
Problems, Models and Algorithms
in One- and Two-Dimensional Cutting

DISSERTATION

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Diplommathematiker (Wirtschaftsmathematik) Belov, Gleb

geboren am 6. Januar 1977 in St. Petersburg/Russland

Gutachter:

Prof. Dr. Andreas Fischer Technische Universität Dresden
Prof. Dr. Robert Weismantel Otto-von-Guericke Universität Magdeburg
Prof. Dr. Stefan Dempe Bergakademie Freiberg

Eingereicht am: 08.09.2003

Tag der Disputation: 19.02.2004

Preface

Within such disciplines as Management Science, Information and Computer Sci-
ence, Engineering, Mathematics and Operations Research, problems of cutting
and packing (C&P) of concrete and abstract objects appear under various spec-
ifications (cutting problems, knapsack problems, container and vehicle loading
problems, pallet loading, bin packing, assembly line balancing, capital budgeting,
changing coins, etc.), although they all have essentially the same logical structure.
In cutting problems, a large object must be divided into smaller pieces; in packing
problems, small items must be combined to large objects. Most of these problems
are NP-hard.

Since the pioneer work of L.V. Kantorovich in 1939, which first appeared in
the West in 1960, there has been a steadily growing number of contributions in this
research area. In 1961, P. Gilmore and R. Gomory presented a linear programming
relaxation of the one-dimensional cutting stock problem. The best-performing al-
gorithms today are based on their relaxation. It was, however, more than three
decades before the first ‘optimum’ algorithms appeared in the literature and they
even proved to perform better than heuristics. They were of two main kinds: enu-
merative algorithms working by separation of the feasible set and cutting plane
algorithms which cut off infeasible solutions. For many other combinatorial prob-
lems, these two approaches have been successfully combined. In this thesis we do
it for one-dimensional stock cutting and two-dimensional two-stage constrained
cutting. For the two-dimensional problem, the combined scheme provides mostly
better solutions than other methods, especially on large-scale instances, in little
time. For the one-dimensional problem, the integration of cuts into the enumera-
tive scheme improves the results of the latter only in exceptional cases.

While the main optimization goal is to minimize material input or trim loss
(waste), in a real-life cutting process there are some further criteria, e.g., the num-
ber of different cutting patterns (setups) and open stacks. Some new methods
and models are proposed. Then, an approach combining both objectives will be
presented, to our knowledge, for the first time. We believe this approach will be
highly relevant for industry.

The presented investigation is a result of a three-year study at Dresden Uni-

versity, concluded in August 2003.

I would like to express my gratitude to all the people who contributed to the
completion of my dissertation. Dr. Guntram Scheithauer has been a very attentive
and resourceful supervisor, not only in the research. He and Professor Johannes
Terno, who died in 2000 after a long illness, supervised my diploma on a cutting
plane algorithm for one-dimensional cutting with multiple stock lengths.

Professor Elita Mukhacheva (Russia) introduced me to the field of cutting and
packing in 1995. In her research group I studied the powerful sequential value
correction heuristic for one-dimensional stock cutting.

The last two years of the study were supported by the GOTTLIEB DAIMLER-
and CARL BENZ-Foundation. The conferences on different topics and student
meetings organized by the foundation were very useful for interdisciplinary com-
munication; they provided opportunities to learn, for example, how to present
one’s own research in an understandable way.

My frequent visits to Ufa, my home city in the southern Urals, were warmly
welcomed and nutritionally supported by my family. Many thanks to my dance
partner Kati Haenchen for two years of intensive ballroom dancing and for under-
standing when I had to give up the serious sport because of time restrictions.

My thanks go to Joachim Kupke, Marc Peeters, and (quite recently) Cláudio
Alves with J.M. Valério de Carvalho for testing their branch-and-price implemen-
tations on the hard28 set; to Jon Schoenfield for providing this set, for many dis-
cussions, and for thorough proofreading of large parts of the thesis; to Vadim
Kartak for some brilliant ideas about cutting planes; to Eugene Zak and Helmut
Schreck, TietoEnator MAS GmbH, for their informative advice about real-life
cutting; to François Vanderbeck for providing his test instances; and to the anony-
mous referees of Chapter 2 (which was submitted to EJOR) for the remarks on
presentation.

Dresden, September 2003
Gleb Belov

Contents

Introduction 1

1 State-of-the-Art Models and Algorithms 5
1.1 One-Dimensional Stock Cutting and Bin-Packing 5

1.1.1 The Model of Kantorovich 5
1.1.2 The Column Generation Model of Gilmore and Gomory . 6
1.1.3 Other Models from the Literature 7
1.1.4 A Class of New Subpattern Models 8
1.1.5 Problem Extension: Multiple Stock Sizes 11

1.2 Two-Dimensional Two-Stage Constrained Cutting 12
1.3 Related Problems . 14
1.4 Solution Approaches . 14

1.4.1 Overview . 14
1.4.2 Combinatorial Heuristics 15
1.4.3 Gilmore-Gomory’s Column Generation with Rounding . . 16

1.4.3.1 LP Management 16
1.4.3.2 Column Generation for 1D-CSP 16
1.4.3.3 Rounding of an LP Solution 17
1.4.3.4 Accelerating Column Generation 18

1.4.4 Branch-and-Bound . 19
1.4.4.1 A General Scheme 19
1.4.4.2 Bounds . 20
1.4.4.3 Non-LP-Based Branch-and-Bound 21
1.4.4.4 LP-Based Branch-and-Bound and Branch-and-

Price . 21

2 Branch-and-Cut-and-Price for 1D-CSP and 2D-2CP 23
2.1 Introduction . 24
2.2 Overview of the Procedure . 25
2.3 Features . 26

2.3.1 LP Management . 27

i

ii CONTENTS

2.3.2 Rounding of an LP Solution 27
2.3.3 Sequential Value Correction Heuristic for 2D-2CP 28
2.3.4 Reduced Cost Bounding 28
2.3.5 Enumeration Strategy . 29

2.3.5.1 Alternative Branching Schemes 29
2.3.5.2 Branching Variable Selection 30
2.3.5.3 Node Selection 31

2.3.6 Node Preprocessing . 32
2.4 Cutting Planes . 33

2.4.1 Overview . 33
2.4.2 GOMORY Fractional and Mixed-Integer Cuts 33
2.4.3 Local Cuts . 36
2.4.4 Selecting Strong Cuts . 37
2.4.5 Comparison to the Previous Scheme 37

2.5 Column Generation . 38
2.5.1 Forbidden Columns . 39
2.5.2 Column Generation for 1D-CSP 39

2.5.2.1 Enumeration Strategy 40
2.5.2.2 A Bound . 40
2.5.2.3 Practical Issues 42

2.5.3 The Two-Dimensional Case 42
2.6 Computational Results . 43

2.6.1 The One-Dimensional Cutting Stock Problem 43
2.6.1.1 Benchmark Results 44
2.6.1.2 The hard28 Set 45
2.6.1.3 Triplet Problems 49
2.6.1.4 Other Algorithm Parameters for 1D-CSP 49

2.6.2 Two-Dimensional Two-Stage Constrained Cutting 50
2.6.2.1 Pseudo-Costs 50
2.6.2.2 Comparison with Other Methods 50
2.6.2.3 Algorithm Parameters for 2D-2CP 55

2.7 Implementation . 55
2.8 Conclusions . 57

3 Minimization of Setups and Open Stacks 59
3.1 Minimizing the Number of Different Patterns 59

3.1.1 Introduction . 60
3.1.2 Some Known Approaches 60
3.1.3 Column Generation Models of Vanderbeck 61
3.1.4 Modeling . 63
3.1.5 Lower Bound . 64

CONTENTS iii

3.1.6 Column Generation . 65
3.1.7 Branching . 66
3.1.8 Feasible Solutions . 68
3.1.9 Implementation . 68
3.1.10 Computational Results 69

3.1.10.1 Benchmark Results 69
3.1.10.2 Tradeoff with Material Input 71
3.1.10.3 Comparison with KOMBI234 71
3.1.10.4 Comparison with the Exact Approach of Van-

derbeck . 72
3.1.11 Summary and Conclusions 74

3.2 Restricting the Number of Open Stacks 74
3.2.1 Introduction . 75
3.2.2 Some Known Approaches 77
3.2.3 A Sequential Heuristic Approach 77
3.2.4 Computational Results Concerning Material Input 79

3.2.4.1 Benchmarking the New Heuristic 79
3.2.4.2 Further Parameters of SVC 81
3.2.4.3 Problems with Small Order Demands 81

3.2.5 PARETO Criterion for the Multiple Objectives 82
3.2.6 Updating Prices Considering Open Stacks 82
3.2.7 Restricting the Number of Open Stacks 83
3.2.8 Summary . 84

3.3 Combined Minimization of Setups and Open Stacks 84
3.4 Problem Splitting . 88

3.4.1 Splitting Methods . 88
3.4.2 Computational Results 89

3.5 IP Models for Open Stacks Minimization 91
3.6 Summary and Outlook . 93

4 ILP Models for 2D-2CP 95
4.1 Models with Fixed Strip Widths from the Literature 95

4.1.1 Model 1 . 95
4.1.2 Model 2 . 96
4.1.3 Anti-Symmetry Constraints 97
4.1.4 Tightening the LP Relaxation of M2 97

4.2 Variable Width Models . 98
4.3 Lexicographical Branching . 100
4.4 Lexicographically Ordered Solutions 101
4.5 Computational Results . 102

iv CONTENTS

Summary 105

Bibliography 107

List of Tables 113

Appendix 115
A.1 Example of an Idea Leading to Branch-and-Price 115
A.2 Example of a Solution with 4 Open Stacks 115

Introduction

Optimization means to maximize (or minimize) a function of many variables sub-
ject to constraints. The distinguishing feature of discrete, combinatorial, or inte-
ger optimization is that some of the variables are required to belong to a discrete
set, typically a subset of integers. These discrete restrictions allow the mathemat-
ical representation of phenomena or alternatives where indivisibility is required
or where there is not a continuum of alternatives. Discrete optimization prob-
lems abound in everyday life. An important and widespread area of applications
concerns the management and efficient use of scarce resources to increase pro-
ductivity.

Cutting and packing problems are of wide interest for practical applications
and research (cf. [DST97]). They are a family of natural combinatorial problems,
encountered in numerous areas such as computer science, industrial engineering,
logistics, manufacturing, etc. Since the definition of C&P problems as geometric-
combinatoric problems is oriented on a logical structure rather than on actual phe-
nomena, it is possible to attribute apparently heterogeneous problems to common
backgrounds and to recognize general similarities. Figure 1, which is taken from
[DF92], gives a structured overview of the dimensions of C&P.

A typology of C&P problems by H. Dyckhoff [Dyc90, DF92] distinguishes
between the dimension of objects (1,2,3,

�
), the kind of assignment, and the

structure of the set of large objects (‘material’) and of small objects (‘products’,
‘pieces’, ‘items’). In 2- and 3-dimensional problems we distinguish between rect-
angular and irregular C&P (objects of complex geometric forms). Rectangular
cutting may be guillotine, i.e., the current object is always cut end-to-end in par-
allel to an edge.

Inspired by the explosion of the research in the last 30 years, which in the
last 10–15 years brought about the ability to solve really large problems, in this
thesis we investigate two problems which can be effectively formulated by Integer
Linear Programming (ILP) models. Effectiveness is understood as the ability to
construct successful solution approaches on the basis of a model. For the problems
considered, there are two main kinds of linear models: assignment formulations
(decision variables determine which items are cut from each large object) and

1

2
IN

T
R

O
D

U
C

T
IO

N

Figure 1: Phenomena of cutting and packing

INTRODUCTION 3

Cutting pattern

Number of applications

Stock Cutting planProducts

b b

Demand

L
en

gt
h

b
1 2 3

Figure 2: One-dimensional cutting stock problem with one stock type

strip/cutting pattern generation (decision variables determine which patterns are
used, i.e., solutions are combined from ready patterns).

The one-dimensional cutting stock problem (1D-CSP) is to obtain a given set
of order lengths from stock rods of a fixed length (Figure 2). The objective is
typically to minimize the number of rods (material input). The two-dimensional
two-stage constrained cutting problem (2D-2CP) is to obtain a subset of rectan-
gular items from a single rectangular plate so that the total value of the selected
items is maximized (Figure 3). The technology of cutting is two-stage guillotine,
i.e., in the first stage we obtain vertical strips by guillotine edge-to-edge cuts; in
the second stage the cutting direction is rotated by 90o and the cuts across the
strips produce the items. Moreover, the difficulty of the constrained case is that
the number of items of a certain type is limited; otherwise the problem is rather
easy. Both 1D-CSP and 2D-2CP are classical topics of research and also of high
relevance for production.

Both for cutting patterns in 1D-CSP and for strip patterns in 2D-2CP, the
number of patterns for a given problem can be astronomical. Thus, in a pattern-
oriented approach we employ delayed pattern generation.

In Chapter 1 we discuss some known models of the problems under investi-
gation and propose a new subpattern model for 1D-CSP which does away with
the astronomical number of complete patterns and combines them from a smaller
number of subpatterns. The model has a weak continuous (LP) relaxation. Then
some problems related to 1D-CSP and 2D-2CP are stated. The rest of the chap-
ter introduces traditional solution approaches, e.g., heuristics including delayed
pattern generation based on the LP relaxation and exact enumerative schemes in-
cluding bounds on the objective value.

In Chapter 2 we investigate two approaches based on pattern generation, an

4 INTRODUCTION

Strip patternProducts

Valuep p p
Number of applications

Knapsack layout

Amountbbb
2 31

1 2 3

Figure 3: Two-dimensional two-stage constrained knapsack

enumerative scheme called branch-and-price and general-purpose cutting planes,
and combine them. For branch-and-price, some widely applied tools like pseudo-
costs, reduced cost bounding and different branching strategies are tested. For
cutting planes, numerical stability is improved and mixed-integer cuts are inte-
grated. The combined approach produces mostly better results for 2D-2CP than
other known methods, especially on large instances. For 1D-CSP, general-purpose
cuts are necessary only in exceptional instances.

In Chapter 3 we discuss the real-life conditions of 1D-CSP. Among many in-
dustrial constraints and criteria, the number of different patterns and the number
of open stacks seem to add significant complexity to the optimization problem.
The latter are the number of started and not yet finished product types at some
moment during the sequence of cutting. An approach minimizing these auxiliary
criteria should not relax the initial objective, i.e., the minimization of material in-
put. A simple non-linear model is proposed for pattern minimization whose linear
relaxation enables the application of an enumerative scheme. The sequential value
correction heuristic used in Chapter 2 to solve residual problems is improved and
modified to restrict the number of open stacks to any given limit; tests show only
a negligible increase of material input. Then there follows a strategy to combine
all three objectives, which is probably done for the first time.

In Chapter 4 we consider assignment formulations of 2D-2CP. New models
with variable strip widths will be presented. Symmetries in the search space are
eliminated by lexicographic constraints which are already known from the litera-
ture. However, previously known models with fixed strip widths are shown to be
more effective.

Chapter 1

State-of-the-Art Models and
Algorithms

1.1 One-Dimensional Stock Cutting and Bin-
Packing

The one-dimensional cutting stock problem (1D-CSP, Figure 2) is defined by the
following data: (� , � , ��� ���	��

�
����
������ , ��� ���
��

���
��
������), where � denotes
the length of each stock piece, � denotes the number of smaller piece types and
for each type ��� ��

���
��
�� , ��� is the piece length, and ��� is the order demand.
In a cutting plan we must obtain the required set of pieces from the available
stock lengths. The objective is to minimize the number of used stock lengths or,
equivalently, trim loss (waste). In a real-life cutting process there are some further
criteria, e.g., the number of different cutting patterns (setups) and open stacks
(Chapter 3).

A special case in which the set of small objects is such that only one item of
each product type is ordered, i.e., ����� �"!#� (sometimes also when ��� are very
small), is known as the bin-packing problem (1D-BPP). This special case, having
a smaller overall number of items, is more suitable for pure combinatorial solution
approaches.

1.1.1 The Model of Kantorovich

The following model is described in [Kan60] and in the survey [dC02]; it is called
assignment formulation in [Pee02]. Let

�
be an upper bound on the number of

stock lengths needed in an optimum solution and $#�&% (�'�(�)

�
�
��
�� ; *+�,��

�
�
��
 �)
be the number of items of type � in the * -th stock length. Let -.%/�0� if stock length* is used in the solution, otherwise -1%��32 .

5

6 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

4
Kant �3576�8:9<;%>=#� -�% (1.1)

s.t. 9 ��?=#� ����$@�A%CBD�E-�%F
 *G�0��

�
�
��
 � (1.2)9 ;%>=#� $@�A%CHD���I
 �'�(��
��
�
��
�� (1.3)$@�A%KJML/NO
 -
%PJRQS
 !#�T
U*�� (1.4)

The continuous relaxation of this model (when all variables are allowed to
take real values) is very weak. Consider the following instance with large waste:� � � and ���V�W�YX)ZG[0\ , \M] [^2 . The objective value of the relaxation is4

Kant � 4 Kant �_�FX�ZY[`\�Xa�Y� . Actually, 4 Kant is equal to the material bound 9b���c���dX)�/�
As stronger relaxations exist, it is not advantageous to use this model as a bound
in an enumerative framework. Furthermore, the model has much symmetry: by
exchanging values corresponding to different stock lengths, we obtain equivalent
solutions which generally leads to an increased effort in an enumerative approach.

1.1.2 The Column Generation Model of Gilmore and Gomory

A reason for the weakness of the relaxation of model (1.1)–(1.4) is that the num-
ber of items in a stock length and the pattern frequencies -.% can be non-integer.
DANTZIG-WOLFE decomposition [NW88, dC02], applied to the knapsack con-
straint (1.2), restricts each vector �d$e��%1

�
�
��
T$@�f%�� , *g�h��

�
�
��
 � , to lie inside the
knapsack polytope, which is the set of linear combinations of all feasible cutting
patterns.

A cutting pattern (Figure 2) describes how many items of each type are cut
from a stock length. Let column vectors i % �j�	ik��%1

�
�
��
�i��f%��lJML �N , *G�,�)

�
�
��
�m ,
represent all possible cutting patterns. To be a valid cutting pattern, i % must satisfy9 ��?=#� ���di��&%CBn� (1.5)

(knapsack condition). Moreover, we consider only proper patterns:i��&%KBn���o
 �'�0��

�
�
��
��g
 *+�,��

���
��
�m (1.6)

because this reduces the search space of the continuous relaxation in instances
where the demands � are small [NST99].

Let $p% , *V�q��

�
����
�m , be the frequencies (intensities, multiplicities, activities,
i.e., the numbers of application) of the patterns in the solution. The model of
Gilmore and Gomory [GG61] is as follows:4 1D-CSP

G&G �D576�8 93r%T=#� $p% (1.7)

s.t. 93r%T=#� i��&%�$p%KHn���U
 �'�(��

���
��
T� (1.8)$p%KJML/NO
 *+�,��

�
�
��
�ms� (1.9)

1.1. ONE-DIMENSIONAL STOCK CUTTING AND BIN-PACKING 7

The huge number of variables/columns is not available explicitly for practical
problems. Usually, necessary patterns are generated during a solution process,
hence the term column generation. However, the number of different patterns
in a solution cannot be greater than the number of stock lengths and is usually
comparable with the number of piece types.

The model has a very strong relaxation. There exists the conjecture Modified
Integer Round-Up Property (MIRUP, [ST95b]):

The gap between the optimum value 4 1D-CSP
G&G and the optimum relax-

ation value 4 1D-CSP
G&G (obtained by allowing non-integer variable val-

ues) is always smaller than 2.

Actually, there is no instance known with a gap greater than 7/6 [RS02]. More-
over, instances with a gap smaller than 1 constitute the vast majority. These are
called Integer Round-Up Property (IRUP) instances. Instances with a gap greater
than or equal to 1 are called non-IRUP instances.

In the decomposed model there are a huge number of variables. But no vari-
able values can be exchanged without changing the solution, i.e., the model has
no symmetry. This and the strength of the relaxation make it advantageous for an
enumerative approach.

1.1.3 Other Models from the Literature

In the survey [dC02] the following models are described:

1. Position-indexed formulations

Variables that correspond to items of a given type are indexed by the physi-
cal position they occupy inside the large objects. Formulations of this type
have been used in two- and three-dimensional non-guillotine cutting and in
scheduling (‘time-indexed formulations’).

(a) Arc flow model [dC98]. Vertices represent possible positions of an
item’s start and end in a pattern. Forward arcs represent items or waste
and backward arcs represent stock lengths. Thus, the variable $ut
v?t�w forx@ysz�x �lJ|{.����

�
����
��}��~ denotes how many pieces of length x�y�z�x � are
positioned at x � in all patterns of the solution. Under flow conservation
constraints, the flow weight is to be minimized. The author proposed
three criteria to reduce the search space and symmetries.

The model is equivalent to the Gilmore-Gomory formulation: solu-
tions can be easily converted, i.e., a flow can be decomposed into
paths representing patterns. The model was used in [dC98] as such.

8 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

The number of variables is pseudo-polynomial but most of them were
not necessary and the author applied column generation. Moreover,
for each position involved, flow conservation constraints are neces-
sary, i.e., constraints were also generated and the model grew in two
directions.

In [AdC03], the Gilmore-Gomory model was used (and called cycle-
flow formulation) but branching was done in fact on the variables of
the arc flow formulation because it is possible to distinguish patterns
contributing to a specific $pt
v}t�w variable.

(b) A model with consecutive ones is obtained by a unimodular transfor-
mation of the arc flow model, which sums each flow conservation con-
straint with the previous one.

2. One-cut models

Each decision variable corresponds to a single cutting operation performed
on a single piece of material. Given a piece of some size, it is divided
into smaller parts, denoted as the first section and the second section of the
one-cut. Every one-cut should produce, at least, one piece of an ordered
size. The cutting operations can be performed either on stock pieces or
intermediate pieces that result from previous cutting operations.

Introduced by Dyckhoff [Dyc81], the models have a pseudopolynomial
number of variables but much symmetry in the solution space. To our
knowledge, the integer solution has not been tried. A variation of this model
by Stadtler [Sta88] has an interesting structure: the set of constraints can be
partitioned into two subsets, the first with a pure network structure, and
the second composed of generalized upper bounding (GUB) constraints.
Stadtler calls the Gilmore-Gomory model a complete-cut model.

3. Bin-packing as a special case of a vehicle routing problem where all ve-
hicles are identical and the time window constraints are relaxed [DDI N 98].
The problem is defined in a graph where the items correspond to clients and
the bins to vehicles.

1.1.4 A Class of New Subpattern Models

In the Gilmore-Gomory model we have to deal implicitly with a huge
number of columns. The advantage is a strong relaxation and ab-
sence of symmetries. To reduce the number of different columns, we
can restrict them to subpatterns, i.e., partial patterns which are com-
bined to produce whole patterns (this idea was introduced by Profes-

1.1. ONE-DIMENSIONAL STOCK CUTTING AND BIN-PACKING 9

sor R. Weismantel). Each subpattern can be a part of different re-
sulting patterns; thus, all patterns have to be numbered, which brings
much symmetry into the model. Moreover, the continuous relaxation
may not only have non-integer pattern application intensities but also
overcapacity patterns, resulting in a weak bound. However, it is pos-
sible to choose a small set of elementary subpatterns so that standard
optimization software can be applied to the model.

Let 1D-CSP be defined by (� , � , �"� �	�	��

�
�
��
������ , ��� �	����

�
�
��
����/�). Let� �+{ i % ~ (*�����
��
�
��
T�) be a set of subpatterns such that each feasible pattern i
can be represented as a sum of elements of

�
. For example, we could define

�
as

a set of half-patterns so that at most two are needed in a combination:� i�JRL �N�� � i�J<� � z ���O�A�Z z ���e�I�Z
 � Z [�}�e�I�Z��#� (1.10)

or as a set of single-product subpatterns� Z t1��� � �'�(��
��
�
��
��g
 x �,��

�
�
��
O�_����� y � 5�6�8'�#���o
�� � �����'�#�#�/� (1.11)

(
� � is the � -th unit vector). Note that when using half-patterns (1.10), we are

guaranteed only maximal resulting patterns, i.e., {.i�J�L �N � 2�B3� z ��i¢¡D���O�A�.~ .
Thus, it is necessary to allow overproduction of items, so that the total amount of
items of type � in the solution may be larger than ��� . In both (1.10) and (1.11), if we
want the resulting patterns to be proper (i|B£�), we need additional constraints,
although this is done implicitly in the standard model.

Let ¤ be an upper bound on the number of different patterns in an optimum
solution. Let $�¥o% be the frequency with which subpattern i % is used in the solution
as a part of pattern ¦ (¦��§��

�
�
��
 ¤ , *¨�©��
��
�
��
��). Let -�¥o%C�©� if i % is a part of
pattern ¦ , otherwise -�¥o%l�ª2 . Then $�¥o%�B $ �e�I�% -a¥o%F
F!f¦�
o*�
 where$ �e�I�% � 576�8��« ¬T­ ®�¯p° {O±c���cX i²�A%�³�~´
 !k*�� (1.12)

Let µ�¥ be the intensity of pattern ¦ in the solution: µF¥^H $p%>¥a
F!k*�
�¦ .576�8P9 ¥ µ�¥ (1.13)

[SUBPAT] s.t. 9 ¥ 9 % i��&%�$¶¥U%CHn���U
 !#� (1.14)$¶¥U%CB $ �e�I�% -)¥o%

 !f¦�
o* (1.15)9 % � i % -)¥U%CBn�/
 !f¦ (1.16)µ�¥^H $¶¥o%F
 !f¦#
U* (1.17)$¶¥U%1
Tµ�¥^JML/NO
 !f¦�
o* (1.18)-)¥U%CJ�QS
 !f¦#
U*�
 (1.19)

10 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

where (1.16) restricts the length of any resulting pattern.
Note that we allow a subpattern to be in a pattern not more than once (1.19)

as otherwise we cannot linearly measure µF¥ . The same reason applies to having
a separate variable $�¥o% for each ¦ . Furthermore, the positive components $�¥o% for
pattern ¦ may have different values for different * . This creates several actual
patterns, all of which satisfy (1.16), but the model ‘knows’ only about pattern ¦ .
Thus, the total actual number of patterns in a solution may be larger than ¤ .

In the solution of the continuous relaxation, (1.15) may allow that -´¥o%�¡·� ,
which leads to overcapacity patterns. The number of the constraints (1.15) and
(1.17) is ¤M� , which is the number of $ -variables. Thus, we have to choose a set�

with a sensible number of subpatterns or hope that not too many variables are
needed. For example, it can be the single-product set (1.11).

To strengthen the relaxation, we may add the constraint9 % � i % -)¥o%PBn�¸µ�¥)
 !f¦#
 (1.20)

cf. (1.16). To restrict the resulting patterns to be proper, we need9 % i % -)¥U%CBn�F
 !f¦#� (1.21)

But the relaxation is weak:

Example 1.1.1 Consider the instance (� � ¹ , �º� ¹�2 , �¨� �	»k

�
2k

�1¼�� , �|��_�F2�2½

�F2�2k
��F2�2²�). An optimum can be easily constructed: Z)2g¾0�	¼½
�2k
�2�� , ¹�¹�¾�	2k
�¹½
�2²� , ¼)2¨¾¿�	2k
�2k
�Z�� , �G¾¿�	2k

�)
�2²� . Starting with this solution in the relaxation
of (1.13)–(1.21) using subpatterns (1.11):� � À �22 Z22 Á 22 2 �2 2 Z2 22 � 22 Z Â$f��%/� Z)2 Z)2 µ1�Ã�3Z)2$ y %/� ¹�¹ ¹�¹ µ y �D¹�¹$¶Äc%/� ¼a2 µ�Ä �3¼)2$@Å�%/� � µ�Å �0��

it is easy to come to a better solution by allowing 7 items of type 1 in the first
pattern. Set $O�o�E�D$f� y �D$f��Ä/�3µ.�E�(� Á yÆ and -p�o�S�ª2½���1¼ , -p� y �ª2k�Ç¹ , -p��Ä��ª2k�Ç» so
that (1.15) is not violated. Hence (1.16) is fulfilled: »u�_��ÈT2k���F¼�[�ZYÈ�2k�Ç¹¸[Á ÈT2k�É»��s�»^È.¹k�}�1¼G¡DZ)2�¡ �Ê�<¹)2 . The LP value is smaller by more than 5 units. A further
reduction will be achieved by incorporating the subpattern (0,0,1), i.e., allowing 3
items of type 3 in the third pattern.

1.1. ONE-DIMENSIONAL STOCK CUTTING AND BIN-PACKING 11

However, with the single-product subpatterns (1.11) it is obvious that no col-
umn generation is needed. Thus, standard optimizers can be applied. Anti-
symmetry constraints like µ
¥MH©µ�¥�N#� , ¦`�Ë��

�
�
��
 ¤ z � , can reduce the search
space. An interesting research topic would be the extension of the model to handle
the number of open stacks (Chapter 3).

1.1.5 Problem Extension: Multiple Stock Sizes

A straightforward extension of the problem is the case with material of several
lengths. As an option, the number of rods of each length can be limited. 1D-CSP
with multiple stock sizes (1D-MCSP) is characterized by the following data:� Number of piece types Ì Number of stock types������

���
��
��}�/� Piece lengths ������

�
�
��
��EÍG� Stock lengths������

�
�
��
������ Piece order demands �	Î���

���
��
�ÎCÍG� Stock supply�cÏk��

�
�
��
�Ï´ÍG� Stock prices

When stock prices are proportional to stock lengths, a material input (trim
loss) minimization problem arises. Note that the problem can be infeasible if the
bounds Î�� are too small.

The following model was called a machine balance model by Gilmore and
Gomory [GG63]. Let ���3�n[gÌ . A vector iÐ�j�	i@��

���
��
�i ���lJgL �N represents a
cutting pattern if 9 ��?=#� ���Ñi��'B 9 Í�Ò=#� ���ci��?Nk� and 9 Í�?=#� i��?Nk���0� . The componentsi�� for �^Bn�EBÓ� determine how many pieces of type � will be cut. The componenti²¥�Nk� corresponding to the used stock type ¦ equals one, all other componentsi��?Nk� for �EJ|{´��

���
��
�Ì,~:ÔP¦ equal zero.

Let m denote the number of all cutting patterns; this can be a very large num-
ber. The Gilmore-Gomory formulation of 1D-MCSP is as follows. Determine the
vector of cutting frequencies $¢�j�c$O��

�
�
��
T$ r � which minimizes the total material
cost so that piece order demands and material supply bounds are fulfilled:4 1D-MCSP

G&G � 576�8/Õ�$
s.t. 9 r%T=#� i��&%�$p% H ���U
 �"BÓ�EBÓ�93r%T=#� i��&%�$p% B Î���Ö´��
×�º¡¿�EB �$ J L r N

where the objective function coefficients Õn� ��Õ)��i � ��

�
�
��
�Õa�	i r �T� with Õ)��i½���9 Í�Ò=#� Ï��di²�ÒNk� are the prices of material used in the columns.
Holthaus [Hol02] argues that exact approaches are not suitable for 1D-MCSP

and only heuristics are effective. However, the cutting plane algorithm in [BS02],

12 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

which is based on [Bel00], gave a gap under 3% of the largest stock length Ø be-
tween the strengthened continuous bound and the best solution with a time limit of
1 minute per instance on problems with ��� Á 2 . Ù Recently, Alves and Valério de
Carvalho [AdC03] obtained still better results with a branch-and-price algorithm
using branching rules derived from the arc flow formulation.

For the cutting plane approach, problems with more stock types (Ì �,Úk

�F»)
were easier than with a few types (Ì �ÛZ½
 Á), which can be explained by the
possibility of good material utilization. 1D-MCSP is more difficult for optimality
proof because the possible objective values belong to the set of combinations of
the material prices (a given solution is optimum when no better objective values
are possible between it and some lower bound). However, the utilization of ma-
terial is better than with a single stock type, cf. [GG63]. The gap between the
relaxation value and the best known solution was always smaller than the largest
stock price, similar to the IRUP property for 1D-CSP.

1.2 Two-Dimensional Two-Stage Constrained Cut-
ting

The two-dimensional two-stage constrained cutting problem Ü (2D-2CP) [GG65,
HR01, LM02] consists of placing a subset of a given set of smaller rectangular
pieces on a single rectangular plate. The total profit of the chosen pieces should
be maximized. m -stage cutting implies that the current plate is cut guillotine-
wise from edge to edge in each stage and the number of stacked stages is limited
to m . In two-stage cutting, strips (strip patterns) produced in the first stage are
cut into pieces in the second stage. Constrained means that the pieces can be
distinguished by types and the number of items of each type is bounded from
above. We consider the non-exact case, in which items do not have to fill the strip
width completely; see Figure 1.1. Pieces have a fixed orientation, i.e., rotation by
90o is not considered.Ý

Note that measuring the absolute gap, i.e., as a percentage of the largest stock length/price, is
more meaningful because for an LP-based approach the gap seems to be absolutely bounded; cf.
the MIRUP conjecture. Indeed, the absolute gap is comparable in both large and small instances.
In contrast, for heuristics the relative gap, i.e., as a percentage of the optimum objective value,
seems more consistent, because the absolute gap increases with scale. See Chapter 3/SVC and
[Yue91a].Þ

Pentium III, 500 MHz.ß
As it often happens, different authors use different terminology, see, e.g., [Van01, GG65].

According to the latest trend [HM03], we say cutting problem; cutting stock problem denotes
more often the case when many stock pieces are considered. Knapsack problem is the term used,
e.g., in [LM02], but it corresponds only to the logical structure and not to the physical phenomena.

