160 m raster
for reasons of visibilty.

Fig. 4. Differences in DEMs from track 031 (1996) and track 045 (1996/1997) in frame 5661.
On the right is a profile across the wave like structure (marked with white line on the left).
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Fig. 5. Histogram of the DInSAR DEM compared to IceSAT, GPS and ALS ground control
points. The DInSAR data was filtered with a threshold of 0.8 in coherence, which excluded
approximately 15 percent of the IceSAT GCPs and less than 10 percent of the ALS and GPS
points. The black line represents the corresponding Gaussian distribution.

(a) (b)

Fig. 6. Horizontal resolution (a) and resampled final DEM for Dronning Maud Land (b). Areas

in (b) with a standard deviation higher than 5 m are masked out.
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