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Introduction

Considering the last few years, the number of evacuations of areas endan-
gered by tsunamis or hurricanes, of airplanes having engine turbine prob-
lems, of buildings on fire, as well as of evacuations because of bomb alarms
has highly increased. The increasing number of emergencies naturally in-
creases the interest in an optimal preparation of the evacuation before the
emergency occurs. In particular, the heavy interest of the media in the evac-
uation test of the newly build airplane Airbus A380 (see for example BBC
News Online [7] and Spiegel Online [76]) strengthens the impression that the
role of evacuation planning and prediction becomes more important, also in
public. While the importance of good evacuation prediction became obvious
for the public during the last few years, practitioners and theoreticians were
searching for methods to find good evacuation plans for buildings, airplanes,
or whole areas for the case of an emergency for a long time.

Besides the large amount of simulation tools for evacuation prediction un-
der certain assumptions (see for example [48, 64, 52]), evacuation problems
can be modeled as network flow problems. In contrast to static flows, flows
over time introduced by the seminal work of Ford and Fulkerson [24, 25] ex-
plicitly model the impact of time, which is an important factor in evacuation
situations. In this extended model, transit times on arcs indicate the loss of
time when traversing a site from one end to the other. Although network
flows over time are not capable to map real world behavior exactly to math-
ematical models, they offer a good tool to predict the evacuation behavior in
existing buildings, airplanes, or areas and to plan new buildings and airplanes
with respect to good evacuations.

Given a seat map of an airplane or the locations of working stations in a
building together with the building topology, we can model the network. If
we can find an optimal evacuation plan in a perfect flow model where pas-
sengers are considered to act rational without panic, the evacuation time we
determine is a lower bound on the time the evacuee would need. Moreover,
it is possible to find a lower bound on the total evacuation time for exam-
ple for certain seat maps already in the construction phase of an airplane.
Therefore, it is possible to optimize the position of seats and emergency exits
in an airplane with respect to evacuation situations.

In typical evacuation situations, the most important task is to get people
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2 Introduction

out of an airplane, an endangered building, or an area as fast as possible.
Since it is usually not known how long a building can brave a fire before it
collapses, how much time it needs before a smoking aircraft turbine engine
really starts burning, or how long a dam can resist a flood before it breaks, it
is advisable to organize an evacuation such that as much as possible is saved
no matter when the inferno will actually happen. Therefore, it is not enough
to only bound the total evacuation time. By sending as much flow as possible
into the sinks at each point in time, the uncertainty of the planned evacuation
time is taken into consideration. While solutions to the quickest flow problem
minimize the total evacuation time, so called earliest arrival flow problems
aim at optimizing the evacuation process for every point in time. Those and
some related flow over time problems such as maximum flows over time are
usually referred to as Evacuation Problems (see [35, 36, 38, 39]).

Speaking of earliest arrival flows, two main settings are taken into account.
On the one hand, the earliest arrival transshipment problem is considered.
This network flow problem models especially the airplane evacuation. We
know exactly where people are located in a given fixed network topology.
Also office buildings with a known amount of working stations fulfill this
requirement. The task is to guide them out of the airplane or building as
quickly as possible. On the other hand, the earliest arrival s-t-flow problem
is analyzed. Earliest arrival s-t-flows consider the easier model with only
one source and one sink but do not give a bound on the number of people to
evacuate. In this thesis, we consider these two problems and focus on efficient
algorithms for solving them. Further, we do not longer restrict ourselves to
evacuation of people but consider the evacuation of data packages in an
unstable network.

Earliest Arrival Transshipments. Given a network with multiple sources
and multiple sinks with assigned supplies and demands, the quickest trans-
shipment problem asks for the minimum time horizon up to which the sup-
plies and demands can be satisfied over time. This problem can be solved in
strongly polynomial time. The strongly related earliest arrival transshipment
problem, which additionally maximizes the amount of flow sent into sinks si-
multaneously for each time θ ≥ 0, does not necessarily need to exist in this
kind of networks. In order to solve the later problem, we need to restrict
to multiple-sources-single-sink networks. Hoppe and Tardos [39] develop an
FPTAS for the earliest arrival transshipment problem. Other approaches to
solve the earliest arrival transshipment problem strictly restrict the transit
times or the capacities of the considered networks. The first exact algorithm
to solve the earliest arrival transshipment problem for the multiple-sources-
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single-sink setting that runs in time polynomial in the input plus output size
is derived in Chapter 3. Using the necessary and sufficient criterion for the
feasibility of transshipment over time problems presented by Klinz [50], the
earliest arrival pattern can be recursively constructed. In a second step, the
earliest arrival pattern is turned into an earliest arrival transshipment by
slightly extending the network and applying an algorithm of Hoppe and Tar-
dos [40] that computes a quickest transshipment in strongly polynomial time.
In particular, the algorithm to compute an earliest arrival transshipment as
presented in Chapter 3 is the first algorithm for this problem which does not
rely on time-expansion of the network into exponentially many time layers,
even in the analysis.

Earliest Arrival s-t-Flows. Given a network with a single source node s,
a single sink node t, and a time horizon T ≥ 0, Ford and Fulkerson [24] (see
also [25]) consider the problem of sending as much flow as possible from s
to t by time T ; the maximum s-t-flow over time problem. Gale [28], Wilkin-
son [77], and Minieka [65] analyzed the problem of maximizing the amount
of flow that reached the sink by every time 0 ≤ θ < T ; the earliest arrival
s-t-flow problem. The above approaches assume transit times on the arcs to
be constant or time-dependent. Whoever has tried to leave a stadium after
a soccer game knows that this assumption is far from reality for some real
world applications like evacuation or traffic routing. A much more realistic
setting is to view transit time as a value that depends on the flow rate, the
congestion, or the amount of flow in an arc of the network. In particular, this
means that the more flow units are present in an arc the higher is the transit
time of this arc. More formally, the transit time of each arc in the network
at each time θ depends on the flow on this particular arc at that time θ; so
called flow-dependent transit times. Two special models of flow-dependent
transit times are considered in this thesis; inflow-dependent transit times and
load-dependent transit times. It has been shown by Gale that earliest arrival
s-t-flows exist for any network with constant transit times. We give examples
in Chapter 4, showing that this is no longer true for flow-dependent transit
time functions. Here, we restrict ourselves to inflow-dependent and load-
dependent transit times. For that reason, we define an optimization version
of this problem where the objective is to find flows that are almost earli-
est arrival s-t-flows. In particular, we are interested in flows that, for each
θ ∈ [0, T ), need only α-times longer to send the maximum amount of flow to
the sink. Both constant lower and upper bounds on α are given. Further-
more, we present a constant factor approximation algorithm for this problem.
Finally, we give some computational results to show the practicability of the
designed approximation algorithm.
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Data Evacuation. Evacuation planning does not only play an important
role in human evacuation but also in evacuating data sent through an un-
stable network via several processors. Data in the network can be seen as
insecure in the sense that it gets lost immediately in case of a disruption.
Data that is saved in a processor can be seen as secure, since it can be resent
after the disruption. The property that data can be copied is used in order
to save copies of data into the processors. The storage capacity of proces-
sors is bounded and therefore the storage of data needs to be examined. In
Chapter 5, we define the problem and show that we have to concentrate only
on the storage rules. Optimal storage rules are determined for special path
topologies: transit time excess paths and capacity excess paths. Optimality
means that the maximum number of different data packages is stored when
considering all nodes of the network. Moreover, it is required that the data
packages stored shall be renewed in the sense that there is a steady exchange
in the stored data packages in nodes. There also exist an optimal storage rule
for arbitrary paths. It can be shown that arbitrary paths are a compound of
transit time excess paths and capacity excess paths.

Outline of the Thesis. We define basic notation, introduce network flow
models known from literature and give known results in Chapter 1. Moreover,
we introduce to two mathematical concepts needed in this thesis; submodular
functions and parametric search. In Chapter 2, we formally introduce several
evacuation problems considered in this thesis. In particular, we concentrate
on known results for the quickest transshipment problem and earliest arrival
flow problems. Further, we overview other methods of evacuation predic-
tion. An exact algorithm for the earliest arrival transshipment problem is
presented in Chapter 3. Before describing the algorithm in detail, we show
how to transform networks with supplies and demands given as upper and/or
lower bounds into equivalent networks having constant supplies and demands.
In Chapter 4, we study the simpler earliest arrival s-t-flow problem for the
case that the transit time of each arc in the network at each point in time
θ depends on the flow on this particular arc at the considered time θ. In
Chapter 5, we extend the concept of evacuation to non-physical commodities
such as data. We consider only networks building a path and show that it is
possible to store the maximum number of different data packages along the
path, respecting the capacity of storage space. For each possible path topol-
ogy, we determine storage rules that define which data needs to get stored in
which node.
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This thesis tries to be self-contained in the sense that models and al-
gorithms used are introduced in detail. Nevertheless, the reader should be
familiar with basic graph notation, graph algorithms, optimization problems,
and complexity of algorithms. Moreover, a basic knowledge in classical net-
work flow theory is advantageous. For a deeper introduction on network flow
models, the reader is referred to the textbooks on combinatorial optimization
in general and network flow theory in particular of Ahuja et al. [1], Korte
and Vygen [56], and Schrijver [72]. A more detailed introduction in flow
over time models is given in the Ph.D thesis of Hoppe [38] and in the survey
articles of Aronson [3] and Powell et al. [68]. Several articles of Fleischer,
Tardos, and Skutella ([19, 18, 17, 23, 22, 21, 20]) describe special network
flow over time problems in detail. A very good introduction to inflow- and
load-dependent transit times is given in the Ph.D thesis of Langkau [57] and
articles by Köhler, Langkau, Hall, and Skutella ([55, 54, 33]). Substantial
parts of Chapters 3 and 4 of this thesis are already published in [5, 4, 6].

Acknowledgment

Over all, I thank Martin Skutella for evoking interest in new topics of network
flow theory, for his help to find new points of view to the considered problems,
and for supervising me. I am grateful to the German Science Foundation for
the position in the project “Algorithms in Large and Complex Networks”
which granted my financial support (grants no. SK 58/4-1 and SK 58/5-
3). Following Martin from Berlin to Saarbrücken and later to Dortmund, I
had the privilege to work in Prof. Kurt Mehlhorn’s working group at the
Max-Planck-Institute for Computer Science and in his own working group
at Dortmund University. Furthermore, I was always welcome to the working
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MPII Saarbrücken, and of Prof. Rolf Möhring at TU-Berlin for all the coffee
breaks and for being more than just colleges.





Chapter 1

Preliminaries

1.1 Introduction

Network flows are an important topic in combinatorial optimization. Not
only evacuation settings can be modeled and optimized using network flows
but also transportation problems, telecommunication flows, problems of cre-
ating timetables, financial flows, and so on.

We define a network N = (V,A) to be a directed graph consisting of a set
of nodes V and a set of directed arcs A ⊆ V × V . We assign a capacity u(a)
to each arc determining an upper bound on the amount of flow actually
on that arc. Further, we assign arc a a transit time τ(a) representing the
time that is needed to traverse the arc. Two concepts of transit times will
be considered: constant transit times and transit time functions dependent
on flow. Moreover, two specified node sets are considered; sources and sinks.
The set of sources is denoted by S+ and the set of sinks by S−. The remaining
nodes v ∈ V \ (S+ ∪ S−) are called intermediate nodes. Sometimes we
are also given a supply-demand function d : S+ ∪ S− → R. It assigns a
positive value, supply d(s) > 0, to each source s ∈ S+ and a negative value,
demand −d(t) > 0, to each sink t ∈ S−.

Considering evacuation settings, we can observe that each site to evacuate
can be represented as such a network. Nodes model rooms in a building, seats
in an airplane, crossings of floors, or positions in the aisle of an airplane and
so on. Arcs connect locations represented by nodes. They represent the aisle
of an airplane, halls, floors, and ways from one room to another in a building.
Sources in such a network are sites at which people stay like the seats of an
airplane, sleeping rooms of an apartment house, or working stations in an
office building. Sinks model safe sites outside the place to evacuate.

In this chapter, we will introduce the notion of network flow models in
general. Special network flow models related to evacuation problems are
considered in detail. We start by the well studied static flow model in Sec-
tion 1.2.1. In Sections 1.2.2 and 1.2.3, we consider several models for flows
over time. In this flow model, each arc is given a transit time. Flow is sent
through the network continuously and can change its value on an arc over
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8 Chapter 1. Preliminaries

time. Notice that in earlier work, flows over time were also called dynamic
flows. During the last years, the notion dynamic became important in prob-
lems where input changes over time or arrives over time. Algorithms solving
those problems need to deal with the dynamic input and aim to readjust
the solutions to the new information available. The data needed to solve a
flow over time problem is available from the beginning. In order to avoid
misunderstanding, we always speak of flows over time. This seems to be
more intuitive to us and more clear in the parlance of network flows. In
Section 1.2.4, we describe an even more realistic model of network flows over
time. In this model, transit times change with the flow on an arc, i.e., they
are flow-dependent. We will discuss two models of flow-dependent transit
times; inflow- and load-dependent transit times.

The last two sections of this chapter consider elaborate mathematical
concepts which are relevant in this thesis. In Section 1.3, we give a short
introduction to submodular functions. In Section 1.4, we briefly introduce
the parametric search. This search method finds the optimum value for a
given parameter in an optimization problem in strongly polynomial time.

1.2 Network Flow Models

In the following sections, we describe basic properties of the presented flow
models. Further, we present results from the literature for two flow problems
in the corresponding flow models which form substantial building blocks of
the results given in this thesis. In the s-t-flow problem we are given a single-
source-single-sink network. The task is to find a feasible flow from source s
to sink t. If we are given a multiple-sources-multiple-sinks network together
with a supply-demand function d : S+∪S− → R, we will focus on the trans-
shipment problem. A transshipment is a flow that fulfills the supplies and
demands of sources and sinks, respectively. The task is to find such a flow,
if it exists in the considered network flow model.

1.2.1 Static Flows

Given a network N = (V,A), a function x : A → R+ is called a static flow
function, if the capacity constraints are satisfied, i.e., it holds x(a) ≤ u(a) for
all a ∈ A. A static flow x is said to observe flow conservation in node v if

∑
a∈δ−(v)

x(a) =
∑

a∈δ+(v)

x(a)
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holds. Here δ+(v) and δ−(v) denote the set of outgoing arcs of node v and
incoming arcs into node v, respectively. A flow satisfying flow conservation
in all nodes is called a circulation. Considering an s-t-flow problem, flow
conservation only has to hold for nodes in V \ {s, t}. An s-t-flow fulfilling
the required flow conservation equations for nodes in V \ {s, t} and capacity
constraints for all arcs is called feasible.

The value of an s-t-flow x is given by

value(x) :=
∑

a∈δ+(s)

x(a)−
∑

a∈δ−(s)

x(a)

=
∑

a∈δ−(t)

x(a)−
∑

a∈δ+(t)

x(a) ,

where the second equation follows from flow conservation in all nodes v ∈
V \ {s, t}. An s-t-flow with maximum value is called a maximum s-t-flow.

Let X ( V be a subset of the nodes. Then we say that X is an s-t-cut,
if s ∈ X and t ∈ V \X. The capacity u of an s-t-cut X is defined as follows:

u(X) :=
∑

a∈δ+(X)

u(a) .

Here, δ+(X) denotes the set of directed arcs from nodes in X to nodes in V \
X. If the capacity u(X) is minimal over all sets X ( V , then we call X a
minimum s-t-cut.

The following theorem, called the max-flow min-cut theorem, states a fun-
damental relation between the value of a maximum s-t-flow and the capacity
of a minimum s-t-cut.

Theorem 1.1 (Ford and Fulkerson [24]). For any network, the maximal
flow value from s to t is equal to the minimum cut capacity of all cuts
separating s and t.

Ford and Fulkerson [24] suggest an algorithm to compute a maximum s-
t-flow. Before describing the algorithm, we give some useful definitions.

Given a network N = (V,A) and a feasible flow x, then the residual
network Nx = (V,Ax) is defined as follows. Let a = (v, w) be an arc in A.
If x(a) < u(a), then a ∈ Ax. We set the residual capacity of a to ux(a) :=
u(a) − x(a) > 0. If x(a) > 0, we also insert the backward arc ←−a := (w, v)
to Ax having a residual capacity ux(

←−a ) := x(a). If each arc a is given a
certain cost τ(a) ∈ R then the negative of this cost, namely −τ(a) is assigned
to the backward arc. A path from s to t in the residual network with respect
to a flow x is called an augmenting s-t-path.
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The algorithm to compute the maximum s-t-flow x starts with the zero
flow, i.e., x(a) = 0 for all a ∈ A. Then it searches for augmenting s-t-paths as
long as they exist in the residual networks with respect to the actual flow x.
Along such an s-t-path, flow amounting to the minimal residual capacity γ
is augmented, i.e., we increase x(a) by γ, if a is a forward arc on the path,
and we decrease x(a) by γ, if its backward arc ←−a is part of the path. Since
γ is chosen as the minimal residual capacity along this path, we guarantee
capacity constraints and non-negativity constraints x(a) ≥ 0 for all a ∈ A.
Unfortunately, the total number of paths found can be exponentially large.

An s-t-flow x : A → R+ defines a flow on arcs. Since the overall goal is
to optimize an evacuation problem, we need to determine paths along which
people can leave a site to evacuate. Therefore it is advantageous, if we can
give a formulation of the flow on a set of paths P from s to t. It is well
known that the flow function x defined on arcs can be decomposed into a
flow on at most |A| paths P and cycles C in N together with non-negative
flow values x(P ) for P ∈ P ∪ C. For those values on paths and cycles, the
following property has to hold:

x(a) =
∑

P∈P∪C:
a∈P

x(P ) for all a ∈ A.

We call the set P together with the flow values x(P ) for P ∈ P a path de-
composition, if C = ∅. Algorithmically, the path decomposition can be found
by using the algorithm for finding a maximum s-t-flow backwards. There-
fore, we only consider the network consisting of arcs a ∈ A having a positive
value x(a). In this restricted network N ′, we set the capacity u′(a) := x(a)
and apply the algorithm to find a maximum s-t-flow in N ′. Thereby, at
least one arc is expunged from the relevant network N ′ in each iteration and
therefore maximal |A| many paths can be found. The resulting set of paths
together with the corresponding minimal residual capacity builds the path
decomposition. Flow that is still on cycles can be ignored since it does not
increase the amount of flow sent from node s to t.

Another important static flow problem, which will be needed throughout
this thesis, is the min-cost circulation problem. Assume we are additionally
given a cost function τ : A → R on the arcs. The cost of a circulation x is
defined as:

cost(x) :=
∑
a∈A

τ(a)x(a) .
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The min-cost circulation problem looks for a feasible circulation x having
minimum cost cost(x). In the following, we describe how to solve the min-
cost circulation problem to optimality in network N . Therefore, we use the
optimality criterion of Klein which suggests an algorithm.

Theorem 1.2 (Klein [49]). A flow x is a min-cost circulation if and only
if there is no directed cycle C in the residual network Nx such that the
sum of the cost around C’s arcs is negative. A directed cycle is a sequence
of distinct directed arcs of the form {(v0, v1), (v1, v2), . . . , (vk, v0)} involving
distinct nodes.

The naturally induced algorithm, of course, does the following. To com-
pute the min-cost circulation, we start in network N with the zero flow. By
successively searching for cycles having negative cost as long as they exist
in the corresponding residual networks, we increase the flow on those cycles.
Once we find such a cycle, we augment flow of value of the minimal residual
capacity γ along the cycle.

If flow on cycles of zero length is added to the circulation, the cost does
not increase but the amount of flow in the network increases. We will call
a min-cost circulation that maximizes the amount of flow in the network
min-cost (maximum) circulation.

Zadeh [78] gives bad examples for this algorithm for which the algorithm
indicated by Klein has an exponential running time in worst case. The al-
gorithm requires 2n + 2n−2 − 2 augmentations in a network having 2n + 2
nodes for n ∈ N. The minimum mean cycle-canceling algorithm presented
by Goldberg and Tarjan [29] has a strongly polynomial running time. A sur-
vey on the complexity of min-cost circulation algorithms can be found in the
book of Schrijver [72].

A related problem is the problem of finding a min-cost s-t-flow. There
the goal is to compute a min-cost circulation in the network extended by
an arc (t, s) with specified cost τ(t, s). There can be several circulations
having minimum cost in such a network. Depending on the problem, we are
sometimes seeking the one with highest flow value on arc (t, s); the min-cost
(maximum) s-t-flow. Here, flow on zero length cycles needs to be added.
Notice that the cost of such a circulation stays the same while the amount
of flow in the network increases.

We define the cost of the min-cost s-t-flow x dependent on the cost of the
additional arc (t, s):
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costτ(t,s)(x) :=
∑

a∈A∪{(t,s)}

τ(a)x(a)

=
∑
a∈A

τ(a)x(a) + τ(t, s)x(t, s) . (1.1)

Another problem related to evacuation is the transshipment problem where
we are given multiple sources and multiple sinks in the network. The supply-
demand-function d : S+ ∪ S− → R assigns a positive supply to each source
in S+ and a negative demand to sinks in S−. Considering a transshipment
problem, flow conservation has to hold only for nodes w ∈ V \ S+ ∪ S−.
For nodes v ∈ S+ ∪ S− the flow function x has to satisfy the supplies and
demands, that is ∑

a∈δ+(v)

x(a)−
∑

a∈δ−(v)

x(a) = d(v) .

Such a transshipment problem in a network with multiple sources and mul-
tiple sinks can be reduced to an s-t-flow problem by a slight network trans-
formation. We add a supersource s with arcs (s, s′) for all s′ ∈ S+ and assign
a capacity of d(s′) to this arc. For each sink t′ ∈ S− we insert arcs (t′, t) to
a new sink node t which will be called the supersink. We assign a capacity
of −d(t′) to those arcs. A feasible s-t-flow with value

∑
s′∈S+ d(s′) in the

modified network naturally induces a feasible flow in the original network
satisfying all supplies and demands. Each maximum s-t-flow obviously has
the demanded flow value. Thus, when considering static flow models, we can
restrict ourselves to networks with a single source and a single sink.

1.2.2 Flows over Time with Constant Transit Times

In various well known static flow problems one seeks a function x : A→ R+

that assigns a flow value x(a) to an arc a. In contrast to that, a flow over
time f is a function on A×R where the second parameter denotes the time
component – f(a, θ) describes the flow on arc a at time θ. This flow can
be interpreted as flow rate, i.e., the amount of flow entering the particular
arc per time unit. The flow rate entering an arc is bounded by the capacity
of that arc, i.e., f(a, θ) ≤ u(a). Considering flows over time, we need to
introduce a time component into the network itself. Therefore, we assign a
constant transit time τ(a) to each arc a = (v, w). This value determines the
time that flow needs to traverse the arc from the start node v to the target
node w. Moreover, sending one unit of flow into the arc at flow rate one at
time θ means, that at time θ + τ(a) flow of rate 1 enters the target node
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θ + τ(a)θ

time

θ + τ(a) + 1 θ + τ(a) + 1θ θ + τ(a)

time

θ + τ(a) + 1θ

time

θ + τ(a)

Figure 1.1: Arc having a capacity of one unit of flow per time unit. Each unit of flow
entering that arc at time θ starts leaving the arc at time θ + τ(a). It totally has left the
arc at time θ + τ(a) + 1.

of the arc. The whole flow unit has left the arc another time unit later at
time θ + τ(a) + 1 (see Figure 1.1 for clarification).

The flow function f has to satisfy flow conservation constraints not only
in every node w ∈ V \ (S+ ∪ S−), but also at every time θ ∈ R. Notice that
the flow rate f(a, θ) determines the amount of flow entering arc a at time θ.
The flow rate entering node w at time θ from an arc a ∈ δ−(w) is thus
determined by the flow rate entering that arc at time θ − τ(a). Therefore,
the flow conservation constraint in node w is defined as follows:∑

a∈δ+(w)

∫ θ

−∞
f(a, θ)dθ ≤

∑
a∈δ−(w)

∫ θ

−∞
f(a, θ − τ(a))dθ .

Equality is not required in order to allow flow to be stored in nodes of the
network. Note that some algorithms for flows over time explicitly forbid
storage of flow in nodes whereas others only have a bounded capacity of
node storage. We allow storage of flow at nodes in principle and without
upper bounds on the amount. However, the algorithms used in this thesis
do not make use of the storage opportunity; they send the flow through the
network without storing flow at any of the non-source nodes.

A flow over time f , satisfying the flow conservation constraints in all
required nodes, is said to be feasible, if for all arcs a and every time θ:
f(a, θ) ≤ u(a) holds. For a given time horizon T , we further require that
there is only flow in the network during the time interval [0, T ). Since flow
entering arc a = (v, w) at time θ reaches node w at time θ+τ(a), we especially
require f(a, θ) = 0 for all θ /∈ [0, T − τ(a)). This guarantees that there is
no flow in the network before time zero and that at time T all flow has left
the network. The flow conservation constraint of each node w needs to be
satisfied only within this time interval:∑

a∈δ+(w)

∫ T

0

f(a, θ)dθ ≤
∑

a∈δ−(w)

∫ T

0

f(a, θ − τ(a))dθ .

Notice that it would not be necessary to subtract the transit time of the con-
sidered arc in the set of all incoming arcs. By the assumption that f(a, θ) = 0
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for θ /∈ [0, T − τ(a)) the compared values stay the same if we require:

∑
a∈δ+(w)

∫ T

0

f(a, θ)dθ ≤
∑

a∈δ−(w)

∫ T

0

f(a, θ)dθ .

An s-t-flow over time naturally requires the flow conservation only in
nodes in V \ {s, t}. The value of an s-t-flow over time f with time horizon T
is defined by the net flow value that leaves the source over all time steps or
enters the sink over all time steps θ ∈ [0, T ).

value(f) =
∑

a∈δ+(s)

∫ T

0

f(a, θ)dθ −
∑

a∈δ−(s)

∫ T

0

f(a, θ)dθ

=
∑

a∈δ−(t)

∫ T

0

f(a, θ)dθ −
∑

a∈δ+(t)

∫ T

0

f(a, θ)dθ

If the value is maximized, we speak of a maximum s-t-flow over time. In
the following, we will denote the value of a maximum flow out of source s
reaching sink t for a time horizon T also by oT ({s}), if we are not considering
a concrete flow f .

More formally, the function oθ(X) determines the maximum value of flow
over time that can be sent out of sources in X to sinks not in X by time θ ∈
R+. Since s is the single source and t the single sink:

oT ({s}) = max{value(f)|f feasible s-t-flow with time horizon T}.

This function is used throughout this thesis for the different settings.
Various results for this flow over time model with constant transit times

are known. One of the most remarkable ones is a theorem by Ford and
Fulkerson [24] together with an argument for continuity by Anderson and
Philpott [2] on maximum s-t-flows over time for the time horizon T .1 Ford
and Fulkerson introduce a special class of flows over time, which resembles
static flows. They define a temporally repeated flow to be a static flow x that
is decomposed into flows on paths in network N . Let P be the set of paths
and x(P ) the non-negative flow values on paths P ∈ P such that the length
of each path is bounded from above by T . A temporally repeated flow repeat-
edly sends flow over the paths of P as long as this flow can reach the sink be-
fore time T , i.e., it starts sending flow at time zero and stops at time T−τ(P ).
Obviously, such a flow is a feasible flow over time. It naturally obeys flow

1Note that Ford and Fulkerson considered a discrete flow model where time is being
discretized into points of time {0, 1, . . . , T − 1}.
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conservation and capacity bounds by the nature of the path decomposition
and the feasibility of the static flow x, namely

∑
P∈P:a∈P x(P ) = x(a) ≤ u(a).

By definition, no flow is in the network before time zero and after time T .
The following lemma determines the value of the temporally repeated flow

from s to t in terms of the static flow x.

Lemma 1.3. The value of a flow over time f that is computed as a tempo-
rally repeated flow of a static flow x equals:

value(f) =
∑
P∈P

(T − τ(P ))x(P ) = T · value(x)−
∑
a∈A

τ(a)x(a) . (1.2)

Observe that the flow value is independent of the path decomposition P .
One natural goal is now to find a temporally repeated flow having maximum
flow value. The existence of such a kind of maximum s-t-flow over time is
given by Ford and Fulkerson [24] (see also [2]).

Theorem 1.4 (Ford and Fulkerson [24]). There always exists a tempo-
rally repeated flow that is a maximum s-t-flow over time. Such a temporally
repeated flow can be computed using a static min-cost s-t-flow.

Notice that the value of the maximum s-t-flow over time for time hori-
zon T , i.e., oT ({s}), determined as in in (1.2), equals −costT (x), i.e., the
negative of the cost of a static min-cost circulation in network N extended
by an uncapacitated arc (t, s) with cost −T (compare equation 1.1). Here, x
denotes the static min-cost s-t-flow computed in networkN where the transit
times are interpreted as costs. The choice of −T as cost of the additional arc
bounds the length of the used paths by T and therefore the time horizon is
obeyed. Further, we know that the static flow x and the flow value value(x)
are integral if all capacities are integral.