1.2. TWO-DIMENSIONAL TWO-STAGE CONSTRAINED CUTTING 13

a) The first cut is horizontal b) The first cut is vertical

Figure 1.1: Two-stage patterns

The problem 2D-2CP is defined by the following data: �/
�àá
��g
p���d�I
�â��U
 x �U
����c� ,�l�q��

���
��
T�g
 where � and à denote the length and width of the stock plate, �
denotes the number of piece types and for each type �/�ã��
��
�
��
�� , �d� and â�� are
the piece dimensions, x � is the value, and ��� is the upper bound on the quantity
of items of type � . A two-stage pattern is obtained by cutting strips, by default in
the � -direction (1st stage), then cutting single items from the strips (2nd stage).
The task is to maximize the total value of pieces obtained. If piece prices are
proportional to the areas, a trim loss minimization problem arises.

The Gilmore-Gomory formulation for 2D-2CP is similar to that for 1D-CSP.
Let column vectors i % �b�	ik��%1

�
�
��
�i��f%��äJnL �N , *��º�)

�
�
��
�m , represent all pos-
sible strip patterns, i.e., i % satisfies 9 ��?=#� ���Ñi²�A%�B�� and i²�A%�B����o
k�^�å�)

�
�
��
��
(proper strip patterns). Let $½% , *��h�)

�
�
��
�m , be the intensities of the patterns in
the solution. The model is as follows:4 2D-2CP

G&G �D576�8P93r%T=#� �	9 ��?=#� zSx �ci��&%��½$p% (1.22)

s.t. 9 r%T=#� i��&%�$p%KBn���U
 �'�(��

���
��
T� (1.23)93r%>=#� âG��i % �o$p%KBDà (1.24)$p%KJML/NO
 *+�,��

�
�
��
�ms
 (1.25)

where âG��i % �E�35�æ.ç´��«�¬>­ ®�¯p°�{1â��	~ is the strip width. We represent the objective as a
minimization function in order to keep analogy with 1D-CSP. This model can be
viewed as representing a multidimensional knapsack problem.

Lodi and Monaci [LM02] propose two Integer Linear Programming formula-
tions of 2D-2CP with a polynomial number of variables, so that no column gen-
eration is needed. Other models interpret strip pattern widths as variables. These
‘assignment’ formulations are investigated and compared in Chapter 4.

14 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

1.3 Related Problems

A problem closely related to 2D-2CP is two-dimensional two-stage strip pack-
ing (2D-2SP). Given a strip of fixed width and unlimited length, the task is to
cut the given set of items from a minimum strip length. There are only heuristic
approaches known; see [Hif99] and, for the non-guillotine case, [CLSS87]. For
the two-stage guillotine case, the models and methods for 1D-CSP are straightfor-
wardly applicable. Moreover, the same technological constraints and criteria may
be of relevance (Chapter 3).

Guillotine cutting problems of three or more stages cannot be easily modeled
by strip generation. Vanderbeck [Van01] did it for three stages under some special
assumptions. Thus, constrained m -stage (m�Hn¹) cutting is still a difficult problem
while unconstrained is easy [GG65, Hif01].

A direct extension of 1D-CSP on two dimensions is 2D-CSP or 2D- m CSP if
the m -stage cutting technology is applied. Here, a given set of rectangles must
be obtained from a minimum number of stock plates. For 2D-2CSP, the column
(plate layout) generation problem is exactly 2D-2CP.

In [Pee02] we find recent results and a survey on dual bin-packing (1D-DBP)
and maximum cardinality bin-packing (CBP). In 1D-DBP, having the same prob-
lem data as in 1D-CSP, we fill each bin at least to its full capacity; the objective
is to maximize the number of bins while the number of items of each type is lim-
ited. Zak [Zak02] also called 1D-DBP the skiving stock problem and compared
it to set packing while comparing 1D-CSP to set covering. In CBP there are a
limited number of bins and the objective is to maximize the number of packed
items. In [Sta88] we find a simplification of 1D-CSP called 1,5-dimensional CSP:
non-integer pattern multiplicities are allowed.

1.4 Solution Approaches

1.4.1 Overview

In 1961, Gilmore and Gomory proposed model (1.7)–(1.9) where each column
of the constraint matrix corresponds to a feasible cutting pattern of a single stock
length. The total number of columns is very large in practical instances so that
only a subset of columns/variables can be handled explicitly. The continuous
relaxation of this model was solved using the revised simplex method and heuristic
rounding was applied to obtain feasible solutions. This approach is described
in Section 1.4.3. Under conditions of cyclic regular production, the solution of
the continuous relaxation is optimum for a long-term period because fractional
frequencies can be transferred/stored to the next cycle. Heuristic rounding of

1.4. SOLUTION APPROACHES 15

continuous solutions produces an integer optimum in most cases, which can be
explained by the MIRUP conjecture described above.

For the general 1D-CSP, where order demands are large, LP-based exact meth-
ods have been more effective than pure combinatorial approaches. In the last sev-
eral years many efforts have succeeded in solving 1D-CSP exactly by LP-based
enumeration [DP03, Kup98, ST95a, dC98, Van99]. In [dC98] the arc flow for-
mulation was used; in the others the Gilmore-Gomory formulation. Both models
employ generation of necessary columns, also called pricing; hence, the enumer-
ative scheme is called branch-and-price. A cutting plane algorithm for 1D-CSP
was tested in [STMB01, BS02]. The instance sets where each method has diffi-
culties are different; both are investigated in Chapter 2. See also a general scheme
and terminology of branch-and-bound below.

The unconstrained two-dimensional m -stage cutting problem (mºH Z) was
introduced in [GG65, GG66], where an exact dynamic programming approach
was proposed. The problem has since received growing attention because of its
real-world applications. For the constrained version, a few approximate and exact
approaches are known: [PPSG00, Bea85, HR01, Hif01, HM03, MA92, LM02].
Among exact algorithms, the most successful are LP-based enumeration without
column generation [LM02] and non-LP-based enumeration [HR01].

Approaches for reduction of patterns and open stacks are surveyed in Chap-
ter 3.

In [GS01], algorithm portfolio design is discussed. For a quasigroup com-
pletion problem, running 20 similar randomized algorithms, each on a separate
processor, produced results 1000 times faster than with a single copy. In [Kup98],
a branch-and-price algorithm for 1D-CSP was restarted every 7 minutes with dif-
ferent parameter settings, which significantly improved results.

1.4.2 Combinatorial Heuristics

We speak about combinatorial heuristics as those heuristics which do not use any
LP relaxation of the problem. It should be noted that they are effective on 1D-BPP,
but with larger order demands, the absolute optimality gap increases. Many con-
tributions consider evolutionary algorithms for 1D-CSP, also with various addi-
tional production constraints, see [Fal96, ZB03]. For 2D-2CP, a genetic approach
is compared against some others (with best results) in [PPSG00].

Another group of approaches is based on the structure of the problems. To be-
gin, we should mention the various kinds of First-, Next-, and Best-Fit algorithms
with worst-case performance analysis [Yue91a]. More sophisticated are the se-
quential approaches [MZ93, Kup98, Hae75] for 1D-CSP (such a heuristic will be
used in Chapter 2 to solve residual problems and in Chapter 3 as a standalone

16 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

algorithm) and Wang’s combination algorithm [Wan83] and the extended substrip
generation algorithm (ESGA) of Hifi [HM03] for 2D-2CP.

1.4.3 Gilmore-Gomory’s Column Generation with Rounding

Consider the general form of the models (1.7), (1.22) after introducing slacks:4aè_é �D576�8Ðê²Õ�$ �Eë $��3�1
@$RJML rNsì
 (1.26)

where ë Jîí �:ï r , ÕÐJ|í r , �"Jîí � . The continuous relaxation of (1.26), the LP
master problem, can be obtained by discarding the integrality constraints on the
variables: 4)ð é �D5�6�8�{.Õ�$ �Së $¢�3�F
@$MJRñ rN ~´� (1.27)

1.4.3.1 LP Management

We work with a subset of columns called a variable pool or restricted master
problem. It is initialized with an easily constructible start basis. After solving this
restricted formulation with the primal simplex method, we look for new columns.
In fact, this is what the standard simplex algorithm does but it has all columns
available explicitly. Let ëóò be the basis matrix, and let ô��,Õ òOë Ö@�ò be the vector
of simplex multipliers. The column generation problem (pricing problem, slave
problem) arises: 4�õ@ö �D5�6�8C{.Õ>% z ô´i % � *+�(��

�
����
�m÷~l� (1.28)

If the minimum reduced cost 4 õ@ö is zero, then the continuous solution is opti-
mum. Otherwise, a column with a negative reduced cost is a candidate to improve
the current restricted formulation. Problem (1.28) is a standard knapsack prob-
lem with upper bounds for 1D-CSP (or a longest path problem in the arc flow
formulation): 4�õ@ö �,� z 5�æ.ç"ê´ô´i � �ci�BD�/
¶i�Bn�F
�i�JML �N ì � (1.29)

1.4.3.2 Column Generation for 1D-CSP

In practice, when implementing a column generation approach on the basis of a
commercial IP Solver such as ILOG CPLEX [cpl01], we may employ their stan-
dard procedures to solve (1.28), which was done in [LM02] for 2D-2CP. An ad-
vantage of this design is the low implementation effort. Another solution ideology
for Integer Programming problems is Constraint Programming [cpl01], which is
an enumerative solution ideology coming from Computer Science. ILOG Solver

1.4. SOLUTION APPROACHES 17

[cpl01] implements it in a universal framework containing several search strate-
gies. Problem-specific heuristics can be integrated easily. The coding (‘program-
ming’) of a model is straightforward using the modeling language or C++/Java
classes allowing non-linearities; even indices can be variables. The goal of the
system is to find good solutions and not to prove optimality. Thus, powerful con-
straint propagation routines are built in to reduce the search domain of a node. We
are not aware of application to 1D-BPP directly but on the homepage of ILOG
Corporation there are industry reports about column generation with this approach
considering various industrial side constraints. It is sometimes used to generate
all patterns a priori, which is possible for small instances, and solve the now com-
plete formulation with standard IP methods.

But even for medium-sized instances, delayed pattern generation becomes un-
avoidable in an exact method because of the astronomical number of possible
patterns. Traditionally there were two methods to solve (1.28): dynamic pro-
gramming, applied already in [GG61], and branch-and-bound, cf. [GG63, MT90].
Dynamic programming is very effective when we are not restricted to proper pat-
terns (iîBø�) [GG61]. But such upper bounds on the amount of items can only
reduce the search space of branch-and-bound. Its working scheme is basically
a lexicographic enumeration of patterns (after some sorting of piece types). ù It
allows an easy incorporation of additional constraints, e.g., industrial constraints
and new conditions caused by branching on the LP master. However, the bounds
on the objective value used to restrict the amount of search may not be sufficiently
effective when many small items are present, because of a huge number of com-
binations. The branch-and-bound approach becomes unavoidable when general-
purpose cuts are added to the LP (Section 2.4) because (1.29) becomes non-linear
and non-separable.

1.4.3.3 Rounding of an LP Solution

To thoroughly investigate the neighborhood of an LP optimum on the subject
of good solutions, we need an extensive rounding procedure. Steps 1–3 of Al-
gorithm 1.4.1 were introduced in [STMB01] already. Step 4 was introduced in
[BS02]; it will be referred to as residual problem extension. The reasons that lead
to Step 4 are the following: the residual problem after Step 1 is usually too large
to be solved optimally by a heuristic; on the other hand, the residual problem after
Step 2 is too small, so that its optimum does not produce one for the whole prob-
lem. The introduction of Step 4 reduced by a factor of 10 the number of 1D-CSPú

In [GG63], for 1D-CSP with multiple stock lengths, the multiple knapsack problem (1.28)
was solved by a single enumeration process (lexicographical enumeration of patterns) for all stock
sizes simultaneously.

18 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

Algorithm 1.4.1 Rounding procedure

Input: a continuous solution $RJRñ rN
Output: a feasible solution û$MJRL rN
Variables: ü $@ý , rounded continuous solution

S1. $ is rounded down: ü $@ý#þ ± $@³ .
S2. Partial rounding up: let $u%_v�

�
�
��
 $p%Iÿ be the basis components of $ sorted

according to non-increasing fractional parts. Then try to increase by 1 the
components of ü $@ý in this order:

For �'�(��

�
����
��
if i %I­ BÓ5�æ.ç����O
�� z ë ü $@ýd� then set üA$@ý %	­Oþ üA$@ýÉ%I­@[n� ;

The reduced right-hand side ���k�35�æ.ç����e
�� z ë ü $@ýd� defines a residual prob-
lem �c�g
��/
��o
����}� .

S3. A constructive heuristic is applied to �c�g
��/
��o
�� � � . Its best solution û$ � is
added to ü $@ý producing a feasible result: û$��jü $@ýp[�û$ � .

S4. Decrease the last component that was changed in S2 and go to S3; thus, the
rounded part ü $@ý is reduced, which enlarges the residual problem. This is
done up to 10 times.

instances which could not be solved optimally after the root LP relaxation. � The
constructive heuristic SVC used to solve the residual problems will be thoroughly
investigated in Chapter 3.

1.4.3.4 Accelerating Column Generation

In column generation approaches it is common [JT00] to use the Lagrange relax-
ation [NW88] to compute a lower bound on the LP value. This allows us to stop
generating further columns if the rounded-up LP value cannot be improved any
more. This criterion is vital in some problems (e.g., the multiple depot vehicle
scheduling problem [LD02]) where the so-called tailing-off effect occurs: the last
columns before the optimum is reached require a very long time to generate. For
1D-CSP a stronger criterion was found by Farley [Far90].

The subgradient method was applied in [DP03] to improve the dual multipli-
ers, generate better columns, and to strengthen the Lagrange bound. Dual cuts
were used to accelerate column generation in [dC02]. These are cutting planes
valid in the dual LP formulation; in the primal formulation, they are valid columns
(but not patterns).�

In contrast, the effect on 1D-MCSP is negligible, see also the results for 2D-2CP.

1.4. SOLUTION APPROACHES 19

The standard pricing principle is always to choose a column with the min-
imum reduced cost in (1.28). This corresponds to the classical pricing scheme
for simplex algorithms with an explicit constraint matrix. Modern schemes like
steepest-edge pricing would make the problem (1.29) non-linear.

A good LP solver producing numerically stable data and LP management is
of importance. Ten years ago, programming under DOS prohibited working with
a variable pool; only the current LP basis was stored. This led to the generation
of an exponentially larger number of columns than with a variable pool.

1.4.4 Branch-and-Bound

This subsection defines the basic terminology that will be used throughout the
remainder of the thesis to describe derivations of enumerative algorithms.

1.4.4.1 A General Scheme

Let us consider some minimization problem � :4 Ø �3576�8¶{
	��c$#���u$MJ
�C~´
 (1.30)

where 	 is the objective function and � is the set of feasible solutions. A lower
bound on its optimum objective value 4 Ø is some value lb such that lb B 4 Ø
always holds. For minimization problems, it can be obtained, e.g., by solving a
relaxation � of � 4 �n5�6�8#{
	 �d$#���@$MJ�� ~ (1.31)

with � ��� and 	 �c$#�+B�	��d$#� , !�$ J�� . We distinguish between the relaxation
value 4 and the implied lower bound lb; the latter is the smallest possible objec-
tive value of (1.30) not smaller than 4 , usually the next integer above: lb ��� 4 � .
Similarly, an upper bound ub satisfies ub H 4 Ø . For minimization problems,
upper bounds represent objective values of some feasible solutions.

Let us consider partitioning of the set � into subsets �K��

�
�
��
���¥ so that �(�� ¥�?=#� �l� and � ¥�?=#� �l����� . Then for each subset we have a subproblem4 Ø� �D576�8�{
	��c$#���u$MJ
�l�I~´
 �'�(��

���
��
�¦ (1.32)

and its lower bound lb � is called the local lower bound. For a given subproblem,
we will denote it by llb. One can easily see that

glb �3576�8� lb �
is a global lower bound, i.e., valid for the whole problem � . Each local upper
bound is valid for the whole problem; thus, we speak only about the global upper

20 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

y

n

y

n

Branch

Bounding

Init B&B Exit

Fathom

Select

Figure 1.2: General branch-and-bound scheme

bound gub, usually the objective value of the best known feasible solution. The
splitting up of a problem into subproblems by partitioning of its set of feasible
solutions is called branching. The family of problems obtained by branching is
usually handled as a branch-and-bound tree with the root being the whole prob-
lem. Each subproblem is also called a node. All unsplit subproblems that still
have to be investigated are called leaves or open nodes.

In Figure 1.2 we see a branch-and-bound scheme that is a generalization of
that from [JT00]. It begins by initializing the list of open subproblems � with
the whole problem � : �×�©{��G~ . Procedure BOUNDING is applied to a certain
subproblem (the root node at first). It computes a local lower bound llb and
tries to improve the upper bound gub. If llb ¡ gub then the node can contain
a better solution (proceed by BRANCH). Otherwise the node is FATHOMed or
pruned, i.e., not further considered. Note that if the root node is fathomed then
the problem has been solved without branching. In this case, there are only two
possibilities: either a feasible solution has been found, glb � gub ¡�� , or the
problem is infeasible, glb � gub � � . A subproblem can also be infeasible;
then we obtain llb �!� .

Procedure BRANCH splits up a given node into some subproblems and adds
them to � . As long as there are nodes in � with local lower bounds llb ¡ gub,
procedure SELECT picks one to be processed next.

1.4.4.2 Bounds

The bound provided by the Gilmore-Gomory relaxation is generally much
stronger than bounds from other relaxations, see [Van00b] for 1D-CSP and
[LM02] for 2D-2CP. However, for 1D-BPP other bounds are also effective and
fast, e.g., in [MT90, SW99, Sch02a] and others, many combinatorial bounds are

1.4. SOLUTION APPROACHES 21

applied which use the logic of possible item combinations. Furthermore, problem
reductions are achieved by considering non-dominated patterns. In branch-and-
price implementations [DP03, Van99] combinatorial pruning rules are employed
in addition to the LP bound.

In 1D-CSP, the possible values of the objective function are integers and the
objective value of the LP relaxation rounded up is a valid lower bound. In 2D-
2CP, integer nonnegative linear combinations of piece prices x � , �s�,��

�
�
��
�� , are
the possible values. Thus, the smallest combination greater than or equal to the
LP value is a lower bound in 2D-2CP. A similar situation occurs in 1D-MCSP.
One of the methods to construct a large set of combinations is the method with
logarithmic complexity based on bit operations [Bel00].

For 2D-2CP the following non-LP bounds are used [HM03]:

1. Geometric bound: the one-dimensional knapsack problem considering only
the areas and values of items.

2. The unconstrained problem, i.e., bounds ��� are omitted. In this case, the dy-
namic programming procedure of Gilmore and Gomory [GG65] produces
an optimum in pseudo-polynomial time.

To strengthen a bound, we should use effective plate sizes � eff Bn� and à eff BDà ,
which are the greatest integer combinations of the corresponding item sizes not
larger than � and à , respectively.

1.4.4.3 Non-LP-Based Branch-and-Bound

In an enumerative scheme which does not use an LP relaxation, both the bounds
and the branching principle are different from an LP-based scheme [MT90, SW99,
SKJ97, Sch02a]. In the one-dimensional problem, the schemes are effective only
on 1D-BPP: increasing the order demands leads to an exponential growth of the
search space [MT90]. For 2D-2CP, an exact approach is investigated in [HR01].

1.4.4.4 LP-Based Branch-and-Bound and Branch-and-Price

Here, the splitting up of the feasible set is done by adding linear constraints to
the IP program (1.26) so that at each node its local relaxation is available. If
cutting planes tighten the relaxation at the nodes, we speak of branch-and-cut.
For example, using standard commercial software such as ILOG CPLEX [cpl01]
we could apply branch-and-cut to the model of Kantorovich and to the subpattern
model; in Chapter 4 this is carried out with some assignment models of 2D-2CP.
The combination of LP-based branching with cutting planes is nowadays the most
effective scheme for most (mixed-)integer programming problems [Mar01].

22 CHAPTER 1. STATE-OF-THE-ART MODELS AND ALGORITHMS

If columns may be generated at each node as in the model of Gilmore and
Gomory, the enumeration scheme is called branch-and-price. A detailed de-
scription of a branch-and-cut-and-price (the name has been already used, see
[JT00, CMLW99]) algorithm can be found in the next chapter; an example leading
to branch-and-price is shown in the Appendix.

The first papers on branch-and-price appeared in the 1980’s and dealt with
routing problems, where the pricing problems are constrained shortest path
problems [DSD84]. Applications to 1D-CSP can be found in [DP03, Kup98,
ST95a, dC98, Van00a, Van99]; general overviews are in [JT00, CMLW99, VW96,
Van00b]. Branch-and-price has probably not been applied to 2D-2CP before.

Chapter 2

A Branch-and-Cut-and-Price
Algorithm for 1D-CSP and 2D-2CP

The one-dimensional cutting stock problem and the two-dimensional
two-stage guillotine constrained cutting problem are considered in
this chapter. The Gilmore-Gomory model has a very strong continu-
ous relaxation which provides a good bound in an LP-based solution
approach. In recent years, there have been several efforts to attack
the one-dimensional problem by LP-based branch-and-bound with
column generation (called branch-and-price) and by general-purpose
CHVÁTAL-GOMORY cutting planes. When cutting planes are added
to the LP relaxation, the pricing problem becomes very complex and
often cannot be solved optimally in an acceptable time. Moreover,
the modeling and implementation of its solution method as well as of
the cutting plane apparatus for the chosen kind of cuts requires much
effort. We develop a new upper bound for this pricing problem. We
improve the cutting plane part of the algorithm, e.g., in terms of its
numerical stability, and integrate mixed-integer GOMORY cuts. For
2D-2CP we propose a pricing procedure which enables the search
for strips of different widths without repetitions. Various branching
strategies and tools such as pseudo-costs and reduced cost bounding
are investigated. Tests show that, for 1D-CSP, general-purpose cuts
are useful only in exceptional cases. However, for 2D-2CP their com-
bination with branching is more effective than either approach alone
and mostly better than other methods from the literature.

23

24 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

2.1 Introduction

The basic scheme of branch-and-cut-and-price was taken from ABACUS [JT00],
SIP [Mar01] and bc-opt [CMLW99] (there are many state-of-the-art free of
charge and commercial codes implementing branch-and-cut, i.e., without col-
umn generation; among them are CPLEX [cpl01], MINTO, XPRESS-MP and
others.) Also, branch-and-price implementations for 1D-CSP were studied, espe-
cially [Kup98, DP03, dC02]. As the basis for the development of the cutting plane
part, we took [STMB01, BS02].

Note that many branch-and-price implementations employ simple cuts which
do not provide finite description of the convex hull of integer solutions as is the
case for CHVÁTAL-GOMORY cuts. For example, a special case of GOMORY

mixed-integer cuts, where only a single previous constraint is used for generation Ø
are applied in [Van00a]. This corresponds to widely-used practices and general
beliefs expressed in the literature. Usually, in the context of an LP-based branch-
and-bound algorithm, where the LP relaxation is solved using column generation,
cutting planes are carefully selected in order to avoid the destruction of the struc-
ture of the pricing problem, on which its solution is based. This viewpoint is
shared by numerous authors. Barnhart, Hane, and Vance [BHV00], for example,
mention as one of the main contributions of their branch-and-price-and-cut algo-
rithm “a pricing problem that does not change even as cuts are added, and sim-
ilarly, a separation algorithm that does not change even as columns are added.”
Vanderbeck [Van99] writes in the introduction of his computational study of a
column generation algorithm for 1D-BPP and 1D-CSP: “Adding cutting planes
can be viewed in the same way [as branching]. However, the scheme efficiency
depends on how easily one can recognize the prescribed column property that de-
fines the auxiliary variable when solving the column generation subproblem, i.e.,
on the complexity of the resulting subproblem modifications.”

Furthermore, cutting planes are commonly used to get a tight bound at a node
of the branch-and-bound tree and aim to reduce the total number of nodes (e.g.,
[Wol98], Section 9.6). In the case of 1D-CSP, the optimum LP relaxation value
of the Gilmore-Gomory formulation rounded up at the root node often equals the
optimum solution. As a result, the bound is very tight, even without cuts. In
2D-2CP, the objective function has its values among integer combinations of item
prices, which makes the optimality test using a lower bound much more difficult.
We shall see that for 2D-2CP a combination of cuts and branching is better than
either a pure cutting plane algorithm or branch-and-price.

In Sections 2.2 and 2.3 we give an overview of the branch-and-cut-and-price
scheme. In Section 2.4 we discuss cutting planes, in Section 2.5 column genera-Ý

This corresponds to a cut-generating vector " (Section 2.4) with a single non-zero element.

2.2. OVERVIEW OF THE PROCEDURE 25

tion. Computational results are presented in Section 2.6 followed by implementa-
tion details.

2.2 Overview of the Procedure

Consider again the general form of the models (1.7), (1.22) after introducing
slacks (see Chapter 1):4)è é �3576�8�ê²Õ�$ �Yë $��3�F
@$MJRL rN¸ì
 (1.26)

where ë J|í ��ï r , ÕÐJ|í r , �ÐJáí � . The continuous relaxation of (1.26), the LP
master problem, can be obtained by discarding the integrality constraints on the
variables: 4)ð é �3576�8�{.Õ�$ �Eë $��3�1
u$MJRñ rN ~´� (1.27)

An LP-based exact algorithm uses the LP relaxation objective value to obtain
a lower bound on the optimum objective value (if the main problem is a min-
imization problem). There exist other relaxations providing lower bounds, see
Chapter 1. On the other side, for the practical efficiency, we need good, possibly
optimum solutions as early as possible. They provide upper bounds on the opti-
mum value. The best known solution is a proven optimum when it equals some
lower bound.

Let � è_é � conv {F$§Jjñ r � $ is feasible for (1.26) ~ be the convex hull of
feasible solutions. Let $ be an optimum solution of the relaxation (1.27). If $
is not integer, it is used to construct a feasible solution û$ of (1.26) by means of
heuristic rounding (Algorithm 1.4.1). If no better value of 4 è é is possible betweenÕ $ and Õ�û$, then û$ is an optimum. Otherwise, there exists a hyperplane {F$�J�ñ r �# $ � # °�~ such that # $%$ # ° and � è_é'& {F$`Jîñ r � # $`B # °�~ . The problem of
finding such a cutting plane is called the separation problem (Section 2.4).

If we are able to find a cutting plane, we can strengthen the relaxation and
iterate. This is repeated until $ is a feasible solution or no more strong cuts can be
found. In the latter case branching is initiated. This is commonly done by picking
some fractional variable $½% that must be integer and creating two subproblems,
one with $½%KB�± $k%�³ and one with $p%KH � $½% � . Alternatively, branching can be done
on more complex hyperplanes, see the discussion below. Algorithm 2.2.1 [Mar01]
summarizes, for the case of LP-based branching, the procedure introduced in Sec-
tion 1.4.4.1.

The list � is organized as a binary tree, the so-called branch-and-bound tree.
Each (sub)problem (corresponds to a node in the tree, where the unsolved prob-
lems are the leaves of the tree and the node that corresponds to the entire prob-
lem (1.26) is the root. Each leaf knows the optimum LP basis and set of cuts

26 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Algorithm 2.2.1 Branch-and-cut(-and-price)

1. Let � be a list of unsolved problems. Initialize � with (1.26).
Initialize the global upper bound 4 �<[)� .

2. Repeat
3. Choose a problem (from � whose LP bound is smaller than 4 .

Delete (from � .
4. Repeat (iterate)
5. Solve the LP relaxation of (. Let $ be an optimum solution.
6. If Õ $RH 4 , fathom (and goto 12.
7. Construct feasible solutions for (1.26) using $.

(Possibly, they improve 4)
8. If Õ $RH 4 , fathom (and goto 12.
9. Look for violated inequalities and add them to the LP.
10. Until there are no strong inequalities.
11. Split (into subproblems and add them to � .
12. Until �Ê��� .
13. Print the optimum solution. STOP.

which were active in its parent. For the next node retrieved from storage, the op-
timum LP solution $ of its parent is recreated. The LP is reoptimized using the
dual simplex method. Then columns are generated until an LP optimum is found
or infeasibility is proven. In the latter case the node is fathomed. Further, if Õ $eÙ is
not smaller than 4 then this node can provide no better solutions and is fathomed
as well. This includes the case when $ is feasible for (1.26).

2.3 Features

In this section, we discuss the issues which can be found in basically every state-
of-the-art branch-and-cut(-and-price) implementation and were adapted in our
model. These are LP/cuts management, integer rounding, reduced cost bound-
ing, enumeration strategy, and preprocessing. A more detailed presentation of
existing features can be found in [LS99, Mar01, JT00, BP02].Þ

in 1D-CSP, *,+ -�. ; in 2D-2CP, the next smallest integer combination of item prices.

2.3. FEATURES 27

2.3.1 LP Management

Dual simplex method is applied to the restricted master LP after adding cuts or
branching constraints because dual feasibility of the basis is preserved. Primal
simplex method is applied after adding columns and deleting cuts. With the best-
first strategy (see below), many constraints are changed from node to node; in this
case, the choice of the optimization method is left to the CPLEX LP solver, which
is very powerful in fast reoptimization of a modified LP model.

To control the size of LPs and the complexity of column generation, we restrict
the maximum number of added cuts and remove cuts which have not been tight for
a large number of iterations at the current node. However, all cuts constructed at
a node are stored and in the separation procedure we look for violated cuts among
those of the current node and its parents. If no violated cuts are found, new cuts
are constructed (Section 2.4).

To prevent cycling when the same deleted cuts are violated and added again
iteratively, we count the number of deletions of a cut at the current node and, after
each deletion, we increase the minimum number of iterations that the cut should
be kept (by a factor of 1.2). But every 30 iterations we delete all inactive cuts (this
number is then multiplied by 1.05) with the aim of simplifying the LP formulation
and column generation. Note that only at the root node it is advisable to perform
many iterations; at subnodes we allowed only 2-3 iterations because of time.

2.3.2 Rounding of an LP Solution

To construct a feasible solution of (1.26) which neighbors an optimum solution$ of the relaxation, we do not take only the rounded-down part of $, see, e.g.,
[DP03]. Some components of $ with large fractional parts are also rounded up,
see Algorithm 1.4.1. This can be compared to diving deeper into the branch-and-
bound tree. The resulting rounded vector ü $@ý is generally not yet feasible: � � �� z ë üA$@ý is the right-hand side of the residual problem. For 1D-CSP, the residual
problem is solved by the heuristic SVC, see Chapter 3, Algorithm 3.2.1, with at
most 20 iterations. SVC has already proven to yield much better performance
than First-Fit in [MZ93, MBKM01]. For 2D-2CP, a variant of SVC is proposed
below. Because of the importance of LP-based local search, we vary the portion
of $ which is taken over to ü $@ý [BS02], Step 4 of Algorithm 1.4.1.

Another way to obtain feasible solutions is to declare the variables integer and
use the mixed-integer solver of CPLEX on the currently known set of columns. Ü
The rounding procedure is called at every 30th node and the MIP solver every 200
nodes with a time limit of 30 seconds.ß

relaxing the local branching constraints.

28 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

2.3.3 Sequential Value Correction Heuristic for 2D-2CP

For a general scheme of SVC, we refer the reader to Chapter 3. To adapt SVC for
2D-2CP, let us define a pseudo-value -�� of piece � so that it reflects the average
material consumption in a strip. After constructing strip i containing ip� items of
type � , the current pseudo-value -/�� is- �� � x � âG�	ip�â�� �� z'0

where 0 �Û� z �ci is the free length of the strip. The final pseudo-value is a
weighted average of -/�� and the previous value, similar to the one-dimensional
case.

After filling the plate, for those items which are not in the solution, we also
distribute the space not occupied by the strips, i.e., the area �P�	à z 9 % â+�	i % � $p%�� .
It is divided among the piece types (added to their pseudo-values) in proportion
to their free amounts � �� . This is done in order to facilitate some exchange of
items packed. The heuristic was not tested intensively because in 2D-2CP good
solutions are found quickly, see the tests. The nature of SVC is to minimize
trim loss (waste); value maximization, specific to 2D-2CP, could be only partially
considered.

2.3.4 Reduced Cost Bounding

The idea in reduced cost bounding is to bound or fix variables by exploiting the
reduced costs of the current LP solution [Mar01]. Namely, we can obtain the
range in which a variable does not make the LP bound greater or equal to the
upper bound. Let 4 �øÕ $ be the objective value of the current LP solution, Õä�� Õ_%���%T=#�21434343 1 r be the corresponding reduced cost vector, and 4 � be the largest possible
solution value smaller than 4 . Consider a non-basic variable $u% of the current LP
solution with finite lower and upper bounds �?% and 5p% , and non-zero reduced costÕ>% . Set 6G�Ë± 7 v Ö 78 9 ® 8 ³ . Now, if $½% is currently at its lower bound �?% and � %E[�6�¡�5p% ,
the upper bound of $½% can be reduced to �Ò%l[:6 . In case $p% is at its upper bound5½% and 5½% z 6;$©� % , the lower bound of $½% can be increased to 5k% z 6 . In case
the new bounds �Ò% and 5p% coincide, the variable can be fixed to its bounds and
removed from the problem. Reduced cost bounding was originally applied to
binary variables [CJP83], in which case the variable can always be fixed if the
criterion applies.

We did not see any improvement when using this feature. For possible reasons,
see the discussion on pseudo-costs. Actually, reduced cost bounding led to a huge
number of columns generated (one hundred thousand on 1D-CSP with �ã�×Z)2)2)

2.3. FEATURES 29

so that the CPLEX LP solver failed. All results presented below were computed
without the feature.

