
Path-Constrained Network Flows

Dipl.-Math. oec. Maren Martens
aus Berlin

Vom Fachbereich Mathematik
der Universität Dortmund

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Martin Skutella
Prof. Dr. Friedrich Eisenbrand

Tag der Disputation: 19. April 2007

Contents

Introduction 1

1 Preliminaries 7

1.1 Introduction . 7
1.2 Basic Vocabulary and Notation 7
1.3 Network Flows . 9

1.3.1 s-t-Flows . 10
1.3.2 Minimum Cost Flows 11
1.3.3 Multicommodity Flows 12
1.3.4 Dynamic Flows . 13

2 Unsplittable Flows 15

2.1 Introduction . 15
2.2 Problem Definition and Notation 18
2.3 A Lower Bound for Path-Selecting Algorithms 19
2.4 Convex Combinations for Multicommodity Flows 22

2.4.1 Definitions . 23
2.4.2 Constructing the Convex Combination 24
2.4.3 Analysis of the Construction 28
2.4.4 Upper Bound for the Congestion 33

3 k-Splittable Flows 37

3.1 Introduction . 37
3.2 Problem Definition and Notation 41
3.3 k-Splittable Flows with Path Capacities 43

3.3.1 Problem Specification 43
3.3.2 k-Splittable Flows With Weight Capacities 44
3.3.3 k-Splittable Flows With Size Capacities 47

3.4 Length-Bounded k-Splittable Flows 50
3.4.1 Problem Specification 51
3.4.2 A Constant Factor Approximation 51

3.5 Dynamic k-Splittable Flows 55
3.5.1 Problem Specification 55
3.5.2 A Constant Factor Approximation 56

i

ii Contents

4 One-Flows 59

4.1 Introduction . 59
4.2 Problem Definition and Notation 62
4.3 A Special Case of the Max-1FP and Related Problems 63
4.4 Complexity Results . 71

4.4.1 NP-Hardness Results 71
4.4.2 Integrality . 75

4.5 An FPTAS for the Fractional Max-1FP 76
4.5.1 Computing (1 + ǫ)-Approximate One-Flows 76
4.5.2 An FPTAS . 83

4.6 Approximating the Integral Max-1FP 84
4.6.1 Constant Factor Approximations for Special Cases . . . 85
4.6.2 An O(log m)-Approximation 88

4.7 Multicommodity One-Flows 90
4.7.1 Maximum Multicommodity One-Flows 91
4.7.2 Minimizing Congestion 94

5 Abstract Flows 97

5.1 Introduction . 97
5.2 Abstract Unsplittable Flows 99

5.2.1 The Abstract Multicommodity UFP 100
5.2.2 The Abstract Single Source UFP 103

5.3 Abstract k-Splittable Flows 104
5.3.1 The Abstract Maximum Single Commodity k-SFP . . . 105
5.3.2 The Abstract Multicommodity k-SFP 106

5.4 Abstract One-Flows . 107

Bibliography 109

Introduction

Holidays! Grab the tent and the sleeping back, jump into the car, and off
to coast! Finally, you get your deserved holidays! Looking forward to a
joyful time of vacation, you take the first miles of the highway. At long last
you got some days of recreation! But then the traffic becomes heavier and
heavier and finally you are caught in a jam. Annoyance! Is that how you
planned to spend your holidays? Have you really wanted to spend hours and
hours on the road watching other people arguing in their cars? Watching
bored truckers or sleeping children? No, probably not! Now you maybe start
wondering if there are no better possibilities to channel the flood of tourists
and trucks. The radio communication does obviously not perform its task.
There must be an alternative to avoid situations like this. Is there nobody
who thinks about this? Nobody who cares if you are at the end of your rope?

The answer is: Sure! There is someone who cares about you being caught
in the jam. There is someone who would like to eliminate every single jam
that appears. But unfortunately, the methods to do this are not yet fully
developed. Devices, such as navigation systems, are not yet as widely spread
as they could be, in particular not those which take the current traffic sit-
uation into account. But a fair amount of research is done in this area and
people involved in this research still hope to be able to better the conditions
of transportation soon.

From the theoretical point of view, this is where network flows come into
play. The network that is considered in this application is that of streets and
highways. Enhanced examinations could as well include railways and ship
or flight paths. Different streets are connected with each other by crossings.
In a mathematical network every single part of a street—that between two
different crossings—is presented as an arc. Crossings are translated into
nodes. Flow in a mathematical network is routed from specified start nodes
to specified destination nodes. A network flow itself is simply a function on
the arcs that indicates how many units of flow are routed along every arc. A
unit of flow could, for example, be a car or a truck, or maybe only a single
passenger, or a single container of goods.

Certainly, the model of network flows finds more applications than that of
road traffic. It is also useful to abstract data traffic, communication networks
in general, or, e.g., production chains. Even scheduling problems can be

1

2 Introduction

modeled using network flows. Anyway, in the following we stay with the
example of road traffic for illustration of the theoretical constructs.

Network flows have been studied since the 1950s. The first considerations
aimed for finding maximum flows in networks with arc capacities and only
one start and one destination node [35]. Assigning capacities to the arcs is
reasonable from the practical point of view, because traffic jams originate
exactly from the fact that the throughput of a road is limited. The point is
that the number of cars that can use a specific road without any blockage is
confined per time unit, no matter if this time is chosen to be a minute, an
hour, or even the life time of the road. The wider a road is the more cars
can use it per time unit. For the following let the considered time unit be
a day. Then the first question studied in network flow theory was the one
of how many units of flow (e.g., cars) can be sent from one specified start
node to one specified destination node within one day while obeying the road
capacities.

Starting from this point, extensions of the basic model have been de-
veloped. These cover problems with several start and destination nodes or
problems with side constraints on the paths. Involving several start and desti-
nation nodes makes the model more realistic from the view of transportation.
A network of roads is usually not only used to transport persons/goods from
A to B, but also to transport—at the same time—some other persons/goods
from C to D, A to D, or whatsoever. Side constraints on the paths could,
e.g., be length bounds. In length-bounded flow problems, we assume to have
a length function on the arcs, meaning, e.g., that we specify for each arc
how much time it takes to travers it. Sometimes goods have to reach their
destination soon. This could be the case in the transportation of perishable
goods or drugs that are indispensable to life. Specifying a length bound in a
network flow means that no good may be routed along a path that exceeds
the given time bound.

Length bounds on the paths along which flow is routed yield one side
constraint that we consider in this thesis. But the main requirement for
most parts of this thesis is to limit the number of paths that may be used
to route things from one start node to a destination. Think of a vendor who
possesses only a finite fleet of trucks to distribute goods. In this case goods
may not be split into arbitrarily many groups to be sent to their destination.
The number of trucks gives an upper bound on the number of chunks into
which the goods are decomposed. Each truck cannot use more than one path
to get from A to B. Therefore, the number of trucks bounds the number of
paths that may be used to route the goods. The corresponding theoretical
problem in which an upper bound for the number of flow carrying paths is
given is named the k-splittable flow problem. In the special case that we

Introduction 3

have even only one truck to route the goods, we obtain the unsplittable flow
problem. These problems are considered in Chapters 2 and 3. In Chapter 3 we
even combine the length-bounded and the k-splittable flow problem, meaning
that we look for flows that use at most k paths that are not longer than a
given bound. We also take care of the capacities of trucks. In Chapter 3 we
consider the problem in which each of the k paths that are used to route a
commodity carries no more units of flow than the corresponding truck can
dispatch. A similar constraint is considered in Chapter 4 where we search
for maximum flows that route at most one unit of flow along each path.

All of the problems just stated are so called NP-hard problems. This
means in colloquial language that they are so hard to solve that an optimal
solution could probably not be found before it is needed. For our examples
this means that we could probably not find an optimal way to deliver all
goods before they are spoilt or before the person who needed the drug, which
was indispensable for his life, died. Therefore, we forbear from computing
optimal solutions to the considered problems and settle for solutions that are
provably close to optimum and faster to compute.

Overview of the Thesis

Chapter 1. We start with a short survey on basic notation, definitions, and
algorithms in network flow theory. We introduce the s-t-flow problem that is
the origin of network flows and then continue with minimum cost flows that
are a tool for us in subsequent chapters. We also give an introduction to
multicommodity flows whose study pervades the whole thesis. Furthermore,
we shortly introduce dynamic flows. These are not studied in detail in this
thesis, but mentioned in Chapter 3.

Chapter 2. Classical network flow theory allows decomposition of flow into
several chunks of arbitrary sizes traveling through the network on different
paths. In Chapter 2 we consider the unsplittable flow problem where all flow
traveling from a source to a destination must be sent on only one path. We
prove a lower bound of Ω(log m/ log log m) on the performance of a general
class of algorithms for minimizing the congestion of an unsplittable flow,
where m is the number of arcs in the underlying network. The algorithms
in this class start with a solution for the classical (fractional) multicom-
modity flow problem, compute a path decomposition, and select one of its
paths for each commodity in order to obtain an unsplittable flow. Our lower
bound matches the best known upper bound for randomized rounding—an
algorithm from the mentioned class that was introduced by Raghavan and

4 Introduction

Thompson [88].
In the single source multicommodity flow problem commodities must be

routed from a common source to different sinks. This scenario is pretty well
known from real life where wholesalers must send goods to their customers
or a post office wants to deliver parcels. In this context it seems to be also
realistic to consider the case that any commodity must be routed unsplit-
tably, i.e., on a single path. We present an interesting connection between
fractional single source multicommodity flows and unsplittable single source
multicommodity flows, namely that each single source multicommodity flow
can be represented as a convex combination of unsplittable flows that have
congestion at most 2. It has already been known [26] that an arbitrary sin-
gle source multicommodity flow can be made unsplittable by losing only a
factor 2 with respect to congestion. Our result gives a positive answer to
the question whether, for an arbitrary cost function on the arcs, there also
exists a suitable unsplittable flow whose congestion is only twice as large
as the original one and whose costs do not exceed the costs of the original
(fractional) flow. The proof of our result is constructive in the sense that it
involves an algorithm which computes the required unsplittable flows. We
also show that the congestion of 2 for the unsplittable flows is tight.

Chapter 3. In many applications users are allowed to use a limited number
of paths to route commodities rather than to use only exactly one path. The
k-splittable flow problem is a generalization of the unsplittable flow problem
where the number of paths is bounded for each commodity. We study a new
variant of this problem with additional constraints on the amount of flow
being sent along each path. We present approximation results for two versions
of this problem with the objective to minimize the congestion of the flow. The
key idea is to reduce the problem under consideration to an unsplittable flow
problem while only losing a constant factor in the performance ratio.

Classical network flow problems do not impose restrictions on the choice of
paths on which flow is sent. Only the arc capacities of the network have to be
obeyed. This scenario is not always realistic. In fact, there are many problems
for which, e.g., the number of paths being used to route a commodity or the
length of such paths has to be small.

These restrictions are considered in the length-bounded k-splittable s-
t-flow problem: The problem is a variant of the well known classical s-t-
flow problem with the additional requirement that the number of paths that
may be used to route the flow and the maximum length of those paths are
bounded.

Our main result is that, for any ǫ > 0, we can efficiently compute a length-
bounded k-splittable s-t-flow which sends a factor (1− ǫ)/2 of the maximum

Introduction 5

flow value while exceeding the length bound by at most a factor 1/ǫ. We also
show how this result leads to a constant factor approximation algorithm for
dynamic k-splittable s-t-flows.

Chapter 4. Classical network flow theory does not impose any restrictions
on the amount of flow being sent along each path. Nevertheless, it might
be undesired in real life that the flow value of the paths exceeds some given
bound. This could be due to the unsteadiness of some paths whose effects
can be decreased when using many different paths.

In Chapter 4 we study the maximum one flow problem which is iden-
tical to the classical network flow problem except that it bounds the flow
value of any path by one. We consider the single commodity as well as the
multicommodity case. Both cases are NP-hard, but admit an FPTAS in
the fractional case. In the integral case, the single commodity problem is
APX-hard, whereas it is even NP-hard to approximate the multicommodity
case within a factor O(m1/2−ǫ), for any ǫ > 0. We present a randomized
O(log m)-approximation algorithm for the single commodity case and a ran-
domized O(

√
m)-approximation algorithm for the multicommodity case. The

latter of these approximation ratios is best possible, unless P = NP.

Integrating demands for each commodity in the multicommodity case, we
obtain an FPTAS for the problem of minimizing the congestion of a fractional
one-flow satisfying all demands. Further, we state how an O(log m/ log log m)-
approximation can be found for the corresponding integral problem.

Moreover, Chapter 4 introduces two interesting combinatorial problems
that are closely related to the maximum one flow problem. We use this rela-
tionship to prove NP-hardness for both of these problems.

Chapter 5. We conclude with an overview of the problems considered in
Chapters 2 to 4 in the context of abstract flows. Abstract flows depart from
the structure of graphs and base on some abstract buildings called paths.
These paths are ordered subsets of given edges in which, however, the par-
ticular order may be different for all subsets.

Most parts of Chapters 2, 3, and 4 are from joint work with Martin Skutella.
Fruitful discussions for parts of Section 2.4 were also stimulated by Fernanda
Salazar.

6 Introduction

Acknowledgements

First of all I thank Martin Skutella for offering me the possibility to work in
his group and for supervising my thesis. I am grateful to him for his advice
and for having so much time for discussions. Furthermore, I thank Fritz
Eisenbrand for the willingness to take the second assessment of this thesis.

Many thanks also to Joachim Reichel, Martin Hadac, Sabine Piana, Mar-
tin Martens, and Peter Hachenberger for their careful proof-reading of several
parts of the manuscript and for their helpful comments. Further thanks are
addressed to my roommates Nadine Baumann and Daniel Dressler for useful
discussions on stylistic topics concerning this thesis.

Chapter 1

Preliminaries

1.1 Introduction

This chapter provides a survey on basic notation and algorithms in network
flow theory. It is not meant to be an introduction to the whole theory of
network flows, but rather introduces the reader shortly to the problems con-
sidered in this thesis. We start defining some basic notions and then pass
into an overview on network flows. For those who desire a more detailed
introduction to the theory of network flows, we refer to [2, 68, 93]. A com-
prehensive compendium of complexity theory can be found in [39]. For more
information about approximation algorithms in combinatorial optimization
we suggest the book by Hochbaum [51].

1.2 Basic Vocabulary and Notation

Throughout this whole thesis we consider directed graphs (which we also refer
to as digraphs). A digraph is a pair D = (V,A) consisting of a set of vertices
V (also called nodes) and a family of arcs A ⊆ V ×V . Sometimes we refer to
so called (undirected) graphs that are usually denoted by G = (V,E) where
V is again a set of vertices, but E is a family of edges which are unordered
subsets of V consisting of exactly two elements. For different problems,
there exist known transformations between the undirected and the directed
case. To transform an undirected graph into a directed one for the study of
network flows, it is useful to replace each edge {u, v} (sometimes also denoted
as (u, v)) by two new vertices u1, u2 and five arcs (u, u1), (v, u1), (u2, u),
(u2, v), and (u1, u2) (see also Figure 1.1). Here, we only study digraphs, and
therefore, give the following definitions only for those. But generally, each
algorithm that is designed for digraphs can also be used for undirected graphs
by transforming the undirected graph into a directed one as described above.
For negative results, i.e., counter examples, the transfer works only in the
opposite way.

Usually, we refer to the number of nodes in a graph by n := |V | and to
the number of arcs by m := |A|.

7

8 Preliminaries

u
u v

v

u1

u2

Figure 1.1: Transformation of an undirected graph into a digraph.

For any vertex v ∈ V , we define δ+(v) := {a ∈ A | a = (v,w) for some w ∈
V } as the set of outgoing arcs from v. The set of incoming arcs to v is given by
δ−(v) := {a ∈ A | a = (w, v) for some w ∈ V }. For a set of vertices V ′ ⊆ V ,
the set δ+(V ′) := {a ∈ A | a = (v,w) for some v ∈ V ′, w ∈ V \ V ′} is that
of arcs leaving V ′ and the set δ−(V ′) := {a ∈ A | a = (v,w) for some v ∈
V \ V ′, w ∈ V ′} is that of arcs entering V ′.

Two arcs (v, u) and (v′, u′) are called parallel, if v = v′ and u = u′. A
path in a digraph is a sequence of arcs (v0, v1), (v1, v2), . . . , (vk−1, vk) (k ∈ N)
where (vi−1, vi) ∈ A, for all i = 1, . . . , k. For any two vertices s, t ∈ V , an
s-t-path is a path for which v0 = s and vk = t. A cycle is a path for which
v0 = vk. Using the notion “path” we mean a path that is not a cycle. If we
consider both, it will be mentioned explicitly. A path is called simple if the
vertices contained in it are mutually distinct.

Often we consider functions on the arcs. A very popular function is a cost
(or length) function c : A → R

+
0 . For any nodes s, t ∈ V , a shortest s-t-path

(according to c) is an s-t-path P such that
∑

a∈P c(a) is minimal among all
s-t-paths. The value

∑

a∈P c(a) is also called P ’s length or its cost. In the
context of network flows, we also consider capacity functions u : A → R

+

on the arcs. A digraph with a capacity function and at least one specific
“source-sink-pair” (s, t) is called a network.

It is also common to consider length functions not only mapping to non-
negative values. But for this thesis we do not need this general case. For
nonnegative length functions, a standard algorithm to find a shortest s-t-
path is the labeling algorithm by Dijkstra [25], that runs in O(n2) time. This
algorithm even computes shortest paths from s to each other node in the
considered digraph. To compute shortest paths between all pairs of nodes, it
is popular to apply the algorithm by Moore, Bellman, and Ford [14, 34, 80],
that runs in O(nm) time. This algorithm additionally allows negative arc
lengths, as long as these do not imply negative cycles.

A cut in a digraph D = (V,A) is a set of nodes V ′ ⊆ V . If we are addi-
tionally given a capacity function u on the arcs, we can define the capacity

1.3 Network Flows 9

of a cut V ′ as u(V ′) := u(δ+(V ′)) :=
∑

a∈δ+(V ′) u(a). It is also common to

regard a cut as the set of arcs δ+(V ′) instead of considering it as the set
of nodes V ′. Given s, t ∈ V , a cut V ′ is called an s-t-cut, if s ∈ V ′ and
t ∈ V \ V ′. A minimum (s-t-)cut is a(n) (s-t-)cut of minimum capacity.

In this thesis, we mainly consider optimization problems. In an optimiza-
tion problem we are given an objective function that is either to be minimized
or to be maximized and side constraints that need to be obeyed by a feasible
solution to the problem. An optimal solution is a feasible solution whose
objective function value (also called objective value) is optimal (either min-
imal or maximal, depending on the underlying objective). An instance of a
problem is a structure consisting of specified input data for the considered
problem. We say that a problem can be solved efficiently, if there exists an
algorithm for it that runs in time polynomial in the input size. If a problem
cannot be solved efficiently, it is often still possible to give an approximation
algorithm, i.e., an algorithm which runs in polynomial time (i.e., polynomial
in the input size) and outputs a feasible, but not necessarily optimal solu-
tion. For any ρ > 1, a ρ-approximation algorithm is one that outputs a
ρ-approximation for the underlying problem. A ρ-approximation is a feas-
ible solution whose objective value v is at most a factor ρ away from the
optimal objective value v∗, i.e., v ≤ ρv∗ for a minimization problem and
v ≥ (1/ρ)v∗ for a maximization problem. A polynomial time approximation
scheme (PTAS) is an algorithm that, given a parameter ǫ > 0, outputs a
(1 + ǫ)-approximation. The running time of a PTAS is required to be poly-
nomial in the input size for every fixed ǫ, but can depend arbitrarily on ǫ. If
the runtime of such an algorithm is polynomial in the input size and 1/ǫ, we
call it a fully polynomial time approximation scheme (FPTAS).

1.3 Network Flows

Here, we give a short introduction to different network flow problems. After
an overview on the basic s-t-flow problem in Section 1.3.1, we shortly discuss
the minimum cost flow problem in Section 1.3.2. In Section 1.3.3 we introduce
multicommodity flows. These form the main subject of this thesis. The
dynamic flow problem defined in Section 1.3.4 is of minor importance for our
work, but will appear in Section 3.5 and is therefore also shortly introduced
here.

10 Preliminaries

1.3.1 s-t-Flows

Given a digraph D = (V,A), a capacity function u : A → R
+, and specified

nodes s, t ∈ V , an s-t-flow is a function f : A → R
+
0 that obeys all arc

capacities, i.e., f(a) ≤ u(a) for all a ∈ A, and meets the flow conservation
requirement, i.e.,

∑

a∈δ+(v) f(a) =
∑

a∈δ−(v) f(a) for all v ∈ V \ {s, t}. The

value of an s-t-flow is given by |f | :=
∑

a∈δ+(s) f(a) − ∑a∈δ−(s) f(a). A
maximum s-t-flow is an s-t-flow of maximum value. Formulated as a linear
program (LP), the maximum s-t-flow problem is the following.

max
∑

a∈δ+(s)

f(a) −
∑

a∈δ−(s)

f(a)

s.t.
∑

a∈δ+(v)

f(a) −
∑

a∈δ−(v)

f(a) = 0 ∀ v ∈ V \ {s, t}

0 ≤ f(a) ≤ u(a) ∀ a ∈ A

Ford and Fulkerson [35, 37] proved that in every network the value of a maxi-
mum s-t-flow equals the capacity of a minimum s-t-cut. This result is known
as the Max-Flow-Min-Cut Theorem. They also gave an important procedure
to find a maximum s-t-flow known as the Ford-Fulkerson algorithm. This
procedure will not necessarily terminate if the arc capacities are not integral.
In the case that u(a) ∈ N for all a ∈ A, it terminates with a maximum
s-t-flow f after O(|f |m) time. The Ford-Fulkerson algorithm was revised
by Edmonds and Karp [28] who improved its runtime to O(m2n). If all arc
capacities are integral, both methods, the one by Ford and Fulkerson and
the algorithm by Edmonds and Karp, compute a maximum s-t-flow that is
integral.

The procedure by Ford and Fulkerson also proves that any s-t-flow can be
decomposed into flows on at most m different s-t-paths and cycles. Since the
cycles do not provide any additional flow from s to t, they can be omitted and
we obtain a path decomposition of the flow. Computing an s-t-flow on paths
is equivalent to solving the following LP where P is the set of all s-t-paths.1

max
∑

P∈P

xP

s.t.
∑

P∈P :
a∈P

xP ≤ u(a) ∀ a ∈ A

xP ≥ 0 ∀ P ∈ P
1In LP based path formulations of network flows, we prefer to name the variables x.

1.3 Network Flows 11

Here, xP denotes the flow value of P ∈ P . Note that any s-t-flow in path
variables directly translates to an s-t-flow in arc variables, too. Thus, it
is always possible to switch between arc and path formulations of s-t-flows
immediately.

1.3.2 Minimum Cost Flows

In a minimum cost flow problem (also called min cost flow problem), we are
generally given multiple sinks and sources. It is common to define a function
b : V → R on the nodes with

∑

v∈V b(v) = 0 that represents the supply or
the demand of a node. A node v ∈ V is called a source, if it has a supply,
i.e., b(v) > 0, or a sink, if it has a demand, i.e., b(v) < 0. Furthermore, we
are given a cost function c : A → R on the arcs.

Then the problem can be stated as follows.

min
∑

a∈A

c(a)f(a)

s.t.
∑

a∈δ+(v)

f(a) −
∑

a∈δ−(v)

f(a) = b(v) ∀ v ∈ V

0 ≤ f(a) ≤ u(a) ∀ a ∈ A

A feasible solution to this linear program is called a b-flow, an optimal so-
lution is a min cost flow. The feasibility can be checked in polynomial time
using a maximum s-t-flow computation.

Among the first algorithms to solve the min cost flow problem was the cy-
cle cancelling method which is a result of an optimality criterion by Klein [58].
This method does not necessarily terminate, but was revised by Goldberg and
Tarjan [42] who created the minimum mean cycle-cancelling algorithm, which
runs in O(m3n2 log n) time. If there are no negative cycles with respect to
the arc costs, another important algorithm to solve the min cost flow prob-
lem will be the successive shortest path algorithm. This is a result of an
optimality criterion by Jewell [57], Iri [55], and Busacker and Gowen [19].
Edmonds and Karp [28] showed that for integral arc capacities and supplies
this algorithm can be implemented with a running time of O(nm+B(n2+m))
where B := (

∑

v∈V |b(v)|)/2. Since this runtime is only pseudo-polynomial,
the algorithm was revised several times. One revision was given by Orlin [83]
and runs in time O(n log m(n2 + m)).

12 Preliminaries

1.3.3 Multicommodity Flows

In addition to a digraph D = (V,A) and arc capacities u : A → R
+, a

multicommodity flow problem consists of source-sink-pairs (si, ti) for i =
1, . . . ,K, for some K ∈ N. A source-sink-pair (si, ti) is also called ith request
or ith commodity. We usually denote the set of si-ti-paths by Pi and define
P :=

⋃K
i=1 Pi.

A maximum multicommodity flow is an optimal solution to the following
LP. A feasible, but not necessarily optimal solution is called a multicommodity
flow.

max

K
∑

i=1

∑

P∈Pi

xP

s.t.
K
∑

i=1

∑

P∈Pi:
a∈P

xP ≤ u(a) ∀ a ∈ A

xP ≥ 0 ∀ P ∈ P

For multicommodity flows, we prefer the pathwise description, but it is also
possible to define a multicommodity flow arcwise by using different flows for
different commodities. Using P =

⋃K
i=1 Pi, we can shorten the given LP for-

mulation. (The resulting LP looks exactly like the one given in Section 1.3.1.)
Note the difference of a multicommodity flow and a b-flow where we have only
a single commodity with multiple sources and sinks.

We can also have a demand di for each commodity i. In this case we use
the notion “multicommodity flow”, although a flow does not necessarily obey
all arc capacities. Such a flow has a congestion. This is the minimum value
α ≥ 1 by which the arc capacities must be scaled to be met. We consider the
problem to minimize the congestion that can be formulated by the following
LP.

min α

s.t.
∑

P∈P :
a∈P

xP ≤ αu(a) ∀ a ∈ A (1.1)

∑

P∈Pi

xP = di ∀ i = 1, . . . ,K

xP ≥ 0 ∀ P ∈ P
α ≥ 1

1.3 Network Flows 13

Using this LP formulation, the congestion of a flow x can be defined as the
minimum value α ≥ 1 such that all inequalities from (1.1) are obeyed.

The dual linear programs of the problems above can be separated in poly-
nomial time. It follows from a result by Grötschel, Lovasz, and Schrijver [47]
that the dual problems can also be solved in polynomial time. By the theory
of linear programming (see, e.g., Schrijver [92]) it follows that we can also
solve the primals in polynomial time. To avoid solving linear programs one
can use the FPTAS given by Garg and Könemann [40] or the revision by
Fleischer [33] for either of the problems.

1.3.4 Dynamic Flows

So far we have only considered static network flows. All the problems stated
here can also be transfered to a dynamic scenery. For a dynamic flow problem
we have transit times in addition, i.e., a function τ : A → R

+
0 . The transit

time of a path P in the digraph D is defined as τ(P) :=
∑

a∈P τ(a).
For two vertices s, t ∈ V , a dynamic s-t-flow is a function f : A×R

+
0 →

R
+
0 , where f(a, θ) indicates the amount of flow that enters arc a at time

θ. This function must obey all arc capacities, i.e., f(a, θ) ≤ u(a) for all
a ∈ A, θ ∈ R

+
0 . Further, it must meet the flow conservation requirement, i.e.,

for all v ∈ V \ {s, t}, θ > 0,

∑

a∈δ+(v)

∫ θ

0

f(a, x)dx =
∑

a∈δ−(v)

∫ θ−τ(a)

0

f(a, x)dx .

A dynamic s-t-flow has time horizon T ≥ 0, if f(a, θ) = 0 for all a ∈ A, θ ≥
T − τ(a). The value of such a flow is

|f | :=
∑

a∈δ+(s)

∫ T

0

f(a, θ)dθ −
∑

a∈δ−(s)

∫ T−τ(a)

0

f(a, θ)dθ .

The standard method to compute a maximum dynamic s-t-flow, i.e., a dy-
namic s-t-flow of maximum value, for a given time horizon is an algorithm
by Ford and Fulkerson [36] which primarily reduces the problem to a static
min cost flow problem with arc costs τ .

Chapter 2

Unsplittable Flows

2.1 Introduction

In classical network flow theory, flow being sent from a source to a destina-
tion may be split into a large number of chunks of arbitrary sizes traveling
on different paths through the network. This effect is undesired or even for-
bidden in many applications. For this reason we consider the unsplittable
flow problem (UFP) which was introduced by Kleinberg [61]: Given a net-
work with capacities on the arcs and several source-sink-pairs (commodities)
with associated demand values, route the demand of each commodity on
exactly one path leading from its source to its sink without violating arc
capacities. For the special case of unit capacities and unit demands, we get
the arc-disjoint paths problem which is well-known to be NP-complete [39].
Kleinberg [61] specified the following three optimization versions of the un-
splittable flow problem. Minimum congestion: Find the smallest value α ≥ 1
such that there exists an unsplittable flow that violates the capacity of any
arc at most by a factor α. Minimum number of rounds: Partition the set
of commodities into a minimum number of subsets (rounds) and find a feas-
ible unsplittable flow, i.e., one that obeys all arc capacities, for each subset.
Maximum routable demand: Find a feasible unsplittable flow for a subset of
demands maximizing the sum of demands in the subset. Here, we are mainly
interested in the minimum congestion problem.

Related Results from the Literature

The unsplittable flow problem has been well studied in the literature. Ragha-
van and Thompson [88, 87] introduce a randomized rounding technique which
gives an O(log m/ log log m)-approximation algorithm for the minimum con-
gestion problem provided that the maximum demand is bounded from above
by the minimum arc capacity (the balance condition).1 For any instance of
the problem, their technique first solves the related (fractional) multicom-

1Unless stated otherwise, the balance condition is always assumed to be met for the
UFP.