Analogously to the static case, we define a transshipment over time to be
a flow in a multiple-source-multiple-sink network where given supplies and
demands now have to be satisfied over time. Flow conservation only has to
hold for nodes w ∈ V \ (S+ ∪ S−). For nodes v ∈ S+ ∪ S− the outgoing and
incoming flow over time has to equal the supply and demand, respectively,
i.e., ∑

a∈δ+(v)

∫ T

0

f(a, θ)dθ −
∑

a∈δ−(v)

∫ T

0

f(a, θ)dθ = d(v).

Discrete Flows over Time. The above described flow model is also called
continuous flow over time model. When Ford and Fulkerson introduced the
model of flows over time, they first considered a discrete model. Instead of
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θ + τ(a)

time

θ

Figure 1.2: Arc with transit time τ(a) in a discrete flow over time model. Flow units
leaving a node via arc a at time θ ∈ {0, 1, . . . , T − 1 − τ(a)} totally have left arc a at
time θ + τ(a).

sending flow at (continuous) flow rates, they send packets of flow units at
discrete points of time into the arcs. In this model, not the continuous time
interval [0, T ), but all discrete time steps {0, 1, . . . , T − 1} are considered.
That means we are looking for a flow function f : A × {0, 1, . . . , T − 1} →
R+. The flow rate f(a, θ) on arc a = (v, w) determines the amount of flow
that is sent into arc a at time step θ ∈ {0, 1, . . . , T − 1}. Flow units sent
into an arc a at a time θ totally reach the target node w of that arc at
time θ + τ(a). Here, τ(a) denotes the transit time of arc a (see Figure 1.2
for a better understanding of the difference to continuous flows). In such
a model, obviously, all transit times need to be integral. Consequently, it
suffices to consider integral time horizons.

Flow conservation can be adapted directly to the discrete case. Instead of
integrating, it suffices to sum over the considered time steps {0, 1, . . . , T−1}.
Thus, flow conservation in node v is obeyed in the discrete model, if

∑
a∈δ+(v)

T∑
θ=0

f(a, θ) ≤
∑

a∈δ−(v)

T∑
θ=0

f(a, θ)

holds.

In the discrete model, the flow value of an s-t-flow over time can be
described by summing up the flow leaving the source s in each time step or
entering the sink t in each time step, i.e.,

value(f) =
∑

a∈δ−(t)

T∑
θ=0

f(a, θ)−
∑

a∈δ+(t)

T∑
θ=0

f(a, θ)

=
∑

a∈δ+(s)

T∑
θ=0

f(a, θ)−
∑

a∈δ−(s)

T∑
θ=0

f(a, θ) .

If supplies and demands are given, they have to be fulfilled for all nodes v ∈
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S+ ∪ S−, i.e.,

∑
a∈δ+(v)

T∑
θ=0

f(a, θ)−
∑

a∈δ−(v)

T∑
θ=0

f(a, θ) = d(v)

must hold.
As indicated before, many results made for discrete flows over time can

be generalized to continuous flows over time. A similar interrelation can be
made about the two flows itself. Assume we are given a feasible discrete
flow over time f for time horizon T with flow f(a, θ) entering arc a ∈ A
at time θ ∈ {0, . . . , T − 1 − τ(a)}. This discrete flow over time can be
interpreted as a continuous flow over time f ′ by sending flow of rate f(a, θ)
into arc a during the whole time interval [θ, θ + 1), i.e., f ′(a, θ′) := f(a, θ)
for θ′ ∈ [θ, θ+1) and for all a ∈ A. The capacity constraints of the continuous
flow over time are obviously obeyed, since f(a, θ) ≤ u(a) induces f ′(a, θ′) ≤
u(a) for all θ′ ∈ [θ, θ + 1). This interrelation is a bidirectional one, if the
time horizon and all transit times of network N are integral. Suppose we
are given a feasible continuous flow over time f ′ computed in network N
with time horizon T . Then this flow f ′ can also be interpreted as a discrete
flow over time f . We set the flow on arc a at discrete time θ to the total
flow that has entered arc a during the time interval [θ, θ + 1) in f ′, i.e.,

f(a, θ) :=
∫ θ+1

θ
f ′(a, θ′)dθ′ for all θ ∈ {0, . . . , T −1− τ(a)} for all a ∈ A. The

capacity constraints are obeyed since

f(a, θ) =

∫ θ+1

θ

f ′(a, θ′)dθ′ ≤
∫ θ+1

θ

u(a)dθ′ ≤ u(a)

holds. The first inequality follows from the feasibility of the continuous flow
over time f ′.

1.2.3 Time-Expanded Networks

Flows over time are more complex than static flows in the sense that the flow
is specified for all times θ ∈ [0, T ). Klinz and Woeginger [51] observed, for
example, that there does not exist a deterministic polynomial time algorithm
that solves the min-cost s-t-flow over time problem with given supply. In this
problem, we search for a flow that sends the total supply over time into the
sink within a given time horizon T . The corresponding static flow problem is
easy to solve as described in Section 1.2.1. If all transit times are integral2, we

2In case of rational transit times scaling helps to fulfill the integrality assumption.
Speaking of time-expanded network, we explicitly forbid irrational transit times.
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Figure 1.3: Network and its time-expanded version (discrete and continuous) for a time
horizon T = 5, including holdover arcs. The arc notation denotes capacity/transit time.

can directly apply the algorithm for the static flow problem in an extended
network. This special network acts as a static representation of the flow
over time model where only integral points in time are considered. Ford and
Fulkerson [24] introduced the so called time-expanded network in which the
flow over time problem can be solved in pseudo-polynomial running time
using static flow algorithms.

A time-expanded network with time horizon T consists of T copies of the
node set V , one for each time unit. We call such a copy a time layer. For each
arc a = (v, w) of the network N having transit time τ(a), an arc is inserted
between the copy of node v in time layer θ ∈ {0, . . . , T − 1− τ(a)} and the
copy of node w in time layer θ + τ(a) into the time-expanded network N T

(see Figure 1.3). We denote the copy of node v in time layer θ as v(θ) and
the copy of node w in time layer θ+ τ(a) as w(θ+ τ(a)). If we allow storage
of flow in nodes, holdover arcs are needed that connect the copy of node v
in time layer θ to the copy of node v in the next time layer. The set of
holdover arcs consists of all arcs (v(θ), v(θ + 1), for all θ ∈ {0, . . . , T − 2}.
One other application for the use of holdover arcs is the existence of sup-
plies and demands at sources and sinks in the original network. In order
to satisfy all supplies and demands over time, sometimes flow units have to
wait before leaving the source. In such a case, holdover arcs are inserted into
the time-expanded network for all sources and all sinks. The supply d(s′)
for each source s′ ∈ S+ is assigned to node s′(0) in the time-expanded net-
work. The demand d(t′) for each sink t′ ∈ S− is assigned to node t′(T − 1)
in the time-expanded network. Network N T is obviously a static network
as defined in Section 1.2.1 and the use of known algorithms for static flow
problems is possible. In this network we can solve the static transshipment
problem again by inserting a supersource and a supersink. The insertion of
supersource and supersink works analogously to the case of static network
flow models.
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A flow in a time-expanded network can directly be transformed into a dis-
crete flow over time and vice versa. Assume we are given a static flow x(a)
on arcs in N T . Each arc a in N T corresponds to an arc a′ in network N .
Let the start node of arc a be in time layer θ. We define a flow over time on
arc a′ at time θ to have flow rate f(a′, θ) := x(a). This flow is feasible by
construction. The interpretation of a discrete flow over time as a static flow
in the time-expanded network works exactly the other way round. By the
interrelation between discrete and continuous flows over time as described in
the previous section, we can also interpret the flow computed in the time-
expanded network as a continuous flow over time. Then, each time layer
represents a time interval instead of a point in time. Static flow on an arc
with target node in time layer θ is now interpreted as flow arriving at this
node during the time interval [θ, θ + 1). Analogously, static flow on an arc
with start node in time layer θ is now interpreted as sent out of this node
during the time interval [θ, θ + 1). See on the right hand side in Figure 1.3
for the interpretation in the time-expanded network.

A drawback of the time-expanded network is that the size of the network
depends on T . Even polynomial time algorithms for static flow problems
become pseudo-polynomial, if they are applied in the time-expanded network.
This is indicated by the following theorem.

Lemma 1.5. Given a network N with n nodes and m arcs. The time-
expanded network N T consists of Tn nodes and (n+m)T − n−

∑
a∈A τ(a)

arcs where T is the considered time horizon.

Nevertheless, time-expanded networks are not only useful for problems for
which no flow over time algorithm is known but they are also useful proving
the correctness of a given algorithm. Ford and Fulkerson, for example, proved
the correctness of their maximum s-t-flow over time algorithm by determining
a cut in the corresponding time-expanded network.

1.2.4 Flows over Time with Flow-Dependent Transit Times

While flows over time are much more appropriate to model real-world situa-
tions than static flows, often the constant transit times do not model reality in
a sufficiently precise way. For example, it can be easily observed that there is
a high correlation between the congestion of a hallway, staircases, or an aisle
in an airplane and the time needed to traverse it. A more accurate method
for describing this correlation is provided by the use of flow-dependent transit
times instead of constant transit times. For this purpose, we will assume in
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the following that a transit time function τ : A×R+ → R+ is given as a left-
continuous and non-decreasing function of the flow on arcs. Here, in contrast
to the model with constant transit times, we are given a second parameter
that refers to the flow.

Flows over time with flow-dependent transit times have been studied be-
fore. Merchant and Nemhauser [63] suggest a model where for every arc
there is both a flow-dependent cost function and a so called exit function
that determines the amount of traffic that can leave the arc in dependence of
the amount of flow on that particular arc. Although, their model was both
nonlinear and non-convex and thus difficult to handle for efficient algorithms,
it was influential for many other results in this area. Carey and Subrahma-
nian [11] introduce a model that uses an approach similar to time-expanded
networks for the case of flow-dependent transit times. In this model, not only
the arcs are expanded over time but also by several states of the transit time
function.

In literature on flow dependent transit times, different options of modeling
them are described. We will briefly describe two known models, that we will
make use of in the sequel.

On the one hand, we consider inflow-dependent transit times as described
in Köhler, Langkau, Skutella [54]. In this model, the transit time is a function
of the rate at which the flow is entering the arc a at time θ. In particular,
flow entering arc a at the flow rate f(a, θ) needs a transit time of τ(a, f(a, θ))
to traverse the arc. Hence, flow units entering an arc at the same time
have the same speed (defined by the transit time of the arc) and, while
traversing the arc, their speed stays constant. This transit time model allows
a comparably easy description of the dependency between flow and transit
times. However, it has the disadvantage that there can be situations where
flow entering at a small flow rate can pass flow units that entered the same arc
at a higher flow rate before—the so called first-in-first-out (FIFO) property
is not fulfilled. What makes this model somewhat difficult to handle is, that
we have to guarantee that the network is empty after time T . More precisely,
when f(a, θ) > 0, it must hold that θ + τ(a, f(a, θ)) < T . The conditions on
flow conservation constraints and supply/demand requirements have to be
adapted to take this property into account.

On the other hand, a more precise account of transit times that depend on
the flow in some real applications is to assume that the transit times depend
not only on the amount of flow entering an arc but also on the amount of flow
currently being in the whole arc. Köhler and Skutella [55] describe this kind
of transit time function called load dependent transit times. In this model,
the total amount of flow on an arc a at a time θ is used as the input to
the transit time function τ ; this amount of flow is called the load of the arc.
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Since the flow on an arc changes continuously, also the transit time of the
arc changes with each unit of flow entering or leaving the arc. Note that at
each moment all units of flow on an arc have the same speed.

Although both of the above models cannot describe evacuation flows in
their whole complexity, they are however capable of modeling at least some
important aspects of evacuees behavior.

1.3 Submodular Functions

In Chapter 3 of this work, we consider submodular functions. Since submod-
ular functions are of general interest, we give a definition and some properties
of submodular functions. After that, we briefly survey existing algorithms
for submodular function minimization.

Definition 1.6. Let E be a finite set. Any function ρ : 2E → Z satisfying

∀X, Y ⊆ E : ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) (1.3)

is called submodular function. A function for which strict equality holds is
called modular function.

A well known example of submodular functions is the capacity func-
tion u : 2V → R+ of an s-t-cut. This can easily be proven by checking
equation (1.3). The following lemma gives some easy to check properties of
submodular functions which we will need.

Lemma 1.7. Let ρ, φ : 2E → Z be submodular functions and ψ : 2E → Z a
modular function. Then the following holds:

1. The function a : 2E → Z defined as a(X) := ρ(X) + φ(X) for X ⊆ E is
submodular.

2. The function b : 2E → Z defined as b(X) := ρ(X)− ψ(X) for X ⊆ E is
submodular.

Minimizing Submodular Functions. The first combinatorial but pseudo-
polynomial time algorithm was already given in 1985 by Cunningham [16].
Here the submodular function can be minimized in time polynomial in |E|
and max |ρ(X)|.

The first polynomial time algorithm to minimize submodular functions
without any side constraint was given by Grötschel, Lovasz, and Schrijver [30]
in 1988. They use the Ellipsoid Method by Khachiyan [47] which solves linear
programs in strongly polynomial time. This algorithm is not combinatorial
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and for a long time there has not been found a combinatorial, strongly poly-
nomial time algorithms to minimize submodular functions.

Nearly at the same time, Iwata, Fleischer, and Fujishige [43] and Schri-
jver [71] found combinatorial, strongly polynomial time algorithms. Both al-
gorithms are based on the fundamental work by Cunningham [15, 16]. Iwata
improved in [42] the algorithm of Iwata, Fleischer, and Fujishige to be even
fully combinatorial.

A wide survey of the different minimization algorithms and several im-
provements is given by McCormick [59]. More details and background infor-
mation on submodular functions in general are given in Fujishige [26].

1.4 Parametric Search

In his seminal paper, Megiddo [62] describes an algorithm for a search method
called parametric search. We are given a parameterized instance of a certain
problem, i. e., an optimization problem or a feasibility problem. Such a
parameterized instance is allowed to contain one linear parameter. A solution
to a parameterized algorithm now consists of an assignment of values to the
variables of the instance and, additionally, a value for the given parameter
such that the problem is optimal or feasible, respectively. Megiddo shows
that the value for the parameter can be found in strongly polynomial time, if
there exists an“easy”algorithm for the non-parameterized problem that runs
in strongly polynomial time. In the following, we show how this parametric
search works and enumerate the requirements for such an algorithm to be
called “easy”.

We are given a parameterized instance of a certain problem where a linear
parameter λ is part of the instance. The parameter has to be known to lie in
an interval I ⊆ (−∞,∞). Further, we assume that we are given a strongly
polynomial algorithm A for the considered problem. We require that the
steps of A are only of one of the following three types: additions, scalar
multiplications, and comparisons.

Using the parameterized instance, the algorithm A has to be adapted
to be a parameterized version. In the adapted version not only values ai

and aj have to be added, multiplied by a scalar c, or compared, but linear
functions ai + λbi and aj + λbj.

Addition of linear functions ai + λbi + aj + λbj reduces to additions of
known values (ai+aj)+λ(bi+bj), as well as scalar multiplication c(ai+λbi) =
(cai) + λ(cbi) reduces to scalar multiplication of known values and conserves
the linearity. Therefore, the knowledge of the value of λ is not necessary.
The comparison of linear parameterized functions is more difficult without
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knowing λ. By simple computation of the intersection point of two linear
functions ai + λbi and aj + λbj, the critical value λ∗ for which ai + λ∗bi =
aj + λ∗bj can be found. If there is no critical value or the value of λ∗ does
not lie in the feasible interval I, the result of the comparison is independent
of λ. The result of the comparison thus can be determined immediately. If
the value λ∗ lies in I, we have to check whether it is too high or too low for
a feasible value of λ. This check can be done using the strongly polynomial
algorithm A on the non-parameterized problem where the parameter is fixed
to λ∗. Then the outcome is analyzed, for example by comparing the objective
values for the actual choice of λ∗ and the one from the last iteration or
checking the existence of a feasible solution, respectively. If λ∗ was too low,
we substitute the lower bound of interval I by λ∗, if it was too high, we
substitute the upper bound.

Megiddo [62] shows that the number of tests for λ∗ can be bounded by
the number of comparisons done by the algorithm A for a non-parameterized
problem. Since A is used as a subroutine whenever a comparison is done,
the total running time of A for a parameterized problem lies in the running
time of algorithm A for the non-parameterized problem times the number
of the comparisons of A. Thus, if the running time of algorithm A for the
non-parameterized problem is strongly polynomial, the running time of the
algorithm for the parameterized version will be strongly polynomial, too.

Throughout this thesis, all algorithms used together with parametric
search fulfill the requirements that only additions, scalar multiplications, and
comparisons are necessary. Further, only linear parameters are used.





Chapter 2

A Survey on Evacuation Problems

2.1 Introduction

The task of evacuation problems is to send the maximum number of people to
evacuate from a dangerous site to safe sites. Obviously, the parameter time
plays an important role in evacuation problems. Therefore, only flow over
time models are considered to model the evacuation setting in a reasonably
realistic way. Quickest transshipment problems are analyzed in order to get
a reasonable lower bound for the minimum time horizon of a real evacuation
situation and is therefore of high relevance. Given an amount of supplied and
demanded flow in source and sink nodes the quickest transshipment problem
asks for a flow that sends this amount of flow over time from sources to the
sinks in the minimum possible time horizon. In the context of emergency
evacuation from buildings, Berlin [8] and Chalmet et al. [12] study the quick-
est transshipment problem in networks with multiple sources and a single
sink. Jarvis and Ratliff [44]1 showed that three different objectives of this
optimization problem can be achieved simultaneously: (1) Minimizing the to-
tal time needed to send the supplies of all sources to the sink, (2) maximizing
the amount of flow leaving the network at all times θ ≥ 0, and (3) minimizing
the average time for all flow needed to reach the sink. Each transshipment
optimizing objective (1) is a quickest transshipment. Objective (2) says that
it is additionally possible to simultaneously maximize the amount of flow sent
into the sink up to all times θ ≥ 0 in a transshipment problem. A transship-
ment optimizing objective (2) is called earliest arrival transshipment. Each
earliest arrival transshipment obviously additionally optimizes objective (1)
and is therefore a quickest transshipment. The reverse does not hold, i.e., not
every quickest transshipment optimizes (2), too. Notice that earliest arrival
transshipments do not necessarily exist in networks with multiple sinks, but
quickest transshipments do. Besides, each transshipment maximizing objec-
tive (2) naturally minimizes objective (3). We will not consider objective
(3) in the following, since we concentrate on objective (2), maximizing the

1Strictly speaking, Jarvis and Ratliff [44] only consider the single-source case but their
observation also applies to the more general case with multiple sources.
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amount of flow leaving the network at all times θ ≥ 0, in this thesis.

Not only transshipment problems but also maximum s-t-flows over time
problems can be considered in order to model different evacuation settings.
The task is to send as many people out of an endangered site. Again, it
is preferable, if the computed maximum s-t-flow has the property, that it
also maximizes the amount of flow sent into the sink up to each time θ ≥ 0.
Therefore, earliest arrival s-t-flows are considered. An evacuation fulfilling
the earliest arrival property is known to be optimal, even if the catastrophe
occurs before all people have left the site to evacuate, since the number of
evacuated people by then is as large as possible.

In the following, we will give a survey on the above mentioned network
flow problems and state known results as well as algorithms. In Section 2.4
we overview further methods of solving evacuation problems.

2.2 Quickest Transshipment Problems

In the following, we consider quickest transshipment problems which are stud-
ied very well, i.e., problems where objective (1) is optimized. An instance of
the quickest transshipment problem consists of a network N with capacities
and transit times on the arcs, multiple source nodes S+ and multiple sink
nodes S− with a supply-demand function d : S+ ∪ S− → R. The task is to
determine the minimum time horizon θ∗ for which there exists a feasible flow
satisfying all supplies and demands as well as to find such a feasible flow.
In the following, we will give a short overview over results for the quickest
transshipment problem for several network flow models.

2.2.1 Quickest Transshipments with Constant Transit Times

For an instance of the quickest transshipment problem with constant transit
times, we further require that capacities and transit times on arcs are constant
and integral. If capacities and transit times are not integral, scaling helps to
fulfill this property.

There exists an easy to see algorithm in the time-expanded network to
determine a quickest transshipment. For such an algorithm, we first guess an
(integral) time horizon θ and construct the time-expansion of networkN . We
add a supersource s which is connected to each copy s′(0) of sources s′ ∈ S+

at time layer zero by a zero transit time arc having capacity d(s′). Further,
we add a supersink t to the network with uncapacitated, zero transit time
arcs (t′(θ−1), t) for all copies of t′ ∈ S− at time layer θ−1. Using a maximum
static s-t-flow computation in this network, we compare the resulting flow
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value with the total supply of the problem. If the flow value is smaller than
the total supply, we need to increase the guessed time horizon. Otherwise,
we have found an upper bound on the optimal time horizon. A natural upper
bound for the time horizon is obviously |V | ·max{τ(a)|a ∈ A}+

∑
s∈S+ d(s)

since we assumed integral capacities. The minimum (integral) value for θ
such that all supplies and demands are fulfilled can then be found using
binary search. This algorithm has the disadvantage that it needs the time-
expansion which makes it pseudo-polynomial. If we do not restrict ourselves
to integral time horizons and transit times there can occur more problems.
First, the construction of time-expanded networks needs to be redefined, if
the time horizon or transit times of arcs are not integral. Moreover, the
binary search could need exponentially many steps until the optimal time
horizon is determined.

In the following we present the strongly polynomial time algorithm by
Hoppe and Tardos [40] to solve the quickest transshipment problem. In
particular, we show how to determine the optimal time horizon avoiding
binary search.

A Strongly Polynomial Time Algorithm

In order to compute a quickest transshipment in strongly polynomial time,
we especially need to look at the closely related transshipment over time
problem. An instance of the transshipment over time problem consists of an
instance of the quickest transshipment problem where we are further given
a time horizon θ > 0. The task is to find a feasible transshipment over time
within time horizon θ or to determine that there does not exist a feasible
transshipment over time. The following definition determines the notion of
feasibility.

Definition 2.1. An instance of the transshipment over time problem is said
to be feasible, if there exists a feasible flow over time that fulfills supplies and
demands within the given time horizon θ.

In order to compute a feasible transshipment with minimum time horizon,
the following has to be done. In a first step, the minimum time horizon θ∗

need to be computed. For a fixed value θ, the quickest transshipment problem
reduces to the transshipment over time problem. In this instance, we have
only to check feasibility. Doing this for several values of θ, we are able to find
the minimum value of θ such that the transshipment over time problem is
feasible. If we found the minimum time horizon θ∗, we are given an instance of
the transshipment over time problem. By modifying the network, we reduce



28 Chapter 2. Evacuation Problems

this instance in network N to an instance of the lexicographically maximum
flow over time problem.

In the following, we first show how to determine the minimum possible
time horizon θ∗ for the quickest transshipment problem in strongly polyno-
mial time. After that, the assumptions on the network and an algorithm
for solving the lexicographically maximum flow over time problem will be
stated before we describe the network modification to equivalently transfer
an instance of the transshipment over time problem to an instance of the
lexicographically maximum flow over time problem.

Minimizing the time horizon θ∗. In order to determine the minimum
time horizon for which an instance of the quickest transshipment problem
stays feasible we need the following powerful criterion by Klinz [50]. It deter-
mines whether the instance is feasible for a fixed value θ and is an important
building block of this thesis. We use here the continuous version which was
extended from the discrete version of Klinz by Fleischer and Tardos [23].

Lemma 2.2 (Klinz [50] and Fleischer and Tardos [23]). For θ ≥ 0
and X ⊆ S+ ∪ S− let d(X) :=

∑
v∈X d(v) and let oθ(X) be the maximal

amount of flow that can be sent from the sources in S+ ∩ X to the sinks
in S− \ X within time θ (ignoring supplies and demands). There exists a
continuous flow over time with time horizon θ that satisfies all supplies and
demands if and only if

oθ(X) ≥ d(X) for all X ⊆ S+ ∪ S−. (2.1)

Since Lemma 2.2 is of importance, we will prove it in the following. First,
we need to state a well known result from Gale [27].

Lemma 2.3 (Gale [27]). For each static network N = (V,A), S+ ∪ S− ⊆
V , let u be the capacity function and d the supply-demand function. The
cut condition, i.e.,

u(X) ≥ d(X) for each X ⊆ S+ ∪ S−, (2.2)

is fulfilled if and only if there exists a feasible flow obeying supplies and
demands.

Proof of Lemma 2.2. If there exists a flow satisfying all supplies and de-
mands, then obviously the feasibility criterion (2.1) holds. Thus, it only re-
mains to show sufficiency. We assume that the feasibility criterion holds. The
sufficiency of the feasibility criterion (2.1) follows directly from Lemma 2.3:
Let N θ = (V θ, Aθ) be the time-expanded network of N with time horizon θ.
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In this network we define the set of sources to be all copies of s ∈ S+ at time
layer zero and the set of sinks to be all copies of t ∈ S− at time layer θ− 1.
Since a cut in N θ corresponds to a feasible cut over time in N , the feasibility
criterion (2.1) holds in the network N if and only if the cut condition (2.2)
holds in the static network N θ. Applying Lemma 2.3 and by the correspon-
dence of a static flow in the time-expanded network and a flow over time
in the original network, we have proven the statement of Lemma 2.2 for all
networks for which there exists a time-expansion.

A time-expansion obviously exists for integral values of θ. We will now
consider non-integral values and show how to find adequate time-expansions.
Using these time-expansions and applying Lemma 2.3 we have proven the
statement for all possible values θ.

Observe that the function oθ(X) is a continuous function in θ for each
setX ⊆ S+∪S−. Therefore, it exists a time θ∗ at which oθ∗(X) = d(X) holds.
Consider the extended network N ′ defined as follows. Starting from N , we
insert a supersource s that is connected to all sources in S+ ∩X by an un-
capacitated arc with transit time zero. Furthermore, we insert a supersink t
that can be reached from all sinks in S− \X by an uncapacitated, zero tran-
sit time arc. By construction of N ′, the value oθ∗(X) is equal to the value
of a maximum s-t-flow over time in N ′ with time horizon θ∗ which can be
computed via one static min-cost s-t-flow computation. Let xX be such a
static flow. By formula (1.2) (page 15) for the value of a maximum s-t-flow
over time we know that

d(X) = θ∗ · value(xX)−
∑

a∈A(N )

τ(a)xX(a)

and therefore

θ∗ =
d(X) +

∑
a∈A(N ) τ(a)xX(a)

value(xX)
.

Because of the integrality assumption for the capacities, the flow xX is in-
tegral. Then it follows that time horizon θ∗ for which oθ∗(X) = d(X) is
a rational where the denominator is bounded by the value of a maximum
static s-t-flow x∗ in network N .

Let us now consider arbitrary values of θ. If θ equals θ∗ for which oθ∗(X) =
d(X) for some X ⊆ V , we can build a time-expanded network where the
transit times, especially of the holdover arcs, and the time horizon become
integral by scaling. That is, all transit times and θ have to be multiplied by
a constant z ≤ value(x∗) and all capacities need to get divided by z.
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For all other values of θ, observe that the feasibility of the problem does
not change when we decrease θ to the nearest number θ′ with denominator
bounded by value(x∗). Since function o is continuous in θ we will maintain
the property that oθ′(X) ≥ d(X) if and only if oθ(X) ≥ d(X).

Thus, it follows that for all times θ ≥ 0, it is possible to construct a
time-expanded network with time horizon at most θ in which the cut condi-
tion (2.2) holds.

As described in the proof of Lemma 2.2, the value oθ(X), for θ ≥ 0
and X ⊆ S+ ∪ S−, can be obtained by a static min-cost s-t-flow computa-
tion. It follows from the work of Ford and Fulkerson [24] for flows over time
(compare also Section 1.2.2) that

oθ(X) = −min
{
costθ(x) | x static min-cost s-t-flow in N ′} . (2.3)

Here, costθ(x) denotes the cost of the static min-cost s-t-flow x where transit
times on arcs are interpreted as cost coefficients and the cost coefficient of
dummy arc (t, s) is set to −θ. As a consequence of (2.3), the function θ 7→
oθ(X) is the negative of the cost function of a parametric static min-cost
s-t-flow problem. As such, it is piecewise linear and convex.

Hoppe and Tardos [40] observe that the function oθ : S+ ∪ S− → R is
submodular, that is,

oθ(X) + oθ(Y ) ≥ oθ(X ∪ Y ) + oθ(X ∩ Y ) for all X,Y ⊆ S+ ∪ S−.