2.3.5 Enumeration Strategy

In the presented general outline of a branch-and-cut algorithm there are two steps
which leave some choices: splitting up of a problem into subproblems and select-
ing a problem to be processed next. If variable * has a fractional value $¶% in the lo-
cal optimum LP solution, the one subproblem is obtained by adding the constraint$p%óBã± $½%�³ (left son) and the other by adding the constraint $k%"H<� $½% � (right son).
This rule is called branching on variables, since we need only to change bounds
of variable * and be careful at column generation, see Section 2.5. The bounds can
be effectively handled by simplex algorithms. Branching on more complicated in-
equalities or splitting up of a problem into more than two subproblems is rarely
incorporated into general mixed-integer solvers. This would increase the number
of constraints in the LP. In our case, this would also change the structure of the ob-
jective function in the pricing procedure because each new constraint has a dual
variable. However, this produces more balanced solution trees [dC02, Van99].
Branching on variables does not produce balanced trees because right subprob-
lems are smaller and are quickly processed. However, the latest branch-and-price
algorithm for 1D-CSP [DP03, Pee02] uses this kind of branching.

2.3.5.1 Alternative Branching Schemes

In this work we investigated branching on variables. For comparison, now we
discuss some alternative schemes for branching on hyperplanes of the kind=%�>@?@A $p% B B�±DC÷³H �DC � (2.1)

if 9 %�>E?@A $p%:�FCHGJgL in the node’s LP solution.

1. Vanderbeck [Van99] proposesI Ø �,{�* �KJ �	i % �ML��32'!ONsJQPK° R J ��i % �SLf�,�f!ON'JTP���~´
 (2.2)

where J �	i % � is a binary representation of i % obtained by the binary transfor-
mation [MT90] of a knapsack problem and P"° , P�� are some index sets. It is
possible to choose simple sets, e.g., with cardinalities UVP"°WUu�§2 , UVP��@U@�q� ,
so that the modifications of the pricing problem are acceptable.

In [Pee02], which is an extension of [DP03], we find that the scheme of
Vanderbeck is very powerful and the results are comparable to branching
on variables.

30 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

2. Valério de Carvalho [dC02] and Alves [AdC03] propose branching rules in-
duced by the arc flow formulation (AFF, Chapter 1). Given a variable $ut
v?t�w
of AFF, they define the set

I Ø of patterns having an item with length x¶y�zGx �
at position x � . Selection of AFF variables for branching starts with those
corresponding to the largest items. Actually, the fractional variable used for
branching that corresponds to the largest item is also the one corresponding
to the item nearer to the left border of the bin.

A comparison with this variant is done in the tests.

3. Branching on slacks for 2D-2CP (a new scheme). Slack variables
� � �c�K���

�
����
��V� determine how many items of type � should be in a solution. Thus,

branching on them is more ‘spread’ than on single patterns. However, this
scheme does not guarantee optimality: even in a fractional LP solution,
slacks may be integer. Thus, this scheme should be combined with another
one. We left it for future research.

2.3.5.2 Branching Variable Selection

1. Most infeasibility. This rule chooses the variable with a fractional part clos-
est to 0.5. The hope is for the greatest impact on the LP relaxation.

2. Pseudo-costs. This is a more sophisticated rule in the sense that it keeps the
history of the success (impact on the LP bound) of the variables on which
one has already branched.

Based on the results in [LS99], we implemented pseudo-costs as follows.
Given a variable $½% with a fractional value $u% � ± $½%�³Ð[X	 , 	�$å2 , the down
pseudo-cost of $½% is Y[Z � \ llb Z% È�	¶

where \ llb Z% is the average increase of the local LP value (divided by the cor-
responding infeasibility) in all left (B) subproblems produced by branching on$p% . If a subproblem was infeasible, we did not set the increase equal to infinity
but to the difference between the current upper bound and the parent’s LP value.
Similarly, Y^] � \ llb]% Èp�_� z 	f�
is the up pseudo-cost. The pseudo-cost of $u% at the current node isY �3Z¸576�8¶{ Y^]
 Y Z ~�[�5�æ.ç¶{ Y^]
 Y Z ~
which produced good results in [LS99].

2.3. FEATURES 31

The calculation is very fast if one has already branched on $u% before. If doing
this for the first time, there are no data available. Near the root of the search tree,
where branching decisions are important, we have no pseudo-costs yet. For each
new variable, to initialize pseudo-costs, we applied strong branching: the values
of \ llb]% and \ llb Z% were calculated exactly by temporary branching (also new
columns could be generated).

The computational experience [LS99] shows that branching on a most infea-
sible variable is by far the worst, in terms of CPU time, solution quality, and the
number of branch-and-bound nodes. Using pseudo-costs gave much better results
and was especially effective when the number of nodes grew large. But we saw
no improvement of the lower bound or the number of nodes when using pseudo-
costs. This might be explained by column generation: at almost each node many
new columns are created which are only slightly different from those already in
the LP, which destroys the effect. Thus, after testing of the feature (see results), it
was not used.

Pure strong branching is much more expensive. But the number of nodes is
smaller (about one half) compared to the pseudo-costs [Mar01]. This decrease
does not compensate for higher runtimes in general. Thus, strong branching is not
normally used as a default strategy.

2.3.5.3 Node Selection

1. Best first search (bfs). A node is chosen with the weakest parent lower
bound (promising the best solution) or with the smallest estimate of the
node’s bound based on pseudo-costs. The goal is to improve the global
lower bound, which is the minimum of local bounds of all unprocessed
leaves. However, if this fails to occur early in the solution process, the
search tree grows considerably. Another rule might decide among the nodes
with equal bound, e.g., the depth.

2. Depth first search (dfs). This rule chooses one of the deepest nodes in the
tree. Among the nodes with equal depth, one with the weakest bound is
taken. The advantages of dfs are the small size of the search tree and the fast
reoptimization of the subproblem. Also, good feasible solutions are found
very quickly. The main disadvantage is that the global lower bound stays
untouched for a long time resulting in bad solution guarantees if we stop
optimization before optimum. Another drawback is that if a wrong branch
is chosen at a high level, then much time is spent inside though we could
prune the branch if good lower bounds had been known. In [LS99] we read
that pure dfs is not good for large problems. For IRUP 1D-CSP instances,
however, the correct LP bound is known from the beginning, so pure dfs

32 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

was quite efficient; see the tests. In [cpl01]/Constraint Programming it is
proposed to investigate several dfs branches in parallel (interleaved).

3. Estimate-based strategies use pseudo-costs (see branching variable selec-
tion) and estimates of the quality of solutions obtainable at a node [LS99].
We did not test them here.

4. In order to avoid investigating wrong branches, we propose a combination
of bfs and dfs which can be called diving from a bfs node. Some number
of nodes, say, 10, are chosen and processed according to bfs. The last bfs
node is taken and its children are followed downwards for, say, � nodes,
i.e., its subtree is investigated in a depth-first fashion. The diving can be
seen as a kind of rounding procedure. This strategy has been very important
for pattern minimization (Chapter 3).

In both bfs and dfs, there remains the question, which of the ‘twin’ nodes of the
same parent is to be preferred, with B or H constraint. For the Gilmore-Gomory
model, many authors [Kup98, DP03] prefer H (‘right’) nodes because B implies
that the corresponding column should not be generated again which complicates
the pricing procedure. However, there is another reason to choose these nodes: by
fixing variables at a positive value we can quickly come to feasible solutions. In
[DP03, Kup98, AdC03] the enumeration strategy was always depth-first search.

2.3.6 Node Preprocessing

Node preprocessing is a powerful set of LP/IP constraint propagation rules, allow-
ing us to tighten variable bounds, eliminate variables and constraints, or determine
infeasibility before solving; see [Mar01] for a survey. In CPLEX such procedures
are applied automatically in every LP formulation. The mixed-integer solver of
CPLEX considers also implications arising from the integrality of variables. But
we employ CPLEX directly only to solve LP’s; thus, it is important to recognize
such implications ourselves. For logical implications in some other IP problems,
see [JT00].

In 2D-2CP, the LP bound can be tightened by finding the effective knapsack
width à eff �_B�à0� , which is the largest integer combination of piece widths not
greater than à [TLS87].

Suppose the right-hand side is reduced because some columns are bounded
from below at the current node, ���k�ª� z 93r%>=#� i % �¸% where �¸% is the lower bound
of column * . In 2D-2CP also à!�"� à z 93r%>=#� â+�	i % �M�¸% (à�� can be further
reduced using integer combinations of piece widths). Then for each column we
set the upper bound _s%"�(576�8p��«�¬>­ ®�¯p°�{O±d���� X)i��&%�³)~ which can be already done at the

2.4. CUTTING PLANES 33

root node (integer bounding). Also, in column generation we should take care not
to generate columns in which the number of items of type � is greater than � �� .
2.4 Cutting Planes

For the Gilmore-Gomory model of the problems under investigation, no problem-
specific cutting planes seem to be available as in more structured models. Thus,
general-purpose cuts have to be used, e.g., GOMORY fractional and mixed-integer
cuts. They are known to provide a finite description of the convex hull of feasible
solutions. There exist algorithms with finite convergence; however, because of the
implicit constraint matrix, they could not be applied. Although measures against
cycling were introduced, the finiteness of the pure cutting plane approach has not
been proven. Here we repeat some necessary information about these cuts (see,
e.g., [NW88]) and also describe how we use them in the Gilmore-Gomory model.

2.4.1 Overview

In Subsection 2.4.2 we describe how to use superadditive cuts which are based on
linear combinations of current constraints. An interesting property is that the slack
variables of current cuts have coefficients in the derived cuts. Then we propose
an approach to use strengthened CHVÁTAL-GOMORY cuts in a numerically stable
way. Mixed-integer cuts may have non-integer slacks; this has to be considered
in the derived cuts. Finally we mention how to choose the linear combinations of
constraints (‘basic cuts’) so that the last LP solution is cut off by the new cuts.

In Subsection 2.4.3 local cuts are developed, i.e., those which consider branch-
ing constraints (variable upper bounds). These cuts are valid in the subproblem
where they are created and in its children. Thus, the cut selection procedure de-
scribed in Subsection 2.4.4 looks for violated cuts at the current node and its
parents. Subsection 2.4.5 repeats some basic propositions from [STMB01]. The
main difference in the present scheme is that for CHVÁTAL-GOMORY cuts, we
no longer require that the cut-generating vectors 5 be positive; this modification
leads to better numerical properties.

2.4.2 GOMORY Fractional and Mixed-Integer Cuts

We consider the discrete optimization problem 576�8#{.Õ�$ � $ÓJa`l~ (1.26), where` & L r N , and we formulate it as an integer program by specifying a rational
polyhedron �j�j{F$ J ñ r N �/ë $M�0�F~ , where ë J|í �/ï r and �^J|í � , such that``�DL r �b� . Hence `î�({F$MJ L r NM�´ë $V�<�
~´� Let � è é � conv ��`S� be the convex
hull of feasible solutions. The problem can be represented by a linear program

34 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

with the same optimum solution: 576�8�{.Õ�$ � $MJQ� è_é ~ . We will use integrality and
valid inequalities for � to construct suitable valid inequalities 93r%T=#� # %�$p%RB # °
for the set ` . For a column generation formulation, when not all the columns
are available explicitly, cuts have to be described functionally because we need to
calculate cut coefficients for the new generated columns (lifting). Thus, we define
a cut as an inequality 93r%>=#�/c �D5�i % �o$p%KB c �D5#����
 (2.3)

where 5 is some vector producing a linear combination of the existing constraints.

Definition 1 ([NW88]) A function c �ed & ñ �] ñ � is called superadditive
over d if c �	ôu� �O[c �	ô y ��B c �	ôk�f[Êô y � for all ôk��
�ô y
¶ôk�f[Êô y J d �
Note that ôu�S�<2 yields c �	2²�e[c ��ô y �:B c �	ô y � or c ��2²�/Bª2 . Further, when c is
superadditive, we assume c ��2²�¸�32 and 2GJ d .

A function c �fd & ñ �] ñ � is called nondecreasing over d if ô@� , ô y J d
and ôk��Bnô y implies c �	ôu�_�lB c ��ô y � .
Proposition 1 ([NW88]) If c � ñ �] ñ � is superadditive and nondecreasing,
then (2.3) is a valid inequality for `á�3L r � {F$MJ�ñ rN��Eë $��3�F~ for any � ë
���� .

If # $îB # ° (for short: � #
 # °��) is a valid inequality for � è é , i.e., # $`B # ° for
all $MJ
� è é , then

c � c � #
 # °��E�0{F$RJ
� è é � # $�� # °
~
defines a face of � è é . If gu6�5�� c �¸�Fgu6�5V��� è é � z � then # $MB # ° represents a facet
of � è é and � #
 # °�� is called a facet-defining inequality. The valid inequalities� #
 # °�� and �ih'
jh½°�� of � è_é are called equivalent when � #
 # °��E�Fk'�ih'
jh½°��k[�l#� ë
����
for some k�$W2 and l(Jøñ � . If they are not equivalent, then the inequality� #
 # °�� dominates or is stronger than �ih÷
mhk°�� when # H knh¢[al#� ë
���� and # °¢Bknhp°'['l#� ë
���� for some kb$Ó2 and l¨JRñ � .

If the solution is not optimum, further inequalities are constructed recursively
based on linear combinations of original constraints and already added cuts. Sup-
pose there are o cuts in the LP. The dependence of the coefficients of cut p on the
original constraints and previous cuts is shown by the following recursion:

#rq% � #rq �	i % �¸� c � 9 ��?=#� 5 q� i��&%¸[9 q Ö@�s =#� 5 q�sN s # s ��i % �>��
 pó�,��

���
��
�os
 (2.4)

where 5 q� , �á� ��
��
�
��
T�å[tp z � , are the coefficients of the linear combina-
tion of all previous constraints. Moreover, the following issue has to be kept
in mind: when adding a cut, the constraint matrix is extended by a slack column,

2.4. CUTTING PLANES 359 r%>=#�/c �D5�i % �o$p%�[au�� c ��5���� . Further cuts which depend on this cut have their
own coefficients in this column. Thus, cut p is written as93r%>=#� #rq% $p%¸[9 q Ö@�v =#� #rq �wu v �mu v [xu q � #rq° � (2.5)

To be precise, suppose for simplicity that cut slack variables are integers. Set# v ��u v �:�©� , l��q�)

�
�
��
�o . Then coefficient #yq �wu v � of cut p for the slack variable
of cut l is #rq �wu v �s� c �I9 q Ö@�s =#� 5 q�sN s # s �wu v �T� , in analogy to (2.4).

In [NW88] it is proposed to eliminate cut coefficients for slacks in the follow-
ing way: just substitute u v � # v° z 93r%T=#� # v% $p% in each cut dependent on cut l .
Then in (2.5) we would have zero coefficients for u v , l¨¡�p . An advantage would
be that we could keep only active cuts in the LP formulation and remove those
cuts on whose slacks the active cuts depend. This would also simplify the search
for violated cuts, see below. But experience shows that the resulting constraints
have worse numerical properties: the more cuts added, the greater the maximum
absolute values of the coefficients. We add the cuts directly as in (2.5); the re-
sulting LP has good numerical properties: even with hundreds of cuts added, the
absolute values of coefficients are mostly below 1000.

CHVÁTAL-GOMORY valid inequalities for ` [NW88] which were applied to
1D-CSP already in [STMB01] are constructed using the superadditive functionc ��5�ip�P�Û±z5#i�³ (rounding down). They do have the convenience of integer slack
variables. Combining inequality ±i5 ë ³�$0B ±i5���³ with 5 ë $3�{5�� yields a GO-
MORY fractional cut 9 r%T=#�}|D~ ��5�i % � $p% H |D~ ��5���� , where |D~ ��ô½�g� ô z ±dô²³ . It is
very effective to strengthen CHVÁTAL-GOMORY cuts in the following way. If|D~ ��5����¸�F5�� z ±i5���³�¡<�1X�¦ , ¦ integer, then multiplying 5 by ¦ produces a stronger
or equivalent cut. Some other methods are possible, see [LL02]. After multi-
plication of 5 by an integer, it is advantageous to prevent numerical difficulties,
namely too large numbers. This can be done by setting each component of 5 to
the fractional part of its absolute value with the original sign. An equivalent cut is
obtained then, see Proposition 2 below.

Mixed-integer cuts, integrated in this work, are constructed as follows. In
[NW88] the following function is described: c�� ��ô½�V� ±cô�³�[×5�æ.ç¶{.2½
1� |D~ �	ôp� zCs�TXu� � z Cs��~ which is a generalization of the rounding down function ±�³ . Com-
bining inequality c�� �D5 ë � $øB c�� ��5���� with 5 ë $ ��5�� yields the pure integer
case 9 r%T=#� �D5�i % z c�� �D5#i % �T�o$p%<H C of the GOMORY mixed-integer cut. The
strongest cut is produced with Ch� |D~ �D5���� . Inequality (2.3) with function c��
and C G� � may have a non-integer slack variable. Thus, other inequalities
which depend on this cut have another type of coefficients for the slack of this
cut: #rq �wu v �|� c��@� �	9 q Ö@�s =#� 5 q�sN s # s ��u v �>� with c)� �	ôp�á� 576�8�{.2k
�ôpXu�_� z C���~ and# v ��u v �Y�§� . CHVÁTAL-GOMORY cuts cannot be constructed after mixed-integer
cuts because they cannot handle the non-integer slacks. Note that a mixed-integer

36 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

cut of the first rank (i.e., not dependent on any previous cuts) is stronger than the
corresponding non-strengthened integer cut.

Now we should clarify where to get the multipliers 5 . Without column gener-
ation we would construct a fractional cut from row � of the simplex tableau with
a non-integer basis variable $ ò� . This is modeled by taking row � of the optimum
basis inverse for a 5 -vector if $ ò� ��5��bGJ¿L ([NW88], basic cuts). Then for the
optimum LP solution $, ±i5 ë ³ $�$ ±i5���³ holds which means that $ is cut off by±i5 ë ³ $RB�±i5���³ .

While it is possible to set z�� ¡�5¿¡ � for CHVÁTAL-GOMORY cuts, there
is no such obvious transformation for mixed-integer cuts. However, no numerical
difficulties were observed either. We construct all cuts which are possible and
store them in a local pool; only a few most violated cuts are added to the LP, see
Subsection 2.4.4.

2.4.3 Local Cuts

The term cut-and-branch [BP02] denotes the variation of the algorithm when cuts
are constructed only at the root node; if no optimum is found and proved after a
certain effort, branching is initiated and no new cuts are created in the subprob-
lems. However, experience shows the effectiveness of creating local cuts, i.e., cuts
valid only in a subproblem (and its descendants) [BP02].

Suppose we set lower and upper bounds on some variables as branching con-
straints. Then the LP of the current node looks like5�6�8#{.Õ�$ �Së $¢�ª�F
n�3B $RB�_ä~´�
Let
I �©{´��
��
�
��
�m'~ . In an LP solution, let Î be the index set of basic variables;

let �D�q{�*�J I � $p%Ð���¸%
~ , �§�q{�*gJ I � $p%"��_'%F~ be the index sets of non-
basic variables at their lower and upper bounds. Let ë^ò be the basis, ë � ë Ö@�ò ë ,�/� ë Ö@�ò � . The last simplex tableau implies$ ò [ë ð �d$ ð z � ð � z ë�� ��_ � z $ � �¸� � z ë ð � ð z ë�� _ �

where _ � z $ � is substituted for the non-basic variables $ � which are at their up-
per bounds. Applying Proposition 1 to each row of this system with the rounding-
down function, we obtain CHVÁTAL-GOMORY cuts$ ò [§± ë ð ³p�d$ ð z � ð �O[§± z ë)� ³p��_ � z $ � �lB�± � z ë ð � ð z ë�� _ � ³
or, equivalently,$ ò [�± ë ð ³�$ ð z ± z ë)� ³
$ � B�± � z ë ð � ð z ë�� _ � ³u[�± ë ð ³@� ð z ± z ë�� ³�_ � � (2.6)

2.4. CUTTING PLANES 37

The rounding down function in (2.6) can be replaced by c�� which produces local
mixed-integer cuts. Note that some variables already have upper bounds at the
root node (see Node Preprocessing), thus some globally valid cuts may consider
them.

2.4.4 Selecting Strong Cuts

Column generation (see next section) is expensive when many cuts are added to
the LP. Thus, we have to restrict the maximum number of cuts. But to select a
subset of strong cuts, we perform several iterations of the cutting plane algorithm
without column generation (i.e., on the current LP). Note that when looking in a
pool for cuts violated by the local LP solution, we have to compute the cut’s slacku q , see (2.5). For that, we may need to know the values of slacks of the other cuts.

2.4.5 Comparison to the Previous Scheme

In [STMB01, BS02] each cut-generating vector 5 was modified to satisfy �,B5�¡ � , see Proposition 2 from [STMB01] below. This led to large coefficients of
the cutting planes: with 150 cuts in the LP, the coefficients exceeded �F2}� .

Using the concept of dominance, we discarded superfluous inequalities as fol-
lows. Let ë denote the original matrix ë or an already extended (by generated in-
equalities) coefficient matrix, and let � and m be the number of rows and columns
in ë , respectively, after introducing slack variables in order to get equality con-
straints again. The columns of ë are denoted by i % , *nJ I �Û{´��

���
��
 m÷~ . In
correspondence to ë the extended right-hand side � can be defined.

Proposition 2 For any valid inequality �1±zl ë ³²
k±il ��³.� of � è_é with l�JDñ �N there
exists an equivalent inequality �1±z5 ë ³²
k±i5 ��³.� with 2nB�5 ¡ � , where

�
has all

elements equal to 1.

Proof Let ±il ë ³�$�B ±il ��³ be a valid inequality of � è é . Using l0� â,[�5
where âÛ� ±il²³ , we have 2DB�5£¡ � , ±il ë ³�� ±_��5R[×âó� ë ³�� ±i5 ë ³+[<â ë
and ±zl ��³R� ±_�D5¢[3âK� ��³R� ±i5 ��³K[3â � . Since â ë $n��â � for all $ªJ�� è é , the
inequalities ±il ë ³
$gB�±il ��³ and ±i5 ë ³
$gB�±z5 ��³ are equivalent.

Proposition 3 Let � # � ±i5 ° ë ³²
 # °�� ±z5 ° ��³1� be a dominant valid inequality of� è é for some 5 ° Jgñ �N . Then there exists 5gJ�ñ �N with # �·±i5 ë ³ and # °:�·±i5 ��³
such that 5 i % JML for some *�J I .
The proof can be done by constructing a contradiction to the dominance of � #
 # °��
if such an index * does not exist.

38 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

The quality of a valid inequality �F±i5 ë ³²
k±z5 ��³.� can be measured (in some sense)
by |D~ ��5 ��� . Valid inequalities are not of interest in the case where |D~ ��5 �����j2 . As
will be seen, |D~ ��5 ��� should be large enough to get closer to � è é .
Proposition 4 Let 5gJgñ �N and ¦�J�L be given with ¦b$×� and ¦ |D~ ��5 ���P¡×� . Letl��£¦/5 . Then �F±il ë ³²
½±il ��³1� dominates the valid inequality �1±i5 ë ³�
k±i5 ��³.� , or they
are equivalent.

Proof Because l ��� ¦�5 � and |D~ ��l ���á� |D~ �I¦/5 ���á� |D~ �I¦S±z5 ��³+[¦ |D~ �D5 ���>�á�|D~ �	¦ |D~ ��5 ���T�+�·¦ |D~ ��5 ����
 since ¦ |D~ ��5 ����¡·� , ±il ��³R� ±�¦/5 ��³M�·¦/5 � z |D~ �	¦/5 ���G�¦S±i5 ��³ holds. Hence, ¦S±i5 ë ³
$MB�±�¦/5 ë ³
$¢�h±il ë ³�$MB�±il ��³ó�3¦S±i5 ��³��
Let �] be the set of fractional parts of �D5 ë � , i.e., �] �j{ |D~ �D5 i % � � *�J I ~´� If�^��ge��5f��

�
�
��
�5 �á�E�3ô , then �] & {.2k
�ô@

���
��

� z ô@~ .

Proposition 5 Let i�� be a column with 5 i��MJ£L/N�Ô�{.2½~ , u¿J I . If |D~ ��5 ����¡5�æ.ç¶{Ep � pGJ
�] ~ , ù then c �1±i5 ë ³�
k±i5 ��³.� is not a facet of � è é .
From Propositions 4 and 5 it follows that in order to strengthen a cut, its vector5 can be multiplied by some ¦RJ ü Z½

�FX |D~ �D5 ���>���RL to increase |D~ �	¦/5 ��� . This was

done also in the new implementation for CHVÁTAL-GOMORY cuts. None of these
properties holds for mixed-integer cuts.

2.5 Column Generation

In the standard column generation process, the dual multipliers are used to as-
sess the cutting pattern. With cutting planes added, it is necessary to anticipate
the values of the coefficients the column will have in the cuts during this pro-
cess. These coefficients are non-linear and non-separable functions (2.4) of the
elements of the cutting pattern vector. Finally, the dual information from the cut
rows helps to evaluate the attractiveness of the column. Thus, selecting the most
attractive column involves the solution of an integer programming problem with a
non-separable objective function, which does not seem to have any usable struc-
ture, and has to be solved with branch-and-bound. It is much more difficult than
the linear knapsack problem for column generation arising when no cuts are added
in the LP.

First, we mention how to avoid generation of columns which are already in the
LP – i.e., forbidden columns. This is necessary when some variables have upper
bounds and can be done easily in the context of a branch-and-bound method. In
order to outline the principles of column generation with general-purpose cuttingú

One further regularity condition is not relevant in practice, see [STMB01].

2.5. COLUMN GENERATION 39

planes, we begin with the one-dimensional case. The branching strategy was taken
from [STMB01]. Here we repeat it and then introduce a new upper bound and a
pricing procedure for 2D-2CP.

2.5.1 Forbidden Columns

During column generation we are not allowed to consider columns bounded from
above in the LP formulation. The reason is that in the simplex algorithm with vari-
able bounds, non-basic variables $k% being at their upper bounds _s% are internally
substituted by _'% z $p% which changes the sign of the reduced cost.

During pricing we search for a best pattern, excluding those which are
bounded from above at the current node. That means that, on finding a better solu-
tion that is forbidden, we do not save it; enumeration is continued [Kup98, DP03].
Pieces with negative dual multipliers cannot be excluded from consideration be-
cause they may be contained in second-best solutions.

Experience shows that during the solution process there are only a few cases
where the knapsack objective function is improved, i.e., the checking of forbidden
columns does not happen often. However, we store the set of LP columns in a
dictionary (balanced tree) provided by the C++ Standard Template Library so that
a quick search is possible.

2.5.2 Column Generation for 1D-CSP

Let ôk��

�
�
��
�ô�� be the simplex multipliers of the demand constraints (1.8). Without
cutting planes, the pricing problem is the standard knapsack problem which can
be solved, e.g., with branch-and-bound [MT90]. Pieces are sorted according toôk�>Xa����H×���
�uHDô���Xa��� and feasible cutting patterns are enumerated in a decreasing
lexicographical order.

Suppose o cuts have been added; their dual multipliers are ôp��N#��
��
�
��
�ô²�sN�� .
The pricing problem is the knapsack problem5�æ1ç#{ Õa�	ip� � iG� ��ik��

�
�
��
�i�����JML �N
�9 ��?=#� ���di��÷BD�/
¶i�Bn�
~ (2.7)

with the non-linear objective functionÕa�	ip�¸�<9 ��Ò=#� ô��Ñi²�k[Ê9 �q =#� ô q #rq �	ip��� (2.8)Õa�	ip� is non-separable in the components of i because of the cut coefficients (2.4).
Hence, dynamic programming cannot be applied, at least in its standard concept.

40 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

2.5.2.1 Enumeration Strategy

In our branch-and-bound method for the pricing problem, when cuts are added to
the master LP, we preserve the same enumeration principle as without cuts, i.e.,
lexicographical order. However, sorting of pieces has to reflect their approximate
impact on the objective function. To estimate this impact, the objective function
can be linearly approximated by omitting the non-linear superadditive function in
the formula for cut coefficients (2.4). Thus, we define approximative cut coeffi-
cients recursively asû #�q �	i % �E�ª9 ��?=#� 5 q� i��&%�[¿9 q Ö@�s =#� 5 q��N s û# s �	i % ��
 pó�(��

�
����
�os� (2.9)

Now we have linearity: û#yq ��ip�P�(9 ��?=#� i���û#rq � � � � for all p , where
� � is the � -th unit

vector. The approximative objective function is thenû Õ)��i½�¸�ª9 ��?=#� ô²�Ñi��½[¿9 �q =#� ô���N q û#rq ��ip�S�39 ��?=#� ûô��di�� (2.10)

with ûô��"�Ãô²�f[09 �q =#� ô���N q û#rq � � � � . The sorting of pieces according to ûôk�>Xa����H�
�
�uH ûô��lX)��� proved very effective in finding good solutions [STMB01].

2.5.2.2 A Bound

In order to avoid full enumeration, we need to estimate from above the objective
value Õa�	ip� for a given set of patterns. This estimation should be easy to calculate.

The idea of the bound proposed in [BS02] is to estimate the change of a cut
coefficient when adding a piece of type � to the current subpattern: ±i5'�	iP[� �d� ³�B±i5�i²³s[��i5@� � . However, usually we want to add several items and this could not be
represented satisfactorily in such a way. Here we propose the obvious estimation5#i z �"B�±i5�i²³�BH5�i or, generally, 5�i z CîB c�� ��5�ip�lB:5#i .
Proposition 6 The objective function Õ)��i½� of (2.7) is bounded from above asÕa�	ip��B�ûÕ)��ip�O[�= q =#� ûC q �	ô��sN q � (2.11)

for all patterns i , where the approximation error of cut p isûC q �d$#�S� B $ C q
å$MHn2$�C q
å$M¡ 2 (2.12)

and the upper/lower approximation errors of cut p are

C q � 9 sz� q ûC s ��5 q��N s ��
 C q � z C z 9 sz� q ûC s � z 5 q��N s ���

2.5. COLUMN GENERATION 41

Proof Assume û# q �	ip�k[
C q B # q �	ip�lBÓû# q �	ip�½[C q for pGBD¦ z � (for ¦7�ªZ trivial)
which implies the proposition is true for oáBD¦ z � . Then

# ¥²��i½� def� c��E � 9 ��?=#� 5 ¥� i��k[9 sz� ¥ 5 ¥�sN s # s �	ip�>�¡B39 ��?=#� 5 ¥� i��½[Ê9 sz� ¥ ��5 ¥�sN s û# s �	ip�O[nûCl��5 ¥�sN s �T� def�0û# ¥²�	ip�e[Ce¥
(remember that the components of 5 may be either positive or negative) and

# ¥²��ip� ¡H z Ce¥Y[9 ��?=#� 5 ¥� i��k[9 sz� ¥ ��5 ¥�sN s û# s �	ip� z ûC�� z 5 ¥�sN s �T� def�×û# ¥²�	ip�O['C ¥ �
Thus, for the non-linear part of Õa�I� , we get9 ¥q =#� ô��sN q # q �	ip��BD9 ¥q =#� ô²�sN q û# q �	ip�O[¿9 ¥q =#� ûCl�	ô��sN q ���
This bound is linear and much easier to calculate than the original objective func-
tion. The approximation errors can be calculated before enumeration because they
are constant.

The enumeration procedure works as follows: having a partial solution i/�s���i^� �

�
�
��
�i^�t � , we check the value of the upper bound (2.11) on it. If it is greater
than the current lower bound, then we calculate the objective function and check
whether it is a better solution; if it is, the lower bound is increased.

Now, there may be some free space in the knapsack: ôp�ã�Û� z �ci � . The
question arises whether to fill this space by adding further items or modify i/�
by deleting some items from it, thus moving to another subset of solutions. In
other words, we need to decide whether the subset of patterns with the first x
components determined by i}� and some other non-zero components can contain
an improvement.

Proposition 7 Let a partial solution i � �·�	i � �

�
�
��
�i �t � be given. Then an upper
bound for Õ)�	� on all the patterns built by adding some items of types �7� x [�)

�
�
��
�� to i[� is given as follows:5�æ.ç¶{ Õa�	ip� � ��i�Bn�:
�i�Bn�F
�i�JML �N
÷�	ik��

�
����
�iFt1�E�3i �
�¢k�£$ x � i���$ 2½~BH5��.� x
�ô´����i � �T�O[áû Õ)��i^�?�e[¿9 q ûC q ��ô���N q ��
 (2.13)

where

5��a� x
�ô´�S�¸�35�æ.ç¶{�û Õ)��\äi½� � �D\äi�BDô´�:
�\äi�Bn�F
�\äi�JML �N
\7i����ª2'!#�¸B x
�\äi�G�ª2½~ (2.14)

and ô´�P�	i[�?�¸�ª� z �ci^� .

42 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Proof follows from the linearity of û Õa�I� and Proposition (6).

Note that 5��.� x
�ôp�S� is not dependent on the current objective value Õ)��i/�?� . For all
possible x and ô´� , 5��a� x
�ô´�S� can be calculated efficiently using dynamic program-
ming before the main enumeration. However, we found the following simplifica-
tion sufficient in practice:

Proposition 8 Let �+�åæ ~ �E5�æ1ç#{ ûô²� � �¤$ x ~ . If ûô � ¡h2 then 5��.� x
�ô´�S�¢B ûô � .
Otherwise 5��.� x
�ô´�Y�lBn5�æ.ç¶{ ûô��dX)��� � �K$ x ~Ð¾gôp� .
Proof for the case ûô � H£2 follows from the relaxation of 5��.� x
�ôp�S� . Otherwise
recall that we must add at least one item in the free space ôp� .
The case ûô � ¡D2 means that we are going to investigate solutions with a smaller
bound than the bound of the current partial solution. However, a smaller bound
does not mean that they may not have a greater objective value. Moreover, after
encountering a forbidden pattern we have to look for alternative solutions, even
with a worse value.

2.5.2.3 Practical Issues

The bound (2.13) is sometimes not strong enough when many cuts are added. If
a good solution (with a negative reduced cost) is found and enumeration has been
performed for several thousand backtracking steps (this limit should be increased
with each column generation to reduce the number of columns/tailing off), we
terminate, see [BS02]. In the current implementation the following feature proved
very practical: if no good solution is found for several million steps, the number of
cuts is reduced, both at the current node and at other nodes of the branch-and-price
tree.