15

16 Unsplittable Flows

modity flow problem and then chooses exactly one of the occuring flow paths
for each commodity at random, such that each flow path is chosen with
probability equal to its flow value divided by the demand of its commodity.
Their procedure even yields a constant factor approximation if either the
ratio of the minimum arc capacity and the maximum demand or the con-
gestion of an optimal fractional routing is at least Ω(log m). For undirected
graphs Leighton, Rao, and Srinivasan [71] prove that the performance ra-
tio of randomized rounding is in Ω(log m/ log log m). Their proof can also
be adapted to the directed case, but in this case they only give a proof
for an integrality gap of Ω(log m/ log log m). Chuzhoy and Naor [24] show
that the directed case of the UFP is Ω(log log m)-hard to approximate unless
NP ⊆ DTIME(nO(log log log n)).2 Before this result was found, only APX-
hardness for the UFP was known (see, e.g., Kleinberg [62]). In the special case
of unit demands and unit edge capacities (the edge-disjoint paths problem)
Andrews and Zhang [3] very recently proved that there is no (log log m)1−ǫ-
approximation for the undirected congestion minimization problem, unless
NP ⊆ ZPTIME(npolylog n).3

For the maximum routable demand problem, Azar and Regev [5] present
a strongly polynomial algorithm with approximation ratio O(

√
m). Kolman

and Scheideler [67] even give a strongly polynomial O(
√

m)-approximation
algorithm for the problem without the balance condition. These results also
translate to the directed setting. On the other hand, Guruswami, Khanna,
Rajaraman, Shepherd, and Yannakakis [48] show that in the directed case

there is no approximation algorithm with performance ratio O(m
1

2
−ǫ) for

any ǫ > 0, unless P = NP . To get better approximation results one has to
incorporate additional graph parameters into the bound. Baveja and Srini-
vasan [13] develop a rounding technique to convert an arbitrary solution to
an LP-relaxation into an unsplittable flow within a factor of O(

√
m) or O(d)

where d denotes the length of a longest path in the LP solution. Using a
result by Kleinberg and Rubinfeld [60], showing that d = O(∆2α−2 log3 n)
for uniform capacity graphs with some expansion parameter α and maximum
degree ∆, one can achieve a better bound. Kolman and Scheideler [67] use a
new graph parameter, the “flow number” F , which provides information on
the level of interconnectedness of a network, and improve the ratio further
to O(F) for undirected graphs; they show that F = O(∆α−1 log n). Kolman
and Scheideler also show that there is no better approximation in general,

2DTIME(f(s)) is the class of decision problems solvable by a deterministic Turing
machine in time O(f(s)) where s is the input size of the respective problem.

3ZPTIME(f(s)) is the class of problems solvable by randomized algorithms that al-
ways return the correct answer and whose expected running time is in O(f(s)) where s is
the input size of the respective problem.

2.1 Introduction 17

unless P = NP . Chekuri and Khanna [20] study the uniform capacity UFP
for the case that the task is to satisfy as many requests as possible. Using
results from [5] or [13] they find an O(n2/3)-approximation algorithm for the
problem in undirected graphs, an O(n4/5)-approximation algorithm for the
problem in directed graphs, and an O(

√
n log n)-approximation algorithm for

the problem in directed acyclic graphs.

The problem of minimizing the number of rounds has not been studied
in such extend as the other two problems. Kleinberg [61] considered it in
different special settings. There are more results on the similar problem of
optical routings where each path is assigned a wavelength and two paths
of the same wavelength may not share an arc. Minimizing the number of
wavelengths results in the problem of minimizing the number of rounds in a
network with unit capacities and unit demands. Optical routings were, for
example, studied in [1, 4, 8, 89].

If all commodities share a common source vertex, the unsplittable flow
problem gets considerably easier. The first results for the single source un-
splittable flow problem come from Kleinberg [62]. He considers all three
optimization problems from above and presents constant factor approxima-
tion algorithms for all of them—in both cases, the directed and the undi-
rected one. For the directed case, Dinitz, Garg, and Goemans [26] present
a 2-approximation algorithm for minimal congestion, a 4.43-approximation
algorithm for the maximal routable demand, and a 5-approximation algo-
rithm for the minimal number of rounds. These results improve the ones
formerly found by Kolliopoulos and Stein [65]. Skutella [95] considers the
problem with arc costs and a hard budget. He obtains a 3-approximation
algorithm for minimal congestion and 8-approximation algorithms for the
maximal routable demand and the minimal number of rounds.

Organization of this Chapter

The contribution of this chapter is twofold. In the first part we study a class
of known algorithms for the UFP which we call path-selecting algorithms.
These algorithms start with a standard multicommodity flow spreading flow
among many paths and then choose exactly one path for each commodity.
Among those algorithms is randomized rounding. It is shown by Leighton,
Rao, and Srinivasan [71] that for undirected graphs the performance ratio
of randomized rounding is Ω(log m/ log log m). This lower bound for the
performance ratio can be adapted to the directed case. In Section 2.3 we
give an alternative proof for the lower bound. Our proof is much simpler
and even covers the case that all commodities share a common source and a

18 Unsplittable Flows

common sink. Moreover, our proof works for both cases, the directed and the
undirected one, and we show that starting with an optimal solution to the
classical multicommodity flow problem which uses a minimal number of paths
does not help to break the Ω(log m/ log log m) lower bound for randomized
rounding. Parts of Section 2.3 have already been published in [75, 76].

In Section 2.4 we consider only single source multicommodity flows. We
establish an interesting connection between fractional and unsplittable flows.
What we show is that each feasible single source multicommodity flow can be
written as a convex combination of unsplittable flows of congestion at most
2. The unsplittable flows route the same commodities as the initial flow and
for each commodity the demand equals the initial demand rounded (up or
down) to the next dmax/2

ℓ, for some ℓ ∈ N. Here, dmax is the maximum de-
mand of the underlying problem. The proof for the existence of the convex
combination is constructive. In Section 2.4.2 we present an algorithm which
computes unsplittable flows with appropriate weights for the convex combi-
nation. We give a detailed analysis of the algorithm proving its correctness
and the existence of the requested unsplittable flows in Section 2.4.3. We
also show that the congestion of 2 is tight for the unsplittable flows, i.e.,
there are networks and fractional flows for which each convex combination of
unsplittable flows includes at least one flow with congestion arbitrarily close
to 2.

2.2 Problem Definition and Notation

An instance of the unsplittable flow problem consists of a digraph D = (V,A)
with arc capacities u : A → R

+ and a set T ⊆ V × V of K ∈ N requests or
commodities. Together with the ith request (denoted by (si, ti)) we are given
its nonnegative demand di.

An unsplittable flow satisfying the given demands sends di units of flow
along a single si-ti-path Pi, for each i = 1, . . . ,K. We say that this flow is
feasible, if it obeys all arc capacities, i.e., if

∑

i∈{1,...,K}:
a∈Pi

di ≤ u(a) for all a ∈ A. (2.1)

The unsplittable flow problem was introduced by Kleinberg [61] and
generalizes the arc disjoint paths problem which is well known to be NP-
complete [39]. In general, it is not possible to find a feasible unsplittable
flow. It is common to consider optimization problems for the UFP, such as
the problem to minimize the congestion. The congestion of an unsplittable
flow is defined in analogy with that of a standard multicommodity flow. It

2.3 A Lower Bound for Path-Selecting Algorithms 19

is the minimum value α ≥ 1 such that by multiplying the right hand sides of
the inequalities in (2.1) with α these inequalities become true for the under-
lying flow. The problem to minimize the congestion of an underlying UFP is
that of finding an unsplittable flow of minimum congestion.

In this chapter we use the notion unsplittable flow twofold. On the one
hand, for a set of paths as defined above, and on the other hand, for a
multicommodity flow (given arcwise) which can be decomposed into flows on
paths such that, for each i = 1, . . . ,K, the di units of flow departing in si

and arriving in ti are routed along a single path only.

In the following we use dmin := mini=1,...,K di and dmax := maxi=1,...,K di to
denote the minimum and the maximum demand, respectively. We say that
the balance condition is met, if dmax ≤ u(a) for all a ∈ A. Throughout this
chapter the balance condition is always assumed to be met, unless stated oth-
erwise. To distinguish between standard multicommodity and unsplittable
flows we sometimes use the notion fractional to underline that a flow is not
necessarily unsplittable.

2.3 A Lower Bound for Path-Selecting Algorithms

In this section we give a lower bound for the performance ratio of a special
class of algorithms for the minimum congestion version of the UFP. We call
those algorithms path-selecting, because they start with a solution to the
classical multicommodity flow problem, compute a path decomposition, and
select one of its paths for each commodity in order to obtain an unsplit-
table flow. The probably most popular method among these algorithms is
randomized rounding. Randomized rounding has proved to be a very suc-
cessful tool in the design of approximation algorithms for many NP-hard
discrete optimization problems during the last decade. The general idea is
as follows: Formulate the problem as a 0/1-integer linear program, solve
the linear programming relaxation, and randomly turn the resulting frac-
tional solution into an integral solution by interpreting the fractional values
as probabilities. This idea was originally introduced in 1987 by Raghavan
and Thompson [88] for the edge-disjoint paths problem which is a special case
of the unsplittable flow problem. It is shown by Leighton, Rao, and Srini-
vasan [71] that for undirected graphs the performance ratio of randomized
rounding is Ω(log m/ log log m) and for directed graphs there is an integrality
gap of the same size. Since the integrality gap only specifies the ratio of the
objective values of an optimal fractional and an optimal integral solution,
it does not say anything about the gap between an optimal solution for an
instance of the UFP and a solution obtained by randomized rounding.

20 Unsplittable Flows

s

1 1 1 1

K − 1 K − 1 K − 1 K − 1

t

Figure 2.1: An instance of the unsplittable flow problem consisting of K commodities

with unit demands, sharing a common source s and a common sink t. There are KK

consecutive pairs of parallel arcs. The numbers at the arcs indicate their capacities.

We give an alternative proof for the result in [71]. Our proof works for
both cases, the directed and the undirected one, and more generally for all
path-selecting algorithms. (Nevertheless, we apply it only to randomized
rounding for clarity of presentation.) Moreover, we show that starting with
an optimal solution to the classical multicommodity flow problem which uses
a minimal number of paths does not help to break the Ω(log m/ log log m)
lower bound for randomized rounding.

Theorem 2.1. The performance ratio of randomized rounding for the
minimum congestion version of the unsplittable flow problem is
Ω(log m/ log log m).

We present the proof for this lower bound only for the directed case. For
the undirected case it works analogously.

Proof. Consider an instance of the UFP consisting of KK consecutive pairs
of parallel arcs and K commodities with unit demands, sharing a common
source s (the “first” node of the consecution of arcs) and a common sink t
(the “last” node of the consecution of arcs). Each “upper” arc in a pair has
a capacity of 1 and the “lower” arcs have capacities K − 1. This instance
of the UFP is depicted in Figure 2.1. Obviously, there exists an unsplit-
table flow with congestion 1 where the flow value on each arc is equal to
its capacity. Of course, the latter property must hold for any optimal frac-
tional solution. Consider the following fractional path decomposition: Each
commodity i = 1, . . . ,K is distributed among K paths P i

1, . . . , P
i
K with flow

values equal to 1/K. The KK upper arcs of the graph are labeled by K-
tuples (j1, . . . , jK) ∈ {1, . . . ,K}K such that every arc gets a different label.
For i, j = 1, . . . ,K, path P i

j uses an upper arc labeled (j1, . . . , jK) if and
only if ji = j. The underlying intuition of this construction is that, for each
subset of paths containing exactly one path of each commodity, there is an
upper arc that is exactly used by the paths in the considered subset.

We argue that, for the described path decomposition, randomized round-
ing always yields an unsplittable flow of congestion K: By construction of

2.3 A Lower Bound for Path-Selecting Algorithms 21

the fractional path decomposition, for every possible random choice, there
exists an upper arc of unit capacity which is used by all K commodities. In
particular, the flow on this arc exceeds its capacity by a factor K. Since
m = 2KK , we get K = Ω(log m/ log log m).

The performance of randomized rounding depends on the particular choice
of an optimal fractional solution, i.e., on the paths along which flow is sent.
At first sight, the fractional solution (path decomposition) used in the proof
above seems rather artificial for the considered network. We show in the
following that this solution is indeed an extreme point (i.e., a basic solution)
for the path-based LP-formulation of the fractional flow problem.

Let P be the set of all s-t-paths in the network under consideration.
We formulate the problem of finding an optimal fractional flow as a linear
program with variables fP,i ≥ 0 denoting the amount of flow of commodity i ∈
{1, . . . ,K} sent along path P ∈ P . The constraints of the linear program
are as follows:

K
∑

i=1

∑

P∈P :
a∈P

fP,i = 1 for all upper arcs a, (2.2)

∑

P∈P

fP,i = 1 for all i ∈ {1, . . . ,K}. (2.3)

Since the sum of capacities of every pair of parallel arcs equals the total
flow value K, constraints (2.2) suffice to enforce all capacity constraints. Let
Pi = {P i

1, . . . , P
i
K} be the subset of paths used by commodity i in the path

decomposition described in the proof of Theorem 2.1.

Lemma 2.2. The columns of the matrix given by the left hand sides of (2.2)
and (2.3) corresponding to the variables fP,i, with i = 1, . . . ,K and P ∈ Pi,
are linearly independent.

Proof. We assume by contradiction that there exists a nontrivial linear com-
bination of these columns which yields the zero vector. For i, j = 1, . . . ,K,
the coefficient of the column corresponding to variable fP,i with P = P i

j in
this linear combination is denoted by aij. By symmetry, we assume without
loss of generality that a11 > 0. Considering the row corresponding to the
ith constraint of (2.3), we observe that

∑K
j=1 aij = 0, for all i = 1, . . . ,K.

Thus, for all i = 2, . . . ,K, there exists a nonnegative coefficient aiji
≥ 0.

However, considering the constraint in (2.2) corresponding to the upper arc
labeled (1, j2, . . . , jK), we get a11 +

∑K
i=2 aiji

= 0 which is a contradiction
and therefore concludes the proof.

22 Unsplittable Flows

Lemma 2.2 implies that the path decomposition from above yields a basic
feasible solution to the linear program. Nevertheless, the chosen path decom-
position seems odd since it uses K2 paths while there is an obvious path de-
composition using only K paths (i.e., the optimal unsplittable flow solution).
It is an interesting question whether the lower bound Ω(log m/ log log m) still
holds if the randomized rounding algorithm starts with a path decomposition
of an optimal fractional solution using a minimal number of paths. This is
obviously not true for the instance discussed above.

In the following, we modify the instance such that an optimal frac-
tional solution using a minimal number of paths still yields the lower bound
Ω(log m/ log log m) for randomized rounding. We slightly perturb the right
hand sides of constraints (2.2) and (2.3). To enforce the balance condition,
we perturb the upper arc capacities to values slightly above 1 and the de-
mands to values slightly below 1. Furthermore, we also modify the capacities
of the lower arcs such that again the capacities of all pairs of arcs are equal
to the total demand.

By choosing a random perturbation, with probability 1 there are no de-
generate basic solutions anymore, i.e., all basic variables (paths) have a pos-
itive value (for more details on perturbations of linear programs we refer to
the standard literature such as, e.g., [15]). This means that all basic solu-
tions use a minimal number of paths. In particular, by Lemma 2.2, there is a
perturbed version of our fractional solution considered above which is a basic
solution to the modified instance and thus uses a minimal number of paths.
Since the perturbation can be arbitrarily small, this basic solution to the
perturbed instance is arbitrarily close to the fractional solution considered
above such that the expected congestion of an unsplittable flow obtained by
randomized rounding is in Ω(log m/ log log m). Moreover, the congestion of
an optimal unsplittable flow is still arbitrarily close to 1. This yields the
following corollary.

Corollary 2.3. The performance ratio of randomized rounding for the
minimum congestion version of the unsplittable flow problem is
Ω(log m/ log log m), even if the algorithm starts with an optimal fractional
solution using a minimal number of paths.

2.4 Convex Combinations for Multicommodity Flows

In this section we only consider the case that all requests share the same
source. In this situation, it is common to speak of the single source multi-
commodity (or unsplittable) flow problem. We describe an algorithm which
is given an arbitrary fractional single source multicommodity flow and com-

2.4 Convex Combinations for Multicommodity Flows 23

putes unsplittable flows with congestion at most 2 as well as coefficients for a
convex combination of these that results in the input flow. The demands of
the unsplittable flows slightly differ from the ones in the original flow: They
respectively equal the next (upper or lower) fraction dmax/2

ℓ, for some ℓ ∈ N.
The result that each single source multicommodity flow can be presented

as a convex combination of unsplittable flows with congestion at most 2 is
interesting from the following point of view: Dinitz, Garg, and Goemans [26]
have already proven that an arbitrary single source multicommodity flow can
be made unsplittable by losing only a factor 2 with respect to congestion (or
even by sending only at most additional dmax units of flow along each arc).
Concerning this result the following question arose: Given an arbitrary cost
function on the arcs, does there also exist a suitable unsplittable flow whose
costs do not exceed the costs of the original (fractional) flow? This question
is answered by the algorithm that is developed in this section. The requested
unsplittable flow exists if and only if the original (fractional) flow can be
presented as a convex combination of unsplittable flows with congestion at
most 2 (or of those with at most additional dmax units of flow along each
arc).

In Section 2.4.2 we present an algorithm that computes suitable unsplit-
table flows for such a convex combination. A detailed analysis of the algo-
rithm follows in Section 2.4.3. Beforehand, we introduce some definitions
in Section 2.4.1 that simplify the following presentations. Further, we give
detailed definitions for single source multicommodity flows in order to clarify
our notation.

2.4.1 Definitions

An instance of the single source multicommodity flow problem is defined as
follows. We are given a digraph D = (V,A) with arc capacities u : A → R

+,
a source s ∈ V and K ∈ N sinks t1, . . . , tK ∈ V . Sources and sinks are also
called terminals. We assume without loss of generality that the terminals are
pairwise distinct.

A single source multicommodity flow in this network is a function f :
A → R

+
0 that satisfies flow conservation, i.e.,
∑

a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a) for all v ∈ V \ {s, t1, . . . , tK}.

To ensure that s is the unique source of f , we must require in addition that
∑

a∈δ−(ti)

f(a) ≥
∑

a∈δ+(ti)

f(a) for all i = 1, . . . ,K.

24 Unsplittable Flows

We say that a flow is feasible, if it obeys the arc capacities, i.e., f(a) ≤
u(a) for all a ∈ A. A single source multicommodity flow satisfies demands
d1, . . . , dK ∈ R

+
0 , if

∑

a∈δ−(ti)

f(a) =
∑

a∈δ+(ti)

f(a) + di for all i ∈ {1, . . . ,K}.

In this classical single source multicommodity flow problem it is allowed to
split flow from the source to a sink and let it travel on different paths through
the network. In contrast, the single source unsplittable flow problem forbids
to use more than a single path in order to send flow from the source s to a
sink ti. Thus, the problem is not to find a flow function f as defined above,
but rather to find a single s-ti path Pi with a nonnegative flow value fi, for
each i ∈ {1, . . . ,K}. The resulting flow is feasible (obeys the arc capacities),
if

∑

i∈{1,...,K}:
a∈Pi

fi ≤ u(a) for all a ∈ A.

Flow conservation is satisfied trivially. An unsplittable single source multi-
commodity flow satisfies demands d1, . . . , dK , if fi = di for all i ∈ {1, . . . ,K}.

Sometimes the arc flow of an unsplittable flow is used. The flow on arc
a ∈ A of the unsplittable flow given above is defined as f(a) :=

∑

i:a∈Pi
fi.

Thus, we can build the sum f + g of two flows f and g arcwise, even if one
of the flows is given pathwise.

We say that a terminal path is a maximal (not necessarily directed) simple
path in D with endpoints in {s, t1, . . . , tK}, where maximal means that it is
not extendable at either of its endpoints. A (not necessarily directed) cycle
or a terminal path is called an augmenting structure.

For a natural number ℓ, we define rℓ
f (a) := f(a) mod dmax

2ℓ , for a ∈ A. A
flow is called q-integral, for some q ∈ R

+, if the flow value on each arc is an
integral multiple of q.

Note that any single source multicommodity flow that is q-integral can
be decomposed into flows on paths with flow value q.

2.4.2 Constructing the Convex Combination

We now present an algorithm that computes—given a fractional single source
multicommodity flow f init—unsplittable flows with weights such that the
weighted sum of the flows equals f init. The congestion of all these unsplittable
flows is at most 2, their demands are found by rounding the ones in f init. In
more detail, each flow exceeds all arc capacities only by at most an additive
dmax. If nothing else is declared, dmax and dmin refer to the initial flow f init.

2.4 Convex Combinations for Multicommodity Flows 25

In the following we shortly sketch the idea of the algorithm, before we
give a more detailed characterization of it later on: We want to round each
demand to the two nearest (upper and lower) values of the form dmax/2

ℓ,
for some ℓ ∈ N, and then send these rounded demands unsplittably.4 The
largest value we need to consider for ℓ is

L :=

⌈

log
dmax

dmin

⌉

,

since dmax/2
L is the largest fraction dmax/2

ℓ (ℓ ∈ N) that is at most dmin.
(Thus, dmax/2

L is the smallest demand that we obtain from rounding all
demands to (dmax/2

ℓ)-integrality, for some ℓ ∈ N.)
We start by making the input flow (dmax/2

L)-integral. This is done by
augmenting flow on cycles and terminal paths. The particular augmenting
structure and the increment of flow are chosen such that after augmentation
the flow on at least one additional arc is (dmax/2

L)-integral. Augmentation
on a cycle does not change the demands, whereas augmentations on terminal
paths yield changes of demands to (dmax/2

L)-integrality. We always augment
in both directions of an augmenting structure and thus obtain two new flows
in each step that will form a convex combination of the “parent” flow if
suitable weights are chosen. Depending on the direction into which flow is
augmented on a path, demands are rounded up or down. (See Figure 2.2 for
an illustration of the algorithm.) When a flow is (dmax/2

L)-integral, demands
of value dmax/2

L can be satisfied unsplittably. For this reason, we want to
prevent such demands and corresponding flow carrying paths from further
changes. Thus, for each sink t with demand dmax/2

L, we decrease the current
flow along a corresponding flow carrying s-t-path by dmax/2

L. These paths
with the flow values are stored for all subsequent flows. After the decrement,
all demands are at least dmax/2

L−1 and we turn to make the (remaining) flow
(dmax/2

L−1)-integral. We proceed in this manner until the (remaining) flow
is dmax-integral. Then all (remaining) demands equal dmax and are served
unsplittably.

For the sake of simple presentation and analysis of the algorithm, we
give a recursive description of it in Algorithm 1. The initial call to start the
recursive algorithm is given by DECOMP(D,f init,∅,1) where f init is the single
source multicommodity flow in the digraph D that is to be decomposed into
unsplittable flows. The third parameter is a set of paths with corresponding
flow values. If (P, φ) is in this set, it means that all subsequent flows route

4We could also do without rounding demands that are initially satisfied unsplittably.
These demands and their corresponding paths could simply be excluded from further
consideration. Nevertheless, we do not set that rounding aside for simplicity of notation.

26 Unsplittable Flows

ssss

sss

2

666

4

4

4

1010

10101010

101010

0

0

0

0

0

0

0

5

5

5

5

5

5

5

5

5

5

5

5

5
5

55

5

5

5

5

5

5

5

5
5

5

5

5
5

1
4

3
4

1

11

1

1

1
4
· 1

5
= 1

20
1
4
· 4

5
= 1

5
3
4
· 1

5
= 3

20
3
4
· 4

5
= 3

5

Figure 2.2: Steps of the algorithm to 5-integrality. We start with the flow in the upper

left corner and read from left to right first. Since dmax/2L equals 5, we need to make the
flow 5-integral. The dashed arcs indicate the augmenting structure that is used. Since
we augment flow in either direction of an augmenting structure, each non-5-integral flow
produces two new flows that are separated from their “parents” by a vertical line. We
consider the first flow. If we use the indicated augmenting structure clockwise, we may
augment by 3. Then the arc with flow value 2 becomes 5-integral. Using the augmenting
structure counterclockwise, we may augment by 1. Then the unit of flow on the arc with
flow value 1 recedes. The number below each flow indicates its weight in the convex
combination.

φ units of flow along P . The last parameter indicates the weight of the flow
that is to be decomposed. For the initial flow this weight equals 1.

A call of DECOMP(D,f init,∅,1) effects the following: In each step of the
recursion, it first updates the input flow f by iteratively deleting demands
dmax/2

ℓ, for ℓ ∈ N, if f is (dmax/2
ℓ)-integral. The related flow carrying paths

are added to the current unsplittable flow given by P . Afterwards it decom-
poses the (remaining) flow f into two new flows f1 and f2 that result from
a single augmentation in both directions of a suitable augmenting structure.
Further steps of the recursion decompose f1 and f2 into unsplittable flows.

The augmentation itself works as follows. Let us assume that the flow f
that remains after the update is (dmax/2

ℓ)- but not (dmax/2
ℓ−1)-integral, for

some ℓ ∈ {1, . . . , L}. Then we consider the subgraph D̃ of D that consists of
all arcs a ∈ A whose flow values f(a) are not (dmax/2

ℓ−1)-integral. Starting

2.4 Convex Combinations for Multicommodity Flows 27

Algorithm 1: DECOMP(D,f ,P ,w)

Input: A digraph D = (V,A), a single source multicommodity flow f
in D with source s, a set P of paths from s to pairwise
distinct nodes t in D with corresponding flow values, and a
positive weight w ∈ (0, 1]. The maximum (minimum) demand,
that f satisfies, is dmax (dmin).

Output: A set of unsplittable flows with weights that sum up to w
yielding a conic combination of w(f + fP), where fP denotes
the flow that is given by P .

for i =
⌈

log dmax

dmin

⌉

downto 0 do

if f is (dmax/2
i)-integral then

for each sink t having demand d = dmax/2
i in f do

Determine an arbitray flow carrying s-t-path P in D.
Set f(a) := f(a) − d for all a ∈ P .
Set P ′ := P ∪ {(P, d)}.

end

end

end

if f ≡ 0 then
return (P ′, w).

end

Set ℓ := min{min{j ∈ N|f is (dmax/2
j)-integral},

⌈

log dmax

dmin

⌉

+ 1}.
Let C ⊆ A be an augmenting structure with rℓ−1

f (a) 6= 0 ∀ a ∈ C.

Set C+ := {a ∈ C | C traverses a in forward direction},
C− := {a ∈ C | C traverses a in backward direction}.

Set δ1 := min{min
a∈C−

rℓ−1
f (a), min

a∈C+

dmax

2ℓ−1 − rℓ−1
f (a)},

δ2 := min{min
a∈C+

rℓ−1
f (a), min

a∈C−

dmax

2ℓ−1 − rℓ−1
f (a)}.

For a ∈ A \ C set f1(a) := f(a) and f2(a) := f(a).
For a ∈ C+ set f1(a) := f(a) + δ1 and f2(a) := f(a) − δ2.
For a ∈ C− set f1(a) := f(a) − δ1 and f2(a) := f(a) + δ2.
Set w1 := δ2

δ1+δ2
w and w2 := δ1

δ1+δ2
w.

return DECOMP(D,f1,P ′,w1) ∪ DECOMP(D,f2,P ′,w2).

from an arbitrary arc we follow an undirected path (in either direction) until
there is no more incident arc or we get to a node which has already been
visited. The first criterion results in a terminal path, the second one in a

28 Unsplittable Flows

cycle. (We prove this later on in Lemma 2.5.) For the resulting augmenting
structure C we augment by the minimum δ of gaps between flow values and
the next lower multiples of dmax/2

ℓ−1 for arcs that are used by C in backward
direction and of gaps between flow values and the next upper multiples of
dmax/2

ℓ−1 for arcs that are used by C in forward direction. Defining C− as
the backward arcs in C and C+ as the forward arcs in C we can write δ as
follows.

δ = min{min
a∈C−

rℓ−1
f (a), min

a∈C+

dmax

2ℓ−1
− rℓ−1

f (a)}

Now let f1 and f2 be the flows resulting from augmenting along C and its
“counterpart”, i.e., C in the opposite direction. Let δ1 and δ2 be the corres-
ponding augmentation values. Then the weight of fi (for i = 1, 2) is given
by the weight of f multiplied with δ3−i/(δ1 + δ2).

2.4.3 Analysis of the Construction

In this section we prove that the flows and weights that are returned by
DECOMP(D,f init,∅,1) yield a convex combination for f init. Further, the
produced flows are unsplittable and all its demands are of the form dmax/2

ℓ,
for some ℓ ∈ {0, . . . , ⌈log(dmax/dmin)⌉}.

First let us prove that the algorithm is well defined in the sense that the
input specification is always fulfilled.

Lemma 2.4. In each call DECOMP(D,f ,P ,w) that results from a call
DECOMP(D,f init,∅,1) it holds that

1. f is a single source multicommodity flow in D,

2. P is a set of paths from the source of f to pairwise distinct nodes t in
D with corresponding flow values, and

3. w ∈ (0, 1].

Proof. Note that the parameters of the initial call DECOMP(D,f init,∅,1)
fulfill the input specification.

Consider any call of DECOMP(D,f ,P ,w) such that the parameters f , P ,
and w satisfy the input specification. We show that f1, P ’, and w1 as well as
f2, P ’, and w2 as defined in Algorithm 1 fulfill the input specification, too.
This is done by proving that they obey 1 to 3. Then the lemma is proven by
induction.

We prove that f1, P ’, and w1 obey 1 to 3. The same can be proven
analogously for f2, P ’, and w2. In the following we use s to denote the
source in f .

2.4 Convex Combinations for Multicommodity Flows 29

1. We show that no additional source emerges from the decrement of flow
in the for-loop or the augmentation of flow. The decrement of flow
only deletes existent flow along paths from s to some sinks and does
not create a new source. Augmentation along a cycle does not change
the amount of flow that appears or vanishs in any node.

We must show that augmentation along a terminal path P does not
cause the creation of a new source. Consider a sink t at the end of
P . Then there is only one arc a ∈ A incident to t whose flow value
is not (dmax/2

ℓ−1)-integral, for ℓ as used in Algorithm 1. First assume
that a ∈ δ+(t). Since t is a sink, the inflow in t is at least by a value
x := dmax/2

ℓ−1 − rℓ−1
f (a) larger than the outflow from t. By the choice

of δ1 and δ2, the flow along a is increased by at most x. Therefore, t
cannot become a source. If a ∈ δ−(t), the inflow in t is at least by a
value rℓ−1

f (a) larger than the outflow from t. Since the flow along a is

decreased by at most rℓ−1
f (a), it follows that t cannot become a source

in this case either.

Therefore, the single source in f1 is given by s.

2. To obtain P ’, we merely add s-t-paths with corresponding weights to
P for some sinks t with positive demands. The amount of flow arriving
in t in f is 0 afterwards. (Remember that we assumed the sinks to be
pairwise distinct.) The proof of Lemma 2.5 shows that any augmenting
structure cannot end in a sink with demand 0. Thus, the demand of
any sink for which a path is in P ′ cannot become positive again. It
follows that all sinks for which corresponding flow paths are in P ′ are
pairwise distinct.

3. Note that after the update in the for-loop, f is either the zero flow
or not yet dmax-integral. (For a flow that is dmax-integral all demands
would have been deleted.) If f ≡ 0, we are done. In Lemma 2.5 we
prove that otherwise there exists a suitable augmenting structure in f .
Thus, δ1, δ2 > 0. It follows with w1 ≤ w that w1 ∈ (0, 1].

This completes the proof.

Lemma 2.5, which has already been mentioned, is also helpful to prove
that our algorithm terminates.

Lemma 2.5. If a flow f in D is not (dmax/2
ℓ)-integral, for some ℓ ∈ N, then

there exists an augmenting structure C ⊆ A with rℓ
f(a) 6= 0, for all a ∈ C.

30 Unsplittable Flows

Proof. Consider the subgraph D̃ of D that consists of all arcs a ∈ A whose
flow values f(a) are not (dmax/2

ℓ)-integral, for some ℓ ∈ N. Assume that
we start from an arbitrary arc in D̃, follow an undirected path in D̃ in both
directions as long as possible and do not find a cycle. We are done if we
prove that both ends of the determined path are terminals.

Let v ∈ V be an end node of the path. We show that v must be the source
or a sink with positive demand. Since v is an end node of the path and by
definition of D̃, there is exactly one arc a ∈ A incident to v whose flow value
f(a) is not (dmax/2

ℓ)-integral. Suppose that a ∈ δ+(v). Then there exist
p, q ∈ N with

∑

a′∈δ+(v)

f(a′) = p · dmax

2ℓ
+ rℓ

f (a) and

∑

a′∈δ−(v)

f(a′) = q · dmax

2ℓ
.

Since rℓ
f(a) ∈ (0, dmax/2

ℓ), it follows that
∑

a′∈δ+(v) f(a′) 6= ∑

a′∈δ−(v) f(a′).
Since flow conservation is obeyed in all nodes that are no terminals (or a sink
with demand equal to 0), it follows that v must be the source or a sink with
positive demand. An analogous argument holds if a ∈ δ−(v).

The following lemma proves that if f is not decreased in the for-loop of
DECOMP(D,f ,P ,w), the flows f1 and f2 are “more integral” than f .

Lemma 2.6. For any flow f that is augmented in Algorithm 1 and its cor-
responding value ℓ as defined in the algorithm, it holds that f1 and f2 each
have at least one more arc than f whose flow value is (dmax/2

ℓ−1)-integral.

Proof. First note that the flow f is not (dmax/2
ℓ−1)-integral for ℓ as defined

in Algorithm 1. Further ℓ ≥ 1, because otherwise f would be dmax-integral
which is a contradiction to the specification of the for-loop. Then the claim
follows from the definition of δ1 and δ2 and the augmentation rule. Let C be
the augmenting structure that leads from f to f1 and f2 and let a ∈ C be
the arc for which the minimum defining δ1 is attained. If a ∈ C−, it follows
that f1(a) = f(a) − rℓ−1

f (a). Since it holds by definition that rℓ−1
f (a) = f(a)

mod dmax

2ℓ−1 , we have f1(a) mod dmax

2ℓ−1 = 0.
Analogous equations hold for a ∈ C+ and for f2. Since we only change

flow on arcs in C and the flow values on all arcs in C are not (dmax/2
ℓ−1)-

integral, flow values on (dmax/2
ℓ−1)-integral arcs remain unchanged.

Before we turn to proving that the flows and weights that are returned
by DECOMP(D,f ,P ,w) yield a conic combination of wf , we show that the

2.4 Convex Combinations for Multicommodity Flows 31

procedure indeed terminates and outputs unsplittable flows whose demands
are of the form dmax/2

ℓ, for some ℓ ∈ {0, . . . , ⌈log(dmax/dmin)⌉}.

Corollary 2.7. DECOMP(D,f ,P ,w) terminates. The output is a set of
unsplittable flows whose demands are of the form dmax/2

ℓ, for some ℓ ∈
{0, . . . , ⌈log(dmax/dmin)⌉}.

Proof. We have already proven that the flows f1 and f2 that result from
DECOMP(D,f ,P ,w) have fewer positive demands than f or are “more inte-
gral”. The first property eventually results in a decrement of the input flow
to the zero flow. In every recursive call of Algorithm 1 in which the num-
ber of positive demands is not decreased for the respective input, the flow
value on at least one of its arcs changes to a “higher” integrality. After at
most m steps we therefore change from (dmax/2

ℓ)-integrality to (dmax/2
ℓ−1)-

integrality for some ℓ ∈ {1, . . . , L} (or respectively from the initial state to
(dmax/2

L)-integrality). At this point demands of value (dmax/2
ℓ−1) and cor-

responding flow are deleted in the for-loop. If no such demands exist, we
go to “higher” integralities and delete demands at the latest when the flow
is dmax-integral. Therefore, at some point all demands are deleted and the
algorithm terminates.

It follows from the preceding proofs that all paths in P ′ connect the
source in f with pairwise distinct sinks. Thus, P ′ yields an unsplittable flow.
It follows directly from the specification of the algorithm that all demands
served by P ′ are of the form dmax/2

ℓ, for some ℓ ∈ {0, . . . , ⌈log(dmax/dmin)⌉}.

In the following we use fP to denote the flow that is given by some set P of
paths with corresponding flow values. We prove the following helpful lemma
in order to show that DECOMP(D,f ,P ,w) returns the specified output.

Lemma 2.8. Consider DECOMP(D,f ,P ,w). It holds that

w(f + fP) = w1(f1 + fP ′) + w2(f2 + fP ′) (2.4)

and w1 + w2 = w.

Proof. The second part of the lemma follows immediately from the definition
of w1 and w2. Equation (2.4) can be proven as follows.

For all arcs a ∈ A that are not in the augmenting structure C that leads
from f to f1 and f2, it holds that f1(a) = f2(a) = f(a) − (fP ′(a) − fP(a)).
Since w1 and w2 sum up to w, equation (2.4) follows immediately for such
arcs.

32 Unsplittable Flows

Now consider an arc a ∈ C+. It holds that

f1(a) = f(a) − (fP ′(a) − fP(a)) + δ1 and

f2(a) = f(a) − (fP ′(a) − fP(a)) − δ2 .

Hence, it follows with w1 + w2 = w that

w1f1(a) + w2f2(a) = wf(a) − w(fP ′(a) − fP(a)) + w1δ1 − w2δ2

= wf(a) − w(fP ′(a) − fP(a)) +
δ2δ1

δ1 + δ2
w − δ1δ2

δ1 + δ2
w

= wf(a) + wfP(a) − w1fP ′(a) − w2fP ′(a) .

The proof is analogous for a ∈ C−.

The following corollary demonstrates the correctness of the output of
DECOMP(D,f ,P ,w). With this result we are finished proving the correct-
ness of the algorithm as described in Section 2.4.2. To prove our main re-
sult we still need to show that all unsplittable flows that are returned by
DECOMP(D,f init,∅,1) have congestion at most 2. This is done in Theo-
rem 2.11 in Section 2.4.4.

Corollary 2.9. The flows and weights returned by DECOMP(D,f ,P ,w)
yield a conic combination of w(f + fP) whose weights sum up to w.

Proof. By induction on the depth of recursion we prove the claim using
Lemma 2.8.

From a call DECOMP(D,f ,P ,w) that causes no further calls we receive
(P ′, w). It holds that f − (fP ′ − fP) ≡ 0. Thus, the output is correct.

Consider a call DECOMP(D,f ,P ,w) that calls DECOMP(D,f1,P ′,w1)
and DECOMP(D,f2,P ′,w2). It follows from the induction hypothesis that
DECOMP(D,f1,P ′,w1) and DECOMP(D,f2,P ′,w2) return sets {(P i

1, w
i
1) | i ∈

I} and {(P j
2 , w

j
2) | j ∈ J} with some index sets I, J . These fulfill

w1(f1 + fP ′) =
∑

i∈I

wi
1fPi

1
and w2(f2 + fP ′) =

∑

j∈J

wj
2fPj

2

as well as
∑

i∈I wi
1 = w1 and

∑

j∈J wj
2 = w2. Lemma 2.8 says that

w(f + fP) = w1(f1 + fP ′) + w2(f2 + fP ′) =
∑

i∈I

wi
1fPi

1
+
∑

j∈J

wj
2fPj

2

and
∑

i∈I wi
1 +

∑

j∈J wj
2 = w1 + w2 = w.

2.4 Convex Combinations for Multicommodity Flows 33

Corollary 2.10. The flows and weights returned by DECOMP(D,f init,∅,1)
yield a convex combination of f .

Proof. By Corollary 2.9, DECOMP(D,f init,∅,1) returns flows and weights
that yield a conic combination of f init whose weights sum up to 1. Thus, we
have a convex combination.

2.4.4 Upper Bound for the Congestion

Together with the algorithm from Section 2.4.2 and its analysis in Sec-
tion 2.4.3 the following theorem is the last component for the proof of our
main result. We prove that each feasible single source multicommodity flow
can be written as a convex combination of unsplittable flows of congestion
at most 2. This holds only for the case that the balance condition is met. A
more general and even stronger result is the following.

Theorem 2.11. For a single source multicommodity flow f init in D = (V,A)
and any arc a ∈ A, it holds that the flow along a in any flow produced by
DECOMP(D,f init,∅,1) exceeds f init(a) by at most an additive dmax.

Proof. Consider the progression of the input flow while DECOMP(D,f init,∅,1)
is running. Let f0 be a flow that occurs on the way to (dmax/2

L)-integrality
of the input flow. Further, let P0 be the current unsplittable flow while f0

is considered in the algorithm.
By the choice of δ1 and δ2, it holds for all a ∈ A that

f0(a) + fP0(a) ≤ f init(a) +
dmax

2L
−
(

f init(a) mod
dmax

2L

)

, (2.5)

because once the flow on a is (dmax/2
L)-integral, i.e., rounded to at most the

next multiple of dmax/2
L, it is not changed again on the way to (dmax/2

L)-
integrality.

After (dmax/2
L)-integrality was reached, the input flow is iteratively aug-

mented to (dmax/2
L−ℓ)-integrality for gradually increasing ℓ ∈ {1, . . . , L}.

Let f ℓ be a flow that occurs while DECOMP(D,f init,∅,1) is running and that
is (dmax/2

L−ℓ)-integral, but not (dmax/2
L−ℓ−1)-integral. Further, let f ℓ−1 be

any anchestor of f ℓ, i.e., any of the flows that (indirectly) caused the cre-
ation of f ℓ, that is (dmax/2

L−ℓ+1)-integral. Again let P ℓ and P ℓ−1 be the
corresponding unsplittable flows.

In analogy with (2.5), it follows from the choice of δ1 and δ2 that for all
a ∈ A

f ℓ(a) + fPℓ(a) ≤ f ℓ−1(a) + fPℓ−1(a) +
dmax

2L−ℓ
− dmax

2L−ℓ+1
.

34 Unsplittable Flows

We can prove an analogous equation if some integrality step is omitted, i.e.,
if there is no anchestor of f ℓ that is (dmax/2

L−ℓ+1)-integral. Let ℓ′ be the
largest integer that is smaller than ℓ and for which an anchestor of f ℓ exists
that is (dmax/2

L−ℓ′)-integral. Then it holds that

f ℓ(a) + fPℓ(a) ≤ f ℓ′(a) + fPℓ′ (a) +
dmax

2L−ℓ
− dmax

2L−ℓ′
.

We obtain iteratively, for all ℓ ∈ {0, . . . , L}, that

f ℓ(a) + fPℓ(a) ≤ f init(a) +
dmax

2L−ℓ
−
(

f init(a) mod
dmax

2L

)

. (2.6)

Now consider the point when the flow f is changed to f ′ ≡ 0 in the for-loop.
Let P and P ′ be the corresponding unsplittable flows. Then P ′ is one of the
output flows of the algorithm. Since dmax is the maximum demand in f , it
follows that f is dmax-integral. With (2.6) we have

fP ′(a) = f(a) + fP(a)

≤ f init(a) + dmax − (f init(a) mod
dmax

2L
)

≤ f init(a) + dmax .

Note that it even holds, for all a ∈ A, that fP ′(a) < f init(a) + dmax. To
obtain this result, we have to regard that f0(a) + fP0(a) ≤ f init(a), if f init(a)
is (dmax/2

L)-integral.

If we assume f init to be feasible, the next result follows immediately, for
instances of the single source multicommodity flow problem that meet the
balance condition.

Corollary 2.12. If a single source multicommodity flow f init in D = (V,A)
obeys arc capacities u : A → R

+ (and the balance condition is met), then all
flows produced by DECOMP(D,f init,∅,1) have congestion at most 2.

We close this section by proving that our result is tight.

Lemma 2.13. There exists a network and a feasible fractional single source
multicommodity flow f init such that in each convex combination of unsplit-
table flows forming f init there is at least one flow with congestion arbitrarily
close to 2.

2.4 Convex Combinations for Multicommodity Flows 35

1 + ǫ

1 − ǫ

ǫ

t1

t2s

1

Figure 2.3: An example showing that the congestion of 2 is tight.

Proof. Consider the network depicted in Figure 2.3 with source s, sinks t1, t2,
and demands 1 for both commodities. The number next to an arc a is the
flow value f init(a), the capacity of a is the maximum of f init(a) and 1. ǫ is
an arbitrary positive number smaller than 1.
Consider the arc with flow value 1+ǫ. Obviously we have to route commodity
1 on it in each unsplittable flow that participates in a convex combination
forming f init. But there must also be at least one unsplittable flow that
routes commodity 2 on this arc. Thus, we obtain a flow value of 2 on it and
a congestion of 2/(1 + ǫ).

Chapter 3

k-Splittable Flows

3.1 Introduction

A natural generalization of the unsplittable flow problem is the k-splittable
flow problem (k-SFP) introduced by Baier, Köhler, and Skutella [11]. In the
k-SFP, there is an upper bound on the number of paths that may be used to
route a commodity. Already for the single-commodity case, the k-SFP is NP-
complete [11]. Of course, the optimization versions of the unsplittable flow
problem (UFP) discussed in Chapter 2, i.e., minimum congestion, minimum
number of rounds, and maximum routable demand, naturally generalize to
the k-SFP.

The notion of k-splittable flows is motivated by transportation problems
where divisible goods have to be shipped through a network using a bounded
number of containers and each container must be routed along some path
through the network.

Path Capacities. In the first part of this chapter we introduce a new variant of
the k-splittable flow problem with additional upper bounds on the amount of
flow being sent along each path. The motivation for these bounds comes from
the following packing and routing problem: A commodity must be shipped
using a given number of containers of given sizes. First, one has to make a
decision on the fraction of the commodity packed into each container. Then,
the containers must be routed through a network whose arcs correspond, for
example, to ships or trains. Each arc has a capacity bounding the total size
or weight of containers which are being routed on it. Each container being
used, must be routed along some path through the network. In particular,
the size of the container induces an upper bound on the amount of flow being
sent along the chosen path. It is therefore called path capacity.

We consider two variants of the problem for which we provide an intuitive
motivation:

1. When loading a ship, the total weight of all containers on the ship
must not exceed the capacity of the ship. The weight of a container is
determined by the actual amount of flow assigned to it. Thus, in the
first variant with weight capacities, the capacity of an arc bounds the

37

38 k-Splittable Flows

actual amount of flow being sent on paths containing this arc. This is
the classical interpretation of arc capacities.

2. When loading a train, the total size of the containers is usually more
important than their total weight. Therefore, in the model with size
capacities, the capacity of an arc bounds the total path capacity of
all paths being routed through that arc. Notice that these capacity
constraints are more restrictive than the classical ones in the first model.

We are mainly interested in the corresponding NP-hard optimization problem
to minimize the congestion. A precise and formal definition of the problem
under consideration is given in Section 3.3.

Length-Bounded Flows. A natural restriction in the area of transportation
is to bound the length of paths that may be used to ship some commodity
from its source to its destination. We therefore consider a generalization of
k-splittable s-t-flows by imposing bounds on the lengths of the paths in P ,
which is the set of all s-t-paths in the underlying network.

We consider the maximum length-bounded k-splittable s-t-flow problem:
Given k, L ∈ N , find a maximum k-splittable s-t-flow which is L-length-
bounded. This constitutes a natural combination and generalization of k-
splittable and length-bounded s-t-flows.

Dynamic Flows. A crucial characteristic of network flows occurring in real-
world applications is flow variation over time and the fact that flow does
not travel instantaneously through a network but requires a certain amount
of time (transit time) to travel through each arc. Both characteristics are
captured by dynamic flows which specify a flow rate for each arc and each
point in time. The quickest s-t-flow problem is to send a given amount of
flow from s to t such that the last unit of flow arrives at the sink t as early as
possible, i.e., within minimum time T . We consider the quickest k-splittable
s-t-flow problem, where, as in the static setting described above, the number
of s-t-paths used to send flow is bounded by k. This dynamic flow problem
is NP-hard since already its ‘static’ counterpart is NP-hard.

Related Results from the Literature

As mentioned above k-splittable flows were introduced by Baier, Köhler, and
Skutella [11]. They first consider a special form of the k-SFP in which each
commodity uses the maximum number of paths allowed and is equally split
up among the chosen paths. They call this problem the uniform exactly-
k-splittable flow problem. It is shown that a maximum uniform exactly-k-
splittable s-t-flow can be computed in polynomial time by a variant of the

3.1 Introduction 39

classical augmenting path algorithm. In contrast, it is NP-hard to find a
maximum k-splittable s-t-flow. But it is shown that the value of a maximum
k-splittable s-t-flow is at most twice as large as the value of a maximum
uniform exactly-k-splittable s-t-flow. Thus, computing a maximum uniform
exactly-k-splittable s-t-flow yields a 2-approximation algorithm for the max-
imum k-splittable s-t-flow problem.

Koch, Skutella, and Spenke [63] improve on these results for graphs of
bounded treewidth. They show that on those graphs and for a constant
number of paths, the problem can be solved in polynomial time. If the
number of paths is part of the input, the problem is still NP-hard. Koch et
al. present a polynomial time approximation scheme for this case.

For the general setting with an arbitrary number of source-sink-pairs
(commodities) the uniform exactly-k-SFP contains the UFP as a special case
and is therefore NP-hard. But note that any instance of it can be solved
by solving a special instance of the UFP on the same graph. Thus, it holds
that any ρ-approximation algorithm for the problem of minimizing the con-
gestion for the UFP provides a ρ-approximation algorithm for the problem
of minimizing the congestion for this special k-SFP.1 To approximate opti-
mal solutions of the general k-SFP, Baier et al. [11] again use the fact that
a uniform exactly-k-splittable flow of minimum congestion for any instance
of the k-SFP is a k-splittable flow which approximates the congestion of an
optimal k-splittable flow for the same instance within a factor 2.

Further results are known for similar problems in undirected networks.
Bagchi, Chaudhary, Scheideler, and Kolman [7] consider fault tolerant rout-
ings. To ensure connection for each commodity for up to k − 1 edge failures
in the network, they require k ∈ N edge disjoint flow paths per commodity.
This problem is called the k-disjoint flow problem (k-DFP). Bagchi et al. [7]
also consider the integral splittable flow problem (ISF). Bagchi [6] extends
the considerations of [7] to the k-SFP. The aim of Bagchi et al. is always to
maximize the sum of satisfied demands subject to meeting all edge capac-
ity constraints. In the k-DFP a demand d for any request is to be satisfied
by a flow on k disjoint paths, each path carrying d/k units of flow. In the
ISF integral demands need to be satisfied by an arbitrary number of paths,
where the flow value of any path has to be integral. In contrast to [11] and
the considerations made here, Bagchi does not admit different bounds on
the numbers of paths for different commodities in the k-SFP. For all of the
mentioned problems, Bagchi et al. introduce simple greedy algorithms in the

1For this result it is important to assume that the bound on the number of paths is at
most m for each commodity. This can be done without loss of generality, because each
s-t-flow can be decomposed into flows on at most m paths and cycles. (The cycles can be
omitted.)

40 k-Splittable Flows

style of greedy algorithms for the UFP given by Kolman and Scheideler [67].
With these algorithms they obtain approximation ratios of O(k3F log(kF))
for the k-DFP and O(k2F) for the k-SFP on the conditions that they have
unit edge capacities and the maximum demand is at most k times larger
than the minimum edge capacity. Here F is a network measure introduced
by Kolman and Scheideler [67]—the flow number. This number gives a hint
on the interconnectedness of a network. For the ISF Bagchi et al. obtain an
approximation ratio of O(F) for any instance with uniform edge capacities
in which the maximum demand is at most the capacity of the edges. The
ISF has earlier been studied by Guruswami et al. [48] who obtain an approx-
imation ratio of O(

√
m∆log2 m) for it, where ∆ is the maximum degree of a

vertex in the considered graph.

Lovász, Neumann-Lara, and Plummer [72] were the first who studied
problems with length bounds for the flow paths. They generalize the vertex
version of Menger’s Theorem2 to paths of bounded length with respect to
unit edge lengths. Exoo [30] and Niepel and Safaŕıková [82] generalize the
results of this article to edge disjoint paths. Itai, Perl, and Shiloach [56] prove
that it is strongly NP-hard to compute the maximum number of edge-disjoint
length-bounded paths, whereas Bley [16] proves that computing the maxi-
mum number of vertex-disjoint length-bounded paths is even APX-complete.
Some heuristics for different problems imposing length bounds can be found
in [85, 17]. The first results for length-bounded flows were obtained by
Mahjoub and McCormick [74] and Baier et al. [10, 9]. Baier et al. present
various complexity and algorithmic results, including that the integrality gap
of the problem is in Ω(

√
m) and that there is no polynomial algorithm which

computes a length-bounded path-flow from a given edge-flow that is known
to correspond to a length-bounded path-flow. Baier [9] gives an extensive sur-
vey of what is known for length-bounded flows and presents, e.g., an FPTAS
for the maximum length-bounded multicommodity flow problem.

Ford and Fulkerson [36, 37] introduce dynamic s-t-flows. It follows from
their work that the quickest s-t-flow problem can be solved in polynomial
time. They consider the problem of sending the maximum amount of flow
from a source s to a sink t within a given time horizon. In order to solve the
quickest s-t-flow problem, where a given amount of flow must be sent from
s to t as fast as possible, one can use binary search. Burkard, Dlaska, and
Klinz [18] present a strongly polynomial algorithm for the quickest s-t-flow
problem using Meggido’s method of parametric search [79]. For the single

2The vertex version of Menger’s Theorem says that the maximum number of vertex
disjoint paths from one node s in a graph to another node t in the same graph equals the
minimum number of vertices whose deletion destroys all paths from s to t.

3.2 Problem Definition and Notation 41

commodity case with multiple sources and sinks Hoppe and Tardos [54, 53]
present the first polynomial algorithm. In contrast to the situation in static
flows, the single commodity dynamic flow problem with multiple sources and
sinks does not reduce to an s-t-flow problem. As the algorithm of Hoppe
and Tardos uses a discrete time model, Fleischer and Tardos [32] show that
it also holds for the continuous time model. The first results on quickest
multicommodity flows were given by Hall, Hippler, and Skutella [49] and
Fleischer and Skutella [31]. Hall et al. prove the NP-hardness of the quickest
multicommodity flow problem. Fleischer and Skutella show that this problem
can efficiently be approximated with constant performance guarantee via
static length-bounded flow computations.

Organization of this Chapter

In Section 3.2 we define the k-SFP in general and introduce basic nota-
tion. The restricted versions of the k-SFP are defined in Sections 3.3.1,
3.4.1, and 3.5.1 respectively. In Section 3.3 we present algorithms that com-
pute approximate minimum congestion k-splittable flows obeying given path
capacities (weight/size capacities). The approximation ratio of these algo-
rithms is asymptotically the same as for the unsplittable flow problem. In
Section 3.4 we develop an algorithm computing approximations to the max-
imum length-bounded k-splittable s-t-flow problem. The algorithm yields a
bicriteria approximation. We allow the computed flow to violate the given
length bound by some constant factor. Then it routes a constant factor of
the maximum flow value that is possible obeying the length bound. In Sec-
tion 3.5 we use the results from Section 3.4 to give a 5.828-approximation
algorithm for the quickest k-splittable s-t-flow problem.

Parts of Section 3.3 have already been published in [75, 76]. Parts of
Sections 3.4 and 3.5 were published in [77].

3.2 Problem Definition and Notation

An instance of the k-splittable flow problem consists of a digraph D = (V,A)
with arc capacities u : A → R

+ and a set T ⊆ V × V of K ∈ N requests
or commodities. The ith request is denoted by (si, ti). Together with re-
quest i we are given its nonnegative demand di and the number of paths ki

(containers) it can be routed on.

If we have only one request we use the term k-splittable s-t-flow problem
and denote the single request by (s, t), its demand by d, and the bound on
the number of paths by k.

42 k-Splittable Flows

A feasible solution to the k-SFP consists of si-ti-paths P i
1, . . . , P

i
ki

with
corresponding nonnegative flow values f i

1, . . . , f
i
ki

, for each commodity i ∈
{1, . . . ,K}, such that the following requirements are met:

ki
∑

j=1

f i
j = di for all i ∈ {1, . . . ,K}, (3.1)

that is, the whole demand of request i is routed. And

K
∑

i=1

∑

j=1,...,ki:
a∈P i

j

f i
j ≤ u(a) for all a ∈ A,

that is, all arc capacities are obeyed.

We do not require that the paths P i
1, . . . , P

i
ki

are distinct, for i = 1, . . . ,K.
Furthermore, we allow a path to have flow value 0. In other words, we may
use less than ki paths for commodity i.

We use the notion k-splittable flow twofold. On the one hand, for a set of
paths R in which we have at most ki paths from si to ti for each i ∈ {1, . . . ,K}
and corresponding flow values fP for each P ∈ R. On the other hand, we use
it for a multicommodity flow (given arcwise) which can be decomposed into
flows on at most ki paths from si to ti, for each i ∈ {1, . . . ,K}. Sometimes we
call a flow feasible to underline that it satisfies all arc capacity constraints.
To avoid confusion, we use the term k-splittable s-t-flow for a k-splittable
flow that is given in a network with only one request.

In the single commodity case, we consider the problem to search for a
k-splittable s-t-flow of maximum value—called a maximum k-splittable s-t-
flow. This problem is named the maximum k-splittable s-t-flow problem. The
value of a k-splittable s-t-flow is given by

∑k
i=1 fi, where fi denotes the flow

value of the ith s-t-path Pi in this flow.
Following the notation of Baier et al. [11, 9], we define the uniform k-

splittable flow problem as a k-SFP in which all flow carrying si-ti-paths must
route the same amount of flow for each i ∈ {1, . . . ,K} . The uniform exactly-
k-splittable flow problem is the uniform k-SFP in which we additionally re-
quire that exactly ki paths are used to route commodity i ∈ {1, . . . ,K} .
Analogously, we use the notions uniform (exactly)-k-splittable s-t-flow prob-
lem and uniform (exactly)-k-splittable (s-t-)flow.

Remember that the si-ti-paths used in a solution to an instance of the
k-SFP need not to be distinct. That means for the uniform versions of the
k-SFP, that a solution may contain several copies of an si-ti-path for an
i ∈ {1, . . . ,K} or in other words that the total amount of flow being sent
along this path may be a multiple of the common flow value.

3.3 k-Splittable Flows with Path Capacities 43

3.3 k-Splittable Flows with Path Capacities

Since we have already motivated the study of k-splittable flows with path ca-
pacities in the introduction of this chapter, we immediately start with a def-
inition of the k-splittable flow problem with path capacities in Section 3.3.1.
For both variants of the problem discussed above, we prove that they have
essentially the same approximability as the unsplittable flow problem. To
be more precise, we show that any ρ-approximation algorithm for the UFP
can be turned into a 2ρ-approximation algorithm for either variant of our
problem. The underlying idea is to solve the problem in two steps. First, a
packing of flow into containers is computed. Then, each container is routed
along a path through the network. The latter step can be formulated as an
unsplittable flow problem. In Section 3.3.2 and Section 3.3.3, respectively, we
present simple packing routines for both variants of the problem. We show
that we do not lose more than a factor 2 with respect to congestion when we
restrict to the constructed packing.

3.3.1 Problem Specification

An instance of the k-splittable flow problem with path capacities consists of
the same elements as an instance of the standard k-SFP. Additionaly, we are
given a path capacity tij ≥ 0, for each i ∈ {1, . . . ,K}, j ∈ {1, . . . , ki}, by
which the flow value on the jth path of commodity i must be bounded. We
always assume that the path capacities of every commodity suffice to route
the entire demand, that is,

∑ki

j=1 tij ≥ di, for all i = 1, . . . ,K.
A feasible solution to the k-SFP with path capacities consists of si-ti-

paths P i
1, . . . , P

i
ki

with corresponding nonnegative flow values f i
j ≤ tij, for

each commodity i ∈ {1, . . . ,K} and each j ∈ {1, . . . , ki}, such that (3.1) is
satisfied, i.e., all demands are routed entirely. Additionally, we require that

K
∑

i=1

∑

j=1,...,ki:
a∈P i

j

f i
j ≤ u(a) for all a ∈ A, (3.2)

or
K
∑

i=1

∑

j=1,...,ki:
f i

j>0 ∧ a∈P i
j

tij ≤ u(a) for all a ∈ A, (3.3)

where (3.2) must hold if we consider the problem with weight capacities,
and (3.3) must hold if we consider the problem with size capacities. That

44 k-Splittable Flows

means, the corresponding inequalities ensure that no arc capacity constraint
is violated.

We consider the satisfaction of all demands and the compliance with all
path capacities as hard constraints which must not be violated. Our objective
is to violate constraint (3.2) (or (3.3) respectively) only by a preferably small
factor—the congestion—which will be defined in more detail later on.

Note that the k-SFP with path capacities is strongly NP-hard, because
it contains the unsplittable flow problem as a special case (set ki = 1 and
ti1 = di, for all i = 1, . . . ,K). Even the single commodity version of the
k-SFP with path capacities is strongly NP-hard since it is a generalization
of the strongly NP-hard single source UFP [11]. Therefore we are interested
in approximations to the problem. The congestion of a flow is the maximum
factor by which the capacity of an arc in the graph is violated. Consider
any k-splittable flow. For either variant of the k-SFP, we can simply define
the congestion of this flow as the smallest value α ≥ 1 for which multiplying
the right hand sides of (3.2) (or (3.3), respectively) makes these inequalities
true. Our objective is always to minimize the congestion of the respectively
considered problem.

3.3.2 k-Splittable Flows With Weight Capacities

In this section we consider the first variant of the k-SFP with path capacities,
i.e., the case of weight capacities. We present a simple packing strategy
which allows us to reduce the k-SFP with path capacities to the UFP while
losing at most a factor 2 with respect to minimum congestion. To obtain an
instance of the UFP, we decompose the demand di of commodity i into ki

pieces loadi
1, . . . , loadi

ki
and then replace request i by ki copies of i, whose

demands are set to the values of the demand pieces and must finally be sent
unsplittably. It is explained later on how loadi

1, . . . , loadi
ki

are chosen. To
make the procedure more vivid, one may always think of packing ki containers
for each commodity i which are then routed along certain paths through
the network. In the following we use Πk and Πu to denote the currently
considered instance of the k-SFP with path capacities and its corresponding
instance of the UFP that results from our packing.

After defining the load for each container, we consider an optimal solution
to Πk and interpret its flow values as capacities of bins. This interpretation
comes from the idea that we can assign our loads to these resulting bins
for the purpose of sending each load (container) along the same path as the
corresponding bin is taking in the optimal solution. We show that one can
find an assignment of loads to bins such that the bins are overloaded by a

3.3 k-Splittable Flows with Path Capacities 45

bins

loads

containers

Figure 3.1: An example for the loading of the containers. The beams represent the
containers, the filled part the loading defined in (3.4), and the striped part the loads of an
optimal solution.

factor of at most 2. Consequently, there exists a solution to Πk which uses
our packing of containers and has a congestion of at most twice the minimum
congestion.

For the purpose of assigning the loads to the bins with a small overload
factor, it appears to be reasonable to break the demand of any commodity
into pieces which are as small as possible. In other words, we want to load
the containers such that the maximal load is minimized. One can visualize
this by picturing that all containers of the same commodity are lined up in a
row and merged with each other and get filled up with water; see Figure 3.1.
To simplify notation, we assume without loss of generality that ti1 ≤ ti2 ≤
· · · ≤ tiki

, for all i = 1, . . . ,K. Then, we can assume that the loads loadi
j of

commodity i are indexed in nondecreasing order, too. A precise description
of the loading strategy depicted in Figure 3.1 is as follows:

loadi
j = min

{

tij,
1

ki − j + 1

(

di −
j−1
∑

j′=1

loadi
j′

)}

. (3.4)

For any i ∈ {1, . . . ,K}, we can simply start with j = 1 and then compute
the loads in increasing order. Note that two containers of same size get the
same load. Thus, it even suffices to compute the load for only one container
per size.

Now consider any optimal solution F to the underlying problem of min-
imizing the congestion for Πk. Denote its flow values by bini

1, . . . , bin
i
ki

, for
all i = 1, . . . ,K. If we arrange the bins in nondecreasing order, for all
i = 1, . . . ,K, then we can prove the following lemma.

46 k-Splittable Flows

Lemma 3.1. For all i ∈ {1, . . . ,K} the following holds: If loadi
j ≥ bini

j for
some j ∈ {1, . . . , ki}, then loadi

j′ ≥ bini
j′, for all j′ < j.

Proof. Since F is an optimal and thus feasible solution, no bin is larger than
its path capacity. Hence, a violation of the claim would contradict our loading
strategy: Consider i ∈ {1, . . . ,K} and j ∈ {1, . . . , ki} such that loadi

j ≥ bini
j.

For all containers j′ < j, we have either loadi
j′ = loadi

j ≥ bini
j ≥ bini

j′ or
loadi

j′ = tij′ ≥ bini
j′ . (See also Figure 3.1.)

Next we prove that we can pack ki items of sizes loadi
1, . . . , loadi

ki
into ki

bins of sizes bini
1, . . . , bin

i
ki

without exceeding the bin sizes by more than a
factor 2. This implies that we can simultaneously route all demands in Πu,
in spite of not allowing a congestion greater than twice the congestion of the
optimal solution F . (Remember that Πu resulted from replacing each request
in Πk by exactly ki copies and assigining the demands loadi

1, . . . , loadi
ki

to
these copies.)

Lemma 3.2. Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be nonnegative
real numbers with

∑n
i=1 ai =

∑n
i=1 bi and satisfying the following: If aI ≥ bI

for some I ∈ {1, . . . , n}, then ai ≥ bi for all i = 1, . . . , I. Then there exists
an assignment p : {1, . . . , n} → {1, . . . , n} such that

∑

j∈p−1(i) aj ≤ 2bi, for
all i = 1, . . . , n.

Proof. Assume we have a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn as
above. If ai ≤ 2bi for all i ∈ {1, . . . , n}, we are done since the identity
function p = id fulfills the requirement. Thus, we assume that there exists
an i with ai > 2bi; let I := max{i | ai > 2bi}. Notice that ai ≥ bi, for all
i ∈ {1, . . . , I}. For all i ∈ {1, . . . , n} with bi ≤ ai ≤ 2bi, we set p(i) := i
and exclude these indices from further consideration. The remaining indices
are partitioned into a set of small indices Is := {i | i ≤ I and ai > 2bi} and
a set of large indices Iℓ := {i | i > I and ai < bi}. Notice that Iℓ 6= ∅ since
otherwise

∑n
i=1 ai >

∑n
i=1 bi. Finally, define the overload as

∑

i∈Is
(ai − bi)

and the empty space as
∑

i∈Iℓ
(bi−ai); notice that the empty space is at least

as large as the overload. Moreover, since ai > 2bi, for each i ∈ Is, it follows
that

∑

i∈Is
ai is bounded from above by twice the empty space.

For i ∈ Iℓ, define p(i) := i and set ui := 2bi − ai. Consider the elements
i ∈ Is in decreasing order and assign i to the largest index in Iℓ for which
the sum of the elements currently assigned to it does not exceed ui, i.e.,
p(i) := max{i′ ∈ Iℓ |

∑

j∈p−1(i′) aj ≤ ui′}.
After this procedure,

∑

j∈p−1(i) aj ≤ 2bi, for all i ∈ Iℓ, because the value aj

which was assigned to bi last is at most ai. Since the values assigned to bi

before sum up to at most ui, we obtain the desired result. On the other hand,

3.3 k-Splittable Flows with Path Capacities 47

we must have assigned each index in Is to an index in Iℓ since
∑

j∈Is
aj is at

most twice the empty space.

Note that, for each i ∈ {1, . . . ,K}, the loads and the bins satisfy the
requirements from Lemma 3.2. Thus, we can assign all loads to the bins
without exceeding the bin capacities by a factor greater than 2. Now consider
the mentioned Πu: Take Πk. For all i ∈ {1, . . . ,K}, replace request i by ki

copies of i with demands equal to loadi
1, . . . , loadi

ki
. Using the results from

above, we obtain the following:

Theorem 3.3. For the problem of minimizing congestion and each instance
of the k-SFP with path capacities (weight capacities), there is a corresponding
instance of the UFP such that a ρ-approximation to this instance yields a 2ρ-
approximation to the underlying instance of the k-SFP with path capacities.

We conclude this section with some remarks on the running time of the
resulting 2ρ-approximation algorithms for the k-SFP with path capacities.
Notice that the size of Πu is not necessarily polynomial in the input size of Πk.
The number of copies ki of request i can be exponential, if in Πk we are only
given the different sizes of containers and the number of containers for each
size. As already mentioned above, it will not be a problem to compute the
loads in polynomial time. However, in order to achieve polynomial running
time when solving the problem of minimizing congestion on Πu, we must use
a polynomial time algorithm for the UFP which is able to handle a compact
input format where, for each request, the number of copies of the request
is given. In fact, most approximation algorithms for the UFP fulfill this
requirement or can easily be modified to fulfill it. As an example, we mention
the randomized rounding procedure: In a fractional solution, all copies of a
request can be treated as one commodity for which a path decomposition
using at most m paths exists. Randomized rounding then assigns to each of
these paths a certain number of copies of the corresponding request. This
procedure can easily be implemented to run in polynomial time.

3.3.3 k-Splittable Flows With Size Capacities

In this section we consider the second variant of the k-SFP with path capac-
ities, i.e., the case of size capacities. If all path capacities are equal to some
uniform value Ti, for all commodities i, it is easy to observe that there al-
ways exists an optimal solution using the minimum number of paths ⌈di/Ti⌉
for commodity i. Therefore, this problem can be formulated as a uniform
exactly-k-SFP (see [11] for details). In particular, all results for the latter

48 k-Splittable Flows

problem obtained in [11] also hold for the k-SFP with uniform path capaci-
ties. The most important result of [11] in this context is that any instance of
the considered problem can be solved by solving a special instance of the UFP
on the same graph, and thus any ρ-approximation algorithm for the prob-
lem of minimizing the congestion for the UFP provides a ρ-approximation
algorithm for the problem of minimizing the congestion for our problem here.

We turn to the general problem with non-uniform path capacities. As in
the last section, we assume that ti1 ≤ · · · ≤ tiki

, for all i = 1, . . . ,K. Our
general approach is identical to the one presented in the last section. Again,
we first give a simple strategy for the packing of containers. This reduces the
problem to a UFP. We prove that at most a factor 2 in the performance is
lost due to this packing by comparing it to the packing of an optimal solution
(bins). Tying in with the previous section, we use Πk to denote the currently
considered instance of the k-SFP with path capacities and Πu to denote its
corresponding instance of the UFP which results from the packing introduced
below.

In contrast to the last section, it seems to be reasonable to load each con-
tainer that is used up to its size. Remember that only the size of a container
(and not its actual load) matters for the routing. Among all containers, we
try to use the smallest ones in order to be able to obtain reasonable assign-
ments to bins later. The load loadi

j of the jth container of commodity i is
determined as follows: Consider the containers of each commodity in order of
decreasing size. If the whole (remaining) demand of the commodity fits into
the remaining containers with smaller indices, then discard the container.
Otherwise, the container is filled up to its size (unless the remaining demand
is smaller than the size) and the remaining demand is decreased by this value.
This loading strategy can be easily described by the following pseudo-code.
For all i ∈ {1, . . . ,K}, start with j = ki and then calculate the flow values
in decreasing order as follows:

α = di −
ki
∑

l=j+1

loadi
l −

j−1
∑

l=1

til

If (α > 0) then

loadi
j = min

{

tji , di −
ki
∑

l=j+1

loadi
l

}

else
loadi

j = 0

The strategy above finds the loads in polynomial time if the path capacity
of every path is explicitly given in the input. If the encoding of the input

3.3 k-Splittable Flows with Path Capacities 49

is more compact and, for each commodity i, only specifies the different path
capacities together with the number of paths for each capacity, the algorithm
can be easily adapted to run still in polynomial time. (One simply has to
consider all containers of the same size together and compute the required
number of containers of this size as well as the total load that is assigned to
them.)

In the following we consider a fixed optimal solution to Πk. For all i ∈
{1, . . . ,K}, let Oi ⊆ {1, . . . , ki} such that j ∈ Oi if and only if the jth
container of commodity i is used by the optimal solution. Similarly, let
Bi ⊆ {1, . . . , ki} such that j ∈ Bi if and only if our loading uses the jth
container of commodity i, i.e., loadi

j > 0. The following lemma says that the
containers used by our loading can be packed into the containers (bins) used
by the optimal solution such that the size of any container of the optimal
solution is exceeded by at most a factor 2.

Lemma 3.4. For all i = 1, . . . ,K with Bi 6= ∅, i.e., with di > 0, there exists
an assignment p : Bi → Oi such that

∑

j′∈p−1(j)

tij′ ≤ 2tij for all j ∈ Oi. (3.5)

Proof. In the following we keep i fixed; to simplify the notation, we omit all
indices and superscripts i. By construction of our packing strategy,

∑

j∈B:j>j0

tj <
∑

j∈O:j≥j0

tj for all j0 ∈ B. (3.6)

In particular, it follows from (3.6) that the maximum index in O is at least
as large as the maximum index in B and therefore the largest container (bin)
in the optimal solution is at least as large as the largest container in our
packing. While B 6= ∅, we construct the assignment p iteratively as follows:

jmax := max{j | j ∈ O} and j̄ := min{j ∈ B |
∑

j′∈B:j′>j

tj′ ≤ tjmax
} .

Set p(j) := jmax for all j ∈ B with j ≥ j̄; set O := O \ {jmax} and B :=
B \ {j | j ≥ j̄}. Notice that property (3.5) holds for jmax since, by (3.6), the
container size tjmax

is an upper bound on tj , for all j ∈ B. Moreover, (3.6)
is still fulfilled for the reduced sets B and O and we can proceed inductively.
This concludes the proof.

For all i = 1, . . . ,K and j = 1, . . . , ki, set d̃i
j := tij if j ∈ Bi, and d̃i

j :=
0, otherwise. We define Πu by replacing each request i by ki copies with

50 k-Splittable Flows

demands d̃i
1, . . . , d̃

i
ki

. According to Lemma 3.4, there exists a solution to Πu

whose congestion is at most twice the congestion of an optimal solution to
Πk.

Theorem 3.5. For the problem of minimizing congestion and each instance
of the k-SFP with path capacities (size capacities), there is a corresponding
instance of the UFP such that a ρ-approximation to this instance yields a 2ρ-
approximation to the underlying instance of the k-SFP with path capacities.

With respect to the running time of the resulting 2ρ-approximation al-
gorithms for the k-SFP with path capacities, the same remarks hold as we
made in the previous section after Theorem 3.3.

We conclude this section with the discussion of a special case of the k-
SFP with path capacities where, for each request i, each of its path capacities
is a multiple of all of its smaller path capacities. This property holds, for
example, if all path capacities are powers of 2. In this case, we can use the
same loading strategy as above in order to obtain a ρ-approximation to the
underlying problem from any ρ-approximation algorithm for the UFP. This
holds, because—with the same terms as used above—for all i = 1, . . . ,K,
there exists an assignment p : Bi → Oi such that

∑

j′∈p−1(j) tij′ ≤ tij, for
all j ∈ Oi. The argument is similar to that in the proof of Lemma 3.4: We
can use the same strategy. If we choose j̄ := min{j ∈ B | ∑j′∈B:j′≥j tj′ ≤
tjmax

} we obtain (except for the last step) that
∑

j′∈B:j′≥j̄ tj′ = tjmax
. Thus,

we get rid of the factor 2 in (3.5). (In the last step it might happen that
∑

j′∈B:j′≥j̄ tj′ < tjmax
, but since all containers are assigned after this step, we

do not need to take care of this.)

3.4 Length-Bounded k-Splittable Flows

In this section we only consider the single commodity case of k-splittable
flows. Again we start with a detailed definition of the considered problem
in Section 3.4.1. Afterwards we constructively prove in Section 3.4.2 that
there exists a polynomial time algorithm that computes a (1/ǫ)L-length-
bounded k-splittable s-t-flow whose flow value is at least (1− ǫ)/2 times the
flow value of a maximum L-length-bounded k-splittable s-t-flow. Here, ǫ is
an arbitrary positive real number smaller than 1.

Theorem 3.6. For any ǫ > 0, there is a polynomial time algorithm that
computes a (1/ǫ)L-length-bounded k-splittable s-t-flow whose flow value is
at least (1−ǫ)/2 times the value of a maximum L-length-bounded k-splittable
s-t-flow.

3.4 Length-Bounded k-Splittable Flows 51

As the proof of Theorem 3.6 is constructive, we immediately obtain an
approximation algorithm for the considered problem.

3.4.1 Problem Specification

An instance of the length-bounded k-splittable s-t-flow problem basicly con-
sists of all elements from the standard k-splittable s-t-flow problem. In addi-
tion, we are given arc lengths ℓ : A → R

+
0 and a nonnegative length bound L.

A feasible solution to the length-bounded k-splittable s-t-flow problem
is a k-splittable s-t-flow, specified by a set of s-t-paths P = {P1, . . . , Pk}
and corresponding flow values f1, . . . , fk, that is L-length-bounded. Here,
L-length-bounded means that

∑

a∈Pi
ℓ(a) ≤ L for i = 1, . . . , k, i.e., no path

in P is longer than L.
Without loss of generality, we consider only instances of the length-

bounded k-splittable s-t-flow problem for which k ≤ m, because by [9] for
every L-length-bounded s-t-flow on more than m paths there is an L-length-
bounded s-t-flow of the same value that uses at most m paths and does not
exceed the original flow on each arc. (This result follows immediately from
theory of linear programming.)

3.4.2 A Constant Factor Approximation

We derive a simple combinatorial algorithm that computes a length-bounded
k-splittable s-t-flow satisfying the properties stated in Theorem 3.6. In this
context it is useful to interprete lengths of arcs also as cost coefficients. Doing
so, we can apply algorithms for min-cost flow problems in order to approx-
imate maximum length-bounded flows. This insight is used in this section.
We first show that a maximum uniform exactly-k-splittable s-t-flow obeying
the given length bound L only on average can be found in polynomial time.

Lemma 3.7. For given k,L ∈ N, a maximum uniform exactly-k-splittable
s-t-flow with average path length at most L can be computed in polynomial
time.

The proof of Lemma 3.7 is similar to the proof of [11, Theorem 6]. It
is based on the insight that a uniform exactly-k-splittable s-t-flow with flow
value kf is an f -integral s-t-flow (a flow is called f-integral for some f ∈ R

+

if the flow value on each arc is an integral multiple of f). Moreover, any
f -integral s-t-flow of value kf induces a uniform exactly-k-splittable s-t-flow
of the same value by constructing an f -integral decomposition into paths and
cycles and ignoring the cycles.

52 k-Splittable Flows

Proof of Lemma 3.7. Consider a maximum uniform exactly-k-splittable s-t-
flow with average path length at most L and positive flow value, if such a
flow exists. There is at least one arc a ∈ A with a tight capacity constraint
since otherwise a better solution can be obtained by increasing the common
flow value f on all k paths. Hence, f is equal to the capacity u(a) of arc a
divided by the number of paths using this arc. Thus, f = u(a)/i for some
arc a ∈ A and some i ∈ {1, . . . , k}.

Based on this insight, we formulate an algorithm: For all a ∈ A and i =
1, . . . , k, compute a u(a)/i-integral min-cost s-t-flow of value Fa,i := ku(a)/i
or find out that no such flow exists. Among all computed flows of total costs
at most Fa,iL output one with largest flow value. If no such flow exists,
output the zero flow.

We show that this procedure indeed outputs a maximum uniform exactly-
k-splittable s-t-flow with average path length at most L: Assume that there
exists a uniform exactly-k-splittable s-t-flow with average path length at most
L and positive flow value. From the considerations above, we know that then
there is a u(a)/i-integral flow of value Fa,i and costs no more than Fa,iL, for
some a ∈ A and i ∈ {1, . . . , k}, namely at least for the a and the i with
u(a)/i = f . Therefore, our algorithm returns a flow of at least this value.
This flow is uniform exactly-k-splittable and has average path length at most
L, because for some a ∈ A and i ∈ {1, . . . , k}, it is of value Fa,i = ku(a)/i
and u(a)/i-integral, while its costs are no more than Fa,iL.

Consider the case that no uniform exactly-k-splittable s-t-flow with av-
erage path length at most L and positive flow value exists. Then we want
the algorithm to output the zero flow. But since all flows among which the
one of largest value is chosen have an average path length of at most L, are
uniform exactly-k-splittable and have positive flow value, the algorithm will
output the zero flow, if no such flow exists.

The running time of the algorithm is dominated by k|A| min-cost s-t-flow
computations and therefore of polynomial time.

Now we know how to compute a maximum uniform exactly-k-splittable
s-t-flow with average path length at most L. For some f ∈ R

+
0 , this flow

is f -integral, of value kf , and of costs at most kfL. We show that, for
any ǫ > 0, the flow can be turned into a (1/ǫ)L-length-bounded k-splittable
s-t-flow while decreasing the flow value only by at most a factor 1 − ǫ.

Lemma 3.8. Given an f -integral s-t-flow of value kf and costs at most kfL,
a (1/ǫ)L-length-bounded k-splittable s-t-flow of value at least (1 − ǫ)kf can
be found in polynomial time.

3.4 Length-Bounded k-Splittable Flows 53

Proof. For now we assume that ǫ = q/k, for some q ∈ N. This makes ǫk
integral.

In this case the algorithm works as follows. First, the given f -integral
flow is made acyclic by repeatedly canceling flow on cycles. Notice that this
step does not increase the costs since all cost coefficients (arc lengths) are
nonnegative. Next, we cancel f units of flow along the currently longest
flow-carrying s-t-path and repeat this step ǫk times.

The resulting s-t-flow is still f -integral and can be decomposed into flows
on at most k paths. Moreover, it has flow value kf − ǫkf = (1 − ǫ)kf . The
length of any flow-carrying s-t-path is at most (1/ǫ)L. Otherwise, all paths
on which flow was canceled would have had length strictly larger than (1/ǫ)L.
Since ǫkf flow units were deleted from these paths, the costs of the initial
flow would have been strictly larger than kfL—a contradiction.

If ǫk is not integral, we can proceed almost the same way. The only
difference is that we repeat the canceling of flow only ⌊ǫk⌋ times. Then we
again obtain a (1/ǫ)L-length-bounded flow F , as can be proven using the
following argument. Assume that in a further step, we would cancel another
ǫkf − ⌊ǫk⌋f < f units of flow along the longest remaining flow-carrying s-t-
path P . Then we obtain a flow value of kf−⌊ǫk⌋f−(ǫkf−⌊ǫk⌋f) = kf−ǫkf .
With the same argument as above it follows that the length of any flow-
carrying s-t-path would be at most (1/ǫ)L. In particular, the length of P is
at most (1/ǫ)L. Thus, we could as well send f units of flow along P (i.e., not
cancel the ǫkf − ⌊ǫk⌋f units) and would not violate the length bound. The
resulting flow equals F . It is (1/ǫ)L-length-bounded and routes even more
than (1 − ǫ)kf units of flow.

Note that the computed s-t-flow is not only (1/ǫ)L-length-bounded but
has the stronger property that the length of any flow-carrying path is at
most (1/ǫ)L. This means that any path decomposition of this flow has the
nice property of being (1/ǫ)L-length-bounded. It is easy to come up with
examples showing that this does not hold for arbitrary length-bounded s-t-
flows.

Now we have almost come up with a proof of Theorem 3.6. To obtain
the desired flow, first a maximum uniform exactly-k-splittable s-t-flow with
average path length at most L is computed (see Lemma 3.7). The sec-
ond step turns this flow into a (1/ǫ)L-length-bounded k-splittable s-t-flow
(Lemma 3.8). It remains to prove the performance guarantee (1 − ǫ)/2 for
the value of the computed flow. This follows from Lemma 3.8 and the fol-
lowing result.

Lemma 3.9. The value of a maximum L-length-bounded k-splittable s-t-
flow is at most twice as large as the value of a maximum L-length-bounded

54 k-Splittable Flows

uniform exactly-k-splittable s-t-flow.

The proof of this result is identical to the proof of [11, Theorem 12] and
therefore omitted.

Since the problem solved in Lemma 3.7 is a relaxation of the maximum
L-length-bounded uniform exactly-k-splittable s-t-flow problem, the value
of the flow computed in the first step of our algorithm is at least half as
large as the optimum. The second step decreases the flow value by another
factor (1 − ǫ). Thus, our main result stated in Theorem 3.6 follows.

A Note on the Complexity of Length-Bounded k-Splittable Flows

To emphasize that the maximum length-bounded k-splittable s-t-flow prob-
lem is indeed harder than the standard maximum length-bounded s-t-flow
problem, we want to point out that it is possible to find a maximum length-
bounded s-t-flow in polynomial time if all arc lengths are equal to 1 (see,
e.g., [9]). It is also shown in [9] that it is NP-complete to decide whether
a digraph has a given number of length-bounded arc-disjoint s-t-paths with
respect to unit arc lengths. This implies the following result.

Proposition 3.10. Even in networks with unit arc lengths it is NP-complete
to decide whether there exists a length-bounded k-splittable s-t-flow of given
value.

Proof. It is easy to see that the problem is in NP.
To show that the problem is NP-complete, we use a reduction of the

NP-complete length-bounded arc-disjoint s-t-paths problem in networks with
unit arc lengths. To decide whether a digraph has a given number M of
length-bounded arc-disjoint s-t-paths with respect to unit arc lengths one
can check if there exists a length-bounded M -splittable s-t-flow of value M
in the network based upon this digraph with unit capacities. Since these two
questions always have the same answer, it is already in networks with unit
arc lengths NP-complete to decide whether a length-bounded k-splittable
s-t-flow of given value exists.

The foregoing proof immediately shows that, in general, the maximum
length-bounded k-splittable s-t-flow problem is NP-hard.

We conclude this section by presenting a challenging open problem. Given
a network with capacities and lengths on the arcs, a single source node s,
and k sink nodes t1, . . . , tk with demand values d1, . . . , dk, it is NP-hard to
find an unsplittable flow that sends di units of flow from s to ti along a single
path of length at most L, for i = 1, . . . , k. It is an open problem to find a

3.5 Dynamic k-Splittable Flows 55

bicriteria approximation algorithm which sends a constant fraction of each
demand di along a single s-ti-path of length O(L).

3.5 Dynamic k-Splittable Flows

In this section we again consider only the single commodity case of k-splittable
flows. Using the results from the previous section and ideas of Fleischer and
Skutella [31], we construct an approximation algorithm for the quickest k-
splittable s-t-flow problem.

3.5.1 Problem Specification

We are given a network consisting of a digraph D = (V,A), specified vertices
s, t ∈ V , a capacity function u : A → R

+, transit times τ : A → R
+
0 , and a

prescribed demand value d. For any path P in D and a = (v,w) ∈ P , we
define P a as the set of arcs that are traversed in P to reach v. Further, we
define τ(A′) :=

∑

a∈A′ τ(a), for all A′ ⊆ A.

A dynamic s-t-flow f in the considered network is called k-splittable if
there are k (not necessarily different) s-t-paths P1, . . . , Pk with corresponding
flow values fi(θ) ≥ 0, for all i ∈ {1, . . . , k}, θ ∈ R

+
0 , such that3

f(a, θ) =
∑

i=1,...,k:
a∈Pi

fi(θ − τ(P a
i)) for all a ∈ A, θ ∈ R

+
0 .

In other words, fi(θ) defines the amount of flow that enters path Pi from s at
time θ. Note that a dynamic k-splittable s-t-flow is also completely specified
by a set of k paths with corresponding flow values for each point in time.

The quickest k-splittable s-t-flow problem asks for a dynamic k-splittable
s-t-flow with minimum time horizon T and value d.

For a dynamic k-splittable s-t-flow f with time horizon T , it holds that
fi(θ) = 0 for all θ ≥ T − τ(Pi), i ∈ {1, . . . , k}. The flow value of f is given
by

|f | =
k
∑

i=1

∫ T−τ(Pi)

0

fi(θ)dθ .

We sometimes use the notion static flow in order to emphasize that some
flow is not dynamic.

3To simplify notation, we set fi(θ) := 0, for all i ∈ {1, . . . , k}, θ < 0.

56 k-Splittable Flows

3.5.2 A Constant Factor Approximation

Fleischer and Skutella [31] prove that a dynamic s-t-flow of value d with time
horizon T yields a static T -length-bounded s-t-flow of value d/T . (Here and
throughout the rest of this section, transit times of arcs are also interpreted
as lengths). This static flow can be obtained by essentially averaging the
dynamic flow over time. For a dynamic k-splittable s-t-flow f with time
horizon T using paths P1, . . . , Pk with flow values f1(θ), . . . , fk(θ), for θ ∈ R

+
0 ,

this means that we obtain a suitable T -length-bounded k-splittable s-t-flow
by sending

fi :=
1

T

∫ T

0

fi(θ)dθ

units of flow along path Pi, for i = 1, . . . , k. This flow has value

k
∑

i=1

fi =
1

T

k
∑

i=1

∫ T

0

fi(θ)dθ =
1

T
|f | .

All arc capacities are obeyed, because it holds, for all a ∈ A, that

∑

i=1,...,k:
a∈Pi

fi =
1

T

∑

i=1,...,k:
a∈Pi

∫ T

0

fi(θ)dθ =
1

T

∫ T

0

∑

i=1,...,k:
a∈Pi

fi(θ − τ(P a
i))dθ

=
1

T

∫ T

0

f(a, θ)dθ ≤ 1

T

∫ T

0

u(a)dθ = u(a) .

Each path Pi (i ∈ {1, . . . , k}) with a positive flow value has length at most
T , because f has time horizon T . Thus, we obtain the following result.

Lemma 3.11. A dynamic k-splittable s-t-flow of value d with time horizon
T can be turned into a T -length-bounded k-splittable s-t-flow of value d/T
in polynomial time.

On the other hand, Fleischer and Skutella [31] show that a static T -length-
bounded s-t-flow of value F can be transformed into a dynamic s-t-flow of
value d with time horizon T + d/F . The underlying transformation sends
flow according to the given static flow pattern into the network for d/F time
units. Then one has to wait for another T time units until the last unit of flow
(traveling on a path of length, i.e., transit time, at most T) arrives at the sink.
In more detail, this means for a given T -length-bounded k-splittable s-t-flow
of value F with paths P1, . . . , Pk and corresponding flow values f1, . . . , fk

that we obtain a suitable dynamic k-splittable s-t-flow by sending fi(θ) = fi

3.5 Dynamic k-Splittable Flows 57

units of flow along path Pi, for all i ∈ {1, . . . , k}, θ ∈ [0, d/F). The resulting
flow has value

k
∑

i=1

∫ d
F

0

fi(θ)dθ =

∫ d
F

0

Fdθ = d .

All arc capacities are obeyed, because

∑

i=1,...,k:
a∈Pi

fi(θ − τ(P a
i)) ≤

∑

i=1,...,k:
a∈Pi

fi ≤ u(a) for all a ∈ A.

Lemma 3.12. A T -length-bounded k-splittable s-t-flow of value F can be
turned into a dynamic k-splittable s-t-flow of value d with time horizon T +
d/F in polynomial time.

From now on we use T ∗ to denote the time horizon of an optimal solution
to the underlying quickest k-splittable s-t-flow problem with demand d. By
Lemma 3.11 there exists a static T ∗-length-bounded k-splittable s-t-flow of
value d/T ∗. If T ∗ was known, one could compute a (1/ǫ)T ∗-length-bounded
k-splittable s-t-flow of value at least (1 − ǫ)d/(2T ∗), for any ǫ > 0, (see
Theorem 3.6) and transform this flow into a dynamic flow using Lemma 3.12.
Not knowing T ∗, we can use the following result.

Lemma 3.13. We can find T ≤ T ∗ and a (1/ǫ)T -length-bounded k-splittable
s-t-flow of value at least (1 − ǫ)d/(2T) in polynomial time.

Proof. By the definition of T ∗ and Lemma 3.11 there exists a T ∗-length-
bounded k-splittable s-t-flow of value d/T ∗. Using Lemma 3.9, it follows
that there also is a T ∗-length-bounded uniform exactly-k-splittable s-t-flow of
value at least d/(2T ∗). This flow can also be interpreted as a uniform exactly-
k-splittable s-t-flow of value at least d/(2T ∗) with average path length T ∗ (or
instead with costs at most d/2 respectively).

Our algorithm works as follows: Compute a maximum uniform exactly-
k-splittable s-t-flow of costs at most d/2. (A polynomial algorithm for this
problem is stated in [11].) Let its flow value be f ≥ d/(2T ∗) and let T :=
d/(2f) ≤ T ∗. According to Lemma 3.8 turn the flow into a (1/ǫ)T -length-
bounded k-splittable s-t-flow of value at least (1 − ǫ)d/(2T). (This can be
done, because the computed uniform exactly-k-splittable s-t-flow has value
f = d/(2T) and cost at most d/2 = fT .)

All computations in the algorithm can be done in polynomial time.

Now we can use Lemma 3.12 in order to obtain a dynamic k-splittable
s-t-flow of value d with time horizon T/ǫ + 2T/(1 − ǫ) = (1 + ǫ)T/(ǫ − ǫ2).

58 k-Splittable Flows

Thus, we have a (1+ ǫ)/(ǫ− ǫ2)-approximation algorithm for the quickest
k-splittable flow problem. Since the term (1+ǫ)/(ǫ−ǫ2) attains its minimum
for ǫ =

√
2 − 1, this yields the following result.

Theorem 3.14. There is a
√

2/(3
√

2− 4)-approximation4 algorithm for the
quickest k-splittable s-t-flow problem.

Proof. Use the (1 + ǫ)/(ǫ − ǫ2)-approximation algorithm derived above with
ǫ =

√
2 − 1.

4
√

2/(3
√

2 − 4) ≈ 5.828

Chapter 4

One-Flows

4.1 Introduction

The classical maximum s-t-flow problem has been studied from many differ-
ent points of view. Numerous algorithms are known to solve the problem in
polynomial time (see, e.g., [2, 93]). Ford and Fulkerson [35] proved already
in the 1950s that there always exists an integral optimal solution to the max-
imum s-t-flow problem provided that all arc capacities are integral. This
follows for example from the fact that the constraint matrix of the natural
LP formulation in arc variables is totally unimodular. It is also well known
that any s-t-flow can be decomposed into flow along paths and cycles. Omit-
ting flow along cycles (which does not contribute to the flow value) yields an
alternative LP formulation of the problem in path variables.

In this chapter we study a new network flow problem in which the flow
on any path is bounded by 1. In other words, we add box constraints to
the LP formulation of the maximum flow problem in path variables. We
call the resulting problem the maximum one-flow problem. Our motivation
for studying this problem is mainly academic but, from a more practical
point of view, the problem can be motivated when we think of problems in
transportation or communication networks where every single path might
be unreliable. In such situations it is reasonable to diversify a commodity
or information among several different paths. This can be accomplished by
forbidding to send more than a fixed amount of flow along a single path.

Related Results from the Literature

To the best of our knowledge, the one-flow problem (1FP) has not been
studied before. But there is some literature dealing with problems related
to it. The problem to compute the number of different (simple) s-t-paths in
a network is a special case of the max-1FP. (Consider the case when all arc
capacities are infinite.) Valiant [97] shows that this problem is #P-complete
under polynomial-time reductions. It is common to compute the number
of paths in grids. Such work was, e.g., done by Lucas [73], who shows the

59

60 One-Flows

relationship between Pascal’s triangle and the “space” grid, or Gessel [41]
counting paths in the so called Young’s lattice. More general results were,
e.g., obtained by Bartholdi [12] and Stanley [96].

Similar to the problem of counting paths in a graph is the edge-disjoint
paths problem (EDP) which is the same as the undirected integral multicom-
modity 1FP with unit demands when we fix all capacities in the considered
network to 1. Kleinberg [61] gives an extensive overview of the EDP. Further
interesting results were, e.g., obtained by Guruswami et al. [48]. They prove
that the maximum EDP is hard to approximate within a factor O(m1/2−ǫ),
for any ǫ > 0, and give an O(

√
m)-approximation algorithm. More recent re-

sults for the EDP were, e.g., found by Andrews and Zhang [3] or Chekuri and
Khanna [20]. Considering the EDP as a special packing problem, there are
more results by Baveja and Srinivasan [13] and Kolliopoulos and Stein [66].
Most of the results mentioned here can be generalized to the directed case.
Very recently, Kolliopoulos [64] came up with an extensive survey on edge-
disjoint paths.

Also for more general packing problems many results have been obtained
during the last years. Among the most interesting results for the problem
considered here are the ones obtained by Plotkin, Shmoys, and Tardos [86]
who introduce new approximation algorithms for the problem. Together with
Grigoriadis and Khachiyan [43, 44, 45, 46], they adapt techniques for solving
multicommodity flow problems (see, e.g., [94, 59, 70, 40, 33]) to a general
class of packing and covering problems. Other results on mixed packing and
covering problems were, e.g., obtained by Young [99].

In Chapter 3 we have already considered a type of network flow problems
with path capacities. Remember that we studied the k-splittable flow prob-
lem with path capacities that restricts the flow of any commodity to at most
k paths whose flow values may not exceed given bounds.

Chen [22, 23], Chen and Hung [21], and Rosen, Sun, and Xue [91] consider
the problem to find k shortest paths from s to t in a network with arc
capacities. But their results are rather far away from the problem considered
here, because the only role of the arc capacities in their research is that the
transmission time of flow through an arc is the arc’s length plus the number
of paths using this arc divided by its capacity. Nevertheless, the standard
k shortest paths problem (for a single source and a single sink) is of great
interest for the problem considered here. To solve the Lagrange relaxation
of the max-1FP that is obtained by penalizing the violation of arc capacities
in the objective function, we make use of a result by Lawler [69] who shows
how to compute k shortest (simple) paths in O(kn3) time. This improves the
runtime of an algorithm by Yen [98] by a factor n. Eppstein [29] considers
the problem to compute k shortest s-t-paths allowing cycles and presents an

4.1 Introduction 61

algorithm running in O(m + n log n + k) time. Fox [38] presents a method
for the problem allowing cycles that is based on Dijkstra’s algorithm [25] and
runs in O(m + kn log n) time. Using improvements in Dijkstra’s algorithm
the runtime in [69] can be decreased to O(kn(m + n log n)). Dreyfus [27]
and Eppstein [29] also consider the problem to compute k shortest paths
(allowing cycles) from a given source to each other vertex. The running
times they obtain are O(kn2) and O(m + n log n + kn) respectively. Very
recently, Roditty [90] presented an approximation algorithm that computes
k simple paths from a source s to a sink t such that the length of the ith
path is at most 3/2 times the length of the ith shortest simple s-t-path. This
algorithm runs in O(k

√
n(m + n log n)) time.

Organization of this Chapter

We start with a detailed definition of the considered problem in Section 4.2.

In Section 4.3 we establish a close relation between two interesting new
combinatorial optimization problems and the special case of the max-1FP on
networks consisting of a chain of parallel arcs. The first problem is to cover
the edges of a complete graph by cuts of bounded size where the size of a
cut is the cardinality of the smaller of the two vertex subsets. The second
problem is a packing problem: Consider a set where each element has a given
integral weight and find a prespecified number of different subsets such that
the number of subsets containing an element is bounded by the element’s
weight. The two problems are equivalent and, maybe surprisingly, strongly
NP-hard. This also yields the strong NP-hardness of the integral max-1FP
on chains of parallel arcs. Moreover, we show that already on a chain of
parallel arcs of length 3 the max-1FP has an integrality gap.

In Section 4.4 we present complexity results for different versions of the
1FP. As mentioned above, the problem of computing the number of different
simple s-t-paths in a network is #P-complete and a special case of the max-
1FP. It therefore follows immediately that computing the maximum one-flow
value is NP-hard, for the fractional as well as the integral one-flow prob-
lem. But even worse, the integral max-1FP is APX-hard even in networks
where the number of s-t-paths is polynomially bounded in the size of the
network. These complexity results are somehow surprising for a problem
that is obtained by “only” adding box constraints to the classical maximum
flow problem. We also present an instance where each arc carries an integral
amount of flow in a maximum one-flow but no maximum one-flow is integral.

In Section 4.5 we show that the approach of Plotkin et al. [86] to approxi-
mate general packing problems yields an FPTAS for the fractional max-1FP.

62 One-Flows

The core of the algorithm consists of iteratively solving k shortest paths prob-
lems on the given network with varying arc length. In Section 4.6 we derive
several approximation algorithms for the integral max-1FP. Our main result
is a randomized approximation algorithm with performance ratio O(log m).

Finally, in Section 4.7 we study multicommodity versions of the one-flow
problem. We show that the FPTAS from Section 4.5 can be generalized
to the fractional multicommodity one-flow problem. For the integral max-
imum multicommodity one-flow problem we present a randomized O(

√
m)-

approximation algorithm and show that, unless P=NP, no better approxima-
tion is possible. Moreover, we present an O(log m/ log log m)-approximation
algorithm for the problem to find an integral multicommodity one-flow with
minimum congestion.

4.2 Problem Definition and Notation

An instance of the maximum one-flow problem provides a digraph D = (V,A)
with arc capacities u : A → R

+ and two specified nodes s, t ∈ V . If not
stated otherwise, m := |A| denotes the number of arcs in the network. Let P
be the set of simple s-t-paths in D. Then the maximum one-flow problem
(max-1FP) can be formulated as follows, where the path variable xP denotes
the amount of flow sent along path P ∈ P :

max
∑

P∈P

xP

s.t.
∑

P∈P :
a∈P

xP ≤ u(a) ∀ a ∈ A (4.1)

0 ≤ xP ≤ 1 ∀ P ∈ P . (4.2)

Notice that omitting the constraints xP ≤ 1 yields the classical maximum
s-t-flow problem. An s-t-flow which fulfills (4.1) and (4.2) is called a one-
flow. In an integral one-flow each s-t-path sends either 0 or 1 unit of flow.
To emphasize that a certain one-flow is not necessarily integral, we call it
fractional one-flow in some cases. If the meaning is clear from the context,
we sometimes use the notion one-flow also for a flow which only obeys 4.2.
In order to make clear then that a one-flow obeys arc capacities we call it
feasible.

Note that in general the encoding size of a maximum one-flow is not
polynomial in the input size of the problem since one might have to send flow
along exponentially many s-t-paths. Therefore, the best one can expect in
terms of complexity are algorithms with running time polynomially bounded
in the input plus output size.

4.3 A Special Case of the Max-1FP and Related Problems 63

We also consider the dual of the max-1FP which is given as follows:

min
∑

a∈A

u(a)λa +
∑

P∈P

yP

s.t. yP +
∑

a∈P

λa ≥ 1 ∀ P ∈ P

yP , λa ≥ 0 ∀ a ∈ A, P ∈ P .

The integer version of the dual can be interpreted as a special minimum cut
problem, where each s-t-path must be destroyed and this can be done by
deleting either a single arc on the path or the path itself. The deletion of an
arc a is in general more expensive than that of a whole path (u(a) instead
of 1), but can also destroy more than one path at the same time.

The dual separation problem of the classical maximum s-t-flow problem is
a shortest path problem. It is not difficult to observe that the dual separation
problem of the max-1FP can be solved by computing the k shortest s-t-paths
with respect to the dual arc lengths λa, where k is the number of paths P ∈ P
with yP > 0 plus 1. The k shortest paths problem also plays an important
role in solving the Lagrange relaxation of the max-1FP that is obtained by
penalizing the violation of capacity constraints (4.1) in the objective function.
We discuss this issue in more detail later on.

In the remainder of this section we assume that the minimal arc capacity
umin := mina∈A u(a) is at least 1.

4.3 A Special Case of the Max-1FP and Related Problems

We start with the study of the max-1FP on a restricted class of networks that
are given by chains of parallel arcs. In order to obtain a better understanding
of the max-1FP on this particular class of networks we consider two equivalent
combinatorial optimization problems, one of which is a covering and the other
a packing problem. Although these two problems are easy to formulate and
seem quite natural, they have not appeared in the literature before to the
best of our knowledge.

We consider networks which consist of n+1 vertices v0, v1, . . . , vn and 2n
arcs (n ∈ N) such that there are two parallel arcs from vi−1 to vi, for i =
1, . . . , n. Vertex v0 is the source and vn is the sink. We call one arc of each
pair of parallel arcs the upper and the other one the lower arc. All lower
arcs have infinite capacity. The capacity of the ith upper arc is ci ∈ N,
for i = 1, . . . , n. We call such a capacitated network a chain of parallel arcs ;
see Figure 4.1 for an example.

64 One-Flows

2 2 2

s t

∞∞∞
Figure 4.1: A chain of parallel arcs. All upper arcs have capacity 2 while the lower arcs
have infinite capacity.

Figure 4.2: A solution to the bounded cut cover problem for q = 5, k = 3 and c1 = c2 =
c3 = 2.

An integral one-flow is given by a set of s-t-paths that are pairwise differ-
ent. Notice that two s-t-paths in the considered network are different if and
only if there is a pair of arcs where one path uses the upper arc and the other
path uses the lower arc. In particular, the ith pair of arcs can distinguish a
subset of at most ci paths from all other paths. This motivates the following
problem.

Bounded Cut Cover Problem

GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ N.

TASK: Find k subsets M1, . . . ,Mk ⊆ {1, . . . , q} with |Mi| ≤ ci,
for i = 1, . . . , k, such that for any pair j, ℓ ∈ {1, . . . , q} with j 6= ℓ
there is some i ∈ {1, . . . , k} with |Mi ∩ {j, ℓ}| = 1; or decide that
no such family of subsets exists.

The name that we choose for this problem stems from the following graph-
theoretic interpretation: Consider a complete undirected graph with vertex
set {1, . . . , q}. The question is whether the edges of the complete graph
can be covered by k cuts where, for i = 1, . . . , k, the ith cut partitions the
vertex set into two subsets the smaller of which has cardinality at most ci.
In Figure 4.2 we give an example.

Observation 4.1. The bounded cut cover problem has a solution if and only
if there exists an integral one-flow of value q in a chain of k parallel arcs where
the capacities of the upper arcs are c1, . . . , ck.

4.3 A Special Case of the Max-1FP and Related Problems 65

The solution to the instance of the bounded cut cover problem depicted
in Figure 4.2 represents a one-flow of value 5 in the chain of parallel arcs
given in Figure 4.1. Next we consider the following fractional relaxation of
the bounded cut cover problem.

Fractional Bounded Cut Cover Problem

GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ R
+.

TASK: For some r ≥ q, find weights x1, . . . , xr ∈ [0, 1] with
∑r

j=1 xj =
q and determine k subsets M1, . . . ,Mk ⊆ {1, . . . , r} with

∑

j∈Mi
xj ≤

ci, for i = 1, . . . , k, such that for any pair j, ℓ ∈ {1, . . . , r}
with j 6= ℓ there is some i ∈ {1, . . . , k} with |Mi ∩ {j, ℓ}| = 1; or
decide that this is not possible.

There is again a graph-theoretic interpretation of the problem. The task is
to find a complete graph with weights on the vertices such that the weight xi

of every vertex i is between 0 and 1 and the weights sum up to q. Moreover,
the edges of the complete graph must be covered by k cuts such that the ith
cut partitions the vertex set into two subsets the lighter of which has total
weight at most ci. Associating the weighted nodes of the complete graph
with s-t-paths of corresponding flow value yields the following observation.

Observation 4.2. The fractional bounded cut cover problem has a solution
if and only if there exists a (fractional) one-flow of value q in a chain of k
parallel arcs where the capacities of the upper arcs are c1, . . . , ck.

It is a natural question to ask whether the fractional bounded cut cover
problem allows for larger values of q with feasible solutions than the non-
fractional version. By Observations 4.1 and 4.2, this is equivalent to the
question whether for chains of parallel arcs there always exists a maximum
one-flow that is integral. In the fractional bounded cut cover problem the
price of the additional degree of freedom given by the possibility to assign
fractional weights to the nodes is an increase in the number of nodes (since
the node weights still have to sum up to q). On the one hand, a larger number
of nodes makes it more difficult to cover all edges of the complete graph. On
the other hand, fractional weights on the vertices allow for more balanced
cuts that contain more edges. We show below that there exist instances with
a larger feasible value of q in the fractional version of the problem than in
the integral version. Before we discuss this issue in more detail, we present
another equivalent packing problem.

In a chain of parallel arcs, every s-t-path is uniquely determined by the
subset of upper arcs contained in the path. Therefore, computing an integral
one-flow of value q corresponds to finding a family of q pairwise distinct

66 One-Flows

subsets of {1, . . . , k} such that i ∈ {1, . . . , k} is contained in at most ci of
these subsets.

Capacitated Set Packing Problem

GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ N.

TASK: Find q pairwise distinct subsets of {1, . . . , k} such that
element i ∈ {1, . . . , k} is contained in at most ci of these subsets,
for i = 1, . . . , k; or decide that no such family of subsets exists.

We also consider the following fractional relaxation of the capacitated set
packing problem.

Fractional Capacitated Set Packing Problem

GIVEN: k numbers c1, . . . , ck ∈ N and a number q ∈ R
+.

TASK: For some r ≥ q, find pairwise distinct subsets N1, . . . ,Nr

of {1, . . . , k} with weights x1, . . . , xr ∈ [0, 1] such that
∑r

j=1 xj =
q and

∑

j:i∈Nj
xj ≤ ci, for i = 1, . . . , k; or decide that this is not

possible.

Observation 4.3. The (fractional) capacitated set packing problem has a
solution if and only if there exists an integral (fractional) one-flow of value q in
a chain of k parallel arcs where the capacities of the upper arcs are c1, . . . , ck.
In particular, the (fractional) capacitated set packing problem is equivalent
to the (fractional) bounded cut cover problem.

The following instance shows that the fractional capacitated set packing
problem in general allows for strictly larger values of q with feasible solutions
than the non-fractional version. Due to Observation 4.3, the same holds for
the bounded cut cover problem. Let k = 3 and c1 = c2 = c3 = 2. It is
not difficult to check that q = 5 is the largest value of q with a feasible
solution to the non-fractional version of the problem: Choose for example
the subsets ∅, {1}, {2}, {3}, and {1, 2, 3}. But there is a solution to the
fractional version of the problem with q = 5.5: Choose subsets ∅, {1}, {2},
and {3} all with weight 1. In addition choose subsets {1, 2}, {1, 3}, and {2, 3}
all with weight 1/2. The corresponding instance of the max-1FP is depicted
in Figure 4.1.

Observation 4.4. The instance of the max-1FP depicted in Figure 4.1 has
an integrality gap of 11/10.

The instance depicted in Figure 4.1 also shows that in general there is no
integral optimal solution to the dual problem of the max-1FP. An optimal

4.3 A Special Case of the Max-1FP and Related Problems 67

dual solution destroys the path using all lower arcs and half of each path that
uses exactly one upper arc; further, one half of each upper arc is deleted.

In Section 4.4 we present an instance of the max-1FP proving another
interesting result concerning the integrality of the max-1FP. This is given
in the following proposition. We do not prove the result here, because the
considered instance is slightly more complex than a chain of parallel arcs.

Proposition 4.5. The existence of a maximum one-flow where the flow value
on each arc is integral does in general not imply the existence of an integral
path decomposition where each path carries at most one unit of flow.

We now return to the capacitated set packing problem. In contrast to
the classical set packing problem and many similar problems known from the
literature, the capacitated set packing problem allows to choose arbitrary
subsets, i.e., they do not have to belong to a given family of subsets. This
might make the problem seem to be easier. But we can prove the following
somehow surprising theorem.

Theorem 4.6. The capacitated set packing problem is strongly NP-hard.
If q is polynomially bounded in k, the problem is even strongly NP-complete1.

Proof. In the following we use the notion r-subset to describe a subset of
cardinality r ∈ N of a given ground set. To prove the NP-hardness of the
capacitated set packing problem, we use a reduction of the strongly NP-
complete 3-PARTITION problem.

3-PARTITION

GIVEN: An integer B ∈ N and k = 3ℓ numbers s1, . . . , sk ∈
N ∩ (B/4, B/2), for some ℓ ∈ N, such that

∑k
i=1 si = ℓB.

TASK: Find a partition A1, . . . , Aℓ of {1, . . . , k} such that
∑

i∈Aj
si =

B for all j = 1, . . . , ℓ; or decide that no such partition exists.
(Note that |Aj| = 3, for all j = 1, . . . , ℓ, since si ∈ (B/4, B/2) for
i = 1, . . . , k.)

Consider any instance of 3-PARTITION. We construct an instance of the
capacitated set packing problem as follows. Let B<

3 be the set of 3-subsets
of {1, . . . , k} such that for each M ∈ B<

3 it holds that
∑

i∈M si < B. For
i = 1, . . . , k, let B<

3 (i) be the sets in B<
3 that contain i. Then the capacity of i

is given as ci := |B<
3 (i)|+k+1. The integer q is set to q := |B<

3 |+
(

k
2

)

+k+ℓ+1.

1If we use the term NP-complete, we always allude to the corresponding decision prob-
lem.

68 One-Flows

Note that all numbers here are computable in time polynomial in the size
of the 3-PARTITION instance, since there are only

(

k
3

)

= O(k3) different
3-subsets of {1, . . . , k}. Further, all numbers ci and q are polynomial in k.

Now we show that a feasible partition for the instance of 3-PARTITION
exists if and only if there is a feasible family of subsets for the instance of
the capacitated set packing problem.

Let us start with the forward implication and assume that for the con-
sidered instance of 3-PARTITION there is a feasible partition. Then we can
choose q subsets of {1, . . . , k} as follows. First choose the empty set, all 1-
subsets, all 2-subsets, and all sets in B<

3 . Further, choose the sets A1, . . . , Aℓ

of a 3-Partition. Then we have a total number of 1 + k +
(

k
2

)

+ |B<
3 | + ℓ = q

subsets. Any i ∈ {1, . . . , k} appears in 1 + (k − 1) + |B<
3 (i)| + 1 = ci of the

chosen subsets. Thus, we have a feasible family of subsets for the considered
instance of the capacitated set packing problem.

Now let us turn to the backward implication and assume that for the
constructed instance of the capacitated set packing problem there exists a
feasible family of subsets. Then there exists a family S of q pairwise distinct
subsets of {1, . . . , k} such that each i ∈ {1, . . . , k} appears in at most ci of
the subsets in S. We show by contradiction that the empty set as well as all
1-subsets of {1, . . . , k}, all 2-subsets of {1, . . . , k}, and all sets in B<

3 must
be in S.

1. ∅ ∈ S
Assume that ∅ /∈ S. Since we have q subsets in S, it holds that

∑

M∈S

|M| ≥ k + 2

(

k

2

)

+ 3(|B<
3 | + ℓ + 1) ,

because the first sum is smallest, if we use all k of the 1-subsets of
{1, . . . , k}, all

(

k
2

)

of the 2-subsets of {1, . . . , k}, and no subsets of
{1, . . . , k} with more than three elements. From the group of 3-subsets
we have to pick at least |B<

3 | + ℓ + 1 to end up with a total number of
q subsets.

The total capacity of elements in {1, . . . , k} is
∑k

i=1 ci = 3|B<
3 |+2

(

k
2

)

+
2k which is less than

∑

M∈S |M|—a contradiction.

2. All 1-subsets have to be in S.
Assume that there is a 1-subset which is not in S. By an argument
analogous to the one above, it follows that

∑

M∈S

|M| ≥ (k − 1) + 2

(

k

2

)

+ 3(|B<
3 | + ℓ + 1) ,

4.3 A Special Case of the Max-1FP and Related Problems 69

because the first sum is smallest, if we use the empty set, which does
not appear in the latter sum, the k−1 remaining 1-subsets of {1, . . . , k},
all
(

k
2

)

of the 2-subsets of {1, . . . , k}, and no subsets of {1, . . . , k} with
more than three elements.

Again the sum of elements used in total is larger than the total capacity
of elements in {1, . . . , k}.

3. All 2-subsets have to be in S.
Assume that there is a 2-subset which is not in S. Here it holds that

∑

M∈S

|M| ≥ k + 2(

(

k

2

)

− 1) + 3(|B<
3 | + ℓ + 1) ,

which is again larger than the total capacity of elements in {1, . . . , k}.

4. All sets in B<
3 have to be in S.

Assume that there are r ≥ 1 subsets in B<
3 \ S. To obtain a total

number of q subsets in S, the selection must contain r + ℓ subsets of
{1, . . . , k} whose respective sum of elements is greater or equal to B.
Let the family of these subsets be denoted by T .

Since we know that all 1-subsets of {1, . . . , k} and all 2-subsets of
{1, . . . , k} are in S, an element i ∈ {1, . . . , k} may be used by at most
ci − 1− (k − 1) = |B<

3 (i)|+ 1 other subsets. The total size of elements
that may be used is therefore at most

k
∑

i=1

si(|B<
3 (i)| + 1) = ℓB +

k
∑

i=1

si|B<
3 (i)| = ℓB +

∑

M∈B<
3

∑

i∈M

si .

The total size of elements that is needed by T and the |B<
3 | − r sets

from B<
3 ∩ S is given by

∑

M∈T

∑

i∈M

si +
∑

M∈B<
3
∩S

∑

i∈M

si .

It follows that
∑

M∈T

∑

i∈M

si +
∑

M∈B<
3
∩S

∑

i∈M

si ≤ ℓB +
∑

M∈B<
3

∑

i∈M

si .

This implies

(ℓ + r)B ≤
∑

M∈T

∑

i∈M

si ≤ ℓB +
∑

M∈B<
3
\S

∑

i∈M

si < ℓB + rB ,

which yields a contradiction.

70 One-Flows

Now we know that the empty set, all 1-subsets of {1, . . . , k}, all 2-subsets
of {1, . . . , k}, and all sets in B<

3 must be in S. Then, for each i ∈ {1, . . . , k},
we have a remaining capacity of ci − 1 − (k − 1) − |B<

3 (i)| = 1. Since S
contains q subsets, it uses q − 1 − k −

(

k
2

)

− |B<
3 | = ℓ subsets in addition

to the ones mentioned. These subsets must be 3-subsets, since we have only
3ℓ elements and all subsets with less than three elements are already used.
Thus, they form a partition of {1, . . . , k}. Further, the respective sum of
sizes of the elements in the subsets must be greater or equal to B, since all
sets in B<

3 are also already used. But now it follows immediately that for
each of these subsets its total sum equals B, because

∑k
i=1 si = ℓB and if

any subset had a total size of more than B, another subset would have to
have one of less than B.

These arguments show that for the considered instance of 3-PARTITION
a feasible partition exists if there is a feasible family of subsets for the con-
structed instance of the capacitated set packing problem.

As already mentioned, in this reduction all numbers (in particular q) are
polynomial in k. That proves that the capacitated set packing problem is
strongly NP-hard, even if q is polynomially bounded in k. For any instance to
this restricted problem, it can be checked in time polynomial in its encoding
size whether a given family of subsets is a solution for this instance. This
completes our proof.

As an immediate consequence of Theorem 4.6 we can state the following
hardness results.

Theorem 4.7. 1. The bounded cut cover problem is strongly NP-hard.
If q is polynomially bounded in k, then the problem is even strongly
NP-complete.

2. The problem of finding an integral one-flow of maximum value for a
chain of parallel arcs is strongly NP-hard, even if the maximum flow
value is polynomially bounded in the size of the network (i.e., number
of vertices).

It follows that, in contrast to the problem to count the number of s-
t-paths in a digraph, the integral max-1FP is already strongly NP-hard in
acyclic networks.

Note that in the integral one-flow problem the flow value bounds the
number of paths that are used to route a flow. Thus, we can derive the
following from part 2 of Theorem 4.7.

Corollary 4.8. Unless P = NP, there is no algorithm for the integral max-
1FP in chains of parallel arcs whose runtime is pseudo-polynomial in input
plus output size.

4.4 Complexity Results 71

Since it is already NP-complete to decide if for a given instance of 3-
PARTITION a feasible partition exists, the corresponding capacitated set
packing decision problem is also NP-complete. (This follows from the proof
of Theorem 4.7.) It follows immediately that it is even strongly NP-hard to
compute only the value of a maximum integral one-flow in acyclic networks.

We conclude this section with an open problem. The instance of the max-
1FP depicted in Figure 4.1 has an additive integrality gap of 1/2. Do there
exist instances with additive integrality gap 1 or larger? This question is also
interesting in view of the bounded cut cover problem and the capacitated set
packing problem.

4.4 Complexity Results

In contrast to the classical maximum s-t-flow problem, not all instances of the
max-1FP admit an integral optimum (see Section 4.3). We obtain different
hardness results for the fractional and the integral version of the max-1FP
that are discussed in Section 4.4.1. In Section 4.4.2 we present an inter-
esting result concerning the integrality of one-flows. This has already been
mentioned in Proposition 4.5.

4.4.1 NP-Hardness Results

As already mentioned, it follows from the #P-completeness of the problem
to compute the number of different simple s-t-paths in a network that the
general max-1FP is NP-hard. (Consider the case that all arc capacities are
infinite.)

Theorem 4.9. The general max-1FP is NP-hard.

It also follows immediately from this reduction that the integral max-1FP
is strongly NP-hard as well. But for the integral max-1FP we can even prove
APX-hardness using a reduction of MAX 3SAT.

Theorem 4.10. The integral max-1FP is APX-hard. This holds, even if
we restrict to networks in which the number of s-t-paths is polynomially
bounded in the size of the network. (Thus, there cannot exist a PTAS with
a runtime polynomial in input plus output size, unless P = NP.)

Proof. We use a reduction of MAX 3SAT-3—a special kind of MAX 3SAT.
In contrast to the usual 3SAT problem, MAX 3SAT-3 has the additional
constraint on the input that each variable appears in at most three clauses.
MAX 3SAT-3 is still APX-hard [84].

72 One-Flows

v w

v1

v2

v3

v4

1 2

Figure 4.3: Gadget for the reduction of 3SAT to max-1FP with shortcut notation on the
right.

Let the considered 3SAT instance consist of clauses Ci, for i = 1, . . . ,m.
We say that a variable appears purely if it turns up unnegated. We assume
that no variable appears only in exactly one clause or appears either only
purely or only negated. This can be assumed without loss of generality,
because the values of such variables can be set in a preprocessing step.

The corresponding instance of the max-1FP is constructed as follows.
First insert a source s, a sink t, and nodes ci with arcs (s, ci) for all clauses
Ci (i = 1, . . . ,m). We need to distinguish three types of variables:

1. Variables that appear exactly twice, once purely and once negated.

2. Variables that appear purely once and negated twice.

3. Variables that appear purely twice and negated once.

For each variable of the first type we insert a node v, an arc (v, t) and arcs
(ci, v) for both i ∈ {1, . . . ,m} for which Ci contains the considered variable.
In the following let V1 be the set of nodes in the constructed graph resulting
from these variables.

For each variable x of the second type we insert the following gadget
(see also Figure 4.3). The gadget consists of six nodes v, v1, v2, v3, v4, and w
and the arcs (v1, v2), (v2, v3), (v3, v4), (v, v1), (v2, v), (v4, v), (w, v1), (w, v3),
and (v4, w). It is connected to s and t by the arcs (w, t) and (v, t), an arc
(ci, v) for i ∈ {1, . . . ,m} for which Ci contains x, and arcs (cj, w) for both
j ∈ {1, . . . ,m} for which Cj contains ¬x. The described gadget is also
denoted by the shortcut given in Figure 4.3. The important property of this
gadget is that—given arc capacities equal to 1—it can either route one unit
of flow from v to w or one or two units of flow from w to v, but not both.

For each variable x of the third type we insert the same gadget as above,
but connect it to the rest of the network the other way around. For the
clause Ci which contains ¬x we insert an arc (ci, v), for the clauses Cj and

4.4 Complexity Results 73

c1

c2

c3

x1

x2

x3

s t

1

1

1

1

1

2

2

2

2

2

2
2

2

3

3

3

3

3

3

3

Figure 4.4: Reduction network for the SAT-instance (¬x1∨¬x2∨x3)∧(x1∨¬x2∨¬x3)∧
(x2 ∨ x3). All arcs entering or leaving a gadget are incident to the corresponding v or w
respectively.

Ck containing x we add arcs (cj, w) and (ck, w). Additionally, we add again
arcs (w, t) and (v, t).

After the specification of nodes and arcs we still need to define arc capaci-
ties. These are given as follows: Each arc in a gadget and all arcs (v, t), (ci, v)
resulting from variables of the first type have capacity 1. All other arcs
(ci, v), (ci, w) have capacity 2 and all other arcs (v, t), (w, t) capacity 3. The
capacities of all arcs (s, ci) is something between 1 and 4, depending on the
capacities of arcs leaving ci. In order to compute the capacity of arc (s, ci),
take the number of arcs of capacity 2 leaving ci and add 1. Please see Fig-
ure 4.4 for an example of the reduction.

Now let D = (V,A) with capacities u : A → R
+ be the reduction network

for the considered instance C =
∧m

i=1 Ci of MAX 3SAT-3. Let C∗ be the set
of clauses that are satisfied in an optimal solution to this instance. Further,
let L3 be the set of variables that appear exactly three times in C.

Claim. The value of a maximum integral one-flow in D with capacity function
u is exactly 3|L3| + |C∗|.

We first show that there exists an integral one-flow in D having value 3|L3|+
|C∗|. Assume that we have an assignment for the variables in C that satisfies
the clauses in C∗. Then send one unit of flow along each s-t-path not using
arcs in a gadget or a node in V1. This gives us 3|L3| units of flow, because for
each variable x in L3 there are exactly three s-t-paths using v and w in the
gadget of x, but no arc of it. Due to our construction of the gadgets we can
additionally send one unit of flow for each satisfied clause through the gadget
(or the node from V1 respectively) which belongs to one of the variables by

74 One-Flows

which the clause is satisfied. Since this gives us another |C∗| units of flow, it
follows that there exists an integral one-flow of value 3|L3| + |C∗|.

It remains to show that there cannot be an integral one-flow of value
greater than 3|L3|+|C∗|. Assume that we have an integral one-flow f of value
3|L3|+k, for some k ∈ N. We show that then there must exist an assignment
for the variables in C such that at least k clauses of C are satisfied. We know
that f can send at most 3|L3| units of flow that traverse neither a gadget
nor a node from V1. This implies immediately that at least k units of flow
must be routed through gadgets or V1. It remains to show that there are
at least k clauses for which a unit of flow is routed from its corresponding
node to t by traversing a gadget or a node in V1. Then the flow implies an
assignment for the variables in C. A variable is set TRUE if the inflow in the
corresponding gadget (or in the node from V1) comes from a clause in which
it appears purely and FALSE otherwise. The number of satisfied clauses is
then k.

If f routes at most one unit of flow for any clause from its corresponding
node to t by traversing a gadget or a node in V1, we are done. Thus, let us
assume that there is a clause for which f routes ℓ ≥ 2 units of flow in such a
way. Due to the capacities of the arcs (s, ci), for i = 1, . . . ,m, it follows that
at most 3|L3| − (ℓ − 1) units of flow can be sent without using gadgets or
V1, which means for the remaining clauses that they must send k − 1 units
of flow through gadgets or V1. By induction it follows that there must be at
least k clauses for which at least one unit of flow is routed through a gadget
or V1.

Thus, we showed that the value of a maximum integral one-flow in D is
at least 3|L3| + |C∗| and that for any integral one-flow of value 3|L3| + k we
can find an assignment for the variables in C such that k clauses in C are
satisfied. This implies that 3|L3|+ |C∗| is the value of any maximum integral
one-flow and proves the claim.

Since the assignment of values to the variables in C can immediately be
taken from the computed one-flow (see above), it only remains to prove that
the number of paths in D is polynomially bounded in the size of D. Let X
be the number of variables in C, then this follows immediately from the fact
that 10X yields an upper bound for the number of paths in D. We can bound
the number of paths in D by 10X, because at each structure representing a
clause (either a gadget or a node in V1) we have at most three entering arcs.
An arc entering a node in V1 results in only one path to t. Arcs entering a
node v of a gadget result in two paths to t—one through the gadget and a
“direct” one. And arcs entering a node w of a gadget result in four paths
to t—three through the gadget and a “direct” one. Since there is only one
possibility to reach either of the considered arcs from s and three arcs (only

4.4 Complexity Results 75

two of the same type) enter a gadget, we have at most ten paths per variable.
With this insight the proof of Theorem 4.10 is complete.

It follows from the strong NP-hardness of the decision problem 3SAT-3
that it is even strongly NP-hard to compute only the value of a maximum
integral one-flow in a network. This result even holds if we restrict to net-
works in which the number of s-t-paths is polynomially bounded in the size
of the network.

Remember from Section 4.3 that the integral max-1FP is still strongly
NP-hard if we restrict it to acyclic networks.

We mentioned in the introduction that it is already NP-hard to compute
only the value of a maximum one-flow. In general, this holds for the integral
as well as for the fractional problem. For the integral problem we can state
stronger results using the NP-hardness of the capacitated set packing decision
problem and of the decision problem 3SAT-3.

Corollary 4.11. It is already NP-hard to determine the flow value of a
maximum fractional/integral one-flow. In the integral case this is still true if
we restrict to acyclic networks or to those in which the number of s-t-paths
is polynomially bounded in the size of the network.

4.4.2 Integrality

We have already mentioned in Proposition 4.5 that the existence of a max-
imum one-flow where the flow value on each arc is integral does in general
not imply the existence of an integral path decomposition where each path
carries at most one unit of flow. Figure 4.5 shows an instance of the max-
1FP in which the maximum one-flow yields an integral flow value on all arcs,
although it is fractional. A similar network has been used in [9, 10] to prove
the discrepancy of arcwise and pathwise integrality for the length-bounded
flow problem.

The idea is to double the network from Figure 4.1. Then we can send 5.5
units from s to v along either chain of parallel arcs. These 11 units of flow
are routed from v to t along the arc of capacity 11. Another unit of flow
can be gained by sending half a unit of flow along each s-t-path using only
arcs of capacity 4 from s to v plus the arc (v, t) of capacity 1. Note that
the resulting flow saturates all arc capacities. This means that it is maximal
while the total flow value on each arc is integral.

The considerations from Section 4.3 imply that a maximum integral one-
flow from s to v has value 10. These 10 units of flow can be sent using the
paths that use only arcs of capacity 4, the paths using only arcs of capacity

76 One-Flows

s v t

2

2

2

2

2

2

4

4

4

4

4

4

11

1

Figure 4.5: A network with a maximum one-flow that is arcwise integral, but pathwise
fractional.

2 and those using exactly one arc of capacity 2. Then there is one capacity
unit left on each arc of capacity 4. Thus, we can send 11 units of flow from
s to t in total: We use the described maximum integral one-flow from s to v
and forward this to t along the arc (v, t) of capacity 11. In addition, we use
one path that uses only arcs of capacity 4 from s to v and forward this to t
along the arc (v, t) of capacity 1.

4.5 An FPTAS for the Fractional Max-1FP

In this section we develop an FPTAS for the fractional max-1FP to prove
the following theorem.

Theorem 4.12. For any ǫ > 0 and any instance of the max-1FP with max-
imum flow value F ∗, it is possible to compute a one-flow of value at least
(1 − ǫ)F ∗ in time polynomial in the input size, ǫ−1, and F ∗.

First we show how to compute a one-flow of at least2 a given value F
that does not violate the arc capacities by more than a factor (1 + ǫ), for
some ǫ > 0, or to decide that no feasible flow of value F exists. A flow
violating each arc capacity by at most a factor (1 + ǫ) is called (1 + ǫ)-
approximate. The computation of (1 + ǫ)-approximate one-flows of given
values is embedded in a geometric binary search later on. This proceeding
yields the desired FPTAS.

4.5.1 Computing (1 + ǫ)-Approximate One-Flows

To compute a (1 + ǫ)-approximate one-flow of a given value, we use ideas
by Plotkin, Shmoys, and Tardos [86]. They developed an appropriate algo-

2For better readability, we prospectively say that a flow has value F , although its value
might as well be larger than that.

4.5 An FPTAS for the Fractional Max-1FP 77

rithm for the fractional set packing problem. In this problem we have sets
of capacitated elements and search for a packing, i.e., a family of sets such
that each element appears in at most as many sets as its capacity permits.
To compute (1+ ǫ)-approximate packings of a given size, Plotkin et al. use a
Lagrange relaxation that penalizes the violation of the capacity constraints
in the objective function. Iteratively, they choose reasonable Lagrange mul-
tipliers, compute a solution to the relaxed problem, and combine this with
the current solution, until a (1 + ǫ)-approximate packing is found.

In the remainder of this section we adapt the approach in [86] to the
fractional 1FP.

Let ǫ > 0 and F ≥ 0 be the value for which we want to find the mentioned
one-flow. For a given one-flow x, we use λx(a) :=

∑

P∈P :a∈P xP/u(a) to
denote the congestion on arc a ∈ A and Λx := maxa∈A λx(a) to denote the
overall congestion. Then a one-flow x is (1 + ǫ)-approximate if and only if
Λx ≤ (1+ǫ). For given arc costs c : A → R

+
0 , we define cP :=

∑

a∈P c(a) for all
s-t-paths P ∈ P . (The arc costs that are used later on in the algorithm are
equivalent to Lagrange multipliers of a Lagrange relaxation that penalizes
the violation of the arc capacities in the objective function.) We consider
the following linear program for min-cost one-flows and use C to denote its
minimum objective value corresponding to the cost function c.

min
∑

P∈P

cPyP

s.t.
∑

P∈P

yP ≥ F (min-cost LP)

0 ≤ yP ≤ 1 ∀ P ∈ P .

Lemma 4.13. Given a cost funtion c : A → R
+
0 , (min-cost LP) can be solved

in time polynomial in the input size and F .

Proof. In order to solve (min-cost LP) compute ⌈F⌉ shortest paths according
to the length function c. This can be done in time polynomial in the input
size and F (see, e.g., [69]). An optimal solution to (min-cost LP) is given by
assigning the flow value 1 to each of the ⌊F⌋ shortest paths and additionally
a flow value of F − ⌊F⌋ to the ⌈F⌉th shortest path.

We say that a one-flow x fulfills the approximation condition (AC) if it
holds, for a given cost function c : A → R

+
0 , that

∑

P∈P

cP xP − C ≤ ǫ(
∑

P∈P

cP xP + Λx

∑

a∈A

c(a)u(a)) .

78 One-Flows

The procedure IMPR-CONG((D,u),x,ǫ) described in Algorithm 2 returns
a one-flow which is either (1 + 6ǫ)-optimal or reduces the congestion of x by
at least one half. We define a flow x to be (1 + ǫ)-optimal, for some ǫ > 0, if
Λx ≤ (1 + ǫ)Λ∗ where Λ∗ is the minimum congestion possible for a one-flow
of value F in the underlying network, i.e., Λ∗ is the minimum objective value
of

min Λ

s.t.
∑

P∈P

xP ≥ F

∑

P∈P :
a∈P

xP ≤ Λu(a) ∀ a ∈ A

0 ≤ xP ≤ 1 ∀ P ∈ P .

For minimum congestion problems, it is usually required that Λ ≥ 1 so that
each flow obeying all arc capacities is classified as optimal. But the addi-
tional requirement would complicate our notation and is therefore omitted.
Nevertheless, we accept each solution with Λ ≤ 1 as an optimum.

It holds for Λ∗, the corresponding flow x∗, and the minimum objective
value C of (min-cost LP), that

Λ∗
∑

a∈A

c(a)u(a) ≥
∑

a∈A

c(a)
∑

P∈P :
a∈P

x∗
P =

∑

P∈P

cP x∗
P ≥ C . (4.3)

First we show that IMPR-CONG((D,u),x,ǫ) matches its specification. For
the following proofs we assume without loss of generality that the parameter
ǫ is at most 1/6.

Theorem 4.14. IMPR-CONG((D,u),x,ǫ) returns a one-flow which is either
(1 + 6ǫ)-optimal or reduces the congestion of x by at least one half.

Proof. This proof is similar to a proof by Plotkin, Shmoys, and Tardos [86].
We prove in Theorem 4.15 that IMPR-CONG((D,u),x,ǫ) terminates. Here,
we assume that it outputs a flow x′ with Λx′ ≥ Λ0/2, because otherwise the
congestion of x was reduced by at least one half. Then it holds that IMPR-
CONG((D,u),x,ǫ) stopped due to the satisfication of (AC). We show that x′

is (1 + 6ǫ)-optimal in this case.
In the following we set x′(ā) :=

∑

P∈P :ā∈P x′
P , for any ā ∈ A. It holds

that α ≥ 2Λ−1
x′ ǫ−1 log(2mǫ−1). If we prove that for each ā ∈ A it holds that

(1−ǫ/2)Λx′u(ā) ≤ x′(ā) or c(ā)u(ā) ≤ ǫ
2m

∑

a∈A c(a)u(a) for the cost function
c defined by x′, we can conclude that (1−ǫ)Λx′

∑

a∈A c(a)u(a) ≤∑P∈P cP x′
P .

4.5 An FPTAS for the Fractional Max-1FP 79

Algorithm 2: IMPR-CONG((D,u),x,ǫ)

Input: A digraph D = (V,A) with arc capacities u : A → R
+, a

one-flow x of value F not obeying all arc capacities, ǫ > 0.
Output: A one-flow of value F that is either (1 + 6ǫ)-optimal or

reduces the congestion of x by at least one half.

Set Λ0 := Λx, α := 4Λ−1
0 ǫ−1 log(2mǫ−1), and σ := ǫ/(4αF).

For all a ∈ A let c(a) := eαλx(a)/u(a).
Let y be the solution and C the objective value of (min-cost LP).
while Λx ≥ Λ0/2 and x does not fulfill (AC) do

Set x := (1 − σ)x + σy.
Set c(a) := eαλx(a)/u(a).
Compute a solution (y,C) for (min-cost LP) with the new values.

end

return x.

(We prove this later on.) Together with the fact that (AC) is satisfied by x′

and c, this gives us that

C ≥ (1 − ǫ)
∑

P∈P

cPx′
P − ǫΛx′

∑

a∈A

c(a)u(a)

≥ (1 − ǫ)2Λx′

∑

a∈A

c(a)u(a) − ǫΛx′

∑

a∈A

c(a)u(a)

≥ (1 − 3ǫ)Λx′

∑

a∈A

c(a)u(a) .

Using (4.3) this implies for Λ∗—the minimum congestion possible for a one-
flow of value F in the considered network—that

Λx′ ≤ C

(1 − 3ǫ)
∑

a∈A c(a)u(a)
≤ (1 − 3ǫ)−1Λ∗ ≤ (1 + 6ǫ)Λ∗

and thus proves the theorem.
Let ā ∈ A. We prove now that (1 − ǫ/2)Λx′u(ā) ≤ x′(ā) or c(ā)u(ā) ≤

ǫ
2m

∑

a∈A c(a)u(a).
By the definition of Λx′ and c : A → R

+ it holds that
∑

a∈A c(a)u(a) ≥
eαΛx′ . Now assume that (1 − ǫ/2)Λx′u(ā) > x′(ā), then it follows that
c(ā)u(ā) = eαx′(a)/u(a) < e(1−ǫ/2)αΛx′ . Thus,

c(ā)u(ā)
∑

a∈A c(a)u(a)
<

e(1−ǫ/2)αΛx′

eαΛx′
= e−ǫαΛx′/2 ≤ e− log(2mǫ−1) =

ǫ

2m

80 One-Flows

which proves the claim.
Now we can conclude that (1 − ǫ)Λx′

∑

a∈A c(a)u(a) ≤ ∑P∈P cP x′
P . Let

A′ := {a ∈ A|(1 − ǫ/2)Λx′u(a) ≤ x′(a)}. Then it holds that

Λx′

∑

a∈A

c(a)u(a) = Λx′

∑

a∈A′

c(a)u(a) + Λx′

∑

a∈A\A′

c(a)u(a)

≤ 1

1 − ǫ/2

∑

a∈A′

c(a)x′(a) + Λx′

∑

a∈A\A′

ǫ

2m

∑

a∈A

c(a)u(a)

≤ 1

1 − ǫ/2

∑

P∈P

cP x′
P +

ǫ

2
Λx′

∑

a∈A

c(a)u(a)

which implies

(1 − ǫ)Λx′

∑

a∈A

c(a)u(a) ≤ (1 − ǫ/2)2Λx′

∑

a∈A

c(a)u(a) ≤
∑

P∈P

cP x′
P .

Now let us turn to the analysis of the runtime of IMPR-CONG((D,u),x,ǫ).

Theorem 4.15. The procedure IMPR-CONG((D,u),x,ǫ) terminates after
O(ǫ−3F log(mǫ−1)) iterations.

Proof. This proof is similar to a proof by Plotkin, Shmoys, and Tardos [86].
We consider IMPR-CONG((D,u),x,ǫ) and analyse the decrement of C(A) :=
∑

a∈A c(a)u(a) for the cost function c : A → R
+ throughout the execution.

We show that the decrement of C(A) due to a single iteration is at least
ǫ2Λ0F

−1C(A). Together with the fact that eαΛ0/2 ≤ C(A) ≤ meαΛ0 , until
the last decrement of C(A) is performed, the claim follows.

We start proving that the decrement of C(A) due to a single iteration
is at least ǫ2Λ0F

−1C(A). In the following we denote the one-flow given at
the beginning of the iteration by x and the one given at the end by x′, i.e.,
x′ = (1 − σ)x + σy, where y is an optimal solution of (min-cost LP) for the
cost function c given by x. The cost function for x′ is denoted as c′ and
C ′(A) :=

∑

a∈A c′(a)u(a). We show that C(A) − C ′(A) ≥ 1
2
ασǫΛ0C(A) and

thus C(A) − C ′(A) ≥ 1
8
ǫ2Λ0F

−1C(A) (using the definition of σ).
Let a ∈ A. In the following we set x(a) :=

∑

P∈P :a∈P xP and y(a) :=
∑

P∈P :a∈P yP . Since we assume that umin ≥ 1, it holds that 0 ≤ x(a) ≤ Fu(a)
and 0 ≤ y(a) ≤ Fu(a) which implies ασ|x(a) − y(a)|/u(a) ≤ ασF = ǫ

4
≤ 1

4
.

Setting δ := ασ(y(a) − x(a))/u(a) we obtain |δ| ≤ 1/4. Thus, a second-
order Taylor series approximation gives us for any r ∈ R that er+δ ≤ er +

4.5 An FPTAS for the Fractional Max-1FP 81

δer + ǫ
2
|δ|er. This means for us that

c′(a) =
1

u(a)
eαλx′ (a) =

1

u(a)
eαx′(a)/u(a)

=
1

u(a)
eα(1−σ)x(a)/u(a)+ασy(a)/u(a) =

1

u(a)
eαx(a)/u(a)+δ

≤ 1

u(a)
eαλx(a) +

ασ(y(a) − x(a))

u2(a)
eαλx(a) +

ǫασ|y(a) − x(a)|
2u2(a)

eαλx(a)

≤ c(a) +
ασ(y(a) − x(a))

u(a)
c(a) +

ǫασ(y(a) + x(a))

2u(a)
c(a) .

Now we can conclude for the decrement of C(A) that

C(A) − C ′(A) =
∑

a∈A

u(a)(c(a) − c′(a))

≥ ασ
∑

a∈A

c(a)(x(a) − y(a)) − ασ
ǫ

2

∑

a∈A

c(a)(x(a) + y(a))

= ασ
∑

P∈P

cP (xP − yP) − ασ
ǫ

2

∑

P∈P

cP (xP + yP)

≥ ασ(
∑

P∈P

cP xP −
∑

P∈P

cP yP − ǫ
∑

P∈P

cP xP)

≥ ασǫΛx

∑

a∈A

c(a)u(a)

≥ 1

2
ασǫΛ0C(A) ,

where we use the fact that (AC) is not fulfilled and that Λx ≥ Λ0/2 until
IMPR-CONG((D,u),x,ǫ) stops. Using the definition of σ we have now that
the decrement of C(A) is at least 1

8
ǫ2Λ0F

−1C(A).
In order to bound the number N of iterations we use the fact that eαΛ0/2 ≤

C(A) ≤ meαΛ0 for all cost functions c considered throughout the execution
of IMPR-CONG((D,u),x,ǫ), until the last decrement of C(A) is fulfilled. We
know that in each iteration C(A) is at most multiplied with (1− 1

8
ǫ2Λ0F

−1).
Thus, it holds that

(1 − ǫ2Λ0

8F
)N−1meαΛ0 ≥ eαΛ0/2

which is equivalent to

(1 − ǫ2Λ0

8F
)N−1 ≥ m−1e−αΛ0/2 .

82 One-Flows

Using that log(1 − β) ≤ −β, for all β ∈ (0, 1), and that Λ0 > 1 (since the
initial flow x does not obey all arc capacities), it follows that

N − 1 ≤ log(m−1e−αΛ0/2)

log(1 − ǫ2Λ0

8F
)

= − log(meαΛ0/2)

log(1 − ǫ2Λ0

8F
)

= O(Fǫ−2 log(meαΛ0/2)) .

Now we can use the definition of α and obtain

N = O(ǫ−2F log(m(2mǫ−1)2ǫ−1

))

= O(ǫ−2F log m + ǫ−3F log(mǫ−1))

= O(ǫ−3F log(mǫ−1)) .

This completes our proof.

Lemma 4.16. Let ǫ, F > 0 and let x be a one-flow (not necessarily obeying
arc capacities) of value F in (D,u). Moreover, let the number of paths used
in x be polynomial in the input size, ǫ−1, and F . Then each iteration in
IMPR-CONG((D,u),x,ǫ) can be done in time polynomial in the input size,
ǫ−1, and F .

Proof. The congestion Λx, α, σ, and the function c : A → R
+ can be com-

puted in time polynomial in the input size.
Since IMPR-CONG((D,u),x,ǫ) terminates after O(ǫ−3F log(mǫ−1)) iter-

ations, the number of paths used in x during the procedure keeps polynomial
in the input size, ǫ−1, and F . Thus, all updates of x can also be computed
fast enough.

In Lemma 4.13 we proved that (min-cost LP) can be solved in time poly-
nomial in the input size and F , so we are done.

Theorem 4.17. Let ǫ, F > 0. With a smart sequence of calls of IMPR-
CONG it is possible to find a (1 + ǫ)-approximate one-flow of value F or to
decide that no feasible one-flow of value F exists. Further, the number of
calls of IMPR-CONG is polynomial in log(1/ǫ) and log F .

Proof. This proof is similar to a proof by Plotkin, Shmoys, and Tardos [86].
We differentiate between two cases—the one that ǫ ≥ 1 and the one that
ǫ < 1.

Let us start with the one that ǫ ≥ 1. In this case we call IMPR-
CONG((D,u),x,1/6) for some arbitrary one-flow x (not necessarily obeying
arc capacities) in (D,u) of value F . As long as the output flow x′ is nei-
ther 2-optimal nor Λx′ ≤ 2, we call IMPR-CONG((D,u),x′,1/6) with the
respective output flow x′ of the previous call. If finally Λx′ ≤ 2, then x′ is

4.5 An FPTAS for the Fractional Max-1FP 83

2-approximate and therefore, in particular, (1 + ǫ)-approximate. Otherwise
x′ is 2-optimal and Λx′ > 2. Thus, no feasible one-flow of value F exists and
we are also done.

Now we turn to the case that ǫ < 1. First we proceed as above and check
if the final 2-approximate flow x′ is also (1 + ǫ)-approximate. If not, we call
IMPR-CONG((D,u),x′,ǫ̃) as long as 1 + ǫ < Λx′ ≤ 1 + 6ǫ̃, i.e., x′ is neither
(1 + ǫ)-approximate nor Λx′ > 1 + 6ǫ̃. Here, x′ is always the output flow
of the previous call and ǫ̃ is half of the “approximation parameter” ǫ̃ of the
previous call, i.e., we start with ǫ̃ = 1/12. If we do not stop due to the
satisfaction of Λx′ > 1 + 6ǫ̃, we stop at the latest when ǫ̃ ≤ ǫ/6, because
then Λx′ ≤ 1 + 6ǫ̃ ≤ 1 + ǫ. If we prove that no feasible one-flow exists, if
Λx′ > 1 + 6ǫ̃, we are done.

It suffices to show that if Λx′ > 1+6ǫ̃, then x′ is (1+6ǫ̃)-optimal. Assume
that x′ is not (1 + 6ǫ̃)-optimal, then its congestion would have been halved
since the last call of IMPR-CONG and x′ would therefore be a feasible one-
flow, because it holds for the x̄ and ǭ of the previous call that Λx̄ ≤ 1+6ǭ ≤ 2.
Thus, Λx′ ≤ 1 < 1 + 6ǫ̃—a contradiction.

In the first case (ǫ ≥ 1) we call IMPR-CONG at most ⌊log Λx⌋ ≤ ⌊log F⌋
times, because the procedure either returns a 2-optimal flow (then we stop
the calls) or it reduces the congestion by at least one half. For the second
case we need at most O(log(1/ǫ)) in addition, because we stop at the latest
when ǫ̃ ≤ ǫ/6 and we halve ǫ̃ in each step. Thus, the number of calls of
IMPR-CONG is polynomial in log(1/ǫ) and log F in both cases.

With the insight from Theorem 4.17 we know that we need only some time
that is polynomial in the input size, ǫ−1, and F to find a (1+ ǫ)-approximate
one-flow of value F or decide that no feasible one-flow of that value exists.
This holds, because the first call of IMPR-CONG can be done with a one-flow
(not obeying all arc capacities) using ⌈F⌉ paths. Combining Theorem 4.15,
Lemma 4.16, and Theorem 4.17 with the fact that all calls of IMPR-CONG
(following the first one) are done with the flow resulting from the previous call
and some constant ǫ̃ or one that is larger than ǫ/12, we obtain the mentioned
runtime.

4.5.2 An FPTAS

To obtain a one-flow for a given instance of the max-1FP that obeys all
arc capacities and approximates the maximum flow value F ∗ within a factor
(1 − ǫ), we embed the algorithm from Section 4.5.1 in a binary search to
find a value F̄ with F̄ ≤ F ∗ ≤ (1 + ǫ̃)F̄ , for ǫ̃ = (1 − ǫ)−1/2 − 1. Then the
desired flow is obtained by computing a (1+ ǫ̃)-approximate one-flow of value

84 One-Flows

F̄ and dividing all its flow values by (1 + ǫ̃). The resulting flow has value
(1 + ǫ̃)−1F̄ ≥ (1 − ǫ)F ∗.

The binary search works as follows. For increasing values of ℓ ∈ N

(starting with ℓ = 0) we use the algorithm from Section 4.5.1 to compute
a 2-approximate one-flow of value 2ℓ or decide that no feasible one-flow of
that value exists. We stop with the first value ℓ̄ for ℓ for which the an-
swer is that no feasible one-flow of value F̄ := 2ℓ̄ exists. This takes us
O(log F ∗) steps. It follows that F̄ /4 ≤ F ∗ < F̄ . Using geometric binary
search as introduced in [50], we obtain F̄ with F̄ ≤ F ∗ ≤ (1 + ǫ̃)F̄ within
O(log(1/ǫ̃)) = O(log(1/ǫ)) steps. This is done as follows. We set our upper
bound for F ∗ to Bu := F̄ and our lower bound to Bℓ := F̄ /4. Then we
iteratively compute a (1 + ǫ̃/8)-approximate flow of value

√
BℓBu or decide

that no feasible one-flow of that value exists. In the first case we update the
lower bound to Bℓ :=

√
BℓBu/(1 + ǫ̃/8), in the second case the upper bound

to Bu :=
√

BℓBu. We stop when Bu/Bℓ ≤ 1 + ǫ̃. Since after N iterations it
holds that

Bu

Bℓ

≤ (1 +
ǫ̃

8
)2

(

F

F/4

)
1

2N

≤ (1 +
ǫ̃

2
)4

1

2N , (4.4)

we obtain Bu/Bℓ ≤ 1+ ǫ̃ after N ≥ log(2/ log 1+ǫ̃
1+ǫ̃/2

) = O(log(1/ǫ̃)) iterations.

Thus, we used O(log F ∗ + log(1/ǫ)) steps in total in order to obtain F̄
which is set to the final lower bound.

The algorithm is polynomial in input plus output size and ǫ−1, because
we have O(log F ∗+log(1/ǫ)) steps in which we compute an approximate one-
flow. The time to compute ⌈2ℓ⌉ shortest paths is polynomial in the input
size and F ∗ in each step, because ⌈2ℓ⌉ = O(F ∗) for all considered values of ℓ.
Since we need at least (1−ǫ)F ∗ paths to present a one-flow of value (1−ǫ)F ∗,
F ∗ is polynomial in the output size.

4.6 Approximating the Integral Max-1FP

In this section we present approximation results for the integral max-1FP.
We start by giving constant factor approximations for instances in which
all arc capacities or the value of a maximum fractional one-flow are large.
Afterwards we present a randomized O(log m)-approximation algorithm for
the general problem. We assume that all arc capacities are integral.

4.6 Approximating the Integral Max-1FP 85

4.6.1 Constant Factor Approximations for Special Cases

For the composition of a constant factor approximation algorithm for in-
stances in which the value of a maximum fractional one-flow is large, we first
prove that the additive integrality gap of the max-1FP is less than m. This
result follows from basic linear programming theory.

Proposition 4.18. The difference of the value F ∗
F of a maximum fractional

one-flow and the value F ∗
I of a maximum integral one-flow is less than m.

Proof. Consider an optimal basic solution x to the maximum one-flow LP
given in Section 4.2 and let PF be the set of paths P for which xP is fractional.
It suffices to show that |PF | ≤ m, because it then follows that we lose less
than m units of flow by dropping the fractional part of an optimal basic
solution. The remaining part yields an integral solution.

Let A = (AP)P∈PF
be the matrix given by the inequalities in (4.1), i.e.,

AP ∈ {0, 1}A is the vector that has 1-entries for all a ∈ P and 0-entries
elsewhere. Further let eP ∈ {0, 1}P be the vector that has a single 1-entry
for P ∈ P and 0-entries elsewhere. Since xP is fractional for P ∈ PF , the slack
variable of the inequality xP ≤ 1 is positive. All vectors corresponding to
positive variables in a basic solution must be linearly independent. It follows
that the vectors (AP , eP), (0, eP) ∈ {0, 1}A∪P with P ∈ PF are linearly
indepedent. This implies immediately that the vectors AP with P ∈ PF

must also be linearly independent. Since the dimension of these vectors is m,
it follows that |PF | ≤ m.

Combining the insights from Proposition 4.18 and its proof with the
FPTAS from the last section yields the following result.

Corollary 4.19. For any ǫ > 0, an integral one-flow of value FI > (1 −
ǫ)F ∗

F − m (where F ∗
F is the value of an optimal fractional one-flow) can be

computed in time polynomial in the input size, ǫ−1, and FI .

Proof. Consider any instance of the max-1FP. Let F ∗
F be the value of a

maximum fractional one-flow. By Theorem 4.12 we can compute a frac-
tional one-flow (x̄P)P∈P of value at least (1 − ǫ)F ∗

F , for any ǫ > 0, in time
polynomial in the input size, ǫ−1, and F ∗

F . Based on this, we compute an-
other one-flow of the same or larger value. Consider the system of linear
inequalities constructed in the following. We only take the set of paths
P̄ := {P ∈ P | x̄P > 0} with positive flow values into account. Then

86 One-Flows

the size of the system

∑

P∈P̄

xP ≥
∑

P∈P̄

x̄P

∑

P∈P̄ :
a∈P

xP ≤ u(a) ∀ a ∈ A

0 ≤ xP ≤ 1 ∀ P ∈ P̄

is polynomial in the input size of the original problem, ǫ−1, and F ∗
F . It follows

that a basic solution to this system can be computed in polynomial time. The
flow value of this solution is at least (1− ǫ)F ∗

F . For the fractional part of this
basic solution, we can argue as in the proof of Proposition 4.18 that there are
at most m paths carrying a fractional amount of flow. (Note that all vectors
only have an additional 1 in the first entry.) Thus, we obtain an integral
one-flow of value FI > (1 − ǫ)F ∗

F − m when dropping the fractional part of
the considered basic solution. Since F ∗

F < (1 − ǫ)−1(FI + m), the described
procedure can be implemented to run in time polynomial in the input size,
ǫ−1, and FI .

As an immediate consequence, we obtain the following approximation
result for the integral max-1FP.

Theorem 4.20. There exists a constant factor approximation algorithm for
the integral max-1FP whose runtime is polynomial in input plus ouput size,
if we restrict to instances whose maximum fractional flow value is larger than
some constant c > 1 times their numbers of arcs.

In the remainder of this section we only consider instances of the max-
1FP whose minimum arc capacity is Ω(log m). Starting with a nearly optimal
fractional solution we use randomized rounding to transform the fractional
one-flow into an integral one. Randomized rounding was first introduced by
Raghavan and Thompson [88]. We adapt a revision by Kleinberg [61] to the
problem considered here. This yields a constant factor approximation with
high probability.

For a given µ ∈ [0, 1] and a nearly optimal fractional one-flow (xP)P∈P ,
randomized rounding routes one unit of flow along path P ∈ P with prob-
ability µxP . Obviously, this produces an integral one-flow which does not
necessarily obey all arc capacities. With an analysis similar to one by Klein-
berg [61] we show that the probability of violation of any arc capacity is at
most 1/m. For this proof we need the following lemma [61].

4.6 Approximating the Integral Max-1FP 87

Lemma 4.21. Let µ ∈ (0, 1] and Ψ1, . . . ,ΨN be completely independent
Bernoulli trials with E[Ψi] = µpi, for all i ∈ {1, . . . ,N} and some pi ∈ [0, 1].
Then it holds for Ψ :=

∑N
i=1 Ψi and p :=

∑N
i=1 pi that

Pr[Ψ > p] < (eµ)p .

Using Lemma 4.21, we prove that, for thoroughly chosen µ, the probabil-
ity for a violation of any arc capacity is low.

Theorem 4.22. If umin ≥ c log m, for some constant c ∈ R
+, and µ :=

e−14−1/c, the probability, that any capacity constraint is violated after ran-
domized rounding, will be less than 1/m.

Proof. This proof is similar to one given by Kleinberg [61].
We assume to have a capacity function u and µ as given in the theorem. If

we show for each arc that after randomized rounding its capacity is violated
with probability less than 1/m2, we are done. Hence, consider any arc a =
(v,w) ∈ A.

Note that randomized rounding works independently from the fact that
all paths share common start and end nodes. Thus, we may assume without
loss of generality that the flow along a in the fractional one-flow equals u(a).
Otherwise we could add artificial paths with corresponding flow across a.

For all P ∈ P , let ΨP be the random 0/1-variable that indicates if P
sends one unit of flow across a in the computed integral one-flow. Further,
let xP (a) be 0, if a /∈ P , and xP otherwise. Then E[ΨP] = µxP (a) and
∑

P∈P xP (a) = u(a). Using Lemma 4.21 it follows for Ψ :=
∑

P∈P ΨP that

Pr[Ψ > u(a)] < (eµ)u(a) =

(

1

41/c

)u(a)

≤ 1

4log m
=

1

m2
. (4.5)

Since Ψ is the random variable giving the number of paths that send one unit
of flow across a in the computed integral one-flow, the proof is complete.

It remains to prove, that randomized rounding can be used to find a
constant factor approximation with high probability.

Theorem 4.23. Let k ∈ N. For any instance of the integral max-1FP with
umin = Ω(log m), randomized rounding needs O(k) iterations to find a con-
stant factor approximation with probability at least 1 − 2−k.

Proof. We may assume without loss of generality that m > 2µ−1 − 1, other-
wise we can efficiently solve the problem exactly.

88 One-Flows

Let vI be the random variable indicating the amount of flow that is routed
by the integral one-flow obtained from one application of randomized round-
ing. It follows that E[vI] is exactly µ times the amount of flow vF that is
routed by the fractional flow. Thus, E[vI] is only a constant factor smaller
than the optimal value of an integral one-flow.

Let p be the probability for the event, that vI is at least µ
2
vF . Since

E[vI] = µvF , it holds that

(1 − p)
µ

2
vF + p · vF ≥ µvF ,

which is equivalent to p ≥ µ
2−µ

.
Thus, vI is at most some constant factor away from the value of an optimal

one-flow with probability at least µ
2−µ

.
It can still happen that the computed one-flow is infeasible. A feasible

constant factor approximation is obtained with probability at least q := µ
2−µ

−
1
m

> 0. For some constant ℓ ∈ N that only depends on µ, it holds that
(1 − q)ℓ < 1/2, which means that the probability of a flop will be less than
1/2 after ℓ iterations of the algorithm. Thus, we get that after ℓk iterations
for some k ∈ N the probability of success will be at least 1−(1−q)ℓk > 1−2−k,
which completes the proof.

4.6.2 An O(log m)-Approximation

In order to obtain a randomized O(log m)-approximation algorithm for ar-
bitrary instances of the integral max-1FP, we use the computation of an
approximate maximum integral one-flow in a modified network by giving a
special treatment to those arcs whose capacity is smaller than log m. In order
to simplify the following construction, we first introduce further terminology.
We call an arc whose capacity is at least log m thick ; all other arcs are thin.
A path is called thick if all its arcs are thick; otherwise it is called thin.

For a given instance of the max-1FP, we compute an approximate solu-
tion to the fractional problem using the FPTAS from Section 4.5 for some
constant ǫ > 0. If the total flow value along thick paths is at least half of
the total flow value (and thus at most some constant factor smaller than the
maximum integral flow value), we can use randomized rounding as explained
above in order to obtain a constant factor approximation. Otherwise we can
use the algorithm described in the following which computes an O(log m)-
approximation from the flow that is routed along thin paths.

The algorithm works as follows. First we delete the flow routed along thick
paths. From now on we consider only the part of the underlying graph which
is used by thin paths. For each thin arc (v,w) insert a new node ṽ, delete the

4.6 Approximating the Integral Max-1FP 89

s

s

t

t′

Figure 4.6: Rerouting of the original flow on the left in the 2-layer graph on the right.
Gray arcs are not used by the final flow.

arc (v,w), insert the arcs (v, ṽ) and (ṽ, w) and assign the capacity of (v,w)
to them. (The flow is adjusted adequately using arcs (v, ṽ) and (ṽ, w) instead
of (v,w).) The graph of the resulting network is denoted by D = (V,A), the
set of newly inserted nodes by U . Next, we make a copy D′ = (V ′, A′) of D.
From each node in U we insert an arc to its copy in D′. The resulting graph
is denoted by D̄ = (V̄ , Ā).

We define v′ to be the clone of v ∈ V in V ′ and a′ to be the clone of a ∈ A
in A′. An arc connecting a node u ∈ U with u′ is denoted as au. For u ∈ U
that was inserted to split an arc a of the original digraph, the capacity of au

is the same as that of a.

We modify the considered fractional flow by rerouting all its paths from D
to D′ along the last thin arc at which a rerouting is possible. More detailed,
this works as follows. Consider any path P that is used in the original
fractional flow and let (v,w) ∈ P be the last thin arc on P . (This arc does
not exist in D.) Then the analogon to P in D̄ uses the adjusted path P in
D until it reaches v, then uses (v, ṽ) and is rerouted to D′ along aṽ. In D′

the new path uses the arc from ṽ′ to w′ and then the arcs corresponding to
the ones P used in D after (v,w). (See Figure 4.6 for an illustration.) Let
the resulting s-t′-flow be denoted by x̄. Note that the value |x̄| of x̄ is still
only some constant factor smaller than the value of a maximum one-flow in
the original network.

We choose integral capacities u(a) and u(a′) for a thick arc a ∈ A and its
clone a′ as follows. If ⌈x̄(a)⌉+ ⌈x̄(a′)⌉ is not larger than the original capacity
of a, we set u(a) = ⌈x̄(a)⌉ and u(a′) = ⌈x̄(a′)⌉. Otherwise, we choose the
capacities by rounding the smaller flow value up and the larger one down.
(The sum of the resulting values is not larger than the original capacity of

90 One-Flows

a, because this was assumed to be integral.) For all thin arcs a ∈ Ā, the
capacity u(a) is set to 1.

Lemma 4.24. For each arc a ∈ Ā, it holds that u(a) > x̄(a)/ log m.

Proof. First let a ∈ A be a thick arc. If ⌈x̄(a)⌉+⌈x̄(a′)⌉ is not larger than the
original capacity of a, it obviously holds that u(a) ≥ x̄(a) and u(a′) ≥ x̄(a′).
For the other case, we assume without loss of generality that x̄(a) ≤ x̄(a′).
Then, u(a) = ⌈x̄(a)⌉ ≥ x̄(a) and u(a′) = ⌊x̄(a′)⌋ with x̄(a′) ≥ 1, because
otherwise ⌈x̄(a)⌉+ ⌈x̄(a′)⌉ ≤ 2 which is less than the original capacity of a.3

It follows that u(a′) > x̄(a′)/2.
Now let a ∈ Ā be a thin arc. Then, u(a) = 1 > x̄(a)/ log m, because the

original capacity of a was less than log m.

It follows immediately from Lemma 4.24 that a (usual) maximum s-t′-
flow in D̄ with capacities u has flow value at least |x̄|/ log m, because x̄/ log m
is a feasible s-t′-flow in this network. By network flow theory, an integral
maximum s-t′-flow can be computed in polynomial time. Since the value of
this flow is at least |x̄|/ log m, it is only by a factor O(log m) smaller than the
value of a maximum one-flow in the original network. If we reroute this flow
to D, i.e., do not let it switch from D to D′ and let it use the corresponding
arcs in D instead, it is still feasible, because the sum of arc capacities u(a)
and u(a′) is at most the original capacity of a ∈ A. Further, the resulting
flow does not send more than one unit of flow along each path, because each
path uses at least one thin arc (otherwise it would not have been able to get
from D to D′) whose capacity is now 1. This gives us the following result.

Theorem 4.25. For any k ∈ N, there exists an algorithm for the integral
max-1FP that computes an O(log m)-approximation with probability at least
1 − 2−k. The runtime of this algorithm is polynomial in input plus output
size and k.

Additionally, it follows immediately from our construction that the (mul-
tiplicative) integrality gap of the max-1FP is O(log m).

4.7 Multicommodity One-Flows

In this section we consider the case that we have several source-sink-pairs—
the multicommodity case. As before we always have a digraph D = (V,A)
with arc capacities u : A → R

+. Instead of a single source-sink-pair we now
have requests (si, ti) ∈ V × V , for i = 1, . . . ,K, where K ∈ N denotes the

3The case m ≤ 4 can be solved efficiently and is neglected here.

4.7 Multicommodity One-Flows 91

number of requests. We also call (si, ti) the ith commodity. Again we assume
that the minimal arc capacity umin is at least 1.

We can think of different optimization problems for the multicommodity
1FP. On the one hand, we can simply maximize the total flow that is sent
through the network, on the other hand, we can introduce a demand for
each commodity which has to be fulfilled. In the second case it seems to be
reasonable to minimize the congestion of the one-flow that is used in order
to satisfy all demands. We consider both problems. For both problems we
generalize the FPTAS from Section 4.5 for fractional one-flows. For the inte-
gral maximization problem we present a randomized O(

√
m)-approximation

algorithm in Section 4.7.1. A result by Guruswami et al. [48] shows that
it is NP-hard to approximate the problem within a factor O(m1/2−ǫ), for
any ǫ > 0. For the integral minimum congestion problem we present an
O(log m/ log log m)-approximation algorithm in Section 4.7.2.

In the following we use Pi (i = 1, . . . ,K) to denote the set of si-ti-paths
in D and define P :=

⋃K
i=1 Pi.

4.7.1 Maximum Multicommodity One-Flows

With the definitions given above we can describe the maximum multicom-
modity one-flow problem (max-mc-1FP) by the linear program in Section 4.2.
Since solving the min-cost LP from Section 4.5 can be adapted to the new
situation easily by computing the ⌈F⌉ shortest paths for each commodity
and then choosing the ⌈F⌉ overall shortest paths, the FPTAS can be used
for the max-mc-1FP without any changes.

Theorem 4.26. For any ǫ > 0 and any instance of the max-mc-1FP with
maximum flow value F ∗, it is possible to compute a maximum multicom-
modity one-flow of value (1− ǫ)F ∗ in time polynomial in the input size, ǫ−1,
and F ∗.

We turn to integral multicommodity one-flows. Also in the multicom-
modity case Proposition 4.18 holds. This gives us a constant factor approx-
imation algorithm whose runtime is polynomial in input plus ouput size if
we restrict to instances whose maximum fractional flow value is larger than
some constant c > 1 times its number of arcs.

Further, we can also apply randomized rounding as in Section 4.6.1 with
a suitably chosen µ. In the case that umin = Ω(log m), we obtain again
a constant factor approximation with high probability. For arbitrary arc
capacities, a more detailed analysis (see [13]) of the randomized rounding

92 One-Flows

process yields the conclusion that we still obtain a randomized O(
√

m)-
approximation algorithm.4

Theorem 4.27. There exists a randomized O(
√

m)-approximation algorithm
for the integral max-mc-1FP. The runtime of this algorithm is polynomial in
input plus output size.

This result hits the lower bound of approximability, unless P = NP. A
result by Guruswami et al. [48] provides the following.

Theorem 4.28. For any ǫ > 0, it is NP-hard to approximate the integral
max-mc-1FP within a factor O(m1/2−ǫ). We cannot even find an algorithm
with this approximation ratio whose runtime is polynomial in the input size
and the maximum flow value.

To prove this claim we use an idea by Guruswami et al. [48] to build
a reduction of the NP-complete 2DIRPATH problem. 2DIRPATH is the
following problem.

2DIRPATH

GIVEN: A digraph D = (V,A) with four specific mutually dis-
tinct nodes s1, t1 ∈ V and s2, t2 ∈ V .

QUESTION: Are there arc disjoint s1-t1- and s2-t2-paths in D?

Proof of Theorem 4.28. Consider any ǫ ∈ (0, 1/2) and set δ := 4ǫ/(1 − 2ǫ).
Let H = (Ṽ , Ã) be an instance of the 2DIRPATH problem with specific nodes
s̃1, t̃1 and s̃2, t̃2. Let M := |Ã| denote the number of arcs in H.

We show that it is possible to solve the 2DIRPATH problem on H in
polynomial time by using an O(m1/2−ǫ)-approximation for a special instance
of the integral max-mc-1FP.

Assume without loss of generality that there are s̃1-t̃1- and s̃2-t̃2-paths in
H, because this can be checked in polynomial time and we are done if one of
the required paths is missing.

Now we build an instance of the integral max-mc-1FP as follows. We
insert K = ω(M1/δ) requests (s1, t1), . . . , (sK , tK) and (K2 − K)/2 copies of
H, denoted by Hij , for i = 1, . . . ,K − 1, j = i + 1, . . . ,K. Additionally we
add arcs

• from s1 to s̃1 of H12,

4In this case µ is chosen as follows. If the value of the underlying fractional one-flow
is given by F , we set µ = c · min{F/m, 1}, for a constant c such that 8µ2 < 1 and
(1 − 8µ2)m > e−F (1−1/e)µ/16. Please see [13] for further details.

4.7 Multicommodity One-Flows 93

s̃1

s̃1

s̃1

s̃1

s̃1s̃1
s̃2

s̃2

s̃2

s̃2

s̃2

s̃2

t̃1

t̃1

t̃1t̃1

t̃1t̃1

t̃2

t̃2

t̃2t̃2

t̃2t̃2

s1 s2

t1

t2

s3 s4

t3

t4

H12 H13 H14

H23 H24

H34

Figure 4.7: The reduction from 2DIRPATH to max-mc-1FP.

• from sj to s̃2 of H1j, for all j = 2, . . . ,K,

• from t̃2 of HK−1,K to tK,

• from t̃1 of HiK to ti, for all i = 1, . . . ,K − 1,

• from t̃1 of Hij to s̃1 of Hi,j+1, for all i = 1, . . . ,K−2, j = i+1, . . . ,K−1,

• from t̃2 of Hij to s̃2 of Hi+1,j, for all i = 1, . . . ,K − 2, j = i + 2, . . . ,K,

• and from t̃2 of Hi,i+1 to s̃1 of Hi+1,i+2, for all i = 1, . . . ,K − 2.

(An illustration of the resulting graph for K = 4 is given in Figure 4.7.) All
arc capacities are set to 1.

The resulting graph consists of m = O(K2M) = o(K2+δ) arcs. Here, solv-
ing the integral max-mc-1FP is the same as computing as many arc-disjoint
paths as possible, such that every two paths connect different requests. By
construction we can connect either all requests simultaneously (if the in-
stance of 2DIRPATH is a YES-instance) or only exactly one (if the instance
of 2DIRPATH is a NO-instance).

Now assume that we have an O(m1/2−ǫ)-approximation for the under-
lying integral max-mc-1FP. This one-flow connects at least two requests, if
and only if it is theoretically possible to connect all of them. (If we obtained

94 One-Flows

a flow connecting only one request, although all of them can be connected
simultaneously, we would have only a K-approximation. This gives a con-
tradiction, because K = ω(m1/(2+δ)) = ω(m1/2−ǫ).) Thus, we can use the
O(m1/2−ǫ)-approximation to decide whether H is a YES- or a NO-instance
of 2DIRPATH, because H is a YES-instance, if and only if all requests can
be connected simultaneously.

4.7.2 Minimizing Congestion

Now we assume that each request (si, ti) (i = 1, . . . ,K) has a correspond-
ing positive demand di which has to be satisfied by a one-flow. We use
dmax := maxi=1,...,K di to denote the maximum demand. As usually per-
formed for multicommodity flow problems, we look for a solution of minimum
congestion. This problem (in the following denoted as min-cong-1FP) can
be coded as follows.

min λ

s.t.
∑

P∈Pi

xP ≥ di ∀ i = 1, . . . ,K

∑

P∈P :
a∈P

xP ≤ λu(a) ∀ a ∈ A

λ ≥ 1

0 ≤ xP ≤ 1 ∀ P ∈ P

In order to find an FPTAS for the fractional min-cong-1FP we mainly use
the procedure IMPR-CONG from Section 4.5.1. The corresponding (min-cost
LP) is the following.

min
∑

P∈P

cP yP

s.t.
∑

P∈Pi

yP ≥ di ∀i = 1, . . . ,K (min-cost LP 2)

0 ≤ yP ≤ 1 ∀ P ∈ P

Given a cost funtion c : A → R
+
0 , (min-cost LP 2) can be solved in

time polynomial in the input size and dmax. This is done by computing ⌈di⌉
shortest paths, for all i = 1, . . . ,K. IMPR-CONG((D,u),x,ǫ) can be taken
without any changes and returns a one-flow satisfying all demands whose

4.7 Multicommodity One-Flows 95

congestion is either a factor (1 + 6ǫ) away from optimum or is at most half
the congestion of x.

Let D :=
∑K

i=1 di. Then the congestion of any one-flow is at most D.
This means that after at most ⌈log D⌉ runs of IMPR-CONG((D,u),x,ǫ/6),
each with the flow x returned by the previous run, we either obtain a flow
x whose congestion is only a factor (1 + ǫ) away from optimum or is 1 and
thus optimal. This insight yields our FPTAS.

Theorem 4.29. For any ǫ > 0 and any instance of the min-cong-1FP with
minimum congestion λ∗, it is possible to compute a multicommodity one-flow
of congestion at most (1+ ǫ)λ∗ in time polynomial in the input size, ǫ−1, and
dmax.

It remains to give an approximation for the integral min-cong-1FP. For
this case we again apply Raghavan and Thompson’s [88] randomized rounding
method to a nearly optimal fractional solution. In analogy to the unsplit-
table flow problem this method yields an O(log m/ log log m)-approximation
algorithm.

Theorem 4.30. Applying randomized rounding to a nearly optimal frac-
tional one-flow yields an O(log m/ log log m)-approximation to the min-cong-
1FP with probability greater than 0.

The randomized rounding method in the minimum congestion version can
be derandomized using the method of conditional probabilities [81, 87]. This
gives us a deterministic O(log m/ log log m)-approximation algorithm for the
min-cong-1FP.

Chapter 5

Abstract Flows

5.1 Introduction

The form of contents in this chapter differs from the ones in Chapters 2 to
4. We do not present fundamental new ideas, but rather give a survey of the
problems considered so far in the context of abstract flows. In this respect,
this chapter also summarizes the preceding ones.

Abstract flows are a new direction in network flow theory. They were
introduced by Hoffman [52] who observed that the original proof of the
Max-Flow-Min-Cut Theorem by Ford and Fulkerson [35] uses very few as-
sumptions about the network. In this context, Hoffman departed from the
usual structure of graphs and introduced an abstract model for network
flows. For abstract flow problems we are given a ground set E of “edges”1

with capacities u : E → R
+ and a family P of ordered subsets of E—

the “paths”. The order of the elements in P ∈ P is denoted as <P . It
is assumed that any two paths P,Q ∈ P which share an edge e ∈ P ∩ Q
fulfill the requirement that there is a path contained in the element subset
(P, e,Q) := {f ∈ P | f ≤P e} ∪ {f ∈ Q | f ≥Q e} (and also one contained
in (Q, e, P)). In the following we refer to this requirement as (PR). But note
that (PR) is not fulfilled in the general case of standard multicommodity flow
problems.

With given edges E and paths P the linear program for the abstract max-
imum flow problem looks exactly like the one we are used to from standard
maximum flows.

1Although we want to keep in mind that the considerations made in this chapter merely
abstract the usual studies of flow, we resort to the notion “edges” instead of “arcs”. In
standard flow theory the notion “edge” is used if an arc is undirected. Here we consider
some abstract structures of arcs which particularly do not have a direction. Hence, we
prefer the notion “edges” which is also used in [78].

97

98 Abstract Flows

max
∑

P∈P

xP

s.t.
∑

P∈P :
e∈P

xP ≤ u(e) ∀ e ∈ E

xP ≥ 0 ∀ P ∈ P

The main result given by Hoffman [52] is an analogon to the Max-Flow-
Min-Cut Theorem proving that, for integral edge capacities, there always
exist integral optimal solutions to the given LP and its dual. Or in other
words, there always exist an integral maximum flow and a(n) (integral) min-
imum cut, where a cut is a subset C ⊆ E of edges such that C ∩ P 6= ∅,
for all P ∈ P . The capacity of a cut C is defined as u(C) :=

∑

e∈C u(e). A
minimum cut is one of minimum capacity.

Unfortunately the proof in [52] is not constructive. This fact left the
search for a polynomial algorithm solving the (integral) abstract maximum
flow problem. This algorithm was found by McCormick [78]. He allows |E|,
but not |P|, to appear in a polynomial runtime—a regulation that we want to
adopt, because it is consistent with most applications of the abstract model.
To deal with abstract paths, naturally the question arises how these can be
represented. McCormick uses an oracle that—given a subset F ⊆ E—returns
either a path (with its order) whose elements are all in F or the statement
that no such path exists. But one could also think of other types of oracles,
e.g., we could have one that returns a shortest path, for any length function
on the edges, contained in a given subset of edges. If not stated differently,
we assume to have such a shortest path oracle.

In the following the runtime of an algorithm is called polynomial if its
number of steps is polynomial in the input size. Here, each oracle call is also
considered as a single step.

The algorithm in [78] uses the idea to augment flow along an augmenting
path. Since such a path uses backward edges in general, we need a translation
of an augmenting path to the abstract model. This translation results in
finding a set of paths along which flow is decreased or increased. The paths
in this set overlap such that the change in the flow value sums up to 0 for
most edges. The remaining edges build something that can be regarded as
an augmenting path. (See Figure 5.1 to get a rough idea of what the set of
paths looks like. The figure is drawn in the style of a figure in [78].) Finally,
McCormick embeds the augmentation of flow in a standard scaling algorithm
to obtain a maximum flow as well as a minimum cut in polynomial time.

5.2 Abstract Unsplittable Flows 99

...

P+

1
⊆ P−

1
P+

1

P−

1

P+

2
⊆ P−

2
P+

2
⊆ P−

1

P−

2

P+

3
⊆ P−

3
P+

3
⊆ P−

2

P+

j P+

j
⊆ P−

j−1
+

+

+

+

−

−

−

−

Figure 5.1: A set of paths along which flow is changed in McCormick’s algorithm. Solid
paths in light gray are those along which flow is increased. Dashed paths in dark gray are
those along which flow is decreased. The solid black line indicates the “augmenting path”.

In the following, we use x(e) :=
∑

P∈P :e∈P xP to define the flow along an
edge e ∈ E. To underline that a flow obeys all edge capacities, we say that it
is feasible. If nothing else is declared, we use m := |E| to denote the number
of edges.

Organization of this Chapter

We consider the problems discussed in the previous chapters in the context of
abstract flows. We start with unsplittable flows in Section 5.2 and consider
the multicommodity case as well as the single soure unsplittable flow prob-
lem. First of all, the analogous standard flow problems are transfered to the
abstract model. The transformation already indicates that the known con-
nection between the number of sources and the approximation factor carries
forward to abstract flows. In Section 5.3 we consider the abstract k-splittable
flow problem. The chapter is concluded by the study of abstract one-flows
in Section 5.4.

5.2 Abstract Unsplittable Flows

To define an abstract unsplittable flow it is necessary to state which part of
flow is to be sent unsplittably. In order to end up with a model related to
the standard unsplittable flow problem (UFP), we partition the family P of
paths into disjoint subsets P1, . . . ,PK , for some K ∈ N. These subsets form
the analogon to a request. If we use the notion commodity we mean the flow
that is routed within only one of the set of paths. So commodity i stands
for the flow that is to be routed within Pi, for i ∈ {1, . . . ,K}. It sounds
reasonable to require that each Pi fulfills (PR). But for our studies here, this

100 Abstract Flows

requirement is not needed in general.

Since all we have to represent our abstract paths is an oracle, the repre-
sentation of P1, . . . ,PK must be integrated in this construction. We assume
that—given a subset of edges F ⊆ E and a commodity i ∈ {1, . . . ,K}—the
oracle is able to return a shortest path from Pi whose edges are in F or the
information that no such path exists.

We first consider the case that (PR) is not satisfied by P . This relates to
standard multicommodity flows. If some certain specification of (PR), which
refers to the single source UFP, is met, the problem becomes somewhat easier.
This specification and the results for this case are discussed in Section 5.2.2.

Disregarding the satisfaction of (PR), the problem specification of both
problems is the same. In addition to the standard input for abstract flows,
we are given the mentioned sets P1, . . . ,PK building a partition of P with
positive demands di, for i = 1, . . . ,K. A feasible solution to the abstract
unsplittable flow problem is a family of paths {P1, . . . , PK} where Pi ∈ Pi,
for all i ∈ {1, . . . ,K}, such that

∑

i∈{1,...,K}:
e∈Pi

di ≤ u(e) for all e ∈ E.

Since in general it is not possible to find such a feasible solution, we consider
the optimization problems to maximize the satisfied demand or to minimize
the congestion. These problems are defined in analogy with the ones of the
standard UFP.

To emphasize that a flow is not necessarily unsplittable, we call it frac-
tional.

5.2.1 The Abstract Multicommodity UFP

In fact, most algorithms for the standard (multicommodity) UFP that are
based on its path formulation are transmittable to the corresponding abstract
problem—the one with sets

⋃K
i=1 Pi = P which do not necessarily satisfy

(PR). Here, we present an extract of these algorithms.

Among the most important methods is the one of randomized rounding
that was introduced by Raghavan and Thompson [88, 87]. To get a basis for
the rounding, one has to have a fractional solution. Here, this is a (nearly)
optimal fractional abstract flow. For both optimization problems mentioned
above (the one to maximize the satisfied demand and the one to minimize
the congestion), the fractional problem can be solved in polynomial time by
linear programming.

5.2 Abstract Unsplittable Flows 101

The LP for the congestion minimization problem is the following.

min α

s.t.
∑

P∈P :
e∈P

xP ≤ αu(e) ∀ e ∈ E

∑

P∈Pi

xP = di ∀ i = 1, . . . ,K

α ≥ 1

xP ≥ 0 ∀ P ∈ P

Its dual is given by

max

K
∑

i=1

diyi + z

s.t.
∑

e∈P

ℓ(e) ≥ yi ∀ i = 1, . . . ,K, P ∈ Pi

∑

e∈E

ℓ(e)u(e) + z = 1

ℓ(e) ≥ 0 ∀ e ∈ E

z ≥ 0 .

The dual can be separated in polynomial time by shortest path computations.
Given values ℓ(e) ≥ 0, for all e ∈ E, yi, for i = 1, . . . ,K, and z ≥ 0, one can
compute

∑

e∈E ℓ(e)u(e)+z in polynomial time and then simply has to use the
oracle to check whether the shortest path in Pi (according to ℓ) has length
at least yi. Grötschel, Lovasz, and Schrijver [47] prove that optimization is
just as hard as separation. It follows from the theory of linear programming
that we can also compute an optimal fractional flow in polynomial time.

For the problem of maximizing the satisfied demand the following LP
arises.

max
∑

P∈P

xP

s.t.
∑

P∈P :
e∈P

xP ≤ u(e) ∀ e ∈ E

xP ≥ 0 ∀ P ∈ P

102 Abstract Flows

Its dual is given by

min
∑

e∈E

u(e)ℓ(e)

s.t.
∑

e∈P

ℓ(e) ≥ 1 ∀ P ∈ P

ℓ(e) ≥ 0 ∀ e ∈ E

Again, the dual can be separated in polynomial time. Given values ℓ(e) ≥ 0,
for all e ∈ E, it can be decided by K shortest path computations, i.e., oracle
calls, whether the values form a feasible solution. Thus, it again follows that
the primal LP can be solved in polynomial time.

To obtain a flow that routes no more than di units of commodity i ∈
{1, . . . ,K}, we can expand all paths in Pi by a new edge ei and give this
edge a capacity of di.

Even the FPTASs by Garg and Könemann [40] and Fleischer [33] for
the considered optimization problems for the standard multicommodity flow
problem can be transfered to the abstract setting. Thus, it can be avoided
to solve linear programs, if one is content with a nearly optimal flow as well.

Using an optimal fractional solution, randomized rounding yields an
O(log m/ log log m)-approximation algorithm for the optimization problem
to minimize the congestion of an abstract unsplittable flow which satisfies all
demands. Of course, the results from Section 2.3, which show that the ap-
proximation ratio of randomized rounding is also Ω(log m/ log log m), trans-
mit to abstract flows as well, because these form only a generalization of
standard flows.

In the case of maximizing the totally satisfied demand in which all edge
capacities must be obeyed, we can apply Kleinberg’s [61] revision of Ragha-
van and Thompson’s [88, 87] randomized rounding technique for the high-
capacity UFP, where all edge capacities are in Ω(log m). For any k ∈ N, this
can provide a constant factor approximation with probability 1−2−k. For the
general case, there exists a greedy algorithm by Kolman and Scheideler [67]
that yields O(

√
m)-approximations and is transmittable to the abstract set-

ting without any changes. Here, we can also transmit the inapproximability
statement of Guruswami et al. [48] which says that, for any ǫ > 0, it is NP-
hard to approximate the underlying optimization problem within a factor
O(m1/2−ǫ).

5.2 Abstract Unsplittable Flows 103

5.2.2 The Abstract Single Source UFP

We translate the (multicommodity) single source unsplittable flow problem
to the abstract setting in the following way. We assume that for any two
paths Pi ∈ Pi, Pj ∈ Pj (for some i, j ∈ {1, . . . ,K}) which share an edge
e ∈ Pi ∩ Pj there is a path P ′

j ∈ Pj with P ′
j ⊆ (Pi, e, Pj) and a path P ′

i ∈ Pi

with P ′
i ⊆ (Pj, e, Pi). In the following we refer to this property as (PR2).

Taking advantage of (PR2), which is even stronger than (PR), the algo-
rithm by McCormick [78] can be used in order to find an abstract maximum
flow which does not send more than di units along paths in Pi, for each
i ∈ {1, . . . ,K}. This property of the flow can be obtained by an expansion of
all paths in Pi by a new edge ei with capacity di. Since this expansion does
not destroy the fullfilment of (PR2), we can apply McCormick’s algorithm
and get even an integral maximum flow sending at most di units of flow along
paths in Pi. The integrality is needed when transfering the results for the
single source UFP obtained by Skutella [95] to the abstract setting.

We pursue the objective to send all demands and find an unsplittable
flow of minimum congestion. Considering a fractional flow x0 satisfying all
demands, the results by Skutella [95] provide an algorithm computing an
unsplittable flow that satisfies all demands and sends at most 2x0(e) + dmax

units of flow along edge e ∈ E where dmax := maxi=1,...,K di.

To describe the algorithm we first assume that, for all i, j ∈ {1, . . . ,K},
either di is a factor of dj , or vice versa. Let d1, . . . , dL (for some L ≤ K)
be the different values of the demands in increasing order. For i = 1, . . . , L,
the algorithm sets the capacity u(e), for e ∈ E, to xi−1(e) rounded up to the
nearest multiple of di. Then it computes a feasible di-integral flow satisfying
all demands. (As elaborated above, we can use McCormick’s algorithm in
order to find such a flow.) Since now all commodities with demand di are
sent along a single path, we store these paths in our solution and omit the
corresponding commodities and the corresponding flow from further consid-
eration.

To approximate the general case, for all i ∈ {1, . . . ,K}, demand di is
rounded down to d′

i := dmin · 2⌊log(di/dmin)⌋, where dmin := mini=1,...,K di. The
initial flow x0 is decreased accordingly. Then the algorithm above is applied
and finally the original demand is sent along each path sending flow in the
algorithm’s output. Skutella [95] proves that this algorithm yields an unsplit-
table flow sending at most 2x0(e) + dmax units of flow along edge e ∈ E. If
the initial flow x0 is feasible and dmax ≤ umin := mine∈E u(e), this will come
up to a congestion of 3.

Theorem 5.1. Given a fractional flow x which sends di units of commodity

104 Abstract Flows

i ∈ {1, . . . ,K}, we have a polynomial time algorithm that computes an
unsplittable flow routing the same amount while sending at most 2x(e)+dmax

units of flow along edge e ∈ E.

This result immediately suggests a 3-approximation algorithm for the con-
gestion minimization problem, since the congestion of any initial fractional
flow is increased by at most a factor 3. If we choose an optimal initial flow,
the resulting unsplittable flow will be at most a factor 3 away from optimum,
because the congestion of an optimal fractional flow yields a lower bound
for the one of an optimal unsplittable flow. An optimal fractional flow can
be found by linear programming (see Section 5.2.1). If we want to avoid to
solve linear programs, it will still be possible to use the FPTAS by Garg and
Könemann [40] and thus obtain a (3 + ǫ)-approximation algorithm, for any
ǫ > 0.

Theorem 5.2. If dmax ≤ umin, there is a 3-approximation algorithm for the
minimum congestion version of the abstract single source unsplittable flow
problem.

The results mentioned above will offer a 2-approximation algorithm for
the same problem, if for all i, j ∈ {1, . . . ,K} either di is a factor of dj , or
vice versa (see [95]).

5.3 Abstract k-Splittable Flows

Again we study two different versions of the problem under consideration.
These are the abstract single commodity k-splittable flow problem (k-SFP)
and the abstract multicommodity k-SFP. The relation between the stan-
dard single commodity k-SFP and the abstract one is that we assume in the
abstract setting that (PR) is fulfilled for the paths in P . In the multicom-
modity case, we are again given a partition of P and do not require that
(PR) is obeyed.

In addition to the set of edges E with its capacity function u and the
family of paths P with its partition P1, . . . ,PK and the demands d1, . . . dK , an
instance of the abstract multicommodity k-SFP consists of integral numbers
ki, for i = 1, . . . ,K, that specify how many paths may be used to route
commodity i. The task is to find paths P i

1, . . . , P
i
ki

, for each commodity i,
with corresponding nonnegative flow values f i

1, . . . , f
i
ki

such that we meet the
usual requirements of the k-SFP:

ki
∑

j=1

f i
j = di for i = 1, . . . ,K, and

K
∑

i=1

∑

j=1,...,ki:
e∈P i

j

f i
j ≤ u(e) for all e ∈ E.

5.3 Abstract k-Splittable Flows 105

We do not require that the paths P i
1, . . . , P

i
ki

are distinct, for i = 1, . . . ,K.
Furthermore, we allow a path to have flow value 0. In other words, we may
use less than ki paths for commodity i.

The single commodity case of the k-SFP is the one in which we have only
one commodity, i.e., K = 1. Further, we require that P obeys (PR). In this
case, we omit the “i-index”, when denoting the input.

Since all other notions are also used as defined in Section 3.2, we desist
from further explanations here and refer to that section.

5.3.1 The Abstract Maximum Single Commodity k-SFP

Since in this section we only study the case that we have exactly one com-
modity, we omit the term “single commodity” for brevity of presentation.
Further, we neglect the given demand, because our objective here is to find
a k-splittable flow of maximum value.

Realize that in the abstract setting we can still assume without loss of
generality that k ≤ m. This holds, because for each abstract flow x there
is (another) flow of the same value that uses at most m paths and sends no
more than x(e) units of flow along e ∈ E. This follows immediately from the
theory of linear programming, because we have only m constraints in the LP
formulation of the abstract maximum flow problem—besides nonnegativity
constraints—or, in other words, each basic solution to the problem has at
most m non-zero entries.

We start considering the problem to find a maximum abstract uniform
exactly-k-splittable flow. Since the results by Baier, Köhler, and Skutella [11]
are mainly based on standard integral maximum flow computations, we can
transmit them to the abstract setting by involving McCormick’s algorithm.
If the maximum flow value D was known, our problem would reduce to
finding a (D/k)-integral flow of value D. This problem can simply be solved
by McCormick’s algorithm. Unfortunately, we do not know the maximum
flow value. But realize that in a maximum uniform exactly-k-splittable flow
at least one edge e ∈ E must be saturated. Let us say that e is used by
i ∈ {1, . . . , k} paths, then D/k = u(e)/i. Thus, at most |E|k values are
possible for D/k and we need to compute just as many integral maximum
flows using McCormick’s algorithm.

To find a maximum abstract uniform k-splittable flow, i.e., one that
spreads flow evenly among at most (not necessarily exactly) k paths, one
simply has to find the maximum flow of all uniform exactly-i-splittable ones,
for i = 1, . . . , k.

Theorem 5.3. A maximum abstract uniform single commodity k-splittable

106 Abstract Flows

flow can be computed in polynomial time.

We can also transmit the Max-Flow-Min-Cut Theorem given in [11] to
the abstract setting. As already defined, a cut is given by a set of edges C
such that P ∩C 6= ∅, for all P ∈ P . Baier et al. [11] define the k-uniform cut
capacity uk(C) as the maximum volume of a packing of k identically sized
packages into bins having sizes equal to the capacities of the edges in C. This
definition can exactly be adopted to abstract networks.

Theorem 5.4. The minimum k-uniform cut capacity equals the value of a
maximum abstract uniform single commodity exactly-k-splittable flow.

Proof. The proof is analogous to the one given in [11]. Let c∗ be the minimum
k-uniform cut capacity of an underlying instance for the considered problem.
It is obvious that c∗ yields an upper bound for the value v∗ of a maximum
abstract uniform exactly k-splittable flow.

We have to prove that v∗ ≥ c∗. To do so, we round all edge capacities
down to the nearest multiple of c∗/k. This can only decrease v∗. The capacity
of a standard minimum cut is now at least c∗ and by McCormick’s algorithm
we can find a (c∗/k)-integral flow of value c∗. This flow is routed on at most
k paths. Thus, the theorem is proven.

Baier et al. [11] prove that the value of a maximum uniform exactly-k-
splittable flow is at least half of the value of a maximum k-splittable flow.
Since the proof can exactly be transmitted to the abstract setting, we obtain
the following result.

Theorem 5.5. There exists a 2-approximation algorithm for the maximum
abstract single commodity k-splittable flow problem.

5.3.2 The Abstract Multicommodity k-SFP

Again, we consider the optimization problem to find a solution of minimum
congestion. To approximate optimal solutions to the standard multicommod-
ity k-SFP, Baier et al. [11] use approximation algorithms for the UFP. We
still assume without loss of generality that ki ≤ m, for all i ∈ {1, . . . ,K}. It
follows that we can generalize the result in [11], which has already been men-
tioned in Section 3.1, that any ρ-approximation algorithm for the UFP yields
a ρ-approximation algorithm for the uniform exactly-k-SFP to the abstract
model. Thus, we obtain the following theorem by applying the fact that
in the multicommodity case the minimum congestion of an optimal uniform
exactly-k-splittable flow is at most twice as large as the minimum congestion
of an optimal k-splittable flow (see also [11]).

5.4 Abstract One-Flows 107

Theorem 5.6. Any ρ-approximation algorithm for the minimum congestion
version of the abstract unsplittable flow problem yields a 2ρ-approximation
algorithm for the minimum congestion version of the abstract k-spittable flow
problem.

Since our results in Section 3.3 are also based on solving the UFP, they
can be transmitted to the abstract setting without any changes. Thus, we
immediately obtain approximation algorithms for the minimum congestion
version of the abstract k-SFP with path capacities. These approximate the
underlying problems within a factor 2ρ where ρ is any approximation factor
for the minimum congestion version of the abstract UFP.

5.4 Abstract One-Flows

Here we consider abstract one-flows. Given a set E of edges and a family
P of abstract paths, the problem definition is the same as for the basic
abstract flow problem given in the introduction of this chapter except that
every path may send at most one unit of flow. Thus, the corresponding
linear program looks like the one above, only the last constraint changes to
“0 ≤ xP ≤ 1 ∀ P ∈ P”.

Our considerations here are based on a new type of oracle. We assume
that this oracle is able to return a shortest path subject to the constraint that
certain edges are used. That means, given a set F ⊆ E of edges and obliga-
tory edges O ⊆ F , the oracle returns a shortest path P ∈ P with O ⊆ P ⊆ F
or the information that no such path exists. This oracle enables us to solve
the k shortest path problem in our abstract setting, see Lawler [69]. Lawler
starts by computing a shortest path that is represented by 0/1-variables for
the edges depending on whether an edge is used by the path or not. Af-
terwards, he iteratively fixes edge variables so that paths chosen so far are
excluded from further consideration. Lawler also shows how the task of the
oracle can be solved for standard networks in time polynomial in the input
size and k.

All complexity results from Sections 4.4 and 4.7 adapt to abstract one-
flows, since the standard 1FP is a special case of the abstract 1FP.

From the algorithmic point of view, we can also use most of the results
from Chapter 4. Since there are no changes in the linear program from the
one discussed in Section 4.5, we can adapt the FPTAS stated there.

For the integral abstract 1FP we obtain the same results as in Sec-
tions 4.6.1 and 4.7, because those are based on the LP formulations of the
1FP. The main results are a randomized O(

√
m)-approximation algorithm

for the abstract maximum one-flow problem and a randomized O(log m)-

108 Abstract Flows

approximation algorithm for the abstract minimum congestion one-flow prob-
lem.

Unfortunately, we cannot obtain a randomized O(log m)-approximation
algorithm for the integral abstract maximum one-flow problem using the
results from Section 4.6.2. It would be possible to adopt the 2-layer system
as in Section 4.6.2, but the resulting path system would not necessarily fulfill
(PR). Thus, we could not compute the necessary integral flow in polynomial
time.

Bibliography

[1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami,

B. Schieber, and M. Sudan, Efficient routing in optical networks, Journal
of the ACM 43, no. 6 (1996), pp. 973–1001. [17]

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows, Prentice-
Hall, Englewood Cliffs, 1993. [7, 59]

[3] M. Andrews and L. Zhang, Hardness of the undirected congestion min-

imization problem, in Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, 2005, pp. 284–293. [16, 60]

[4] Y. Aumann and Y. Rabani, Improved bounds for all optical routing, in Pro-
ceedings of the 6th Annual ACM-SIAM Symposium of Discrete Algorithms,
1995, pp. 567–576. [17]

[5] Y. Azar and O. Regev, Strongly polynomial algorithms for the unsplittable

flow problem, in Proceedings of the 8th Conference on Integer Programming
and Combinatorial Optimization, 2001, pp. 15–29. [16, 17]

[6] A. Bagchi, Efficient Strategies for Topics in Internet Algorithmics, PhD
thesis, The Johns Hopkins University, October 2002. [39]

[7] A. Bagchi, A. Chaudary, C. Scheideler, and P. Kolman, Algorithms

for fault-tolerant routing in circuit switched networks, in Fourteenth ACM
Symposium on Parallel Algorithms and Architectures, 2002. [39]

[8] A. Bagchi, A. Chaudhary, and P. Kolman, Short length Menger’s theo-

rem and reliable optical routing, in Proceedings of the 15th Annual Symposium
on Parallel Algorithms and Architectures, 2003, pp. 246–247. [17]

[9] G. Baier, Flows with Path Restrictions, PhD thesis, TU Berlin, 2003.
[40, 42, 51, 54, 75]

[10] G. Baier, T. Erlebach, A. Hall, E. Köhler, H. Schilling, and

M. Skutella, Length-bounded cuts and flows, in Proceedings of the 33rd
International Colloquium on Automata, Languages and Programming, 2006,
pp. 679–690. [40, 75]

[11] G. Baier, E. Köhler, and M. Skutella, On the k-

splittable flow problem, Algorithmica 42 (2005), pp. 231–248.
[37, 38, 39, 42, 44, 47, 48, 51, 54, 57, 105, 106]

109

110 Bibliography

[12] L. Bartholdi, Counting paths in graphs, L’Enseignement Mathématique 45

(1999), pp. 83–131. [60]

[13] A. Baveja and A. Srinivasan, Approximation algorithms for disjoint paths

and related routing and packing problems, Mathematics of Operations Re-
search 25 (2000), pp. 255–280. [16, 17, 60, 91, 92]

[14] R. E. Bellman, On a routing problem, Quarterly of Applied Mathematics
16 (1958), pp. 87–90. [8]

[15] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization,
Athena Scientific, 1997. [22]

[16] A. Bley, On the complexity of vertex-disjoint length-restricted path problems,
Computational Complexity 12 (2004), pp. 131–149. [40]

[17] U. Brandes, G. Neyer, and D. Wagner, Edge-disjoint paths in planar

graphs with short total length, Technical Report 19, Universität Konstanz,
1996. [40]

[18] R. E. Burkard, K. Dlaska, and B. Klinz, The quickest flow problem,
ZOR – Methods and Models of Operations Research 37 (1993), pp. 31–58.

[40]

[19] R. G. Busacker and P. J. Gowen, A procedure for determining a family of

minimum-cost network flow patterns, ORO Technical Paper 15, Operational
Research Office, Johns Hopkins University, Baltimore, 1961. [11]

[20] C. Chekuri and S. Khanna, Edge disjoint paths revisited, in Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[17, 60]

[21] G.-H. Chen and Y.-C. Hung, Algorithms for the constrained quickest path

problem and the enumeration of quickest paths, Computers and Operations
Research 21 (1994), pp. 113–118. [60]

[22] Y. L. Chen, An algorithm for finding the k quickest paths in a network,
Computers and Operations Research 20 (1993), pp. 59–65. [60]

[23] Y. L. Chen, Finding the k quickest simple paths in a network, Information
Processing Letters 50 (1994), pp. 89–92. [60]

[24] J. Chuzhoy and J. Naor, New hardness results for congestion minimization

and machine scheduling, in Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, 2004, pp. 28–34. [16]

[25] E. W. Dijkstra, A note on two problems in connection with graphs, Nu-
merische Mathematik 1 (1959), pp. 269–271. [8, 61]

Bibliography 111

[26] Y. Dinitz, N. Garg, and M. X. Goemans, On the single source unsplit-

table flow problem, Combinatorica 19 (1999), pp. 17–41. [4, 17, 23]

[27] S. E. Dreyfus, An appraisal of some shortest path algorithms, Operations
Research 17 (1969), pp. 395–412. [61]

[28] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic

efficiency for network flow problems, Journal of the ACM 19 (1972), pp. 248–
264. [10, 11]

[29] D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing 28

(1998), pp. 652–673. [60, 61]

[30] G. Exoo, On line disjoint paths of bounded length, Discrete Mathematics 44

(1983), pp. 317–318. [40]

[31] L. Fleischer and M. Skutella, The quickest multicommodity flow prob-

lem, in Proceedings of the 9th Conference on Integer Programming and Com-
binatorial Optimization, 2002, pp. 36–53. [41, 55, 56]

[32] L. Fleischer and É. Tardos, Efficient continuous-time dynamic network

flow algorithms, Operations Research Letters 23 (1998), pp. 71–80. [41]

[33] L. K. Fleischer, Approximating fractional multicommodity flow indepedent

of the number of commodities, SIAM Journal on Discrete Mathematics 13,
no. 4 (2000), pp. 505–520. [13, 60, 102]

[34] L. R. Ford, Network flow theory, Paper P-923, The Rand Corporation, Santa
Monica, California, 1956. [8]

[35] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Cana-
dian Journal of Mathematics 8 (1956), pp. 399–404. [2, 10, 59, 97]

[36] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows

from static flows, Operations Research 6 (1958), pp. 419–433. [13, 40]

[37] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princenton Univer-
sity Press, Princenton, NJ, 1962. [10, 40]

[38] B. L. Fox, k-th shortest paths and applications to the probabilistic networks,
ORSA/TIMS Joint National Meeting 23 (1975), p. B263. [61]

[39] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP–Completeness, Freeman, San Francisco, 1979. [7, 15, 18]

[40] N. Garg and J. Könemann, Faster and simpler algorithms for multicom-

modity flow and other fractional packing problems, in Proceedings of the
39th Annual IEEE Symposium on Foundations of Computer Science, 1998,
pp. 300–309. [13, 60, 102, 104]

112 Bibliography

[41] I. Gessel, Counting paths in young’s lattice, Journal of Statistical Planning
and Inference 34 (1993), pp. 125–134. [60]

[42] A. V. Goldberg and R. E. Tarjan, Finding minimum-cost circulations

by cancelling negative cycles, Journal of the ACM 36 (1989), pp. 873–886.
[11]

[43] M. Grigoriadis and L. G. Khachiyan, An exponential-function reduc-

tion method for block-angular convex programs, Networks 26, no. 1.2 (1995),
pp. 59–68. [60]

[44] M. Grigoriadis and L. G. Khachiyan, A sublinear-time randomized ap-

proximation algorithm for matrix games, Operations Research Letters 18,
no. 2 (1995), pp. 53–58. [60]

[45] M. Grigoriadis and L. G. Khachiyan, Approximate minimum-cost multi-

commodity flows in o(ǫ−2knm) time, Mathematical Programming 75 (1996),
pp. 477–482. [60]

[46] M. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel

price-directive decomposition, Mathematics of Operations Research 21 (1996),
pp. 321–340. [60]

[47] M. Grötschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and

Combinatorial Optimization, Springer, Berlin, 1987. [13, 101]

[48] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and

M. Yannakakis, Near-optimal hardness results and approximation algo-

rithms for edge-disjoint paths and related problems, in Proceedings of the
31st Annual ACM Symposium on Theory of Computing, 1999, pp. 19–28.

[16, 40, 60, 91, 92, 102]

[49] A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time:

Efficient algorithms and complexity, in Proceedings of the 30th International
Colloquium on Automata, Languages and Programming, 2003, pp. 397–409.

[41]

[50] R. Hassin, Approximation schemes for the restricted shortest path problem,
Mathematics of Operations Research 17, no. 1 (1992), pp. 36–42. [84]

[51] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems,
PWS Publishing Company, Boston, Massachusetts, 1996. [7]

[52] A. J. Hoffman, A generalization of max flow-min cut, Mathematical Pro-
gramming 6 (1974), pp. 352–359. [97, 98]

[53] B. Hoppe, Efficient dynamic network flow algorithms, PhD thesis, Cornell
University, 1995. [41]

Bibliography 113

[54] B. Hoppe and É. Tardos, The quickest transshipment problem, Mathemat-
ics of Operations Research 25 (2000), pp. 36–62. [41]

[55] M. Iri, A new method for solving transportation-network problems, Journal
of the Operations Research Society of Japan 3 (1960), pp. 27–87. [11]

[56] A. Itai, Y. Perl, and Y. Shiloach, The complexity of finding maximum

disjoint paths with length constraints, Networks 12 (1982), pp. 277–286. [40]

[57] W. S. Jewell, Optimal flow through networks, Interim Technical Report 8,
MIT, 1958. [11]

[58] M. Klein, A primal method for minimum cost flows with applications to

the assignment and transportation problems, Management Science 14 (1967),
pp. 205–220. [11]

[59] P. Klein, S. A. Plotkin, D. B. Shmoys, and E. Tardos, Faster ap-

proximation algorithms for the unit capacity concurrent flow problem with

applications to routing and finding sparse cuts, SIAM Journal of Computing
23, no. 3 (1994), pp. 466–487. [60]

[60] J. Kleinberg and R. Rubinfeld, Short paths in expander graphs, in Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer Science,
1996, pp. 86–95. [16]

[61] J. M. Kleinberg, Approximation Algorithms for Disjoint Path Prob-

lems, PhD thesis, Massachusetts Institute of Technology, May 1996.
[15, 17, 18, 60, 86, 87, 102]

[62] J. M. Kleinberg, Single-source unsplittable flow, in Proceedings of the 37th
Annual IEEE Symposium on Foundations of Computer Science, 1996, pp. 68–
77. [16, 17]

[63] R. Koch, M. Skutella, and I. Spenke, Approximation and complexity

of k-splittable flows, in Proceedings of the 3rd International Workshop on
Approximation and Online Algorithms, 2006, pp. 244–257. [39]

[64] S. G. Kolliopoulos, Edge-disjoint paths and unsplittable flow. Draft chap-
ter from the forthcoming“Handbook of Approximation Algorithms and Meta-
heuristics”, edited by T. F. Gonzalez, 2005. [60]

[65] S. G. Kolliopoulos and C. Stein, Approximation algorithms for single-

source unsplittable flow, SIAM Journal on Computing 31 (2002), pp. 919–946.
[17]

[66] S. G. Kolliopoulos and C. Stein, Approximating disjoint-path prob-

lems using packing integer programs, Mathematical Programming Series A
99 (2004), pp. 63–87. [60]

114 Bibliography

[67] P. Kolman and C. Scheideler, Improved bounds for the unsplittable flow

problem, in Proceedings of the 13th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2002, pp. 184–193. [16, 40, 102]

[68] B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algo-

rithms, Springer, Berlin, 2000. [7]

[69] E. L. Lawler, A procedure for computing the K best solutions to discrete

optimization problems and its application to the shortest path problem, Man-
agement Science 18 (1972), pp. 401–405. [60, 61, 77, 107]

[70] T. Leighton, F. Makedon, S. A. Plotkin, C. Stein, and E. Tardos,
Fast approximation algorithms for multicommodity flow problems, Journal of
Computer and System Sciences 50, no. 2 (1995), pp. 228–243. [60]

[71] T. Leighton, S. Rao, and A. Srinivasan, Multicommodity flow and cir-

cuit switching, in Proceedings of the 31st Hawaii International Conference on
System Sciences, 1998, pp. 459–465. [16, 17, 19, 20]

[72] L. Lovász, V. Neumann-Lara, and M. Plummer, Mengerian theorems

for paths of bounded length, Periodica Mathematica Hungarica 9 (1978),
pp. 269–276. [40]

[73] J. F. Lucas, Paths and pascal numbers, Two-Year College Mathematics Jour-
nal 14, no. 4 (1983), pp. 329–341. [59]

[74] A. R. Mahjoub and S. T. McCormick, The complexity of max flow and

min cut with bounded-length paths. Unpublished manuscript, 2003. [40]

[75] M. Martens and M. Skutella, Flows on few paths: Algorithms and lower

bounds, in Proceedings of the 12th Annual European Symposium on Algo-
rithms, 2004, pp. 520–531. [18, 41]

[76] M. Martens and M. Skutella, Flows on few paths: Algorithms and lower

bounds, Networks 48, no. 2 (2006), pp. 68–76. [18, 41]

[77] M. Martens and M. Skutella, Length-bounded and dynamic k-splittable

flows, in Operations Research Proceedings 2005, 2006, pp. 297–302. [41]

[78] S. T. McCormick, A polynomial algorithm for abstract maximum flows.
UBC Faculty of Commerce Working Paper 95-MSC-001, 1998. [97, 98, 103]

[79] N. Meggido, Combinatorial optimization with rational objective functions,
Mathematics of Operations Research 4 (1979), pp. 414–424. [40]

[80] E. F. Moore, The shortest path through a maze, in Proceedings of the Inter-
national Symposium on the Theory of Switching, Part II, Cambridge, Mas-
sachusetts, 1959, Harvard University Press, pp. 285–292. [8]

Bibliography 115

[81] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, 1995. [95]

[82] L. Niepel and D. Safaŕıková, On a generalization of Menger’s theorem,
Acta Mathematica Universitatis Comenianae (1983), pp. 275–284. [40]

[83] J. B. Orlin, A faster strongly polynomial minimum cost flow algorithm,
Operations Research 41 (1993), pp. 338–350. [11]

[84] C. H. Papadimitriou, Computational Complexity, Addison Wesley, 1994.
[71]

[85] Y. Perl and D. Ronen, Heuristics for finding a maximum number of dis-

joint bounded paths, Networks 14 (1984), pp. 531–544. [40]

[86] S. A. Plotkin, D. B. Shmoys, and É. Tardos, Fast approximation algo-

rithms for fractional packing and covering problems, Mathematics of Opera-
tions Research 20 (1995), pp. 257–301. [60, 61, 76, 77, 78, 80, 82]

[87] P. Raghavan, Probabilistic construction of deterministic algorithms: approx-

imating packing integer programs, Journal of Computer and System Sciences
37 (1988), pp. 130–143. [15, 95, 100, 102]

[88] P. Raghavan and C. D. Thompson, Randomized rounding: A technique

for provably good algorithms and algorithmic proofs, Combinatorica 7 (1987),
pp. 365–374. [4, 15, 19, 86, 95, 100, 102]

[89] P. Raghavan and E. Upfal, Efficient routing in all-optical networks, in
Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
1994, pp. 134–143. [17]

[90] L. Roditty, On the k-simple shortest paths problem in weighted directed

graphs, in Proceedings of the 18th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2007, pp. 920–928. [61]

[91] J. B. Rosen, S.-Z. Sun, and G.-L. Xue, Algorithms for the quickest path

problem and the enumeration of quickest paths, Computers and Operations
Research 18 (1991), pp. 579–584. [60]

[92] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and
Sons, Chichester, 1986. [13]

[93] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency,
Springer, Berlin, 2003. [7, 59]

[94] F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem,
Journal of the ACM 37 (1990), pp. 318–334. [60]

116 Bibliography

[95] M. Skutella, Approximating the single source unsplittable min-cost flow

problem, Mathematical Programming 91 (2002), pp. 493–514. [17, 103, 104]

[96] R. P. Stanley, A matrix for counting paths in acyclic digraphs, Journal of
Combinatorial Theory Series A 74, no. 1 (1996), pp. 169–172. [60]

[97] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM Journal on Computing 8, no. 3 (1979), pp. 410–421. [59]

[98] J. Y. Yen, Finding the k shortest loopless paths in a network, Management
Science 17, no. 11 (1971), pp. 712–716. [60]

[99] N. E. Young, Sequential and parallel algorithms for mixed packing and cover-

ing, in IEEE Symposium on Foundations of Computer Science, 2001, pp. 538–
546. [60]