By the modularity of the supply-demand function d, we get that the
function b : 2V → R defined as

b(X) := oθ(X)− d(X)

is submodular. Thus, the feasibility criterion (2.1) reduces to b(X) ≥ 0
for all X ⊆ S+ ∪ S−. Using the complexity results of minimization of
submodular functions (see Section 1.3), it is possible to check for a given
value θ in strongly polynomial time whether the problem is feasible. Since
we are interested in the minimum time horizon for which the problem stays
feasible, we look for the minimum value of θ. For finding this value, we can
use the strongly polynomial parametric search as described in Section 1.4
where θ is the linear parameter. This yields the following Theorem.

Theorem 2.4 (Hoppe and Tardos [40]). The minimum time horizon θ∗

such that the feasibility criterion (2.1) is fulfilled, i.e., there exists a flow
satisfying all supplies and demands, can be found in strongly polynomial
time.
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Lexicographically Maximum Flow over Time Problem. Before we
consider the flow over time version, we consider the lexicographically max-
imum static flow problem. An instance of the lexicographically maximum
static flow problem consists of a network N = (V,A) with capacities on
the arcs, a set of sources S+ ( V and a set of sinks S− ⊆ V \ S+. On
the set of sources and sinks we require an ordering, say s0, s1, . . . , s`, for
S+∪S− = {s0, s1, . . . , s`}. A lexicographically maximum static flow is a feas-
ible static flow that maximizes the amount of flow leaving each source/sink
in the given order. Flow leaving a sink si is meant to leave the network
by entering the sink. Minieka [65] and Megiddo [61] observe that a solu-
tion to the lexicographically maximum static flow problem can be described
as a flow that simultaneously maximizes the amount of flow leaving sub-
sets Si = (s0, . . . , si) for i = 0, . . . , `. For the lexicographically maximum
static flow problem the following existence result holds.

Lemma 2.5 (Minieka [65]). In networks with a given set of ordered sources
and sinks {s0, . . . , sl} there exists a lexicographically maximum static flow,
i. e., a flow that simultaneously maximizes the amount of flow leaving sub-
sets Si = (s0, . . . , si).

In an instance of the lexicographically maximum flow over time problem,
we are further given transit times on the arcs and a time horizon θ∗. By the
correspondence of a static flow in the time-expanded network and a flow over
time in the original network, the above result also holds for discrete flows over
time. Fleischer and Tardos [23] extended this correspondence to continuous
flows over time. The following paragraph shortly describes an algorithm by
Hoppe and Tardos [40] on how to find such a flow over time that maximizes
the flow sent out of sources and reaching the sinks, respectively, up to time θ∗

in the given order.

Starting from the original network N , we construct network N`+1 as fol-
lows. We add a node ψ that is connected by uncapacitated, zero transit
time arcs (ψ, si) to all sources si ∈ S+. Let f `+1 denote the zero flow.
We denote the residual network of some network Ni and a suitable flow f i

by N f i

i . By the above notation, obviously N f`+1

`+1 = N`+1 holds. During the
next ` + 1 iterations i = `, . . . , 0, the algorithm considers the sources and
sinks s`, s`−1, . . . , s0 in descending order. If si is a source, arc (ψ, si) becomes

deleted from network N f i+1

i+1 to obtain network N f i+1

i . Then we compute

a maximum static ψ-si-flow gi having minimum cost in N f i+1

i where tran-
sit times are interpreted as costs of the arcs. If si is a sink, we first add

an uncapacitated arc (si, ψ) with transit time −θ∗ to network N f i+1

i+1 . Then
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we compute a static min-cost circulation gi in the resulting residual net-

work N f i+1

i , again interpreting transit times as costs. At the end of each
iteration, we construct flow f i by adding the new flow gi to f i+1.

To construct the lexicographically maximum flow over time, we tempo-
rally repeat the flows over the paths computed in the several iterations (confer
[40]). The resulting flow is a feasible lexicographically maximum flow over
time.

Theorem 2.6 (Hoppe and Tardos [40]). A lexicographically maximum
flow over time can be found in strongly polynomial time using the above
described algorithm.

Transshipment Over Time Problem. The transshipment over time prob-
lem can be solved by modifying the network and defining an order on the
sources and sinks such that we can easily apply the algorithm to compute
a lexicographically maximum flow over time. We will shortly explain the
network modification and how to define the order of sources and sinks in the
following. For more details we refer to [40].

In a network, we are given supplies and demands. If the transshipment
over time problem is feasible, then the maximum flow value that can be sent
out of a source over time is larger than or equal to the supply of this source.
Analogously, the maximum amount that can enter a sink within the time
interval [0, θ∗) is larger than or equal to the negative demand of this sink.
The goal is to decrease, if necessary, the maximum flow that can be sent out
of a source or reached by a sink over time to the value of the supply and
the negative of the demand, respectively. This can be done by reducing the
capacity of the outgoing and incoming arcs of sources and sinks in a clever
way. Therefore, we define tightness of sets of sources and sinks.

Definition 2.7. We say a subset X ⊆ S+ ∪ S− of sources and sinks is tight
if oθ∗(X) = d(X).

In a first step, we insert for all sources s ∈ S+ a node s′ which is con-
nected to s via an uncapacitated, zero transit time arc. The supply of s is
moved to s′ and these new nodes now build the set of sources S ′+ in this new
network. Here s acts as an intermediate node. We proceed with the sinks
analogously. The new set is then called S ′−. Notice that the problem itself
stays the same since all transformations are redundant. Let C denote a set
of subsets of sources and sinks. We further require C to be a chain, i.e., the
elements in C can be ordered in such a way that they are nested. This means
that for each element Si ∈ C it holds that Si ( Sj for i < j. We initialize
the chain C by C := {∅, S ′+ ∪S ′−}. Both sets in C are trivially tight and C is
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nested. We will successively insert tight subsets of sources and sinks into C.
The goal is to find a chain of nested, tight subsets of sources and sinks where
the size of subsequent elements in the chain differs by one. This will define
an ordering of the sources and sinks such that each element Si of the chain C
contains sources and sinks {s0, s1, . . . , si}.

We call two subsets Q and Q′ adjacent in C if there is no set R in C such
that Q ( R ( Q′. As long as there are two adjacent subsets Q and Q′ in the
chain which differ by more than one element, we choose one of these elements,
say s′. Assume s′ is a source. If Q∪{s′} is tight, we are done. Otherwise, we
add two sources s1 and s2 to S ′+. We insert arc (s1, s), which has zero transit
time and a non-negative capacity to be determined, and arc (s2, s), which has
a non-negative transit time to be determined and infinite capacity. Here s is
the original source s ∈ S+ to which s′ is connected. Then, we choose first the
capacity of (s1, s) and the supply of s1 and secondly the transit time of (s2, s)
and the supply of s2 such that Q ∪ {s1} and Q ∪ {s1} ∪ {s2} are tight, the
total sum of new supplies of s′, s1, s2 equals the former supply of s′, and the
problem is still feasible. Nodes s1 and s2 have to be added to all subsets in C
where s′ is in. The procedure works analogously, if s′ is a sink. We denote
the resulting transformed network by Ñ .

The transformation from network N to network Ñ has the property that
the amount of flow that can be sent out of sources or reached by sinks over
time is reduced. Thereby, it is guaranteed that the original supplies and
demands still can be fulfilled. Then the following can be concluded.

Theorem 2.8 (Hoppe and Tardos [40]). The network modification as
described above can be done in strongly polynomial time and a feasible trans-
shipment in network Ñ does not need more time to fulfill all supplies and
demands than a feasible transshipment in N .

To apply the lexicographically maximum flow over time algorithm we
order the sources and sinks of the new network Ñ according to their occur-
rence in the sets in chain C. This yields sets Si := {s0, . . . , si} for all nested
sets Si ∈ C. In particular, in Ñ it holds for each source si that the supply
equals the value of a maximum flow over time out of this source subject to
the fact that all supplies and demands of sources and sinks sj, j < i, are
fulfilled. Equivalently, for each sink si it holds that the negative of the de-
mand equals the maximum amount of flow that can be sent into the sink
up to time θ∗ subject to the fact that all supplies and demands of sources
and sinks sj, j < i, are fulfilled. This network is a feasible instance of the
lexicographically maximum flow over time problem which now can be solved
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in this network. The resulting flow is a feasible transshipment in Ñ and
induces a feasible transshipment in the original network N .

2.2.2 Quickest Transshipments with Inflow-Dependent Transit Times

In the following, we will consider the quickest transshipment problem in a
single-source-single-sink network having inflow-dependent transit times on
arcs. For the case of constant transit times, we can either use the algorithm
from the previous section or apply a strongly polynomial time algorithm by
Burkard, Dlaska, and Klinz (see [9] for details) for this special case of quickest
transshipments.

For the case of inflow-dependent transit times, some more elaborate tech-
niques need to be used. Building up on the approach of Carey and Subrahma-
nian [11], Köhler, Langkau, and Skutella [54] introduce a model that is both
time-expanded and expands the transit time function for the case of inflow-
dependent transit times that depend on the amount of flow entering an arc.
While this expanded model only allows pseudo-polynomial algorithms, they
also give a reduced version of this network – the bowgraph. Using this, they
design an efficient 2-approximation algorithm for the quickest transshipment
problem with inflow-dependent transit times. In the following, we present
this model and the algorithm.

The Quickest Transshipment Algorithm in the Bowgraph. The
main idea of the approximation algorithm from [54] is the usage of a cer-
tain relaxed network that is constructed from the original network: Instead
of working with arcs with inflow-dependent transit times, the arcs of the
original network are expanded in such a way that all the transit times are
constant. More precisely, a set of parallel arcs with different transit times
and capacities is created that represents the different possible states of the
particular arc. This expanded network is called the bowgraph (see Figure 2.1
for a simple example).

The approximation algorithm first computes a quickest transshipment in
this bowgraph, providing a lower bound on the time horizon of the quickest
transshipment for the inflow-dependent problem. This quickest transship-
ment can be determined in polynomial time since the bowgraph has only
arcs with constant transit times. Although the flow computed this way is
not feasible in the original network (there can be flow on different copies
of the same arc), it can be shown that it can be made feasible by a simple
push-up operation that puts all the flow of the different copies of an arc onto
only a single copy of it (see Figure 2.2). While this push-up operation in-
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Figure 2.1: Consider a network consisting of only one arc (s, t). The transit time function
is given as a left-continuous step function as depicted on the left hand side. On the right
hand side, the bowgraph for the single arc network is shown. The different bows represent
different possible transit times for this arc. A suitable set of capacities on the horizontal
arcs guarantees that for each bow no more flow can enter than the transit time function
of the original network would allow. The bows itself have infinite capacity. Notation on
the arcs of the network: capacity/transit time.

s t s t

Figure 2.2: The left versus the right version of the picture shows the bowgraph before
and after the push-up operation, respectively. The width of the flow represents the amount
of flow sent over the corresponding arc.

creases the time horizon of the original computed quickest transshipment, it
can be shown that this will be not more than twice as large as before and
thus gives a 2-approximation of the quickest transshipment problem for the
inflow-dependent model. For more details, we refer to [54].

Hall, Langkau, and Skutella [33] extend the above described function to
an approximation scheme for this problem even for the multi-commodity
case.

Remarks. Köhler and Skutella [55] consider load-dependent transit times,
give a model for this setting and give a 2-approximation algorithm for the
quickest transshipment problem in the single-source-single-sink setting. They
also show that there cannot be a polynomial-time approximation scheme un-
less P=NP.
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2.3 Earliest Arrival Flow Problems

In the following we will consider two flow problems taking into account the
earliest arrival property. Flows having this property are not only optimal
at a given time horizon but have sent the maximum amount possible into
the sink by each time θ ≥ 0. Therefore, solutions to earliest arrival flow
problems are much more applicable to evacuation settings, where the time
of the catastrophe is unknown, as solutions to the quickest transshipment
problems are.

In the following, we will give a short overview over results on the earliest
arrival s-t-flow problem which is a special case of the maximum s-t-flow over
time problem. After that, we consider the earliest arrival transshipment
problem — a special case of the quickest transshipment problem.

2.3.1 Earliest Arrival s-t-Flows

Assume we are given a single-source-single-sink network with constant transit
times on the arcs. In Section 1.2.2, we shortly described how to find a
maximum s-t-flow over time from source s to sink t. There we are given a
time horizon T and the task is to send as much flow from s to t within that
time horizon. A feasible maximum s-t-flow over time could send the total flow
value shortly before the given time horizon T into the sink. In an evacuation
setting, we are also interested in routing as many people as possible into
the safe site up to the time where the catastrophe occurs. Since the exact
times of catastrophes are not predictable, we are interested in solutions which
avoid sending flow into the sink only shortly before time T . Earliest arrival
s-t-flows prevent such a flow behavior, if possible.

Shortly after Ford and Fulkerson[24] introduced an algorithm for the max-
imum s-t-flow over time problem, the more elaborate earliest arrival s-t-flow
problem was studied by Gale [28]. He gave a proof of the existence of earliest
arrival s-t-flows in the discrete flow over time model. The existence in the
continuous flow over time model has been first observed by Philpott [67].
Recall from Section 2.1 that the goal is to find an s-t-flow over time that
simultaneously maximizes the amount of flow reaching the sink t up to any
time θ ≥ 0. By the definition, it can easily be seen that each earliest arrival
s-t-flow up to a time θ ≥ 0 is also a maximum s-t-flow over time with time
horizon θ. The converse does not hold in general.

Though Gale [28] showed the existence of earliest arrival s-t-flows, it is not
obvious how to find them algorithmically. Minieka [65] and Wilkinson [77]
were the first who tackled this problem and designed algorithms for finding
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earliest arrival s-t-flows. Both algorithms rely on the successive shortest path
algorithm [45, 41, 10]. There, we successively search for shortest paths from s
to t in the residual network as long as there exist augmenting s-t-paths. An
amount of the minimal residual capacity on such a path is augmented. The
found path P and the minimal residual capacity x(P ) are stored.

In order to obtain the earliest arrival s-t-flow, which is a flow over time,
flow of value x(P ) is sent temporally repeated over paths P ∈ P. Notice
that the set P together with the flow values x(P ) for all P ∈ P forms a
kind of path decomposition. To maintain the earliest arrival property of that
s-t-flow, it is necessary to send flow also over backward arcs. By sending
flow over an backward arc, we send this flow back to an earlier point in
time. Path decompositions also using backward arcs are called generalized
path decompositions. Unfortunately, the number of paths in a generalized
path decomposition cannot longer be bounded by the number of arcs of the
network as it can be done for (non-generalized) path decompositions as de-
scribed in Section 1.2.1. For more details on generalized path decomposition
we refer to [38].

As shown by Zadeh [78], there are families of networks that require the
successive shortest path algorithm to have a pseudo-polynomial number of
iterations, that means the algorithm does not run in polynomial time. In fact,
the networks given by Zadeh can be interpreted as instances of the earliest
arrival s-t-flow problem, requiring the successive shortest paths algorithm to
need Ω(T ) iterations. Here, T denotes the given time horizon. It is still an
open question whether the earliest arrival s-t-flow problem can be solved in
polynomial time.

Hoppe and Tardos [39] were the first to present an approximation algo-
rithm for finding earliest arrival s-t-flows where their objective was to find for
a given ε > 0 a flow f such that for each θ ≥ 0 the amount of flow reaching
t by θ is at most an ε-fraction less than the optimum. They achieved this
by using a capacity scaling approach and the generalized path decomposi-
tion achieved by using the successive shortest path algorithm. Fleischer and
Tardos [23] extend the correctness of the above algorithm to the continuous
flow over time model. Fleischer and Skutella [22] use the algorithm of Hoppe
and Tardos [39] to obtain an approximate min-cost (maximum) s-t-flow over
time where the time horizon is enlarged by a factor (1 + ε).

A closely related problem is the earliest arrival s-t-flow problem for time-
dependent transit times (i.e., every arc can have for different times different
(constant) transit times) or time-dependent capacities. In this setting, the
transit time of an arc is not constant but varies over time. The existence
result by Gale also holds for this special case of transit times in discrete
flows over time. Other parameters that could change over time are capacities
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of arcs and, if given, for nodes (recall that node capacities allow that flow
that reached a node can be stored in this node up to a given capacity and
is sent into an outgoing arc at a later time). Tjandra [75] shows how to
compute discrete earliest arrival s-t-flows in networks with time-dependent
transit times and capacities (arc capacities as well as node capacities) in
time O(|V |(|V | + |A|)T 2). Ogier [66] studied the case of zero transit times
where arc capacities and node capacities are piecewise-constant functions of
time. For this special case he gives a polynomial algorithm. Fleischer [19]
improved the running time of this algorithm.

2.3.2 Earliest Arrival Transshipments

In the following, we consider the earliest arrival transshipment problem which
is a special case of the quickest transshipment problem. That is, every ear-
liest arrival transshipment is also a quickest transshipment, but the reverse
does not hold in general. Earliest arrival transshipments are motivated by
applications strongly related to evacuation of sites where the amount of peo-
ple at specified places is known in advance. This can be the evacuation of
office buildings, apartment buildings, or airplanes. In those applications, we
may assume to know exactly how many people are in an office because, e.g.,
the number of working stations is known. In an airplane, exactly one per-
son can sit on a seat. The seats are modeled as the sources. We assume
that there will be no restriction on the amount of people safe sites can house
as it is the case in places outside a building or outside an airplane. All
these settings can be modeled as a network with a given set of sources and
a set of sinks and a supply-demand function d : S+ ∪ S− → R. We require
that

∑
s∈S+ d(s) +

∑
t∈S− d(t) = 0. The task is to evacuate as many people

as early as possible from the site to be evacuated.

Fleischer [18] showed that transshipments having the earliest arrival prop-
erty do not necessarily exist in multiple-sources-multiple-sinks networks. We
give a simple counterexample with one source and two sinks in Figure 2.3.
Richardson and Tardos [70] observed, that for the case of several sources
with given supplies and a single sink, earliest arrival transshipments do al-
ways exist. This follows, for example, from the existence of lexicographically
maximum static flows in time-expanded networks; see, e.g., Minieka [65].
Therefore, we will only consider multiple-sources-single-sink networks in the
following.

An easy to see algorithm to compute an earliest arrival transshipment
is the use of the time-expanded network as for the quickest transshipment
problem (confer Section 2.2.1). In order to build up the time-expanded net-
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t1

τ(v, t2) = 1

τ(v,
t1) = 0

t2

s v

d(s) = 2

d(t2) = −1

d(t1) = −1

τ(s, v) = 0

Figure 2.3: A network with one source and two sinks with unit demands for which an
earliest arrival flow does not exist. All arcs have unit capacity and the transit times are
given in the drawing. Notice that one unit of flow can reach sink t1 by time 1; in this
case, the second unit of flow reaches sink t2 only by time 3. Alternatively we can send one
unit of flow into sinks t1 and t2 simultaneously by time 2. It is impossible to fulfill the
requirement, that both flow units have reached their sink by time 2 and one of them has
already arrived at time 1.

work, we first need to guess a (integral) time horizon T . Then there are
several static flow algorithms that yield an earliest arrival transshipment for
the original network. One algorithm is indicated by the above stated ex-
istence result of Richardson and Tardos [70]. To apply a lexicographically
maximum static flow algorithm in the time-expanded network we extend it
by the supersource s connected to all sources s′ ∈ S+ at time layer zero.
The capacity of each arc (s, s′) is set to the supply of the connected original
source s′ ∈ S+. The sinks t(0), t(1), . . . , t(T − 1) in the time-expanded net-
work are sorted in this order corresponding to the time layer they are in. The
application of the lexicographically maximum static flow algorithm on the or-
dered set {s, t(0), . . . , t(T − 1)} yields a static flow which can be interpreted
as a feasible earliest arrival transshipment in the original network.

A second possibility of computing an earliest arrival transshipment using
the time-expanded network is the use of a static min-cost s-t-flow algorithm.
To apply this algorithm, we add a supersource s to the time-expanded net-
work as before and assign zero costs to those arcs. Further, a supersink t is
inserted and connected from all sinks t′(0), . . . , t′(T−1) of the time-expanded
network with zero costs. The cost of a holdover arc is set to one. For all
remaining arcs we set the cost to the transit time of the corresponding arc in
the original network. A feasible static min-cost (maximum) s-t-flow in this
network can be interpreted as a feasible earliest arrival transshipment in the
original network.

Since the use of time-expanded networks increases the running time to be
at least pseudo-polynomial, we are interested in algorithms that do not need
a time-expanded network.

Hajek and Ogier [32] give the first polynomial time algorithm for the
earliest arrival transshipment problem in networks with zero transit times
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on all arcs. Fleischer [18] gives an algorithm with improved running time.
Fleischer and Skutella [21] use geometrically condensed time-expanded net-
works to approximate the earliest arrival transshipment problem for the case
of arbitrary transit times. They give an FPTAS that approximates the time
delay as follows: For every time θ ≥ 0 the amount of flow that should have
reached the sink in an earliest arrival transshipment by time θ, reaches the
sink at latest at time (1 + ε)θ.

2.4 Further Methods of Modeling and Optimizing Evacuation

There are many more results for evacuation models and its optimization.
In the following, we mention further literature modeling certain evacuation
problems by network flows. Thereafter, we shortly overview the literature on
simulation approach concerning evacuation problems.

A huge variety of extensions to existing network flow models exist in or-
der to apply them to the evacuation problem. Most of them only consider
the quickest transshipment problem and side constraints. Hamacher and
Tufecki [37] study the quickest transshipment problem and propose solutions
which further prevents unnecessary movement within a building. Moreover,
they consider the problem where several areas of certain priorities for evacu-
ation exist. Both these models are solved via time-expansion of the network
and are therefore undesirable. Another problem solved in the time-expanded
network is a network flow problem with flow-dependent capacities but con-
stant transit times by Choi et al. [13] and Choi, Hamacher, and Tufecki [14].
By introducing turnstile costs which penalize flow leaving the network late,
they obtain earliest arrival flows. In his dissertation, Tjandra [75] considers
several variants of the discrete quickest transshipment problem. For the case
of time-dependent supplies and capacities (i.e., every node/arc can have for
different times different (constant) supplies/capacities), he states a pseudo-
polynomial time algorithm. Moreover, he solves the discrete earliest arrival
s-t-flow problem with time-dependent supplies and capacities (see also [35]).
A more detailed overview over network flow algorithms for certain settings of
the evacuation problem is given in the survey article by Hamacher and Tjan-
dra [36]. Also integer programming methods are used to improve evacuation
planning (see for example [46, 79]). The work of Kalafatas and Peeta [46]
deals with the problem of allowing flow to use lanes of a highway into the
backward direction and thus increasing street capacity. Heuristic approaches
that account to capacity constrained routing are, for example, given by Lu,
Huang, and Shekhar [58]. They consider constant travel times and constant
capacities and determine the order of people to get evacuated from a single
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source via pre-computed shortest paths and the order of people out of several
sources by iteratively re-calculating shortest travel times.

Another area of huge interest is the development of simulation tools to
predict the global evacuation behavior by defining behavior rules for indi-
viduals either by probabilistic methods or by state definitions for cellular
automatas. Well known simulation tools are EVACNET4 [48] for building
evacuation and BYPASS [64] for the evacuation of passenger ships. A sim-
ulation for the evacuation of a football stadium using cellular automatas is
presented in [52]. An analysis of pedestrian behavior needed for the evacu-
ation simulation tools is given in [53]. Since this is a wide field with a huge
amount of literature and projects, we refer to the survey articles of Hamacher
and Tjandra [36] and Gwynne et al. [31] to obtain a deeper insight.





Chapter 3

Earliest Arrival Transshipments

3.1 Introduction

In Section 2.3 we already considered the earliest transshipment problem. For-
mer approaches for earliest arrival transshipments only gave approximation
results or algorithms for very special networks. Further, they assume that all
supplies and demands are fixed. Various real time problems, as the problem
of evacuating an apartment building, do not allow an exact knowledge of
the number of people currently in the building. We can only estimate the
number of people in each room and bound the supplies and demands from
below or above, or both. We show in Section 3.2 that we can assume constant
supplies and demands without loss of generality. By network modifications,
each network having variable supplies and demands can be transformed into
an equivalent network featuring constant supplies and demands. Moreover,
we present the first exact algorithm for the earliest arrival transshipment
problem for fixed supplies and demands whose running time is strongly poly-
nomial in the input plus output size of the problem. As a by-product, we
present a new proof for the existence of earliest arrival transshipments that
does not rely on time-expansion. In Sections 3.3 and 3.4, we give an in-depth
analysis of the structure of the earliest arrival pattern and present a recursive
algorithm to compute it. The earliest arrival pattern is the pointwise max-
imal function of flow arriving at the single sink. Given the earliest arrival
pattern, we show in Section 3.5 how to compute the actual earliest arrival
transshipment. The running time of our algorithm can be determined as
polynomial in the input size plus the number of breakpoints of the earliest
arrival pattern which is part of the output. An alternative algorithm by
Rauf [69] for a special case of the earliest arrival transshipment problem is
described in Section 3.6. There we restrict to tight problems. Given the min-
imum time horizon for which an instance is feasible, it has to hold that the
maximum amount that can be sent out of all sources together equals the sum
of the supplies of the sources. Although, we can solve this problem with our
approach, the direct reduction to the transshipment over time problem seems
worth mentioning. In Section 3.7, we present some practical results that are
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achieved by implementing the earliest arrival transshipment algorithm that
computes a static min-cost s-t-flow in the time-expanded network. We es-
pecially concentrate on airplane evacuation and determine special network
properties. Earliest arrival patterns will be computed for some airplane in-
stances.

A substantial part of this chapter is based on joint work with Martin
Skutella. An extended abstract will appear in [6]. The algorithm described
in Section 3.6 is developed in the master thesis of Rauf [69].

3.2 Bounded Supplies and Demands

In real world applications, the amount of people in a site to evacuate and the
capacity of safe sites can only be estimated. In some settings, the amount
of people in a site to be evacuated is bounded from below, for example in
office buildings publicly accessible. Upper bounded supplies can occur, for
example, in dormitories, where the number of residents is known but not all
are at home in an emergency. Thus, there are instances where we are only
given lower and/or upper bounds for the number of people in an office and
for the capacity available in safe sites. All known algorithms can only handle
constant supplies and demands. Therefore we will describe how to transform
networks with variable supplies and demands to equivalent networks having
constant supplies and demands at sources and sinks, respectively. In those
networks all known algorithms for networks with constant demands and sup-
plies can be applied. This technique will also be adapted in the earliest arrival
transshipment algorithm presented later in this chapter.

A real world setting where people need to get evacuated from unsafe sites
to safe sites is modeled as a network having supplies and demands at sources
and sinks, respectively, of one of the following types.

1. If the amount of people in sites to evacuate and the capacity of safe
sites are exactly known, the supplies and demands of sources and sinks
are fixed. We denote a fixed supply of such a source s by d(s) > 0 and
the fixed demand of a sink t analogously by d(t) < 0. Let S+

F and S−F
denote the set of sources with fixed supplies and the set of sinks with
fixed demand, respectively, in case there are several types of supplies
and demands in the network.

2. Assume the supply of a source is bounded from below by dL(s) > 0,
i.e., at least dL(s) flow units have to be sent out of source s over time.
We assign a lower bounded demand dL(t) < 0 to sink t. At least −dL(t)
units of flow need to be sent into sink t. We denote these sets by S+

L
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and S−L , respectively.

3. If the amount of people in a site can only be estimated from above, the
supply of such a source s determines an upper bound on the amount of
flow that has to be sent out of s. We denote an upper bounded supply
by dU(s) > 0. Analogously, dU(t) < 0 is called an upper bound of the
demand of sink t if no more than −dU(t) units of flow are allowed to
enter sink t over time. Let S+

U and S−U denote these sets of sources and
sinks, respectively.

4. Lower and upper bounds of supplies and demands can also be given
sources and sinks at the same time. The flow value sent over time out
of such a source s needs to be within the interval [dL(s), dU(s)]. The
total flow sent over time into sink t with given lower and upper bounds
for the demand needs to have its value in [−dL(t),−dU(t)]. We denote
these sets of sources and sinks by S+

LU and S−LU , respectively.

In the following, we assume that we are additionally given a fixed flow
value D > 0, which needs to be sent over time through the network from
sources into sinks. Using this value D, we can modify the network such that
the lower and upper bounded supplies and demands can be used as fixed
supplies and demands. In most optimization problems, the value of D is
unknown. Then the modified network is a parameterized one with parame-
ter D. The accurate value for D can then be found using parametric search
or any other search method like binary search.

For the case of fixed values of the supply and demand, we know how to
solve several problems. There it obviously holds that D :=

∑
s∈S+ d(s) =∑

t∈S− −d(t). For cases 2 to 4 of the enumeration above, we will determine
network modifications where the resulting network only has fixed supplies
and demands. Each flow in such a modified network can easily be trans-
formed into a flow in the original network obeying the given lower and/or
upper bounds of supplies and demands.