2.5.3 The Two-Dimensional Case

Let ô´° be the simplex multiplier of the width constraint (1.24), ô¢����ô¶��

�
�
��
�ô��l�
those of the upper bound constraints (1.23). The pricing problem is4 y õ@ö �D576�8C{.Õ �	ip�E�ª9 ��?=#� � zSx � z ô²�d�>i�� z ô²°�âG��ip� �i�JML �N
¶�ci�BD�/
¶i�Bn�F
¶âG��i½�lBDà ì � (2.15)

The constraint âG��ip��B§à may be relevant if à is reduced by branching on the
main problem. Assume pieces are sorted so that â^�YHnâ y H,ÈFÈFÈ½Hnâ�� . To reduce
the problem to a series of 1D knapsacks, we consider each piece type to initialize

2.6. COMPUTATIONAL RESULTS 43

the strip, which also fixes the width. When taking piece � first, we can add only
those pieces that are not wider.4 y õ@ö �n5�6�8#{ 4 �c� zEx�z ô@
�� z ���¦¥�
 û ��§ � ¥M¨ � zMx �¦¥ z ô��¦¥ z ô²°�â��¦¥ ��	°/�,�)

�
�
��
��g
@â��¦¥:BDàá
����¦¥©$¿2½~´
 (2.16)

where 4 �	� ûôu
 û�/
 û ���S�D5�6�8�{ ûô´i � i�JML �N
¶�ci�B û�P
¶i�B û �1~ (2.17)

and û � § �ª¥ ¨�

���
��
 û � § �¦¥ ¨�ª«>Ö@� �ª2½
 û � § �ª¥ ¨�¦¥ �3���¦¥ z ��
 û � § �¦¥ ¨� �ª���o
½!#�£$ �	°
� (2.18)

The initial upper bound for each solution of (2.17) is set using the best known
solution value. The proposed scheme allows us to avoid repeated investigation of
equal strip patterns. This scheme also applies if cuts are added.

Note that in the assignment model M2 (Chapter 4), boolean variables µ1¥ are
distinguished to initialize a strip. This is a similar approach.

2.6 Computational Results

We used the ILOG CPLEX 7.5 Callable Library to solve the LP relaxations and
the mixed-integer solver included there to find integer solutions on the current
restricted LP. The hardware was AMD K7 Athlon XP 1000 MHz. The program
was compiled with GNU C++ 2.96 whose optimized code was about 3 times faster
than non-optimized. �

Notations for results are given in Table 2.1.

2.6.1 The One-Dimensional Cutting Stock Problem

At first we present some benchmark results for (today’s) large instances: ���<Z)2�2
and Á 2�2 . Then we consider a ‘hard28’ set which consists of what appeared to
be the most difficult instances among the huge series computed by Schoenfield
[Sch02a]. Here we compare the branching strategies bfs and dfs. On this set and
on the so-called triplet problems, our implementation is compared to a branch-
and-price implementation based on the arc flow formulation and to implementa-
tions of [DP03, Kup98].�

Some of the test instances for 1D-CSP can be obtained from
www.math.tu-dresden.de/˜capad; test instances for 2D-2CP from
ftp://panoramix.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/

44 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Table 2.1: Notations for test resultsl´� , l y ���÷J�ü4l²�>�:
ml y �S�O�VL
IP the best integer solution value
IPmin, IPmax the minimum / maximum best solution value among the class
inst name Ø Ø : the 1D-CSP instance is non-IRUP
LP the strongest LP value
LPval0 the initial LP value (no cuts/branching)¬
LP,
¬
IP time to obtain the best LP bound and IP, seconds¬

Opt optimum solution time�
opt,
�

opt number of optimally solved / unsolved instances� N number of instances unsolved at the root node
nodes number of processed nodes
iter number of cutting plane iterations in all nodes
LPcol, IPcol number of columns in the initial LP optimum / all columns
MIP number of cases in which the best solution was found

by the CPLEX MIP solver
nIRUP number of proven non-IRUP 1D-CSP instancesm the total number of items in 2D-2CP, i.e., 9 ���

2.6.1.1 Benchmark Results

To benchmark the behavior of the algorithm on 1D-CSP, we could not use any
classes of previous authors because they computed up to � �·�
2�2 with at most
100 instances per class which is at the present time not enough to find difficulties. ­
We compute

� �(�F2�2)2 instances per class for ���<Z)2�2 and Á 2�2 and one difficult
class with

� �,�F2�2)2�2 .
Moreover, a comparison to other algorithms is questionable because we have

an excellent rounding procedure, which reduces the number of instances unsolved
in the root by a factor of 10 [BS02], and an excellent heuristic, see the values
of
� N in Table 2.2. In [BS02], with

� � �
2�2 instances per class which were
all solved optimally, we observed a comparable behavior of pure cuts and pure
branching in the problem with a single stock length. On the benchmark classes
presented below, cuts left more instances unsolved. This becomes more clear on
difficult instances, see the results for the hard28 set.

Following the tradition established in [WG96], we generate instances with

®
Some 1D-BPP instances had larger ¯ , see, e.g., the triplet instances below. Some other 1D-

BPP classes, e.g., in the OR Library, have ‘formally’ up to 1000 piece types, but when °b±�²m³�´
and µ¦¶ are integer, the actual number of distinct piece types must obviously be much smaller.

2.6. COMPUTATIONAL RESULTS 45

item lengths ��� uniformly distributed in ü4lp�>�/
�l y �S�O�VL , l´��¡·l y , where

l²��Já{.2k�É2)2k��
�2k�Ç2²¼½
�2k���F¼½
�2k�ÉZ�¼p~ and l y Já{.2k� Zp
�2k�Ç¹k

�
�
��
�2½�ÉÚ½~´
 (2.19)

and order demands uniformly distributed in ü ���O�A�)
����e�I�
�¸�nL . � is chosen as�
2�2�2�2�2�� �F2W¹ because for smaller � we usually have too many equal sizes in
such a class as ��l´��
�l y �E� �	2½���1¼p
�2k�ÉZ�� . ØoØ We define the basic class by��l²��
�l y �E� ��2k�É2)2k��
�2k�»º���
1�	���O�A�.
����e�I���E� �_�)

�F2�2²��
��q�ªZ)2�2½� (2.20)

By always varying just one or two of these parameter groups at a time, relative to
the basic class, we obtain different classes and avoid an explosion of the number of
classes that would arise, e.g., if we were to take all ��l½��
ml y � combinations both for���<Z)2�2 and ��� Á 2�2 . A reason to choose ��lp��
ml y �¸�j��2k�Ç2�2k��
�2½�ªº�� as basic is that
it had the largest number of unsolved instances: 6 out of 1000 (23 at the root node),
see Table 2.2. Actually, the instances in the hard28 set (see the next subsection),
which were collected from a huge test, also have piece sizes distributed over nearly
this same range.

The time limit was 2 minutes per instance. No cuts were used because pure
branch-and-price was slightly better than branch-and-cut-and-price, namely the
number of instances unsolved in a fixed time limit was 20–50% smaller. The
branching strategy was diving bfs with 10 nodes selected according to bfs, then �
nodes dfs in the subtree of the last bfs node, and so on.

At first attempt we were unable to solve the classes with l y �02k�ÉZ . The many
small items produce a huge amount of combinations, which makes pattern gen-
eration by branch-and-bound inefficient. Then we introduced early termination
as in the case with cuts: after �F2^¼ backtracking steps, if a pattern with a negative
reduced cost is found, we exit the knapsack solver. This allowed the solution of
classes with l´�/�(2k�Ç2�2k� and l´�/�(2½�É2²¼ (l y � 2k�ÉZ). Note that for l´�/� 2k�Ç2²¼ there
are 6 unsolved instances but no single node could be processed in the given time.
In the class �Dl´��
�l y ���©��2k�}�1¼½
�2k�ÉZ�� , piece sizes and dual multipliers are so close to
each other that not far from LP optimum, no patterns with negative reduced cost
could be found in an acceptable time. For this class, some combinatorial reduc-
tions are very effective [Sch02a]. The branching on hyperplanes induced by the
arc flow formulation seems also appropriate because then we can employ dynamic
programming for pattern generation even at subnodes (no columns are forbidden).

2.6.1.2 The hard28 Set

We consider the 28 hard 1D-BPP instances from the thorough test of Schoenfield
[Sch02a] with �·Jî{´� Á 2k

���
��
�Z)2�2½~ . One property of these instances is that the LPÝUÝ

Equal items are merged, resulting in a slightly smaller average dimension.

46 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Table 2.2: 1D-CSP: benchmark results

½
opt IPmin IPmax ¾ LP ¾ IP nodes IPcol MIP nIRUP

½ N¿ �£ÀEÁ^ÂVÁ@Á[Ã , ¿ y À�Á^ÂÅÄ 0 811 1216 18.6 18.9 0.00 894 0 0 0¿ y À�Á^ÂÅÆ 3 1214 1822 8.3 11.7 0.002 1027 0 1 4¿ y À�Á^Â4Ç 2 1617 2428 8.0 8.5 0.05 1186 0 0 5¿ y À�Á^ÂÅÈ 4 2020 3034 17.2 17.6 0.57 1435 0 0 4¿ y À�Á^ÂÅÉ 3 2423 3640 11.7 12.3 0.79 1289 0 0 10¿ y À�Á^ÂËÊ 6 2826 4263 4.1 5.6 4.16 1083 2 0 23¿ y À�Á^ÂÅÌ 0 3229 5370 1.6 2.2 0.08 845 2 0 17¿ � À
Á^ÂVÁEÈ , ¿ y À�Á^ÂÅÄ 6 1055 1470 8.6 12.4 0.00 788 0 0 6¿ y À�Á^ÂÅÆ 0 1459 2075 5.7 5.8 0.00 1063 0 0 0¿ y À�Á^Â4Ç 0 1863 2679 6.6 6.6 0.01 1212 0 0 1¿ y À�Á^ÂÅÈ 1 2266 3284 15.1 15.4 0.16 1402 0 0 3¿ y À�Á^ÂÅÉ 2 2670 3890 5.4 6.2 1.35 1160 0 0 13¿ y À�Á^ÂËÊ 1 3075 4661 2.5 3.1 1.28 977 7 0 14¿ y À�Á^ÂÅÌ 1 3482 5573 1.1 1.6 2.76 779 9 1 14¿ �£À
Á^Â,Ã�È , ¿ y À�Á^ÂÅÄ - - - - - - - - - -¿ y À�Á^ÂÅÆ 1 1929 2595 8.2 8.4 0.06 1283 0 0 2¿ y À�Á^Â4Ç 2 2354 3200 12.5 12.8 0.24 1425 0 0 6¿ y À�Á^ÂÅÈ 5 2760 3806 5.4 6.5 2.08 1267 0 0 17¿ y À�Á^ÂÅÉ 1 3166 4414 2.4 3.1 1.52 1051 8 0 11¿ y À�Á^ÂËÊ 1 3577 5175 1.1 1.4 3.21 850 5 0 6¿ y À�Á^ÂÅÌ 0 3989 6209 0.4 0.4 0.02 681 3 0 5¿ �£À
Á^ÂÅÄ@È , ¿ y À�Á^ÂÅÆ 0 2854 3750 0.8 0.8 0.00 459 0 0 0¿ y À�Á^Â4Ç 0 2854 3750 2.6 2.6 0.00 887 0 0 0¿ y À�Á^ÂÅÈ 0 3306 4523 3.2 3.5 0.15 1135 5 0 4¿ y À�Á^ÂÅÉ 0 3666 5094 1.7 1.8 0.03 1395 1 0 2¿ y À�Á^ÂËÊ 0 4082 6073 1.2 1.2 0.00 1328 0 0 0¿ y À�Á^ÂÅÌ 0 4663 7232 0.6 0.6 0.00 942 0 0 0¿ ��À�Ã�Á Ö´Å , ½ À�Ã�Á Å 32 Ø 2711 4400 4.2 5.1 2.52 1092 16 1 145¿ ��À�Ã�Á Ö´Å , Í �e�I�¸À�Ã 1 63 79 8.1 8.6 0.40 1386 0 1 10Î ÀEÇEÁ@Á 15 6197 8138 40.7 42.3 0.31 2274 0 0 24Ø : for this class from 10000 instances, all others from 1000 instances.

2.6. COMPUTATIONAL RESULTS 47

relaxation value is integer or slightly less which makes it difficult to find an opti-
mum for the 23 IRUP instances among them. Schoenfield was able to solve them
with a branch-and-bound algorithm that employs various combinatorial bounds.
Pure branch-and-price implementations from [Kup98, DP03] solved only about
half of the set (unofficial results from the authors). Pure cuts achieved the same
only if the CPLEX MIP solver was used to obtain integer solutions of the current
LP. Our new implementation and branch-and-price based on the arc flow formu-
lation [AdC03] were successful, see Table 2.3.

Table 2.3 contains some problem data, then algorithmic results in four sec-
tions: pure branch-and-price from [AdC03] (BP-AFF) and our implementation
(BP), branch-and-cut-and-price (BCP) with at most two cuts in the LP formula-
tion and new cuts generated every eight nodes, and BCP ‘/200’ where cuts are gen-
erated only after the initial 200 nodes have been processed (see, e.g., [MPT99]).
In this delayed variant, 5 cuts were allowed in the LP and were generated at every
node. The CPLEX mixed-integer solver was not used because it takes a very long
time on these instances. Note that in IRUP instances, tOpt is equal to the time
required to find the best integer solution; in non-IRUP instances, it is the time
required to raise the LP bound to the IP value.

We see that without cuts, the time and number of nodes are smaller for practi-
cally all instances except for the difficult non-IRUP instances bpp716 and bpp359.
Cuts are necessary to solve bpp716 in reasonable time (no branching is needed
then; the number of nodes is zero). The variant with delayed cut generation seems
to be a wrong compromise: in comparison to BP, the number of nodes (not the
time) is reduced for bpp716 and bpp359, but not as much as in BCP; for other
instances, no systematic effect is seen.

BP–AFF was executed on a 700 MHz Pentium III with 128 MB and CPLEX
6.5. We see that there are no such extremal solution times as in our case for
bpp716. The number of flow variables in the initial relaxation is smaller than
the number of patterns generated in the initial Gilmore-Gomory relaxation. But
that number is pseudo-polynomial; it grows with � . In these problems we have�Ê�£�F2�2�2 . The authors agreed to compute the set for comparison and mentioned
that their implementation is ‘fresh’ and many improvements are possible, in both
the acceleration of column generation and (rounding) heuristics.

In BCP we allowed at most two cuts in the LP. In 1D-CSP usually not a single
cut is active in IRUP instances (cf. [BS02]) and only one in non-IRUP instances;
adding too many cuts complicates column generation. GOMORY mixed-integer
cuts were used because they seem more effective for 1D-CSP. A possible expla-
nation is that mixed-integer cuts of low ranks are stronger than fractional cuts; in
2D-2CP, at high ranks, the non-integer slacks of previous cuts make them weaker,
see Section 2.4.

The pure bfs (best-first search) node selection strategy is better only for non-

48
C

H
A

PT
E

R
2.

B
R

A
N

C
H

&
C

U
T

&
PR

IC
E

FO
R

1D
-C

SP
A

N
D

2D
-2

C
P

Table 2.3: The hard28 set of the bin-packing problem

BP – AFF BP – no cuts BCP BCP ‘/200’
name IP LPval0 LPcol tOpt nod LPcol tOpt nod IPcol tOpt nod iter IPcol tOpt nod
1 bpp14* 62 60.998 770 129.34 386 421 5.04 164 958 7.92 102 121 935 5.01 164
2 bpp832 60 59.997 771 234.98 984 423 2.75 30 889 5.75 11 40 820 2.75 30
3 bpp40 59 58.999 877 180.12 412 553 16.3 665 1137 24.7 142 171 1080 34.2 369
4 bpp360 62 62.000 924 64.36 23 417 3.26 12 995 8.26 33 62 1152 3.25 12
5 bpp645 58 57.999 958 193.38 515 471 4.1 18 1102 7.95 44 75 1146 4.13 18
6 bpp742 64 64.000 788 62.88 23 442 0.94 0 788 0.93 0 0 788 0.94 0
7 bpp766 62 61.999 794 47.77 10 448 2.46 19 852 3.61 23 44 860 2.46 19
8 bpp60 63 62.998 730 56.63 54 415 4.74 168 941 43.4 720 756 1089 4.76 168
9 bpp13 67 67.000 1011 80.04 2 605 4.33 13 1044 4.67 4 26 1042 4.34 13

10 bpp195 64 63.996 1028 132 63 584 12.2 227 1637 8.65 20 58 1208 19.6 247
11 bpp709 67 66.999 854 77.67 30 580 6.88 125 1063 6.37 25 50 1020 6.89 125
12 bpp785 68 67.994 982 134.19 110 575 6.52 61 1276 11.1 30 52 1200 6.54 61
13 bpp47 71 71.000 950 71.8 16 425 2.09 0 950 2.07 0 0 950 2.07 0
14 bpp181 72 71.999 882 97.23 140 492 3.86 40 993 5.81 40 68 987 3.84 40
15 bpp359* 76 74.998 741 63.1 62 386 427 24484 1425 26.2 536 570 1029 229 2310
16 bpp485 71 70.997 1098 69.14 29 470 3.57 3 1125 9.64 78 110 1274 3.55 3
17 bpp640 74 74.000 809 64.98 15 428 2.59 12 904 13.4 93 130 1132 2.59 12
18 bpp716* 76 75.000 845 41.07 10 382 7468 270082 2035 2.32 0 13 868 25657 68576
19 bpp119* 77 76.000 1056 69.76 2 633 3.17 2 1061 5.3 2 20 1074 3.15 2
20 bpp144 73 73.000 867 103.06 42 543 8.48 128 1148 232 768 808 1511 8.36 128
21 bpp561 72 71.996 967 161.75 139 553 6.05 28 1201 11.2 30 78 1222 6.01 28
22 bpp781 71 70.999 1157 277.04 352 606 7.88 30 1437 12.7 28 74 1482 7.89 30
23 bpp900 75 74.996 1115 78.65 11 541 7.43 77 1331 31.5 156 197 1362 7.45 77
24 bpp175* 84 83.000 981 104.11 114 506 3.84 8 1063 5.81 24 42 1110 3.84 8
25 bpp178 80 79.995 1054 124.75 115 548 9.33 207 1343 6.77 33 70 1208 65.9 420
26 bpp419 80 79.999 1161 91 6 659 12.4 246 1507 39.3 238 291 1606 20.1 243
27 bpp531 83 83.000 929 60.97 15 391 2.63 2 963 5.67 17 52 1156 2.65 2
28 bpp814 81 81.000 922 78.2 27 398 3.88 19 1090 8.58 28 74 1218 3.88 19

average 929.3 105.4 132.4 496.3 287.2 10602.5 1152.1 19.7 115.2 144.7 1126.0 932.9 2611.6

Note: without cuts (BP) and at the delayed variant (‘/200’), pure bfs strategy was applied to bpp716, diving bfs in all other cases

2.6. COMPUTATIONAL RESULTS 49

IRUP 1D-CSP instances. Here we practically always have an optimum solution
from the beginning; the task is to improve the LP bound. For example, the non-
IRUP instance 18 (bpp716) is solved without cutting planes in about six hours
with diving bfs, but with pure bfs it is solved in a little over two hours with just
over 270000 nodes. With cuts we need just seconds (and no branching) for this
instance. There are other known instances of this kind. IRUP problems have a
strong LP bound. The goal is usually to find an optimum solution; this is where
dfs works best. As the share of non-IRUP instances is small among randomly
generated instances, we conclude that dfs is the first-choice strategy for 1D-CSP
and 1D-BPP.

2.6.1.3 Triplet Problems

Triplet problems [Fal96] are 1D-BPP or 1D-CSP instances where an optimum so-
lution has exactly three items in each stock bin and no waste. This means that the
optimum value is equal to the material bound. In the OR Library of J. E. Beasley
there is a collection of four 1D-BPP sets, each with 20 triplet instances. The di-
mensions of instances (�) are 60, 120, 249, and 501 in the four sets. The LP
bound cannot be improved and cutting planes are of no use. Without cuts, the
largest set with �º�,¼)2k� was solved in 50 sec. per instance on average, which is
almost identical to [Pee02]. With two cuts allowed in the LP, the time exceeded
already 300 seconds.

2.6.1.4 Other Algorithm Parameters for 1D-CSP

We found the following settings best. Instead of solving the formulation where
overproduction of items is allowed (9 % i��&%�$p%MHh��� , !#�), we solved the equality
formulation. The consequences are that non-maximal patterns may appear and
that the CPLEX MIP solver has fewer feasible combinations on the restricted for-
mulation. Initializing the root LP by a subdiagonal FFD-like matrix was better
than by an SVC solution, or a greedy basis, Ù�Ù or an empty basis. The last is a
valid starting point because we must have artificial slacks

� � !#� with large objec-
tive coefficients (e.g., �F2 ¹): in a left subproblem (produced by $k%KB) the restricted
LP of the parent may need further columns to become feasible, in which case
such slacks make it possible to obtain simplex multipliers to generate some new
columns. Moreover, when applying integer bounding (see Node Preprocessing),
an FFD/greedy/SVC starting basis may also be infeasible, in which case the arti-
ficial slacks are necessary.

We also tried the so-called level cut [AdC03] 9 % $p%¨H � 4 ð ér� but this made
other cuts less effective and yielded no overall improvement.ÞdÞ

Pattern Ï ¶»Ð is equal to Ñ�Ò�Ó�ÔÕÑ�Ö
×�µ�ÏÕØ�µÙÏÕÚ¤°�ÛEÏÜÚÞÝ�ÛEÏÜß�à�áâOÛ�Ïã¶�±ä´�åWænç¤æiè,é , æiè
±�²êÛMëMëjëSÛ�¯ .

50 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

2.6.2 Two-Dimensional Two-Stage Constrained Cutting

For 2D-2CP, we show the effects of pseudo-costs and compare the performance
to other state-of-the-art approaches. The test set consists of a medium class
[HR01, LM02] and a large class [HM03]. In the medium class, the first 14 in-
stances are weighted, i.e., piece prices are not proportional to the areas, and 24
are unweighted. In the large class, the first 10 are unweighted and the other 10 are
weighted. Problem dimensions � and mR�09b��� are shown in Table 2.4.

In guillotine cutting, we can distinguish between the first cut made horizon-
tally or vertically, or, in other words, along the first dimension (�) or the second
(à). Unlike in 1D-CSP, where we practically always have either the optimum
LP bound (for IRUP instances) or the optimum solution obtained by rounding
(for non-IRUP instances) from the beginning, in 2D-2CP the objective function
and the LP bound can accept various values during optimization. Thus, we report
both the times for the best LP bound (not LP value) tLP and for the best integer
solution tIP; the maximum of them is the total solution time, at most 10 minutes.

2.6.2.1 Pseudo-Costs

In Table 2.4 we see that pseudo-costs lead to longer overall optimum times on all
classes, though on the large class the number of instances unsolved in the time
limit of 10 minutes is the same: four. On the large class, however, pseudo-costs
lead to finding good solutions much faster. The best LP value is not shown if it
equals the optimum. Pseudo-costs were not used in further tests.

2.6.2.2 Comparison with Other Methods

In Tables 2.5 and 2.6 we show, for the medium set, the optimum solution times of
three other solution approaches. The combinatorial algorithm from [HR01] was
tested on an UltraSparc10 250 MHz. Its runtimes are denoted by HR. M1 and
M2 [LM02] are assignment formulations of 2D-2CP with a polynomial number
of variables; no column generation is needed. In Chapter 4 we strengthen them
by lexicographical constraints and recompute with CPLEX 7.5 on our 1000 MHz
CPU. BCP has fewer difficult instances and its average time is smaller on most
classes.

Tables 2.7 and 2.8 show the results for the large series. The first two result
columns show the objective value and the solution time Ü�Ü of the heuristic HESGA
[HM03]. Then there follow the data for M1 and M2. M1 provides better solutions
than the heuristic, especially on the last 10 weighted instances. The weighted caseßdß

Also UltraSparc10 250 MHz.

2.6. COMPUTATIONAL RESULTS 51

Table 2.4: 2D-2CP: medium+large instances, effects of pseudo-costs, first cut
along the first dimension

NoPsCosts PsCosts
name m n tLPbest tIPbest IPbest LPbest tLPbest tIPbest IPbest LPbest
HH 5 18 0.02 0 10689 0.02 0
2 10 23 0.95 0 2535 0.72 0
3 19 62 0.14 0.05 1720 0.15 0.06
A1 19 62 0.03 0.06 1820 0.06 0.09
A2 20 53 0.24 0.02 2315 0.36 0.02
STS2 30 78 0.29 0.11 4450 0.29 0.11
STS4 20 50 5.12 1.15 9409 4.8 4.91
CHL1 30 63 56.4 0.15 8360 119 0.15
CHL2 10 19 0 0 2235 0.02 0
CW1 25 67 0.05 0 6402 0.05 0.02
CW2 35 63 0.05 0.02 5354 0.06 0.03
CW3 40 96 0.29 0.11 5287 0.35 0.11
Hchl2 35 75 2.42 1.92 9630 3.88 0.55
Hchl9 35 76 0.09 0.09 5100 0.11 0.06
average 4.72 0.26 9.28 0.44
2s 10 23 0.4 0 2430 0.6 0.02
3s 19 62 0.06 0.03 2599 0.06 0.03
A1s 19 62 0.02 0.02 2950 0.03 0.02
A2s 20 53 0.03 0.03 3423 0.05 0.02
STS2s 30 78 0.14 0.12 4569 0.15 0.14
STS4s 20 50 1.2 0.05 9481 1.03 0.05
OF1 10 23 0 0 2713 0.02 0.02
OF2 10 24 0.15 0 2515 0.18 0
W 19 62 0.15 0 2623 0.2 0
CHL1s 30 63 0.23 0.12 13036 0.21 0.14
CHL2s 10 19 0.12 0 3162 0.15 0.02
A3 20 46 0.21 0.03 5380 0.21 0.03
A4 19 35 0.28 0.11 5885 0.35 0.14
A5 20 45 0.48 0.24 12553 0.66 0.33
CHL5 10 18 0.02 0.02 363 0.02 0.02
CHL6 30 65 3.82 0.37 16572 5.35 0.41
CHL7 34 75 0.54 0.28 16728 0.48 0.35
CU1 25 82 0.08 0.06 12312 0.09 0.08
CU2 34 90 0.03 0.03 26100 0.03 0.03
Hchl3s 10 51 0.24 0.02 11961 0.21 0.02
Hchl4s 10 32 1.38 1.38 11408 1.31 0.67
Hchl6s 22 60 0.8 0.06 60170 0.55 0.06
Hchl7s 40 90 2.59 0.3 62459 2.9 0.6
Hchl8s 10 18 0.7 0.08 729 1.11 0.75
average 0.57 0.14 0.66 0.16
ATP30 38 192 0.64 0.18 140168 1.95 0.29 140168
ATP31 51 258 213 147 820260 265 1.86 820260 820261
ATP32 56 249 0.71 0.71 37880 0.69 0.67 37880
ATP33 44 224 0.05 0.05 235580 0.05 0.03 235580
ATP34 27 130 589 0.06 356159 356392.6 600 0.05 356159 356325.7
ATP35 29 153 591 0.12 614429 614752.2 569 0.11 614429
ATP36 28 153 90.1 0.39 129262 5.16 0.47 129262 129262.9
ATP37 43 222 75.5 0.08 384478 600 0.08 384478 384514.8
ATP38 40 202 0.06 0.05 259070 0.08 0.05 259070 259070
ATP39 33 163 181 66.6 266135 2.71 1.54 266135
average 174.11 21.52 324342.10 204.46 0.52 324342.10
ATP40 56 290 0.42 0.37 63945 0.47 0.41 63945
ATP41 36 177 0.05 0.03 202305 0.06 0.03 202305
ATP42 59 325 543 0.2 32589 32657.65 305 0.2 32589
ATP43 49 259 124 69.4 208998 190 54.5 208998
ATP44 39 196 596 338 70901 72972.48 595 0.03 70798 72841.34
ATP45 33 156 0.02 0 74205 0.02 0 74205
ATP46 42 197 0.08 0.03 146402 0.06 0.03 146402
ATP47 43 204 20.9 15.8 144317 599 0.41 144317
ATP48 34 167 0.18 0.09 165428 0.21 0.11 165428
ATP49 25 119 5.29 3.19 206965 5.42 2.94 206965
average 128.99 42.71 131605.50 169.52 5.87 131595.20

52
C

H
A

PT
E

R
2.

B
R

A
N

C
H

&
C

U
T

&
PR

IC
E

FO
R

1D
-C

SP
A

N
D

2D
-2

C
P

Table 2.5: 2D-2CP: medium instances, first cut along the first dimension

HR ILP-M1 ILP-M2 BCP, CHVÁTAL-GOMORY cuts BCP, MI cuts
IP LPval0 tOpt tOpt tOpt tLP tIP nodes iter LPcol IPcol tLP tIP

HH 10689 10872 0.2 0.05 0.03 0.1 0 0 2 11 12 0 0
2 2535 2658.943 2.9 0.14 0.1 1.6 0 628 669 25 97 1.87 0
3 1720 1893.6 0.2 0.12 0.11 0.17 0.4 88 99 40 53 0.17 0.16
A1 1820 1872.8 0.2 0.24 0.17 0.2 0.1 8 17 40 42 0.1 0.1
A2 2315 2391.552 0.8 0.32 0.28 0.8 0.2 28 36 43 57 0.89 0.2
STS2 4450 4529.035 5.6 6.88 4.81 0.33 0.5 44 57 61 71 0.26 0.5
STS4 9409 9580.129 9.2 4.54 0.86 6.15 0.2 1238 1279 41 162 4.29 0.2
CHL1 8360 8768.395 610 2.79 2.95 1m30 1.19 4332 4377 65 599 4m43 2.5
CHL2 2235 2272.176 0.1 0.03 0.04 0.1 0 0 1 22 22 0.1 0
CW1 6402 6820.133 1 1.02 0.28 0.5 0 10 18 52 58 0.81 0.1
CW2 5354 5462.694 2.1 0.31 0.23 0.4 0.1 6 14 72 74 0.2 0.1
CW3 5287 5427.329 6.4 0.83 0.48 0.16 0.14 18 32 83 94 0.19 0.17
Hchl2 9630 9742.215 N/A 12.86 20.18 5.88 5.41 576 704 75 143 9.24 5.4
Hchl9 5100 5195 858 2.09 1.05 0.2 0.2 0 1 74 75 0.2 0.2
average 115.13 2.30 2.26 7.47 0.495 21.5 0.57
2s 2430 2553.943 4.6 0.15 0.16 0.73 0 288 340 24 63 1.4 0.1
3s 2599 2668.578 0.1 0.08 0.08 0.5 0 28 41 39 42 0.5 0.1
A1s 2950 2970.37 0.1 0.11 0.16 0.1 0 0 1 39 39 0.1 0.1
A2s 3423 3474.3 0.2 0.54 0.58 0.2 0 6 14 42 44 0.7 0.1
STS2s 4569 4614.475 1.1 4.29 7.17 0.5 0.1 8 17 61 61 0.19 0.1
STS4s 9481 9643.37 8.9 3.12 7.41 1.41 0.2 328 366 41 99 2.41 0.2
OF1 2713 2713 0.1 0.02 0.05 0 0 0 0 22 22 0 0
OF2 2515 2716.333 0.1 0.09 0.07 0.7 0 40 55 22 34 0.2 0
W 2623 2785 0.2 0.23 0.13 0.28 0.1 100 108 39 84 0.16 0.1
CHL1s 13036 13193.85 6.1 1.96 2.36 0.8 0.1 12 20 61 66 44.14 0.1
CHL2s 3162 3306.882 0.1 0.07 0.07 0.1 0.1 54 66 22 33 0.17 0
A3 5380 5572.824 0.3 0.66 0.87 0.8 0.1 22 33 41 56 0.34 0.1
A4 5885 6100.765 1.6 0.77 0.59 0.25 0.2 60 76 39 68 0.38 0.2
A5 12553 13182.84 2.4 1.51 0.85 2.66 0.1 546 565 42 144 2 0.1
CHL5 363 379 0.1 0.02 0.03 0 0 0 1 22 22 0 0
CHL6 16572 16866 38.2 6.8 17.48 12.65 0.2 1532 1611 62 218 18.39 0.2
CHL7 16728 16813.35 44.6 9.28 65.08 0.38 0.2 54 65 71 80 0.3 0.2
CU1 12312 12500 1 9.01 2.08 0.7 0.1 14 22 51 54 0.5 0.1
CU2 26100 26250 2.7 2.01 0.7 0.7 0.2 6 15 69 70 0.1 0.2
Hchl3s 11961 12093.09 15.3 450.7 4.45 0.79 0 288 311 22 160 0.69 0
Hchl4s 11408 11753.54 507 192.4 2.12 1.5 0.98 264 321 23 114 2.14 0.71
Hchl6s 60170 60948.64 14.8 4.02 15.7 0.61 0.2 130 156 46 69 1.73 0.2
Hchl7s 62459 63154.5 96.2 56.9 280.32 3.47 0.64 284 309 82 112 11.61 1.42
Hchl8s 729 766.8 26.4 0.16 0.17 0.78 0.68 176 223 26 153 1.13 0.96
average 32.18 31.04 17.03 1.09 0.105 3.63 0.14

2.6.
C

O
M

PU
TA

T
IO

N
A

L
R

E
SU

LT
S

53

Table 2.6: 2D-2CP: medium instances, first cut along the second dimension

HR ILP-M1 ILP-M2 BCP, CHVÁTAL-GOMORY cuts BCP, MI cuts
IP LPval0 tOpt tOpt tOpt tLP tIP nodes iter LPcol IPcol tLP tIP

HH 9246 9813 0.3 0.08 0.06 0.14 0.1 92 113 13 45 0.14 0.1
2 2444 2530.621 3.8 0.26 0.15 0.47 0 108 132 24 94 0.47 0
3 1740 1893.976 0.2 0.61 0.22 0.14 0.2 52 63 39 65 0.34 0.2
A1 1820 1991.594 0.3 0.53 0.19 1.25 0.17 422 443 40 172 0.51 0.33
A2 2310 2441.667 0.7 0.29 0.22 0.55 0.4 160 181 44 76 0.96 0.4
STS2 4620 4620 0.5 0.39 0.69 0 0 0 0 61 61 0 0
STS4 9468 9689.5 1.9 1.12 3.38 0.26 0.2 90 98 41 68 0.11 0.2
CHL1 8208 8264.386 1496 1.98 2.29 0.2 0.11 16 28 65 70 0.42 0.34
CHL2 2086 2119.632 0.1 0.09 0.05 0.1 0 0 3 21 22 0.1 0
CW1 6402 6557.76 1 0.24 0.18 0.1 0 0 1 52 52 0.4 0.1
CW2 5159 5629.514 2.2 0.53 0.37 14.83 0.5 2338 2353 73 569 17.42 0.5
CW3 5689 5708.568 6.3 2.47 0.43 0.2 0.1 0 1 82 82 0.2 0.1
Hchl2 9528 9604.816 N/A 72.04 52.15 0.82 0.65 72 105 73 97 1.16 0.78
Hchl9 5060 5076.154 1017 2.69 2.07 0.5 0 0 5 73 75 0.4 0
average 195 5.95 4.46 1.40 0.17 1.62 0.22
2s 2450 2545.253 4.8 0.24 0.14 0.69 0.1 170 199 24 102 0.53 0.1
3s 2623 2785 0.1 0.34 0.2 0.28 0 100 108 39 84 0.14 0.1
A1s 2910 2937.565 0.2 0.26 0.24 0.1 0.1 0 1 39 39 0.1 0
A2s 3451 3531.478 0.2 1.18 0.91 0.1 0.1 0 1 42 42 0.5 0.1
STS2s 4625 4638 0.8 2.51 2.7 0.1 0.1 0 1 61 61 0.1 0
STS4s 9481 9541.182 1.9 1.71 5.64 0.4 0.2 2 12 41 43 0.7 0.1
OF1 2660 2660.621 0.1 0.01 0.05 0 0 0 0 21 21 0 0
OF2 2522 2696 0.1 0.1 0.08 0.6 0.1 340 351 21 136 0.11 0.1
W 2599 2668.578 0.1 0.09 0.09 0.7 0.1 28 41 39 42 0.4 0.1
CHL1s 12602 12672.84 21.5 9.31 227.05 0.5 0.2 6 15 61 63 0.72 0.2
CHL2s 3198 3198 0.1 0.09 0.1 0.1 0 0 0 22 22 0.1 0
A3 5403 5453.032 0.4 0.8 1.03 0.4 0.1 12 20 42 42 0.2 0.1
A4 5905 5961.957 2.1 0.53 0.38 0.8 0.1 28 39 40 44 0.5 0.1
A5 12449 12630 2.5 2.21 6.29 0.44 0.1 138 157 42 68 10.74 0.1
CHL5 344 381.5 0.1 0.04 0.03 0.5 0.5 22 33 22 31 0.8 0.2
CHL6 16281 16470 33.4 10.39 474.65 0.95 0.5 200 218 62 103 1.16 0.5
CHL7 16602 16682.86 50.6 17.46 344.08 0.76 0.2 110 131 71 96 10.58 0.2
CU1 12200 12342 1 235.33 0.98 0.45 0.1 220 235 51 94 0.25 0.1
CU2 25260 26192 2.8 5.3 2.32 40.35 0.54 3604 3624 69 946 9.6 7.79
Hchl3s 11829 11997.83 20.4 321.52 1.11 0.58 0.1 206 231 23 50 0.57 0.2
Hchl4s 11258 11418.88 268.4 0.62 0.22 0.17 0.8 70 86 21 54 0.36 0.8
Hchl6s 59853 60499.31 7.2 9.19 102.02 3.47 0.4 676 729 48 155 19.12 0.4
Hchl7s 62845 63052.51 39.1 62.87 350.94 0.13 0.8 14 27 84 89 0.11 0.11
Hchl8s 791 820 28.7 0.11 0.09 0.17 0.2 43 88 24 50 0.23 0.25
average 20.28 28.43 63.39 2.06 0.05 2.25 0.35

54 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Table 2.7: 2D-2CP: large instances, first cut along the first dimension

HESGA M1 M2 BCP
name obj time obj time obj time obj ì All ì IP

ATP30 140168 7.3 138765 608.13 137813 601.98 140168 0.65 0.06
ATP31 818512 21.4 818364 610.74 813748 612.92 820260 601 11.5
ATP32 37880 6.2 37503 606.24 36940 609.01 37880 0.11 0.06
ATP33 234565 19.4 235580 608.25 233016 613.11 235580 0.09 0.09
ATP34 356159 12.7 356159 604.86 354962 600.42 356159 1.25 0.06
ATP35 613784 14.8 610554 601.92 611109 600.97 614429 230 8.32
ATP36 129262 6.4 129262 604.53 129262 361.2 129262 3.3 2.86
ATP37 382910 26.4 381224 608.7 380592 609.88 384478 4.85 0.06
ATP38 258221 14.2 259070 604.9 257540 610.21 259070 0.05 0.03
ATP39 265621 11.9 266135 603.05 264470 604.57 266135 46.4 1.59

average 323708.20 14.07 323261.60 606.13 321945.20 582.43 324342.10 88.77 2.46
unsolved 10 9 1

ATP40 63945 12.1 63945 608.53 63622 610.07 63945 1.15 0.8
ATP41 202305 10.5 202305 119.9 202305 5.32 202305 0.03 0.03
ATP42 32589 21.8 32589 614.45 32589 253.23 32589 7.8 0.15
ATP43 208571 12.4 208998 414.94 208998 50.96 208998 158 97.1
ATP44 70678 12.5 70940 604.72 70940 42.55 70916 601 1.37
ATP45 74205 11.2 74205 31.75 74205 1.21 74205 0.02 0.02
ATP46 146402 14.1 146402 42.05 146402 10.68 146402 0.06 0.05
ATP47 143458 13.7 144317 105.93 144317 10.48 144168 601 0.05
ATP48 162032 12.5 165428 34.99 165428 7.77 165428 0.27 0.17
ATP49 204574 9.2 206965 602.58 206965 43.42 206965 601 0.08

average 130875.90 13.00 131609.40 317.98 131577.10 103.57 131592.10 197.03 9.98
unsolved 4 1 3

Table 2.8: 2D-2CP: large instances, first cut along the second dimension

HESGA M1 M2 BCP
name obj time obj time obj time obj ì All ì IP

ATP30 140007 14.5 139622 612.08 138904 616.03 140067 601 31.7
ATP31 818296 19.3 814827 609.04 811507 611.59 821073 1.38 0.94
ATP32 37744 8.2 37973 607.97 37478 612.67 37973 2.75 0.08
ATP33 234538 12.3 233743 611.11 233703 612.41 234670 0.5 0.46
ATP34 353590 15.8 357741 601.47 357741 200.41 357741 0.18 0.18
ATP35 614132 17.1 614336 605.01 614336 241.56 614132 601 0.06
ATP36 128814 12.1 128306 604.6 126238 618.6 128814 2.38 1.23
ATP37 385811 15.1 385811 606.71 379956 618.29 385811 0.21 0.21
ATP38 258040 14.4 257979 606.35 256629 617.93 258812 601 208
ATP39 265330 12.2 266378 471.11 261942 621.83 266378 601 0.41

average 323630.20 14.10 323671.60 593.55 321843.40 537.13 324547.10 241.14 24.33
unsolved 9 8 4

ATP40 65044 16.2 65584 185.41 65584 78.79 65584 601 1.18
ATP41 195453 15.4 196559 187.25 196559 23.45 196559 49 26.2
ATP42 32937 25.1 33012 610.8 33012 52.88 33012 0.03 0.03
ATP43 212062 15.8 212062 79.84 212062 11.48 212062 0.05 0.03
ATP44 69732 9.3 69784 606.77 69784 45.49 69784 2.01 1.22
ATP45 69857 6.4 69929 603.99 69988 21.8 69988 602 356
ATP46 147021 12.2 147021 62.73 147021 5.36 147021 0.03 0.03
ATP47 142935 10.2 142935 117.12 142935 12.7 142935 601 0.24
ATP48 160318 19.5 162458 131.66 162458 11.83 162458 8.98 0.03
ATP49 210169 17.4 211784 210.99 211784 21.44 211784 601 0.37

average 130552.80 14.75 131112.80 279.66 131118.70 28.52 131118.70 246.51 38.53
unsolved 3 0 4

2.7. IMPLEMENTATION 55

is much easier for M1 and M2 than the unweighted; M1 seems to provide better
solutions but worse bounds than M2 (fewer optimally solved instances).

Finally there follow the results for BCP: the best objective value, the overall
time and the time to find the best solution. The average objective value is mostly
better than in the other approaches; the time to obtain the best solution is mostly
negligible. No special difficulties are seen on the unweighted part, in contrast to
M1 and M2.

2.6.2.3 Algorithm Parameters for 2D-2CP

Table 2.9 contains, for each performance indicator, 3 lines which show results
for pure branching, pure cutting plane algorithm (at most 40 cuts in the LP), and
pure optimization (no rounding heuristics, feasible solutions could be obtained
only as integer LP solutions). We see that pure cuts are slightly weaker than pure
branching but the combined approach is the best, even without rounding. This
shows the importance of local cuts at the nodes. Though the average best solution
value without rounding is smaller than for pure branching on the weighted large
set, the number of optimally solved instances is the same as with rounding. We
also see that increasing the rounding frequency from every 100 nodes (rnd100,
as in pure branching/cuts) to 10 nodes (rnd10) leads to better solutions on the
unweighted large set. We can see that finding an optimum integer solution is
much easier for BCP than the optimality proof.

From Tables 2.5 and 2.6 it follows that strengthened CHVÁTAL-GOMORY cuts
are more effective for 2D-2CP than GOMORY mixed-integer cuts. At most 5 cuts
were allowed in the LP and this number is necessary, because in 2D-2CP many
cuts are usually active in an LP optimum, while in 1D-CSP only 1, at most 2 cuts
are active. For the instance sets being discussed, 5 cuts is the best limit. Only the
best-first search strategy produces sensible results for 2D-2CP. FFD starting basis
was the best in all aspects, as in 1D-CSP.

2.7 Implementation

There are 3 software libraries providing the basic functionality of branch-and-cut-
and-price: ABACUS, bc-opt and SYMPHONY. In our specialization of BCP,
very much implementation effort was devoted to cut management and to column
generation with cuts, while the branching scheme demanded only about one-third
of the work. As the cutting plane algorithm was already available, the branching
scheme was implemented from scratch.

As usual, all values, obtained from the LP solver, should be handled with
some numerical tolerance, in particular the cut-generating vectors 5 , e.g., when

56 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

Table 2.9: 2D-2CP: medium+large instances, pure approaches: pure branching,
pure cuts, effects of rounding

First cut along í First cut along î
wei unwei largeU largeW wei unwei largeU largeW½

opt
(14/14) (22/24) (3/10) (1/10) (14/14) (23/24) (4/10) (2/10)
(9/14) (10/24) (3/10) (5/10) (10/14) (14/24) (3/10) (4/10)
(14/14) (24/24) (9/10) (7/10) (14/14) (24/24) (6/10) (6/10)
LPval0
5534.71 12375.9 325630 133803 5424.37 12240.7 326081 133172
LP
5379.12 12184.3 324872 132419 5270 12089.3 324947 131655
5418.32 12222.6 324979 132546 5291.68 12140.7 325151 131902
5379.12 12171.7 324442 131812 5270 12089.2 324934 131265
IP
5379 12168.1 324213 131570 5270 12089.2 324209 131061
5372.36 12133.9 323988 131425 5267.14 12074 323903 130514
5379 12171.7 324300 131244 5270 12089.2 324335 131051
+rnd100 324303 131592 324541 131118.7
+rnd10 324342 131592 324547 131118.7
HESGA 323708.2 130875.9 323630.2 130552.8
M1 323261.6 131609.4 323671.6 131112.8
M2 321945.2 131577.1 321843.4 131118.7¾ IP
6.69 2.17 6.66 59.98 0.11 0.48 9.84 92.67
9.57 1.05 42.63 0.10 16.77 0.34 15.70 0.07
1.38 0.41 6.71 11.41 0.41 1.11 66.76 41.48
nodes
2434.43 4590.83 13962.80 15483.40 1101.14 3072.58 13394.20 18691.80
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
473.71 234.50 2112.30 2862.60 151.14 261.67 3826.80 5565.40
IPcol
496.57 1060.62 4193.90 5859.40 392.64 581.46 4005.50 4117.50
55.29 47.96 84.20 90.80 56.21 47.29 86.00 90.60
131.14 86.25 702.10 961.90 88.86 117.38 1680.40 1079.20
MIP
3 8 4 3 4 9 1 2
4 10 4 3 5 10 1 3
0 0 0 0 0 0 0 0

2.8. CONCLUSIONS 57

comparing them. These vectors are taken as the lines of the simplex basis inverseë Ö@�ò . As CPLEX does not provide that information, we retrieved line � of ë Ö@�ò
as the vector of simplex multipliers for the linear problem 5�æ.ç�{ � � $ ò��PëCò $ ò �� z ë ; $;
u$ ò JRñ �N ~ , where

� � is the � -th unit vector and the non-basic variables$; are fixed.
To embed CPLEX in an application, there are two possibilities: a high-level

C++ class library Concert Technology, where inequalities are stated in a readable
form using overloaded operators, and a C-based Callable Library. In Concert we
discovered a bug which did not allow the adding of columns after deleting a cut.
ILOG reported that they had removed the bug in CPLEX 8.1. In ABACUS there
is a large set of its own container classes, implementing lists, arrays, balanced
trees, etc. ABACUS has been (re)designed since the end of the 80’s. Now most
programming languages have standard container libraries, e.g., the Standard Tem-
plate Library in C++.

Each column, generated at some node, is valid for the whole problem. Thus,
we kept a common LP formulation for all nodes. In the early versions this was
helpful to find the following error: sometimes, a child node produced a weaker
LP bound than its parent because of columns generated in another branch. Ex-
periments with ‘local columns’, where each node knows only the optimum LP
basis of its parent, led to a larger total number of columns. In contrast, local cuts
were stored at a node locally. To simplify the search for violated cuts, each cut
stored coefficients for all columns in the LP. To avoid creation of similar cuts or
columns, they were stored in a balanced tree allowing quick search (for cuts, a
tree of pointers to all cuts valid at a node has to be filled). For many instances, the
program has different performance depending on the algorithm settings. When
producing a ‘black box’ for external use, one should consider parameter variation
and parallelization (algorithm portfolios).

2.8 Conclusions

A branch-and-price scheme for the one-dimensional cutting stock problem
was enhanced by general-purpose cutting planes and also applied to the two-
dimensional two-stage constrained cutting problem. Features and strategies of
branch-and-cut(-and-price) were discussed. For 1D-CSP, the clear winner is
depth-first search because non-IRUP instances are rare; best-first search is the
winner for 2D-2CP. It is difficult to apply pseudo-costs in variable selection with
column generation because many new variables arise. Comparisons with quite
different algorithms for 2D-2CP show significant advantages on large-scale prob-
lem classes, especially on the unweighted instances which represent pure trim loss
minimization. In 2D-2CP, very good or optimum solutions are found very easily;

58 CHAPTER 2. BRANCH & CUT & PRICE FOR 1D-CSP AND 2D-2CP

the optimality proof is the bottleneck.
The optimality proof for 2D-2CP, similar to that for 1D-MCSP, is very difficult

because possible objective values belong to a set of integer combinations of piece
prices. This makes useful every means to strengthen the bound; thus, a combina-
tion of cuts and branching is more effective than each approach alone. Local cuts
are especially important. In 2D-2CP, as in 1D-MCSP [BS02], cuts of high rank
arise very often.

In 1D-CSP, most instances are IRUP, i.e., the root LP relaxation already gives
the correct lower bound and pure branching is faster in finding the optimum in-
teger solution. Only in some non-IRUP instances, cuts are necessary to prove
optimality in an acceptable time. But in most instances no branching is required
then if cuts are applied intensively at the root node.

Surprisingly, the pure BP approach is able to prove optimality for 4 of the 5
non-IRUP instances in the hard28 set, and it requires a comparable number of
nodes to close the gap as the BCP algorithm. Moreover, the version where cuts
were added only after the initial 200 nodes had been processed led to a system-
atic decrease of the total number of nodes only in non-IRUP instances; in IRUP
instances, the effect was not clear. One would at least expect and demand that a
BCP algorithm requires less nodes, since this is the principal aim of adding cut-
ting planes. Let us remark that an optimum in non-IRUP instances is found in
all known cases already at the root node, but the pure branch-and-price approach
cannot close the gap and prove optimality, which is obviously a weaker deficiency
than the other way around.

Another striking conclusion is that even an unbalanced branching scheme is
often able to close the gap in the case of non-IRUP instances. A preliminary
branch-and-price implementation with more balanced branching rules based on
the arc flow formulation of 1D-CSP [AdC03] shows only a slightly worse perfor-
mance. It seems to have no difficulties on non-IRUP instances. For 2D-2CP, a
more balanced scheme would be branching on slacks.

The general-purpose cuts considered in this work make the pricing problem
extremely complicated and much implementation effort is required. The ques-
tion arises, whether any other classes of cuts, which do not complicate the pricing
problem, e.g., cover inequalities in 2D-2CP, can provide a comparable contribu-
tion.

Chapter 3

Number of Setups and Open Stacks
in One-Dimensional Cutting

In this chapter we are concerned with auxiliary costs and constraints arising in
industrial applications. Most of the results can be straightforwardly applied in
two-dimensional two-stage strip packing, see Chapter 1.

In Section 3.1 we compare two models of Vanderbeck for setup minimiza-
tion and investigate a new simple model. In Section 3.2 we improve a sequential
heuristic and modify it to restrict the number of open stacks. In Section 3.3 a com-
bined approach to reduce both setups and open stacks is presented. In Section 3.4
we investigate problem splitting to further reduce the number of open stacks in the
combined approach. In Section 3.5 we propose some IP models for open stacks
minimization and show how additional variables can strengthen their relaxations.

3.1 Minimizing the Number of Different Patterns

The primary objective in cutting and packing problems is trim loss or
material input minimization (in stock cutting) or value maximization
(when packing into a knapsack). However, in real-life production we
usually have many other objectives (costs) and constraints. Probably
the most complex auxiliary criteria of a solution are the number of
different cutting patterns (setups) and the maximum number of open
stacks during the cutting process. For each new pattern we need time
to set up cutting equipment and to perform test runs. We propose a
new simple model for setup minimization (in fact, an extension of
the Gilmore-Gomory model for trim loss minimization) and test it on
problems with industrially relevant sizes of up to 150 product types.
The behavior is investigated on a broad range of problem classes and

59

60 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

significant differences between instances of a class are found. Allow-
ing even 0.2% more material input than the minimum significantly
improves the results, this tradeoff has not been investigated in the
earlier literature. Comparison to a state-of-the art heuristic KOMBI
shows mostly better results; to a previous exact approach of Vander-
beck, slightly worse solutions and much worse LP bound, which is a
consequence of the simplicity of the model.

3.1.1 Introduction

Most of the research on cutting and packing deals with material input minimiza-
tion. In industrial cutting operations, material input is a very important criterion.
Furthermore, the number of cutting patterns contained in a solution may be cru-
cial for the cutting equipment, since switching between different patterns often
necessitates time-consuming and sometimes error-prone setups, especially if this
is done manually.

After giving a short overview of some known approaches, we review two mod-
els proposed by Vanderbeck [Van00a]. The first model captures pattern multiplic-
ities in the constraint columns, i.e., for each feasible pattern there are separate
variables for each multiplicity. On its basis he developed an exact algorithm by
branching on hyperplanes (i.e., constraints involving groups of variables). Our
model can be seen as a simplification of his second model becoming suitable for
practical computation after eliminating the huge number of constraints. Although
the model becomes non-linear, it can be linearly relaxed. The number of variables
is smaller than in the first model of Vanderbeck because each pattern is repre-
sented by a single variable like in the Gilmore-Gomory model for material input
minimization, which can be stated as4 1D-CSP �D576�8#{a9 r%>=#� $p% �Eë $MHn�F
@$MJRL rN ~ (3.1)

(Chapter 1), where ë is the matrix of patterns. We propose to apply branching on
single variables and show that this strengthens the relaxation. Then we develop
an exact approach.

3.1.2 Some Known Approachesï Sequential Heuristic Procedure of Haessler [Hae75]. A cutting plan is
constructed sequentially choosing such patterns that can be applied with a
high frequency. Increase of material input is possible.ï KOMBI (post-optimization) of Foerster and Waescher [FW00] general-
izes some previous combination methods. It combines 2 to 1, 3 to { 2,1 ~ , 4

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 61

to { 3,2,1 ~ patterns. It keeps the material input constant; nevertheless, better
results than those of Haessler are obtained on most classes.

ï Exact approach branch&cut&price of Vanderbeck [Van00a]. Capturing
of pattern multiplicities in the columns. Simple cutting planes. Branching
on hyperplanes.

ï Reduction of product amount deviation under a fixed number of differ-
ent patterns by Umetani, Yagiura, Ibaraki [UYI03]. The problem specifics
comes from chemical industry. The main scheme is a local search meta-
heuristic: a neighboring solution is obtained by exchanging a pattern. Then
pattern frequencies are computed by the non-linear Gauss-Seidel method so
that to minimize the sum of squares of produced amount deviations. Trim
loss cannot be controlled directly but the effort is made to choose ‘good’
patterns.

3.1.3 Column Generation Models of Vanderbeck

Vanderbeck [Van00a] investigates the following model. Let i % (*¢�©��

���
��
�m) be
the set of feasible cutting patterns. Let

5s��ip�S� 576�8��«�¬>­Ñ¯p° {O±c���cX)i���³�~ (3.2)

denote the implicit upper bound on the multiplicity $ of pattern i in an integer
solution. Let kp%_¥"�I¦7�,��

���
��
�5'��i % �>� be boolean variables meaning that pattern *
is applied ¦ times in the solution. The model is as follows:

ð
M � 576�8/9 % 9] § ¬ ® ¨¥�=#� kp%_¥

[M] s.t.9 % 9] § ¬ ® ¨¥�=#� ¦ki��&%�k´%>¥ � ���o
 �'�(��

���
��
��9 % 9] § ¬ ® ¨¥�=#� ¦ñk´%>¥ B 4 1D-CSP

k´%>¥ J {.2½

�)~´
 !k*�
�¦7�(��
��
�
��
�5'�	i % ���
Additionally, the author describes the following model: let $u% (*��q��

�
�
��
�m)

be pattern frequencies like in 1D-CSP (3.1) and kk%��£� if pattern * is used in the

62 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

solution, otherwise kp%/�ª2 . ð
M’ � 576�8/9 % kp%

[M’] s.t. 9 % i��&%�$p% � ���o
 �'�(��

���
��
T�9 % $p% B 4 1D-CSP$p% B 4 1D-CSP k´%1
 !k* (3.3)$p% J L�N÷
 !k*kp% J {.2½

�)~´
 !k*��
First of all, this model is not suitable for practical computation, it has too many
constraints. Second, the author argues that the relaxation of this model is very
weak: its optimum value is 1. However, this leak can be easily repaired by the
following tightening: $p%KBH5'�	i % �mk´%F
 !k*�� (3.3’)

Model [M’] strengthened by (3.3’) will be denoted by [M”].
To investigate the strength of continuous relaxations of [M] and [M”], let us

denote the relaxations by Ì and Ì � � , respectively.

Lemma 1 If k is a basic solution of Ì then for each *0� ��

���
��
Tm it holds:UÉ{a¦ � k´%>¥�$å2½~nUPB � , i.e., for each group of variables representing the same
pattern, only one is basic.

Proof Columns of the constraint matrix corresponding to a group differ by a
factor, i.e., they are linearly dependent.

What is called ‘LP cheating’ in [Van00a], i.e., taking of columns with high
pattern multiplicities, can be stated as

Lemma 2 Let k be an optimum of Ì . Consider some *MJÓ{�* � ¢@¦ � kk%>¥ò$02½~ .
Then k %S1] § ¬ ® ¨ $ 2 and k´%>¥P�32 for ¦�¡x5s��i % � .
Proof Suppose k½%_¥�$ 2 for some ¦h¡ 5'�	i % � . Then by setting k %S1] § ¬ ® ¨ �¦ñkp%_¥
X�5s��i % � and kp%_¥��j2 we obtain a feasible solution (Lemma 1) with a smaller
objective value.

The following Lemma deals with Ì � � .
Lemma 3 If �wkñ� �d
T$n� �Ò� is an optimum of Ì � � then $n� �% �F5'�	i % �mkñ� �% !k* .
Proof According to (3.3’), $�� �% BX5s��i % �jkn� �% !k* . Suppose $n� �% ¡�5'�	i % �jkn� �% for some* . The setting of kn� �% �·$n� �% X�5s��i % � leaves the solution feasible and decreases the
objective.

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 63

Proposition 9 Continuous relaxations Ì and Ì � � have equivalent sets of opti-
mum solutions.

Proof Let us define mappings of optima of Ì and Ì � � onto the feasible solution
set of the corresponding counterpart.
Conversion 1 Given an optimum of Ì k , it satisfies �wkk%>¥�$<2eó ¦V��5'�	i % �T�e!k*
(Lemma 2). Thus, solution ��k � �
T$ � � � of Ì � � with k � �% �ôk %M1] § ¬ ® ¨ and $ � �% �t5s��i % �jk � �%!k* represents the same set of cutting operations.
Conversion 2 Given an optimum of Ì � � �wkñ� ��
T$n� �}� , it satisfies $�� �% �{5s��i % �jkn� �% !k*
(Lemma 3). Thus, solution k of Ì with k %M1] § ¬ ® ¨ �!kñ� �% and k´%>¥P�ª2 (¦¢¡�5'�	i % �) !k*
represents the same set of cutting operations.

Let us show that these conversions produce optima in the corresponding target
model. Suppose, ��k�� �Ñ
T$n� �?� obtained by Conversion 1 is not an optimum, then there
exist �wk � � § � ¨
T$ � � § � ¨ � with � k � � § � ¨ ¡ � k � � . Applying Conversion 2 to ��k � � § � ¨
T$ � � § � ¨ � ,
we get kr§ � ¨ with � kr§ � ¨ ¡ � k which is a contradiction to the optimality of k . The
opposite direction is similar.

Vanderbeck uses model [M]. He branches on hyperplanes involving many k -
variables.

3.1.4 Modeling

Our model can be seen as a simplification of [M”] becoming suitable for practical
computation after eliminating the huge number of constraints (3.3’) and variablesk . Although the model becomes non-linear, it can be linearly relaxed. The number
of variables is smaller than in [M] because each pattern is represented by a single
variable like in the Gilmore-Gomory model.

When minimizing the number of setups, we allow a maximum¤º� 4 1D-CSP [x\ä¤ (3.4)

total number of stock sheets where \ä¤ is some tolerance. In the model of Van-
derbeck \7¤ was not considered. Usually [Sch02b] the customers prefer not to
increase material input because its price is high. However, the final decision con-
cerning this tradeoff must be left to the user. Let i % (*R�ã��
��
�
��
Tm) be the set of
proper cutting patterns for 1D-CSP and $k% their frequencies. If the user allows\ä¤ $§2 then we may consider not only setup costs (pure setup minimization),
but also combine them with material costs. Let us consider material costs x�õ per
stock sheet and pattern setup costs x�ö . Then the costs 6½�c$#� of using the * -th pat-
tern $ times in the solution equal

64 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

6½�c$#�E� B 2k
 $M¡ª�xnö [x�õ $e
Ã$MH×��� (3.5)

1 u2 3

xj xj>=1=0

Fp

(j)

The combined trim loss/pattern minimization problem can be stated as fol-
lows: 576�8 93r%T=#� 6½�c$p%�� (3.6)

[PMP] s.t. 93r%T=#� i��&%�$p%:�3���o
 !#� (3.7)9 r%T=#� $p%KBn¤ (3.8)$p%KJML/NO
 !k*�� (3.9)

In contrast to trim loss minimization (3.1), we choose constraints ë $`�©� (3.7).
Allowing overproduction, for example like this:���'B 93r%>=#� i��&%�$p%KBn���k[x\ä���o
 !#�
is certainly very favorable for the problem because this flexibility often reduces
the minimum number of patterns. Actually, this is very often done in practice
[Sch02b] and shows large advantages, e.g., in paper industry [ZB03] and chemi-
cal industry [UYI03]. However, it is difficult to systematically estimate costs of
overproduction or to obtain real-life data and thus we postpone this extension to
future research.

The optimality of a feasible solution is proved when it can be shown that no
better objective value is possible, e.g., using some lower bound. Objective values
of (3.6) belong to the set of linear integer combinations of x ö and x õ . To avoid the
construction of the whole set, we work implicitly with its extension representing
all multiples of the greatest common divisor �^�êge� x�ö
 xnõ � . The smaller its value,
the more difficult the optimality test.

3.1.5 Lower Bound

We can linearize the contribution (3.5) of variables $u% to the objective (3.6) as
follows. Let us defineÕ_%:� x�õ [t�÷] § ¬ ® ¨ (3.10)

so that Õ>%�$p% is a linear approximation of 6½�c$k%��
on ü&2k
�5'�	i % � ý (see picture).

u

F

1

p

xδ()j

c xj j

(j)

The bounds $½%+B�5s��i % � , !k* can be explicitly added to tighten the formulation of

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 65

the following linear continuous relaxation of [PMP], called the master problem:4 PMP �D576�8�{a93r%T=#� Õ_%�$p% �Së $V�3�F
 � $MBn¤M
u$p%KJ�ü&2k
�5'��i % �oý�!k*@~ (3.11)

with the column generation (slave) subproblem4 CG �D576�8�{ x õ [x ö X�5s��ip� z 9 ��?=#� ô²�Ñi�� z ô´° ��ci¨Bn�:
¶i�B3�F
¶i�JRL �N ~´
 (3.12)

where ôk��

�
�
��
�ô�� are the dual multipliers of (3.7) and ôp° that of (3.8).

Proposition 10 In the special case when \ä¤ �Ã2 , x�ö � � , and x�õ �Ã2 , LP
(3.11) is equivalent to the continuous relaxations of the models [M] and [M”].

Proof A consequence of Lemma 3 is that in the relaxation Ì � � , the variables k
can be eliminated provided that $k%�BH5s��i % � for all * . Which yields (3.11).

Thus, what is called ‘LP cheating’ in [Van00a], see Lemma 2, is the linear ap-
proximation of the objective in our model. This approximation is very weak. We
cannot expect it to produce a strong bound or to guide our search toward good
solutions. Some means to strengthen it are necessary.

Cutting planes can not significantly strengthen the relaxation because we relax
the objective. In contrast, cuts can be effective in model [M].

3.1.6 Column Generation

A consequence of the equivalence of the LP relaxations of [M] and [PMP] is
the identity of the column generation (pricing) procedures. Pricing is the opti-
mality test of the LP. If 4 CG ��2 after solving (3.12), then the current subset of
columns (restricted formulation) contains an LP optimum, otherwise the corre-
sponding column is added.

An upper bound on the maximum multiplicity of any cutting pattern is given
by µ �e�I�° �3576�8¶{.¤ z d [D�)
�5�æ1ç¶{.���	~²~´

where d is a lower bound on the number of different patterns, e.g., the optimum
of the bin-packing problem (1D-BPP) produced by setting ���+� �"!#� . A brute
force approach for (3.12) would be to enumerate on all µ1°Ð����

���
��
�µ �e�I�° and, at
each iteration, to solve the bounded integer knapsack problem5�æ.ç¶{a9 ��?=#� ô��di�� � 9 ��?=#� ���di��÷Bn�/
#i��÷BH5@� �cµ�°��´!#�>
#i�JML �N ~´
 (3.13)

where the piece upper bounds are

5¶�o��µ�°��E�ã±c����Xaµ�°�³²� (3.14)

66 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

Algorithm 3.1.1 Pricing for setup minimization

Set µ�°��(� .
Set Õ:�D2 as the initial upper bound on (3.12).
While (µ�°CBÓµ �e�I�°)

Let l � z Õ z ô´°'[xñö Xaµ �e�I�° [x�õ be a lower bound on (3.13).
Solve the bounded knapsack (3.13) with the initial incumbent l .
If no better solution exists, goto Exit.
Let lpØ and i´Ø be the optimum value and solution of (3.13).
Set µ�°/�a5'��ipØ�� .
If x õ [x ö Xaµ�° z l Ø z ô²°�¡ÓÕ then

Set Õ/� xnõ [xñö Xaµ�° z lpØ z ô²° ;
Record the better column i½Ø .

Set µ�°/�Dµ�°�[n� .
End While
Exit: END

But in fact only a subset of multiplicity values µF° needs to be considered. A
solution ipØ�JnL �N of (3.13) for a given µ
° remains optimum for all µ
° values up
to the multiplicity 5'�	ipØ�� . Therefore, the next µ
° that must be considered is µ
°+�5s��i Ø �)[M� . The procedure to solve the pricing problem is given in Algorithm 3.1.1.

For the LP (3.11), adding cutting planes can affect only the integrality of so-
lutions but the approximation of the objective remains weak. Ø In [Van00a] simple
cuts are used which are based on only a single previous constraint and they have
proved very effective: at the root node, LP bound could be improved by 20%.

3.1.7 Branching

Relaxation (3.11) is very weak because its objective function is an approximation.
To tighten the approximation, branching on variables can be employed. It means
that we pick up a variable $½% and separate the problem in two subproblems: the one
with $p%KB�_÷% (left son) and the other with $k%KHH��% (right son), where _s%p[R�C�a�¸% .
For an $½% to be branched on, it need not have a fractional value in the LP solution.Ý

However, even cuts which involve several original constraints for construction, such as
CHVÁTAL-GOMORY cuts ([NW88] and Chapter 2), would still allow the skipping of some ø�ù
values in the pricing procedure, similar to the above. In model [M] the situation is the opposite:
the capturing of pattern multiplicities in the columns extends the effectiveness of cuts but cuts
involving several original constraints for construction would necessitate the enumeration of alløMù values because the cut coefficients of a column may be different for each ø�ù . Moreover, the
knapsack problem (3.13) would become non-linear in both models.

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 67

The reason is that an integral LP solution is not automatically an optimum like it
is for the relaxation of 1D-CSP (3.1). Given an integral solution $, it is optimum if
its objective value 9 % 6k� $p%�� is equal to some lower bound. This means that we can
also branch on non-integer-valued variables to improve their cost approximation.
Consider an example of branching.

In the left son we can improve the approxi-
mation of the objective function by setting Õ�%G�xnõ [xnö Xê_'% . In the right son we can already ap-
ply the original costs 6½�c$½%�� : we increase 4 PMP byx ö and set Õ_%/� x õ . >=3xj

1 u2 3

x
j
<=2

Fp

(j)

Note that the parent LP solution is not such a good starting point for the son’s
LP as in usual MIP problems because of the change of the objective function.
Moreover, right branches tighten the objective coefficients of other variables be-
cause of the reduction of the right-hand side: �����b� z ë � which may reduce5'��i % � for some * and change coefficients (3.10). This tightening effect is absent
when branching on hyperplanes.

The question is how to choose the branching variable $u% and the branching
value, i.e., _'% with �¸% . A further question is, which subproblem is selected to
be processed next among the list of open subproblems (for a general scheme of
a branch-and-price algorithm, see, e.g., [JT00, LS99, Van00a]). Here we can ap-
proach two main strategies: either we try to improve the global lower bound which
is the minimum of the local LP bounds of all open subproblems; or we try to im-
prove the upper bound represented by the best feasible solution found so far. In
the first variant we always select the subproblem promising the best solution, i.e.,
whose local LP bound is the worst (weakest); hence the name best-first search or
bfs. In the second variant we always select the deepest subproblem in the tree;
hence the name depth-first search or dfs. Sometimes it is proposed to investigate
several different branches in parallel during dfs, see, e.g., [cpl01]/ Constraint Pro-
gramming, which helps to avoid spending too much time investigating a branch
chosen wrongly at a high level. In [LS99] it is proposed to combine bfs and dfs to
get the best of both strategies and to avoid exploring wrong branches.

We found the following combination of bfs and dfs best. The first 10 nodes
are chosen according to bfs; after that, � nodes are chosen in the dfs fashion but
‘diving’ from the last bfs node. Only the subtree of that node is investigated. Right
branches are preferred ($k%gHå�
�
�); branching variables are chosen according to
the largest value. Vanderbeck does actually the same but in a rounding procedure;
thus, the subproblems created during rounding can be created again. He tries to
begin diving each time from a new variable.

Also, the situation is possible when all basic variables have lower bounds
greater than 0 (or those with 0 lower bounds have values at their upper bounds). In

68 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

this case we proceed as follows. If the values are integer, then the LP solution is an
optimum for the subproblem because in the LP we have the real objective value.
Otherwise we branch on the most fractional variable as in standard IP methods.
But as long as some variables with zero lower bounds are present in the basis, we
choose only among them for branching, in order to improve the approximation of
the objective. Thus, we have a two-level branching scheme.

There exist further variable selection strategies, e.g., pseudo-costs which con-
sider the experience of how branching on a given variable affects the local LP
bound of the sons. However, in branch-and-price new variables are generated
dynamically, which destroys the comparing effect of pseudo-costs (Chapter 2).

3.1.8 Feasible Solutions

We rely on the LP and its strengthening by branching on variables to guide the
search process toward good solutions. To explore the feasible solutions in the
neighborhood of an LP solution, we try several integer vectors ü $@ý derived from
the LP solution $ that differ by some components rounded up or down, see Al-
gorithm 1.4.1. Then ���÷�£� z ë üA$@ý forms a residual problem which is solved by
the heuristic presented in the next section. This is done at every 10th node of the
branch-and-price tree and after adding 30 new columns to the formulation.

3.1.9 Implementation

In [Van00a] an artificial column equal to the right-hand side for ‘=’ constraints,
with a large objective coefficient, was used to initialize the LP. Setting a previous
1D-CSP solution as a starting basis produced worse results. We observed the op-
posite on average. Similarly, in our LP model ‘infeasible’ slacks � � (�'�(��
��
�
��
��)
with large objective coefficients (ú§�
2 ¹) are always present because both left and
right branches can have infeasible restricted LP formulations Ù and further columns
may be needed to make them feasible. If we finally find a feasible solution for the
LP (which is not guaranteed), it does not mean that the node is feasible: there may
exist no integer solutions. If no improving column can be found and an artificial
column is still in the basis with a value above �F2 Ö ¼ , the node’s LP is considered
infeasible. All columns of the LP are stored in a common pool. Allowing each
node’s LP to start from a local pool containing only the basis of the parent’s LP
led to a higher number of different columns.Þ

left branches can have an infeasible restricted LP already in 1D-CSP (Chapter 2); in PMP,
also right branches, because of the trim loss constraint.

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 69

3.1.10 Computational Results

In the experiment we benchmarked the behavior of the method on a spectrum of
problems, investigated the tradeoff with material input, compared the approach
against the heuristic KOMBI and the approach of Vanderbeck. Tests were run on
a 1000 MHz Athlon XP with 512 MB memory (though the maximum requirement
was about 10 MB) under Linux. The algorithm was implemented in GNU C++
2.96. The LPs were solved by the ILOG CPLEX 7.5 Callable Library [cpl01].

We considered classes of problems �c�g
��/
��o
���� with parameters � �b�F2�2)2�2 ;� Jã{aZ)2k
�¼a2k

�1¼)2p~ ; ��� uniformly distributed in ü4lp�_�/
�l y �Y�û��L for all � , wherel¢����l²��
�l y �KJ¿{½�	2k�Ç2k��
�2k� Z)� , �	2k�Ç2k��
�2k� Á � , ��2k�Ç2k��
�2k�»º�� , ��2k�ÉZ½
�2k� Á � , �	2½� Z½
�2k�ªº)��~ ; ��� uni-
formly distributed in `@% for all � , where `'�¨� ü?��
��F2²�£�îL , ` y � üÒ��

�F2�2��K�`L ,`�Ä � ü ¼)2k

�
2�2²�û��L . The reasons behind our choice are that � � �1¼)2 is the
maximum number of product types in nearly all applications [Sch02b]; lk�E�D2k�É2½�
is nearly always the minimum product size ratio. The basic class was (�Û�©¼)2 ,l+�j�	2½�É2k�)
�2k�Ç2[º����Fl Ä , ���'J
` y). Ü By varying the parameters of the basic class, we
obtain the 9 test classes (� �qZa2 ,,), (, l � ,), . . . , (, l ¹ ,), (,, `÷�), (,, `fÄ), (�Û�·�1¼)2 ,,)
shown in Table 3.1. The reason to consider this new set is that other researchers
took problem sizes �·B Á 2 [FW00]. Moreover, by always varying only one of the
parameters we avoid an explosion of the number of test classes. In comparisons
with other authors we set \ä¤º�32 (3.4), thus the problem is pure setup minimiza-
tion and x�õ with xnö (3.5) can be in any relation (if x�ö $£2). However, x�õ �©2
and xnö �(� is numerically the best choice.

3.1.10.1 Benchmark Results

The behavior of the method on the chosen spectrum of problem classes is shown
in Table 3.1. The time limit was

¬ �n� seconds per instance (increasing this limit
did not lead to notable improvements on average). 20 instances were calculated
for each class. As each product length was generated uniformly in üVlk�>�/
�l y �S�/�ÐL ,
some lengths were equal and these product types were merged. Thus, the av-
erage number of product types is smaller, see � ave. The following results are
given as average values: the best LP lower bound LB; the best solution UBave; the
times to obtain them

¬
LB and

¬
UB; the number of patterns in the 1D-CSP solu-

tion obtained by branch-and-price (Chapter 2) UB ° ; the initial LP bound before
branching LB ° ; the 1D-CSP optimum 4 1D-CSP; the number of branch-and-price
nodes visited during the time limit ‘nod’; the number of columns in the root LP
‘col ° ’ and in all nodes ‘col’. Results given as absolute values: min and max best
solution UB �O�A� and UB �e�I� . It can be seen that larger right-hand side � and larger
item sizes lead to more different patterns.ß

See also 1D-CSP benchmark results in Chapter 2.

70 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

Table 3.1: Pure setup minimization: benchmark results

Class 1 2 3 4 5 6 7 8 9� 20 50 50 50 50 50 50 50 150l l Ä l � l y l Ä l Å l ¹ l Ä l Ä l Ä` ` y ` y ` y ` y ` y ` y `÷� `�Ä ` y� ave 19.95 49.85 49.85 49.85 49.85 49.85 49.85 49.85 148.34 1D-CSP 349 258 502 878 743 1146 88 1321 2657
LB ° 9.5 6.88 12.2 23.4 19.7 26.9 20 19.9 67.6
UB ° 21 55 51.5 51 51.7 51.25 41.9 52 150.5
LB 10.9 6.92 12.4 24.7 21.2 27.7 20.9 21.2 68.5
UBave 15.75 20.9 29.5 41.05 38.6 42.6 24.9 43 123.2
UB �O�A� 12 17 25 36 35 40 21 37 106
UB �e�I� 18 25 34 46 47 46 30 49 147¬

LB 4.1 1.77 2.33 15.1 29.9 11 9.4 17 23¬
UB 3.23 16 36.8 17.1 20.9 24 14.5 26 52

nod 2869 72 208 1980 2591 6547 2515 2850 1521
col ° 70 469 281 171 129 112 159 113 530
col 913 4298 4380 2252 1958 1400 2810 2427 3351

Table 3.2: Setup minimization: tradeoff with material input
Entries: LB:UBave:UB �e�I�

Class 1 4 9\7¤º�ª2 10.90:15.90:18 24.64:41.1:48 68.50:123.2:147\7¤º�ü�c2k�Ç2�2k� 4 1D-CSP � 10.30:15.40:17 22.46:38.30:42 58.84:106.4:118\7¤º�ü�c2k�Ç2�2²Z 4 1D-CSP � 10.30:15.40:17 21.77:36.75:39 57.54:103.85:111\7¤º�ü�c2k�Ç2k� 4 1D-CSP � 9.82:15.15:18 20.61:35.30:38 56.41:97.50:107\7¤º�ü�c2k�Ç2²¼ 4 1D-CSP � 9.28:14.5:16 20.21:34.15:37 56.37:95.30:104

3.1. MINIMIZING THE NUMBER OF DIFFERENT PATTERNS 71

In 5 of the 20 instances with �·�§�1¼a2 almost no improvement was achieved:
for them, the best solution was not smaller than 140, see UB �e�I� . Experimenta-
tion with algorithm parameters did not give better results. One attribute of these
instances is that in the time of 150 seconds, the solution process investigates 4000
nodes and more, while in better instances it is 10 times less, 200–300 nodes. An-
other attribute is that far fewer columns are generated: in the root LP only 400
(in much shorter time) while 600 in other instances, and overall 1300 while other-
wise 3500–5000. The maximum node depth in the solution tree is much smaller. ù
The explanation may be that these instances have only a few solutions with the
minimum material input, the search has no freedom, that is why so few patterns
are generated. In practice we may cope with difficult instances by allowing larger
material input or flexible order demands.

3.1.10.2 Tradeoff with Material Input

Table 3.2 contains, for each class, LB:UBave:UB �e�I� for different \ä¤ . Allowing
even \ä¤b�ý�d2k� ZWþV� 4 1D-CSP � � more material input in solutions is very favorable for
our approach making the task easier. The reasons are that the minimum number of
different patterns decreases and that the freedom to obtain ‘loose’ solutions helps
to find good solutions quickly.

3.1.10.3 Comparison with KOMBI234

Our approach of branching on variables (BrOnVar) is compared to the state-of-the-
art heuristic KOMBI234 of Foerster/Waescher [FW00]. The test set is organized
as follows. Material size is �Ê�§�
2�2�2 ; integer product sizes are chosen as l½�>�DB�}�GB{l y �Ê!#� with ��l´��
�l y ��J©{½��2k�É2½��
�2k�ÉZ���
F�	2k�Ç2k��
�2½�ÉÚ²��
1�	2½� Z½
�2k�ÉÚ���~ ; the number of
product types �bJ�{´�F2½
 Á 2½~ ; the average demand �^J�{´�F2k

�F2)2½~ , which yields 12
combinations. Each combination represents a problem class and is denoted by a
3-digit code, e.g., 111 means �Dl½��
�l y �+�W��2k�Ç2k��
�2k�ÉZ�� , � �Ë�F2 , and ���å�F2 . 100
instances were generated for each class by the generator CUTGEN [FW00] with
the seed 1994 to provide the identity of test data.

Solution parameters: \ä¤ �h2 (as in [FW00]), xÿõ �h2 , xnö �b� , the maxi-
mum time 40 seconds per instance. Search strategy: 10 nodes bfs, � nodes diving
dfs from the last bfs node. The average number of patterns obtained is shown
in columns

�
of Table 3.3. The results are better for 11 classes out of 12. The

advantage on class 111 for KOMBI can be explained by the low number of pat-
terns: KOMBI is strong at combining 2, 3, and 4 patterns into a smaller number.
For KOMBI,

¬
gives the average total running time. For BrOnVar,

¬
best gives theú

When searching for reasons, we found that at depths of 40–60, nodes become infeasible: some
artificial slacks have values of the order ²j´�� � and no new columns can repair the situation.

72 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

Table 3.3: Average number of patterns in comparison to KOMBI

KOMBI234 BrOnVar
CPU 66 MHz 1000 MHz
Class

¬ � ¬
best

�
111 0.35 3.40 1.94 3.43 -
112 1.26 7.81 5.01 6.08
121 40.03 10.75 9.15 10.47
122 383.30 25.44 14.3 18.71
211 0.11 7.90 0.24 7.57 �
212 0.24 9.96 1.47 8.98
221 36.98 28.74 10.8 25.18
222 77.41 37.31 9.92 33.75
311 0.13 8.97 0.01 8.79 �
312 0.18 10.32 0.22 9.97
321 51.31 31.46 7.47 29.15
322 71.31 38.28 6.93 35.99� classes 211 and 311 were solved to optimality completely.

average time to find the best solution. Taking CPU frequency into attention, out
approach needs more time.

3.1.10.4 Comparison with the Exact Approach of Vanderbeck

Vanderbeck uses bfs but his rounding heuristic mimics diving into the search tree,
i.e., dfs. He employed an HP9000/712/80 MHz with 64MB memory allowing a
time limit of 2 hours per instance. In Table 3.4 we show our results for the in-
stances from [Van00a]. The time limit was 30 minutes per instance. The columns
of the table are:
instance number,
name instance name,� number of product types,
b the lower bound on the number of patterns, given by the LP bound of the corre-
sponding 1D-BPP,
LB ° the LP value at the root node,
LB the strongest global LP value/bound,
UB the best feasible solution,
K the 1D-CSP optimum,
nod the number of nodes,
col ° and col the number of columns in the LP at the root node and total,

3.1.
M

IN
IM

IZ
IN

G
T

H
E

N
U

M
B

E
R

O
F

D
IFFE

R
E

N
T

PA
T

T
E

R
N

S
73

Table 3.4: Comparison to the exact method of Vanderbeck

BrOnVar Vanderbeck

name � b LB

�

LB UB K nod col

�

col tLB tUB LB UB nod tLB tUB

1 kT03 7 4 4.77 6 = 6 66 47 25 47 0.03 0.03 6 = 6 91 4 28.1

2 kT05 10 5 5.65 9 = 9 47 1250 27 66 0.69 0.02 9 = 9 37 10.9 3.3

3 kT01 5 1 2.00 2.1 = 3 14 3 20 40 0 0.02 3 = 3 1 1 2.8

4 kT02 24 13 15.9 18 = 18 66 346 66 118 0.3 0.24 18 = 18 1 1.7 3.1

5 kT04 16 6 6.71 9 = 9 38 65661 50 419 400 0.94 9 = 9 57 35.8 3.6

6 d16p6 16 6 6.71 9 = 9 38 68532 50 417 426 0.61 9 = 9 39 29 5.1

7 7p18 7 2 3.73 6 = 6 91 269 27 134 0.31 0.11 6 � 7 1351 2105 11.5

8 d33p20 23 5 6.04 6.70 � 8 29 7085 134 6021 0.05 7.8 8 = 8 655 2051 9.1

9 12p19 12 2 2.88 3.49 � 5 23 7549 72 6199 0.06 73.8 5 = 5 47 141 10.5

10 d43p21 32 7 7.86 8.51 � 10 40 4073 190 7166 0.23 148 10 = 10 33 230 143

11 kT06 9 1 1.65 2.24 � 4 53 6836 53 6341 19.6 895 4 = 4 51 1796 66.2

12 kT07 11 2 2.86 3.27 � 5 68 4733 83 7656 0.6 1.13 5 = 5 163 6818 209

13 14p12 14 2 3.71 5 = 5 56 981 96 3172 97.8 86.2 5 = 5 1 29.8 68.3

14 kT09 14 2 3.54 4.01 � 6 115 3636 84 7879 1411 946 5 � 6 140 21.2 66.1

15 11p4 11 1 2.46 2.70 � 6 101 3225 90 8911 0.08 2.75 4 � 5 19 76.2 2801

16 30p0 26 4 5.50 5.81 � 11 90 1384 186 13522 0.14 107 7 � 8 13 37.5 3563

74 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

tLB the time of the best global LP bound given by LB,
tUB the time of the best solution UB.

While the solution values are practically the same, � our lower bound is much
weaker. This is the cost of the simplicity of the model.

3.1.11 Summary and Conclusions

We have tested an exact approach to pattern reduction. It is based on a model with
a smaller number of variables than in the previous exact approach of Vanderbeck.
We employed branching on variables to tighten the relaxation.

ï LP bound cannot be improved significantly already for medium instances
because of the high combinatorial complexity (a large number of variables).
This is the price for the simplicity of the model whose relaxation cannot
be tightened by cuts. The approach of Vanderbeck produced much better
bound but still could not solve all the instances optimally.ï Considering the best found solutions, for some instances there is no im-
provement, e.g., 147 setups for a problem with ���(�F¼)2 where it is easy to
find a starting solution of, say, 155. The behavior of the search process lets
us think that the solution space of such instances is small.

To increase the solution space we propose to allow, say, 0.2% more material
input than the minimum, which is probably acceptable in most industries.
This significantly improves the results. Another alternative would be to
allow under- and overproduction.ï The proposed scheme of branching on variables with some appropriate
branching strategies mostly leads to better solutions than the heuristic
KOMBI and only to slightly worse solutions than the previous exact ap-
proach of Vanderbeck.

3.2 Restricting the Number of Open Stacks

During cutting, for each started and not yet finished product type we
need a stack (pallet) standing around and occupying place. There are
applications where the number of stacks is restricted to two. But ex-
isting methods usually produce much worse results in terms of open
stacks or the increase of material input is hardly acceptable. We de-
sign a sequential heuristic to minimize material input while restricting�

For instance 13, the number of diving steps including backtracking was ²�ë4³�¯ , for others ��¯

3.2. RESTRICTING THE NUMBER OF OPEN STACKS 75

the number of open stacks to any given limit. Earlier versions of this
heuristic which was used for pure material minimization based on the
idea to penalize products which constitute bad patterns and to accu-
mulate such information from several solutions. We propose a further
effective means to eliminate bad item combinations, namely overpro-
portional item weights. The approach is shown to be very powerful in
minimizing material input, even for problems with a large right-hand
side. Further we add the option to control the number of open stacks
which increases material input only negligibly, enabling the indus-
trial application of the method. Different solutions are evaluated in
relation to the multiple objectives using the PARETO criterion.

3.2.1 Introduction

Usually the set of product types is separated into lots, i.e., groups [JRZ99]. Each
lot is shipped to a separate customer in one or several trucks /pallets /stacks. Dur-
ing cutting of the sequence of patterns specified in a solution, each open stack
corresponds to a lot whose products have been started and not finished. More-
over, if several stacks are needed for the whole lot, we may consider an option to
interrupt the lot when the current stack for it is closed. This option will not be
considered in the current work since we have no real-life data. However, in the
Outlook we present ideas how this option could be incorporated in our approach
and when this is useful. Separation of the product set into lots is a simplification
of the problem and can be modeled easily. Moreover, in practice some lots have a
higher priority [JRZ99], which further helps to determine which products should
be in the beginning of the cutting sequence. We do not consider lots either because
of the absence of real-life data. Thus, we assume that each product type needs a
separate stack.

Each stack, waiting to be completed and shipped, occupies some place near
the cutting machine (temporary removal of an uncompleted stack is certainly
not acceptable). In some applications we are restricted to 15–20 stacks. In
other applications the maximum equals 2 [Sch02b]. Concerning this criterion,
most of the research has been done on sequencing patterns of a given solution
[Yue91b, YBS99]. In [YBS99], for problems with �ã� �1¼)2 product types, lower
bounds on the maximum number of open stacks are as high as 100 and solutions
of about 130 are found. Thus, it is necessary to construct new patterns that lead
to a better sequence. The only published approach of this kind is, to our knowl-
edge, [JRZ99]. There the authors report on huge savings in the industry, resulting
from their methods. They also illustrate that reducing the number of open stacks
can increase the number of different patterns, which is undesirable. The average
number of open stacks may also play a role [Yue91b]. To strictly control the num-

76 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

ber of open stacks, we may resort to sequential solution approaches (see below);
however, they are reported to produce bad material utilization ratios [Yue91b].

Another criterion connected to the open stacks is spread. It is the physical
duration of a stack’s being open. We have no real-life data about this criterion. It
would be realistic to suppose that a restriction on spread can be connected with the
product size and demand. In our observations we saw a tight correlation between
the spread and the number of open stacks.

To summarize, we give an overview of the problem structure, see also [DF92].

Costs in 1D cutting:ï Material costs, i.e., the total number of applications of patternsï Setup costs, i.e., the number of different cutting patternsï Average number of open stacks during the cutting sequence

Constraints in 1D cutting:ï Order demands of productsï Number of open stacks at any moment of time

Additional specific constraints, such as:ï The maximum number of knives, i.e., how many items can be in a patternï The maximum number of knives with the distance between them smaller or
greater than a given sizeï The minimum length of a pattern (corresponds to the maximum allowed
waste)ï Layout constraints, e.g., that definite product types should be located in
definite parts of a patternï Product combination constraints, e.g., which product types can be combined
in a pattern

The specific constraints can be more or less straightforwardly incorporated
into pattern generation and reduce the solution space. But the numbers of patterns
and open stacks are more sophisticated parameters. Moreover, we are not aware of
research aimed at combining pattern reduction with open stacks reduction. Note
that, for 1D-BPP, the latter criteria are not relevant, so we consciously consider
test problems with a larger right-hand side.

3.2. RESTRICTING THE NUMBER OF OPEN STACKS 77

3.2.2 Some Known Approachesï Sequencing of patterns of a given solution, [YBS99, Yue91b] and others.
Given a solution, a permutation of its patterns is searched for, that mini-
mizes the number of open stacks needed. In [YBS99], for problems with� � �1¼)2 product types, lower bounds on the maximum number of open
stacks are as high as 100 and solutions of about 130 are found.ï Trying to generate a solution satisfying a given maximum of open stacks
[JRZ99]. By performing pivot steps in the simplex method, many different
solutions are generated. Each solution is sequenced by a heuristic. Finding
a solution satisfying a certain maximum of open stacks is not guaranteed.
There are no test results for large problems in the paper, thus we do not
make any comparison. In the next section we generalize this approach by
incorporating a sequencing heuristic into a pattern minimization approach.ï Sequential approaches are mentioned by Yuen [Yue91b], Haessler
[Hae75], Mukhacheva [MZ93], Kupke [Kup98], Vahrenkamp [Vah96], and
others, for different tasks. There a solution is constructed sequentially, pat-
tern after pattern. In this way, the number of open stacks can be controlled
and limited. However, Yuen argues that such approaches, though used in
industry, produce solutions with a bad ratio of material utilization. Other
authors, to our knowledge, have not investigated their approaches on large
problems. There are no theoretical results either. Below we describe a
heuristic of this kind and investigate its effectiveness on various problem
classes. Actually, we used it in Chapter 2 to solve residual problems.

3.2.3 A Sequential Heuristic Approach

In [MZ93] a sequential value correction (SVC) heuristic is proposed for 1D-CSP.
Like any sequential heuristic, it constructs a solution pattern after pattern and
assigns a frequency to each one. However, SVC constructs several solutions it-
eratively and each pattern is generated using some information from previous so-
lutions. This information, pseudo-prices of products, reflects the size of waste in
the patterns containing a given product type. Each pattern is generated so as to
obtain a large enough total price of items inside. To avoid accumulation of good
patterns (with small items) in the beginning which leaves no possibilities for good
combinations in the last patterns, the total price of a pattern should not be max-
imum. In [MZ93] it is proposed to set some minimum requirement (‘barrier’ or
aspiration level) on the total price. Another heuristic of this kind, Max-Len-Mini-
Items [Kup98], tries to minimize the waste of each next pattern but the number
of items inside is kept small so that smaller items are not overused. We propose

78 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

Algorithm 3.2.1 Sequential value correction

Input: An instance ���g
��/
��o
�� � � of 1D-CSP;
The simplex multipliers ô@��
��
�
��
�ô²� ;

Output: A feasible solution vector ��û$ ¬ ® � %�>��_�21434343 1 r 	 ;
Initialize: -a���D5�æ.ç�{´��
��Eô��	~ for all �÷�,��

�
�
��
�� ;

Iteration number ¦7� z � ;
Repeat (iterate)��� �@�D��� ; û$��F� ; ¦7�ª¦^[D� ; ’start new solution

RepeatiG�ªæ ~ �E5�æ1ç#{1-½i � �ci�Bn�/
�i�Bn��� �d
¶i�JRL �N ~ ;
 �3576�8´��«�¬>­Ñ¯p°
{O±c��� �� X)i���³�~}� ’choose pattern frequencyû$¶¬P�Dû$¶¬E[
 �)��� �k�ª��� � z�
 in� ’reduce the right-hand side
Update Weights -a� , ��BÓ�EBÓ� ; ’‘value correction’

Until (� � �� �32 for all �"BÓ�EBÓ�); ’until the solution is complete
If û$ is an improvement, save it;

Until (Optimality is Proved) or (Iterations Limit is Exceeded);

another scheme to reduce bad combinations on the basis of SVC: the total price of
each next pattern is maximized and product prices are overproportional to prod-
uct lengths (a separate study could be useful to compare the three approaches).
The rest of the scheme is identical to the previous version of SVC. The pseudo-
prices -¨JRñ � are maintained as follows. They are initialized with scaled simplex
multipliers. After generating pattern i maximizing -ki , they are ‘corrected’: letâj�£� z 9 ��?=#� ���Ñi�� be the pattern waste. The value ü&�Ñ�Ñý t �SXu��� z âó� for x $£� is
called the overproportional material consumption norm of piece � in the generated
pattern. The new weight of piece � is the following weighted average:-a�#þ
�p�_-.�p[�� y �� z â ü �}��ý t
 !#� � i���$Ó2k

where �´� , � y are update weights with�p�>X�� y �F�^��� �� [�� � �� �TX)i��I
 (3.15)�p�l[�� y � � ; ���� is the total order amount of product � ; ��� �� is the unused order
quantity of product � ; the value of the randomization factor � is uniformly chosen
before each pattern from üÒ�1X �K
 �/ý ; � is uniformly chosen from ü?�)
 �lý for each new

solution. � �0��� ¼ was the default.
An intuitive explanation of the principle: the worse the patterns which contain

the piece, the less promising that piece type, i.e., it does not combine well with

3.2. RESTRICTING THE NUMBER OF OPEN STACKS 79

other types. It should be ‘packed’ with a high priority, so it gets a higher weight-
ing. In the correction scheme (3.15), the overproportional material consumption
norm of type � is weighted in correlation with the number of items of type � in the
last generated pattern, while the old value is weighted in correlation with the total
demand of the type. The scheme of the method is given in Algorithm 3.2.1. To
be exact, we should mention that the pseudo-values are not corrected after the last
pattern of the solution if it was generated from all remaining items, i.e., if ���ê� ��BD�
made the knapsack problem dispensable.

3.2.4 Computational Results Concerning Material Input

Similar to Section 3.1, we considered classes of problems ���g
��/
��o
���� with pa-
rameters �W� �F2�2�2�2 ; � JÃ{aZ)2½
�¼)2k

�F¼)2½~ ; ���RJÛü4l´�>�/
�l y �S�Ü�¿L<!#� with l(��Dl´��
ml y �îJË{½��2k�É2½��
�2k�ÉZ�� , ��2k�Ç2k��
�2k� Á � , �	2k�Ç2k��
�2½�ªº�� , �	2k�ÉZ½
�2½� Á � , �	2k�ÉZ½
�2k�»º���~ ; ���MJý`u%!#� with `÷�Y�§ü?�)

�F2²�y��L , ` y �§ü?�)

�F2�2²�y�VL , `�Ä:�§ü ¼)2k

�F2)2²�r�RL . The basic class
was (�Ë�(¼)2 , l��q�	2½�É2k�)
�2k�Ç2[º��l��l Ä , ���EJ ` y). By varying the parameters of the
basic class, we obtain the 9 test classes (���ªZa2 ,,), (, l � ,), . . . , (, l ¹ ,), (,, `'�), (,, `fÄ),
(�W���F¼)2 ,,). Moreover, by always varying only one of the parameters we avoid
an explosion of the number of test classes.

3.2.4.1 Benchmarking the New Heuristic

In Table 3.5 we compare the effectiveness of the heuristic for the main bench-
mark classes 1, 4, and 9, which are obtained by variation of � , 20 instances per
class. SVC parameters: at most 200 iterations were allowed. 4 1D-CSP shows the
average 1D-CSP optimum for each class; the entries in the main part contain the
average best result of SVC. Each line was calculated with a different value of the
overproportionality parameter x . The best values for each class are shown in bold.

To refine the search, we calculated all 9 classes, 100 instances per class (Ta-
ble 3.6). Because the test set size changed, the average 1D-CSP optimum also
changed. The entries which seem to represent local minima are bold. Class 2 was
solved to optimality completely. Classes 2 and 3 with small product sizes are best
solved with x ú£� because this parameter was introduced to prohibit larger items
remaining ‘in the tail’ of the solution. Classes 6 and 7, as class 1, seem to have
their best x -values above 1.04.

The line ‘Gap, %’ shows the average best optimality gap (distance to the opti-
mum) in per cent. As it can be seen, the heuristic is very powerful: the optimality
gap is measured in tenth per cent units. The average number of iterations to find
the best solution was about 60 with 200 iterations total; i. e., the search process
does not stall. The two lines below the gap expose the results when x is varied

80
C

H
A

PT
E

R
3.

M
IN

IM
IZ

A
T

IO
N

O
F

SE
T

U
PS

A
N

D
O

PE
N

ST
A

C
K

S Table 3.5: Average best solution values of SVC for different �

Class 1 4 9� 1D-CSP 348.95 877.4 2656.85��� � 349.75 880.75 2660.75��� �� �� 349.35 878.55 2658.15��� �� �� 349.3 878.25 2659.8��� �� � 349.2 879.25 2662.5��� �� �� 349.35 880.3 2664��� �� � 349.8 880.95 2665.5

Table 3.6: Average best solution values of SVC for different � : a refined search

Class 1 2 3 4 5 6 7 8 9� ave 19.95 49.85 49.85 49.85 49.85 49.85 49.85 49.85 148.3� 1D-CSP 373.02 261.56 510.21 896.9 749.44 1173.18 90.1 1341.48 2669.56��� �� � �� 374.18 261.56 510.24 898.92 749.87 1179.29 90.29 1343.85 2672.53��� �� � � 374.13 261.56 510.3 898.45 749.89 1179.08 90.25 1343.17 2671.54��� �� �� 373.84 261.57 510.32 898.1 749.9 1178.03 90.2 1342.75 2670.94��� �� �� 373.76 261.57 510.43 897.74 749.85 1177.57 90.19 1342.6 2671.26��� �� �� 373.66 261.58 510.51 897.81 749.87 1176.79 90.18 1342.62 2671.82
Gap, % .1716 .0 .0058 .0936 .0547 .3077 .0888 .0835 .0517�� � �� � � � �� �� � chosen every 100 iterations, 2000 iterations all

373.48 261.68 510.91 899.24 749.87 1173.56 90.27 1345.01 2676.71�� � �� � � � �� �� � chosen every 5 iterations, 200 iterations all
373.52 261.69 510.91 899.31 750.09 1173.65 90.29 1345.05 2676.77 /100 iter .06 1.12 .46 .33 .5 .33 .25 .34 3.8 �! "#BP .01 0.15 .18 .09 .15 .05 .01 .09 2.8

3.2. RESTRICTING THE NUMBER OF OPEN STACKS 81

Table 3.7: Effects of randomization, different weighting schemes, and the number
of iterations in SVC: average material gap, % of the minimum

Class 1 2 3 4 5 6 7 8 9
default .1029 0 .0219 .1230 .0593 .3681 .1046 .0910 .0487� �(� .0899 0 .0217 .1006 .0583 .3712 .0472 .1157 .0505
WS1 .9463 0 .0219 1.096 .2089 1.083 .8660 .8340 .2961
WS2 .1472 0 .0219 .1222 .0590 .4232 .1046 .1018 .0411
WS3 .1472 0 .0219 .1236 .0527 .3307 .1518 .1390 .0484
it ��°o°o° .8999 0 .0219 .0751 .0379 .3057 .1046 .0731 .0393

dynamically. It is not advantageous except for classes 1 and 6 which seem to have
their best x -values above 1.04.

In the line ‘
¬
/100 iter’, the time spent for 100 iterations is shown. For com-

parison, the line
¬%$ t s

BP gives the average optimum solution time when using branch-
and-price (Chapter 2). It can be seen that the heuristic cannot compare with the
exact method, both in terms of solution quality and time, though it is used inside
the latter to solve the smaller residual problems. ­ The effectiveness of the heuris-
tic even on large-scale problems encourages us to apply it to tasks with several
objectives where exact approaches are too complex.

3.2.4.2 Further Parameters of SVC

In Table 3.7, the average optimality gap � � 7 z 4 1D-CSP �>X 4 1D-CSP is compared for
different algorithm parameter settings (20 instances per class). In the upper line
there are the default results with x �(���Ç2²Z , � �,�)� ¼ , 200 iterations, and weighting
scheme (3.15). In weighting scheme 1, �k�>X�� y �<�/��� �� X)i�� ; in scheme 2, �p�>X�� y ��/� �� Xai²� ; in scheme 3, �p�>X�� y �!�^�	� � �� z i����TXai²� . The default scheme seems to be the
best on average. The effects of randomization are very different. In the last line we
see the results with 1000 iterations per instance, which makes some improvement.

3.2.4.3 Problems with Small Order Demands

In 1D-BPP there is no question about the number of setups or open stacks. ØoØ Thus,
we investigate the effectiveness of SVC on such problems separately. The Falke-
nauer’s triplet instances [Fal96] are instances where each bin in the optimum so-
lution contains 3 items without waste. They have been easy for the group genetic®

With at most 20 iterations.ÝUÝ
Though solutions with a small number of products per pattern may be desired.

82 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

algorithm [Fal96] and exact approaches ([Pee02] and Chapter 2). But SVC finds
only solutions with 1 superfluous material length. However, on randomly gener-
ated 1D-BPP instances such as class 4 but with ���s�§��!#� , all 100 instances were
solved optimally with default settings.

We conclude that SVC is very effective on broad classes of 1D-BPP and 1D-
CSP excluding some special cases.

3.2.5 PARETO Criterion for the Multiple Objectives

As already mentioned, the number of open stacks is a secondary criterion to eval-
uate a solution while material input is the main criterion. We say that a solu-
tion (
� 7 , � $) with

� 7 material lengths used and
� $ maximum open stacks is

PARETO-better than solution (
� 7 � , � $ �) if both criteria are not worse and at least

one is better:
� 7 B � 7 � , � $ B � $ � and � � 7 z � 7 � ��[§� � $ z � $ � �P¡§2 . The

criterion can be straightforwardly extended to the case where each solution is ad-
ditionally evaluated by

� Z
, the number of different patterns.

3.2.6 Updating Prices Considering Open Stacks

During the sequential construction of a solution in SVC, we can observe the cur-
rent number of open stacks and try not to allow it to increase. For all products
which are started but not yet finished after a pattern, in the next pattern generation
we multiply their prices by # � # °Ð¾îÏ ¥ where ¦ is the SVC iteration number,# °©$<� , and Ï¤$ª� . A disadvantage is that we have no control over the first pattern:
it is unclear which products should be contained there. In practice this situation
can be simplified by priorities assigned to different lots.

We illustrate the solution process by an example. A test instance from class 9
(�Ã���1¼)2) is solved. The minimum material input is 2578 stock lengths. When
in some iteration a solution is found which is PARETO-better than all previously
known according to the 3 criteria (

� $, � Z , � 7), it is added to the set of solu-
tions and printed as (

� $, � Z ü � Z � ý , � 7), where
� Z � is the number of patterns in

the sequence that could be greater than
� Z

if we had applied some patterns not
exhaustively (at the maximum frequency). Settings: # °7�b�)�É2�2)2²Z , Ïá�b�)�É2�2)2k� ,x �,���É2�Z .
"m150l100l7000L10000b1b100f0r0-5" #1 U2578 L2578

Iter 0. Sol. found: (34 148[148] 2579)
Iter 3. Sol. found: (33 157[157] 2580)
Iter 4. Sol. found: (33 154[154] 2580)
Iter 7. Sol. found: (33 151[151] 2579)
Iter 9. Sol. found: (31 156[156] 2580)

3.2. RESTRICTING THE NUMBER OF OPEN STACKS 83

...

Iter 120. Sol. found: (12 152[152] 2585)
Iter 137. Sol. found: (10 155[155] 2595)
Iter 139. Sol. found: (11 158[158] 2583)
Iter 162. Sol. found: (12 156[156] 2584)
Iter 175. Sol. found: (9 159[159] 2611)
Iter 183. Sol. found: (10 158[158] 2593)
Iter 185. Sol. found: (10 165[165] 2587)

We see that the number of different patterns (setups)
� Z

is somewhat larger than� . The same can be said about rounded LP solutions for this class. In solutions
with more open stacks we have less setups.

3.2.7 Restricting the Number of Open Stacks

In a sequential approach it is possible to control the number of open stacks. Sup-
pose that a maximum of

� $�e�I� open stacks is allowed. When constructing each fol-
lowing pattern in the sequence, the current number of open stacks

� $
cur is known.

In the new pattern we allow at most
� $�e�I� z � $cur new product types, which can

be easily controlled in a branch-and-bound pattern generation procedure. Note
that several items of a type can be included. Usually each pattern i is applied
exhaustively, i.e., at the highest multiplicity 576�8k��«�¬_­c¯p°
{O±c��� �� X)i���³�~ , however if ��� ��'&)(*
mod i�� &)(* $Ó2 then product �I�O�A� is still open.

An interesting issue is the last pattern of a solution. If we face the situation
where all unpacked items fit in one material length (9 � � � �� �}�'Bn�) and the number
of remaining types exceeds

� $�e�I� then formally the constraint is violated, but for
this single pattern we can ship all types sequentially; thus, the solution remains
feasible. In the solution examples this is a thinkable situation: for example, in
the instances of class 9, some small products with low demands occur. A related
question is whether the presence of a product in only a single stock length needs
a separate stack (we assumed yes if not in the last pattern).

In the above example, restricting the number of open stacks to 10 produces the
following output:

Iter 0. Sol. found: (10 154[154] 2580)
Iter 5. Sol. found: (10 153[153] 2589)
Iter 11. Sol. found: (10 147[147] 2580)
Iter 180. Sol. found: (9 159[159] 2629)
Iter 188. Sol. found: (9 159[159] 2626)

Thus, the explicit restriction helps to obtain solutions with better material utiliza-
tion and fewer different patterns. The last two solutions have only 9 open stacks

84 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

(but much more material input) because # ° and Ï were kept as above. Setting them
both equal to 1 makes no significant changes in this example. To get good solu-
tions with 9 open stacks, it is effective to set this limit explicitly. In the Appendix
we show a solution for a problem with ���3¼)2 using 4 open stacks.

In Table 3.8, 20 instances were solved per class, x � �)�É2²Z . For each� $�e�I� , the 3 lines show the average and maximum material surplus �F2�27¾¿� � 7 z4 1D-CSP �TX 4 1D-CSP and the number of different patterns. With only 4 open stacks, the
maximum material surplus is below 2% while the average is below 0.54%, which
is probably acceptable in most industries.

For class 7 with small order demands, the restriction of open stacks is most
sensitive in terms of material input since it becomes difficult to generate good
patterns with a small number of different product types in a pattern. Class 6
obviously needs another value of x , as it follows from the above experiments.
Numbers of patterns are a bit out of line in classes 2 and 3, when compared to the
rounded LP solutions. Generally, the fewer open stacks allowed, the greater the
material input and the number of setups. For comparison, the last 4 lines show
the results plus the average obtained number of open stacks for the unrestricted
calculation.

3.2.8 Summary

An approach was tried where open products get a higher weight in pattern gener-
ation to prohibit opening of further products. However, the explicit restriction of
the number of open stacks produces better material utilization and fewer setups.

3.3 Combined Minimization of Setups and Open
Stacks

The heuristic presented in the previous section is simplified and in-
tegrated into a pattern minimization approach in order to combine
setup and open stacks minimization. The heuristic is simplified to a
sequencing procedure to sequence patterns of a given solution, which
is done at some nodes of the branch-and-price tree. Thus, we have
no explicit control over the number of open stacks, we can only look
for good solutions. To further reduce the number of open stacks, we
propose to split up the problem, which leads to an increased mate-
rial input. Again, the PARETO criterion evaluates different solutions
in relation to multiple objectives. We are not aware of any previous
research aimed at combining setup and open stacks minimization.

3.3.
C

O
M

B
IN

E
D

M
IN

IM
IZ

A
T

IO
N

O
F

SE
T

U
PS

A
N

D
O

PE
N

STA
C

K
S

85

Table 3.8: Average/maximum material surplus (%) and the number of setups for SVC with a limited number of open stacks

Class 1 2 3 4 5 6 7 8 9�ave 19.95 49.85 49.85 49.85 49.85 49.85 49.85 49.85 148.3+1D-CSP 348.95 257.65 502.3 877.4 743.15 1146.25 88 1321 2656.85,-/. 01 2 3 2.051 1.729 1.434 2.346 2.734 0.962 4.087 2.094 1.685
4.273 2.262 1.957 6.155 4.263 2.720 8.490 5.358 2.876
23.65 70.05 70.1 61.25 65.95 54.05 45.6 63.55 184.25,-4. 01 2 5 .5250 .1996 .2996 .8692 .6202 .3222 .7208 .6660 .5349
1.173 .4525 .4640 2.671 .9472 1.188 1.887 2.158 1.022
21.7 67.35 61.35 56.9 59.75 53 41.4 57.2 170.9,-4. 01 2 6 .3089 .0392 .1093 .5383 .3504 .3457 .4933 .4236 .3169
1.928 .4 .2320 1.380 .5755 1.566 1.887 .8766 .6810
20.75 64.2 59.9 54.25 56.6 52.4 39.55 55.65 163.7,-/. 01 2 7 .1892 .0392 .0797 .3438 .1741 .3316 .2624 .2469 .1891
1.830 .4 .2320 1.563 .2813 1.304 1.887 .6263 .3723
20.25 64.85 57.85 51.45 54.8 51.75 38.35 53.15 155.5,-/. 01 2 89 .1029 .02 .0521 .1289 .0993 .3655 .1046 .1616 .1197
.6865 .4 .2320 .4646 .1531 2.219 1.149 .6743 .2462
20.8 65.45 57.1 50.85 51.9 51.05 37.65 50.4 152.05,-/. 01 2 : .1029 0 .0219 .1230 .0593 .3681 .1046 .0910 .0487
.6865 0 .2320 .8280 .1531 2.377 1.149 .4720 .1055
20.45 67.45 60.65 51.1 53.5 51.85 39.7 52.9 150.95,-

6.95 17.55 14.7 14.35 13.85 11.15 11.3 16.1 34.85

86 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

The branch-and-price scheme for setup minimization (Section 3.1) is used as
a framework to provide different solutions which are passed on to a sequencing
procedure trying to find a sequence of patterns with a small number of open stacks.
There are many sequencing procedures in the literature, e.g., [Yue91b, YBS99].
We modified SVC in the following way: the starting pattern of a new sequence is
chosen at random and the following patterns are chosen from the given solution
according to the maximum total pseudo-value. 200 sequences are tried. The value
correction scheme is x �(���Ç2²Z , # °l�(���Ç2²Z , ÏG�(���Ç2�2k� .

During branch-and-price, the rounding procedure is applied at each 10th node
to investigate the neighborhood of the LP solution by constructing several residual
problems (Algorithm 1.4.1). Each residual problem is solved by pure SVC (no
open stacks restriction). The solution of the residual is combined with the rounded
part giving a solution for the whole problem. Also, a feasible solution may be
obtained as an integer solution of the node’s LP. If it is better in terms of the
number of setups, it is sequenced. If not better, sequencing is carried out with a
probability of 0.1.

In Table 3.9, the time limit was Za� seconds per instance, other settings were
as in Section 3.1. 20 instances were solved in each class. The tests were done for
different levels of material surplus. \ä¤ is the number of stock lengths which can
be additionally used in the solution while 4 1D-CSP is the minimum. Values of \ä¤
were integers rounded up from 0, 0.1%, 0.2%, 1%, and 5% of 4 1D-CSP.

For each \ä¤ , each couple of lines shows the average number of open
stacks and the average number of setups for each class. For \ä¤ � 2 and\7¤ � �d2k�É2)2²Z 4 1D-CSP � we show the average solutions with the best number of
setups (‘ 576�8 � Z ’) and the best number of open stacks (‘ 576�8 � $ ’). For all \ä¤
we show the so-called average neutral solutions. For each instance we obtain a
set of PARETO-best solutions regarding

� Z
and
� $. A neutral solution (

� Z
,
� $

)
minimizes the value of

� Z 576�8 � $ [� $ 576�8 � Z , i.e., we are indifferent about
the increase either in the one or the other criterion by 1% of its minimum value
(if we imagine that the line representing PARETO-best solutions is differentiable).
Graphically, the neutral solution lies on the lowest line parallel to that connecting5�6�8 � $ and 5�6�8 � Z on the axes. A practitioner could choose another relation, for
example, he could have a (not necessarily linear) cost function of

� $ and
� Z

but
our task is to make a compromise between both criteria and not always choose an
extreme.

By allowing more material input, we have significantly reduced the number of
setups and notably reduced the number of open stacks (20 instead of 30 for �º��1¼)2). An interesting issue is the relation of ‘ 576�8 � Z ’ and ‘ 576�8 � $ ’-solutions.
Only in classes 2 and 3 (smaller items) we see much difference. For the other
classes we may say that setup and open stacks minimization are not contradicting

3.3. COMBINED MINIMIZATION OF SETUPS AND OPEN STACKS 87

Table 3.9: Combining setups and open stack minimization

Class 1 2 3 4 5 6 7 8 9� 20 50 50 50 50 50 50 50 1504 1D-CSP 349 258 502 878 743 1146 88 1321 2657\ä¤Ë�325�6�8 � Z 6.35 23.15 18.3 12.5 13.15 6.65 5.85 14 33.7
15.75 20.7 28.5 40.8 38.4 42.65 24.95 43.15 122.95�6�8 � $ 5.45 17.15 15.35 11.6 11.75 5.4 5.2 12.95 32.35
17.35 42.45 43.6 42.2 40.3 44.65 25.7 46 125.1

neutral 5.65 22.35 17.25 11.7 11.85 5.4 5.2 13.2 32.5
16.65 21.15 29.1 41.75 39.6 44.65 25.7 44.4 124.35\ä¤Ë�ý�d2k�É2)2k� 4 1D-CSP �

neutral 5.75 21.25 14.8 11 11.3 5.4 4.55 11.45 25.15
16.55 21.45 28.5 38.8 37.05 43.6 23.15 40.3 106.25\ä¤Ë�ý�d2k�É2)2²Z 4 1D-CSP �5�6�8 � Z 6.65 22.4 15.7 11.65 11.85 6.35 5 11.95 25.7
15.3 20.65 27.95 36.55 34.7 41.7 22.6 38.05 102.955�6�8 � $ 5.6 16.05 12.2 10.7 10.4 5.3 4.55 10.55 22.25
17.3 42 48.8 37.4 40.8 43.2 23.15 42.15 115.65

neutral 5.75 21.25 14.65 10.7 10.85 5.3 4.55 10.85 23.25
16.55 21.45 29 37.4 35.8 43.2 23.15 39.4 105.4\ä¤Ë�ý�d2k�É2½� 4 1D-CSP �

neutral 5.65 20.6 13.9 9.85 9.2 5.2 4.55 10.05 18.55
16.2 21.45 28.6 36.6 36.05 43.15 23.15 36.8 98.9\ä¤Ë�ý�d2k�É2�¼ 4 1D-CSP �

neutral 5.95 21.1 13.6 10 8.45 5.1 4.3 9.05 18.5
15.7 21.85 27.6 35.55 35.3 42.3 22.1 35.55 100.45

88 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

goals.

3.4 Problem Splitting

For the chosen class with � � �1¼)2 product types, in the previous
section we achieved, on average, solutions with, e.g., 1% increase
of material input, 99 different patterns and 19 open stacks. The re-
sults are certainly strongly dependent on problem parameters, see the
classes with � �b¼a2 . To get a smaller number of open stacks, we
may split up the problem into several parts of smaller dimension.

Thus, the index set ;��h{´��

���
��
��M~ of product types is partitioned into sub-
sets ;=<?>@; , ��� �)

�
�
��
�m � . Then each subproblem ���A<P� U ;=<2U
��/
��}� > èCB
���� > è�B � is
optimized for setups and open stacks. For material input in a subproblem we set
an upper bound

� 7 Bü�U���É2)2²Z 4 1D-CSP � , where 4 1D-CSP is the value of the best solu-
tion found (not all subproblems could be solved optimally). For each subproblem
there is produced a set of PARETO-best solutions regarding

� Z
and
� $. From

these partial solutions we form PARETO-best solutions for the whole problem, re-
garding all 3 criteria

� Z
,
� $, and

� 7 . Note that for each splitting variant we get
another

� 7 in a composed solution.
To choose a neutral solution, we have to define a relation of the costs for

setups, open stacks, and material. As above, we consider a change of D�576�8 � Z in� Z
equivalent to Ds5�6�8 � $ in

� $. However, material is more costly: we value its
change of �_�FX�Z)2²�ED�576�8 � 7 equal to �=D of the minima of both other criteria. Thus,

we define a neutral solution � � Z
 � $
 � 7 � to minimize the expression� Z 576�8 � $ 576�8 � 7 [� $ 576�8 � Z 576�8 � 7 [ÊZ)2 � 7 576�8 � Z 576�8 � $ � (3.16)

Again, this is done only in order to find a ‘compromise’ solution; a practitioner
could choose another cost function.

3.4.1 Splitting Methods

We tried only random partitioning of the product set. Two partitioning strategies
were applied. In the first method, each product type was independently assigned
to a subproblem �/JÓ{´��

�
����
�m � ~ . For �Ã�q�1¼a2 and m � �j¹ , the resulting values
of �F< were observed between 30 and 70. In the second method, the subproblem
sizes were kept nearly equal, i.e., �A<fB �d�VX.m � � .

Some splitting variants may be very disadvantageous. In an instance with� �å�1¼a2 , the first random splitting into 3 parts with �A<��h¼)2 produced a total

3.4. PROBLEM SPLITTING 89

LP bound that was by 10% greater than that in the whole problem. The second
splitting variant was only 2% greater. For each instance we tried 100 variants and
chose a few of them with the smallest total material input (for �F2)2)m � subproblems,m � �3¹ , this was less than a minute of CPU time on average).

Another approach to split up a problem would be to take a solution with a
small number of open stacks produced by SVC and to select subsets of items con-
tained in subsequences of cutting patterns. This way could lead to better material
utilization in each subproblem. However, each product type is usually contained
in several patterns, so even here difficulties are possible. Also, no systematic
method to improve a given splitting has been found. Note that in the industry the
task would be easier: we usually have lots (groups of products) and lot priorities.

3.4.2 Computational Results

In Table 3.10 we show some average results for the 20 instances of class 9 and
two other classes with �Ã���1¼)2 . The first 3 data columns give average absolute
values � � $
 � Z
 � 7 � for the neutral composed solutions.

� 7 is the minimum
material input obtained for the whole (non-split) problem.

� Z
and
� $

are the
minimum

� Z
and
� $ obtained when solving the whole problem with allowed

increase of material input equal to that in the best composed solution.
¬ 1D-CSP is the

average time needed to optimize the �F2)2)m � subproblems for material input with a

time limit of 300 seconds per subproblem.
� Opt

1D-CSP is the number of subproblems
for which the 1D-CSP could not be solved optimally (counting for all 20 whole
instances). � < , �F< are the minimum and maximum �A< . The time limit was �G<
seconds for a subproblem and 300 seconds for a whole problem.

For comparison to the case without splitting, line 1 repeats data from Table 3.9
with \ä¤Ë�ü�U�Eþ�� 4 1D-CSP � � for class 9. For the line ‘10/100’, 10 splittings with the
best material input were chosen from 100 obtained by the first method (m � � ¹²� .
For the line ‘3/100’, only 3 best were chosen. This leads to a better

� 7 but worse� $ and
� Z

. For the line ‘ �G<EB(¼)2 ’ (the second splitting method), 3 variants out
of 100 were tried. We see that subproblems with nearly equal size, i.e., obtained
by the second splitting method, give worse results. For the line ‘10/10’, all 10
variants obtained by the second method were optimized. As no selection regarding
material input was made, both other criteria have good levels. For m � �<¼ and the
first splitting method we obtain 8.3 stacks and a material input increase of 1.6%.
Classes 3’ and 8’ resemble those from Table 3.9 but with �å�q�1¼a2 , i.e., class 3’
had l y �ª2k� Á and class 8’ had ���÷JT`�Ä .

90
C

H
A

PT
E

R
3.

M
IN

IM
IZ

A
T

IO
N

O
F

SE
T

U
PS

A
N

D
O

PE
N

ST
A

C
K

S

Table 3.10: Setups and open stacks minimization combined: further reduction of open stacks by problem splitting for� � �� �

Class 9 H ! HEI HEJ H ! K H ! H I K H I HJ K H J 1D-CSP H Opt
1D-CSP � L � L

NoSplit 18.55 98.9 1.01

10/100 10.7 112.95 2673.1 0.56 1.13 1.00612 28.4 0 30 69

3/100 10.95 114.1 2672.15 0.57 1.14 1.00576 28.3 0 30 69� LM � � 11.2 113.35 2673.1 0.58 1.14 1.00612 41.9 1 48 50

10/10 10.7 113.7 2680.3 0.56 1.16 1.00881N O� � 8.3 117.05 2699.2 0.47 1.20 1.01594 29.5 1 15 48

Class 3’ 14.95 84.95 1537.35 0.82 1.21 1.00307 57.0 0 30 70

Class 8’ 11.35 118.15 3997.9 0.65 1.21 1.00536 29.8 0 30 69

3.5. IP MODELS FOR OPEN STACKS MINIMIZATION 91

3.5 IP Models for Open Stacks Minimization

We extend some assignment models of 1D-CSP, including the model
of Kantorovich, by boolean variables that account the states of stacks
in the cutting sequence. A similar extension of the Gilmore-Gomory
model and the subpattern model is possible. The continuous relax-
ation needs some further variables in order to take the stack states into
account. The models are probably too large for to-day optimizers.

Let ¤ be an upper bound on the number of different patterns in an optimum
solution. Let $@�&%CJ|{.2k
��
�
��
����	~ be the number of items of type � in the * -th pattern
(*G�,�)

�
�
��
 ¤) and 4 % be the intensity of pattern * . Letþ zu:�&%/� PQSR 2k
 if 9 % ¥�=#� $@� ¥ 4 ¥��32 Product � not started up

to pattern *��
 if 9 % ¥�=#� $@� ¥ 4 ¥)$ 2 . . . already started
(3.17)

and

uþ z �&%�� PQ R 2k
 if 9 %�Ö@�¥�=#� $@�Ò¥ 4 ¥^¡ ��� Product � not finished
before pattern *��
 if 9 %�Ö@�¥�=#� $@�Ò¥ 4 ¥^Hn��� . . . already finished

(3.18)

for �'�(�)

�
�
��
�� , *G�0��

�
�
��
 ¤ .
Note that þ z u/�&%/�0� for *G� ¤ and uþ z �A%/�32 for *+�,� , !#� .

Alternatively, we may define uþ z �&%/�,� z z] u/�&% withz] u/�&%/� PTQ TR ��
 if 9 U¥�=²% $@�Ò¥ 4 ¥�$Ó2 Product � not finished
before pattern *2k
 if 9 U¥�=²% $@�Ò¥ 4 ¥P�ª2 . . . already finished.

(3.19)

Now we can define a linear function�WVYX�8÷�c�T
o*p�¸� þ zu/�&% z uþ z �&%�Jî{.2k

�)~´� (3.20)

Let ��i�$YZ ` be the maximum number of open stacks:��i�$YZ `�H �= �?=#� �[V\X�8e���>
o*p��
 !k* (3.21)

and ��i�$ÿ` x p be the maximum spread:��i�$ÿ` x pGH ����d��� U= %T=#� �WVYX�8e�c�T
o*p��¾ 4 %1
 !#�>� (3.22)

92 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

The model has one of the following objectives:5�6�8¢��i²$YZ�` or 576�8¢��i�$ÿ` x p (3.23)

subject to 9 % ¥�=#� $@�Ò¥ 4 ¥óBn��� þ z u:�&%F
 !#�T
o* (3.24)9 U¥�=²% $@�Ò¥ 4 ¥óBn��� z] u:�&%F
 !#�T
o* (3.25)9 ��Ò=#� �}�Ñ$@�&%CBn�/
 !k* (3.26)9 U%T=#� 4 %CB 4 �^]'Ö õ`_ é (3.27)9 U%T=#� $@�&% 4 %CHn���o
 !#� (3.28)$@�&%CJ|{.2½

�
�
��
����I~´
 !#�>
o* (3.29)4 %CJ|{.2½

�
�
��
 4 �^]'Ö õ`_ é ~´
 !k* (3.30)þ z u/�&%.
 z] u/�&%CJ|{.2½

�)~´
 !#�T
o*�� (3.31)

This model is non-linear. To linearize it, let us introduce separate variables for
each stock length’s pattern like in the Kantorovich model: -.%ó�ø� if stock length* is used in the solution, otherwise -F%/�<2 (*ä�(��

���
��
 4 �^]'Ö õ`_ é). The constraints
are then 9 % ¥�=#� $@� ¥"Bn��� þ z u:�A%1
 !#�T
o*+�(��

�
����
 4 �^]'Ö õ`_ é (3.32)9 7 vbadc�e�fhg¥�=²% $@� ¥"Bn��� z] u:�A%1
 !#�T
o* (3.33)9 ��?=#� ���Ñ$@�&%CBn�¸-�%.
 !k* (3.34)9 7 vba`ciejfhg%T=#� $@�&%CHn���o
 !#� (3.35)$@�&%CJá{.2k

�
�
��
����I~´
 !#�T
o* (3.36)-
%CJá{.2k

�)~´
 !k* (3.37)þ z u/�&%1
 z] u:�&%CJá{.2k

�)~´
 !#�T
o* (3.38)

and the definition of ��i�$ÿ` x p has to be correspondingly changed:��i�$ÿ` x pGH ����d��� 7 vba`ciejfhg= %T=#� �WVYX�8e�c�T
o*p��
 !#�T� (3.39)

Now, theoretically we may have a different pattern for each physical stock length.
To maintain information about open stacks, there are Za� boolean variables for
each physical stock length. If the material input in the solution is high then the
model grows very large.

3.6. SUMMARY AND OUTLOOK 93

We can decompose the model to a form with column generation as in the
Gilmore-Gomory model. Alternatively, extending the subpattern model (Chap-
ter 1) to handle open stacks in a similar way seems to be an interesting topic.

In the continuous relaxation, �WV\X�8e���>
o*p� will be 0 for the patterns not contain-
ing item � . Thus, we will be only in some sense minimizing the number of items
in a pattern. When using this relaxation in an enumerative approach, we cannot
expect it to lead the search process toward good solutions.

To enable the relaxation to take some approximation of the ‘open’ stack state
into account even for patterns not containing an item, let us introduce help boolean
variables z]ô�u
�&%:�D5�æ.ç�{ z]ô/u
� 1 %>N#��
 þ z u:�&% z uþ z �&%
~ (3.40)

and þ zô�uF�&%��35�æ1ç¶{ þ zô�uF� 1 %�Ö@��
 þ zu:�&% z uþ z �&%1~´
 (3.41)

and redefine �WVYX�8e�c�T
o*p�E� z] ô�uF�A%�[þ zô�uF�A% z � (3.42)

or �[V\X�8e���>
o*p�S� z] ô�u
�&%¸[þ zô�u
�&% z ��ô�u��&% (3.43)

with ��ô/u��&%:�n5�æ1ç#{ z]ô�u
�&%.
 þ zô�u
�&%F~ (3.44)

which may better reflect the fractional values in the relaxation.
When branching on variables ô�u , setting, e.g.,

z] ô�uF�&%K� 2 implies
z] u/�A%^� 2 and9 7 vbadc�e�fhg¥�=²% $@�A%+�§2 ; setting

z]ô�uF�&%Ð��� implies
z] u:�A%Ð��� and 9 7 vbadc�e�fhg¥�=²% $@�&%�H©� . It

is an interesting question whether CPLEX node preprocessing routines can find
these implications. In the root node relaxation, variables u are redundant with ô/u ,
but we may branch on them, as an alternative to branching on ô�u .
3.6 Summary and Outlook

The investigation of the proposed methods on a broad range of test problem
classes has shown the following.

Largely, the effects of problem parameters are: smaller products allow less
patterns but necessitate more stacks. Smaller order demands improve both criteria.
About 25% of the instances of the chosen class with ���0�1¼)2 seem to have only a
few material-minimum solutions so that setup minimization is not very successful.
A small increase of material input reduces the difficulty.

The proposed modification of the sequential heuristic SVC shows an average
material surplus under 1% even for 3 open stacks allowed in problems with up
to 150 product types. Previous published approaches, based on sequencing of a

94 CHAPTER 3. MINIMIZATION OF SETUPS AND OPEN STACKS

single solution, gave as many as 130 open stacks for 150 product types; some
other more flexible approaches were not documented on representative test sets.

A combined setup/open stacks minimization approach gives as many as 25
open stacks for the standard class with 150 product types when allowing material
surplus of 0.2%. This can be reduced down to 11 open stacks when splitting up
the problem into 3 parts; material surplus is about 0.6% then.

The options of lots and of several trucks for a lot (see Introduction to Sec-
tion 3.2) can be incorporated in SVC as follows. If after applying a pattern at
a (not necessarily maximum) frequency, some trucks/stacks are finished, then we
are free whether to continue the open lot with the next truck or to switch to another
lot. Some further technological criteria may apply here.

Chapter 4

Models Without Column Generation
for 2D-2CP

We consider some assignment formulations of 2D-2CP. Some new
models with variable strip widths are developed. Symmetries in the
search space are eliminated by lexicographic constraints which are
already known from the literature. However, previously known mod-
els with fixed strip widths are more effective (but on large instances
both are inferior to the Gilmore-Gomory model used in Chapter 2).
The models are solved with the branch-and-cut algorithm of CPLEX.

4.1 Models with Fixed Strip Widths from the Liter-
ature

Consider the two ILP models for 2D-2CP from [LM02]. They distinguish between
items initializing a strip and additional items in the strip. The initializer width
determines the width of the strip.

4.1.1 Model 1

Each item is considered distinct, i.e., for each piece type � (�¨� ��

�
����
��) we
define ��� identical items * with �}%ä����� , âl%7�qâ�� , x % � x � . Let m¿� 9 ��?=#� ��� be
the total number of items. Let the items be ordered so that âÐ�KH§�
�
�OH â r . The
model assumes that m potential strips may be initialized: strip ¦ , if used, must be
initialized by item ¦ (¦Ó� �)

�
�
��
�m). Then, the possible cutting of the m items

95

96 CHAPTER 4. ILP MODELS FOR 2D-2CP

from the potential strips is described by the following binary variables:$p%>¥�� B �)
 if item * is cut from shelf ¦�
2½
 otherwise.
�I¦ä�(��
��
�
��
�m��o*+�ª¦#

���
��
�mf� (4.1)

Model M1 is then as follows:5�æ.ç/9 r%T=#� x % 9 % ¥�=#� $p%>¥ (4.2)

s.t. 9 % ¥�=#� $p%_¥^B×� ��*+�,��

���
��
�mf� (4.3)9ªr%>=u¥�N#� �}%�$p%_¥óB,�	� z ��¥�� $¶¥�¥ �I¦ä�(��
��
�
��
�m z �1� (4.4)93r¥�=#� âP¥�$¶¥T¥óBDà (4.5)$p%>¥óJ|{.2k
��)~´� �I¦7�(��

���
��
Tm��o*Ð�<¦#

�
����
�mf� (4.6)

The objective function (4.2) maximizes the sum of the profits of the cut items.
Inequalities (4.3) guarantee that each item is cut at most once, and only from
strips whose width is at least equal to the width of the item. Inequalities (4.4)
assure that the length constraint for each strip is satisfied, and that either item¦ is on strip ¦ or strip ¦ is empty, whereas inequality (4.5) imposes the width
constraint. Note that the meaning of each variable $�¥�¥ (¦¢�§��
��
�
��
Tm) is twofold:$¶¥�¥^�£� implies that item ¦ is cut from strip ¦ , i.e., strip ¦ is used and initialized
by its corresponding item. The model has Z���m y � variables and Z¨��mf� constraints.

4.1.2 Model 2

The next model from [LM02] has an integer variable for items of a certain type
in a strip. Let C÷°lk§2 , Ce�¸�ôCe��Ö@�s[Ó��� , m��ôCe� . Let J ¥G�j576�8#{1� � CO��H£¦¶~ be
the initial piece type in strip ¦ , ¦��0��

�
�
��
�m . Let µ
¥ denote initialization of strips:µ�¥��(� , if strip ¦ is used and at least one piece of type J ¥ initializes it. Then $nm ¥
is the number of additional items of type J ¥ . Let âC�¢Hhâ y HÃ�
�
�/Hhâ�� and$@�Ò¥ be the number of items of type � to be cut in strip ¦ , �Ü$ J ¥ . Model M2 is as
follows: 5�æ.ç/9 ��?=#� x �a9 � ­¥�=#� $@�Ò¥Y[¿9 r¥�=#� x m µ�¥ (4.7)

s.t. 9 � ­¥�=#� $@�Ò¥S[9 � ­¥�= � ­ cav N#� µ�¥óBn��� ���÷�,��

�
�
��
��V� (4.8)9 ��?=om �}��$@�Ò¥^B,�	� z �bm �_µ�¥ �I¦ä�(��
��
�
��
TmO� (4.9)9 r ¥�=#� âpm µ�¥óBDà (4.10)$@�Ò¥^JML/N ��!#�T
#¦��0��

�
����
�CO�c� (4.11)µ�¥óJ�QY� �I¦7�(��

�
����
�mf� (4.12)

The model has Z¨���¢mf� variables and Z���mf� constraints. The Gilmore-Gomory
model can be obtained from it by DANTZIG-WOLFE decomposition [NW88].

4.1. MODELS WITH FIXED STRIP WIDTHS FROM THE LITERATURE 97

4.1.3 Anti-Symmetry Constraints

The authors prove that the following constraints do not exclude all optimum solu-
tions of M1 and M2.ï Ordering inequalities (OI) for the strip initializers:$ s¦s H $ s N#�21 s N#� � ¬ J`üÅCO��Ö@�O[D��
�CO� z ��ý�!#�o� (4.13)

for M1 and µ s HDµ s N#� � ¬ J�üVCe��Ö@�f[n��
�CO� z ��ý�!#�o� (4.14)

for M2.

Note that these imply $ � ­ c)v N#�	N s 1 � ­ c)v N#�	N s �3µ � ­ c)v N#�	N s �ª2E! ¬ $q±�à`Xaâ���³ , !#� .
Such implications can be possibly found by CPLEX preprocessing routines.ï Extended ordering inequalities (OI) for the additional items of the initializer
type: � ­=

� = s N#� $ � s H � ­=� = s N y $ � 1 s N#� � ¬ J�üVCe��Ö@�O[n��
�CO� z Z.ý�!#�U� (4.15)

for M1 and $@� s H $@�Ù1 s N#� � ¬ J�üÅCO��Ö@�f[D�)
�Ce� z ��ý�!#�o� (4.16)

for M2.

OI and EOI can be seen as basic lexicographic ordering (see below).

4.1.4 Tightening the LP Relaxation of M2

The authors [LM02] show that when inequalities� ­=
� =u¥ $@� � Bn��� z �	¦ z CO��Ö@�T� �I¦¨J�üVCe��Ö@�f[n��
�CO��ý	
/!#�U� (4.17)

are added to M2, then M1 and M2 have equivalent LP relaxations. However,
for the non-relaxed model (4.7)–(4.12) these inequalities follow from the anti-
symmetry constraints EOI:

Proposition 11 In model M2, EOI (4.16) imply (4.17).

Proof For ¦V�XCO��Ö@�÷[ª� , (4.17) follows from (4.8) and (4.9). Suppose (4.17) is
violated for some ¦Q$�C÷��Ö@�'[ª� . Then 9 � ­� =u¥ $@� � H§� . EOI (4.16) mean $¶� s H§� ,! ¬ JªüVCO��Ö@�'[ª��
�¦ z ��ý ; summing these up gives 9 ¥�Ö@�� = � ­ c)v N#� $@� � H ¦ z Ce��Ö@� z � ;
together with the violation of (4.17), 9 � ­� = � ­ cav N#� $@� � $ª��� z � . This together with
(4.8) gives 9 � ­� = � ­ c)v N#� µ � ¡<� which is a contradiction to (4.9).

98 CHAPTER 4. ILP MODELS FOR 2D-2CP

4.2 Variable Width Models

Notice that the maximum number of strips in a solution is not greater than� � ±�à`Xaâ��÷� r ³ which is usually smaller than m . This bound can be reduced
by considering the bounds ��� for each piece type. A further reduction is can be
achieved by the following

Proposition 12 Let â���B â y Bb�
�
�/B â r and let �_%��Ã�K!k*��å��

�
����
�m . Leth½°`� 2 and hp¥Ó� 5�æ.ç¶{@h � �rq c)v N#�/[©�
�
��[�rq,B ��~ , ¦j� ��
�Zp

�
�
� . Then� �,5�æ.ç¶{a¦ � 9 ¥t�=#� âsqEtäB(à ~ is a valid upper bound on the number of active
strips.

Proof A better solution (with a better objective value) than that implied by the
construction of {@hk¥.~1¥�=#�21 y 1434343 can be obtained by: 1. more dense packing of current
items; 2. introducing further items into the solution. Both ways can not create any
narrower strips.

Let us make the width of each strip variable: ûâP¥ , ¦7�(��

�
����
 � . To restrict the
width of each strip by the widest item in it, let us consider each item to be distinct
as in M1 and represent the items by binary variables $u%>¥ meaning that item * is
present in strip ¦ . This gives model M3:5�æ1ç�9 %M1 ¥ x % $p%>¥ (4.18)

s.t. ûâ/¥óH âl%�$p%>¥.
 !k*�
�¦ (4.19)9 ¥ ûâ/¥óB3à (4.20)9 % �?%�$p%>¥óBD�/
 !f¦ (4.21)9 ¥ $p%>¥óB0��
 !k* (4.22)$p%>¥óJVQS
Y!k*�
�¦#
 ûâ/¥óJML/Ne
e!f¦ (4.23)

which has Z¨�cm � � constraints and variables. But if the original problem has large
upper bounds, the transformation to the equivalent problem with distinct items
increases the dimension significantly. Thus, it could be sensible to have one binary
variable µ��Ò¥ for each piece type, which also restricts the strip width, and an integer
variable $@�Ò¥ giving the number of additional items of type � in the strip. However,
we must not allow any additional pieces without restricting the width, thus $��Ò¥�B

4.2. VARIABLE WIDTH MODELS 99����� z �1�_µ��Ò¥ . Model M4 is as follows: 5�æ.ç`9 � 1 ¥ x � ��µ�� ¥S[�$@�Ò¥
� (4.24)

s.t. ûâ:¥óHÓâ���µ��Ò¥a
 !#�>
�¦ (4.25)9 ¥ ûâ/¥óBDà (4.26)$@� ¥"B,����� z �1�_µ��Ò¥)
 !#�T
�¦ (4.27)9 � �}�dµ��Ò¥S[Ê9 � ����$@� ¥"Bn�/
 !f¦ (4.28)9 ¥ µ��Ò¥S[9 ¥ $@� ¥"Bn���I
 !#� (4.29)$@�Ò¥^JML/Ne
sµ��Ò¥^J�Qg!#�T
�¦�
 ûâ/¥óJML�N÷
O!f¦#� (4.30)

This model is equivalent to M3, even in terms of LP relaxation, if ����� �+!#�
already holds. To get rid of the � � constraints (4.25), let us change the sense
of µ��Ò¥ to correspond to the widest item in the strip. Assume â:�MH â��?N#� for�'�(�)

�
�
��
�� z � . Model M5 is as follows:5�æ.ç�9 � 1 ¥ x �Ñ$@�Ò¥ (4.31)

s.t. ûâ/¥P� 9 � â���µ��Ò¥a
 !f¦ (4.32)�"HD9 � µ�� ¥)
 !f¦ (4.33)9 ¥ ûâ/¥óBDà (4.34)$@�Ò¥^Bn��� 9 � <É=#� µu<Ç¥a
 !#�T
�¦ (4.35)9 � �}��$@�Ò¥^Bn�/
 !f¦ (4.36)9 ¥ $@�Ò¥^Bn���U
 !#� (4.37)$@�Ò¥^JML/Ne
sµ�� ¥"JVQ�!#�>
�¦#
 ûâ/¥óJML/Ne
e!f¦ (4.38)

which has about 2 times fewer constraints. But when ���l�h� , !#� , it has twice as
many active variables.

For the LP relaxation of M5, it is reasonable to tighten (4.36) by 9 � �}��$@�Ò¥¨B��9 � µ��Ò¥ . Also, in (4.35) and (4.27) we can replace ��� by 576�8�{.���I
k±c�SX)����³�~ . For all
models M3, M4, M5 it is reasonable to tighten the search space of a branch-and-
bound by ûâ/¥óHqûâ/¥�N#��
 ¦7�,��

�
�
��
 � z � (4.39)

and for models M4, M5 byµ.��¥^HÓµ.�21 ¥�N#��
 ¦7�(��

�
����
 � z � (4.40)$f��¥^H $f�21 ¥�N#��
 ¦��(�)

�
�
��
 � z � (4.41)

(for M3 that would be (4.41) only) which are the analogs of OI and EOI for the
fixed-width models.

100 CHAPTER 4. ILP MODELS FOR 2D-2CP

4.3 Lexicographical Branching

In all models M1–M5 there are many equivalent groups of variables. For exam-
ple, in the models with variable width, all groups of variables representing strips
are interchangeable, so that equivalent (symmetric) solutions are produced by ex-
changing them. Thus, an enumerative approach could investigate many equiva-
lent subproblems. To introduce some basic anti-symmetry protection, we can add
(4.39)–(4.41) in the models with variable width and OI, EOI in the fixed width
models. However, if the initial variables are equal in some two strips, then the rest
is interchangeable. We can define some kind of dynamic lexicographical order
of the subproblems of the current branch&bound tree with respect to equivalent
solutions they may contain. It is especially important to prune equivalent subprob-
lems at the initial levels of the branch&bound tree to reduce the amount of nodes
investigated.

Consider a general model5�æ1ç#{.Õ�$ �Yë $��ª�F
n�DB $MB�_ä
¶$RJML r ~´

where some groups of variables are equivalent.

Lexicographic pruning rule Let �d$���v�

�
�
��
T$@��v�Nvq)� and �c$@�?w�

���
��
T$@�ÒwoNvqa� be equiva-
lent variable groups and �T�l¡ � y . Suppose that at the current node the restrictions
on both groups are equal except for two corresponding variables: ���P��v�Nom½
2_¸��v	Nom�������l�ÒwUNomk
 _E�?woNom�� for all J G� J ° and _E��v	Nom�¥V¡ �l�?wINom�¥ . Then prune the current
node.

Proposition 13 When applied alone (without further ordering of equivalent
groups), the above rule does not cause any loss of solutions, i.e., at least one
of a set of equivalent solutions will not be pruned.

Proof Suppose the constraint $¶��v	Nom�¥^BF_¸��v	Nom�¥ has been added at level ô@� of the
solution tree and the constraint $��?woNom�¥äH �l�?woNom�¥ at level ô y . Let ôu�+¡£ô y . Then
the opposite subproblem at level ô¶� is defined by $¶��v	Nom�¥�H�_¸��v	Nom�¥S[0� and thus
this subproblem is equivalent or even larger than the one being pruned because
of the interchangeability of the variable groups. It will not be pruned by the rule.
Similar in the case ô y ¡ ôu� .

We can suppose (and be confirmed by tests) that there are very few cases when
the rule is applicable. The assumptions are very strong.

4.4. LEXICOGRAPHICALLY ORDERED SOLUTIONS 101

4.4 Lexicographically Ordered Solutions

Instead of ordering the subproblems dynamically during branching, we may stati-
cally order the solutions themselves. For each couple of equivalent variable groups�d$@��v�

���
��
T$@��v	Nvqa� and �d$@�?w�

�
����
T$@�?wINvq)� for �_�R¡º� y , we may demand that the first
vector should be lexicographically not smaller than the second one. This is done
in [cpl01, ilo02] in an example of application of Constraint Programming to the
Kantorovich model of 1D-CSP. Suppose that the variables have bounds27B $@�?Ndw�B�_E�ÒNdw �yx�J`ü 2k
jh�ý	
@�EJ|{1�_��
T� y ~a� (4.42)

(in our case such upper bounds, e.g., for the number of items of type � , would be576�8�{.���U
k±c�SX)�}��³�~l!#�). Then the functionqzw�=#� �Ù_¸�?Ndwl[D�1�o$@�½[qzw�= y �Ù_¸�?Ndwl[D�1�o$@�?N#�O[DÈFÈFÈF[�$@�?Nvq ���¸Jî{1� ��
�� y ~a� (4.43)

assigns a unique ‘lexicographic value’ to the vectors. Its coefficients can grow
very large, and with numbers like �F2 � ¹ CPLEX had numerical problems on some
instances while on the others the results were significantly better because CPLEX
scales the data during preprocessing. Thus, we tried all instances allowing maxi-
mum coefficients of �
2W{ , reducing the length of the compared vectors if necessary.

The following vectors are equivalent in the corresponding models:ï In model M1, for each �ä�Û��

�
����
�� , the strips initialized by piece � are
equivalent:|} � ­= %>=u¥ $p%_¥)
 � ­�~ v=%T= � ­}N#� $p%>¥.
e�
�
��
 r=%>= � ÿ c)v	N#� $p%_¥=��j
 ¦¢J`üÅCO��Ö@�a[R��
�Ce�}ýI� (4.44)

ï Similar for M2:�cµ�¥S[�$@� ¥)
@$@�?N#�21 ¥)
O���
��
u$@�'¥1�#
 ¦�J�üVCO��Ö@�e[n��
�CO��ý	� (4.45)

ï For the variable width models, all strips are equivalent. M3:|} � v= %T=#� $p%>¥.
 � w=%T= � v�N#� $p%>¥a
O�
�
��
 r=%>= � ÿ c)vcN#� $p%_¥ ��
 ¦��,��

�
�
��
 � � (4.46)

ï For M4: ��µ.��¥S[`$f��¥�
O�
�
��
@µ��'¥Y[�$@�'¥F��
 ¦7�,�)

�
�
��
 � � (4.47)

102 CHAPTER 4. ILP MODELS FOR 2D-2CP

ï For M5: �d$f��¥)
O�
�
��
u$@�s¥
��
 ¦7�,��

���
��
 � (4.48)

and �cµ.��¥)
O���
��
¶µ��'¥F��
 ¦ä�(��

�
����
 � � (4.49)

4.5 Computational Results

The lexicographic pruning rule (dynamic lexicography) was not efficient: in many
instances no pruning occurred at all. Among the variable width models, we imple-
mented at first M4; however, its results were dominated by M1 and M2, thus, M3
and M5 were not tested. The test set was the same as in Chapter 2 [LM02, HM03]:
14 medium weighted, 24 medium unweighted, 10 large unweighted, 10 large
weighted instances. The models were implemented in ILOG Concert Technol-
ogy 1.2 over CPLEX 7.5 and tested on an AMD K7 Athlon XP 1000 MHz. In
all models, we assigned higher branching priorities to strip initializers [LM02]; in
M4, the strip width variables âP¥ obtained the lowest priority and the variables µF� ¥
the highest.

In Tables 4.1 and 4.2,
¬

is the time without lexicographical constraints,
¬ lex

when also the lexicographical constraints are added with maximum coefficients
of �F2 { . ¬ old is the time from [LM02] computed with CPLEX 6.5.3 on a Digi-
tal Alpha 533 MHz. The maximum time was 10 minutes, thus all greater times
mean suboptimal solution. Results for M4 on the large set are not satisfactory and
thus not shown: only 2 instances are solved optimally and the bound gap is not
acceptable (a few per cent).

The last 10 instances of the large class are solved better than the first 10
instances. A reason is that the last 10 instances are weighted and the weights
are rather disproportional to piece areas. This peculiarity does not occur in the
Gilmore-Gomory model, Chapter 2.

Lexicographical ordering is on average better with M2 and M4 on the medium
set, with M1 on the medium unweighted set. To find out, why lexicography gave
better results for M1 on instances CU1 and Hchl3s, we looked at the problem data:
while in most instances the item sizes are more than 1/5 of the corresponding
dimension, in those instances it is down to 1/10. But we could not construct a
class with systematically better results obtained when using lexicography.

4.5. COMPUTATIONAL RESULTS 103

Table 4.1: 2D-2CP: medium+large classes, models M1, M2, and M4, first cut
along the first dimension

M1 M2 M4
name m n obj ì old ì ì lex ì old ì ì lex ì ì lex

HH 5 18 10689 0.28 0.05 0.07 0.05 0.03 0.03 0.08 0.1
2 10 23 2535 0.35 0.14 0.14 0.32 0.1 0.1 6.4 3.97
3 19 62 1720 0.35 0.12 0.18 0.23 0.14 0.11 0.7 0.73
A1 19 62 1820 0.88 0.24 0.37 0.40 0.15 0.17 0.73 0.41
A2 20 53 2315 1.33 0.32 0.78 0.58 0.36 0.28 0.56 0.48
STS2 30 78 4450 16.82 6.88 8.19 15.27 5.08 4.81 68.29 34.8
STS4 20 50 9409 11.42 4.54 5.18 9.98 1.19 0.86 9.54 10.64
CHL1 30 63 8360 8.30 2.79 3.67 4.00 2.62 2.95 11.97 11.39
CHL2 10 19 2235 0.12 0.03 0.04 0.13 0.03 0.04 0.3 0.32
CW1 25 67 6402 2.32 1.02 3.76 0.82 0.26 0.28 0.36 0.48
CW2 35 63 5354 0.87 0.31 0.48 0.78 0.32 0.23 0.37 0.63
CW3 40 96 5287 2.55 0.83 0.93 1.72 0.32 0.48 0.83 0.6
Hchl2 35 75 9630 61.77 12.86 17.23 300.02 30.87 20.18 601.81 511.68
Hchl9 35 76 5100 3.62 2.09 1.53 1.90 0.72 1.05 348.33 132.77
average 7.93 2.30 3.04 24.01 3.01 2.26 75.02 50.64
2s 10 23 2430 0.48 0.15 0.17 0.43 0.13 0.16 8.73 8.4
3s 19 62 2599 0.33 0.08 0.19 0.25 0.06 0.08 0.63 0.63
A1s 19 62 2950 0.27 0.11 0.14 0.47 0.14 0.16 0.56 0.73
A2s 20 53 3423 2.57 0.54 1.39 0.77 0.52 0.58 0.93 0.62
STS2s 30 78 4569 10.12 4.29 5.79 11.85 6.22 7.17 149.61 303.24
STS4s 20 50 9481 13.10 3.12 5.52 15.25 4.21 7.41 7.28 22.74
OF1 10 23 2713 0.07 0.02 0.04 0.05 0.02 0.05 0.25 0.17
OF2 10 24 2515 0.28 0.09 0.15 0.22 0.09 0.07 0.19 0.37
W 19 62 2623 0.75 0.23 0.34 0.52 0.17 0.13 0.14 0.2
CHL1s 30 63 13036 4.30 1.96 2.56 5.15 1.56 2.36 20.38 11.51
CHL2s 10 19 3162 0.18 0.07 0.05 0.17 0.09 0.07 0.53 0.47
A3 20 46 5380 1.78 0.66 0.71 1.87 0.67 0.87 3.94 3.12
A4 19 35 5885 1.58 0.77 0.9 1.85 0.56 0.59 1.53 0.88
A5 20 45 12553 3.97 1.51 1.16 1.53 0.66 0.85 7.37 7.79
CHL5 10 18 363 0.03 0.02 0.03 0.03 0.02 0.03 0.15 0.17
CHL6 30 65 16572 21.50 6.8 8.92 38.52 29.64 17.48 524.16 601.79
CHL7 34 75 16728 54.23 9.28 15.54 181.73 66.16 65.08 601.82 602.35
CU1 25 82 12312 11.78 9.01 4.26 1.70 1.03 2.08 0.48 0.55
CU2 34 90 26100 3.67 2.01 1.99 1.80 0.43 0.7 2.73 3.52
Hchl3s 10 51 11961 312.93 450.7 138.55 13.97 4.01 4.45 35.79 21.89
Hchl4s 10 32 11408 402.13 192.4 372.14 5.62 2.63 2.12 40.9 13.59
Hchl6s 22 60 60170 19.60 4.02 7.04 45.25 15.56 15.7 602.62 94.52
Hchl7s 40 90 62459 168.20 56.9 68.87 751.40 371.25 280.32 601.87 601.65
Hchl8s 10 18 729 0.72 0.16 0.14 0.42 0.16 0.17 0.43 0.44
average 43.11 31.04 26.52 45.03 21.08 17.03 108.88 95.89
ATP30 38 192 137813 608.13 605.84 607.15 608.98
ATP31 51 258 813748 610.74 611.52 613.78 610.38
ATP32 56 249 36940 606.24 607.71 606.17 605.16
ATP33 44 224 233016 608.25 611.61 618.09 612.26
ATP34 27 130 354962 604.86 603.81 608.24 608.63
ATP35 29 153 611109 601.92 604.02 611.69 612.52
ATP36 28 153 129262 604.53 605.19 615.86 617.6
ATP37 43 222 380592 608.7 611.07 613.76 610.31
ATP38 40 202 257540 604.9 605.63 608 615.13
ATP39 33 163 264470 603.05 606.02 616.5 610.83
ATP40 56 290 63622 608.53 613.21 488.23 616.45
ATP41 36 177 202305 119.9 414.03 4.76 7.92
ATP42 59 325 32589 614.45 619.55 106.6 175.83
ATP43 49 259 208998 414.94 612.32 67.01 73.64
ATP44 39 196 70940 604.72 606.94 40.36 35.41
ATP45 33 156 74205 31.75 25.85 1.66 1.44
ATP46 42 197 146402 42.05 65.08 7.14 13.74
ATP47 43 204 144317 105.93 442.52 15.72 7.2
ATP48 34 167 165428 34.99 31.3 5.37 7.38
ATP49 25 119 206965 602.58 602.57 62.37 51.13
average 462.06 505.29 345.92 355.10

104 CHAPTER 4. ILP MODELS FOR 2D-2CP

Table 4.2: 2D-2CP: medium classes, models M1, M2, and M4, first cut along the
second dimension

M1 M2 M4
name m n obj ì old ì ì lex ì old ì ì lex ì ì lex

HH 5 18 9246 0.25 0.08 0.19 0.13 0.04 0.06 0.12 0.13
2 10 23 2444 1.33 0.26 0.29 0.42 0.13 0.15 0.39 0.3
3 19 62 1740 1.35 0.61 0.63 0.72 0.24 0.22 0.11 0.14
A1 19 62 1820 1.30 0.53 0.89 0.77 0.23 0.19 0.13 0.19
A2 20 53 2310 1.37 0.29 0.42 0.75 0.22 0.22 0.47 0.61
STS2 30 78 4620 1.25 0.39 0.48 0.65 0.18 0.69 7.04 2.56
STS4 20 50 9468 4.88 1.12 1.46 6.00 2.59 3.38 38.1 20.69
CHL1 30 63 8208 6.03 1.98 3.13 9.80 2.11 2.29 601.86 601.58
CHL2 10 19 2086 0.22 0.09 0.06 0.25 0.06 0.05 0.25 0.14
CW1 25 67 6402 1.00 0.24 0.84 0.57 0.15 0.18 0.36 0.27
CW2 35 63 5159 1.82 0.53 0.72 1.42 0.29 0.37 0.47 0.46
CW3 40 96 5689 7.48 2.47 2.83 1.37 0.33 0.43 0.91 1.52
Hchl2 35 75 9528 93.80 72.04 84.9 1674.82 117.73 52.15 602.32 601.81
Hchl9 35 76 5060 6.13 2.69 2.82 5.12 3.02 2.07 45.09 31.04
average 9.16 5.95 7.12 121.63 9.09 4.46 92.69 90.10
2s 10 23 2450 0.65 0.24 0.3 0.35 0.14 0.14 0.27 0.22
3s 19 62 2623 0.75 0.34 0.28 0.45 0.14 0.2 0.18 0.18
A1s 19 62 2910 1.08 0.26 0.32 0.48 0.24 0.24 0.2 0.25
A2s 20 53 3451 3.08 1.18 1.36 0.73 0.25 0.91 0.51 0.67
STS2s 30 78 4625 4.42 2.51 1.61 1.90 1.36 2.7 5.01 7.13
STS4s 20 50 9481 5.42 1.71 2.18 13.83 4.64 5.64 34.51 17.49
OF1 10 23 2660 0.07 0.01 0.03 0.07 0.04 0.05 0.54 0.47
OF2 10 24 2522 0.20 0.1 0.1 0.15 0.07 0.08 0.26 0.29
W 19 62 2599 0.35 0.09 0.19 0.18 0.06 0.09 0.63 0.62
CHL1s 30 63 12602 11.42 9.31 11.52 80.22 161.66 227.05 601.94 601.72
CHL2s 10 19 3198 0.18 0.09 0.09 0.13 0.09 0.1 0.16 0.16
A3 20 46 5403 1.68 0.8 1.58 3.25 1.22 1.03 1.95 3.44
A4 19 35 5905 1.87 0.53 0.95 2.12 0.33 0.38 13.18 15.95
A5 20 45 12449 8.20 2.21 2.17 3.18 3.69 6.29 601.57 70.21
CHL5 10 18 344 0.05 0.04 0.04 0.05 0.03 0.03 0.15 0.22
CHL6 30 65 16281 21.43 10.39 20.8 720.00 601.88 474.65 602.27 601.6
CHL7 34 75 16602 43.35 17.46 26.07 475.50 282.42 344.08 602.65 601.76
CU1 25 82 12200 448.50 235.33 14.1 1.93 0.62 0.98 2.06 1.97
CU2 34 90 25260 11.02 5.3 6.38 4.40 1.61 2.32 2.99 1.44
Hchl3s 10 51 11829 119.41 321.52 181.8 2.22 0.65 1.11 41.73 4.67
Hchl4s 10 32 11258 3.20 0.62 1.03 1.10 0.31 0.22 25 4.69
Hchl6s 22 60 59853 37.13 9.19 12.29 139.38 52.8 102.02 601.67 132.12
Hchl7s 40 90 62845 58.25 62.87 56.55 907.13 434.39 350.94 602.4 601.73
Hchl8s 10 18 791 0.42 0.11 0.11 0.28 0.06 0.09 1.34 2.4
average 32.59 28.43 14.24 98.29 64.53 63.39 155.97 111.31

Summary

This work is devoted to LP-based branching schemes and heuristics for one-
dimensional stock cutting and two-dimensional two-stage constrained cutting.
Some industrial technological criteria were considered.

In Chapter 2 we investigated a branch-and-cut-and-price algorithm with
branching on variables. For 1D-CSP, benchmarking in new test classes of large
problems (with � J {aZa2�2k
 Á 2)2½~) with various problem parameters, shows only
a few unsolved instances in all classes but one: a class with almost equal prod-
uct sizes (which is hopefully not practical) could not be solved because of an
enumerative procedure for pattern generation. Branching on hyperplanes, e.g., as
proposed by F. Vanderbeck or based on the arc flow formulation, may be a solu-
tion for this class. A comparison with a preliminary version of an arc flow scheme
by C. Alves and J.M. Valério de Carvalho in a selected set of instances shows
comparable results. This approach seems to have no difficulties in non-IRUP in-
stances; however, comparison in a broad set of instances is needed because this
scheme may have other difficult classes.

For the scheme under investigation, difficult instances have usually an LP
value integer or slightly less. The combination of branching on variables and
GOMORY mixed-integer cuts helped to reduce the number of nodes and time in
some instances. But on average, pure branch-and-price (no cuts) was somewhat
faster. There are some very rare instances with a large optimality gap (non-IRUP)
which could not be solved in an acceptable time without cuts. But when a suffi-
cient number (say, 40) of cuts were allowed at the root node, they were quickly
solved without branching. Depth-first search was, on average, the best enumera-
tion strategy because of a strong LP bound (the MIRUP conjecture).

For 2D-2CP, LP-based column generation with branching was not carried out
before. The combination of branching and GOMORY integer cuts was much more
effective than either standalone approach because of the complicated behavior of
the objective function. A similar situation occurs in 1D-CSP with multiple stock
lengths and in 2D two-stage strip packing, which makes possible the advantage of
the combined approach as well. Local cuts (valid at a subnode) were particularly
essential. Best-first search was the best enumeration strategy. Good solutions

105

106 SUMMARY

were found very quickly. Comparisons to other algorithms show mostly better so-
lutions and higher optimality rates in large instances. The more balanced scheme
of branching on slacks was postponed for future research.

Considering the implementation effort needed and the results in 1D-CSP for
the chosen class of cutting planes, our recommendation is to investigate other cuts,
formulations, and branching rules, e.g., arising from other formulations.

In Chapter 3 we proposed a new simple model for setup minimization which
allows effective integer solution. Comparison to the heuristic KOMBI shows bet-
ter performance, although with a slightly longer running time; comparison to the
previous exact approach of F. Vanderbeck shows only slightly worse solutions
but a significantly worse LP bound, because his model is more ‘decomposed’, it
enables the effective application of cutting planes. Diving best-first search was
essential. A new sequential heuristic produced high-quality cutting plans under
a restricted amount of open stacks. An approach to reduce both setups and open
stacks was proposed and refined by problem splitting. Both objectives seemed
not to contradict for most problem classes, except for those with all small product
sizes (below 40% of the stock length). All these methods were investigated in
broad ranges of test classes with industrially relevant problem sizes of up to 150
product types. Then some IP models were proposed for open stacks minimization.
They are probably too difficult for modern optimizers.

Chapter 4 investigated some known and new assignment formulations of 2D-
2CP. The ILP models of A. Lodi and M. Monaci provided satisfactory solutions
and were easy to implement. However, for the (multiobjective) optimization of
1D-CSP, pattern generation seemed to be by far the best approach. To enable
its industrial application, which implies easy adaptation to further technological
constraints, a standard software system is needed. Currently, the developers of
ILOG CPLEX are discussing the option of adding new columns at the nodes of a
branch-and-cut tree. This would also necessitate the means to support cut lifting
for the new columns. Alternatively, some branch-and-cut-and-price systems exist
but they are not so intensively supported and standardized.

Bibliography

[AdC03] C. Alves and J. M. Valério de Carvalho, A branch-and-price algorithm for
integer variable sized bin-packing problems, Tech. report, Universidade do
Minho, Portugal, 2003.

[Bea85] J. E. Beasley, Algorithms for unconstrained two–dimensional guillotine cut-
ting, J. Oper. Res. Soc. 36 (1985), no. 4, 297–306.

[Bel00] G. Belov, A cutting plane algorithm for the one-dimensional cutting stock
problem with multiple stock lengths, Diploma thesis, Dresden University,
2000, in German.

[BHV00] C. Barnhart, C. A. Hane, and P. H. Vance, Using branch-and-price-and-
cut to solve origin-destination integer multicommodity flow problems, Oper.
Res. 48 (2000), 318–326.

[BP02] E. Balas and M. Perregaard, Lift-and-project for mixed 0-1 programming:
recent progress, Discrete Applied Mathematics 123 (2002), no. 1–3, 129–
154.

[BS02] G. Belov and G. Scheithauer, A cutting plane algorithm for the one-
dimensional cutting stock problem with multiple stock lengths, European
Journal of Operational Research 141 (2002), no. 2, 274–294, Special issue
on cutting and packing.

[BS03] , A branch-and-cut-and-price algorithm for one-dimensional stock
cutting and two-dimensional two-stage cutting, Technical report, Dresden
University, 2003, URL: www.math.tu-dresden.de/˜capad.

[CJP83] H. Crowder, E. Johnson, and M. W. Padberg, Solving large-scale zero-one
linear programming problems, Operations Research 31 (1983), 803–834.

[CLSS87] F. Chauny, R. Loulou, S. Sadones, and F. Soumis, A two–phase heuristic for
strip packing: Algorithm and probabilistic analysis, OR Letters 6 (1987),
no. 1, 25–33.

[CMLW99] C. Cordier, H. Marchand, R. Laundy, and L. A. Wolsey, bc-opt: A branch-
and-cut code for mixed integer programs, Mathematical Programming 86
(1999), no. 2, 335–354.

107

108 BIBLIOGRAPHY

[cpl01] ILOG optimization suite. Delivering a competitive advantage, White paper,
ILOG Corporation, 2001, URL: http://www.ilog.com.

[dC98] J. M. Valério de Carvalho, Exact solution of cutting stock problems us-
ing column generation and branch-and-bound, International Transactions
in Operational Research 5 (1998), 35–44.

[dC02] , LP models for bin-packing and cutting stock problems, European
Journal of Operational Research 141 (2002), no. 2, 253–273.

[DDI N 98] G. Desaulniers, J. Desrosiers, I. Ioachim, M. M. Solomon, F. Soumis, and
D. Villeneuve, A unified framework for deterministic time constrained rout-
ing and crew scheduling problems, Fleet management and logistics (T. G.
Crainic and G. Laporte, eds.), Kluwer Academic Publishers, Norwell, MA,
1998, pp. 57–93.

[DF92] H. Dyckhoff and U. Finke, Cutting and packing in production and distribu-
tion, Physica Verlag, Heidelberg, 1992.

[DP03] Z. Degraeve and M. Peeters, Optimal integer solutions to industrial cutting
stock problems: Part 2, benchmark results, INFORMS Journal on Comput-
ing 15 (2003), 58–81.

[DSD84] J. Desrosiers, F. Soumis, and M. Desrochers, Routing with time windows by
column generation, Networks 14 (1984), 545–565.

[DST97] H. Dyckhoff, G. Scheithauer, and J. Terno, Cutting and packing, Annotated
Bibliographies in Combinatorial Optimization (M. Dell’Amico, F. Maffioli,
and S. Martello, eds.), John Wiley & Sons, Chichester, 1997, pp. 393–412.

[Dyc81] H. Dyckhoff, A new linear approach to the cutting stock problem, Oper. Res.
29 (1981), no. 6, 1092–1104.

[Dyc90] H. Dyckhoff, A typology of cutting and packing problems, European Journal
of Operational Research 44 (1990), 145–160.

[Fal96] E. Falkenauer, A hybrid grouping genetic algorithm for bin packing, Journal
of Heuristics 2 (1996), no. 1, 5–30.

[Far90] A.A. Farley, A note on bounding a class of linear programming problems,
including cutting stock problems, Oper. Res. 38 (1990), no. 5, 922–923.

[FW00] H. Foerster and G. Waescher, