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Chapter 1

Introduction

In this thesis we are concerned with the local well-posedness theory of the
initial value problem for the Kadomtsev-Petviashvili II equation in two space
dimensions

(Ut + Ugzz + (U?))z + Uy, =0 in (=T,T) x R*,  u(0) = ug
as well as in three space dimensions
(Ut + Upzz + (U?)2)e + Agu=0 in (=T,T) x R®,  u(0) = ug

and dispersive generalisations thereof.

The Kadomtsev-Petviashvili II equations are universal models for the
propagation of long weakly dispersive waves which are essentially one dimen-
sional with weak transverse effects.! They can be seen as multidimensional
generalisations of the Korteweg-de Vries equation?

Up + Upzy + (U2, =0 in (=T, 7) xR, u(0) = ug

We consider initial values ug in non-isotropic Sobolev spaces H*%2(R%)
and our goal is to show the local well-posedness for low regularity data,
i. e. data in H*"*2(R?) with s; and s, as small as possible. Our notion of
well-posedness comprises, for given regularities s; and ss, the existence and
uniqueness of solutions in a suitable space of space-time functions (or more
generally distributions) Xr, the persistence of reqularity, i. e. the solution
u is a continuous function in ¢ with values in the Banach space H*2(R%),

1See [16].

2For an explanation how the Kadomtsev-Petviashvili equations are (formally) obtained
from the one dimensional models (also for more general dispersion terms), see also the
introduction of [22].



and the continuous dependence of the solutions on the initial data, i. e. the
flow map, which assigns the solution u to the initial value wug, is a continuous
mapping from H*1*2(R%) to X7. In fact, all low maps turn out to be analytic
mappings. This stems from the fact that we use a Picard iteration method
on the Duhamel formulation® of the Kadomtsev-Petviashvili II equation to
construct the solution and from the fact that the nonlinearity is polynomial.

The spaces X1 where the solutions are constructed are modifications of
the spaces first used by BOURGAIN [5] in the context of the Kadomtsev-
Petviashvili IT equation (on T? rather than on R?).* BOURGAIN’S idea was
to include the symbol of the linear part of the equation into the definition of
the spaces, which makes it possible to easily exploit dispersive properties of
the linear equation in the context of these spaces and which also allows to
exploit certain algebraic properties of the symbol in order to overcome the
loss of derivatives in the nonlinearity. The proof of local well-posedness then
reduces to showing a suitable estimate for the nonlinearity in these spaces.®

By using the Picard iteration method in the modified Bourgain spaces,
we show the local well-posedness of the Kadomtsev-Petviashvili II equation
in two space dimensions for s; > —% and sy > 0. On the scale of spaces
H*9(R?) this includes the full subcritical range because the homogeneous
space H _%’0(R2) is scale invariant for this problem. Since it is not possible
to obtain the crucial bilinear estimate in the standard Bourgain spaces for
—3 < s1 < —% which can be seen by the counterexamples in [31], we include
a low frequency condition into the definition of the spaces.® The drawback of
this low frequency condition is that the resulting spaces do not contain the
(time localized) solutions of the linearized equation unless the initial value
obeys the same low frequency condition. Therefore, we choose the space Xr
to be the sum of the low-frequency modified space and a standard space. This
sum structure is the crucial ingredient to be able to lower the z-regularity
without imposing a low frequency condition on the initial values.”

By the same method, we show the local well-posedness of the Kadomtsev-

3More precisely, because the product in the nonlinearity does not make sense a priori
for very rough initial values, we consider an operator equation which coincides with the
Duhamel formulation for smooth functions. However, we will show in Theorem 3.3 that
the solutions thus constructed are, in fact, distributional solutions of the original equation.

“These spaces have already been used by BOURGAIN [3,4] in the context of the
Korteweg-de Vries and the nonlinear Schrodinger equation.

SFor a good overview of the general scheme how to prove local well-posedness of the
equation from the multilinear estimates see [6] or the first part of [7].

6A similar condition was already used by TAKAOKA [30] to get local well-posedness

in the range —% <51 < —% but only if the initial value also satisfies a low frequency

condition, i. e. for initial data in H*1:0(R2) N H~2+0(R2?) with suitably chosen ¢.
TCf. also Remark 4.9.
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Petviashvili II equation in three space dimensions for s; > % and s, > 0. In
this case, H2°(R3) is scale invariant.

More generally, we prove, by the method described above, the local well-
posedness of the dispersion generalised Kadomtsev-Petviashvili II equation

(ug — | Dy | ug + (u2)x)x +Aju=0 in (-7,7T) x R?, u(0) =uo (1.1)

for % <a<6,ifd=2 and 2 < a < 6, if d = 3. These equations are

multidimensional generalisations of the one dimensional models
Uy — | Dy|*uy + (), =0 in (=T,T) xR, u(0) = ug (1.2)

For d = 2, we obtain local well-posedness of (1.1) for

S1 > ma 1—§a1—§0z
! * 49178

and s, > 0. Because the L?-norm of real valued solutions of (1.1) is con-
served, this immediately implies global well-posedness for real-valued initial
data in H*'°(R?) for s; > 0. We note that if 3 < a < 2, we still get the full
subcritical range on the scale H5°(R?). It is interesting that for these « the
two dimensional models “behave better” than the one dimensional equation
(1.2) in the sense that the flow map of the one dimensional model cannot be
C*-differentiable at the origin in any Sobolev space H*(R). This also means
that it is not possible to solve (1.2) in H*(R) with a Picard iteration scheme.®

The case a@ = 4 is also known as fifth order Kadomtsev-Petviashvili I1
equation

(U — Upgrzs + (u2)w)x + Uy, =0 in (=T,T) x R?, u(0) = ug

Our result in this case shows local well-posedness for s; > —% and sy > 0.7
For d =3 and 2 < a < 6, we obtain local well-posedness of (1.1) for

and s, > 0. As in the two dimensional case, the global well-posedness for
real-valued initial data in H*°(R3) for s; > 0 and o > 3 follows.

8This has been proven by MOLINET, SAUT AND TzVETKOV [21]. Note, however, that
a Picard iteration has been applied by HERR (cf. [8], Chapter 4) to prove well-posedness
for initial values in Sobolev spaces which include a low frequency condition.

9Note that well-posedness for the same class of initial data has recently been obtained
by Isaza, LOPEZ AND MEJIA [12].



In the case a = 4 of the fifth order Kadomtsev-Petviashvili II equation in
three space dimensions

(U — Uzgoes + (uQ)x)x +Aju=0 in (-7,7T) x R3, u(0) = ug

our result shows the local well-posedness for s; > —% and sy > 0.

We now give an overview of the organization of this thesis:

In Chapter 2, after fixing some notation, we introduce the Bourgain spaces
and show a general well-posedness result which reduces the question of lo-
cal well-posedness for equation (1.1) to a bilinear estimate in the Bourgain
spaces.

In Chapter 3, we first give local smoothing as well as Strichartz estimates
for solutions of the linear equation

(ur — | Da|up)e + Agu =0 in (=T,T) x R, u(0) = ug

It is shown that the local smoothing estimate implies that solutions of the
Duhamel formulation of (1.1) are actually solutions in the distributional
sense. In Section 3.3 we give an overview of the techniques used to de-
rive bilinear Strichartz type estimates and discuss some of their properties.
Finally, in Section 3.4 and Section 3.5 we derive bilinear Strichartz type es-
timates in the two dimensional, respectively three dimensional case. These
estimates are the building blocks used to derive the bilinear estimate which
is needed to apply the general well-posedness result of Section 2.4.

In Chapter 4, the main results for the two dimensional case are proven.
The main bilinear estimate for the two dimensional case is announced in
Section 4.2 and proven in Section 4.3 and Section 4.4. This is done by first
splitting the nonlinearity into various pieces and then using for each piece a
pointwise estimate to reduce the case to an appropriate bilinear Strichartz
type estimate of Section 3.4.

In Chapter 5, the main results for the three dimensional case are proven.
This is done analogously to the two dimensional case.

I would like to thank my advisor Professor Dr. Herbert Koch for his
constant support and encouragement as well as for many valuable suggestions
and discussions on the subject. I would also like to thank Sebastian Herr for
helpful discussions.

Furthermore, I would like to thank Maren Martens and Christoph Hadac
for proofreading parts of the manuscript.



Chapter 2

Bourgain spaces and
well-posedness

2.1 Preliminaries

Let us first recall some known facts about standard function spaces and fix
some notation that will be used throughout this thesis:

e For z € R™ let (z) := (1 + |z|?)=.

e Let S(R™) denote the Schwartz space, i. e. the space of all u € C*(R")
such that for all j € N

. - JAY
q;(u) : ﬁgggg(@ |07 u(z)] < o0 (2.1)

It is well known that, endowed with this family of seminorms, S(R") is
a Fréchet space, i. e. a completely metrizable topological vector space.
The dual space 8’'(R™) is called the space of tempered distributions on
R™.

e d always denotes the number of space variables in the equation, i. e.
d = 2 when we consider the two dimensional case and d = 3 when we
consider the three dimensional case. The space variable will always be
denoted by (z,%) where € R and i € R?L. If we consider the case
d = 2, we will often write y instead of 3. If we consider the case d = 3,
we will write ¥ = (y, 7).

e n:=d+ 1 always denotes the number of total variables (including the
time variable t) in the equation.

5



2.1. PRELIMINARIES

e For u € LY(R") the Fourier transform Fu of u is defined as
(Fu) (7, &,17) ;:/ e TR Iy (¢, 2, §)dtdwdy, (1, €,77) € R" (2.2)

It is well known that F : S(R") — S(R") is a topological and linear
isomorphism with

(F o)t 2,9) = (2m) " / T TNy (7, € ) drdédi  (2.3)

n

for v € S(R™). Furthermore, F can be extended to a linear and con-
tinuous isomorphism on S’(R™). If we only consider a partial Fourier
transform in some of the variables, we will denote this by F; for the
Fourier transform in the first variable, etc.

e For s € R we define the operators J3, Jz, and |D.|* as Fourier multiplier
operators with multiplier (€)®, (7/)*, and [£|°, respectively. This means,
for example, that (F2J7u) (1, &, y) = ()" Fault, &, 7), § € R.

e The (non-isotropic) Sobolev space H*1*2(R9) is the space of ug € S'(R?)
such that the norm

o

e = () () Fuoll e, (2.4)

is finite.
o 1= (7,& 1) € R? always denotes the Fourier variable dual to (¢, z, 7).
In the case d = 2 we will again write 7 instead of 77. In the case d = 3

we will write 7= (n, 7).

o For = (7,£17) let

,
A:Amw:T—aa”+% (2.5)

where 72 := 77 - 7] is the scalar product. If there are two frequency vari-
ables p and py, we will write po 1= p — p1, Ay = A1), Ao := A(p2)
for short. The elements of s are also denoted by (72, &2, 772). Further-
more, let |Apax| := max(|A], |A1], [A2]), [Emax| := max([€],|&1], |€2]), and

|£min’ = min(|£‘a |£1|7 ’£2|)

e A < B means that there is a (harmless) constant C' such that A < CB.
A ~ B is equivalent to A < B and B < A.
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e For a Banach space X and a Hausdorff topological vector space A, the
notation X — A means that there is a continuous embedding from X
into A. Let Cy(R; X) denote the Banach space of all continuous and
bounded functions f : R — X with the sup-norm. If X; and X, are
Banach spaces with X; — A, where A is a Hausdorff topological vector
space, we will often consider the two Banach spaces X; N X5, endowed
with the norm

2]l ximx = llzllx + [[2]lx,, 7€ X0 Xy (2.6)

and X1+ Xo :={r € A|z =121 +x,7; € X;(i =1,2)}, endowed with
the norm

[zl x4 x = nf{{lz1]lx, + [lz2llx, [ =21+ 22,20 € X;(0 =1,2)}
(2.7)

2.2 Bourgain spaces

In this section we define the function spaces which are adapted to the linear
part of equation (1.1). As the symbol of the linear operator has a singularity
along £ = 0 and as we want to be able to deal with a low frequency condition
in &, we will consider the following space of test functions.

Definition 2.1.
S_oo = {0 € S(R")|0EFp(7,0,77) =0 Vk € Ng ¥(7,7) e R" '} (2.8)

Remark 2.2. S_ is a closed subspace of the Fréchet space S(R™). The
functions in S_,, have the property that for k& € Ny and for (7,£,7) € R”,

we have |Fo(T,&,7)| < qr(d)|€|F.

Therefore, for sq, s9,b,0 € R, the following definition makes sense.

Definition 2.3. Let s1,59,b,0 € R. For ¢ € S_ let

1]l osr2 = NIEI7(E ™ 7™ (N F | 2 (2.9)

with \ as defined in (2.5). We define the space X212 as the completion of
S_ oo with respect to the norm (2.9).

Remark 2.4. If sy = 0, we simply write X»*! instead of X510,

We can identify X552 with a subspace of tempered distributions on R",
at least for o > —% and b > —% — 0. In order to prove this, we shall need

the following lemma.
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Lemma 2.5. Let sq,82,b0,0 € R with o > —% and b > —% — 0. Then there

exists a j = j(s1,S2,b,0,a) such that for all ¢ € S_, and all » € S(R™)

(¢, V)sr.s| S N9l xbors2 i (¥) (2.10)

Proof. Let
k() = (€177 ()2 (A) (2.11)

By Plancherel’s theorem and the Cauchy-Schwarz inequality, it holds that

(9, V)s,s] = c

[ W Fok) Fidn £ 6]

k_l}_EHL,%

(2.12)
Now, there exists a j' = j'(s1, $2,b, 0, a) € N such that

k()™ S (€7 + €700 ) = e) i)~ )

Since o > —% and b > —% — o, this implies that (-)='k~! € Li. Therefore,
we have for every ¢ € S(R") that

1kl 22 < gy () (2.13)
In particular, we get for Y = Fi that

16~ Fllez < a5 (FU) S a;(¥) (2.14)

where the last inequality follows for some 7 = j(j') € N because of the
continuity of the Fourier transform on S(R™). Now, (2.10) follows from
(2.12) and (2.14). O

Proposition 2.6. For o > —% and b > —% — o, it holds that

Xoorst = {u e S'(R") | |77 () (N) ' Fu e L*(R")}  (2.15)
Moreover, we have for all u € Xb51:52

ull boor.e2 = I11E177(E) 7™ (A Fu| 2 (2.16)

Proof. Let us first suppose that v € X212, We show that we can identify u
with a tempered distribution such that (2.16) holds. Let (¢;)ien be a Cauchy
sequence in S_,, with respect to the norm (2.9) in the equivalence class
defined by v in X>*152. By (2.10), we have for all I,m € N and ¢ € S(R")
that

(D1 = s V)ss| S M0 — Ol xooro2 g5 ()
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This implies that ({(¢;, V) s .s)ien is a Cauchy sequence in C for all » € S(R™).
We can therefore define a linear functional v on S(R") by letting

(U, V) s 1= llifilo@mﬁ)sxs, Y € S(R") (2.17)

u does not depend on the special choice of the Cauchy sequence (¢;) but
only on its equivalence class with respect to the norm (2.9). This follows
from the standard argument of mixing two Cauchy sequences from the same
equivalence class. Let us show that u is in fact a tempered distribution.
(2.10) implies [{¢r, V)s's| S |l yos1.52¢5(¥) for | € N and ¢ € S(R").
Letting [ — oo in the last inequality, we obtain |(u, ¥)s s| S [lull yoe1.265(¢)
which implies u € §’'(R™). We will now show (2.16). Let f; := kF¢, forl € N
with k as defined in (2.11). Due to Definition 2.3, we have that f; is a Cauchy
sequence in L*(R"). Therefore, there is an f € L*(R") with || f; — f|[zz — 0.
For ) € S(R™), we have

(Fu, ¥)sr,s = i (Fop, )srs = lim | fi(u)k(u) " (n)dp

o Rn

However, it follows by (2.13) that k~'¢) € L?*(R"). Therefore, letting | — oo,
we obtain

(Fu,V)ss = | fp)k(p)™"¢(p)du

R’ﬂ
i. e. Fu = fk!is a regular distribution and kFu = f € L?*(R"). Further-
more,

ol oo e = Jim [l penes = Jimn L fllz2 = 1111

which proves (2.16). From (2.16), it follows immediately that the identifica-
tion operator, which maps the equivalence class u € X212 to the distribu-
tion w, 1s injective.

Let us now show that this identification operator is onto X, where

X = {ue S'R") [ [¢]77(€) ()= (N Fu € L*(R")} (2.18)
We suppose that u € §'(R") such that f := kFu € L*(R"). Let
S:={p € SR")|F > 0V(1,&,7) €R" : [¢] <e = Fo(r,&7) = 0}

We obviously have that S € S_o and FS is dense in L*(R™). Therefore,
there exists a sequence (f)ien in FS such that || f; — fllzz — 0 for I — oc.

Let ¢y := F~ Y (k™' f;) for | € N. Then ¢y € S C S_o and
101 = dmll yp.erm2 = (11 = fmll 2
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Therefore, (¢;)ien is a Cauchy sequence with respect to the norm (2.9) and
defines an element of X252, It remains to prove that

(u, )5 = lim (1, Y)sr.s
This follows from
(= 61,051 = el Fu — 60), F )
[ = 50k ) )

S = fllzgy (F ') =0 (1 — oo)

where we used (2.13) for the last inequality. O

=C

In the following, we always assume that o > —% and b > —% — o hold, so
that we can always compute the norm of elements u € X252 by (2.16).
The following embedding property of the X%1:52_spaces is obvious.

Lemma 2.7. L§t/51/, So,0,b, 57,55, 0", b € R with s| > s1,s, > s9,0' > 0 and
b',s,s
b >0b. Then X7 — Xf;’sl’s? and

[l cboerer < Jlull ot o (2.19)

o!

b ,sh s
for everyu € X 72,

For b > % we also have the following embedding of the X5*1:2_spaces into
spaces of bounded and continuous vector-valued functions in .

Proposition 2.8. Let s1,s9 € R, 0 >0 and b > % Then
XL o CyfRs HO ()

Proof. For 0 = 0 see, for example, [7], Lemma 1.5. For ¢ > 0 we combine
this with Lemma 2.7 to get

X o XP s Oy(R; H ()
0

Definition 2.9. Let X — D'(R"). For T" > 0 we define the restriction
operator Ry : X — D'((=T,T) x RY), u s u’(—TT)de' Furthermore, we
define the space X7 to be the quotient space X /N, where

N7 ={u € X | Rru =0}
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Remark 2.10. The norm in Xp is given by
lullsy = it (il | @€ X, @y gm0 = )

We note that, under the assumptions of Proposition 2.8, we have that
(Xbsvs2)p — CO([-T,T]; H*-*2(R?)). For u € X, we often simply write
u instead of Rru to denote the corresponding element of X,. It will always
be clear from the context what is meant.