Let us first consider sources s ∈ S+
L whose supply is bounded from be-

low by dL(si). Feasibility requires that D ≥
∑

s∈S+ d(s). The goal is to
send additionally needed flow into the network via all sources s ∈ S+

L when
fixing the supplies to their lower bounds. Therefore, we set the fix sup-
ply of sources s ∈ S+

L to dL(s) and insert one additional node s0 into the
network which will function as an additional source. We assign a supply
of D−

∑
s∈S+

L
dL(s) ≥ 0 to source s0 which equals the difference of requested

flow value D and the lower bound of the flow value that can be sent out
of sources s ∈ S+

L over time. Further, we add uncapacitated, zero transit
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Figure 3.1: Modified networks where the given supplies at the sources (left hand side)
and the demand at the sinks (right hand side) are fixed whereas in the original network
only lower bounds are given.

time arcs from node s0 to the sources s ∈ S+. By the choice of the supply
of s0, any flow fulfilling the supplies in this new network sends at least D
units of flow into the network out of and via sources s ∈ S+. Deleting
this additional node after the flow computation yields a flow that sends at
least dL(s), s ∈ S+

L , units of flow over time out of source s. A network with
lower bounded supplies which is transformed to a network only having fixed
supplies is depicted on the left hand side in Figure 3.1.

The modifications for sinks can be done analogously as depicted on the
right hand side in Figure 3.1. Here, the additional flow units sent into
sinks t ∈ S−L having only a lower bounded demand are forwarded into the
additional sink t0 with demand −D −

∑
t∈S− dL(t) ≤ 0 via uncapacitated,

zero transit time arcs.

Consider the case, where supplies and demands are given as upper bounds
of the real flow value that needs to be sent over time out of sources and reach
the sinks over time, respectively. We will again fix the supplies and demands
of sources and sinks to the value d(s), s ∈ S+∪S−. Then the amount of flow
sent out of sources and the amount of flow that reaches the sink over time can
exceed the requested flow value, i.e., D ≤

∑
s∈S+ d(s) and D ≤

∑
t∈S− −d(t),

respectively. Therefore, in case of upper bounded supplies at sources, we
need an additional sink t0 directly connected from the sources by uncapac-
itated, zero transit time arcs (s, t0), s ∈ S+

U . We reroute the units of flow
that are not needed to sent into this sink. The demand of sink t0 is set
to D−

∑
s∈S+ dU(s) ≤ 0 which equals the amount of flow not needed to send

to original sinks. Such a modified network is given on the left hand side in
Figure 3.2. The modifications for sinks can be done analogously, see on the
right hand side in Figure 3.2. If a feasible flow can be found in this new net-
work, then the solution can be adapted to a solution to the original problem
with given upper bounds on the supply and demand.

For the last case, where we are given lower and upper bounds for a sup-
ply/demand of a source/sink, the modifications are a little bit more elaborate.
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Figure 3.2: Modified networks where the given supplies at the sources (left hand side)
and the demand at the sinks (right hand side) are fixed whereas in the original network
only upper bounds are given.
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Figure 3.3: Modified networks where the supplies at the sources (left hand side) and the
demand at the sinks (right hand side) are fixed whereas in the original network supplies
and demands are given as intervals [dL(si), dU (si)] for all sources si and [−dL(ti),−dU (ti)]
for sinks ti, i = 1, 2, 3, 4.

Consider a source s ∈ S+
LU with a supply given as an interval [dL(s), dU(s)].

On the one hand, we need to ensure that at least dL(s) units of flow are
sent out of s over time. On the other hand, we must guarantee that we do
not send more than dU(s) units of flow over time out of the source. For
each source s ∈ S+

LU with lower and upper bounded supply we add a copy s′

of this source and connect it with the original source s by an uncapaci-
tated, zero transit time arc (s′, s). Node s′ will function as an additional
source which we assign a fixed supply dU(s) − dL(s). For source s we fix
the supply to dL(s). Further, we add one additional supersink t0 with fixed
demand D −

∑
s∈S+

LU
dU(s) and uncapacitated, zero transit time arcs (s′, t0)

for all nodes s′ added to the network. A flow over time of value exactly dL(s)
has to be sent out of source s. Additional flow can be sent via s into the
network out of the additional source s′. This additional amount is bounded
by dU(s) − dL(s) which is the remaining possible amount of flow to send.
If the total remaining amount is not needed to yield a flow over time with
value D, the surplus amount of flow can be transfered into sink t0. Again
the situation at sinks with lower and upper bounded demands is equivalent.
Figure 3.3 shows the modified networks with fixed supplies and demands.

Since all the above transformations are independent in the sense that one
source or sink does not interfere with another one during the modification, the
sources and sinks of the network can have different types of given supplies or
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Figure 3.4: Modified network where each source and each sink is originally of differ-
ent type of supplies and demands, respectively. The network was constructed using the
modifications as described independently for each type.

demands, respectively. For each type of supply and demand, the appropriate
modifications as described above are done. Notice, that we can no longer
speak of supersources and supersinks which are additionally inserted. The
supernode connected to all sources in S+

L ∪S
+
U ∪S

+
LU has supply or demand:

d(x0) := D −

∑
s∈S+

U

dU(s) +
∑
s∈S+

L

dL(s) +
∑

s∈S+
LU

dU(s) +
∑
s∈S+

F

d(s)

 .

The amount of required flow of this supernode can either be negative, posi-
tive, or zero, depending on the sum of individual given supplies of the nodes.
Thus, it cannot be said in general whether this node is a source or a sink.
The situation at the sinks is again equivalent. Figure 3.4 gives an impression
of how such a network looks like.

In such a network, a flow can be transformed into a flow on the original
network by deleting the additionally inserted nodes and arcs. For each source
and sink the corresponding requirements on the supplies and demands are
obviously fulfilled.

Theorem 3.1. Each network with supplies and demands which are bounded
from below or above or both can be transformed into an equivalent network
having fixed supplies and demands having additional sources or sinks. A flow
computed in the modified network naturally induces a flow for the original
network.

A similar construction is already described in the book of Ford and Fulk-
erson [25] for the Caterer Problem. Here, the caterer needs a certain amount
of laundered napkins each day. Laundering causes costs and time, whereas
purchasing only causes costs. The caterer only owns a certain amount of nap-
kins and needs to buy some, if the laundering does not work quickly enough.
This problem can be formulated as a network flow problem. The sources



3.3 Earliest Arrival Pattern 49

model the beginning of the laundering and the sinks the day, when napkins
are needed. Moreover, there exists an extra source directly connected to the
sinks with infinite supply. This source models the purchase of napkins. It
sends additionally needed flow into the sinks.

We showed in this section that the assumption of fixed supplies and de-
mands is made without loss of generality. The general network with sup-
plies and demands bounded from below or above can be transformed into
a network having constant supplies and demands. In the following we will
describe an algorithm that computes an exact solution for the earliest ar-
rival transshipment problem. As already stated in Section 2.3 earliest arrival
transshipments only exist in networks with a single sink. Therefore, networks
having an upper bounded supply cannot be considered for the computation
of earliest arrival transshipments since an additional sink is inserted. In the
following, we restrict ourselves to networks where each source has a fixed
supply and the single sink t has a fixed demand that equals the negative of
the sum of the supplies of all sources. We start by analyzing earliest arrival
patterns.

3.3 Earliest Arrival Pattern

The earliest arrival pattern p : R+ → R+ is defined by setting p(θ) to the
maximal amount of flow that can be sent into the sink by time θ with-
out violating supplies at the sources, fulfilling capacity constraints and flow-
conservation. Using the notion of the earliest arrival pattern we can define
an earliest arrival transshipment to be a flow over time such that p(θ) units
of flow have arrived at the sink by time θ for all θ ≥ 0 simultaneously.

For the case of a single source S+ = {s} with unbounded supply, the
s-t-earliest arrival pattern is p(θ) = oθ({s}) and thus piecewise linear and
convex. For the case of several sources, the earliest arrival pattern p is still
piecewise linear (see Corollary 3.3 below) but not necessarily convex. A
simple example with two sources is given in Figure 3.5. Notice that in this
example the rate of flow arriving at the sink (i. e., the derivative of p) suddenly
decreases since the entire supply of source s1 has arrived at node t and this
source has therefore run empty. In Section 3.4 we will observe this effect in
a more general context.

The following lemma is essentially a reformulation of Lemma 2.2 for the
setting of earliest arrival transshipments and will later turn out to be useful.
Recall that oθ(A), A ⊆ S+ ∪ {t}, denotes the maximum amount of flow that
can be sent out of sources in A into sink t, if t /∈ A, and zero otherwise, and d
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Figure 3.5: A simple example of a graph with two sources, unit capacities, and unit
transit times where the optimal arrival pattern of a feasible earliest arrival transshipment
is piecewise linear and non-convex.

the supply-demand-function.

Lemma 3.2. Let θ, q ≥ 0. Then p(θ) ≥ q if and only if

oθ(S ′) ≥ q − d(S+ \ S ′) for all S ′ ⊆ S+. (3.1)

Proof. Consider an extended network N ′ with an additional sink t′ that can
be reached from any source by an uncapacitated, zero transit time arc. The
demand of the new sink t′ is defined to be d̄(t′) := q−d(S+) and the demand
of the original sink t is set to d̄(t) := −q. The supplies of sources remain
unchanged, i.e., d̄(s) := d(s) for all s ∈ S+. For B ⊆ S+ ∪ {t, t′} let ōθ(B)
denote the maximum amount of flow that can be sent from the sources S+∩B
to the sinks {t, t′} \B. Notice that p(θ) ≥ q if and only if the transshipment
problem in the extended network N ′ with time horizon θ and supplies and
demands d̄ is feasible. By Lemma 2.2 this is the case if and only if

ōθ(B) ≥ d̄(B) for all B ⊆ S+ ∪ {t, t′}. (3.2)

It remains to show that (3.1) holds if and only if (3.2) holds.

(3.1) ⇐ (3.2): By definition of N ′ we get for S ′ ⊆ S+

oθ(S ′) = ōθ(S ′ ∪ {t′})
(3.2)

≥ d̄(S ′ ∪ {t′}) = d(S ′) + q − d(S+)

= q − d(S+ \ S ′) .

(3.1)⇒ (3.2): Let B ⊆ S+∪{t, t′}. We distinguish several cases. If B∩S+ =
∅, then d̄(B) ≤ 0 ≤ ōθ(B). We therefore assume from now on thatB∩S+ 6= ∅.
Since t′ can be reached from every source node in S+ by an uncapacitated
arc with transit time zero, we get oθ(B) =∞ > d̄(B) if t′ 6∈ B. We therefore
assume from now on that t′ ∈ B. If also t ∈ B, then d̄(B) ≤ 0 ≤ ōθ(B). It
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t

S+

N

t′

d̄(t′) := −d(S+) + q
d̄(t) := −q

Figure 3.6: NetworkN ′ used in proof of Lemma 3.2. Obviously q needs to be smaller than
or equal to oθ(S+) and for higher values of θ even smaller than or equal to oθ(S′)+d(S+\S′)
for some S′ ⊂ S+ to guarantee the feasibility of the earliest arrival transshipment problem
in network N ′.

remains to consider the case that B = S ′ ∪ {t′} for some S ′ ⊆ S+. In this
setting we get

ōθ(B) = oθ(S ′)
(3.1)

≥ q − d(S+ \ S ′) = d(S ′) + q − d(S+) = d̄(B) .

This concludes the proof.

In network N ′ used in the proof of Lemma 3.2 we use d(t) := −q as an
upper bound on the demanded flow that can enter the sink over time. The
remaining flow, namely d(S+)− q flow units, enters the additional sink that
is connected from all sources via uncapacitated, zero transit time arcs. This
transformation is already shown in Section 3.2 where the flow value D is
defined as −q. See also Figure 3.6 for a comparison.

As a consequence of Lemma 3.2, we can show that the earliest arrival
pattern is a piecewise linear function.

Corollary 3.3. The earliest arrival pattern p is piecewise linear.

Proof. As a result of Lemma 3.2 we get

p(θ) = min{oθ(S ′) + d(S+ \ S ′) | S ′ ⊆ S+} .

Since θ 7→ oθ(S ′) is a piecewise linear (and convex) function for all S ′ ⊆ S+,
the result follows.

In the next section we show how we can determine the earliest arrival
pattern of the earliest arrival transshipment problem. The earliest arrival
transshipment itself can be obtained from the given earliest arrival pattern
as shown in Section 3.5.

3.4 Constructing the Earliest Arrival Pattern

Throughout this section we use the following example instance to illustrate
the presented ideas and techniques.
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Figure 3.7: Example of a network N = (V,A), the network expanded by a supersource,
and the corresponding s-t-earliest arrival pattern where individual supplies are ignored.

Example. Assume we are given a network as depicted in the upper left
corner of Figure 3.7 with unit transit times and unit capacities. The supplies
of the sources are as given in the picture.

3.4.1 The Structure of the Earliest Arrival Pattern

We show that the earliest arrival pattern p is composed of several s-t-earliest
arrival patterns in extended networks with an additional supersource s that
is connected to certain subsets of sources in S+. We start by considering the
extended network N0 that arises from connecting supersource s to all nodes
in S+ by an uncapacitated, zero transit time arc. The nodes in S+ are no
longer sources but take the role of intermediate nodes in N0 and their entire
supply d(S+) is shifted to the supersource s. Thus, a feasible s-t-flow over
time in the extended network N0 induces a flow over time in N where d(S+)
units of flow are being sent from the sources in S+ to sink t. Notice, however,
that the induced flow over time in N might violate individual supplies at the
source nodes.

The s-t-earliest arrival pattern in N0 is the function θ 7→ oθ(S+). For
every θ ≥ 0 it holds that p(θ) ≤ oθ(S+). If p(θ) = oθ(S+) for all θ ≥ 0, we are
done since we know how to obtain the s-t-earliest arrival pattern θ 7→ oθ(S+).
Otherwise, let θ1 := sup{θ | p(θ) = oθ(S+)}.1 We use the following lemma
to prove that p(θ) = oθ(S+) for all 0 ≤ θ ≤ θ1.

1The supremum here is indeed a maximum since p(θ) and oθ(S+) are both continuous
functions of θ.
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Lemma 3.4. Let S ′′ ⊆ S ′ ⊆ S+ and 0 ≤ θ′ ≤ θ. Then,

oθ′(S ′)− oθ′(S ′′) ≤ oθ(S ′)− oθ(S ′′) .

Proof. Consider an extended network N ′ with an additional sink t′ that can
be reached from t through an uncapacitated arc (t, t′) with transit time θ−θ′.
The underlying intuition is that all flow arriving at t before time θ′ can be
forwarded to the new sink t′ where it arrives before time θ. For S̄ ⊆ S+∪{t, t′}
let ōθ(S̄) denote the maximum amount of flow that can be sent from the
sources in S̄ to the sinks in (S+∪{t, t′})\ S̄ by time θ. By construction of N ′

we get for S̄ ⊆ S+ the following equalities:

ōθ(S̄) = oθ(S̄) and ōθ(S̄ ∪ {t}) = oθ′(S̄) . (3.3)

We can now prove the statement of the lemma. By (3.3) and submodularity
of ōθ(·) we get

oθ′(S ′)− oθ′(S ′′) = ōθ(S ′ ∪ {t})− ōθ(S ′′ ∪ {t})
≤ ōθ(S ′)− ōθ(S ′′)

= oθ(S ′)− oθ(S ′′) .

This concludes the proof.

Corollary 3.5. Let θ1 = max{θ | p(θ) = oθ(S+)}. Then p(θ) = oθ(S+) for
all 0 ≤ θ ≤ θ1.

Proof. Assume by contradiction that p(θ) < oθ(S+) for some 0 ≤ θ < θ1. By
Lemma 3.2 there exists S ′ ⊆ S+ with

oθ(S ′) < oθ(S+)− d(S+ \ S ′) .

It follows from Lemma 3.4 that

oθ1(S ′) < oθ1(S+)− d(S+ \ S ′)

such that p(θ1) < oθ1(S+) by Lemma 3.2. This contradicts the choice of θ1.

Example. In order to compute the s-t-earliest arrival pattern for the net-
work given in the left part of Figure 3.7 we insert a supersource s as depicted
in the upper right corner of Figure 3.7. Applying the successive shortest path
algorithm to this network yields, for example, the two paths P1 = (s, s1, a, t)
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and P2 = (s, s3, a, b, t), both with flow rate 1. The resulting arrival pattern
up to time 6 is given in the lower part of Figure 3.7.

Notice that the flow arriving at sink node t after time 3 violates the supply
of node s1 since more than one unit of flow has been sent through path P1.
On the other hand, it can easily be seen that we can reroute the flow gaining
a path decomposition with P ′

1 = (s, s3, a, t), P
′
2 = (s, s1, a, b, t), and P ′

3 =
(s, s2, a, b, t) where the flow rate on path P ′

1 is 1 and the flow rates on paths P ′
2

and P ′
3 are only 1/2. Notice that the flow arriving over these paths at the

sink does not violate supplies up to time 5 and has still the same arrival
pattern. Further, there is no other way of sending flow obeying the supplies
of sources s1, s2, s3 for longer than 5 time units. After time 5 the slope of
the earliest arrival pattern p decreases since no more flow out of sources s1

and s2 can reach the sink. In particular, the value of θ1 equals 5.
In our example, any flow over time in N that sends p(θ1) units into the

sink t by time θ1 must use up the supplies of sources s1 and s2. In other words,
the bounded flow values over time determined by the supplies of these sources
are the reason why p(θ) < oθ(S+) for θ > θ1. The next lemma illuminates
this effect for general instances.

Lemma 3.6. There exists a subset of sources S1 ( S+ such that

oθ1(S1) = oθ1(S+)− d(S+ \ S1) .

Before we prove the lemma, we first give an intuitive interpretation of its
statement. In an earliest arrival transshipment, p(θ1) = oθ1(S+) units of flow
reach the sink by time θ1. The lemma states that at most oθ1(S+)−d(S+\S1)
of these units can originate from sources in S1. The remaining d(S+ \ S1)
units must originate from sources in S+ \ S1. These sources therefore run
empty and cannot contribute to flow arriving after time θ1 at the sink.

Proof. By contradiction assume that

oθ1(S ′) > oθ1(S+)− d(S+ \ S ′) for all S ′ ( S+.

Since oθ(S ′) and oθ(S+) are continuous functions of θ, there exists ε > 0 such
that

oθ1+ε(S ′) ≥ oθ1+ε(S+)− d(S+ \ S ′) for all S ′ ⊆ S+.

By Lemma 3.2 this implies p(θ1 +ε) ≥ oθ1+ε(S+). This contradicts the choice
of θ1.
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We consider the reduced instance of the earliest arrival transshipment
problem that is obtained by setting the supplies of all sources in S+ \ S1 to
zero. The earliest arrival pattern of the modified instance is denoted by p′.
The following theorem is the main result of this section.

Theorem 3.7. Let θ1 = max{θ | p(θ) = oθ(S+)} and S1 ( S+ such
that oθ1(S1) = oθ1(S+) − d(S+ \ S1) (see Lemma 3.6). Let p′ denote the
earliest arrival pattern of the modified instance with source set S1. Then,

p(θ) =

{
oθ(S+) if θ < θ1,

p′(θ) + d(S+ \ S1) if θ ≥ θ1.

Proof. It follows from Corollary 3.5 that p(θ) = oθ(S+) for θ ≤ θ1. It remains
to show that

p(θ) = p′(θ) + d(S+ \ S1) for all θ ≥ θ1.

It is clear that “≤”holds since by time θ at most p′(θ) and d(S+ \S1) units of
flow can reach the sink originating from sources in S1 and S+\S1, respectively.

It remains to show that “≥” holds, that is, p′(θ) + d(S+ \ S1) units of
flow can be sent into the sink t by time θ ≥ θ1 without exceeding supplies
at the sources. We check the condition given in Lemma 3.2. For S ′ ⊆ S+

and θ ≥ θ1 we get by submodularity of oθ(·):

oθ(S ′) ≥ oθ(S ′ ∩ S1) + oθ(S ′ ∪ S1)− oθ(S1)

by Lemma 3.4:

≥ oθ(S ′ ∩ S1) + oθ1(S ′ ∪ S1)− oθ1(S1)

by Lemma 3.2 and Lemma 3.6:

≥
(
p′(θ)− d(S1 \ S ′)

)
+

(
oθ1(S+)− d

(
S+ \ (S ′ ∪ S1)

))
−

(
oθ1(S+)− d(S+ \ S1)

)
= p′(θ)− d(S1 \ S ′)− d

(
S+ \ (S ′ ∪ S1)

)
+ d(S+ \ S1)

= p′(θ)− d(S+ \ S ′) + d(S+ \ S1) .

The result now follows from Lemma 3.2.

As a result of Theorem 3.7, we have reduced the problem of constructing
the earliest arrival pattern p to the problem of computing an s-t-earliest
arrival pattern and computing an earliest arrival pattern for a smaller number
of sources S1.
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Figure 3.8: Optimal pattern p′ for the problem with the reduced set of sources S1 = {s3}
(left) and the combined pattern p as the lower bound of the line segments (right).

Example. Concerning our example given in Figure 3.7 we have already
seen that up to time θ1 = 5 flow of value 5 including the total supply of
the sources s1 and s2 can be sent into the sink. In particular, it holds
that oθ(S ′) ≥ oθ(S+) − d(S+ \ S ′) for all S ′ ⊆ S+ and θ ≤ θ1. For
the set S1 := {s3} ⊆ S+ and θ = θ1 this inequality is tight. The func-
tion θ 7→ oθ(S+) is already known (see the lower part of Figure 3.7).

For the restricted earliest arrival problem with sources S1 = {s3}, the
earliest arrival pattern p′ is given in the left part of Figure 3.8. By Theo-
rem 3.7, the resulting earliest arrival pattern p of the original instance is the
lower envelop of the two functions depicted in the right part of Figure 3.8.

3.4.2 Computing the Earliest Arrival Pattern

Theorem 3.7 reduces the problem of computing the earliest arrival pattern
to an earliest arrival s-t-flow problem and an earliest arrival transshipment
problem on a reduced instance with a strictly smaller set of sources. Applying
this result recursively to the reduced instance finally yields Algorithm 1 which
computes the earliest arrival pattern p.

For the understanding of the algorithm it is helpful to observe that θi <
θi+1 for all i ≥ 0. The statement is clear for i = 0 since the sources in S+ \S1

have positive supply and therefore cannot run empty at time θ0 = 0. For i ≥ 1
assume by contradiction that θi+1 ≤ θi. This yields

oθi(Si+1) ≤ oθi(Si) + oθi+1(Si+1)− oθi+1(Si) by Lemma 3.4,

= oθi(Si)− d(Si \ Si+1) by (3.4),

= oθi(Si−1)− d(Si−1 \ Si)− d(Si \ Si+1) by (3.4) with i := i− 1,

= oθi(Si−1)− d(Si−1 \ Si+1)

which contradicts the minimal choice of Si ) Si+1 in step 4 of the algorithm.
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Algorithm 1: Computing the earliest arrival pattern.

Input: (G,S+, t)
Output: Earliest arrival pattern p.
set i := 0, Si := S+, and θi := 0;1

while Si 6= ∅ do2

compute the maximal value θi+1 ≥ 0 such that3

oθi+1(S ′) ≥ oθi+1(Si)− d(Si \ S ′) for all S ′ ⊆ Si;

compute an inclusion-wise minimal Si+1 ( Si with4

oθi+1(Si+1) = oθi+1(Si)− d(Si \ Si+1) ; (3.4)

compute the function θ 7→ oθ(Si) on the interval [θi, θi+1) and set5

p(θ) := oθ(Si) + d(S+ \ Si) for θ ∈ [θi, θi+1);

i := i+ 1;6

set p(θ) := d(S+) for all θ ≥ θi;7

Theorem 3.8. Algorithm 1 computes the earliest arrival pattern and can
be implemented to run in strongly polynomial time in the input plus output
size.

In order to prove this theorem, we need the following technical lemma
which gives a bound on the computational complexity of step 5.

Lemma 3.9. For 0 ≤ θi ≤ θi+1 and S ′ ⊆ S+, the piecewise linear function g :
[θi, θi+1) → R with g(θ) := oθ(S ′) can be computed in time polynomial in
the input size plus the number of breakpoints.

Proof. In order to compute g(θ) = oθ(S ′), we consider the extended net-
work N ′ that is obtained as follows. Add a supersource s that is connected
to all sources in S ′ by an uncapacitated arc with transit time zero and that
can be reached from t by an uncapacitated dummy arc (t, s). As already
stated in (2.3), g(θ) is equal to the negative of the cost of a static min-cost
circulation in N ′ where the cost coefficient of the dummy arc (t, s) is set
to τ(t, s) = −θ. We denote the cost of an arbitrary circulation x in this
network by costθ(x).

We start by computing a static min-cost circulation x in N ′ for θ = θi.
Let N ′

x denote the residual network of x and let θ′ be the length of a shortest
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s-t-path in N ′
x. Since there is the uncapacitated dummy arc (t, s) of cost −θi

in N ′
x, optimality of x implies θ′ ≥ θi. Moreover, for all θ ∈ [θi, θ

′], the
circulation x is still a static min-cost circulation and g(θ) = −costθ(x). Since
the cost of x depends linearly on θ, the function g is thus linear on the
interval [θi, θ

′]. If θ′ ≥ θi+1, then we are done. Otherwise we have discovered
a breakpoint of g at θ′. Notice that x is no longer optimal for θ > θ′ since
the cost can be reduced by augmenting flow on a negative cycle formed by a
shortest s-t-path of length θ′ in N ′

x and the dummy arc (t, s) of length −θ.
We obtain the next linear piece of g starting at θ′ as follows. Compute

the subnetwork N ′′
x of the residual network N ′

x that is formed by all arcs that
lie on some shortest s-t-path. Compute a maximum static s-t-flow in N ′′

x and
turn it into a circulation y in N ′

x by sending all flow from t back to s on the
dummy arc (t, s). Augmenting x according to y yields a new circulation x.
The new circulation is optimal for all θ ∈ [θ′, θ′′] where θ′′ > θ′ is the length of
a shortest s-t-path in the new residual network N ′

x, x the actual circulation,
and determines the next breakpoint of g.

The described process is iterated until the length of a shortest s-t-path
in the residual network is at least θi+1. Notice that the overall running time
is dominated by the initial static min-cost s-t-flow computation plus number
of breakpoints many maximum static s-t-flow computations.

Example. In our example depicted in Figure 3.7 we can find the func-
tion g : [θi, θi+1)→ R as described above. For the interval [θ0, θ1) we get the
networks N ′,N ′

x, and N ′′
x as follows. Network N ′ is constructed by adding a

supersource s connected to all sources by uncapacitated, zero transit time arcs
and an uncapacitated arc (t, s) with transit time τ(t, s) = −2. This is depicted
in Figure 3.9.1. In this network we compute a static min-cost (maximum) cir-
culation by sending one unit of flow for example over cycle s, s2, a, t, s. This
yields the residual network N ′

x which is depicted in Figure 3.9.2. There the
shortest s-t-path, for example path s, s3, a, b, t, has length θ′ = 3. In the sub-
network N ′′

x consisting of all arcs being part of some shortest s-t-path we now
compute a maximum static s-t-flow. Such a path flow s, s1, a, b, t is depicted
in Figure 3.9.3. Reconsidering network N ′

x together with a new circulation
of one unit of flow along cycle s, s1, a, b, t, s results in the new residual net-
work N ′

x(new) which is depicted in Figure 3.9.4. There no (shortest) s-t-path
remains and therefore the transit time of arc (t, s) is set to infinity which is
strictly greater than θ1. Thus we have found function g on the interval [θ0, θ1)
which is of the form shown in Figure 3.9.5.

Proof of Theorem 3.8. The correctness of the algorithm follows from Sec-
tion 3.4.1 and in particular from Theorem 3.7. It thus remains to prove the
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Figure 3.9: Networks used to compute the function g : [θ0, θ1) → R as described in the
proof of Lemma 3.9 for the network given in Figure 3.7.

stated bound on the running time of Algorithm 1.
First notice that the number of iterations of the while-loop in step 2 is

bounded by the number of sources since at least one source is eliminated
from Si in every iteration. Since step 5 can be done in strongly polynomial
time, it remains to show that steps 3 and 4 can also be done in strongly
polynomial time.

We start with the computation of θi+1 in step 3. For θ ≥ 0 we define the
function f θ : 2Si → R by f θ(S ′) := oθ(S ′) − oθ(Si) + d(Si \ S ′) for S ′ ⊆ Si.
Computing θi+1 thus amounts to finding the maximal value θ ≥ 0 such that

f θ(S ′) ≥ 0 for all S ′ ⊆ Si. (3.5)

Since oθ is submodular and the function S ′ 7→ d(Si\S ′)−oθ(Si) is modular, f θ

is submodular. According to equation (2.3), computing f θ(S ′) for some S ′ ⊆
Si requires two static min-cost flow computations where the cost coefficients
depend linearly on the parameter θ. It can be tested in strongly polynomial
time whether (3.5) is fulfilled for a fixed value θ. Embedding this algorithm
into Megiddo’s parametric search framework gives a procedure for step 3
whose running time is strongly polynomial in the input size of our problem.
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We finally discuss how to compute Si+1 in step 4 in strongly polynomial
time. Notice that (3.4) translates to f θi+1(Si+1) = 0, that is, Si+1 minimizes
the submodular function f θi+1 . By submodularity of f θi+1 , there exists a
unique inclusion-wise minimal subset Si+1 which can be obtained as follows2

(for details see, e.g., [72, Chapter 45]). Initialize Si+1 := Si. For each s ∈ Si,
check whether the minimum value of f θi+1 over all subsets of Si+1 \ {s} is
zero. If so, reset Si+1 := Si+1 \ {s}. Doing this for all elements of Si finally
yields the unique inclusion-wise minimal subset Si+1 with f θi+1(Si+1) = 0. A
faster algorithm for computing the inclusion-wise minimal subset Si+1 was
recently given by McCormick and Queyranne [60].

3.4.3 Reformulation of the Algorithm

In order to get rid of at least some submodular function minimization which
is not practical at all, we reformulate the algorithm described above avoiding
submodular functions. Notice, that we are not able to get rid of checking the
feasibility criterion (2.1) of Klinz using the following method.

As described in the proof of Theorem 3.8, step 3 of Algorithm 1 can be
seen as minimizing a submodular function within a parametric search. The
submodular function f has to evaluate two static min-cost s-t-flow compu-
tations for each considered set S ′ in network N extended by a supersource.
Step 4 directly uses the minimization of a submodular function and deter-
mines the set at which this minimum occurs. Both steps can be rewritten
as computing static min-cost s-t-flows in a slightly modified network with
parameterized supplies and demands. In the following we will describe the
network modification.

We know by Corollary 3.5 that the value for the parameter q in Lemma 3.2
cannot exceed oθ(Si). As in the proof of this lemma we can determine
θi+1 := max{θ | p(θ) = oθ(Si) + d(S+ \ Si)} by considering network N ′ (see
left part of Figure 3.10). An additional sink t′ is inserted intoN to which flow
is transfered that cannot reach sink t by time θi+1. The value θi+1 functions
as a parameter. The demand −q of sink t is set to d̄(t) := −oθi+1(Si) and the
demand of the additional sink t′ is set to d̄(t) := −d(Si)−d̄(t). In this param-
eterized network N ′ we can parametrically search for the maximum θi+1. We
only need to check the feasibility criterion (2.1), i.e., oθ(X) − d(X) ≥ 0, for
a fixed θ in each step of the parametric search. For a given set X, the value
of oθ(X) can be determined by one static min-cost s-t-flow computation as
described in the proof of Lemma 2.2.

2For the purpose of our algorithm it is, of course, advantageous to choose the minimal
subset Si+1 in order to reduce the number of sources as far as possible.
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t

d̄(t) := −oθ(Si)

Si

N

t′

d̄(t′) := −d(Si)− d̄(t)

t

d̄(t) := −oθi+1(Si)

d̄(s) := d(s)− λ

s

Si

N

t′

d̄(t′) := −d(Si)− d̄(t) + λ

Figure 3.10: On the left hand side, we draw the network N extended by an additional
sink and parameterized demands of the sources and sinks, respectively. It is parameterized
by the time horizon θ. The supply of the sources stays the same. Used to compute θi+1. On
the right hand side, we draw network N extended by an additional sink and parameterized
demands of the sources and sinks, respectively. It is parameterized by the decrease of the
supply of one source s ∈ Si. The supply of the remaining sources in Si \ {s} stays the
same. This network is used to compute the inclusionwise minimal set Si+1.

Hence, extending the network reduces the problem of repeatedly min-
imizing the submodular function f θ to repeatedly checking the feasibility
criterion (2.1). That is, we need one static min-cost s-t-flow computation
per considered set. This procedure is obviously strongly polynomial since
only the parametric search and the check of the feasibility criterion (2.1) are
used.

For a reformulation of step 4 of Algorithm 1 consider again network N ′.
For one source s ∈ Si we change the supply to d̄(s) := d(s)− λ. We set the
demand of sink t to d̄(t) := −oθi+1(Si) and the demand of sink t′ to d̄(t′) :=
−d(Si)− d̄(t) + λ (see on the right hand side in Figure 3.10).

Now we parametrically search the maximal λ for which the problem is still
feasible, i.e., we check the feasibility criterion (2.1) for each fixed λ within
the parametric search.

If the value for λ is strictly greater than zero, we know that there is a
flow in the network N ′ sending the maximum possible amount oθi+1(Si) into
the sink up to time θi+1 by sending less flow than d(s), namely d(s)− λ, out
of source s within the time interval [θi, θi+1). If the determined value of λ
for source s equals zero, then flow of value exactly d(s) out of this source is
necessary to gain the maximum flow value oθi+1(Si) in a feasible way. So this
source has to send its total supply into the sink up to time θi+1. There exists
no other flow in the network sending the same amount of flow into the sink
without emptying source s.

Since we use the strongly polynomial parametric search only once to find
the maximal λ-value for each source, we can check whether a source in Si

has to be emptied in strongly polynomial time.

Applying the method as stated above for all sources one after another we
obtain the set of sources Si+1 := {s ∈ Si|λ > 0 for d̄(s) := d(s)− λ}.
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Figure 3.11: On the left hand side, we draw the earliest arrival pattern p with breakpoints
(xi, fi), i = 1, 2, . . . , k = 6. On the right hand side, the modified network is depicted. The
capacity of arc ei = (t, ti) is set to (fi − fi−1)/(xi − xi−1).

The earliest arrival pattern p thus can also be computed using the above
described techniques.

3.5 Turning the Earliest Arrival Pattern into an Earliest
Arrival Transshipment

In this section we assume that we are given the piecewise linear earliest arrival
pattern p of the earliest arrival transshipment problem by its breakpoints
(x0, f0), (x1, f1), . . . , (xk, fk), that is,

p(θ) =


0 if θ ≤ x0,

fi + fi+1−fi

xi+1−xi
(θ − xi) if xi ≤ θ ≤ xi+1, 0 ≤ i < k,

fk if θ ≥ xk.

An illustration is given in Figure 3.11. Notice that the values xi determine
points in time and the values fi determine an amount of flow for all i.

Further notice that x0 < x1 < · · · < xk and x0 is the first point in time
when flow can reach the sink (i. e., x0 is the transit time of a shortest path
leading from any source to the sink). Moreover, it holds 0 = f0 ≤ f1 ≤ · · · ≤
fk = d(S+).

We show that the problem of finding an earliest arrival transshipment can
be reduced to finding a transshipment over time in a slightly modified net-
work N ′ with k additional arcs leading from t to k new sink nodes t1, . . . , tk.
An illustration of the modification is given in Figure 3.11.

Node t is no longer a sink but just an intermediate node of the modified
network N ′. For i = 1, . . . , k, the demand of sink ti is set to −(fi − fi−1)
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such that the total demand −fk of the sinks and the total supply d(S+)
at the sources cancel out each other. The arc leading from t to sink ti is
called ei. The transit time of arc ei is defined to be τ(ei) := xk − xi, its
capacity is (fi−fi−1)/(xi−xi−1) and thus equal to the derivative of p within
the interval [xi−1, xi]. Notice that the capacity of ei is chosen such that the
demand of sink ti is fulfilled if flow is being sent at maximal rate into arc ei

within time interval [xi−1, xi). As a consequence of this observation, we can
state the following lemma.

Lemma 3.10. An earliest arrival flow in N with earliest arrival pattern p
naturally induces a feasible transshipment over time with time horizon xk,
satisfying all supplies and demands in N ′

Proof. Take an earliest arrival flow in N and turn it into a transshipment
over time in N ′ by sending all flow arriving at t in time interval [xi−1, xi)
to ti along arc ei.

The reverse direction of Lemma 3.10 also holds:

Lemma 3.11. A transshipment over time with time horizon xk that satisfies
all supplies and demands in the modified network N ′ naturally induces an
earliest arrival transshipment in N .

Proof. We must prove that the flow passing through node t in an arbitrary
feasible transshipment over time inN ′ with time horizon xk meets the earliest
arrival pattern p. Since, for i = 1, . . . , k, the capacity of arc ei equals the
derivative of the earliest arrival pattern p in the time interval [xi−1, xi] and
since the negative of the demand of sink ti is equal to this capacity times xi−
xi−1, it suffices to prove the following claim:

Claim. For each i = 1, . . . , k the following holds: In a feasible transshipment
over time the demand of sink ti is satisfied by flow being sent into arc ei within
time interval [xi−1, xi].

We prove this claim by induction on i. The case i = 1 is clear since no
flow can arrive at node t before time x0 and, due to the transit time xk − x1

of arc e1, flow being sent into arc e1 after time x1 arrives at t1 after time xk.
In order to prove the claim for i > 1 notice that the total amount of flow
passing through node t before time xi−1 is bounded from above by p(xi−1) =
fi−1. Since this amount is equal to the negative of the total demand of
sinks t1, . . . , ti−1, it follows by induction that all flow passing through t before
time xi−1 must be used to satisfy the demands of t1, . . . , ti−1. Thus, no flow
is sent into arc ei before time xi−1. On the other hand, since the transit time
of arc ei is xk − xi, no flow is sent into this arc after time xi. This concludes
the proof.



64 Chapter 3. Earliest Arrival Transshipment

We finally prove that a transshipment over time with time horizon xk that
satisfies all supplies and demands in the modified network N ′ actually exists.
As a consequence of Lemma 3.11, this yields a new proof for the existence of
an earliest arrival transshipment in N .

Lemma 3.12. There exists a transshipment over time with time horizon xk

satisfying all supplies and demands in N ′.

Proof. We denote the set of sources in N ′ by S+ and the set of sinks by S− =
{t1, . . . , tk}. For an arbitrary S ′ ⊆ S+ ∪ S− let ōθ(S ′) denote the maximum
amount of flow that can be sent within time θ from sources S+ ∩ S ′ to
sinks S− \S ′. By Lemma 2.2 we have to show that ōθ(S ′) ≥ d(S ′) for θ = xk.

Let oθ(S+ ∩ S ′) denote the maximum amount of flow that can be sent
within time θ from sources S+ ∩ S ′ to t. By Lemma 3.4 we get

oθ(S+ ∩ S ′) + d(S+ \ S ′) ≥ p(θ) for all θ ≥ 0.

This inequality can be interpreted as follows: If we assume that the total
supply d(S+ \ S ′) of the sources S+ \ S ′ is already in t by time zero, then
we can send d(S+ ∩ S ′) additional flow units from the sources in S+ ∩ S ′
(ignoring their individual supplies) into t such that the amount of flow at t
is at least p(θ) at any time θ ≥ 0. By forwarding flow from t to the sinks
in S− (similar to the proof of Lemma 3.10), we get a flow over time with
time horizon xk that satisfies the demands of all sinks in S−. From this flow
over time we now remove the d(S+ \ S ′) flow units that we assumed to be
in t at time zero. This yields a flow over time with time horizon xk from the
sources in S+ ∩ S ′ to the sinks S− such that the total amount of flow sent
is d(S+ ∩ S ′) and no sink in S− gets more than its demand. Therefore the
flow arriving at sinks in S− \ S ′ is at least d(S+ ∩ S ′) + d(S− ∩ S ′) = d(S ′).
We have thus shown that ōθ(S ′) ≥ d(S ′) for θ = xk. This concludes the
proof.

As a consequence we can state the following theorem.

Theorem 3.13. Given the earliest arrival pattern p with k breakpoints for
network N , an earliest arrival transshipment in N can be obtained by com-
puting a transshipment over time in a modified network N ′ with k additional
nodes and arcs.

In order to compute a feasible transshipment over time in the modified
network N ′ we can use the algorithm of Hoppe and Tardos [40] as described
in Section 2.2.1. Since the running time of this algorithm is bounded by a
polynomial in the encoding size of the input N ′ and since the encoding size
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of N ′ is of the same order as the encoding size of N plus the encoding size
of p, the required running time is polynomial in the input plus output size of
the earliest arrival flow problem on N .

3.6 Tight Earliest Arrival Transshipments

In the following we consider the problem of tight earliest arrival transship-
ments. We denote earliest arrival transshipment problems as tight if the
maximum amount that can be sent out of sources within the minimum time
horizon θ∗ equals the total supply. The tight problem is obviously a spe-
cial case of the earliest arrival transshipment problem. Given such a tight
earliest arrival transshipment problem, it directly follows by Corollary 3.5
that oθ(S+) = p(θ) for all θ ≤ θ∗. Therefore, Algorithm 1 finds the minimum
time horizon θ∗ = θ1 and the earliest arrival pattern in its first iteration. A
computation of a feasible transshipment in the network extended by several
sinks as described in Section 3.5 determines the earliest arrival transshipment
itself.

Although, we are able to solve the tight version of the problem we present
an alternative algorithm due to Rauf [69] in the following. In this algorithm,
the network modifications as described by Hoppe and Tardos [40] and shortly
resumed in Section 2.2.1 for the quickest transshipment problem can be ap-
plied directly. In contrast to the reduced transshipment over time problem,
the lexicographically maximum flow over time algorithm cannot be used in
the way stated there, since it does not obey the earliest arrival property. The
adaption of this algorithm to find a lexicographically earliest arrival flow is
described in the following.

We first start with the formal definition of tight earliest arrival transship-
ment problems.

Definition 3.14. We call an earliest arrival transshipment problem tight if
there exists a time θ∗ such that d(S+) = oθ∗(S+) and d(X) ≤ oθ∗(X) for
all X ⊆ S+ ∪ {t}.

In order to apply the quickest transshipment algorithm described by
Hoppe and Tardos [40] (and shortly revised in Section 2.2.1), first the min-
imum time horizon θ∗, which is necessary to send the total supply into the
sink, need to be found.

As already described above, the minimum time horizon equals θ1, which
can be found by maximizing θ such that oθ(S ′) − oθ(S+) + d(S+ \ S ′) ≥ 0
for all S ′ ⊆ S+. Since the problem is tight, the above equation reduces to
the feasibility criterion (2.1). Therefore, it suffices to check whether oθ(S ′) ≥
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d(S ′) for all S ′ ⊆ S+ for a fixed value of θ. This can be done in strongly
polynomial time as described in the previous sections.

Given the minimum time horizon θ∗, in a first phase the network is trans-
formed. We use exactly the same algorithm as the one given by Hoppe
and Tardos by inserting new sources and defining a chain C of nested sub-
sets S0 ( S1 ( · · · ( S` of sources of the network. This chain has the prop-
erty that all subsets Si, i = 0, . . . , `, are tight as well, i. e., oθ∗(Si) = d(Si).
A more detailed description can be found in Section 2.2.1.

Since we are given instances having only one sink and we know that
the problem is tight, we also know that set S+ ∪ {t} is tight as well as
set S+. Considering those sets as adjacent sets in chain C, sink t will never
be touched during the modification. So, only nodes s′ which are connected
to sources s ∈ S+ via uncapacitated, zero transit time arcs are inserted to
build the set of sources S ′+ in this new network. We obtain a network Ñ
and a chain C of nested, tight subsets of the extended set of sources S ′+ by
the algorithm that starts with chain C = {∅, S ′+, S ′+ ∪ {t}}.

If we modify the network using the algorithm given by Hoppe and Tardos,
it holds that the minimum time horizon in which the supplies can be fulfilled
does not change. It further holds that the earliest arrival pattern stays the
same in the case of earliest arrival transshipments.

Lemma 3.15 (Theorem 4.7 in [69]). The earliest arrival patterns obtained
by feasible earliest arrival transshipments in networksN and Ñ are the same.

Proof. Observe that the network modifications described by Hoppe and Tar-
dos [40] do not change the total supply. Since the new set of sources S ′+ is
still tight, i.e., v(S ′+) = oθ∗(S ′+), the maximum amount that can be sent into
sink t by time θ∗ still equals the maximum amount of flow that can be sent
into the sink by time θ∗ out of original sources in S+, i.e., oθ∗(S ′+) = oθ∗(S+).
By Corollary 3.5, the earliest arrival pattern of network Ñ is given by p′(θ) =
oθ(S ′+) for θ ≤ θ∗. Note that Ñ contains N as a subnetwork and only
arcs (s′, s) were added for s′ ∈ S ′+ to original sources s ∈ S+ to obtain Ñ .
Therefore, oθ(S ′+) ≤ oθ(S+) for 0 ≤ θ ≤ θ∗. Since Ñ contains uncapaci-
tated, zero transit time arcs (s′, s) for all sources s ∈ S+ in N , it also holds
that oθ(S ′+) ≥ oθ(S+), 0 ≤ θ ≤ θ∗. Thus p(θ) = oθ(S+) = oθ(S ′+) = p′(θ)
for θ ≤ xθ∗, i. e., the earliest arrival patterns defined by feasible transship-
ments in both networks are the same.

It remains to show how to determine the earliest arrival transshipment
in Ñ which can easily be reduced to a feasible earliest arrival transshipment
in N .
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For the computation we need the lexicographically earliest arrival flow
algorithm which is an adaption of the lexicographically maximum flow over
time algorithm as described in [40] and shortly resumed in Section 2.2.1. The
main changes to the algorithm for lexicographically maximum flows over time
are stated in the following.

We use network Ñ together with chain C. Given the chain C, we can
determine an order of the sources and the sink of Ñ by relabeling the sources
in the sense that set Si contains sources s0, . . . , si for all i = 0, . . . , `. Observe
that the single sink t equals the last node s` in this ordering. We add a node ψ
to Ñ with uncapacitated, zero transit time arcs (ψ, si) for i = 0, . . . , ` −
1 and an uncapacitated arc (s`, ψ) with transit time −θ∗. Let Ñ` denote

the resulting network, f `+1 the zero flow. By Ñ f i+1

i we denote the residual
network of network Ñi considering flow f i+1. Since f `+1 is the zero flow,

Ñ f`+1

` = Ñ`. In a first step, we compute an earliest arrival ψ-t-flow with

time horizon θ∗. in Ñ f`+1

` using the successive shortest path algorithm. In
contrast to the computation of a static min-cost circulation, this approach
guarantees the earliest arrival pattern at node t. Next, we extend this flow to

a circulation g` in Ñ f`+1

` by forwarding all flow reaching node t over arc (t, ψ).
We set f ` = g`. During the next ` iterations the algorithm considers the
sources s`−1, s`−2, . . . , s0 in descending order. In each iteration i = `−1, . . . , 0,

arc (ψ, si) gets deleted from network Ñ f i+1

i+1 to obtain network Ñ f i+1

i . Then

we compute a maximum static ψ-si-flow gi having minimum cost in Ñ f i+1

i .
We construct the flow f i by adding the new flow gi to f i+1 at the end of each
iteration.

To construct the lexicographically earliest arrival flow, we use the natural
given generalized path decomposition P with flow values x(P ) for P ∈ P
containing the paths found during the earliest arrival ψ-t-flow computation
and the paths found computing maximum static ψ-si-flows, i ∈ {0, . . . , l−1}.
Sending flow of rate x(P ) in a temporally repeated manner over paths P ∈ P ,
we obtain the lexicographically earliest arrival flow.

Notice that the earliest arrival pattern obtained by the earliest arrival ψ-
s`-flow computed in the first step does not change by the flow sent in later
iterations. Each path from ψ to si using backward arc (ψ, t) only decreases
the flow arriving at node t at time θ∗. Therefore, such a flow does not change
the arrival pattern during the relevant time interval [0, θ∗). Other paths in P
via node t do not change the arrival pattern as well. They only change the
source from which flow is sent into the sink. The lexicographically earliest
arrival flow in Ñ naturally induces a feasible flow in network N having the
same pattern. Thus, we can conclude the following.
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Theorem 3.16 (Theorem 4.6. in [69]). Suppose C is a chain of nested
tight subsets of sources and the single sink in the earliest arrival transship-
ment problem such that the last element of the ordering implied by the chain
is the sink. Then the earliest arrival transshipment problem can be solved
by a single lexicographically earliest arrival flow computation.

Reconsidering the algorithm for finding a lexicographically earliest arrival
flow, we can state the following.

Theorem 3.17. A lexicographically earliest arrival flow with one sink and `
sources can be computed via ` static min-cost (maximum) s-t-flow computa-
tions and one earliest arrival s-t-flow computation.

Since the minimum time horizon needed to fulfill all supplies can be found
in strongly polynomial time, the above lemma gives that the overall running
time is determined by the running time of the earliest arrival s-t-flow algo-
rithm.

3.7 Practical Results

Airplane evacuation has become an interesting subject through media since
Lufthansa made the lawfully prescribed evacuation test of the new A380
with 853 seats for passengers and 20 members of the crew in March 2006 in
Hamburg.

The legal restriction for airplane evacuation are very strict and the posi-
tion of the seats, position of emergency exits, the width of the aisles and so on
have a huge impact on the evacuation time as well as the training of the crew
members. The Federal Aviation Administration (FAA) determines rules for
the prescribed evacuation test and checks the adherence of these rules during
the test. So, for example, each airplane has to be totally evacuated within 90
seconds. During the evacuation, only half of the exits (including emergency
exits) are allowed to work. Further, no light is allowed within the airplane
and in the outside. Carry-on baggage and pillows have to be distributed in
aisles and in emergency exit access ways to complicate the evacuation pro-
cess. The gender and age specific composition of passengers is prescribed as
well as the workout each participant of an evacuation test gets.

Because of the importance of evacuation in general and the nice topology
of airplanes, we would like to evaluate the outcome of the earliest arrival
transshipment algorithm in airplane networks for several evacuation settings.

For computing an earliest arrival transshipment in a network, we have
described several possibilities. The polynomial time algorithm described in
this chapter needs to minimize submodular functions. Although, there are
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fully combinatorial, strongly polynomial time algorithms for minimizing sub-
modular functions, their implementation would be intractable. Therefore, we
implemented an earliest arrival transshipment algorithm which works in the
time-expanded network.

A run of the earliest arrival transshipment algorithm in a simple network
that corresponds to an airplane instance is not able to take all the above
described properties into account. Moreover, the times to go from one seat to
the next seat and to walk along the aisle are only coarse estimates. However,
we are able to compute lower bounds on the evacuation time by assuming the
model to be a perfect evacuation setting. Every real world evacuation will
need more time because of the before mentioned reasons. The determined
lower bound gives an important impression of whether it is possible to fulfill
regulations prescribed by law.

We use LEDA3 version 5.0.1. as network generator. Further, we use the
internal graph data structure from LEDA and several related data structures
such as nodes and edges. Shortest path and min-cost flow algorithms already
implemented in the LEDA library are used as subroutines. All networks have
only integral data such as transit times, supplies, demands, and capacities.

The earliest arrival transshipment algorithm is implemented in C++ and
compiled with g++ version 3.4.5 using the -O3 option. All tests were con-
ducted on a 2.6 GHz AMD Opteron� 252 Processor having 8 GByte memory.

To visualize the flow over time we use the graphical user interface called
Aninet4 implemented by Alexander Hall.

Time-Expansion of Airplane Networks. In an airplane network, the
sources model the seats of the airplane and each source has a supply of one.
The exits of the airplanes are modeled as nodes that are connected to a single
sink. This construction is used, since we do not know the exact amount of
flow that leaves an exit in advance. Therefore, all flow needs to reach the
single sink, which demand is set to the negative amount of number of seats in
the network. In the aisle, we place nodes at each position where passengers
can step from their seats into the aisle. Nodes that are adjacent in the sense
that a passenger could reach the node from another node by one step are
connected by two reverse directed arcs with the same transit time and a
capacity of one. Also the nodes modeling the seats in between the aisles are
connected by two reverse arcs. Only the nodes modeling the seats in the
rows next to the window are connected by a directed arc towards the aisle,
since no reasonable person will use a backward arc here. We assign integral

3http://www.algorithmic-solutions.de/enleda.htm
4Contact Alexander Hall: alex.hall@inf.ethz.ch.
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Figure 3.12: A real seat map of an Airbus A330 of Lufthansa found at
http://www.lovemyseat.com/airlines/Lufthansa/Airbus A330/Airbus A330.html
(©Consumer Travel Research Systems, Inc.)(top) and the corresponding LEDA
graph with directed arcs (bottom).

data to arcs, such as transit times and capacities. In Figure 3.12, we show
a real airplane seat map in the upper part and the corresponding network
generated using the LEDA graph editor.

Instead of simply constructing the time-expanded network as described
in Section 1.2.3, we need to take some special properties of airplanes into
consideration. Although, the network contains two reversal arcs between
two nodes with equal transit time and equal capacity, we do not allow to
use both arcs at the same time at their full capacity. The total flow on
both arcs should not exceed the capacity of one of the arcs, since the aisles
in an airplane are very narrow and it is difficult to move. Moreover, we
do not want to allow flow units to overtake other flow units in nodes. In
particular, people sitting at a window seat are not allowed to enter the aisle
before the person sitting at the aisle seat has left its seat. We further forbid
overtaking in an aisle which is motivated by the narrowness in an airplane.
To achieve these requirements, we need a special construction of the time-
expanded network. First, we assume that each arc in a pair of reverse arcs
has transit time of one. This can be obtained by splitting pairs of reverse
arcs having larger transit time into a sequence of pairs of reverse arcs having
transit time 1. For each node v in the network, we insert additional nodes v′

into the network and connect v′ and v by zero transit time arcs (v′(θ), v(θ))
for each time layer θ. If v is a source, we set the capacity of (v′(θ), v(θ))
to 1 and if v is a node in the aisle, we set the capacity to the width of the



3.7 Practical Results 71

s

(1, 1) (1, 1)

(1, 1)

v

w

θ + 1

θ

v′(θ + 1)

w(θ + 1)

w′(θ + 1)

w(θ)

v(θ + 1)

v′(θ)

v(θ)

s′(θ) w′(θ)

s′(θ + 1)

s(θ + 1)

x′(θ)

s(θ)

x(θ + 1)

x′(θ + 1)

x(θ)

Figure 3.13: On the left hand side we have drawn a section of the airplane network
modeling one seat node in the window row and two nodes in the aisle. On the right
hand side, we show two time layers of the time-expanded network using the special arc
construction which restricts the amount of flow on the reverse arcs to the capacity of one
of those arcs and guarantees that overtaking is forbidden.

aisle, i.e., the capacity of an outgoing arc to another node in the aisle. The
capacity of the arcs restricts the number of people at such a location at the
same time. These arcs guarantee, that there is no overtaking in the rows with
seats and no more people are located at the same place as there is capacity
available. The uncapacitated arcs (v(θ), v′(θ + 1)) and (w(θ), w′(θ + 1)) act
as holdover arcs. For each pair of reverse arcs between two nodes, say v
and w, we insert two additional nodes x, x′ and uncapacitated, zero transit
time arcs (x′(θ), v′(θ)), (x′(θ), w′(θ)), (v(θ), x(θ)), (w(θ), x(θ)) into each time
layer θ. By arcs (x(θ), x′(θ + 1)) having capacity u(v, w)(= u(w, v)), we
implicitly connect nodes v and w in subsequent time layers. These arcs
guarantee that the total flow from v to w and from w to v at the same time is
bounded by the capacity of one of the original arcs. The above described arc
construction is depicted in Figure 3.13. For each pair of nodes connected by a
single arc (a, b) in the original network, we only insert arcs (a(θ), b′(θ+τ(a, b))
for θ = 0, . . . , T − τ(a, b)− 1 and τ(a, b) the transit time.

The Algorithm. Using the modified time-expanded network as described
in the previous paragraph, the algorithm for finding an earliest arrival trans-
shipment works as described in Section 2.3.2. First, a supersource s connected
by zero transit time arcs to the artificial copies of sources at time layer zero
is inserted, i.e., arcs (s, v′(0)) for v ∈ S+. The capacity of those arcs is set to
the supply of the corresponding source which is in our case one. Moreover, a
supersink t is inserted which is connected from all artificial sink nodes s′(θ),
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for s the single sink in all time layers θ ∈ {0, . . . , T − 1} to the supersink by
uncapacitated, zero transit time arcs. Here, T is the value the guessed time
horizon.

In this time-expanded network, we compute a static min-cost (maxi-
mum) s-t-flow where transit times are interpreted as costs. The LEDA Graph
Library offers this algorithm. The outcome of this algorithm is a set of s-t-
paths and corresponding flow values for each path. Flow sent over these paths
obeys the earliest arrival property because of the special structure of the net-
work. If the total flow value is strictly smaller than the total supply of the
earliest arrival transshipment problem, then the chosen time horizon is too
small and the run of the algorithm has to be done again with a higher value
for the time-horizon. Otherwise, we can determine the minimum needed time
horizon by the length of the longest path in the path decomposition plus one
additional time unit. The additional time unit is needed since we consider
the continuous flow model.

The flow over time can then be computed from the static flow in the time-
expanded network by computing a (non-generalized) path decomposition of
the flow on non-backward arcs. A path that uses a holdover arc in the time-
expanded network can be interpreted in the flow over time setting as waiting
in the node for the time interval corresponding to the time layers connected
by the holdover arc.

The Tests. For the testing, several airplane seat maps are represented
as networks. The LEDA GraphWindow was used to create the networks.
The seat maps can be found at http://www.lovemyseat.com. In particular,
we consider the following airplanes: Bombardier Q 400, Airbus A330, Boeing
B747, and Airbus A380. For all those instances, we made coarse assumptions
on the transit times for simplicity. The time that people need for one step
from a seat to the next one and for one step in the aisle each is supposed
to be one second. For each airplane we create several instances by closing
certain exits. Table 3.1 shows the sizes of the instances, including number
of nodes and arcs of the network, number of seats, and the number of open
exits. Further, the total evacuation time, which is the optimal time horizon
in an earliest arrival transshipment computation is given.

Considering Table 3.1, we can observe that in most cases it is possible
to evacuate the considered airplanes in less than 90 seconds. Thus, the
regulation by law can be satisfied in most cases, even if all exits on the right
side of the airplane (lower part in Figure 3.12) are closed. An interesting
observation is that small airplanes cannot necessarily be evacuated within a
small time horizon. Since small airplanes have few emergency exits, people
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Network #nodes #arcs #seats #exits time horizon

BombardierQ400 113 189 74 4 40
A330 340 602 222 8 38
A330RightSide 340 598 222 4 60
A330BackSide 340 589 222 4 59
A330FrontSide 340 589 222 4 106
B747 689 1367 427 12 49
B747StairsClosed 687 1361 427 12 49
B747BottomFloor 689 1365 427 10 49
B747TopFloor 689 1357 427 2 419
B747RightSide 689 1361 427 6 77
A380 965 1837 573 16 50
A380RightSide 965 1829 573 8 78

Table 3.1: This table contains the airplane network instances with their size and the
optimal time horizon. The extension of the airplane name denotes the sides at which the
exits are open. On the reverse side we have closed the exits. As back side in the airplane
we denote the part of the airplane containing the economy and tourist class (left part of the
airplane in Figure 3.12. The front side is the the part of the airplane containing business
and first class (right part of airplane in Figure 3.12). The right side of the airplane contains
all exits on the right when standing in the back of the airplane and looking towards first
class.

need more time to leave the small Q400 than the larger Airbus A330.

The airplane Airbus A330 can be totally evacuated within 38 seconds.
Snap shots of the flow at different points in time are depicted in Figure 3.14.

A subset of sources is marked in the left-most picture of Figure 3.14 for
which the flow already reached the sink and no more flow can leave these
sources. This set equals set S+ \S1 from Algorithm 1 and time 3 is set to θ1.
At this point in time, the seats next to the second exits from the bottom
are emptied and the flow has already reached the sink. In the earliest arrival
pattern, this point in time is marked by a breakpoint at time three at which
the slope of the function decreases. The next breakpoint, where the slope
of the pattern decreases, can be seen at time 14 which is the latest point at
which flow leaves the network via the up-most exits in the first class. All the
snap shots from the flow over time indicate, that the total evacuation time
is strongly dependent on the bottlenecks which are the exit areas.

Another interesting observation is, that, if we close all exits on the right
side of the airplane, the total evacuation time is not twice as long as the
evacuation time of the airplane when all exits work. For the A330, the
total evacuation needs 60 seconds which is surprisingly short compared to 38
seconds when all eight exits work. This is because the long way through the
first class, which was not used during later times of the evacuation in the
setting where all eight exits are opened, now plays an important role in order
to evacuate as many people as early as possible. For an impression on the



74 Chapter 3. Earliest Arrival Transshipment

(a) The left-most picture presents the situation after three seconds. The
picture in the middle is made at time 6. The picture on the right shows
the evacuation situation after 18 seconds.

(b) Earliest arrival pattern of the flow.

Figure 3.14: Different times of the evacuation of the A330 and the earliest arrival pattern
produced by this flow. After 38 seconds the airplane is totally evacuated.
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Figure 3.15: We consider the evacuation of the airplane A330 when the exits on the
left side are kept closed during the evacuation. In the upper picture, the situation in the
airplane at time 18 is depicted. Also the exit in the first class is used till the end. The
total evacuation time for this setting is 59 seconds.

Figure 3.16: Earliest arrival patterns of different instances of the B747 airplane all
having the same evacuation time.

flow see Figure 3.15. Since flow leaves the airplane continuously via all four
open exits, the pattern is a linear function for times later than 3. For time 3,
there is the breakpoint in the slope of the function as in the instance for all
exits open.

Considering the B7474 instances, we can observe in Table 3.1 that the
total evacuation times are the same for the instances with all exits open,
with stairs closed and with all exits closed at the top floor. This is somehow
surprising. Figure 3.16 shows the earliest arrival patterns that occur at the
single sink, i. e., the cumulated amount of flow leaving all exits up to each
time θ ≥ 0. Again, we can observe the decrease of the slope at time 3 in all
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instances. At time 3 only flow units sent out of the sources directly next to
the emergency exits reach the sink. Remaining flow units need another time
unit to reach some of the exits.

The worst instance, considering the arrival pattern, is the bottom floor
instance of the B747. In this instance, the slope of the patterns increases
linearly up to the end of the evacuation. The instances B747StairsClosed
and B747 result in a better earliest arrival pattern. Considering for example
time 24, more than 200 people have already left the airplane in those settings,
whereas only 190 people have left the airplane, if the exits on the upper floor
are kept close. This behavior occurs, since all people from the upper floor
need to wait till people from the bottom floor have left the airplane. The
pattern, in which also the stairs are allowed to use, is slightly better than the
one with closed stairs. In this case, people from the bottom floor can leave
the airplane by climbing up to the upper floor. There, only few people can
use a comparably large number of exits. The more flow can be sent out of
those exits, the higher is the increase in the slope of the pattern. The slope
of the latter two patterns decrease when the last flow out of the upper floor
has left the network.

The A380, for which we used a seat map for 573 passengers, can be op-
timally evacuated in 78 seconds using the coarse assumptions on the transit
time within the airplane. In the real world evacuation experiment for this
airplane in March 2006, even 853 people have left the airplane within ap-
proximately 80 seconds. In contrast to our optimal and perfect setting, such
a real-life experiment cannot be optimal and not at all perfect since there
are people of different speed, luggage in the aisles and so on. Thus, we can
conclude that the transit times in our airplane network instances are chosen
too large. Even then the computed optimal evacuation times are surprisingly
small.

In Table 3.2, we present the size of the time-expanded network for the
optimal time horizon for the given instances and the times needed for the
computation of an earliest arrival transshipment using these time-expanded
networks. We distinguish three different computation times: the time to
construct the time-expanded network, the time to compute the static min-
cost s-t-flow in the time-expanded network, and the time needed to compute
a path decomposition. Obviously, the time needed increases with larger net-
works and a larger number of sources. In particular, the running time for
computing the path decomposition is strongly dependent on the lengths of
the computed paths. Although the number of paths are the same, only in-
stances with open exits in the front of the airplane need significantly longer
time for the path decomposition. In those instances, the paths found are
significantly longer than the paths in other instances.
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Network #nodes #edges construction flow comp. path dec.

BombardierQ400 14482 24372 <1s 1s <1s
A330 44082 74682 <1s 1s 3s
A330RightSide 69602 118508 <1s 2s 5s
A330BackSide 68442 116509 1s 2s 5s
A330FrontSide 122962 210462 0s 3s 6s
B747 120444 210685 <1s 3s 11s
B747StairsClosed 119954 209771 <1s 4s 11s
B747BottomFloor 120444 210587 1s 4s 12s
B747TopFloor 1029904 1821915 4s 35s 98s
B747RightSide 189268 332471 1s 7s 22s
A380 164302 285831 1s 5s 28s
A380RightSide 256310 447663 1s 11s 33s

Table 3.2: Listing of the sizes of the time-expanded networks for the instances given
in Table 3.1 having the optimal time horizon and the times needed to compute the ear-
liest arrival transshipment in those networks, distinguished into construction of the time-
expanded network, the flow computation in the time-expanded network, and computation
of the path decomposition in the time-expanded network.

Conclusion. We are able to compute the earliest arrival transshipment
in airplane networks. By using the earliest arrival transshipment problem,
we maximize the number of people leaving the airplane at every point in
time. As the visualization implies, we do not have a strict influence on the
behavior of flow in the interior of the airplane. This does not change our
goal of optimizing the arrival pattern, but it is a goal to forbid unnecessary
movement within the airplane. However, this does not model reality in a
concise way, but we hope that this helps to find good heuristics that do
not need the time-expansion. Thereby, we would save memory which causes
computational problems, especially for huge instances as the A380 when it
needs a very large time horizon.

Using this kind of time-expansion, not only airplane settings can be mod-
eled in a quite realistic way but also the evacuation of buildings like office
buildings and apartment buildings.





Chapter 4

Earliest Arrival s-t-Flows with

Flow-Dependent Transit Times

4.1 Introduction

In the following we will consider the earliest arrival s-t-flow problem in net-
works where each arc is given a transit time function. The earliest arrival s-t-
flow problem describe an evacuation setting, where an unknown and therefore
maximum amount of people need to be evacuated from a single site at each
point in time. For buildings or airplanes this seems to be unrealistic. How-
ever, this restriction is acceptable when considering flow-dependent transit
times which already complicate the problem significantly.

Different models of flow-dependent transit times are studied, as for exam-
ple the one by Merchant and Nemhauser [63] or the graph expansion of Carey
and Subrahmanian [11]. For the models considering inflow-dependent transit
times introduced by Köhler, Langkau, and Skutella [54] and load-dependent
transit times introduced by Köhler and Skutella [55], already algorithms for
flow over time problems are given. While flow over time problems such as the
quickest transshipment problem and the maximum s-t-flow over time prob-
lem are studied in the context of flow-dependent transit times, there seem to
be no results for the related problem of earliest arrival s-t-flows.

In Section 4.2, it is shown that earliest arrival s-t-flows do not exist in
general for the case of inflow-dependent and load-dependent transit times. In
Section 4.3 a relaxed version of the earliest arrival s-t-flow problem (the α-
earliest arrival s-t-flow problem) is defined and studied. The objective here is
to find an s-t-flow over time that needs only α-times longer to send the max-
imum amount of flow into the sink up to each time θ ∈ [0, T ). In particular,
both lower and upper bounds for the value α are shown. Section 4.4 presents
an approximation algorithm for the α-earliest arrival s-t-flow problem and an
idea about the practicability of this approximation for this problem is given.

The results of this chapter are based on joint work with Ekkehard Köhler.
An extended abstract of the results already appeared in [5] and a full version
will appear in [4].

79
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4.2 Non-Existence of Earliest Arrival s-t-Flows

Earliest arrival s-t-flows are those maximum s-t-flows over time that send
for each time θ ∈ [0, T ) the maximum amount of flow from s to t. While
the existence of a maximum s-t-flow over time for a fixed time horizon T is
obvious, it is not that clear that there are always flows over time that are not
only optimal for T but also for each θ ∈ [0, T ). Gale [28] showed the existence
of earliest arrival s-t-flows for general networks with constant transit times
on the arcs and, more generally, for networks with time-dependent (but not
flow-dependent) transit times and capacities on the arcs. He made use of
the fact that one can model flows over time with constant or time-dependent
transit times using static flows in the time-expanded network. There the
standard max-flow min-cut theorem yields the result.

For the case of flow-dependent transit times, there exists for any fixed time
horizon T an s-t-flow over time that sends the maximum amount of flow from
s to t. It is quite natural to ask whether there is again such a maximum s-t-
flow over time that is maximal also for each θ ∈ [0, T ). Unfortunately, there
is no simple time-expanded model for flows over time with flow-dependent
transit times that allows to reduce the flow over time problem to a static
one. In fact, as will be shown by the following simple counterexamples, there
cannot be a similarly nice existence result for earliest arrival s-t-flows for the
case of flow-dependent transit times as the one by Gale.

Consider the one-arc network, shown in Figure 4.1, together with the
simple linear transit time function given next to it and a capacity two. We
consider a flow over time model with inflow-dependent transit times. Let
T = 3 be the considered time horizon. When sending flow from s to t at a
flow rate of 2 in time interval [0, 1) and at flow rate linearly decreasing from
2 to 0 in time interval [1, 3), then by time 3 a flow of 4 units has reached the
sink t. In fact, this is the maximum amount of flow that can be sent from s
to t in this time horizon.

To construct an earliest arrival s-t-flow, we have to make sure that the
maximum possible amount of flow has reached the sink for any θ ∈ [0, T ). To
show that this is not possible for this example, we examine just two values of
θ. Sending flow at a flow rate linearly decreasing from 2 to 0 in time interval
[0, 2) shows that an earliest arrival s-t-flow must send at least 2 units of flow
to t up to time θ = 2. In fact, sending any of the flow in this time interval at
a higher flow rate would result in a decrease of the flow value reaching t up
to time θ = 2. It follows easily that any flow over time sending the maximum
amount of flow up to θ = 2 into t cannot send more than 2.5 units of flow
into t up to θ = 3. Since, however, the value of a maximum s-t-flow over
time for time horizon 3 is 4, this implies the following theorem.
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Figure 4.1: Network with inflow-dependent transit time given for arc (s, t).

Theorem 4.1. For inflow-dependent transit times, earliest arrival s-t-flows
do not exist in general.

Similarly as for inflow-dependent transit times, one can show that also
load-dependent transit times do not allow for earliest arrival s-t-flows. For
better readability we give the proof for this result, using as transit time
function a simple left-continuous step function (i.e., a piecewise constant
left-continuous function). A more technical argument helps to show that
also continuous load-dependent transit time functions do not admit earliest
arrival s-t-flows.

Consider again a graph consisting of just one edge (s, t) with (inflow)
capacity one. The load-dependent transit time function τ for this arc is
given as follows. At a load value in [0, 1] a unit of flow needs 3 time units to
travel from s to t, for a load value in (1, 5] a flow unit needs 6 time units for
crossing the arc, and for any higher load value the transit time is ∞.

Now consider the maximum s-t-flow over time that can be sent from s to
t for the two time horizons T1 = 4 and T2 = 9.

� For time horizon T1, at most 1 flow unit can reach t up to time T1. This
can only be achieved, if flow is sent during time interval [0, 1] with rate
1 and then no further flow is sent into the arc before time 3 anymore.

� For time horizon T2, at most 3 flow units reach t up to T2, if flow is
sent constantly at rate 1 up to time 5.

Using these observations, we can show the following lemma.

Lemma 4.2. If flow is sent at rate 1 during time interval [0, 1] and then no
more flow is sent during time interval (1, 3], then at time 9 at most 2 flow
units can reach the sink.

Proof. After sending the first unit of flow into the arc, we can start sending
flow only after time 3, otherwise the flow is not optimal at time T1. If we
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start sending flow at rate 1 right after time 3, then up to time 4 only a load
of 1 is on the arc. This second flow unit cannot reach the sink completely
before time 7.

Any flow put on the arc after time 6 cannot reach the sink before time 9.
So it remains to show that a flow unit that is put on the arc during interval
(4, 6] cannot reach the sink before time 9 either.

Observe, that any flow that is sent on the arc during interval (4, 6] will
increase the flow over load 1, since the second unit of flow starts leaving the
arc not before time 6. If we start sending the third unit onto the arc at time
4, then the second unit of flow will completely reach the sink not before time
10. In fact, to make sure that the second unit reaches t up to time 9, we
should not start sending the third unit of flow before time 5. If we start the
third unit at time 5, then the second unit leaves the arc during time 7 to
9. Hence, at least between time 5 and 7, the arc has a load greater than 1,
implying that the third flow unit has transit time 6 during this time interval.
As a consequence, it can travel at most one third of the arc up to time 7 and
thus will not be able to reach the sink before time 9.

Hence, we have shown that in this simple network with load-dependent
transit times there exists no flow over time that sends both the maximum
amount of flow up to time 4 and up to time 9 into the sink. As a consequence
we get:

Theorem 4.3. For load-dependent transit times, earliest arrival s-t-flows do
not exist in general.

4.3 α-Earliest Arrival s-t-Flows

As shown above, in the case of flow-dependent transit times, there are in-
stances where there exists no earliest arrival s-t-flow. Because of that, we are
interested in related optimization problems that determine “almost earliest
arrival s-t-flows”. As for the case of constant transit times, there are two pos-
sible ways. One option is to consider the related optimization problem that
relaxes the amount of flow sent into the sink up to each θ ∈ [0, T ) as it is done
in the easier case of constant transit times by Hoppe and Tardos [39]. We
follow the different track by relaxing the time component. Instead of relaxing
the amount of flow we rather relax the time up to when a certain amount
of flow has to reach the sink. More precisely, we introduce the problem of
finding an α-earliest arrival s-t-flow to minimize the lateness of flows. Note
that the basic idea for this kind of relaxation is somewhat similar to what has
been done for optimizing single-source-single-sink quickest transshipments for
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various kinds of flow over time models (see [55, 54, 22]). In what follows, we
show that there is a constant approximation of this new problem, i.e., the
optimal value of α can be bounded from above by a constant. Moreover, we
also estimate lower bounds.

In the sequel, we will consider the following optimization problem: Find
the minimum α such that there is a flow over time f that sends for each
θ ∈ [0, T ) at least as much flow into the sink t as can be sent into t up to
time θ

α
by a maximum s-t-flow over time within time horizon θ

α
, i.e.,

value(f, θ) ≥ o
θ
α ({s}) .

Here, we denote again by o
θ
α ({s}) the maximum amount of flow that can be

sent into sink t by time θ
α

and by value(f, θ) the amount of the flow f that
has entered the sink till a specified time θ where θ is not necessarily the time
horizon. A flow over time fulfilling the above requirement will be called an
α-earliest arrival s-t-flow. We require that there is no flow in the network
before time 0 or after time T .

4.3.1 Upper Bound

In this section, we show that there is always a 4-earliest arrival s-t-flow. More
precisely, we prove that there is always a flow over time that sends up to every
time θ ∈ [0, T ) at least as much flow into the sink as a maximum s-t-flow over
time with flow-dependent transit times sends within a time horizon of θ

4
. For

showing this result we make use of a construction called interval stacking.
Consider a time horizon [0, T ). A 2-interval stacking of this time horizon

is given by a logarithmic subdivision of this interval into a sequence of subin-
tervals. The first blog(T+1)c−1 intervals are defined such that the ith interval
Ii is given by Ii = [(2i−1), (2i+1−1)) for i ∈ {0, 1, . . . , blog(T+1)c−1}. Since
for the remaining part of the time horizon this scheme cannot be continued, it
is filled up with smaller intervals of size 2i, for i ∈ {0, 1, . . . , blog(T +1)c−1},
where subsequently each of these intervals is chosen as large as possible. An
example is given in Figure 4.2.

Using this 2-interval stacking, we now construct a flow over time fIS as
follows. For every time horizon 2i (i = 0, 1, . . . , blog(T +1)c−1) a maximum
s-t-flow over time fi is determined. Then the flow fi is sent within the
corresponding time interval of length 2i in the interval stacking. The so
constructed flow fIS in the interval stacking will now be shown to give a
4-approximation for our problem.

For the beginning we assume that a shortest s-t-path in our network with
respect to the zero flow transit times of the arcs has length at least 1. The
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(2blog(T+1)c − 1) T0 1 3 7 15
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Figure 4.2: A possible 2-interval stacking.

case of shorter s-t-paths will be considered later.
Define for θ ∈ [1, T ) the value αθ by αθ = θ

length(I)
where I is the largest

interval of the interval stacking lying in front of θ. For θ ∈ [0, 1) we define
αθ to be 1, since no flow can reach the sink before time 1 by the above
assumption and, thus, there is no ‘time delay’ of flow before time 1.

For example, the value αθ for θ = 10 would be 10
4

(see Figure 4.2). Using
this definition we get the following simple lemma. By value(fIS, θ) we will
denote the value of the flow fIS compounded for the whole time horizon T
up to time θ.

Lemma 4.4. Up to time θ at least o
θ

αθ ({s}) units of flow can reach the sink

using flow fIS, i.e., value(fIS, θ) ≥ o
θ

αθ ({s}).

Consequently, αθ is an upper bound on the value α that we get for
the flow fIS at time θ. Thus, if we can bound αθ for all θ ∈ [0, T ) by
a constant, we have a bound on α. However, within a particular interval
Ii, i ∈ {1, . . . , blog(T + 1)c − 1} the ratio αθ = θ

length(Ii−1)
is maximal for

θ = (2i+1 − 1)− ε and ε > 0 small. Thus, we get:

αθ =
(2i+1 − 1)− ε

2i−1
= 4− 1 + ε

2i−1
,

implying that αθ is bounded by 4 for this case. To prove the same ratio for θ
within the remaining part of the interval stacking (i.e., for θ ∈ [2blog(T+1)c −
1, T )) we simply prolong this last part of the interval stacking to an interval
of length 2blog(T+1)c and use the same calculation as above. The bounds of
this interval are then obviously [2blog(T+1)c − 1, 2blog(T+1)c+1 − 1).

This proves our intended bound of 4 for the case of s-t-paths having a
length with respect to the zero flow transit times of at least 1. Similarly, one
can prove this bound for the case of positive s-t-path length. More precisely,
if the shortest s-t-path has length ` with 0 < ` < 1, then simply scaling all
transit times in the network by 1

`
reduces this case to the previous one.



4.3 α-Earliest Arrival s-t-Flows 85

For the case of ` = 0, this approach is not directly applicable. Note that,
depending on the model, an s-t-path length of 0 for a positive amount of
flow can imply that an infinite amount of flow can be sent from s to t in
time 0. However, when the flow rate entering a particular arc per time unit
is bounded by some capacity, this behavior can be excluded. Although we
cannot prove a strict bound of 4 as in the previous cases, it is easy to show
that for any ε > 0 there is a flow that sends at time θ + ε at least as much
flow from s to t as is maximal for θ

4
. Consequently, we have the following

theorem and corollary.

Theorem 4.5. For any ε > 0, there exists an s-t-flow over time fε that sends
for any θ ∈ [0, T ) at least as much flow into the sink t up to time θ + ε as is
maximal for time θ

4
.

Corollary 4.6. For s-t-flows over time with flow-dependent transit times and
positive free-flow travel time between s and t, there exists always a 4-earliest
arrival s-t-flow.

It can be shown that the choice of 2 as the basis of the logarithm in the
interval stacking is the best possible. A very similar scheme has been used
for an online scheduling problem by Hall, Schulz, Schmoys, and Wine [34].

4.3.2 Lower Bound

As shown above, there exists a constant approximation bound for the α-
earliest arrival s-t-flow problem with flow-dependent transit times. For the
interval stacking method there are easy examples showing that this approach
cannot achieve a better α-value than 4. In order to find lower bounds for the
general problem, we analyzed the inflow-dependent and the load-dependent
transit time model independently.

Inflow-Dependent Transit Times

Theorem 4.7. In the case of inflow-dependent transit times, there are in-
stances having no α-earliest arrival s-t-flow for α ≤ 3

2
− ε, for all ε > 0.

Proof. For the given ε > 0 choose an integer k > 1 such that 3k−1
2k

> 3
2
− ε.

Now consider a single arc network with arc a = (s, t), capacity 2k, and the
transit time function τ(f(a)), with τ(f(a)) = 1 for f ≤ 1 and τ(f(a)) = 3k−1
for f(a) > 1. For this network, the value of a maximum s-t-flow over time
reaching the sink t up to time θ = 2k has value 2k− 1 and up to time θ = 4k
has value (k + 1)2k + (3k − 2) = 2k2 + 5k − 2.
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Suppose there is an α-earliest arrival s-t-flow f ∗ with α = 3k−1
2k

. Thus,
at time θ1 = 3k − 1, f ∗ has to send at least as much flow into the sink as is
maximal for time θ1

α
= 2k and, similarly, at time θ2 = 6k− 2, f ∗ has to send

at least as much flow into t as is maximal for time θ2

α
= 4k.

Since f ∗ has to satisfy value(f ∗, 3k − 1) ≥ o2k({s}) = 2k − 1, it has to
send at least 2k− 1 units of flow at the lower rate of 1 from s to t during the
interval [0, 3k − 1). Thus, up to time 3k − 1, the flow f ∗ can send no more
than (2k−1) ·1+((3k−1)− (2k−1)) ·2k = 2k−1+2k2 units of flow out of
the source. On the other hand, f ∗ cannot send more than 3k−2 units from s
to t during the interval [3k−1, 6k−2). This implies that value(f ∗, 6k−2) ≤
3k− 2 + 2k− 1 + 2k2 = 2k2 + 5k− 3. This is a contradiction to f ∗ being an
α-earliest arrival s-t-flow, since o4k({s}) = 2k2 + 5k − 2 > 2k2 + 5k − 3.

Note that the transit time function in the example can easily be trans-
formed into a continuous function without changing the bound given in The-
orem 4.7.

Load-Dependent Transit Times

A similar example as for the inflow-dependent case can also be constructed
for the load-dependent model.

Theorem 4.8. For load-dependent transit times, there are instances having
no α-earliest arrival s-t-flow for α ≤ 5

4
.

Proof. Consider again an one arc network with the following simple load-
dependent transit time function on arc a = (s, t). At a small load of y the
transit time is set to 1

α
= 4

5
; for larger load of up to z units (z >> y) the

transit time is set to 1 + ε for some later to be determined ε > 0. For any
larger load than z, the transit time is set to infinity.

First, observe that the maximum amount of flow that can reach the sink
up to time 1

α
= 4

5
is y units. Thus, in an α-earliest arrival s-t-flow, y units of

flow have to reach the sink up to time 1. The maximum amount of flow that
can reach the sink up to time 1 + ε is z. Consequently, an α-earliest arrival
s-t-flow has to send at least z units up to time α(1 + ε) into the sink.

If one would start sending flow such that the load on the arc is higher
than y right from the beginning, the first units of flow would reach the sink
not before 1 + ε, implying that the required y units of flow do not reach the
sink by 1. Therefore, one can assume that the first flow is sent such that
the load is not higher than y and only later the higher load option is used.
However, in order to send a sufficient amount flow up to time α(1 + ε) into
the sink, at least 1 + ε time units earlier the higher load option has to be
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used. Thus, at most during the first α(1 + ε) − (1 + ε) time units, the arc
has a load less than or equal to y. An easy calculation shows that for setting
ε to some value like ε = 0.15, flow that enters the arc at time 0 cannot reach
the end of the arc by time 1.

Consequently, there is no α-earliest arrival s-t-flow for α = 5
4

for this
network with load-dependent transit times.

4.4 An Approximation Algorithm

Using the interval stacking approach, one can not only show upper bounds for
the α-earliest arrival s-t-flow but can also create algorithms for determining
such a flow. In contrast to the case of flows over time with constant transit
times, the maximum s-t-flow over time problem for flow-dependent transit
times is an NP-hard problem (see [33, 55]). Although no approximation al-
gorithms for this problem are known, there are approximation algorithms for
the closely related single-source-single-sink quickest transshipment problem
as described in Section 2.2.2. A c-approximation algorithm for this problem
determines a flow over time that sends the given amount of flow in no more
than c times the optimal time from s to t. As we will show in the follow-
ing, these approximation algorithms for the single-source-single-sink quickest
transshipment problem can be used together with the interval stacking to get
approximation results also for the α-earliest arrival s-t-flow problem.

Since we will use the interval stacking method from Section 4.3, we have
to again worry about the shortest path distance from s to t. We will assume
in the following that this distance is at least 1.

Lemma 4.9. Suppose there is a flow over time algorithm A that computes
for any given time horizon c ·T (c ≥ 1) a flow of value at least as large as the
value for a maximum s-t-flow over time for time horizon T . Then there exists
a 4c-approximation algorithm for the α-earliest arrival s-t-flow problem.

Proof. In a first step, algorithm A is used to compute for each T = 2i, with
i ∈ {0, . . . , blog(T + 1)c − 1}, a flow over time for time horizon cT . By the
assumption of the lemma, each of those flows has a value at least as large as
a maximum s-t-flow over time for time horizon T .

In a second step, the so computed flows are put together in the same way
as the flow fIS in Section 4.3.1, with the difference that the length of the
intervals of the stacking is not 2i but c2i for i ∈ {0, . . . , blog(T + 1)c − 1}.
By the same argument as used for proving Theorem 4.5, the so constructed
flow can be shown to be a 4c-earliest arrival s-t-flow.

Although the above lemma seems to be rather restrictive, it is applicable
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both for the inflow-dependent and the load-dependent model. In both cases,
the known approximation algorithms for the single-source-single-sink quickest
transshipment problem satisfy the conditions of Lemma 4.9. The following
theorems from [54] and [55] summarize the corresponding results for the two
models.

Theorem 4.10 (Theorem 1 in [54]). Consider a single-source-single-sink
instance of the quickest transshipment problem with inflow-dependent transit
times where all transit time functions are non-decreasing step functions. If
there is a flow over time with inflow-dependent transit times sending D units
of flow from s to t within time T , then there exists a temporally repeated
flow with inflow-dependent transit times satisfying demand D within time
horizon at most 2T . Moreover, such a flow can be computed in strongly
polynomial time.

The algorithm to compute such an approximated quickest transshipment
uses the bowgraph as described in Section 2.2.2. The next theorem states
the corresponding result for load-dependent transit times.

Theorem 4.11 (Theorem 3.1 in [55]). If there is a flow over time which
sends D units of flow from s to t within time T , then there exists a tem-
porally repeated flow satisfying demand D within time horizon at most 2T .
Moreover, for every ε > 0, one can compute a temporally repeated flow
in polynomial time which satisfies demand D within time horizon at most
(2 + ε)T .

Also the approximation scheme of Hall, Langkau, and Skutella [33] for
the single-source-single-sink quickest transshipment problem in the inflow-
dependent model can be used for approximating an α-earliest arrival s-t-flow,
following the approach of Lemma 4.9. The idea of the approximation scheme
in [33] is to first compute a relaxed flow for a time horizon T . This relaxed
flow is not necessarily feasible for the inflow-dependent setting, however,
the construction can be used to show that this relaxed flow gives an upper
bound on the amount of flow that a maximum s-t-flow over time can send
during that time horizon in the inflow-dependent model. In a second step,
the relaxed flow is augmented to be a feasible flow in the inflow-dependent
model where this augmentation does not change the value of the flow and
enlarges the necessary time horizon by no more than a factor of 1 + ε (we
omit further details of this algorithm and refer to [33]).

Summing up the observations on the single-source-single-sink quickest
transshipment algorithms from [33, 54, 55], we can draw the following con-
clusion.
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Corollary 4.12. There exist 4c-approximation algorithms for the α-earliest
arrival s-t-flow problem, where c = 2 for the inflow- and load-dependent flow
over time model, and c = 1+ε for the inflow-dependent flow over time model
for every ε > 0 .

4.5 Practical Results

In the previous section, we provided the method of using an interval stacking
to find a constant upper bound for the α-earliest arrival s-t-flow problem
in the case of flow-dependent transit times. Since the given upper bound
of 4 obviously only roughly estimates the quality of the approximation, it
is interesting to ask which values of α are reachable in practice with this
approach. Due to the fact that there are no known exact algorithms to
compute maximum s-t-flows over time for flow-dependent transit times, we
implemented the 8-approximation algorithm for the inflow-dependent model
using the 2-interval stacking together with the quickest transshipment ap-
proximation algorithm that uses the bowgraph as described in Section 2.2.2
(see Corollary 4.12) and conducted some computational tests.

We only used a small example and it does not allow to draw conclusions
about the practical quality of the approximation in general, however, it proves
that the approach is not only of theoretical interest. It also shows a rather
big gap between the theoretical and the practical ratio.

The network consists of 22 nodes and 66 arcs. As transit time function
we used the B.P.R. function which is a well accepted transit time function
for traffic networks (see [74] for further details on the B.P.R. function1). This

function is given by τ(f(a)) = t0a

(
1 + γ

(
f(a)
c′a

)β
)

, where t0a is the transit time

of arc a when a is empty, c′a is the “practical capacity” of a; the parameter
γ is set to γ = 0.15 and for β the values β ∈ {1, 2, 4, 6} are chosen. As zero
flow transit time t0a we used three different values to simulate the situation
for three different groups of people: a group of senior citizens, a group of
’normal’ people, and a group of rather sportive people. The aim is to send
as many people as possible as early as possible from a central hall of the
building to the area in front of the building within a time horizon of 5000
seconds. Figure 4.3 below shows a sketch of the floor plan.

Theoretically, we know that at least as much flow reaches the sink at a
time θ as is maximal for a time θ

8
. However, the actual performance of the

1To our knowledge, there are no similar easy functions considering pedestrian’s behavior
that describe the influence of the amount of flow entering an arc to the total transit time
on an arc. For more details on pedestrian behavior see for example [73].



90 Chapter 4. Earliest Arrival s-t-Flows

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 4.3: Floor plan of a large building together with its network representation.

algorithm for our small example turns out to be much better; for big θ even
near-optimal. The fastest people in the group of sportsmen need at least
96 seconds and start with an α-value of 4.8; senior citizens need nearly 400
seconds but have an α-value of no more than 4.0. For later points in time the
α-value decreases to a nearly constant value of about 1.3 for sportsmen (after
1500 seconds) and for the slow people to a value between 2.0 and 1.5 (after
2800 seconds). These computed values for α are surprisingly small compared
to the theoretical bound of 8.

Another value of interest is the relation between the value of a maximum
s-t-flow reaching the sink over time compared to the amount of flow sent into
the sink by the approximation algorithm for each θ (0 ≤ θ < T ). Note that
here flow values are compared while for determining the α-value one has to
compare time steps. We observe that the fraction of the flow sent by the
approximation compared to the value of a maximum s-t-flow over time2 is
small for small values of θ but rather high for large θ. Starting at a ratio of

2Since there is no known polynomial time algorithm that can compute maximum s-t-
flows over time in networks with inflow-dependent transit times, we used the bowgraph,
which is the relaxation from [54] (compare also Section 2.2.2 for details on the bowgraph),
for getting an upper bound on the value of a maximum s-t-flow over time for this com-
parison.
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zero at the already stated points in time (96 seconds for sportsmen and 400
seconds for senior citizens) the sportsmen’s curve reaches a ratio of one half
already at time 450 and a ratio over 80 percent at time 2800. The flow that
models senior citizens reaches a value of 50 percent of the maximal flow at
time 3200 and increases this value to a maximum of slightly more than 60
percent at time 4000 (we considered a time horizon of 5000 seconds). Thus,
a comparably good amount of flow reached the sink.

Summing up, the comparably good quality of the practical approxima-
tion ratio and the good ratio when comparing the maximal flow to the flow
computed by the approximation algorithm suggest that the developed ap-
proximation method gives a practically efficient tool for computing good ap-
proximate solutions to the α-earliest arrival s-t-flow problem also for larger
instances than just this small example.





Chapter 5

Data Evacuation on a Path

5.1 Introduction

In this chapter, we consider the problem where data needs to be sent through
a network of processors from a single source to a single sink as it is the case
in sensor networks, the web graph transmitting applications as video on de-
mand, wireless transmission of data, and so on. Such a network consists of
processors given a certain capacity and connections between these proces-
sors having a certain length (transit time). We assume that there is a huge
amount of data packages at the source that needs to be transmitted into the
sink having as few loss as possible. Considering data transmission, we have
to modify the notion of emergency and evacuation. In seldom instances it
happens that a mainframe computer breaks down or catches fire such that
all data stored on that computer need to be evacuated as it is the case in
evacuation of people. More often, the shut down of the connection during a
transmission constitutes an emergency and has immediate consequences to
the data in the network. All data currently transmitted on broken connec-
tions is lost. The worst case is the shut down of all connections in a network
at the same time. After a reconnection, it should be possible to send as much
lost data packages as possible into the sink. In particular, we would like to
avoid sending them from the source again. This requirement is demanded
in some real life applications, for example the transmission of pictures from
Mars’ surface to the Earth or other data streams, where each data is unique
and not stored in the source.

So, speaking of data evacuation, we need to evacuate data before a shut
down occurs. Therefore, we aim at storing the data packages in the processors
along the transmission path. In order to send the data packages also into
the sink, we do not store the data package itself, but a copy of it. This copy
is stored at a safe site whereas the original data package is sent towards the
sink along the insecure connections. The capacity of a processor is bounded.
If there are that many copies of data packages stored in a processor such that
it is at its full capacity, some already stored data package can get deleted and
a copy of the newly arrived one can get stored. The storage and deletion of

93
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copies of data packages in the processors shall be done in such a way, that at
each point in time the maximum number of different data packages is stored.
Further, we require that the data packages stored are as new as possible.
Therefore, a steady exchange in the data packages stored is necessary. This
requirement is provoked by the applications. During a data transmission,
all data packages that have already reached the sink are assumed to be safe.
This data is no longer needed to be stored along the path. This must be taken
into account when storing and deleting data packages in the processors. If
all connections break down at the same time and the processors store the
maximum number of different fresh data packages, the evacuation of data
can be seen as optimal.

Notice that we only consider the problem of storing the data before an
emergency occurs. The resending of data packages after the reconnection is
not part of our research.

In Section 5.2, we define the problem of evacuating data more formally.
Here, we restrict ourselves to simple paths. We show that the problem of data
evacuation classes in the context of network flow models and their relation to
earliest arrival flows. In particular, we point out, that the problem reduces
to find adequate storage rules for each node, i.e., rules for each processor
that know at each point in time, whether to store an arriving data package
and which one to delete, if necessary, in order to maximize the number of
stored different and fresh data packages at each point in time. Therefore, we
overview different kind of storage rules which we will consider in Section 5.3.
Especially, we concentrate on preprocessed storage rules. Optimal storage
rules for two special types of paths are determined in Section 5.4. Moreover,
we show that storage rules for arbitrary paths can directly be derived from
storage rules for the presented capacity excess paths and transit time excess
paths. In Section 5.6, we analyze some practical results especially on the size
of preprocessed storage rules.

5.2 Data Flows

In this chapter we have a formal look at the problem of data evacuation.
Considering the problem, we can observe that the processors and its connec-
tion can be represented by a network consisting of nodes and arcs. Nodes
model the processors and directed arcs model the connections. Since we are
only considering the problem of data evacuation on a path, we are given
a linear network N consisting of nodes s := 0, 1, 2, . . . , n, t := n + 1 and
arcs ai := (i, i + 1) for all nodes i = 0, 1, . . . , n. In this path, node s
is the source that sends out data packages regularly and node t acts as
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45 3 6 6

s t

32 2533

Figure 5.1: Path representing a data transmission from the source to the sink via several
processors. The numbers in nodes represent the capacity of the processor and number on
arcs represent the transit time data needs to travel from one processor to the next one.

the sink to which all data packages need to be transmitted. Intermediate
nodes i = 1, 2, . . . , n model the processors having a certain positive capac-
ity c(i) > 0. The total node capacity on the path we denote by C, i.e.,
C :=

∑n
i=1 c(i). A positive transit time of τ(ai) > 0 is assigned to each

arc ai, i ∈ {1, . . . , n − 1}. The transit time describes, how long a data
package needs to be transmitted from one node to the next one.

Such a path is given exemplarily in Figure 5.1. Notice that source s,
sink t and arcs (s, 1) and (n, t) are redundant in order to store the maximum
number of different data packages, since the nodes s and t are considered to
have no capacity to store data. Moreover, all data sent out of source s can be
interpreted as sent out of node 1 and data reaching node t also has to reach
node n before. Therefore, we restrict ourselves in the following to 1-n-paths
where each node is given a capacity, node 1 acts as source, and node n acts
as sink.

Regularly, one data package is sent out of source 1 at every integer point
in time θ ≥ 1 and forwarded along the path to sink n. We call this behavior
a data flow. To distinguish the different data packages, we assign each data
package sent out of the source a unique attribute. We do this by numbering
them serially in the order they enter the network, thus the attribute is an
integer. At time θ = 1 we send the data package with attribute 1 into the
network, at time θ = 2 the data package with attribute 2 is sent out of the
source and, more general, at time θ ≥ 1 the data package with attribute θ
enters the network.

The task is to find a way to save as many different data packages in the
node storage such that during a later resending a fairly large amount of data
packages can reach the sink. However, in order to store the maximum number
of different data packages in all nodes together, we need rules that decide for
each node which arriving data package to store and, if the node storage is at
its full capacity, which one to delete. One reason to delete data can be that
data packages are stored multiple times. Another and more important reason
is the requirement of fresh data packages. So, it must be allowed to delete
data packages with very small attributes in order to allow data packages
with higher attributes to get stored. Such a rule that decides about storage
and deletion is called storage rule. The importance of these storage rules is
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obvious since they are the only determinable variables in our problem. We
give a classification of types of rules and describe some well-known storage
rules in Section 5.3.

With the above definitions we can formally define the maximum data
evacuation problem as follows.

Problem 5.1. Given a data flow along an 1-n-path, the maximum data evac-
uation problem looks for a storage rule for each node such that the maximum
number of newest different data packages is stored at each integral point in
time θ ∈ {0, 1, . . . } in all nodes together.

In order to store as many different data packages as possible, we start by
making a trivial but important observation.

Observation 5.2. The storage of C different data packages can occur at
first time at time θ = C, if possible by the path topology. At this time, C
different data packages have entered the path.

Since time θ = C plays an important role in the sense that there will be
a change in the rules that need to be applied, we call times θ = 1, . . . , C the
initial phase.

Relation to Earliest Arrival Flows. The relation of the data evacuation
problem to network flow problems and, in particular, to earliest arrival flow
problems does not seem very obvious. First of all, the problem of sending one
data package at each point in time into the network and forwarding it towards
the sink can be seen as a discrete flow over time. If we assume a capacity
of one assigned to each arc, such a flow of data packages obviously fulfills
capacity constraints and flow conservation constraints. The special property
of such a flow is that there is only one possibility for flow to go from source 1
to sink n. In contrast to classical discrete flows over time, this flow cannot be
optimized by certain routing techniques. For the problem of data evacuation,
we have to specify rules that establish a storage of data packages into the
nodes that is optimal for each point in time. This objective value strongly
resembles the objective of earliest arrival flows as described in Chapter 2.
For each point in time, we require the maximum number of different data
packages stored in the nodes. In contrast to network flows, where we only
consider the flow value in total, we have to take special care considering data
packages. As data is copyable, not only the maximum number of stored data
packages but the maximum number of different data packages is required.
Speaking in terms of copyable data packages, the earliest arrival property of
a data flow is obtained, if the maximum number of different data packages
is stored in the nodes at each point in time.
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5.3 Storage Rules

The storage rules are the core of good solutions to the problem of maximizing
the number of stored different data packages. In this section, we want to
overview some storage methods.

In general, we can distinguish between local and global rules. Local rules
are rules that decide for some node whether to store a data package or not
without taking the contents and actions of other nodes into account. As
actions we denote the acts of storing and deleting data packages in a node.
As local rules, we can think of storage principles already known from classical
warehousing. There are for example the first-in-first-out storage rule (FIFO)
where the commodity stored at first is taken from the warehouse when it is
needed.

Using the first-in-first-out storage rule in a node means that, if the newly
arrived data package needs to be stored in a node already at its full capacity,
the one to be deleted is the oldest one, i.e., the one with smallest attribute.
Another principle is analogously the last-in-first-out storage rule (LIFO).

Global rules act with the knowledge which data packages are stored in all
nodes along the path. An obvious global rule can be a first-in-first-out global
rule on the path, i.e., store data packages that are not stored elsewhere and
delete the oldest one that can be found in any of the nodes, maintaining node
capacity restrictions. Obviously, local rules are preferable, since a screening
of all nodes in every discrete point in time is very expensive.

In some cases where these global rules are unmanageable, it is possible to
reduce the global rule to local rules on nodes via preprocessing. Preprocessed
rules are defined in advance by the knowledge of the network topology. Vir-
tually conducting the global rule in advance will determine the actions that
are done at a point in time θ ≥ 1 at node i. Preprocessed rules are only of
value if the virtual conducted run of the global rule stops. This means that
only actions of finitely many points in time need to get stored but rules for
all points in time are determined by this limited number of points in time.
In order to establish preprocessed rules, we need some useful definitions.

Definition 5.3. We define an assignment to be a snap shot of the situation on
the path at a discrete point in time θ. An assignment is uniquely determined
by the attributes of the data packages stored in the nodes at time θ. Further,
we call two assignments κ1 and κ2 equivalent if the assignment κ2 equals
an assignment which can be constructed from the assignment κ1 by simply
adding a constant ∆ ∈ N to each of the attributes of data packages in nodes.
The order of the data packages within a node is neglected.

An example for two equivalent assignments is given in Figure 5.5 on
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page 110 when considering the stored data packages at times θ = 5 and θ = 8.
The following definition helps us to determine the finiteness of a run of the
virtual conduction of the global rule.

Definition 5.4. We say that there is a period of length ∆ in the assignments
when there exists a time θ0 ≥ 1 for which the assignment at time θ0 + c∆ + i
is equivalent to the assignment at time θ0 + i, for all integers c > 0, i ∈
{0, . . . ,∆−1}. If a period exists, we call the smallest value of θ0 the starting
point of the period.

Assume, we are given for each node the actions which it does at each
time θ ≥ 1, e.g., storage of the newly arrived data package or not and the
deletion of data package with a determined attribute κ. If we further know
that there will be a periodical behavior in the assignments and we are given
the length ∆ of the period and its starting point θ0, then we define the action
at time θ ≥ θ0 + ∆ as the analogous action done in the first occurrence of
the period. We can observe that if we are given actions for all times 1
to θ0 + ∆ − 1 where θ0 is the starting point of a period of length ∆, then
for each time θ ≥ θ0 + ∆ the action done at time θ − b θ−θ0

∆
c∆ shall be used.

This indicates that, if we can find a period during the virtual conduction of
the global rule, we can guarantee the finiteness of this conduction.

Remark: The above description of preprocessed rules bases on the fact
that the rule in each node is defined for times θ = 1, 2, . . . , θ0 + ∆− 1 which
are globally known. A rewriting of these rules to local times depending
on the first time at which a data package arrives at a node can be done
easily. Instead of storing the actions for global times θ ∈ {1, . . . , θ0 + ∆− 1}
which are points in time regarding the beginning of sending a data flow, we
store for each node k ∈ {1, . . . , n}, the actions regarding local times θ′(k) ∈
{1, . . . , θ′0(k), . . . , θ′0(k) + ∆ − 1}. These points in time are fixed regarding
to the first point in time at which a data package reaches node k. For
each node k, the correspondence between the local time θ′(k) and the global
time θ is done by adding the transit time to node k to the local time, i.e.,
θ = θ′(k)+

∑k−1
i=1 τ(ai). In order to find storage rules, we need the global view

on all nodes at each point in time. Therefore, we will only consider global
known points in time θ. Here, θ = 1 is the point in time at which the data
flow starts and we assume that the pulsing of the time is globally known. A
redefinition to times θ(k) for each node k can be done simply afterwards.
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5.4 Determining Optimal Storage Rules

In this section, we want to analyze different path topologies and determine
adequate storage rules for each node or all nodes together, respectively. We
consider two very special path topologies, transit time excess paths and ca-
pacity excess paths. We will give storage rules for the nodes of such paths. In
the last part of this section, we will show that a storage rule for the nodes in
arbitrary paths can be constructed by using the results for the special path
topologies.

5.4.1 Transit Time Excess Paths

We define transit time excess paths to be such paths where for all nodes i =
1, . . . , n− 1 and outgoing arcs ai it holds that

c(i) ≤ τ(ai).

This property indicates that the capacity of a node is smaller than or equal
to the number of different data packages that can be carried on its outgoing
arc at each point in time.

Intuitively, it is promising to store each arriving data package in a node
and delete the oldest data package, if node storage is needed, i.e., to use the
first-in-first-out (FIFO) storage rule as described in Section 5.1. We can see
that, by the path definition, a data package gets deleted from a node before
it gets stored in the subsequent node.

The following theorem shows that the intuitively good FIFO storage rule
obtains an optimal storing at each point in time.

Theorem 5.5. Assume that for all nodes i, i ∈ {1, . . . , n− 1} and outgoing
arcs ai it holds that c(i) ≤ τ(ai). Given a data flow in this network, the
maximum number of different data packages is stored at each point in time,
if all nodes use the FIFO storage rule.

Proof. First observe that a data package κ arriving at node i at time θ will
arrive at node i + 1 exactly τ(ai) time units later, i.e., at time θ + τ(ai).
Using the FIFO storage rule in node i means that data package κ gets deleted
exactly c(i) time units later, i.e., at time θ + c(i). At this point in time, the
data package with attribute κ+ c(i) arrives at node i.

Now consider a transit time excess path where it holds that c(i) ≤ τ(ai)
for all nodes i. Assume that data package κ arrives at node i at time θ. At
time θ+ c(i) data package κ gets deleted from node i. Before data package κ
gets deleted at time θ+c(i), it has not yet arrived at node i+1 since θ+c(i) ≤
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Figure 5.2: Data flow on the transit time excess path as depicted in Figure 5.1 using a
first-in-first-out storage rule in each node exemplarily for times θ = 19 and θ = 28.

θ+τ(ai). Therefore, it is stored in no node or just gets stored at node i+1 at
time θ+c(i). With the additional property that a node never stores the same
data package twice and always is used to full capacity, we have proven the
statement of the theorem. Since we use the FIFO storage rule continuously,
we further guarantee that there is a steady refreshing of data packages.

Example: Figure 5.2 shows exemplarily the assignment of data packages
to nodes including the data flow for points in time θ = 19 and θ = 28 in the
transit time excess path as given in Figure 5.1 (ignoring nodes s and t) using
a FIFO storage rule in each node. In the first assignment for θ = 19, the
first data package has only reached node 5. In node 4 currently data packages
with attributes 5 and 4 are stored. Using the FIFO storage rule in each node
means, that at time 18 data packages with attributes 4 and 3 were stored in
node 4. Because of the large transit time τ(a4) > c(4) of arc a4, the data
packages with attribute 3 has not yet reached node 5 and therefore is stored
nowhere at time 19. Data packages with attributes 14, 13, 12 are currently
stored in node 2. At time θ = 18, data packages with attributes 13, 12, 11
were stored in this node. Data package with attribute 11 is currently stored
in node 3. We can observe that data package 11 was stored at the previous
point in time and is currently stored, but in the subsequent node. For node 2 it
holds that the transit time τ(a2) equals the capacity of node 2 which guarantees
this permanent storage. At time θ = 28 we can see that the first data package
has already left the path. This indicates that the stored data packages along
the path are refreshed using a FIFO storage rule in each node. Nevertheless,
the maximum possible amount of different data packages is stored at both
considered points in time since no data package is stored twice.

The above theorem also holds for the special case where for all nodes i,
i = 1, . . . , n − 1, c(i) = τ(ai) holds. In this case we have special knowledge
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of the stored data packages.

Corollary 5.6. When for all nodes i = 1, . . . , n− 1 on the path c(i) = τ(ai)
holds and the FIFO storage rule is used in each node to store data packages,
then at every point in time θ ≥ 1 data packages with attributes max{1, θ −
C + 1} to θ are stored.

Proof. The correctness follows directly from the observation made in the
proof of Theorem 5.5 that, when a data package κ gets deleted at node i, it
gets stored at node i+1 exactly c(i) time steps later. Thus, all data packages
that have not yet left the path are stored. If we consider the initial phase,
then all data packages with attributes 1 to θ, which is the data package that
entered the network last, are stored. This is the maximum number of different
data packages that can be stored for time θ ≤ C. For times θ > C, some
data packages have already left the path. By construction, we know that
the newest C many data packages are stored in the path which is also the
maximum possible number of different data packages. Since the data package
that entered the path at latest has attribute θ, the oldest data package still
stored in some node on the path has attribute θ − C + 1.

5.4.2 Capacity Excess Paths

Transit time excess paths have the disadvantage that there is a loss of data
because of the large transit time between subsequent nodes. In the following,
we will analyze a more general setting. For this setting, we will show that
always the C newest data packages can be stored. So called capacity excess
paths are defined by

k∑
i=1

c(i) ≥
k∑

i=1

τ(ai) for all k ∈ {1, . . . , n− 1}. (5.1)

The property (5.1) requires that an excess will be guaranteed for all subse-
quences from the beginning even if there is a transit time on an arc which
is larger than the capacity of the node where the arc starts. This property
allows us to store as many different data packages as possible in each of the
subsequences of nodes 1, . . . , k, namely

∑k
i=1 c(i) many, without loosing data

because of too large transit times on single arcs.
The following easy example shows that an apparent first-in-first-out stor-

age rule in each node does not solve the problem of maximizing the number
of different data packages at every point in time. The small transit times —
small compared to the capacity of the start node of the arc — are the reason
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Figure 5.3: Example of a capacity excess path and using a FIFO storage rule for each
node. At time θ = 4 there are multiple data packages in the node storage. The assignment
and the current data flow of this point in time is depicted on the right hand side.

why this storage rule fails. Using this rule on a capacity excess path, data
packages are sometimes stored several times whereas unique data packages
can get deleted.

Example: Figure 5.3 shows an example where the simple FIFO storage
rule does not work out to be good in the case of capacity excess paths. On
the left hand side of Figure 5.3, a capacity excess paths is depicted. On the
right hand side, the situation on the arcs and in the storage for time θ = 4
is shown. It can be seen that because of the large transit time between node 2
and 3, we loose the data package with attribute 1 — as in the case of transit
time excess paths — but in this setting we have stored the data package with
attribute 3 twice, in nodes 1 and 2. In one of those two storage slots, the
missing data package with attribute 1 could have been stored.

Considering capacity excess paths, a storage rule needs to take the in-
formation stored in all nodes of the path into account to decide which data
package has to be stored and which one can be deleted from a considered
node.

In the following, we describe a global rule called delete-smallest-known
rule where, in general, we delete the data package with smallest attribute
which is already stored in some other node in case it is necessary to delete
a data package from a node. We consider every node one after the other
beginning from node n to node 1 at every discrete point in time. As long as
the considered node is not at its full capacity, the newly arrived data package
can get stored there. If the currently considered node is at its full capacity, we
look for a data package in the current node which is also stored in some other
node. To find such a data package, we consider each data package κ in the
current node in increasing order of its attributes. If data package κ is already
stored in some other node, then we delete it in the currently considered node
and store the newly arrived data package there. A data package that is stored
more than once in nodes along the path at the same time is called a multiple



5.4 Determining Optimal Storage Rules 103

data package.
In order to refresh the data when we have already stored C different

data packages, we further check whether the data package with smallest
attribute in the whole path (at the beginning of the iteration for time θ) is
in the currently considered node. This check is only needed for times θ large
enough, which will be shown to be θ > C. If the data package with globally
smallest attribute is in the currently considered node, we delete it and store
the newly arrived one instead.

The algorithm in pseudocode has the simple structure as depicted in
Algorithm 2 on page 103.

Algorithm 2: Delete-Smallest-Known Rule

foreach time θ = 1, 2, . . . do1

determine oldest data package κ in the path2

foreach node k = n to 1 do3

if there is still storage capacity available in node k then4

store arriving data package in k5

else6

if θ > C and κ in node k then7

delete κ and store newly arrived data package in k8

else9

foreach data package κ′ in k (κ′ increasingly sorted) do10

foreach node i = 1 to n, i 6= k do11

if κ′ in i then12

delete κ′ from k and store newly arrived data13

package
go to line 314

Figure 5.4 on page 104 applies the delete-smallest-known rule to the ca-
pacity excess path as given in the left of Figure 5.3. Looking at the single
steps of the algorithm as depicted in Figure 5.4 we can observe that for θ ≤ C
all data packages with attributes 1 to θ are stored. For times θ ≥ C, the
newest C many data packages having attributes θ − C + 1 to θ are stored.
We will prove that this observation is a valid invariant after each iteration of
the algorithm.

Lemma 5.7 (Invariant). At each point in time after a pass of the delete-
smallest-known rule on a capacity excess path, it holds that the data packages
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Figure 5.4: Example of the functioning of the delete-smallest-known rule for each time θ = 1, 2, 3, 4, 5, 6. At

time θ = 1, a data package arrives only at the first node. There the algorithm checks whether there is capacity available

and since it is, it stores the newly arrived data package with attribute 1 which just enters the network. At times θ = 2, 3, 4,

new data packages arrive only at nodes 2 and 1. For θ = 2, the algorithm checks whether there is node storage available

in those nodes and stores the newly arrived data packages. Checking the second node at time θ = 3, the algorithm finds

it at its full capacity and searches whether this data package is stored somewhere else. It finds the data package with

attribute 1 in node 1 and thus replaces it in the second node by the newly arrived data package with attribute 2. In the

first node, there is still storage capacity available to store the arrived data package with attribute 3. At time θ = 4, the

algorithm has to check again whether the data package with attribute 2 currently stored in node 2 can be found in some

other node. Since the answer is yes, it replaces this data package by the newly arrived one with attribute 3. The first

node is at its full capacity at time θ = 4 and therefore the algorithm has to check in node 1, too, whether there is a data

package which is stored multiple times along the path. It starts checking this for data package with attribute 1 and does

not find another copy. The same happens for the data package with attribute 2. The data package with attribute 3 is

stored in the second node and thus will be deleted from the first node in order to store the newly arrived data package

with attribute 4. At time θ = 5 the algorithm starts checking node 3 which still has capacity available. The data package

with attribute 1 gets stored there. Checking for another node also containing a data package having attribute 3 fails

and therefore the algorithm continues searching for multiple storages of data packages stored in the first node. The first

data package checked – the one with attribute 1 – can be found also in node 3 and gets deleted. The newly arrived data

package with attribute 5 gets stored in the first node. After this iteration of the algorithm, we have finished the initial

phase and this is the first time when we are storing total capacity many different data packages. Therefore at time θ = 6,

the algorithm begins again in the last node and searches for the data package having attribute 1. It finds it in the last

node and deletes it in order to store the newly arrived data package with attribute 2. In the second node there is only

a unique data package stored but in the first node the algorithm finds the data package with attribute 2 which is stored

twice. Thus it deletes this data package and stores the arriving one with attribute 6.
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with attributes 1 to θ for 1 ≤ θ ≤ C and θ−C + 1 to θ for θ ≥ C are stored.

Notice that for time θ = C we can apply both cases of the invariant.
Simple computation shows that both intervals of attributes have the same
size.

Assuming the correctness of the invariant given in Lemma 5.7, we can
directly state the following theorem.

Theorem 5.8. At each point in time, the maximum number of different data
packages is stored, if the delete-smallest-known rule is used on a capacity
excess path.

Proof of Lemma 5.7. We prove the invariant by induction. We do two parts
of induction, one for the first C time steps and then we separately show the
invariant for times later than that.

In the very first time step θ = 1, the first data package enters the network.
Since no other data package has reached the first node before and we require
positive capacities for each node, the arriving data package gets stored. Thus,
the beginning of the induction is true. Assume for time θ, θ < C, that all data
packages with attributes 1 to θ are already stored; the induction hypothesis.
Now consider time θ + 1.

First, we need to show that there is still storage capacity left for the newly
arrived data package. This means, we have to look whether there is a storage
slot which is still empty or there is at least one data package stored multiple
times. At time θ+1, the data package with attribute θ+1 enters the network;
let k̄ be the node with largest index at which a new data package arrives at
time θ + 1. Hence, it holds

k̄−1∑
i=1

τ(ai) ≤ θ + 1 <
k̄∑

i=1

τ(ai).

Property (5.1) guarantees that the capacity of nodes 1 to k̄ is large enough to
carry all θ+1 data packages that have already entered the network. Assume
this is not true, then

θ + 1 >
k̄∑

i=1

c(i) ≥
k̄∑

i=1

τ(ai) .

The second inequality follows from property (5.1) and thus the choice of k̄ is
contradicted.

By the choice of θ+1 ≤ C and the above argument, there are either some
nodes in {1, . . . , k̄} which are not at full capacity or there are data packages
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with the same attribute stored in several nodes. Further, we have to show
that the data package entering the network gets stored in some node. This
node has to be node 1, since we are only considering positive transit times.

In order to prove the invariant, it suffices to show the following claim,
since the algorithm never deletes unique data packages during the initial
phase.

Claim. After each consideration of a node k > 1 during the iteration for
time θ + 1, there exists a node k′ < k where it holds that either there is still
storage capacity available or it is at its full capacity containing a multiple
data package.

Assuming the correctness of the claim, the invariant follows, since the
claim also holds for k = 2. Then, the algorithm is able to store data pack-
age θ + 1 in node 1.
Proof of the Claim. The claim will be shown by induction. By the above
observation, there exists either a node not at its full capacity or one con-
taining a multiple data package before starting the iteration of the algorithm
for time θ + 1. Assume that the claim is true for some node k + 1. In the
next step, the algorithm considers node k. If k is at its full capacity and
does not contain a multiple data package, it holds that there still exists a
node k′ 6= k < k + 1 containing a multiple data package or having capacity
available. Therefore, also k′ < k holds and the claim is still true. If k still
has capacity available or contains a multiple data package, the algorithm
stores the newly arrived data package with attribute in {1, . . . , θ}. By induc-
tion hypothesis, this data package is already stored somewhere else. Since
it just arrived at node k, the second node 6= k containing this data package
lies before node k. Therefore, the claim is true for node k, i.e., there exists
some k′ < k containing a multiple data package.

Thus, the statement made by the invariant is true for times 1 ≤ θ ≤ C.

Using the correctness of the invariant for the first C times θ = 1, . . . , C,
we will now show the correctness of the invariant for times θ later than that.

The correctness of the invariant for time θ = C as shown above determines
the correctness of the beginning of the second induction. Assume that the
invariant is correct for time θ ≥ C, i. e., the data packages with attributes θ−
C + 1 to θ are stored. In order to prove the invariant, it suffices to show
the following claim, since the algorithm never deletes unique data packages
during the initial phase.

Claim. After each consideration of a node k > 1 during the iteration for
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time θ + 1, there exists a node k′ < k where it holds that it contains either
the oldest data package with attribute θ−C + 1 or a multiple data package.

Assuming the correctness of the claim, the invariant for times θ ≥ C
follows, since the claim also holds for k = 2. Then, the algorithm is able to
store data package θ + 1 in node 1.
Proof of the Claim. The claim will be shown again by induction. By the
induction hypothesis there exists a node containing the data package with
attribute θ−C+1 before starting the iteration of the algorithm for time θ+1.
Assume that the claim is true for some node k + 1. In the next step, the
algorithm considers node k. If k does not contain data package θ−C + 1 or
a multiple data package, it holds that there still exists a node k′ 6= k < k+ 1
containing the data package with attribute θ − C + 1 or a multiple data
package. Therefore, also k′ < k holds and the claim is true for node k. If k
contains data package θ − C + 1 or a multiple data package, the algorithm
deletes the corresponding data package and stores the newly arrived data
package having an attribute in {θ − C + 2, . . . , θ}. Notice that, by prop-
erty (5.1), the data package with attribute θ − C + 1 has already left the
path at time θ + 1. Again it holds by induction hypothesis, that there ex-
ists some k′ < k containing a multiple data package, i.e., the induction is true.

This concludes the proof of the invariant.

Remarks: Reconsidering the proof of the invariant, several observations
can be made concerning the deletion and storage for times θ > C. First, the
algorithm will definitely delete the oldest data package, since there are no
multiple data packages stored along the path before each iteration. Its at-
tribute before the iteration for time θ is determined by the invariant as θ−C.
Deleting this data package from its node, say k, the data package stored in-
stead of the oldest one has attribute κ := θ −

∑k−1
i=1 τ(ai). We know by the

invariant, that this one was already stored somewhere else, if k 6= 1. More-
over, since before the deletion, there were C different data packages stored,
there is now one that occurs exactly twice along the path. The remaining
C − 1 data packages are not touched and therefore still different. Thus, it
suffices to look for a data package having attribute κ in nodes k′ < k during
the whole iteration instead of checking for each data package whether it is
stored multiple times. Using this argument repeatedly, it suffices to only look
for the data packages that were newly stored in some node k 6= 1, replacing
a multiple data package or the oldest one, during the following steps of the
iteration. If the considered node k = 1, we have obviously stored the newest
data package that just entered the network.
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To use the global delete-smallest-known rule online for every time step
would make the computation very complex. Therefore, we are interested in
finding a possibility to use the rule as a preprocessing algorithm to define
storage rules for each node locally. In the following, we will show that the
delete-smallest-known rule acts deterministically and that there is a period
after which the assignment of attributes to nodes at time θ0 := C recurs. This
guarantees the finiteness of a preprocessing variant of the algorithm. Before,
we make an observation concerning the correlation between the difference
in the attributes of data packages and the time difference considering two
equivalent assignments.

Observation 5.9. Given two equivalent assignments computed by the delete-
smallest-known rule on a capacity excess path. Then the difference in times
at which these assignments occur equals ∆, if the difference in attributes of
data packages equals ∆.

Proof. We are given two equivalent assignments which occurred at times θ1

and θ2, θ1 < θ2. First, assume that ∆ < θ2 − θ1. Consider the assignment
at time θ2. There the data package with largest attribute has attribute θ2.
The corresponding data package in the equivalent assignment at time θ1

then should have attribute κ := θ2 − ∆ > θ1. By the invariant, the data
package with attribute κ has not yet entered the network at time θ1 which
contradicts the assumption. Now assume that ∆ > θ2 − θ1. In this case,
consider the data package with smallest attribute, i. e., θ2 − C + 1, in the
assignment at time θ2. At time θ1, the corresponding data package should
have attribute κ′ := θ2−C + 1−∆ < θ1−C + 1. By the invariant, the data
package carrying attribute κ′ has already left the path at time θ1 and this
contradicts again the assumption. Thus, ∆ = θ2 − θ1.

If two assignments are equivalent with respect to a difference ∆ in the
attributes, then they appear at times that differ by ∆.

Lemma 5.10. The delete-smallest-known rule acts deterministically in the
sense that it will do the same actions in the same nodes for two equivalent
assignments at times θ1 and θ2. The subsequent assignments at times θ1 + 1
and θ2 + 1 are equivalent as well.

Proof. Assume again, we are given two equivalent assignments which oc-
curred at times θ1 and θ2. Observe that equivalent assignments can only
occur for times θ ≥ C, i. e., the maximum number of different data packages
is stored. Line 7 of the delete-smallest-known rule given in Algorithm 2 deter-
mines the node in which the oldest data package is found. By the equivalence
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of the two assignments, the data package with smallest attribute at time θ2

will be found in the same node k as the one for the assignment at time θ1. The
newly arrived data package at node k at time θ2 has attribute θ2−

∑k−1
i=1 τ(ai)

which by Observation 5.9 corresponds to the attribute θ1−
∑k−1

i=1 τ(ai) in the
assignment at time θ1. By the equivalence of the assignments at times θ1

and θ2, data packages carrying these attributes will be found in a node k′ < k
which is, by equivalence of the assignments at times θ1 and θ2, the same for
both assignments. Hence, the algorithm does the same action in the same
node in both assignments. Using this argument repeatedly for this new data
package which has to get deleted from some node k′ < k, if k 6= 1, the
first statement of the lemma is proven. Further, it directly follows that the
assignments at times θ1 + 1 and θ2 + 1 are equivalent as well.

The above lemma implies that, if we find once a pair of equivalent assign-
ments, the overall behavior of the assignment of data packages to nodes is
periodical as will be shown in Lemma 5.11. That is, there will be a time θ1

and a time θ2 for which the assignments are equivalent. If θ2 is the smallest
point in time for which an equivalent assignment to the one at time θ1 can be
found, we will then denote the length of the period by ∆ := θ2− θ1. The fol-
lowing lemma indicates that such a period can be found. After that we show
how to determine a pair of equivalent assignments with minimal difference
in time and how to adapt the algorithm to become a preprocessed one.

Lemma 5.11. The delete-smallest-known rule will find a periodical behav-
ior in the assignments of data packages to nodes. A period has length at
most C!/

∏n
i=1(c(i)!).

Proof. An amount of C data packages can be ordered in C! different ways in
the nodes. Since we do not care about the ordering of data packages within
a node, we have to divide this number of assignments, i.e.,

∏n
i=1(c(i)!). So,

after at most 1 + C!/
∏n

i=1(c(i)!) time units, one ordering has to reappear.
Using the deterministic behavior of the delete-smallest-known rule as

shown in Lemma 5.10, we know that once two equivalent assignments are
found at times θ1 and θ2, the assignments at times θ1+1 and θ2+1 are equiva-
lent, too. Extending this argument, it is clear that assignments at times θ1+i
and θ2 + i, i ≥ 0, are equivalent. Hence, for every time θ1 + i, i ≥ ∆, there
exists always an equivalent assignment in {θ1, . . . , θ1 + ∆ − 1}, namely the
assignment at time θ1 + i− b i

∆
c ·∆. Therefore we get a periodical behavior

of the assignments.

Example: In Figure 5.5 we can observe a periodical behavior for the capacity
excess path given in Figure 5.3. The assignments at times θ1 = 5 and θ2 = 8
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Figure 5.5: Periodical behavior of the example given in Figure 5.3. Here ∆ = 3.

are equivalent with respect to a difference of 3 in the attributes which equals
the length of the period ∆. The period starts at time C. This is not an
coincidence but always the case as it is shown in Lemma 5.12.

In order to use the delete-smallest-known rule as a preprocessing algo-
rithm we need to find the period in the assignments. Therefore, we need to
compare every pair of assignments that occur during the run of the algorithm.
The next lemma states that it is enough to compare every new assignment
computed for some time θ with the assignment of time θ0 := C.

Lemma 5.12. Using the delete-smallest-known rule for the nodes of a ca-
pacity excess path, there can always be found an equivalent assignment to
the one at time θ0 := C.

Proof. By Lemma 5.11 we know that there is a periodical behavior and hence,
there are two equivalent assignments at times θ1 and θ2. Let θ1 be the minimal
point in time for which an assignment reappears with respect to a difference
in the attributes. Assume that θ0 6= θ1. Since θ0 is, by choice, the first point
in time at which C different data packages are stored and all later assignments
also store that many different data packages, it follows that θ1 > θ0. By the
minimal choice of θ1, it has to hold that the assignment at time θ1 − 1 is
not equivalent to the assignment at time θ2 − 1. By subtracting ∆ = θ2 − θ1

from each attribute of the data packages in the assignments at times θ2

and θ2 − 1, we yield that it is possible to obtain the same assignment at
time θ1 starting from two different assignments at time θ1 − 1. By proving
the following claim, we show that this is impossible and therefore contradict
the assumption that θ1 6= θ0.

Claim. The predecessor assignment at time θ−1 of an assignment at time θ >
C is uniquely determined when using the delete-smallest-known rule.

Proof of the claim. Consider the assignment at time θ. We know that the
iteration of the algorithm for time θ has touched all nodes {k1, . . . , k`} ⊆
{1, . . . , n} containing a data package with attribute θ −

∑kj−1
i=1 τ(ai), j ∈

{1, . . . , `}. These data packages are stored in the nodes during this iteration
and some other data packages are deleted instead. Further, we know by the
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delete-smallest-known rule, that the touched node with largest index, i.e.,
k`, must have stored the oldest data package of the previous iteration for
time θ− 1, namely data package with attribute θ−C. Thus, the position of
the oldest data package in the assignment at time θ−1 is uniquely determined.
By the same argumentation and the remark made following the proof of the
invariant, that the data packages to exchange during an iteration are uniquely
determined once the oldest data package is found, we can conclude, that the
predecessor assignment at time θ − 1 is uniquely determined as well.

Given the above theoretical results about the existence of a period, the
starting point of such a period and the observations made for the second phase
of the rule where we have already stored C many different data packages, we
can rewrite the Algorithm 2 and determine the local rules for each node as
depicted in Algorithm 3 at page 119.

So, the storage rule can be described as doing up to time θ0 all actions as
remarked and for all later times θ do the action stored for time θ−b θ−θ0

∆
c ·∆.

Theorem 5.13. Given a capacity excess path and using the storage rules
defined by the delete-smallest-known preprocessing algorithm for each node,
the maximum number of newest different data packages is stored at every
discrete point in time.

Proof. The proof of this theorem follows directly by the correctness of the
invariant (Lemma 5.7) and the finiteness of Algorithm 3 which is guaranteed
by Lemma 5.12 together with Lemma 5.11.

The following theorem goes a step farther and motivates the choice of
capacity excess paths as they are defined.

Theorem 5.14. It is possible to store the maximum number of newest con-
secutive data packages that entered the path if and only if the path is a
capacity excess path fulfilling property (5.1).

Proof. The sufficiency of the statement is obvious by the existence of the
delete-smallest-known rule. It remains to show, that the path fulfills prop-
erty (5.1) if the maximum number of newest consecutive data packages are
stored. If always the maximum number of newest consecutive data packages
can be stored, then there is no loss of data packages, in particular during the
initial phase. This means that there are no large transit times between two
subsequent nodes that cannot be absorbed by high capacity of nodes before
those two nodes. Thus, obviously property (5.1) must be fulfilled.
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5.5 Arbitrary Paths

In the above sections, we have described very special path topologies – transit
time excess paths and capacity excess paths. In the following we will consider
arbitrary paths. Each arbitrary path consists of nodes with time excess,
i. e., c(i) ≤ τ(ai) for some i ∈ {1, . . . , n − 1}, and of nodes with capacity
excess, i. e., c(i) ≥ τ(ai) for some i ∈ {1, . . . , n − 1} in arbitrary order.
A possible partition would be one which finds sequences of nodes building
transit time excess path as defined in Section 5.4.1 and sequences of nodes
building capacity excess paths as defined in Section 5.4.2. In order to uniquely
assign a node to a sequence, we further add some special properties. It will
be shown that for such a partition the use of the adequate storage rules
on the sequences already determines an optimal storage rule for the total
path. Before showing the optimality, we need to show that such a partition
into largest possible sequences forming a capacity excess path and sequences
forming a transit time excess path is always possible.

Lemma 5.15. Each arbitrary path can be partitioned into disjoint sequences
I1, . . . , I` of nodes with the property that for each Ih = {j, . . . , j′}, h ∈
{1, . . . , `} either

c(j) > τ(aj) (5.2)

and
k∑

i=j

c(i) ≥
k∑

i=j

τ(ai) ∀k ∈ {j + 1, . . . , j′ − 1} (5.3)

and

j′∑
i=j

c(i) <

j′∑
i=j

τ(ai) if j′ 6= n (5.4)

or

c(i) ≤ τ(ai) ∀i ∈ {j, . . . , j′ − 1} (5.5)

and c(j′) ≤ τ(aj′) if j′ 6= n (5.6)

and c(j′ + 1) > τ(aj′+1) if j′ 6= n (5.7)

holds. Such a partition is unique for every path.

The proof of this lemma can be done by a simple induction on the num-
ber of nodes and showing that each additional node with arbitrary transit
time on its outgoing arc at each position can either be dedicated to one ex-
isting sequence, splits one sequence into two, or will build its own sequence.
Each touched sequence will then again fulfill either properties (5.2)–(5.4) or
properties (5.5)–(5.7). Figure 5.6 gives an example for such a partition.
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Figure 5.6: Example for a partition of an arbitrary path into disjoint sequences of nodes
building a capacity excess node sequence (dashed) and of nodes building transit time excess
node sequences (dotted).

Note that we make the additional restriction that capacity excess node
sequences start with a node which has a strict excess in capacity compared
to the transit time of its outgoing arc by property (5.2). This property
ensures that the partition is unique. Each sequence of nodes with equal
capacity and transit time of their outgoing arc as the beginning of a capacity
excess path now has to be seen as an independent sequence having transit
time excess. Conditions (5.4) and (5.7) guarantee that the sequences are
chosen as long as possible. Observe that a sequence can consist of only one
node. For such a single node i, i 6= 1, it obviously holds that c(i) < τ(ai)
since otherwise it would belong to a longer sequence of increasing capacity
fulfilling properties (5.2)–(5.4). For i = 1, it can hold that c(1) ≤ τ(a1)
and c(2) > τ(a2). Further notice, by the same argument, that each disjoint
sequence Ii in the path ends with a node j′ where the transit time τ(aj′) of its
outgoing arc is larger than or equal to its capacity c(j′). We will denote node
sequences fulfilling conditions (5.2)– (5.4) by capacity excess node sequences
and node sequences fulfilling conditions (5.5)– (5.7) by transit time excess
node sequences.

The following theorem states that the optimal storage rules in such a path
can be determined by just using the storage rules for the different sequences
of nodes. Intuitively, this gives an optimal storage of data packages because
we can compound the nodes of each capacity excess node sequence to a
single node i with property c(i) < τ(ai). For a capacity excess node sequence
we know that at every point in time the newest total capacity many data
packages are stored which is also the case for a node using the FIFO storage
rule. The maximum number of stored data packages then follows from the
maximum number of stored data packages in transit time excess paths. This
is one of the main results of this chapter.

Theorem 5.16. Consider an arbitrary 1-n-path with arc transit times and
node capacities (positive and integral). If the path is partitioned into capac-
ity excess node sequences and transit time excess node sequences, then the
following holds:
If for capacity excess node sequences the delete-smallest-known preprocess-
ing algorithm is used to define storage rules for the nodes and for transit
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time excess node sequences the first-in-first-out storage rule is used in each
node, then the maximum number of different data packages is stored at each
integral point in time.

Proof. The proof partly follows from the correctness of Theorems 5.5 and 5.13,
respectively. There the optimality within the sequences of nodes is already
given. The global correctness follows from the fact that the considered data
packages in each sequence are disjoint. Thus, at every point in time the
number of different data packages over all sequences is maximal.

It remains to prove the following claim.

Claim. The data packages currently stored in the different sequences are
disjoint.

Proof of the Claim Consider two subsequent non-empty node sequences A =
{j, . . . , j̄ − 1} and B = {j̄, . . . , j′} fulfilling properties (5.2)–(5.4) or (5.5)–
(5.7) each. As mentioned before, sequence A has to end with a node with
outgoing transit time strictly greater than or equal to its capacity. We have
to show that a data package entering sequence B is already deleted from
sequence A. This together with the optimality in each sequence and that
the argumentation holds for every two subsequent sequences in the path we
have proven the claim. Now let us look at the different combinations of two
subsequent sequences of nodes.

If sequence A fulfills the conditions (5.5)–(5.7), it obviously holds — by
the same argumentation as in the proof of Theorem 5.5 — that every data
package arriving at sequence B is no longer stored in sequence A.

Now assume that sequenceA beginning with node j fulfills conditions (5.2)–
(5.4). The first node in sequence B is denoted by j̄. By the invariant given
in Lemma 5.7, we know — notice that the transit time to the first node in
sequence A is

∑j−1
i=1 τ(ai) and therefore data package with attribute 1 reaches

node j at time
∑j−1

i=1 τ(ai) + 1 — that in sequence A at time θ >
∑j−1

i=1 τ(ai)
the data packages with attributes

1 to θ −
j−1∑
i=1

τ(ai)

for
j−1∑
i=1

τ(ai) < θ ≤
j̄−1∑
i=j

c(i) +

j−1∑
i=1

τ(ai)

and attributes

θ −
j̄−1∑
i=j

c(i) + 1−
j−1∑
i=1

τ(ai) to θ −
j−1∑
i=1

τ(ai)
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for

θ ≥
j̄−1∑
i=j

c(i) +

j−1∑
i=1

τ(ai)

are stored. First, consider all times

θ ≤
j̄−1∑
i=j

c(i) +

j−1∑
i=1

τ(ai) .

By the invariant, we know that during the iteration for time

θ1 =

j̄−1∑
i=j

c(i) + 1 +

j−1∑
i=1

τ(ai) ,

the data package with attribute 1 gets deleted from sequence A. This data

package with attribute 1 reaches node j̄ at time θ2 :=
∑j̄−1

i=1 τ(ai) + 1. Using
condition (5.4), we can easily determine that θ2 > θ1. Second, consider times

θ ≥
j̄−1∑
i=j

c(i) +

j−1∑
i=1

τ(ai) .

The oldest data package in sequence A has at time θ attribute

κ1 := θ −
j̄−1∑
i=j

c(i) + 1−
j−1∑
i=1

τ(ai) .

The data package currently arrived at node j̄ at time θ has attribute

κ2 := θ −
j̄−1∑
i=1

τ(ai) .

Comparing the oldest attribute in sequence A and the newly arrived one in
sequence B using conditions (5.3) and (5.4), it follows: κ1 > κ2. Putting all
together, it holds for all times θ that the largest attribute of a data package
stored in sequence B is smaller than the smallest one in sequence A. Thus,
the newest data package stored in sequence B is even older than the oldest
data package stored in sequence A.

This concludes the proof of the theorem.
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Figure 5.7: (Left) A capacity increasing path with capacities and transit times as de-
picted. The capacity of the second node is variable. (Right) Lengths of the periods for
different values of the capacity of node 2.

5.6 Practical Results

In the following, we consider the problem of the maximum length of a period.
We have shown in Lemma 5.11 that the length of a period for the delete-
smallest-known rule can be upper bounded by C!/

∏n
i=1(c(i)!). Practical

tests on different capacity excess paths show that there are examples where
the real length is often smaller than the theoretical bound. However, some
instances imply the conjecture that there is no bound of the length of the
period which is exponential in C.

In order to analyze the length of the period for some instances of ca-
pacity excess paths, we implemented the delete-smallest-known rule. For a
given path, it determines the assignments of data packages to nodes for all
times θ ≥ 1. It stores the assignment at time θ0 := C and compares every
following assignment with this one. If the algorithm finds an equivalent one,
it computes the length of the period and stops.

For comparing the assignments, we order the data packages in each node
in increasing order of their attributes. This makes it easier to compare dif-
ferent assignments.

For a test that computes the lengths of periods for a permanent increase of
the capacity of one node, we used the instance depicted in Figure 5.7. Here,
the second node has a variable capacity denoted by X for which we have
used values 4 to 84. Increasing the capacity X of node 2 from 4 to 13, which
corresponds to an increase in total capacity of nearly 100%, the length of
the period for the latter instance already increases by approximately a factor
100 compared to the length of the period of the first instance where X = 4.
This can be seen on the right hand side of Figure 5.7. The increase goes on
for all higher capacities. For a capacity of 24 of the second node we already
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Figure 5.8: Lengths of the periods for the example given in the left of Figure 5.7 for
capacities X = 4, . . . , 84.

have a length of the period of 3.212.088 which is nearly 9000 times larger
than the length of the period for a capacity of 4 of the second node. In
Figure 5.8, we put the chart depicting the length of the periods for all com-
puted values of X = 4, . . . , 84. We have also computed the theoretical bound
on the lengths of the period for all these instances, namely C!/

∏n
i=1(c(i)!).

Analyzing the quotient of the upper bound of the length of the period to the
real length of the period, we can see a large distribution of the quotients.
On the one hand, there are instances where the real length of the period is
10.000 times smaller than the theoretical upper bound. On the other hand,
there are also instances, where the period has length of 1

32
of the length of the

theoretical upper bound. This factor we get for X = 14 where the theoreti-
cal upper bound has a value of 13.953.600 and the real length of the period
is 425.880. There exists also a large number of instances having a period
which is only 50 times smaller than the upper bound. On the basis of this
observation and other results, we conjecture that there is no bound on the
length of a period which is exponential in C.

An interesting observation looking at all those numbers is that nearly
every period has an even length and in most cases they are multiples of ten.
This can be seen in particular in the example given in Figure 5.9. Since we
can observe this phenomenon in different examples, we conjecture that there
is a rule to compute the length of the period.

Another interesting observation that can be made in this example is that
there are only few odd numbers and most of them are multiples of 5. Further,
these multiples only occur in two different settings, namely where the transit
time of arc a2 is set to 4 and to 6. Such an accumulation of multiples of 5
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4 4 1 1
1 YX 1

4

Y \ X 1 2 3 4 5 6 7
10 500
9 360 324
8 900 1120 320
7 2160 1701 480 343
6 2500 577 240 96 252
5 600 2400 512 735 24 175
4 4900 2100 960 224 540 36 28
3 5040 2268 576 1225 216 24 56
2 3600 576 3136 1008 540 252 84
1 6300 5103 3136 1715 1260 375 112

Figure 5.9: Table of the example as depicted in the right where the transit time is
increased at two different positions.

in very special settings was also observed in other examples, as for example
the one depicted in Table 5.10. Unfortunately, there is no obvious pattern in
order to compute the length of a period.

3 3 3 3
1 11 X

Y

Y \ X 9 8 7 6 5 4 3 2 1
2 60
3 35 280 490 672 1324 2800 3465
4 240 336 560 1008 1134 2240 1782 960
5 315 144 1575 864 567 2400 2970 5760 9009
6 512 2800 5040 7560 6720 11880 27000 6864 15120
7 1155 3696 2205 2640 5940 5760 15444 8064 11700

Figure 5.10: Example of capacity excess path where transit times and capacities are
changed. Here an accumulation of multiple of 5 can be observed for X = 9, 7.

Conclusion. These practical tests in small instances imply that there are
rules to determine the length of a period. Unfortunately, there is no obvious
pattern which will help us to find the rules. Finding these rules will be part
of further research as well as the analysis of the upper bounds on the length
of the period. The task is to find instances, where the length of the period
can be proven to not be bounded exponentially in C.
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Algorithm 3: Delete-Smallest-Known Preprocessing Algorithm

foreach time θ = 1, 2, . . . do1

set κ′′ = nil2

foreach node k = n to 1 do3

consider the newly arriving data package κ at node k at time θ4

if θ ≤ C − 1 then5

if there is still storage capacity available then6

store arriving data package in node k7

storage rule for k at time θ: store arriving data8

else9

foreach data package κ′ in k (κ′ 6= κ, increasingly10

sorted) do
foreach node i = 1 to n, i 6= k do11

if κ′ in i then12

delete κ′ from k and store newly arriving13

data package κ
storage rule for k at time θ: delete κ′14

and store arriving data
go to line 315

else16

if κ′′ = nil then17

set κ′′ = θ − C18

if data package κ′′ is in node k then19

delete κ′′ and store the newly arriving data package κ20

set κ′′ = κ21

storage rule for k at time θ: delete κ′′ and store22

arriving data

if θ = C then23

save assignment and set θ0 := C24

if θ > C then25

if assignment is equivalent to the stored assignment then26

determine period ∆ := θ − θ027

STOP algorithm28
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