2.3 The linear equation
In this section we consider the linear equation

(ur — | Da|up)e + Agu =0 in (=T,T) x R, u(0) = ug (2.20)
and derive some of its properties.

Definition 2.11. Let s1,s9 € R and a > 0. We define a unitary group
(Ua(t))ier on H**2(R?) by

F(Ualtyuo)(&,77) = €SN (Fuo)(&,77),  uo € H**2(R?) (2.21)

where the phase function p, is defined by

_Q

Pal&,17) = €1 — % (2.22)

Remark 2.12. Note that u(t) := U,(t)ug is only formally a solution of (2.20)
for ug € H**2(R?) because, in general, u is not differentiable as a function
with values in any space H*1*2(R%) due to the singularity of p, along & = 0.
We can deal with this problem in two ways:

a) We can restrict to initial values ug in the space

H(RY) = {ug € H**2 | 0, ug := FH (i€ Fug) € H*#}

endowed with the norm [[ug|| o102 1= ||uo| rrer.s2 + (|9, "o prsr 52 Tf, for
ug € H™*?(RY), we let u(t) := Uy(t)uo, t € (=T,T), we can easily
check that u € CY((=T,T); H*~(@tD:52=2) and that (2.20) holds in
Hs1~(@+2)52=2 for all t € (=T,T). We will not pursue this approach
because we do not want to put any low frequency condition on the

initial values.
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b) We can change the order of differentiation in the first term in (2.20). We
easily verify that if ug € H**2(RY) and u(t) := U, (t)ug, t € (=T, T),
then d,u € CY((—=T,T); H*~(@+2)52=2) and for all t € (—T,T) we have

0,0,u(t) = | Dyl (t) — Agu(t)

This also implies that (2.20) is fulfilled in the sense of distributions,
which, for si, so > 0, means that for all p € C®((=T,T) x R?)

/ U( Ptz — | Da| " @ + Agp)dtdady = 0 (2.23)

We now show how the action of the linear group U, on initial values
whose ¢-frequency is localized in an annulus |£| ~ 2% can be reduced to the
special case £ = 0 by scaling. This result will be used in Section 3.2 to
derive Strichartz estimates for the solution of the linear equation. We first
introduce the Littlewood-Paley and scaling operators.

Definition 2.13. Let ¢ € C°(R) be such that 0 < ¢ < 1, p(=¢) = ¢(&),
and

L E=t
If we let ¢k( ) = (277 — p(217FE) for k € Z, £ € R, then 0 < 1)y, < 1,
V(=€) = ¥u(§), ¥r(§) = 0 for [¢] & (2°71,2%41), and
> (€ =1 for £ e R\ {0} (2.25)
keZ

Furthermore, if g := ¢ and ¢y := ¢y for k € N, then

Y er(@) =1 for (R (2.26)

keNg
If we also let ¢y := Uy_1 + Vg + Vg1, then Yy, = 1y for k € Z.
Definition 2.14. For k£ € Z and ¢ > 0 define Ay, Ak and S5 by

(Ssu)(t, =, ) = ult, 6,52+
(fQAku) (ta 57 g) = wk(€>FQU(t7 ‘57 g)
Ap=Ap 1+ A+ Appq

Proposition 2.15. For every k € 7Z, it holds that

Ua (t)Ak — SQk Ua(2(a+1)kt)A0527k
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Proof. For uy € S(RY), it holds that

(Un(t) Agig) (2, §) = (27) ™ / T ) (€)(Fuo) (€, 7)dEdi

R4

Using the change of variables & = 2~¢/, 17 = 2(%+1)kﬁ’, we see that the last
integral is equal to

(27T)_d /d €i2kx£/+i2(%+1)kg.ﬁ/€i2(a+1)ktpa(£,’ﬁ/)1;0(f,)(FSQ—kU,O)(f,,ﬁ)d&ldﬁ/
R
= (Sax Ua(2(a+1)kt)5052—kuo)($a ¥)
The claim follows by the density of S(R?) in H*»%2(R%), O

Proposition 2.16. For 1 < q,r < oo let

y(d, o, q, 1) = ((%—I—l)d— %) (% - %) - (Oé+1)$ (2.27)

and suppose that )
HUa(t)AOUOHLgL;g S |luol| 22 (2.28)

Then it follows that
1Ua(8) Aruollgrr, S 257449 Jug 12 (2.29)
for every k € Z.
Proof. (2.29) follows from (2.28), Proposition 2.15 and the facts that
ISsvollzr, = 5-((g+1)d-5)2 loollc;,
|Ua(2 D )0g | a1, = 275 Un (ol oz
[

Definition 2.17. Let 51,5, € R. Let L : H5%2(R?) — Cy(R, H*1*2(R%)) be
defined by

(Lug)(t) := Ud(t)uq (2.30)
Also, for T € (0,1] let Ly : H*°2(RY) — Cy(R, H*1*2(R?)) be defined by
(Lyuo)(t) := Cr(t)Ua(t)ug (2.31)

where ¢ € C°((-2,2)) with (_1,1; =1 and (p := ((-/T).
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Definition 2.18. Let (s1,5;) € R2. For f € L3(R, H5*2(RY)) = X8,81,sz lot

(TCH(E) := /Ot Ut —t)f(tHdt', teR (2.32)

Furthermore, for T' € (0, 1] let

Cef)(0) = Golt) [ Ualt— )W), te (2.3
0
where (r is as in Definition 2.17.

Remark 2.19. If sq,s9,57,s, € R and f € X8’81’82 N Xg’sll’sé, then I'f and
I'7f do not depend on whether we compute the integral in H*'*2(R?) or in
]_[s’l,s'2 (Rd)

We have the following well-known linear estimates.

Proposition 2.20. For b > 0 and s1,s € R, it holds that

H51:52 (RQ) (234)

[ Lauol[ ybor2 S o

Proof. See for example [6]. O

Proposition 2.21. For —% <V <0<b<VV+1,T<1 andsy,s2 € R, the
operator I'r can be continuously extended to a linear operator from X g/’sl"s?
to Xbsvs2 gnd

107 Sl ene ST OS] g (2:35)

for f e XYsus2,
Proof. For 0 = 0 see [6]. For o # 0 consider the operator I, defined for

u €S s by (Falu)(t,&,§) = (1) Fou(t,&,9) (i e. I, = J7|D,|=). Then

I, : XUss 5 X% s an isometric isomorphism. It follows for f € S_s
that

t
HFTfHngshs? = HCT/O Ua(t o tl)f(tl)dt,‘lxg/’SLSQ
t
— htr / Ualt = ) (1) | g
0

t
— e [ Ut = LI W)y
0
< T1-(b-b") HIUfHXS’Sl’SQ _ 1= HfHXg’sl’SQ

The claim then follows by the density of S_., in X2 5152, Il
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2.4 The general well-posedness result

Theorem 2.22. Suppose that there exist parameters si,s, € R, b > %,

vV e (b—1,0], by € [0,=V], and o € [0,1] such that for the Banach spaces
X1, Xo, and Y defined by

Xl = X(l))—b/731,$2, X2 - Xg,sl,sg m Xg+b1,81—(a+l)b1,82 (236)

Y = XUz q xPrbnsi—(adlbuss (2.37)

we have the following bilinear estimate for all uy,us € S_o and k,1 € {1,2}

| B(ur, u2)lly S [Jurll x| uzll x, (2.38)

where B(uy,us) := 0, (ujus).
Then there ezists a non increasing function T : (0,00) — (0,00) such
that the following holds true:

a) For every r > 0 and ug € B, := {ug € H**(R?) | [Juo]| o102 (may < 7}
there is a unique element u € Xp,) where X := Xy + Xy such that we
have

u(t) = Un(t)ug + T(B(u,w))(t), te[=T(r), T(r)] (2.39)
Furthermore, u is of the form
u(t) = Un(t)ug +w(t), te[=T(r), T(r) (2.40)
with w € XQ,T(T)‘

b) For every r > 0 the flow map F, : B, — X, uo — u defined by a) is
analytic.

c) If ro > 11 >0 and ug € By, then Ry, Fr, (ug) = Fr,(uo).

Remark 2.23. Note that in the proof of Theorem 2.22 we construct the so-
lution w of (2.39) in such a way that it is an element of Xy r + Xo 7 with
T :=T(r). But it is easy to see that X1 7+ Xor = (X1 + Xa)r.

Remark 2.24. The spaces X5 and Y defined in Theorem 2.22 are built by
taking intersections of the Bourgain type spaces of Section 2.2. Therefore, it
is easy to see that they also satisfy the linear estimate of Proposition 2.21,
1. e.

T fllx, S TN flly (2.41)

Furthermore, by Proposition 2.20, we have for ug € H®*2(R?) that

| Liug||lx, S ||uol|mss (2.42)
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We first prove two lemmata used in the proof of Theorem 2.22. We
assume that the assumptions of Theorem 2.22 hold throughout the rest of
the section.

Lemma 2.25. Under the assumptions of Theorem 2.22, we have that I'B s
a well defined continuous bilinear operator from Xp x Xp to Xor for every
T € (0,1] and we have that

I (B (ur, u2))l|x 0 S T unllxr luzll x (2.43)

where k :=1— (b—10b") > 0. In particular, we see that the right hand side
of (2.39) is well defined. Furthermore, L is a well defined continuous linear
operator from H**2(R?) to X, r, i. e.

HLUOHXl,T 5 ||U0| H#1-52(R4) (244)

Proof. First, (2.38) shows that B extends continuously to a bilinear operator
B: Xpx X, — Y forall k,l € {1,2} and (2.38) holds for all u; € X} and
us € X;. Also, (2.41) shows that I'r extends continuously to a linear operator
Ir:Y — X, forevery T € (0, 1]. Altogether, we see that for every T' € (0, 1]
and k,l € {1,2} we have that I'r(B(u,us)) is well defined for u; € X and
uy € X; and

IPr(B(uy, u2))|x, S T"[Jur ]l x,[Juzl x, (2.45)

As RpI'rB(uq,us) only depends on Rpu; and Rpus and
RTFB(ul, UQ) = RTFTB(Ul, Ug),

I'B is a well defined continuous bilinear operator from X 7 X X; 7 to Xop
for k,1 € {1,2} and

HF(B(uh UQ)) HX2,T Sz TﬁHul HXk,T ”u2||Xl,T (246)

holds. For uy,us € Xp and u; = v; + w; with v; € X, 7 and w; € Xop
(1 =1,2), it follows from (2.46) that

IT(B(us, u2))lx e S T (valls 7+ llwnllxs ) (02l - + lw2llx, )

Now, (2.43) follows from this and (2.7) (using that Xy r+Xo 7 = (X1+Xa)7,
cf. Remark 2.23) Furthermore, it is easy to see that (2.44) follows from
Proposition 2.20. []

Lemma 2.26. Under the assumptions of Theorem 2.22, we have for
T € (0,1], Ty € (-=T,T) and 6 € (0,T — |To|) that Tr,, which is defined
forue S_o by

(rryu)(t) =u(Ty+t), teR (2.47)
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is a well defined continuous linear operator from Xy to Xis, k =1,2, and
we have for every u € Xy that

Irryullxi s < llullx (2.48)

Furthermore, we have for uy,us € Xr that

(701" B(us, u2)) (1)
= Uy (t)(I'B(uy,u2)(To)) + ' B(rryuy, Tryue)(t), t € [—6,0] (2.49)

Proof. By definition (2.9) of the X2**2-norm and definition (2.6), we have
for u € S_ and k € {1,2} that

ITzyullx, = [lullx, (2.50)

Because S_, is dense in X for k = 1,2, we find that (2.50) actually holds
for all u € X}, i. e. 7, is an isometry on Xj,. Since X} — Cy(R, H*1*2(R?)),
we have for every u € X, that (rr,u)(t) = u(t +Tp), t € R. Therefore, it is
obvious that Rs7r,u only depends on Rpu. However, this implies that 77, is
a well defined continuous linear operator from Xy 7 to X;s and that (2.48)
holds.

Let us prove (2.49). We note that by the bilinearity of B it suffices to
prove (2.49) for uy € X1, us € Xy, k,l € {1,2}. For uy, us € S_ we have

(7, I'B(uy, u2))(t) = /O O Ua(t + To — t') 0y (ur () ua(t'))dt’
— UL (1) /0 Uy — 0, (ug (s ()t
+ / Ut — 00 (s (' + To)un(t” + To))dt”

where we made the change of variables t’ = t”+Tj in the second integral. This
proves (2.49) for uy, us € S_o. Since all terms in (2.49) depend continuously
on uy € Xpr and ug € X7, (2.49) follows. O

Now, we can prove Theorem 2.22. Note that we restrict ourselves to
0 <T <1 but that the same arguments apply to any compact time interval.

Proof (of Theorem 2.22). Ezistence of a solution: Let r > 0 and suppose
T :=T(r) € (0,1] has already been chosen. For uy € B, we search for a
solution u € X7 of the operator equation

u = Lug + I'B(u, u) (2.51)
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where the right hand side of this equation is well defined due to Lemma 2.25.
Let us define w := u — Lyjug. Then u € Xr is a solution of (2.51) if and only
if w € Xp is a solution of

w = I'B(w + Lug, w + Luy) (2.52)

Note that by the mapping properties of I'B this implies that w € Xy 7. We
will show that for 7" small enough (2.52) has indeed a solution w € X5 1. For
fixed uy we define the operator ® on Xy by

Or(w) :=I'B(w + Lug, w + Luy) (2.53)

so that w is a solution of (2.52) if and only if w is a fixed point of ®7. Let
us show that for 7" small enough ®1 has a fixed point in Xy 7. For R > 0 set
Ar ={u e Xor | |ulx,, < R}. If w,wy, ws € Ag, we get by the bilinearity
and symmetry of I'B, (2.43), (2.44), and (2.7) that there is a constant A > 0
such that

Horss )2 < ATH(R +1)? (2.54)

[Pr(w)llx, e < AT™([[0]|x, 7 + [[uo]

and

[ @7 (w1) — Pr(w2)l|x,
< AT"([Jwr |l xa,r + [[w2lxzr + 2l[uoll o2 [[wr — w2 x, o
< 2AT™(R+1)||lwy — wal|x, 1 (2.55)
For given r > 0, let R := 7 and T' = T'(r) := min(1, (8Ar)~»). Then it follows
from (2.54) and (2.55) that ®1 is a contraction mapping from the complete
metric space Ag into itself. By Banach’s fixed point theorem, there exists
a fixed point w € Ag of ®p. But then F,.(up) := u := Luy +w € Xr is a
solution of (2.51). For every t € [T, T], we have that (Lug)(t) = Uq(t)up.
Therefore, (2.51) implies (2.39). Furthermore, we obviously have (2.40).
Uniqueness of the solution: Let us suppose that there are two solutions
uy,us € Xr of (2.39). We have to show that v := u; — uy = 0. Let us
suppose that v # 0. Then there exists ¢t € (=T, T) such that v(t) # 0. We
can restrict to the case t € (0,7") because the proof for the case t € (—=T,0)

is analogous. Let
Ty :=inf{t € (0,7] | v(t) # 0}

Then we have Ty € (0,7T) and v(t) = 0 for every t € [0,Tp]. Since u; and uqy
are solutions of (2.39), we have by the bilinearity and symmetry of I'B that

v(t) = TB(uy + us,v)(t), te[~T,T] (2.56)
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i.e. v =TB(u; +ug,v) € Xop. Now, v(t) = 0 for t € [0, 7] implies that
['B(uy + ug,v)(Tp) = 0, so that by (2.49) we have for every § € (0,7 — Tp)
that

1r,0(t) = T B(7m1, (U1 + u2), 71,0)(t), t € [—0, 0] (2.57)

Combining (2.57) with (2.43) and (2.48), we see that there is a D > 0 such
that for every 6 € (0,7 — Tp)

HTTOUHX2,§ < D(SH”TTOUHXQ,(S

If we choose § < (2D)~~, we find that Tl x,5 = 0, 1. e. v(Tp +t) = 0 for
all t € [0, §]. However, this contradicts the choice of Tj.

Consistency of the flow map: If ro > r1 > 0 and vy € B,,, then it is
obvious that both Rp(,)Fr, (ug) and F}.,(ug) are solutions of (2.39) in Xp(.,).
So, by the uniqueness of the solution, it follows that Ry, F}, (uo) = Fr, (o).

Analyticity of the flow map: For r > 0 define A, : B, X X7y — Xp() by

A (ug,u) :=u— (Liug + T'B(u,w)) (2.58)

so that for uy € B, and u € Xp() we have that A,(ug,u) = 0 if and only
if u = F,.(ug). The mapping A, is obviously analytic. Therefore, we deduce
from the implicit function theorem that F) is analytic. ]

By Theorem 2.22; the (local in time) well-posedness of equation (1.1)
follows from a bilinear estimate of the form (2.38). While deriving the bilinear
estimate (2.38), we can, in most of the cases, take u; and s in the simpler
space X** instead of X, for the calculations and then use the following
simple embedding property.

Proposition 2.27. For X defined as in Theorem 2.22 we have X — X212
More precisely, we have the estimate

[l ooeree < Jlullx < lullx, (2.59)

for k e {1,2}

Proof. Since o > 0, we have by Lemma 2.7 and by definition (2.6) that
HuHXg,Sl,sz < fluflypores < flullx,. As b= = b, it follows by Lemma 2.7
that ||ul

0
with v € X; and w € X, then [Jul| \bs.0 < [Jv]lx, + [[w]|x,. If we now
0

oz < [ull yo-.e1.5 = |lullx,. Therefore, if u € X and u=v+w

take the infimum on the right hand side of this inequality over all possible
decompositions of u of the form u = v + w with v € X; and w € X5, we get
the left inequality of (2.59). The right inequality of (2.59) follows directly
from the definition of the norm of X in (2.7). O
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If s; > 0 and sy = 0, then we can use the the conservation of the L2-norm,
which holds for real valued solutions of (2.39), to obtain the following global
result, where H*'9(R%; R) denotes the subspace of all real valued functions
in H510(RY).

Theorem 2.28. Suppose that there are parameters b > %, v € (b — 1,0],

2
by € [0, V] and o € [0,1] such that for the Banach spaces Xl(s), Xz(s), and

Y®) defined by
X=X, X = xbe X (et (2.60)
Y = XU q xUrhesmleth (2.61)
we have the following bilinear estimate for all uy,us € S_o and k,1 € {1,2}

1B (ur; uz)llyor S [lunll g [lusl yo (2.62)

where B(uy,us) := Oy (ugus).

Then, for every s > 0, r > 0 and T > 0, there s an analytic map
F,: B, — Xj(f), where B, := {ug € H**(R%R) | |Jug||gso < r} and X&) =
X1(8)+X2(8), such that for every ug € B, the function u := F,.(ug) is the unique
solution of

u(t) = Uy(t)ug + I'(B(u,u))(t), tel[-T,T) (2.63)
mn X;S). Furthermore, u is of the form
u(t) = Uy(t)ug +w(t), tel[-T,T] (2.64)
with w € Xés%
We need the following lemma in the proof of Theorem 2.28.

Lemma 2.29. Under the assumptions of Theorem 2.28, we have for every
s >0 and every T € (0, 1] that the operator I'B is a well defined continuous

bilinear operator from Xz(f) X X:(FS) to XQ(S% and for all uy,us € Xz(f) we have

||FB(U17U2)HX;% S llwall o lluell yo =+ lull o lluzll ¢ (2.65)

Proof. We define the bilinear operator P; for u;,us € S_o, by
FPy(uy,ug)(p) = / X <ol (s 1) (Fur) (1) (Fuz) (p2)dpn (2.66)
Rn

Then it obviously holds that I'B(uy,us) = T'0.Pi(u1,uz) + 0. Py (us, uy).
Hence, the claim follows if we show that I'0, P; is a well defined continuous
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bilinear operator from X;O) X Xj(f) to XQ(S% and for all u; € XZ(FO) and uy € X;S)
we have
<
I N ey A

This follows exactly as in the proof of Lemma 2.25 if we show that for all
Uy, uy € S_o and k, 1 € {1,2} we have

102 Pi(ur, u2) ly o S N ozl o (2.67)

By the definitions of Xl(s), XQ(S), and Y and the definition of the X%*-norm
(2.9), we see that HuHXIg) = HJjU”X]gO) for k= 1,2 and ||ullye = |[L2ullyo.
Therefore, we have to show that

17202 Pr(ur, u2) [y S llunl] y ol Jrus| (2.68)

x©

We easily see that the norms on the right hand side of (2.68) only depend
on the modulus of Fu; and Fus. Furthermore, we have ||ully© < ||v]y© if
| Fu| < |Fu|. Since || < |&] implies |€] < 2]&,|, we deduce that

720, un)0)] = 1€ | rceation 10(F) ) () )

SIel [ (61| Fuslp i
= |FB(F (| Fwl), FH(|F T uz)))|
Using (2.62), we obtain

1720:Pr (1, ua)lly o S I1BF (| Fual), FH(FTzuz)) v
S NIFH(FuDl o IF (1 F Tuz)

|| Tz

0
x©

= [Ja]

0 0
x x0

This proves (2.67). O

Proof of Theorem 2.28. We restrict ourselves to 0 < T < 1 but the same
arguments apply to any compact time interval. First of all, we note that if
ug € H*'(R%R) and u € Xj(f) is a solution of (2.63) (which is unique by
the proof of Theorem 2.22), then w is also real-valued. This follows from the
uniqueness of the solution in X;S) and the fact that u is also a solution of
(2.63) in X,

For ry € [0, 7] let

B = {uo € H*'(RER) | ol

mso < 7T, HU()HLz < T’()} (269)
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Note that for 1o = r we have B,, = B,. Now, let T be the supremum of
all T" € (0,1] such that the following holds true: There is an analytic map
F : B,,, — Xr such that for every uy € B,,, the function u := F(uy) is the
unique solution of (2.63) in Xz(f ). We are going to show that 7% = 1. First
of all, 7% > 0 by Theorem 2.22. By (2.63), (2.44), and (2.65), we have that
there is a constant A > 1 such that for all T € (0, T*) we get

||u||X(TS) < HLuong + Il B(u, u) ) < Ar+2AT“HuHX(T0)HuH (2.70)

I X

and

Jall g < 1 Ztoll oy + vl < Aro + ] (271)

0
X3

where w := u — Lug. If T* < min(1, (16A%rg)"*), we have by (2.54) and
(2.55) with R := Arg and r := rg that [w||,0 < Ary and therefore, by

(2.71), that [Ju[ ;) < 2Ar. Combining this with (2.70), we find that
T

1
lull xer < Ar + 2 llull x¢

It follows that supy <z [[u(t)|gso < Cllull 4« < 2ACT. This upper bound
- T

does only depend on r and not on 7. Now, by Theorem 2.22 there is a
T" =T'(r) > 0 and an analytic flow map F = Fyac, : Boacr — Xqv. We
choose T' € (0, T*) such that T* < T+ %/ < 1 and define a map on B, ,, with
values in X, v by

H(ug) := CoF (ug) + ¢ F(w(T)) + CrrF(u(=T))  (2.72)

where (g, ,(_ is a smooth partition of unity on [ := [-T — T?I,T + T?I],
which is adapted to the covering I C Iy U I, Ul with Iy = (=T,T),
I.=T-T,T+T)and I_ := (=T —-T',—T+1T"). We can verify that H
is well-defined, analytic, and that for every uy € B,,, the function H(uy) is
the unique solution of (2.63) in X o As T+ T?/ > T™, this contradicts the
choice of T*. Hence, we deduce that

T* > min(1, (16A%rg) ") (2.73)

i. e. T* can be bounded from below by a bound only dependent on the
L?-norm of the initial values. But the L?-norm of real valued solutions u of
(2.63) is conserved, i. e. ||u(£T)||zz = ||uol|z2 for all T € (0,7*). So, if we
had T < 1, then we could extend the flow map beyond the time interval
[—T*,T*] by a similar argument as above, which would again contradict the
choice of T*. Therefore, we have T = 1. [
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2.5 Notes and references

All concepts introduced in Section 2.1 are standard and described in many
textbooks. For a detailed survey of distributions and the Fourier transform
and their use in the theory of partial differential equations, see, for example,
the textbooks by HORMANDER [9], YOSIDA [35], and KABALLO [15]. For
general results on the non-isotropic Sobolev spaces, see SCHMEISSER AND
TRIEBEL [27], Chapter 2. Note that the spaces called “non-isotropic” in
this thesis are called “spaces with dominating mixed smoothness properties”
in [27] whereas the “anisotropic” spaces considered in [27] are different.

The spaces of Section 2.2 were first used in the context of the Kadomtsev-
Petviashvili IT equation by BOURGAIN [5]. These kind of spaces, which are
adapted to the symbol of the linear part of the equation, had already been
used by BOURGAIN [3,4] to prove well-posedness results for the Korteweg-de
Vries and a nonlinear Schrodinger equation.

For an introduction to the theory of semigroups and their use in well-
posedness problems in partial differential equations, see PAzY [23].

For the methods used in the proof of the general well-posedness result of
Section 2.4 we refer the reader to the survey article of GINIBRE [6] and the
first part of the thesis of GRUNROCK [7].
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Chapter 3

Dispersive inequalities for
K P-type equations

3.1 Local smoothing estimates

In this section we give a local smoothing estimate for the solution of the
linear equation (2.20). We then use this estimate to show that the solutions
of the operator equation (2.39) in Xr (cf. Theorem 2.22) are actually lo-
cally integrable functions (in all variables) and satisfy (1.1) in the sense of
distributions (at least in the range of parameters si, so that we consider in
Chapters 4 and 5).

Similar to the case a = 2 and d = 2 (cf. [20], Lemma 3.2), one can prove
the following local smoothing estimate.

Theorem 3.1. For ug € L*(RY) we have
D13 Ua®utoll 12, S luollzz, (3.1)
Proof. The proof is analogous to the one given in [20], Lemma 3.2. O

This local smoothing estimate can be restated as an embedding of a
Bourgain space into L L.

Corollary 3.2. For s; > So >0 and b > % we have

o
2
HUHL;OL% S HUHX(’)’:Slvsz (32)

: b,51,52 00 T2
. e. X, — L3 L.

25
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Proof. By well-known methods (see, for example, [6], Lemme 3.3), (3.1) im-
plies for b > %

1Dl ullperz, S llull o (3.3)

Let ¢ be the function defined in Definition 2.13. We decompose u = u; + up,
where u; := F 1 (¢pFu) and uy := F (1 — ¢)Fu). For uy it follows from
(3.3) that

lunllzzz, S 1ol S unll o = 11Dl I Ty un| gronc S Il g
(3.4)
where for the last inequality we used —s; < 0, =5 — 53 < 0 and that

€] ~ (&) on the support of Fuy,. For u; we have by Minkowski’s and Sobolev’s
inequality that
fullizs, S Ietllzz,, S Nl goone (3.5)

where the last inequality follows because of —sy <0, —b < 0 and (£) ~ 1 on
the support of Fu;. Now, (3.4) and (3.5) together imply (3.2). O

Theorem 3.3. Suppose that the conditions of Theorem 2.22 are fulfilled with
51> —5 and s, > 0. Let ug € H*v%2(RY) and v € X7 be the unique solution
of (2.39). Then u is a solution of (1.1) in the sense of distributions, i. e.
u € LY Ly = LY(R; L (=T, T)xR*)) and for all o € CZ>((=T,T)xR?)
we have that

/ W(pte — | Da| Pz + Agp) + U pypdtdrdy = 0 (3.6)

Proof. By the density of S_ in X we have a sequence (4;) ey in S_o such
that u; := Rp(a;) — u in Xp for j — co. As X7 — C([-T,T); H*2(R?)),
this especially implies that u;(0) — wug in H*"*2(R?) for j — oo. Let

V1= Lu](O) + FB(Uj, Uj) € Xr

Then, v; — Lug+I'B(u,u) = v in X by Lemma 2.25. It is easy to compute
that

010,0;(t) = (ID.]"02 — Agyuy(t) — P(us(8)?), ¢ € (~T.7)

Multiplying this last equation with ¢ € C®((=T,T) x R?), integrating by
parts, and using Plancherel’s theorem, we obtain

/ 0310 — 1Dal*pne + Do) + 2 pnadiddi = 0 (3.7)
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By Proposition 2.27 and Corollary 3.2, we have the embedding
X — Xp**2 e LOLY;

and therefore also Xp < L°L7.. This implies that u € L3°L7,;, v; — u in
L¥ L7y, and uj — u® in Ly° Ly for j — oco. Furthermore, we can show that
|De|* 0y € Ly L7 Therefore, letting j — oo in (3.7), we get (3.6). O

3.2 Linear Strichartz estimates

In this section, we will use the abstract results of KEEL and TAO [17] to derive
Strichartz estimates for the solutions of the linear equation (2.20). In order
to be able to apply the results of [17], we need the following decay estimates,
which are proved exactly as in the case a = 2, d = 2 (cf. SAuT [24]). For
the case a € 2N in dimensions d = 2, 3, see also BEN-ARTZI AND SAUT [1].
For the convenience of the reader, we will give the full proof here.

Theorem 3.4. We have for a > d — 2 and uy € L*(RY)
a_d _d
[ Dz|2™2 Ua(t)uol| oo may S 1672 [uollz1 ey (3.8)

Proof. Let 6 := % — 5. Because 6 < 1, we have that

mi(€,m) = [¢] <M € SR
for every t € R. Therefore, we have for ug € S(R?) and ¢ € R that
1D, | UL (t)ug = FH(myeFug) = FH(my) * ug € S'(RY)

For 61,0, > 0 let us define m?"®(€,7) == e~ 91897, (¢,77) Then, by the
theorem of dominated convergence, we have that lims, 5,0+ mit* = my in
S’(RY). Therefore, we have that

_ : 1 516
1D, | Uq(t)ug = 51’(1;;{1%}" L(mgho?) x g

Furthermore, we see that

A o) = [ S FImdr 6 dear
R

— C/ ‘£|—96—51£2+i($€+t€|€\°‘) (/ eiﬁ-ﬁe—(52+i§—t)52dﬁ> d¢
R Rd~1

el Gt a1 g ity-1g
:C/ ’€|—0€—51£2+m€+zt€|§\ (52—}—2)_%6 4(524—5) 1y2df
R
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By the theorem of dominated convergence, we can take the limit 6, — 0+ in
the last expression and get that

= : 3 o 0167 +i(zE+tE 8|~ —(d— 1)sign($)T) g2
F m) = el tim [ 1€l D7 g
Let (§) = e~ 0187—i(d~ 1)sign(§)§ and ¢(&) := £|¢|“. Then |¢”(f)‘% ~ ‘5|%—%

and we can use Corollary 2.9 of [18] to see that

/\5\ b e ilreelle —(d-1) sian(9 D) 57 ge | < |-

where the implicit constant does not depend on é; > 0. Therefore, we get
that F~'(m;) € L*(R?) and || F~'(my)|| e ray < C|t|=2. It follows that we
have the decay estimate (3.8) for all ug € S(R?) and then, by continuity, also
for all ug € L'(RY). O

Definition 3.5. Let

v(d, a,r) == (g - %) G - %) (3.9)

Theorem 3.6. Ford =2 let 2 < g < o0 and % + % = % We then have that

1D Us (tyuollgry, S lluollrz, (3.10)

and for b > %

Dol g, S

S Jlull g (3.11)

Proof. Let Ay and Ay, be defined as in Definition 2.14 and U(t) := U, (t)A,.
Then, U(t) is a linear and continuous operator on the Hilbert space L*(R?)
with U(t)* = U,(—t)A¢. By Theorem 3.4, it follows that
1T ()T (£) o | pos 2y = 1AV (s — t)uo|l o z2)
S D232 Uals — t)uo e
Sls— t\_lHUOHLiy(R%-
Therefore, we can use Theorem 1.2 of [17] to get

”Ua(t)AOUOHLgL;y S lluollze, (3.12)

We can check that £ = 1 — % implies that (2, a,7) = (2, a, q,r) where ~
is defined as in (3. ) nd 7 is defined as in (2.27). By Proposition 2.16, it
follows that

1Ua(O)Druollgry, S 27 Juo|l iz, (3.13)
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Because 2 < ¢q and 2 < r < oo, we can use Littlewood-Paley theory and
Minkowski’s inequality to see that

1
|Ua®uollzgzs, SN 1AUa(buo*)?llry, S O 1AUalt)uol 7, )?

kEZ kEZ
) (3.14)
By (3.13) and because of Ay = ApAg, we can estimate

[AxUa(t)uollpory, = ”Ua(t)AkAkuOHLngy < 2 e

If we substitute this into (3.14) and use Plancherel’s theorem and the fact
that || ~ 2% on the support of ¥y, we get that

1 o,T
1Ua()uollzry, S Q27 Aguollz2,)*)2 S N1Dul"®* g 1z,

keZ

If we now substitute |D,|"72*"yqy for ug, we see that (3.10) holds. Now,

(3.11) follows from (3.10) by standard methods (cf. [6], Lemme 3.3). O
Theorem 3.7. Ford=3 and a > 1 let 2 < q < 00 and §+% = % We then
have that
1D, Us (uollgrr . < Nuollzz, (3.15)
and for b > %
D27 gy Sl oo (3.16)

Furthermore, we have that

_1,a
1Dl 5 = ull oz < llull g0 (3.17)
0

Proof. As in the proof of Theorem 3.6, we can deduce from Theorem 3.4,
Theorem 1.2 of [17] and Proposition 2.16 that for k € Z

1Ua(®) Asttoll gy, S 25700 g 2 (3.18)

Now, (3.15) and (3.16) follow as in the proof of Theorem 3.6.
It remains to show (3.17). Let ¢, be defined as in Definition 2.13. Let
operators (), for j € Ny, be defined by

(FQju)(p) := @i (N\) Fu(p) (3.19)
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Using these operators, we can define the following Besov-type refinements of
the spaces Xg’o. Let XB% for b € R and 1 < p < 0o be the space defined as
the completion of S_,, with respect to the norm

1
b
[ull xper = (Z(2jb|QjUIL2<R4>)p) (3.20)
J€No
By using Plancherel’s theorem, we easily see that for b € R
Jull oo ~ flull

so that X_® = XB"2. Now, (3.18) for ¢ = 2 and r = 6 reads

10 (B st0ll 215, S 2 uoll 2. (3.21)

where v 1= v(3,,6) = 252 For u € S_ let g(7) := F1(U(—)u)(7). By
standard methods (see [6], Lemme 3.3), it follows from (3.21) that

HA]@UHL%ng N 2m‘|Akg‘|L;L§g N QMHQHL;L%

where for the last inequality we used that the operators A, are uniformly
bounded on L2. We have that (Fazg)(p) = (Fu)(T + pal&, 1), €, 1), so by
Plancherel’s theorem, (2.26), and Minkowski’s inequality, we find that

I9llus iz, = e / ( / (Fu) +pa(€,ﬁ)>€,ﬁ)l2d§dﬁ> o

<X [ ([ etEae e e nden) i
0 |7 |~27 R3

JEN

Using the Cauchy-Schwarz inequality in 7/ and making the change of variables
T = Ap) =7 —pa(&, 1), we see that the last expression is bounded above by

c) 2 < / |¢1(A)5EU(M)\2du) =c ) 28| Quullz = cllull .

7j€Np 1eNg

N~

Altogether, we have for every k € Z that

1Akl gzre S 257 Juf (3.22)

XB3!

We also have the trivial bound

1Axull 2z S llull 2z < llullxpoz (3.23)
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Now, we interpolate between (3.22) and (3.23). Note that the space XB%? is
a retract of the space I[(L*(R")) of all sequences (f;);en, With f; € L*(R?),
endowed with the norm

1)l 2 ay) = (Z(ij|fj|L2(R4)))p> (3.24)

Jj€No

(For the definition of retract, see [2], Definition 6.4.1.) Therefore, it follows
from [2], Theorem 5.6.1 that

,0

SN

(XB®2, XB21),, = XB1? = X (3.25)

N[=

where (-, ) 19 denotes the real interpolation method. From the Lions-Peetre
interpolation theorem (see [2], 5.8.6), it follows that

(L2LS LfLig)%J = L1 — LL3; (3.26)

Yy

where Li; denotes the Lorentz space. Altogether, we can now deduce from
(3.22) and (3.23) that

1Axullzrs. S 2% lully0 (3.27)

Finally, this implies (3.17) by using standard Littlewood-Paley theory (as in
the proof of Theorem 3.6). O

3.3 Bilinear Strichartz-type estimates: Gen-
eralities

In this section we are concerned with bilinear estimates, which express dis-
persive properties of the equation, just as the linear Strichartz estimates of
the last section. In fact, the linear Strichartz estimates from the last section
imply certain bilinear estimates. As an example, suppose d = 2 and o = 2.
Then, by Theorem 3.6, we have that HUHL;*W < HuHXg,o for b > 1. Combining
this with Holder’s inequality, we get that

[urul|r2 < Jluallzslfuzflze S ||U1||Xg70\|uz\|xgvo

If we use Plancherel’s theorem and the definition (2.9) of the Xg’o—norm, we
see that this is equivalent to

| fl(,ul)fz(m)d#l
re (A1)P(Ag)P2

S ezl f2]l 22
L},
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where we let f;(p) :== (A\°Fu;(p), i = 1,2. By duality, the last estimate is
equivalent to

3

SISl
=1

Because the L2-norm of a function f only depends on the modulus of f, we
finally see that this is equivalent to

fi(pa) f2(p2) f3(11)
R (AD)P(A2)?

for all f; > 0. If we define K (uq,p) == W, then we can write this last
estimate as

J1(p) fo(p2) f3(pe)
P W TP WL

3
dudpn S [ I1illz2
=1

3

- K (p1, ) frfofsdpadp < AT fill 2oy (3.28)
i=1

where we used the convention that in an integral over p; and p, fifof3 always

means f1(u1)fa(pe)f3(p), where puy = p — py. We will derive other bilinear

estimates of the type (3.28), which will not follow from the linear estimates

in Section 3.2. Our main tool to derive these estimates is the use of the

Cauchy-Schwarz inequality as shown in the next proposition.

Proposition 3.8. If K > 0 such that

2

A = sup ( K(,ul,,u)Qdul> < 00 (3.29)
Rn

HER™
then we have (3.28) for all f; > 0.
Proof. By using the Cauchy-Schwarz inequality in p1, we get that

K (pa, o) f1(pa) fo(p2) f3 () dpa dp

R2n

<[ ( } K(ul,m?dm)% ( } fl(u1)2fz(uz)2du1) * o) dn

<A - < - fl(#1)2f2(ﬂz)2dﬂl> 2 f3() du

If we now use the Cauchy-Schwarz inequality in u, we finally obtain

- K (i1, ) f1(pn) fo(p2) fo(p) dpn dp

5 3
<A (/ g f1(#1)2f2(M2)2dM1d/~L) I fsllz@ny = AT 11l 2y
"R i=1
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[

Proposition 3.9. Let us suppose that we have K, Ky > 0 such that for
ji=1,2
3
i Kj(p, p) frfofadpdp < A H | fill L2 )
Rem i=1
for f; > 0. Then, for every 0 € [0,1], we have that

3
Ky (g, 1) Ko (1) 0 frfofs dpdp < AJAT T fill ey (3.30)

R2n i—1
for all f; > 0.

Proof. For § = 0 and 6§ = 1, there is nothing to prove. Suppose 6 € (0, 1).
Let p := 1/6 and p’ :== 1/(1 — ). Then p,p’ € (1,00) and %—l—}% = 1.
Therefore, using Holder’s inequality, we get that

Ky (pr, 1) Ko(py, 1) =0 fi fofs dpndp
R2n

(K1, 1) fo fo f) ¥ dpndps

Q=

= /RQn(Kl(/va ) fif213)

L
7

Ka(p, u)flfzfsdmdu) '

R2n

< ( o Kl(Ml;M)f1fzf?>dM1dM>E (

3
< AJAFTT A ooy

i=1
[]
Proposition 3.10. Let K > 0. Suppose that for all f; > 0 we have
3
K (p1, ) i fofsdpadp < AT fill 2y (3.31)
R2n =1
We then also have that
3
K(p, ) frfofadpndp < AH 1 fill 2y (3.32)
R2n =1
3
/ K (p1, —p2) frfofsdpdp < AH | fill 2 ) (3.33)
R2m i=1
3
/2 K(p2, p) f1fafsdpadp < AH | fill 2 mn) (3.34)
Ren i=1

for all f; > 0.
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Proof. Let us prove (3.33). The other proofs are similar. We use the change
of variables T" : (1, p) — (pf, p') with gy = py and @' = gy — p = —ps in the
integral on the left hand side of (3.33) to see that this integral is equal to

- K (i, 1) fr(uh) fo(— 1) 3 (— ) dptydpt!

If we put ¢, := fi1, g2 := f3(—) and g3 := fo(—-), we can use (3.31) to see
that the last integral is less or equal to

3 3
AH ||gz'HL2(]R”) = AH HfiHLQ(R”)
i=1 i=1

3.4 Bilinear Strichartz type estimates in two
dimensions

In this section we will derive bilinear estimates of type (3.28) for d = 2. These
estimates will then be used in Chapter 4 to deduce local well-posedness results

for the two dimensional generalised Kadomtsev-Petviashvili II equation. Let
us assume d = 2 throughout this section. Recall the convention that in

an integral over p; and p, fifofs always means fi(p1)fa(po)fs(p), where
M2 = [ — H1.

Corollary 3.11. For b > % it holds that
1 o 1 o
[urus||r2 S [Da| 2™ 5w ] oo [ Da]* ™5 ug]| yoo (3.35)

Furthermore, we have

/ ‘fl|_i+% |f2\_i+% Fotufdpndit < 3 1l (3.36)
b O] 11

/ SRR < T (3.37)
R (A)P(A) Pl
ieaye —des 3

[ il 0% g i < T 1L (3.38)
R 1

(AP (A2)?

1=



CHAPTER 3. DISPERSIVE INEQUALITIES 35

Proof. Letting r = ¢ = 4 in (3.11), we get that [||D,]~ (G~ 5)ul|

txy

S Nullas
or equivalently ||ul| LS H\Dw|1_§u|\xb,o. Now, (3.35) follows by combining
z 0

this estimate with Holder’s inequality. Letting f;(x) := [£]17§ (\YoFu; (1)
for i = 1,2 and using duality, we see that (3.35) is equivalent to (3.36). By
Proposition 3.10, we also obtain (3.37) and (3.38). O

For the part of the product uius where the é-frequency of the first factor
is significantly smaller than the &-frequency of the second factor, we can
improve this bilinear Strichartz estimate. To formulate this improvement,
let us define for ¢ > 0 the following operator:

FPe(ur,uz) (1) 3:/ Xér|<elea) Fun (1) Fua(p2) dpn (3.39)
Rn

We have the following refined bilinear Strichartz estimate, which for the case
a = 2 was already implicitly used in [13,29-31,33,34].

Theorem 3.12. For b > % it holds that
1 «
1P (ur, u2)l| 2 S | Da|2un || ool [ Da| ™+ ua] o0 (3.40)

For the proof of the theorem, we need the following lemma.

Lemma 3.13. For a > 0 let ¢, (§) := &[€|* and

Ta(gafl) = Qba(g) - ¢a(£1) _ ¢a(€2)7 57 61 €eR (341)
We then have for every £,&1 € R that

lémm\lfmaxlo‘ < fra(é: &) < (a+1 t3 )lémmemaxlo‘ (3.42)

Proof of Lemma 3.13. Suppose first that |§min| = |£1|. We then have that

|¢a(£1)‘ = ‘gmin‘a+1 |£m1nH£maX‘a

< %
because |Emin| < 3|&max|- Furthermore, there is a 6 € [0,1] such that
[0a(§) = da(&2)] = |00 (€ — OE)|IG] = (a 4+ 1)|€ — 61| (G

Because |£;] <[], it follows that

1
min |§ — 08| = min{|¢], [§2[} = [§mea| > §|£maX’

0€l0,1]
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and

max £ — 01| = max{[¢], [2]} = |Emax]

0€[0,1]

Combining these estimates, we get that
ra(& &)| 2 [0a(§) — Palé2)] — [Palér)]
1 1
> _ « . _ . «
= (04+ 1)2a‘€max| ‘£m1n| 2a’5m1nH£max|

(8
- 2_a ‘émin‘ ‘5max|a

and
[7a (€5 €0)] < 19a(8) = ¢al&2)] + |Pal&r)]
(6 1 «
S (Oé + 1)‘€max| |£min’ + Z_Q‘fmin”gmax’
1

= (@t 1+ o)l
which proves (3.42) in the case [{nin| = [&1|. Taking into account that
ra(§,61) = 14(€, &) = —1a(&2,€), we see that (3.42) also holds in the other
cases. [

Proof of Theorem 3.12. Let

Fi(w) = €2 OV Fus (i), falpe) == |€]7F (N Fuy ()
We have to show that

S Ifallzzll fall 22

L3

&]77)&|1
‘/Rfﬂ X|€1|§%|§2|%fl(ﬂl)fg(,uﬂdﬂl

which by duality is equivalent to
o 3
€172 &)
I 71520 < :
/RG Xler|<3lé| (A1) Ao)? hfafsdmdp S g 1l 2 (3.43)

for f; > 0. By Proposition 3.8, it suffices to show that sup, I(,u)% < oo where

I(M).:/X B 31 =T
: - |€1|§§|§2|<)\1>2b<)\2>2b 1

For fixed p, we now use the change of variables T : pu1 — (v, A1, A2), where

v(p) = 1a(§,61) = EIE]Y — &l6n]™ — &2l&al”
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Let us also recall the definition of A\; and A,

2

M) =711 —&|& " + I
&1
2

Aa(p1) = 12 — &ol&a|™ + T
2

Observe that )
(5771 - 7751)

M+ —A=v+
P €616,

(3.44)

Therefore, we have that

NGRS et

SIRISIE
Furthermore, we have 0g, v = (a+1)(|&|* —[£1]%). Since we only consider the
region where |¢1] < 3|€|, which implies |€1] = |§min| and |€2] ~ €] ~ [Emax],

it follows by (3.42) that |v| ~ |&1]]|&|*. We also have |0, v| 2 [£2|® in this
region. Therefore, we deduce that

[0y (A + )| = 2|§%‘

| det Dy, T| = g, v[|0p M + O Aol 2 (61172 [&] A + Ao = A= v
2 €7 & 5 ]2 A+ A — A = v

Let us note that it is possible to divide the region of integration into a
finite number of open subsets U; such that 7' is an injective C'-function in
U; with non vanishing Jacobian. Because we are in the KP II case, both
terms on the right hand side of (3.44) have the same sign, which implies that
lv| < |A1 4+ A2 — A|l. So, performing the change of variables and using the
elementary inequality

K
/ dv < K
1 1 ~
-k [v]2|la—v]z 7 al
we obtain

R Ty
r3 (A2 O)2V|Z[ A + X — A —v]2 T Jre (M) P(A)2

, a#0

wl=| NI

[

In fact, (3.43) also holds without the cut-off function x, < Lg, and we
also get dual versions of (3.43).
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Proposition 3.14. For b > % we have that

w

|£1| 2’52| 2

ifafsdpmdu S ] ] IIfilc2 3.45

re (A1)P(Ao) g J12fs dpdp S 11 | fillz (3.45)
3

/ !;S;I1> <\€|> f1f2f3du1duN;::|| Fill 2 (3.46)
/ !5\“!52|‘fff e <'E'||f‘|! o
R6 <)\>b<)\2> 1J2]3 1@ Z: 1|| L2 .
/ LRI/ <H||f|\ (3.48)
R6<)\><>123N1M ill 12 .

Proof. In the region where |£;] < £|&] the estimate (3.45) follows from (3.43).

In the region where |£;] > %\£2| we have that \51\_%|£2|% < |§1\_i+%|§2\_%+%,
so that the estimate in this region follows from the bilinear Strichartz esti-
mate (3.36). We then get (3.46), (3.47) and (3.48) by Proposition 3.10. [

3.5 Bilinear Strichartz type estimates in three
dimensions

In this section we will derive bilinear estimates of type (3.28) for d = 3. These
estimates will then be used in Chapter 5 to deduce local well-posedness results
for the three dimensional generalised Kadomtsev-Petviashvili 1I equation.
Let us assume d = 3 and o > 1 throughout this section. Recall the convention
that in an integral over puy and p, fifofs always means fi(uq)fo(pe)f3(p),
where o = 1 — .

Theorem 3.15. We have for b > % and f; > 0 that

\55162\‘% 1z < 2
/ N gy 2T i S HHszL (3.49)
as well as 3
‘55152\_i+%
1fafs dmdp S ill 2 3.50
/]RS <A>b<A1>%<A2>bff2f3 H MNEWHL (3.50)

Proof. By Theorem 3.7, it follows that

_1, o
1D, Bull g S lull o
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39
and )
|||Dx‘_Z+EUHL§Lig < ] 1.0
0

By the definition of the Xg’o—norm, this can be rewritten as

1F e 2 N ), S N1 Fllze (3.51)
and ) )

1F=H U =2 () 5 )l zrs, S 1 fllee (3.52)

Using Plancherel’s theorem and Holder’s inequality, we see that the left-hand
side of (3.49) is bounded by

Huf (€172 )™ )| o 1771 (1€] 753 (0) 74 1

)HL2L3

Combining this with (3.51) and (3.52), we obtain (3.49). Furthermore, (3.50)
follows from (3.49) by Proposition 3.10.

H
Theorem 3.16. For b > %, 0 >0 and f; > 0, we have that
€316 |&s]
fifafsdpadp S ) N fill 22 (3.53)
/Rs (€07 (M)P(Ag)? H

Proof. By Proposition 3.8, it suffices to show that sup, (u)% < 00, where
&7l dp
I(p) = [¢] 1+26 2b 2b
e (E0)1F2 (A1) (Ag)

For fixed p and &;, we use the change of variables S : (71,71, 71) — (6, A1, A2),
where

— 2
O(r1,m1,71) = %

Let us recall the definition of A\; and A,

M) =1 — 51‘51‘a+_+ﬁ
51

_ «@ 772
Aa(p1) = 10 — &)&a| +_+_

& &
Observe that

~ s 2
>\1+>\2—>\—V:9+% (354)
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where v only depends on &;. Therefore, we have that
€1216)2
611262

SRS/ /IS
|0y, 0] = 2[¢ &KQ\—2

and X )
:2‘5|§‘)\1+)\2—)\_V_9‘§

|a~1 ()‘1 =+ )‘2)| 1 1
! ISHEE

Altogether, we get
‘ det D(Tl,m,ﬁl)s| = |87710||8ﬁ1()‘1 + )‘2)‘
= Al¢[[&a] el MO IM + Ao — A — v — 0]

Let us note that it is possible to divide the region of integration into a finite
number of open subsets U; such that S is an injective C*-function in U; with
non vanishing Jacobian. Both terms on the right hand side of (3.54) have
the same sign, which implies that |0| < |[A\; + Xy — A —v|. So, performing the
change of variables, we obtain

I(w) < / L / Xl s A @8N i«
~ <§1>1+25 RS <)\1>2b<)\2>2b|@|%|)\1 A — A — v — (9\% 1

Using the elementary inequality
K
/ dx < K
1 1 ~
K |z]2]a — [z " |al
<1

/ X|9|§|>\1+>\2—)\—V|d9d)\1d)\2
2o (M)A 2|0]5 [\ + Ao — A — v — 6]z

. a#0 (3.55)

o= NI=

we find that

Altogether, we deduce that

IUOS/ <

R (E)1H20

Remark 3.17. By Proposition 3.10, (3.53) implies that

/ GG o e de < T (3.56)
s (€T (PO



CHAPTER 3. DISPERSIVE INEQUALITIES 41

\f|_5\51\ 2] 2
rs (€) 20N (Ag)?

€172 16| 2|l
ws (€) 7 (NP ()

fifafs dpdp < H 1l 2 (3.57)

fifafs dpndp < H 1l 2 (3.58)

Let

1
2= {(p, ) € R ]G] < 516l 6] 2 1}

1
Ey = {(p1, ) €R®| §|f2\ <& <&, 6] = 1}

If we now interpolate between (3.49) and (3.53) restricted to =5, we get

Corollary 3.18. We have for 6 >0, 0 € [0,1) and f; > 0 that

1
[ €]~ mw A

3
fufofsdpdp S T 2 (3.59)
AP ()P i1

Proof. In E5, we have that (&) ~ [£1]| ~ |&2|. Therefore, (3.49) implies

\gl-m |£1 72t -
WY filafsdpdp S H [ fill L2 (3.60)
Similarly, (3.53) implies
€l 21 :
_ <)\1>b<)\2>b f1f2f3 d:uld:u S H HfZHL2 (361)
=2 i=1
By Proposition 3.9, (3.59) now follows from (3.60) and (3.61). O

Theorem 3.19. For b > % and s > % we have that

€15 1€ = (i)® fifefs
= (7)°(72)° (A1) (A2)°

dpdp < H £l (3.62)

Proof. By Proposition 3.8, it suffices to show that sup, (u)% < 00, where

._ Xz €12 & (D) > di
I(p) == /]R4 ()25 (72)25 (M) 20 (Ag) 2D
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We write I(p) = Iy(p) + Io(p), where I1(u) and Io(p) are the parts of the
integral where we have |{n1 —n&i| > [§7 — 76| and [Em —n&| < [E7 — &,
respectively. Let us note that by an exchange of the variables n; and 7); in
the integral I5(u), it is easy to see that Io(7,&,m,7) = 11(7,€,7,n). Hence, it
suffices to consider I;(u). We have that

N
+

and therefore

Li(p) S /R <<ﬁ11>25 * (ﬁ21>28) :

€)% 16" _
< /]R , Nlerl<leal Xlem—nga|=Iem—nal Ty Vo 3 vop dryd&ydmn, | dm

For fixed p and 771, we use the change of variables S : (11,&1,m1) — (v, A1, A2),
where v(&1) = £[€]* — &1|&|™ — &2/&|*. Observe that

oy (Em —n&)* | (En —1761)?
MERTATVE e T e

(3.63)

Therefore, it follows that

5’71 T 7751 ’
6160

> \§|é 1 ( |51771 —17751\1 n \51771 —177§1|1>
€12[6202 \ €12 [&1]2 162 [€]2]&1|2]&z]2

where for the last inequality we used that [£my — n&| > €71 — 1&1|. Using
(3.63), we get

[0 (A1 + A2)| = 2[€

€131 + de = A — v

6112 1622
Furthermore, taking into account that we are in the region where [£;] < $|&|,
we see that

0 (A1 + A2)| 2

a _1 1
|0, v] 2 [&2]™ ~ |&2]2[&1] 2 V]2

Using also that [£] ~ |&| in this region, we finally obtain

| det Diry 61,1)S| = |06 1110y, (A1 + Ao))
> €126 ]2 A + A — A — v]2
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Let us note that it is possible to divide the region of integration into a finite
number of open subsets U; such that S is an injective C'-function in U;
with non vanishing Jacobian. Because we are in the KP II case, all terms
on the right hand side of (3.63) have the same sign, which implies that
lv] < |A1 4+ A2 — A|. So, performing the change of variables, we obtain

1 1 V<t dvdhidA )
Il(u)§/< — T = 23) / Xlv|<|A e VaA1GA2 ) an,
r \ (71) (772) RS (A1) (X)) V|2 | A1 + Xa — A — |2

Using the elementary inequality (3.55), we deduce that
Xpl<hitra—A| AVdA1dA
/. 2O ]+ e — A— vff ™
Altogether, it follows that

1 1
Il(ﬂ)§/<m> dm+/<m> din S1

where for the last inequality we used that 2s > 1. Il

Corollary 3.20. Forb,b > %, d>0,s >0,0<6<min(1,2s9) and f; >0
we have that

€]0% 6|2 (&)~ O (i)
=, ()52 (72) %2 (A1)b(Ag)®

3
fifofsdpdp S T fillze (3.64)
=1
and

i fofs dpdp S H Ifille (3.65)

/ |5\6a|51\_§<§1>_?_5<77>82
=, (722 (72)%2 (A1) P (Ag) 00 (X) =000

Proof. In 2y, we have that [£] ~ |&], i. e. [€]2|€&]72 ~ 1. Now, (3.53) with &
replaced by d/(1 — 6) implies

a3 {6a) "2
= A (A)°
By Proposition 3.9, the last inequality and (3.62) with s = s5/6 > 1/2 imply
that (3.64) holds. i
Similarly, (3.56) with & replaced by §/(1 — 6) and (\)® replaced by (\)?
implies that

g
—0

,_.

3
fifafsdpndp S H 1 fill 22
i=1

5

&2 <§1>7%71‘
= (WA

Now again, by Proposition 3.9, the last inequality and (3.62) with s = s,/6
and (\2)? replaced by (\2)? imply (3.65). O

Jifoefsdpdp S H ||f1”L2
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3.6 Notes and references

The local smoothing estimates of Section 3.1 were used in the case of the
(modified) two dimensional Kadomtsev-Petviashvili II equation by KENIG
AND ZIESLER in [20]. For the three dimensional Kadomtsev-Petviashvili 11
equation, these estimates were used by IsazA, LOPEZ AND MEJIA in [11] in
order to prove local well-posedness results for this equation. Note that, in
contrast to [11], we do not use the local smoothing estimate in the proof of
local well-posedness of the dispersion generalised Kadomtsev-Petviashvili 11
equations but only need them to establish that the solutions of the operator
equation (2.39) are solutions in the sense of distributions. (Cf. Theorem 3.3.)

The name “Strichartz estimates” for estimates of the solution of a linear
dispersive equation in mixed Lebesgue spaces LfL;g goes back to the work
of STRICHARTZ [28] on the Schrédinger, Klein-Gordon and wave equation.
For the general scheme of how to deduce the Strichartz estimates from decay
estimates of the form (3.8), we again refer to KEEL AND TAO [17]. The decay
estimates and the linear Strichartz estimates proven in Section 3.2 are well-
known in the case a = 2 of the Kadomtsev-Petviashvili IT equation in two or
three space dimensions. See, for example, SAUT [24] for the two dimensional
case and TZVETKOV [33] for the three dimensional case. For the case a € 2N
in dimensions d = 2, 3, the decay and linear Strichartz estimates are proven
in BEN-ARTZI AND SAUT [1]. See also SAUT AND TzvETKOV [25] for the
case o = 4.

The method of writing the bilinear Bourgain space estimates as inte-
gral inequalities and reducing them by the Cauchy-Schwarz inequality to an
estimate of the form (3.29) was first used by KENIG, PONCE AND VEGA
in [19]. For a much more detailed account of bilinear (and, more generally,
multilinear) estimates and methods to prove them, cf. TAO [32].

The refined bilinear Strichartz estimate of Theorem 3.12 was, in the case
a = 2 of the Kadomtsev-Petviashvili II equation, already implicitly used
in [13,29-31,33, 34|, although it was not formulated explicitly. In the case
a = 4 of the fifth order Kadomtsev-Petviashvili Il equation, it was already
implicitly used by IsAza, LOPEZ AND MEJIA in [12].

The bilinear Strichartz estimate of Theorem 3.16 in the case a = 2 of the
Kadomtsev-Petviashvili IT equation in three space dimensions has been used
implicitly by IsazA, LOPEZ AND MEJIA in [11].



Chapter 4

The two dimensional case

In this chapter we consider the (two dimensional) Kadomtsev-Petviashvili 11
equation

(Ut + Uge + (1) 0)z +uyy =0 in (=T, T) x R?,  u(0) = ug (4.1)

and, more generally, the dispersion generalised Kadomtsev-Petviashuvili II
type equation

(ur — |Dy|“up + (u)p)s +uyy =0 in (=T,T) x R?, u(0) =uy (4.2)

with 3 < o < 6. Note that (4.1) is just (4.2) for « = 2. For v = 4, (4.2) is
the fifth order Kadomtsev-Petviashvili II equation

(Ut — Ugpaw + (U2)2)e +Uyy =0 in (=T, T) x R?  u(0) =uy  (4.3)

Our goal is to solve (4.2) for low regularity initial data, i. e. for ug € H*52(IR?)
with s; and sy as small as possible.

4.1 Main results

Our main result for the Kadomtsev-Petviashvili I equation (4.1) is the fol-
lowing.

Theorem 4.1. Let s; > —% and sy > 0. Then there exist a Banach space
X — Cy(R; H***2(R?)) and a non increasing function T : (0,00) — (0, 00)
such that the following holds true:

a) For every r > 0 and ug € B, := {ug € H*"*(R?) | |Juo|gro1-52r2) < 1}
there is a unique solution u € Xpy — C([=T(r), T(r)]; H***(R?)) of
(4.1).

45



46 4.1. MAIN RESULTS

b) For every r > 0 the flow map F, : B, — Xrpq),uo — u defined by a) is
analytic.

c) If ro > 11 >0 and uy € B,,, then Ry Fr (uo) = Fr,(uo).

Theorem 4.1 is just the special case a = 2 of the following more general
theorem.
Theorem 4.2. For % < o <6 let sp > max(1l — %oz,i — %oz) and s, > 0.
Then there exist a Banach space X — Cy(R; H**2(R?)) and a non increasing
function T : (0,00) — (0,00) such that the following holds true:

a) For every r > 0 and uy € B, := {ug € H*2(R?) | |Juo||gs1s2(r2) < 7}
there is a unique solution u € Xy — C([=T(r),T(r)]; H2(R?)) of
(4.2).

b) For every r > 0 the flow map F, : B, — Xrp¢y,uo — u defined by a) is
analytic.

c) If ro > 11 >0 and ug € B,,, then Ry, Fr (wo) = Fr,(uo).

Theorem 4.2 follows from Theorem 2.22 and the bilinear estimate which
is proven in Theorem 4.7 (cf. Section 4.2).

Remark 4.3. By a solution of (4.2) in Xp(,) we always mean a solution of
the corresponding operator equation (2.39). Note, however, that because of
max(1— %oz, i — %a) > —5, Theorem 3.3 shows that these solutions also solve
(4.2) in the sense of distributions, i. e. (3.6) holds.

Remark 4.4. In the particular case @ = 4 of the fifth order Kadomtsev-
Petviashvili IT equation, Theorem 4.2 shows the local well-posedness of (4.3)
for s; > —% and sy > 0. We therefore get a local well-posedness result for the
same class of initial data as IsAzA, LOPEZ AND MEJIA in [12]. Note, though,
that the spaces Xp, where the local well-posedness result of Theorem 4.2
holds, are different from those used in [12] (cf. Remark 4.10).

Remark 4.5. Let us note that if u is a solution of (4.2), then so is
uslt, 2,y) = 6°u(8t, 6z, 65 +1y)

Considering the homogeneous Sobolev norm

letolleven = N1E1 Il Fuollzz.

we get [|us(0, -, )| goree = 63 11 HEHD2 1440, - )| fyore. This scaling ar-
gument suggests that we get ill-posedness for s; + (14 §)s; < 1 — %oz. Note
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that for % < a < 2 and sy = 0 we reach the critical value 1 — %a of s1, except
for the endpoint. For o = 2 it is proven in [20], Theorem 4.2 that the flow
map cannot be C? at the origin from H*'°(R?) to H*'*(R?) for s; < —3, so
that our result is sharp (except at the endpoint) for the scale H*1"°(R?) in the
sense of C®%-wellposedness. (Note that while in general the space H*%2(IR?)
defined in [20] differs from the one defined by the norm (2.4), they coincide
for so = 0.) For a > 2, though, we have that i — %oz > 1 — %oz, so that we
do not reach the scaling limit in this case.

By combining the local well-posedness result of Theorem 4.2 with the
conservation of the L?norm, which holds for real valued solutions of (4.2),
we obtain the following global result, where H*1"°(R?; R) denotes the subspace
of all real valued functions in H*'"*(R?).

Theorem 4.6. For % < a <6 let sy > 0. Then there exists a Banach space
X — Gy(R; H*WO(R?%; R)) such that for every ug € H*'Y(R%R) and every
T > 0, there is exactly one solution u of equation (4.2) in Xrp.

Theorem 4.6 follows from Theorem 2.28 and the bilinear estimate which
is proven in Theorem 4.7 (cf. Section 4.2).

4.2 The main bilinear estimate

In the following formulation and proof of the crucial bilinear estimate needed
to prove Theorem 4.2, we will only consider the case sy = 0 (and write s for
s1) to simplify the presentation. Note that the case sy > 0 follows from this

special case because in the general case we only get an extra term %

in the integral inequalities we have to prove (see (4.12)). However, this term
is always bounded above for s5 > 0.

Theorem 4.7. For % <a<6 and

3 1 3
s > max <1 — 1% goz) (4.4)

there exist b > 5, V' € (b—1,0], by € [0, V], and o € [0,1] such that for the
spaces X1, Xo, and'Y defined by

Xy = X070 Xy = X0 0 X (et (4.5)
Y — Xb’,s N Xb’+b1,s—(a+1)b1

we have that
10z (urua) [y < [Juallx, [luzllx, (4.7)
foruy,us € S_o and k, 1 € {1,2}.
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Remark 4.8. 1If we let X := X; 4+ Xy, then by the bilinearity of
B(Ul,UQ) = 83;(11,111,2)
and by the definition (2.7) of the norm in X, it follows from (4.7) that

| B(ur, u2)lly S lurllxlluallx  (u1,u2 € S_oo) (4.8)

This implies that B can be extended to a continuous and bilinear operator
from X x X to Y.

Remark 4.9. In the case a = 2 of the Kadomtsev-Petviashvili IT equation,
the bilinear estimate (4.8) allows us to show the local well-posedness for
initial data in H*°(R?) for all s > —1. Let us explain how this relates to the
counterexamples in [31]. The counterexamples presented in [31] show that it

is not possible to get the bilinear estimate for —% <s < —% without including

the low frequency condition (i. e. the term (%)") into the definition of Xj.

The drawback of this, however, is that the space X5 does not contain the
(localized) solutions Lyug of the linear equation (2.20) anymore, unless we
impose the same low frequency condition on uy. Therefore, we introduce an
auxiliary space X; which does not include the low frequency condition and
contains Lyug for every ug € H*°(R?). Although there is no low frequency
weight in the definition of the space X, we can show the bilinear estimate
(4.7) also for u; € X because the term (A)*~ is included in the definition of
the norm of X; and b—1¥' is close to 1 (and significantly greater than b+ b;).
Then we can construct the solution in the sum space X := X, + X5, which
obeys the bilinear estimate (4.8) and contains Ljug for every ug € H*(R?).

Remark 4.10. In the case a = 4 of the fifth order Kadomtsev-Petviashvili II
equation, it is possible to get the bilinear estimate (4.7) in the spaces
X, = XP* and Y = XU*, i. e. choosing by = 0 and o = 0, as can be seen
from the fact that for a > 4 we use Lemma 4.15 instead of Lemma 4.13 and
Lemma 4.14. More generally, this is true for all o > g which can be seen by
refining the estimate of Lemma 4.15 by an additional dyadic decomposition
and interpolation argument as used in [31], pp. 89-92.

In order to prove Theorem 4.7, we will split the nonlinear term 0, (u;us)
into various pieces and give estimates in appropriate X g’s—spaces for each of
these pieces (cf. Section 4.3). We will then combine these estimates to give
the proof of Theorem 4.7 in Section 4.4. Because we will use exactly the
same splitting of the nonlinear term 0,(ujus) in the three dimensional case
(cf. Chapter 5), we will describe it here for general dimension d.

First of all, with P, defined as in (3.39), we can write

8w(u1u2) = ampl(ul,ug) + 895]31 (uz,ul) (49)
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Since the main bilinear estimate (4.7) is symmetric in u; and us (at least if
we consider all combinations of k,1 € {1,2}), it suffices to prove it only for
0. P1(u1,us). This expression can be decomposed further into

2 2
0pP1(uruz) = Qoo(ur, uz) + ZZQW u1, uz) (4.10)

=1 7=0

The operators ();; are defined by

FQij(ur, uz)(p) = 1§ X (pe1s o) Fua (pin) Fuz(p2)dpa

where Ay :

= {(/J ) € RQn I ‘€1| S ’£2| S 1} and Aij = EZHAJ for
1<i<2,0<y

< 2 with

_ . 1
=1 = {(u,m) € R | ] < 516l 16l 2 1}

= = {(m.) € R | Sléa] < 16| <16l 6] 2 1)

Ao = {(p1, 1) € R [ Al = [Armax|}
Aj = {(u, 1) € R [N = P} (1 =1,2)

Let us explain what the meaning of the regions =; and =, is. In Z; we have
that 2 < 2|&| < 3|¢| < 4]&,], i e. € and & are comparable in size and are
both bounded away from zero, whereas &; is the smallest of the frequencies
dual to the z-variable, i. e. [{1| = || In 25 we have that & and & are
comparable in size and are both bounded away from zero, whereas £ may be
small here and we have |£| ~ |{min|. For each of the operators Q;;, we will
show estimates of the form

Qi (ur, ua)ll s S lluall o luall yp.s (4.11)

for appropriately chosen §,b,0,3,b,5. By definition (2.9) of the X%*-norm
(and (2.16)) and by setting

Filin) = &) () Fur (1)
fo(p2) == (&2)°(Na)" Fua(puo)

we see that this is equivalent to

el 601 fu ) fo o
el (0P / iy e e

i )<du>1 < Al ol

L
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Using duality, this estimate is equivalent to

916117 frfo fs dpnd >
/ §\|§<‘§<1>>s+a<|§2>‘ {{f 1” S HHfZHLQ (4.12)

ZJ

for all f; > 0, where we again used the convention that in an integral over
and pu, f1fsfs always means fi(uy) fo(pe) f3(1t). The main ingredients we use
in the proof of these estimates are the bilinear Strichartz type estimates of
Section 3.4 and the “resonance identity” (3.44). We already noted that the
two terms on the right hand side of (3.44) have the same sign. Therefore, we
have

1 1 X
| Amax| > 5’)\1 + Ao — A > gM > ———|&min] [Emax] (4.13)

3 20
where for the last inequality we used Lemma 3.13.

4.3 Estimates for the @);;

In this section we will derive suitable estimates for the “pieces” Q;;(u1, uz)
of the bilinear term 9, (ujuz) (see (4.10)). In most cases it will be possible
to derive an estimate of the form (4.11) with (b,5,5) = (b,s,0), i. e. with
Uy, Uy € Xg’s. We then use that by the embedding property of X = X; + X,
(cf. Proposition 2.27), we have HuHng < ||u||x, and HUHXSS < |u||x,- In
these cases the integral inequality we have to prove reads

/ ‘€|1—0<€>8+U< > f1f2f3dﬂldﬂ<ﬁ‘|f'||L2 (4 14)
Now, this is proven in most cases under various conditions on the param-
eters b, s,b,§ and o. In the critical case, i. e. (i,j) = (1,1) and o < 4, we
cannot choose u; € Xg’s but have to prove separate estimates suitable for
the two cases u; € X7 and u; € Xs (cf. Lemma 4.13 and Lemma 4.14).
The following two conditions will be assumed in all cases:

1 1 -
S,SER,OSO‘SI,Z)>§,—§<I)§O (4.15)
and
~ 1 a 3
< — ——4+2s—35 4.1
b_a+1<4 g T S) (4.16)

Let us now consider the different cases.
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Lemma 4.11. We have that

1Qoo(u, u)l yis < lluall osllul] yo.s (4.17)
provided that (4.15) and
3«
< = — = 4.18
7=3271 (4.18)

hold.

Proof. We have to prove (4.14) for (i,j) = (0,0). Because in Ay we have
€] < 2|&] < 2 and [&] < |&| < 1, it follows that (&) ~ (&) ~ (&) ~ 1.
Hence, it suffices to show

| hotin, u)%hbﬁa dndps < H Il

where koo(1e1, 1) := (\PIE[V7|&]2|&,| 5. If we show that kgg is bounded on
Ago, then the claim follows from the bilinear estimate (3.45).

In Ago, we have |&| < |&]| and |¢] < 2|&|. Furthermore, b < 0 and
1 — 0 >0 by (4.15). Altogether, it follows that koo(u1, 1) < |&]27 177 <1,
where the last inequality follows from (4.18). O

Lemma 4.12. We have that
1Qro(ur, u)l yo.e S lluall oo llull yo.s (4.19)

provided that (4.15), (4.16) and
- 1/«
< — | = — — 5 .
b_Q( 1+ s 5) (4.20)

hold.

Proof. We have to prove (4.14) for (,7) = (1,0). Because in Ajq we have
(&) ~ (€) ~ [€] ~ |&] and (AP < [€]°P|&, P, it suffices to show

|§1|__‘§2|_
/A10 ]ﬁo(ﬂl,ﬂ) <)\1> < > fifofsdpdp S H||f2”L2

where o o
kro(pn, ) == |E]1 7300 73(g) 7ol [ (4.21)

If we show that kiy is bounded on =i, then it is especially bounded on
Ajp C Z;1 and the lemma follows from the bilinear estimate (3.45).
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Let us first consider the case || < 1. Then (&) ~ 1. We have £ + b>0
because of (4.15) and 1 — ¢ +ab+5—s < 0 because of (4.20). Since |¢] > 1
in =1, we conclude that kio(u1, ) <1 in this case.

Now, we consider the case [£1| > 1. Then (&) ~ [&]. Using this and
€] > |&1] in Ey, it follows from (4.20) that kig(p, p) < | & |2~ 5 HerDbHE=2s)
Because (4.16) implies 2 — 2 + (a + 1)b + (5 — 2s) < 0, we also obtain
kio(pe1, 1) < 1in this case. ]

Lemma 4.13. We have that

1@ (urs w2)ll xos S el yo-ss lluz xos (4.22)

provided that (4.15), (4.16) and (4.20) hold.

Proof. We have to prove that

/ 1) frfafs
A <

3
0@ o e < L1

In Aj; we have (&) ~ (€) ~ |€] ~ |&] and (A;)? < |€]°%)& [P, so it suffices to
show

/Au kio(p, )|g\‘;_<|€2‘>_ filafsdpndp S H 1 fillz2

where kg is defined as in (4.21). In Lemma 4.12, it was shown that under
the conditions (4.15), (4.16), and (4.20), k¢ is bounded on =;. This implies
that it is especially bounded on A;; C =;. Therefore, (4.22) follows from the
bilinear estimate (3.45). O

Lemma 4.14. We have that
1@us (o)l o S Maa | oo ocosoms el o (4.23)

provided that (4.15), (4.16), by > 0 and

~ 1l faa 3

< —(=-24+s5-3 4.24

b bl_a<4 2+S S) ( )
o>b —b (4.25)

hold.
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Proof. We have to prove that

€17 () &7 (N i fa s “TTue
/AH (&1)s—(@tDbrto (€)Y A )brb1(\,)D dpadp S H 1 fill L2
In A1 we have (£) ~ (&) ~ [£] ~ |&], so it suffices to show

5 E gl 4

3
/A S ffafuddn S Tl

where ki (1, 1) 1= (NP0 (M) P70 g[am TR () et |y, Now, the
lemma follows from the bilinear Strichartz estimate (3.38) if we show that
k11 1s bounded on A;;.

Because of [\ < |A| in Ay and b+ b > 0 by (4.15), we find that
PP < ()P Tn A we have [Ar] 2 [€]7[é]. Since b — by <0,
we obtain

kll('ul”u) SJ ‘5'%_%+a(g_b1)+§_s<€1>_s+(0‘+1)b1—‘7|€1‘B_bﬁ-a

Let us first suppose that |§;| < 1. We then have (£;) ~ 1. Note that
€] 2 1in Ajy. Because 3 — 9 + (b —by) +5—s < 0 by (4.24) and
b— by +0 >0 Dby (4.25), it follows that ki1 (i1, 1) < 1 in this case.

Let us now consider the case |£;| > 1. We then have (£;) ~ |&1]. By (4.24)
and since |¢| > |&] in App, we find that ki (g, p) < |& |2~ $TerDbHGE=29),

Now, (4.16) implies k11 (u1, ) < 1 in this case. O

If o > 4, we shall rely on the following lemma to estimate ()1, instead of
Lemmata 4.13 and 4.14.

Lemma 4.15. We have that

Qi u)l gz S Nt iz (4.26)
provided that (4.15), (4.16) and
§§3+%—1 (4.27)
- 1
b< —— 4.28
< o (4.28)

hold.
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Proof. We have to prove (4.14) for (i,j) = (1,1). We split A;; = AT U A7,
where

Af = {(, ) € A | 1G] <1}, AT = {(p,p) € Au | 6] > 1}

Using (&) ~ (€) ~ €] in Au, (€1) ~ 1 in AS, and (&) ~ |&1] in AZ, we see
that it suffices to show

145—s
/. %ﬁfﬁs drdpr < H 17l (1.29)
and
|£‘1+s s|£ ‘_ < >
/A; Db Jefsdimdn S H | fill 2 (4.30)

Let us first consider the case AT Because b < 0 by (4.15), it follows that
(A\)? < 1. Furthermore, since |¢| ~ |&], |&1] < 11in AT, and 1+5—-5—9<0
by (4.27), we obtain

[ STk
(A)*(A2)" ™ (A)*{Ag)"
Therefore, (4.29) follows from the bilinear estimate (3.45).

Let us now consider the case A7,. Then since |¢| ~ |&] in AT, we see
that (4.30) follows from

a

[ VTG e < Tl
> 11\H1, 1 N (g)? 1J2]3 G MNi:1 illL

11

where k11 (1, ,u) = (NP E[ 2T 8| |75 If we prove that kyp is
bounded on A7, then the claim follows from the blhnear estimate (3.38).

As |\ < |A1] in A% and b+b > 0 by (4.15), we have ()P (A) 0 < (A,)P.
Using | M| = [€]%]& ] in A2 and b < 0 by (4.15), we find that

7. 3_2iabti—s b—s
ke (o, ) S 1€ o070l )P

Now, (4.27) and (4.28) imply ———+ab+5—3 < 0. Because [£] > |& | in AT,

we obtain ki1 (p, p) < \£1|§_Z+(°‘+1)b+(5 25) < 1, where the last inequality
follows from (4.16). O

Lemma 4.16. We have that

1Qu2(ur, ua)ll s S Mluallos luall - (4.31)

provided that (4.15), (4.16) and (4.20) hold.
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Proof. We have to prove (4.14) with (¢,j) = (1,2). Because (£3) ~ (§) ~ (€|
in Ajo, it suffices to show

/A12 Ko (pe1, 1) ’f)l\l;_<‘§|> fifafsdpdp S H | fill 22

where kio(pr, 1) 1= (AT ) P €L TH5-5()75|&; |2. If we show that ki is
bounded on Ajs, then (4.31) follows from the bilinear estimate (3.46).

Since [A| < |Xo| in Az and b+b > 0 by (4.15), we get (AP0 (A) 70 < (\,)P.
Furthermore, we have |Xs| = [Amax| = [€]%]€1] in Ajo. Because b < 0 by
(4.15), we find that kio(p1, ) S kio(p1, ), where kyg is defined as in (4.21).
In Lemma 4.12, it was shown that kg is bounded on =; under the conditions
(4.15), (4.16) and (4.20). Therefore, it is especially bounded on Ay C Z4
and the claim follows. ]

Lemma 4.17. We have that

1Qa20(ur, u2) | s S Mlualloos lual o (4.32)
provided that (4.15), (4.16) and
(b 1) < ! Ly (4.33)
max(b, o - 4 5 28 :

hold.

Proof. We have to prove (4.14) for (i,j) = (2,0). As (&) ~ (&1) ~ |&1] ~ &2
and |A| = [Apax| in Asgg, it suffices to show

1, o

/ Koo (i1, 1) STl fifafs dpdp < ﬁ 1 fill 22
Az (A1)P{A2)" Pl

where ) ] X
koo (11, 1) = ) €1 7(E) T f0 [ 27472 (4.34)

If we show that koy is bounded on =,, then it is especially bounded on
Agyy C Eg and (4.32) follows from the bilinear Strichartz estimate (3.36).

Let us first consider the case |£] < 1. We then have that (¢) ~ 1. Let
m := max(h,c—1). By (4.15) we have m < 0. Using this and [Amax| > |€1]%¢]
in Zy,we find that A\nay)® < Pma)™ < €19 |€]™. This implies

kao(pia, i) S JE[1 g2 5 Fem 2
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We have 1 — o0 +m > 0 by the definition of m and 53— ¢ tam—2s<0by
(4.33). Taking into account that |;| 2 1 in Zs, this 1mphes koo(pt1, 1) < 1in
this case.

Let us now consider the case [{| > 1. We then have (§) ~ |£|. Using this
and (Amax)? < |€1]2%1€|° in 2y, it follows that

kao(pns 1) S ‘f|1+b+slg |7_7+ab o
Because £ — ¢ + ab—2s < 0 by (4.33) and [&] > |€] in Z,, we conclude that
kao (141, u) < |§ |5—3H(etDbH(E-25) < 1 where the last inequality follows from
(4.16). ]

Lemma 4.18. We have that
Qo) sl

provided that (4.15), (4.16) and (4.33) hold.
Proof. We have to prove (4.14) for (i,7) = (2,1). As (&) ~ (&1) ~ |&1] ~ &

in Ay, it suffices to show

| . (4.35)

|§‘7_|52‘_
/A21 ko1 (p1s 1) oo NP (AP fifofsdpdp S HHszL?

where kot (p1, 1) := (A)PT0(N) 0|27 ()| &, |~ 5725, If we show that ko is
bounded on As;, then (4.35) follows from the bilinear estimate (3.47).

In Ay we have |A| < |\ = |Amax|. Using this and b+ b > 0, which fol-
lows from (4.15), we conclude that ko (s, 1) < (Amax)2|€]277(E)FHo|&4 |5 25,
Taking into account that |§\% < \51]% in Aoy, we get koy(p1, 1) S koo(p1, 1),
where ko is defined as in (4.34). In Lemma 4.17, it was shown that under
the conditions (4.15), (4.16), and (4.33), koo is bounded on =5. Therefore, it
is especially bounded on Ay, C =5 and the claim follows. ]

Lemma 4.19. We have that
1Q22(ur, un)l 5. S Nluall xooe luzll xo.s (4.36)

provided that (4.15), (4.16) and (4.33) hold.

Proof. We have to prove (4.14) for (i,j) = (2,2). Because (&) ~ (&) ~ [&1|
in Ass, it suffices to show

/A22 koo (pi1, 1) |<ﬂ> <| ‘> fifefsdpdp S HHszLQ
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where koo(p1, 1) 1= (A\)PH0(N) €277 ()&~ 1725, If we show that koo
is bounded on Asy, then (4.36) follows from the bilinear estimate (3.48).
However, the boundedness of kg on Asy follows exactly in the same way as
the boundedness of ky; in Lemma 4.18. O

4.4 Proof of the main bilinear estimate

In this section we will use the estimates of the last section to give the proof
of Theorem 4.7.

Proof of Theorem 4.7. Let

1 € 1

—+ =, bi=—= 4.37
5 + 5 5 +¢ (4.37)
where € > 0 will be restricted by various upper bounds given in the course
of the proof. By definition (4.37), we obviously have b’ > b — 1. Let

3 _ 3 4 <
by = {2a ite (3<as?) (4.38)

b=

0 (2 <a<6)

and A
U::{—b’erl (5 <a<4)

3 o (l<a<) (4.39)

As noted before, because of the symmetry of (4.7) in u; and uy (at least if
we consider all combinations of k,I € {1,2}), it suffices to show (4.7) for
0. Py (u1,uy) instead of 0, (ujug), where Py is the operator defined in (3.39).
We decompose 0, P (uq,us) further as in (4.10). Therefore, we have to show
that for every @;; and every k,l € {1,2}

1Qus (w1, u2)ly S [lunl] x, [luellx, (4.40)

By the embedding property of the space X = X; + X5, which was proven in
Proposition 2.27, we see that (4.40) follows from

Qs Coun, w2y S s sl e (4.41)

which we actually prove in all cases, except the case (i,7) = (1,1) and « < 4.
By the definition (4.6) of Y, it suffices to prove

1Qu (ur, u2)ll 5.5 S Nlunll xcoos 1wzl xo.s (4.42)

in the two cases
(b,5) = (¥, 5) (4.43)
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and
(b,3) = (b + by, s — (. + 1)by) (4.44)
We will now use the Lemmata 4.11-4.19 of Section 4.3 to prove (4.42)
for all (¢,7) # (1,1). In order to apply any of these lemmata, we need that
the conditions (4.15) and (4.16) are fulfilled. Let us, therefore, first show
that there exists an € > 0 such that, in both cases (4.43) and (4.44), the
conditions (4.15) and (4.16) indeed hold. If

< 1
"= 16
then by the definitions (4.37), (4.38), and (4.39) and taking into account that
o > 3, we see that (4.15) holds. Now, (4.16) is fulfilled if

1 3
< —a—1 4.4
5_a+1<4o¢ +s> (4.46)

where the right hand side of this inequality is positive because of (4.4).
Let us now turn to the proof of (4.42) for all (,j) # (1,1). We will
consider three cases:

(4.45)

1. (4,4) = (0,0): We will use Lemma 4.11 in order to prove (4.42) in this
case. Therefore, we have to check that condition (4.18) holds. Taking
into account the definition (4.39) of o, we easily see that (4.18) holds.

2. (1,7) = (1,0) and (7,5) = (1,2): In order to prove (4.42) in these two
cases, we will use Lemma 4.12 and Lemma 4.16, respectively. There-
fore, we have to check that (4.20) holds for (b,3) = (¥,s) and (b, 5) =
(0" + b1, s — (a4 1)by). Now, (4.20) is fulfilled if

c<? Ga - 1> (4.47)

Q
where the right hand side of this inequality is positive because a > %.

3. (i,7) = (2,0), (i,7) = (2,1) and (i,7) = (2,2): In order to prove
(4.42) in these three cases, we will use Lemma 4.17, Lemma 4.18 and
Lemma 4.19, respectively. Therefore, we have to check that condition
(4.33) holds for (b, 3) = (V' s) and (b, 5) = (b +by, s — (a—+1)by). Since
§ does not appear in condition (4.33) and b < b’ 4 by, we see that we
only have to verify this condition for (b, 3) = (b 4 by, s — (a+1)by). In
order to see that condition (4.33) holds, we have to show that

1l fa 1
V+b <= ——=+2 4.4
rhsd(G-5+n) (1.49
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and

1 fa 1

S G _

o 1_a<4 2+23) (4.49)
hold.
Let us first show (4.48). This follows from (4.46) if 3 < a < 2 and from
1 /3 1

< (20242 4.

s_a(4oz 5T s) (4.50)

if & > 2, where the right hand side of the last inequality is positive
because of (4.4).

Let us now show (4.49). If 3 < a < 4, we find that o0 — 1 < V' + by by
the definition (4.39) of o and because of ¥’ > —1. On the other hand,
if a > 4, we also have

1
0—1§—§<b’—|—bl

Therefore, (4.48) implies (4.49).

Let us now consider the case (i,j) = (1,1). If & > 4, we can also prove
(4.42) in this case. We will use Lemma 4.15. Therefore, we have to show
that the conditions (4.27) and (4.28) hold. But if ¢ fulfills (4.45), it follows
that these two conditions indeed hold. This ends the proof in the case a > 4.

Let us now suppose that % < a < 4. We show that

1Qu1 (ur, u2)ly S lua |l x [zl o (4.51)

holds for £ € {1,2}. Then it follows from Proposition 2.27 again that this
implies (4.40) for all k,l € {1,2}. By the definition of Y, it suffices to prove

1Qua(ur, )l .5 S Ml [l o (4.52)

for (b,8) = (¥, s) and (b,3) = (' + by, s — (a+ 1)by) and for k € {1,2}.
Let us treat the cases £ = 1 and k = 2 separately.

1. £ =1: We will use Lemma 4.13 in this case. By the embedding prop-
erties of the Bourgain spaces, we have

1@ (ur, ua) yo.s < (@12 (un, u2)| yos

for (b,5) = (V,s) and (b,8) = (V' + by, s — (a + 1)by). Therefore, it
suffices to show

1Qui(ur; u2)llxos S Nl o-or.s [[ual] xos (4.53)
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This follows from Lemma 4.13 with (;5, §) = (V/,s). We have to check

that (4.20) holds for this choice of (b,5). However, this was already
proven to hold under the assumption (4.47).

2. k = 2: By the definition of X5, we find that
[ua]] gosoro-arnen < flul|x
so that it suffices to show
1Qu1 (ur, u) o S Mluall goroncarnen [luzll o (4.54)

for (b,5) = (', s) and (b, §) = ('+by, s—(a+1)by). We use Lemma 4.14
in order to prove this. Therefore, we have to show that the conditions
(4.24) and (4.25) hold. If § < a < 2, then the definition (4.38) of by
implies that (4.24) holds. If & > 2, then (4.24) is fulfilled provided that

1 /3 3
< (2a-2 4.
s_a(4oz 2) (4.55)

where the right hand side of this inequality is positive because of a > 2.
Since a < 4, (4.25) follows from the definition (4.39) of o.

This ends the proof also in the case that % < a < 4. l

4.5 Notes and references

The use of the Picard iteration scheme in Bourgain spaces to obtain local well-
posedness for the Cauchy problem of the Kadomtsev-Petviashvili IT equation
goes back to the seminal work [5] of BOURGAIN. In this work, BOURGAIN
showed the (global) well-posedness of (4.1) (on T? rather than on R?) with
initial values in L?, i. e. for s; = so = 0. This result has been improved
afterwards by TAKAOKA AND TzVETKOV [31] and IsAzA AND MEJ{A [13]
to the local well-posedness of (4.1) for s; > —% and so > 0. (For previous
results see also [33], [34], [29].) In [30], TAKAOKA showed local well-posedness
for s; > —%, so = 0, but only if the additional low frequency condition
]D$|_%+5u0 € L?, with suitably chosen ¢, is imposed on the initial values.
Note that global well-posedness for equation (4.1) holds for s; > —i and
sy = 0. This was shown by ISAZA AND MEJIA in [14].

For the fifth order Kadomtsev-Petviashvili II equation (4.3), SAUT AND
TzVETKOV [25] proved local well-posedness for s; > —i and sy > 0 under the
additional low frequency condition 9, 'ug € H*"*2(R?) (which is removed for
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s1 = s = 0 by the same authors in [26]). Note that the equation considered
in [25,26] is slightly more general than (4.3) because it also contains the third
order term. Very recently, ISAZA, LOPEZ AND MEJIA [12] have improved
the local well-posedness result to s; > —g and sy > 0. (These authors
also show global well-posedness of (4.3) for s; > —2 and s, = 0.) In [26],
SAUT AND TzZVETKOV also showed local well-posedness for the fifth order
Kadomtsev-Petviashvili IT equation with periodic boundary condition, i. e.
posed on (—T,T) x T?, for initial values in the subset of the non-isotropic
Sobolev space with s; > —% and sy = 0 with constant mean value in z.

For general o € (3,6], IORIO AND NUNES [10] showed the local well-
posedness for initial values wg in the isotropic Sobolev space H*(R?), s > 2
with the additional low frequency condition 9, 'uy € H*(R?) using parabolic
regularization. Note that these authors consider much more general equa-
tions and do not use the dispersive structure of the equation.
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Chapter 5

The three dimensional case

In this chapter we consider the three dimensional Kadomtsev-Petviashvili I1
equation

(Ut + Upgz + () )e + Agu=0 in (=T,T) xR* u(0)=uy (5.1

and the more general dispersion generalised Kadomtsev-Petviashuvili I type
equation

(s — |Dp|*up + (u))e + Agu =0 in (=T, T) x R*,  u(0) =ug (5.2)

with 2 < o < 6. Note that (5.1) is just (5.2) for « = 2. For o = 4, (5.2) is
the three dimensional fifth order Kadomtsev-Petviashvili 11 equation

(Ut — Ugpgzze + (U2)2)e + Agu =0 in (=T, T) x R*  u(0)=uy (5.3)

5.1 Main results

Our main result for the Kadomtsev-Petviashvili II equation in three space
dimensions (5.1) is the following.

Theorem 5.1. Let s; > % and sy > 0. Then there exist a Banach space
X — Cy(R; H***2(R?)) and a non increasing function T : (0,00) — (0, 00)
such that the following holds true:

a) For every r > 0 and uy € B, := {ug € H*52(R?) | |Juo|| gs1.02ms) < 1}
there is a unique solution u € Xy — C([=T(r),T(r)]; H52(R?)) of
(5.1).

b) For every v > 0 the flow map F, : B, — X, uo — u defined by a) is
analytic.

63
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c) If ro > 11 >0 and uy € B,,, then Ry, Fy (uo) = Fr,(uo).

We also have the following theorem concerning solutions of the generalised
equation (5.2) in three space dimensions.

Theorem 5.2. For 2 < o < 6 let s1 > max(3 — $,7 — ) and sy > 0.

Then there exist a Banach space X — Cy(R; H*52(R?)) and a non increasing
function T : (0,00) — (0,00) such that the following holds true:

a) For every r > 0 and uy € B, := {ug € H*2(R?) | |Juo||gs1s2(r3) < 7}
there is a unique solution u € Xy — C([=T(r),T(r)]; H52(R?)) of
(5.2).

b) For every r > 0 the flow map F, : B, — Xrp¢y,uo — u defined by a) is
analytic.

c) If ro > 11 >0 and uy € B,,, then Ry Fr (uo) = Fr,(uo).
Theorem 5.1 and Theorem 5.2 follow from Theorem 2.22 and the bilinear

estimates of Theorem 5.6 and Theorem 5.7, respectively (cf. Section 5.2).

Remark 5.3. In the particular case o = 4 of the fifth order Kadomtsev-
Petviashvili II equation in three space dimensions, Theorem 5.2 shows the
local well-posedness of (5.3) for s; > —% and s, > 0.

Remark 5.4. Just as in the two dimensional case, we have that if u is a
solution of (5.2), so is

us(t, 2, 9) = 6u(6°*'t, oz, 62 H1g)

Considering the homogeneous Sobolev norm

[l gror.oz = 1[1E17 17712 Fuol| 2
we get [[us (0, -, )| gornse = 6225 HETD2]144(0, -, )| 7o1.0, - This scaling argu-

ment suggests that we have ill-posedness for s; 4 (1 + §)sy < % — 5. Note
that, for a = 2, we again come arbitrarily close to the scale invariant space
H %’O(Ri)’) but in this case we “loose an £” in the x- as well as the y-regularity.
For2 <a< ?, though, we can let sy = 0 in Theorem 5.2 and reach the crit-
ical value % — 5 of 51, except for the endpoint. Note that this result includes
the case of the fifth order Kadomtsev-Petviashvili II equation in three space
dimensions (5.3). For v > 2, we have that ; — 2o > 2 — ¢, so that we do

not reach the scaling limit in this case.
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For a > 3, Theorem 5.2 shows, in particular, the local in time well-
posedness of (5.2) for ug € L*(R?). By combining this local well-posedness
result with the conservation of the L?-norm, which holds for real valued solu-
tions of (5.2), we get the following global result, where H*'"°(R3;R) denotes
the subspace of all real valued functions in H**"°(R?).

Theorem 5.5. For 3 < a <6 let s; > 0 Then there exists a Banach space
X — Cy(R; H**P(R3;R)) such that for every ug € H**°(R3R) and T > 0,
there is exactly one solution u of equation (5.2) in Xp.

Theorem 5.5 follows from Theorem 2.28 and the bilinear estimate which
is proven in Theorem 5.7 (cf. Section 5.2).

5.2 The main bilinear estimate

Let us announce the theorem first in the case @ = 2. We denote the regularity
in x by s instead of s; as in the case of two space dimensions.

Theorem 5.6. Fora =2, s > % and sy > 0 there exist b > %, b e (b—1,0],
by € [0, =b] and o € [0, 1] such that for the spaces X1, X5, and Y defined by
Xl - Xg-b’yS,SQ’ X2 — X(I;,s,sz N Xg+b178—(0é+1)b1782 (54)
Y = Xb/,S,SQ N Xb/+b1,87(a+1)b1,82 (55)
we have that

10z (wuz) ly S [Junlx, lluz|x, (5.6)

foruy,us € S_o and k, 1 € {1,2}.
In the case a@ > 2 we will formulate and prove the main bilinear estimate

only for s = 0. The general case s; > 0 then follows by the same arguments
as in the two dimensional case (see the beginning of Section 4.2).

Theorem 5.7. Let 2 < a <6 and
1 5
$ > max <§ S —a) (5.7)
Then there exist b > £, b € (b—1,0], by € [0, =] and o € [0,1] such that
for the spaces X1, Xo, and Y defined by

Xy = X0, Xy = X0 xhthes (ot (5.8)

Y= XU XYt et (5.9)

Y
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we have that
[0 (urug) || 5 S Nlusllx, Juzllx, (5.10)

foruy,uys € S_oo and k,l € {1,2}

The proofs of Theorem 5.6 and Theorem 5.7 go along the same lines as
the proof of Theorem 4.7 in Chapter 4: We use the decompositions (4.9) and
(4.10) of the bilinear term 0, (uju2) and then give estimates for the “pieces”
Qi;(u1, ug) in suitable X%1*2-gpaces. In the case a > 2, i. e. when we have
so = 0, this means showing estimates of the form (4.11) which are equivalent
to the integral estimates (4.12). If a = 2, then we need the presence of
y-regularity, i. e. that s; > 0, in order to be able to prove the estimates for
some of the @Q;;(u1, uz). We then show estimates of the form

1Qij (urs u2) | go5.0r S Ml gsos [z 000 (5.11)
Note, however, that even if a = 2, we do not need the y-regularity in all of

the cases ();; and that (5.11) for all s > 0 follows from (4.11) because of
(2

(M1)°2 (72) %2 ~
As in the two dimensional case, the main ingredients in the proof of these

estimates are the bilinear Strichartz type estimates of Section 3.5 and the
“resonance identity” (3.63), which again implies by Lemma 3.13 that

P\maxl Z |£minH£max‘a (512)

5.3 Estimates for the @);;

In this section we will derive suitable estimates for the “pieces” Q;;(u1, uz)
of the bilinear term 0,(ujusz) (see (4.10)). As in the two dimensional case,
it will, in most cases, be possible to derive an estimate of the form (4.11)
with (b,5,5) = (b, s,0), i. e. with uy,uy € Xg’s. In these cases, the integral
inequality we have to prove reads

€117 () (A T
/Alj <£1>8<52>8<>\1>b<)\2>bf1f2f3 dpdp S 211 1 fill 2 (5.13)
This is proven under various conditions on the parameters b, s, l~), s and o.
In the critical case, i. e. (4,5) = (1,1), we will not choose u; € X but
prove separate estimates suitable for the two cases u; € X; and u; € Xy (cf.
Lemma 5.10 and Lemma 5.11). Also, in the case a = 2, we need some extra
estimates which require the presence of y-regularity (cf. Lemmata 5.17-5.19).
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The following two conditions will be assumed in all cases:

1 1 -
s,§€R,O§a§1,b>§, —§<b§0 (5.14)
and
b < —24 25— 3 5.15
(2425 3) (5.15)
Let us now consider the different cases.
Lemma 5.8. We have that
Qoo (uur, u2)l s S el o el o (5.16)
provided that (5.14) and
1

hold.

Proof. We have to prove (5.13) for (¢,5) = (0,0). Since in Agy we have
€] < 2[€] < 2 and |&] < [&] < 1, it follows that (§) ~ (&) ~ (&) ~ 1.
Therefore, it suffices to show

1

€12 ‘51’_§|52’_2 < ,
/Aoo koo (k1 1) EDEH A0 g fifafsdpadp S HHfz P

where koo(u1, i) := |£\%_“|£1\%\£2|é<)\>5 and § > 0 can be chosen arbitrarily.
koo is bounded on Agy because of (5.17) and b < 0. Therefore, the claim
follows from the bilinear estimate (3.53). O

Lemma 5.9. We have that

1Qro(ur, u)l o0 S Mluall xosllual] yo.s (5.18)
provided that (5.14), (5.15) and
~ 1
b< —(~1+s—3) (5.19)
o

hold.

Proof. We have to prove (5.13) for (7, j) = (1,0). Using that in A, we have
(€) ~ (&) ~ |& ~ |€] and (A\)? < [€]2b|€, P, we see that it suffices to show

1

‘€|l‘€1‘_%|£2‘_2
klO 1,
/ 1) e S O )

fifots dpadp S H 1£:ll 2
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where i o )

Fro(pin, o) 1= [€]TFo0Fomolg |2 H0(gy) a0 (5.20)
and & > 0 will be chosen later. We show that kq¢ is bounded on =, then it
follows that it is especially bounded on A1y C =Z;. The lemma then follows
from the bilinear estimate (3.53).

Let us first consider the case |£;] < 1. We then have (£;) ~ 1. Because
of (5.14) and (5.19), we have 1 + b>0and 1+ ab+ 35— s <0. Because we
have [£] 2 1 in =1, we find that kyo(pq, 1) S 1 in this case.

Let us now consider the case |£;| > 1. We then have (&) ~ |&]. Using
this and [£] 2> |&1] in 2y, we get kig(py, p) S [&|2HetDb+(E=29+9 - Because
of (5.15), there exists a § > 0 such that 2 + (a4 1)b+ (5 — 2s) +6 < 0. It
follows that kio(uq, 1) S 1. O

Lemma 5.10. We have that

1Qui(ur, u)ll o5 S Nl yo-ss lluzll o (5.21)

provided that (5.14), (5.15) and (5.19) hold.
Proof. We have to prove that

‘€|170<§>8+0f1f2f3
/Au (€1)5(&)5 (A1)~ (g 1dp S H Ifill 2

In Ay we have (£) ~ (&) ~ |&] ~ [€] and (A;)? < |€]°0]&,|P. Therefore, it
suffices to show

1

|§\ \§1|_5\€2\_2
klO 1,
[, o K e E s Dyl

where ki is defined as in (5.20) and > 0 is chosen as in Lemma 5.9. In
Lemma 5.9, k1o was shown to be bounded on =; under the conditions (5.14),
(5.15) and (5.19). Hence, it is especially bounded on A;; C Z; and the lemma
follows from the bilinear estimate (3.53). [

Lemma 5.11. We have that
1Qu1 (ur, u)l yos S Mluall goronacarnen [zl xos (5.22)

provided that (5.14), (5.15) and

fufofs dpmdp < H 15 2

~ 1
b—b < 1 (5.23)
1 ~ 3 1 s— S
g — b < -2 = .
o 2+12 <b-0b < % 12+ o (524)

hold.
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Proof. We have to prove that

/ €17 Il (N fifafs
A (§2)7OFDIE(E9)5 (M) P01 (Ag)

Because of (£) ~ (&) ~ |&] ~ |€] in Ayy, it suffices to show

3
dundp S H 1 fill 22
i=1

‘55152‘"+
-/Au (e, i) O O fifefsdpdp S HHszL?

where

Fn (i, ) == (AP OA) ot g2 85 ms g ot

Now, (5.22) follows from the bilinear estimate (3.50) if we show that kq; is
bounded on Ai;.

Because of (5.14), we have b+ b > 0. Using this and |A| < |A\y| in Ay,
we get (AP ThitT < (A0t Furthermore, |Aq| > |€]%]&1] in A,
so using that by (5.23) we have b — by + 1 <0, we find that

N

—a <€1>—s—|—(a—|—1)b1—0

kll(,ula ) < |£’2+12—|—a(b b1)+(5—s) |f ‘O'—F —%—I—(b—ln)<£1>—s—|—(a—|—1)b1—a

Let us first consider the case |;| < 1. We then have (£;) ~ 1. By (5.24),
it follows that %—i—%—ka(i)—bl)—l—(é—s) <0Oand o+ 3 — %—l—(i)—bl) > 0.
Using that |£| 2 1 in A1, we obtain ki (pq, p) S 1.

Let us now consider the case |£;] > 1. We then have (£;) ~ |&1|. Using this
and |€] > |€1] in Ayq, we find that ki (pg, p) < |€1]2H(@FD0+6=25) Therefore,
ki1(p1, 1) <1 follows from (5.15). O

Lemma 5.12. We have that

1Qua(ur, ua)ll .5 S Mluallos uall yo.s (5.25)

provided that (5.14), (5.15) and (5.19) hold.

Proof. We have to show (5.13) for (i,7) = (1,2). Using (§) ~ (£2) ~ |&| ~ [€]
in A9, we see that it suffices to show

€172161] 2|6l
) g e < HHﬁHLz

where ko (i, 1) 1= (M) "P(NPFRIE| 75| |2 (¢,) T2 and § > 0 is chosen
as in Lemma 5.9. If we show that k15 is bounded on Ay, then (5.25) follows
from the bilinear estimate (3.56).
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Because of (5.14), we have b+ b > 0. Since |\ < |Xa| = [Amax| in Aio,
we get (Ao) P(A)P*Y < (A)? < [€]°%&|°. Therefore, kna(p1, 1) S Ko, i),
where kg is defined as in (5.20). Because, in Lemma 5.9, k1 was shown to be
bounded on Z; under the conditions (5.14), (5.15) and (5.19), it is especially
bounded on A5 C Z. O]

Lemma 5.13. We have that
1Q20(ur, ua)l 5. S Nluall xooe luzll xo.s (5.26)

provided that (5.14), (5.15) and

. 1119
o212 << <———————~wﬁ> (5.27)

w

12 — 4 20 12 «

[}

hold.
Proof. We have to prove (5.13) for (i,7) = (2,0). As (&) ~ (&1) ~ |&1] ~ &

in Asg, we see that it suffices to show

g1l 4
k2 1, 1J2 d ld < 7 2
/ onsh) e fafsdid % HHfHL

where ka1, 1) = (A\)PFE|¢|T- 1270 (£)5H|¢ | 25F2— 8 If we show that ks is
bounded on Ay, then (5.26) fqllows from (3.49).
Because of (5.27), we have b+ 1 < 0. Using this and |A| 2 |£;]%[¢] in Aso,

we find that kzo(lil M) < ‘§|275+b a< >s+0|£1‘2+ +ab 23

Let us ﬁrst suppose that || < 1. We then have () ~ 1. By (5.27), it
follows that S — 1"—2+l~7—0 > () and %+%—I—o¢l~9—25 < 0. Because [&1| 21
in Asg, we obtam kao(p, 1) S 1.

Now, suppose that |{| > 1. Then we have (§) ~ |£|. Because [£1| 2 |¢] in
Ay, we find that kog(pur, p) < |€)2Fe+D+(E=29) < 1 where the last inequality
follows from (5.15). O

Lemma 5.13 can only be used if b < —1/4. Since we also have to deal
with values of b greater than —1/4 (at least in the case o < 9/4), we also
need

Lemma 5.14. We have (5.26) provided that (5.14), (5.15), 0 < 3, a < 9
and 1 125 — 9
~ S —
—— 2
1°7" 2140 (5.28)

hold.
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Proof. We have to prove (5.13) for (¢,7) = (2,0). Let 6 :== —4b, then b = —2.
By (5.14) and (5.28), we have 6 € [0,1). Because (£2) ~ (&1) ~ &1 ~ |&2| in
Asg, we see that it suffices to show

~ [l S M 3
Koo (g1, 1) fifefsdpdp S | fill 2
/1420 <)‘>%<)‘1>b<>‘2>b 11;11:

where koo (i1, 1) := \£|2+9(Tﬁ) o (£)5to|g, |25+ 00+E)+0 and § > 0 will be
chosen later. If we show that kyy is bounded on Ay, then (5.26) follows from
the bilinear estimate (3.59).

By the definition of 8, we have

~ 1_ 7 e} a 3.7 2
kQO(/’l/l?lu’) _ ‘€|§—b(3—§)—a<£>s+a|€l|—25+§+b(4+§a)+6

Let us first consider the case |{] < 1. (5.28) implies —23—|—%—|—I~)(4—|—§a) < 0.
Therefore, for 0 sufficiently small, we have —2s+%+b(4+§a)+5 < 0. Because
o< %, we obtain %—020. Since o < 9 and b < 0, we have —b(3——) > 0.
Altogether, we get £ —o —b(3— %) > 0. It follows that kog(p1, ) < 1 in this

case.
Let us now consider the case |[{| > 1. We then have () ~ [£]. Because

6] 2 |€] in Aso, we find that koo (pr, ) S [€[*HeFDIHE=2040 <1 where the
last inequality follows from (5.15) if we choose § sufficiently small. O

Lemma 5.15. We have that

Q21 (ur, ua)l o S Mluall oo lluzl] yo.s (5.29)

provided that (5.14), (5.15) and
~ 25
b < — 5.30
<2 (5.30)

hold.

Proof. We have to prove (5113) for (1,7) = ~( 1). As (&) ~ (&) ~ [&] ~ |& ]
and (A2 72 < (NP2 = (V)72 Apax)? in Ay, it suffices to show

-Helte
k21 1,
[ M e )

_1

—fufofs dmdp S HHLHLQ

where o .
ko (p1, 1) = (ana) €2 77(€) 2 HF740 | |72 (5.31)
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and 6 > 0 will be chosen later. If we show that ks; is bounded on =5, then
it is especially bounded on Ay, C = and the lemma follows from (3.57).
Because [Anax| 2 [€1]41€] in 22, we obtain

3.7 o/ Lisio Co9stad
Kot (1, 1) S |€]2T0mo(€)tototo)g | ~2stad

Let us first consider the case that |£| < 1. We then have (£) ~ 1. Because
of (5.14), we have 3 + b—o > 0. By (5.30), it follows that —2s + ab < 0.
Since || 2 1 in =9, this implies kot (11, 1) < 1 in this case.

Let us now consider the case that |£| > 1. This implies (§) ~ [£|. Using
this and |£1] 2 |€] in 2, we get Koy (ug, p) < |€[FHe+DI+E=2949 Because of
(5.15), there exists a & > 0 such that 24 (a + 1)b+ (§ — 2s) + 0 < 0. We
then obtain ko (p1, p) S 1. ]

Lemma 5.16. We have that

1Q22(ur, ua)l 5. S Nluall oo 1zl xo.s (5.32)

provided that (5.14), (5.15) and (5.30) hold.

Proof. We have to prove (5.13) for (4,7) = (2,2). As (1) ~ (&) ~ [&2] ~ [&]
and (M) X2) 7 < (AN 72(A)° = (A) 72 (Amax)? in Ago, it suffices to show

[, o gt < TT

where kg, is defined as in (5.31) and § > 0 is chosen as in Lemma 5.15. It
was shown in Lemma 5.15 that k9 is bounded on =, under the conditions

(5.14), (5.15) and (5.30). Therefore, it is especially bounded on Ag C =,
and (5.32) follows from the bilinear estimate (3.58). O

The lemmata proven so far are sufficient to give the proof of well-posed-
ness for a > 2. For a = 2, however, we see that (5.14) and (5.19) for § = s
imply

L P
2~ 'ETaT 2
which is a contradiction. Therefore, we need substitutes for Lemma 5.9,
Lemma 5.10 and Lemma 5.12 in this case.

Lemma 5.17. Let a = 2. We have that

1Quo(urs ua) [l yosioy S llunl yvoos [[ual] yoooo (5.33)



CHAPTER 5. THE THREE DIMENSIONAL CASE 73

provided that (5.14), (5.15) and

7 1 52 -
- —1 — .34
b < 2( +2+232+(S s)) (5.34)

hold.

Proof. We have to prove that

/ €117 (E) T ()= (N fu fo fs
o (6007 (E2) (1) =2 (7)™ ()P (Aa)

Let 6 = s3/(1 + s9) and 6 = 0/2. Then 0 < 6 < s and (1 —0)/2+ 6 =1/2.
Using (&) ~ (£) ~ [£] and (A)® < [€]?°1&1|° in Ajg, we see that it suffices to
show

3
dpndp H 1 fill 22
i=1

R e L5t

where ) , i
ko, ) o= €M7 21578 || 206 ) oz (5.35)

If we show that ko is bounded on =1, then it is especially bounded on
Ajp C Z1 and the lemma follows from the bilinear estimate (3.64).

Let us first consider the case that |£;| < 1. This implies (§;) ~ 1. Because
of (5.14), we have 3 +b > 0. Using (5.34) and the definition of 6, it follows
that 14 2b — f +5—5<0. Because [£| = 1 in Ey, we obtain ko (g1, 1) < 1
in this case.

Let us now consider the case |{;| > 1. We then have (&) ~ |&|. Using

0

this and |¢] > |&] in Ay, we find that kyo(uy, p) < 62352573 < 1, where

Y

the last inequality follows because of (5.15) and 6 > 0. ]

Lemma 5.18. Let « = 2. We have that

[Quu(ur, ug)| g0 S Jluall bbany Us | .0 (5.36)

provided that (5.14), (5.15) and (5.34) hold.

Proof. We have to prove that

€ (€)% () ol ;
- dpndp < 2
/Au (€1)5(&)* (1) %2 (772) %2 (A1)P 70 (N\a) HIGH S E 1 fill




74 5.3. ESTIMATES FOR THE ();;

Let 6 = s3/(1+ s2) and § = 0/2 as in Lemma 5.17. Because (§2) ~ (£) ~ [¢]
and (\)? < [€)%]£,1]° in Ay, it suffices to show

LBE e ) DA
/An e TP AR TR W WE 1dﬂ<HHﬁHL2

where kg is defined as in (5.35). In Lemma 5.17, it was shown that ko is
bounded on =; under the conditions (5.14), (5.15) and (5.34). Therefore, it
is especially bounded on Ay; C = and (5.36) follows from (3.64). O

Lemma 5.19. Let o = 2. We have that

1@u2(ur, ua)l yison S Mlunll oise [[ia]] s (5.37)
provided that (5.14), (5.15) and

1 2 1 ~ 1 2 1 S9 S—3S§
I ) Qi A B 5.38
2+3< 2) = 2+3< 2>+saJr 2 (5.38)

~ 1 4 1
<4 (b-= —3 .

b < 2+3<b 2>+(s 5) (5.39)

hold.

Proof. Without loss of generality, we can assume sy < 1. We have to show

-0 5+o 52
/A 1) i) (N fafs dpald,uNHHszH

12 (60)°(62)° (71)°2 (712)°2 (A1) (A2)"

Let 0 = min(2l~)—|—_1, S2/2). Due to sy > 0 and (5.14), we have 0 < 0 < s9 < 1.
Furthermore, let b = 1/3 4 b/3. Then,

b—bz%(b—%) (5.40)

and 1/2 < b < b. Using that (&) ~ (£) ~ [€] in Ay, it suffices to show

dpndp < H £l 22

/%12(“1,N)‘§|%‘£1|_%<§1> 5 <77>52f1f2f3
Az (70)2 (712)*2 (A1) (A2) P2 (N) (10

where ks (ju1, ) 1= (AT 0P (Ng) "bHO 154575 |2 (£1) 7% 52 and § = 0.
If we show that kq5 is bounded on Ay, then the lemma follows from (3.65).
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Because of § < 2b+ 1, it follows that b+ (1-60)b>(1- 20)b > 0, where
the last inequality follows from b > 1/2 and b < 0. Since [A| < [Ay] in Ay,
we get (A)HI=0b( )\ ) =b+06 < (A V0=(-b) Because b — (b — b) < 0, it follows
that

1

7 7_4 1y_0. ¢ 1,7 2 e
kl?(ﬂl,#) 5 |§‘1+2b—§(b—§)—§+s—s|£1‘§+b—§(b_§)<£1>_s+§+§

where we used (5.40).
Let us first consider the case |{;| < 1. This implies (£;) ~ 1. Because of
(5.38), (5.39) and the definition of 6, we have 1+ 2b— tb—1)—2+5-s<0.

By (5.38), we have § + b— 2(b—3) > 0. Since €| Z 1 in Ajz, we altogether

obtain ]%12(,&1 1) < 1in this case.
Let us now consider the case |£1] > 1. We then have (&) ~ |&1]. Using

that || 2 [&1] in Aio, we get Fero(pn, 1) < |€|2T30H5-25-20-3) By (5.14) and
(5.15), it follows that 2 4+ 3b+ § — 2s — 2(b — 1) < 0. Therefore, we obtain

Fra (g, 1) S 1. O

5.4 Proof of the main bilinear estimates

We now give the proofs of Theorem 5.6 and Theorem 5.7.
Proof (of Theorem 5.6). Let

1 3 1
bi=—-+-— V= —= A1
5T 15 5 Te (5.41)
where € > 0 will be restricted by various upper bounds given in the course
of the proof. We obviously have that o' > b — 1. Let

1
bl = g +é (542)
and 1
= — 5.43
0= (5.43)

Just as in the proof of the two dimensional case (cf. Section 4.4), we see
that it suffices to show for all (i, j) # (1,1)

||Qij(u1,u2)|\xg,§,sa S HulHXg,s,SQ U2|\Xg’s,sz (5.44)

in the two cases
(b.5) = (V) s) (5.45)

and

(b, §) = (b/ + bl, S — 3[)1) (546)
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as well as
@usrn, )| gy N el . (5.47)

in the cases (5.45) and (5.46) for k € {1, 2}.
We will use the Lemmata 5.8-5.19 of Section 5.3 to prove this. Since
we need that conditions (5.14) and (5.15) are fulfilled to apply any of these

lemmata, we will first show that we can choose £ > 0 in such a way that, in
both cases (5.45) and (5.46), the conditions (5.14) and (5.15) indeed hold. If

1
e < — 5.48
% (5.48)
then by the definitions (5.41), (5.42) and (5.43) of b, b, by, and o, we certainly

have that condition (5.14) holds. Now, (5.15) is fulfilled if

£ < % (—% + s) (5.49)

where the right hand side of this inequality is positive because of s > %
Let us now prove (5.44) for all possible choices of (i,7) # (1,1). We will
consider four cases:

1. (i,7) = (0,0): We will use Lemma 5.8 to prove (5.44) in this case.
Therefore, we have to check that condition (5.17) holds. This is obvi-
1

ously the case, as o = 3.

2. (i,7) = (1,0) and (4,7) = (1,2): In order to prove (5.44) in these two
cases, we will apply Lemma 5.17 and Lemma 5.19, respectively. There-
fore, we have to check that conditions (5.34), (5.38) and (5.39) hold for
(b, 3) = (¥, s) and for (b, 3) = (b + by, s — 3by). If

S92
e <

5.90
- 4 + 482 ( )

where the right hand side of this inequality is positive because of s5 > 0,
then (5.34) holds. Now, (5.50) implies that ¢ < 2. From this and the
definitions (5.41) of b and ¥', it follows that also (5.38) and (5.39) hold.

3. (i,7) = (2,0): Inorder to prove (5.44) in this case, we use Lemma 5.13
if (b,3) = (V,s) and Lemma 5.14 if (b, 8) = (I + by, s — 3by).
Let us first consider the case (b,5) = (b, s). We have to check that
condition (5.27) holds. The left inequality of (5.27) holds because of
o=z and b > —1. By s > %, we see that the right inequality of (5.27)
also holds.
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Now, let us suppose (5, 5) = (b +b1,s—3b1). We obviously have o < %
We have to check that (5.28) holds. We find that b'4+b; = —3+2¢ > —1.
Now, (5.48) and s > % imply that (5.28) holds.

4. (i,7) = (2,1) and (i, 7) = (2,2): In order to prove (5.44) in these two
cases, we apply Lemma 5.15 and Lemma 5.16, respectively. Therefore,
we have to check that (5.30) holds for (b,3) = (¥,s) and for (b,5) =
(' + b1, s — 3by). This follows from s > 3.

Let us finally consider (5.47). We have to distinguish the two cases k = 1
and k = 2.

1. Kk =1: As in the two dimensional case, we see, by the embedding
properties of the Bourgain spaces, that it suffices to show

1@ (s )l o2 S Mlunll ooy 2] oo (5.51)

This follows from Lemma 5.18 if we show that condition (5.34) holds
for (b,5) = (b',s). However, it was already shown above that (5.34) is
implied by (5.50).

2. k = 2: As in the two dimensional case, we see that it suffices to show
1@ ()| o < ol oo arm fluallre (5.52)

for (b,3) = (¥,s) and for (b,3) = (¥ + by, s — 3b;). This follows
from Lemma 5.11 if we show that conditions (5.23) and (5.24) hold
for (b,3) = (¥, s) and (b,3) = (¥ + b1, 5 —3by). By (5.48), we obviously
have (5.23). By the definitions (5.41) of b and (5.42) of by, we have
' — by = —2. Using this and o = 3, we find that (5.24) also holds.

This ends the proof of Theorem 5.6. Il
Now, we give the proof of Theorem 5.7.

Proof (of Theorem 5.7). Let

1 € , 1

§+§, b = —§+6 (5.53)
where € > 0 will be restricted by various upper bounds given in the course
of the proof. We have by (5.53) that & > b — 1. Let

b:=

3 _ 5 18
-2+ 2<a< )
— 2T 12 5
by : { . 5~ < 6) (5.54)
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and
o= - (5.55)

1

3 ﬁ > (. Let us then choose

If a > %, we have

1 3

This implies b’ + by < —i for % < a<6.
Just as in the proof of the two dimensional case (cf. Section 4.4), we see
that it suffices to show for all (i, j) # (1,1)

Qi (ur, u2)ll 5.6 S Nluall xos 1wzl o.s (5.57)
in the two cases )
(b,3) = (v, s) (5.58)
and .
(b,5) = (V) +b1,8s— (a+1)by) (5.59)
as well as
1Qua (ur, ug)l o S Nluallx [uall yo.s (5.60)

in the cases (5.58) and (5.59) for k € {1, 2}.
We will use the Lemmata 5.8-5.16 of Section 5.3 to prove this. Because
we need that conditions (5.14) and (5.15) are fulfilled to apply any of these

Lemmata, we first prove that there exists an € > 0 such that, in both cases
(5.58) and (5.59), the conditions (5.14) and (5.15) indeed hold. If

1

then by the definitions (5.53), (5.54) and (5.55) of b, V', by, and ¢ and taking
into account that o > 2, we see that we have (5.14). Now, (5.15) is fulfilled

if | 5
o
— — = .62
<a+1<2 2+8) (5.62)
where the right hand side of this inequality is positive because of (5.7).

Let us now prove (5.57) for all possible choices of (i,j) # (1,1). We will
consider four cases:

1. (i,7) = (0,0): We will apply Lemma 5.8 in order to prove (5.57) in
this case. Therefore, we have to show that condition (5.17) is fulfilled.

However, this follows from o = %
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2. (i,7) = (1,0) and (4,7) = (1,2): In order to prove (5.57) in these two
cases, we apply Lemma 5.9 and Lemma 5.12, respectively. Therefore,
we have to check that (5.19) holds for (b,5) = (V/,s) and (b,3) =
(' 4+ b1, s — (a+ 1)by). This follows if

e < é (% _ 1) (5.63)

where the right hand side of this inequality is positive because of a > 2.

3. (i,7) = (2,0): Let us first prove (5.57) in the case (b, §) = (¢, s). We
apply Lemma 5.13. Therefore, we have to show that condition (5.27)
holds. Now, the left inequality in (5.27) holds because of o = %, b > —%
and a < 6. By (5.61), we certainly have ¥’ < —%. Furthermore, if

1 /5 1
e< — (—a — =+ 23) (5.64)

T a \ 12 2

where the right hand side of this inequality is positive because of (5.7),
then we also have the right inequality of (5.27).

Let us now prove (5.57) for (b,5) = (b + by, s — (a+1)by). Since by = 0

for a > 15—8, we can suppose 2 < a < %. We apply Lemma 5.13, if

2 <a<® and Lemma 5.14,if 2 < a < §.

Let us first consider the case % < a < 15—8. We have to check that
condition (5.27) holds. The left inequality in (5.27) holds because of
o = %, b+ by > —% and a < 6. By (5.56), we have that b’ + b; < —i.
If
1 /5
< — | —a— .
5_@(12a 1+3) (5.65)
where the right hand side is positive because of (5.7) and v < £, then
the right inequality of (5.27) holds.

Let us now consider the case 2 < a < %. We apply Lemma 5.14 to
prove (5.57). For this range of «, we find that b’ + b, > —+. Let

1/9—6a 11 3
< |l=—+ == 5.66
6—2<24+404+12 2a> (5.66)
where the right hand side of this inequality is positive for 2 < a < %.

Then (5.66) and (5.7) imply (5.28).

4. (i,7) = (2,1) and (¢,7) = (2,2): In order to prove (5.57) in these two
cases, we apply Lemma 5.15 and Lemma 5.16, respectively. Therefore,
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we have to check that condition (5.30) holds for (b,5) = (V,s) and
(b,5) = (V' 4+ b1, s — (a4 1)by). By (5.64), if @ > &, and (5.65), if
a < 2, we see that (5.30) holds.

Let us finally consider (5.60). We have to distinguish the two cases k = 1
and k = 2.

1. k=1: As in the two dimensional case, we have, by the embedding
properties of the Bourgain spaces, that it suffices to show

Q11 (ur, u2) xos S HulHngb',s Ua|| yo.s (5.67)

This follows from Lemma 5.10 if we show that condition (5.19) holds
for (b,5) = (b, s). However, it has already been shown that this follows
from (5.63).

2. k = 2: As in the two dimensional case, we see that it suffices to show
||Q11(U1au2)HX§,§ S HulHXgmvsf(aH)bl ||U2||ngs (5.68)

for (b, 5) = (¥, s) and (b, 3) = (b + by, s — (a+ 1)by). This follows from
Lemma 5.11 if we show that conditions (5.23) and (5.24) hold. Now,
(5.23) follows obviously from (5.61). The left inequality in (5.24) holds
by the definition (5.54) of b; and because of ¢ = % and 2 < a < 6.
The right inequality in (5.24) follows from the definition (5.54) of b, if
2<a< B I8 <a<6,let

e< 22 (5.69)

where the right hand side of this inequality is positive because of a > %.
Then (5.69) implies the right inequality in (5.24) for 22 < o < 6.

This ends the proof of Theorem 5.7. [

5.5 Notes and references

Compared to the case of two space dimensions, there are only few well-
posedness results concerning the Kadomtsev-Petviashvili IT equation in three
space dimensions. Local well-posedness for initial values in the isotropic
Sobolev space H*(R?), s > 3, that obey the low-frequency condition 9, *ug €
H*(R?), was obtained by TzZVETKOV [33]. Only recently, this result has been
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improved by IsAzA, LOPEZ AND MEJIA [11] to the local well-posedness in
non-isotropic Sobolev spaces which are similar to our spaces H**2(R3) for
s1 > 1 and sy > 0.

For the fifth order Kadomtsev-Petviashvili II equation in three dimen-
sions, SAUT AND TZVETKOV [25] proved local well-posedness for s; > —+
and s, > 0 under the additional low frequency condition 9 1uy € H*%2(R3).
Note that the equation considered in [25] is slightly more general than (5.3)
because it also contains the third order term. In [26], SAUT AND TZVETKOV
showed the local well-posedness of the fifth order Kadomtsev-Petviashvili 11
equation with periodic boundary conditions, i. e. posed on (=T,T) x T2, for
initial data in the subset of a non-isotropic Sobolev space with s; > 0 and
sy = 0 with constant mean value in x.
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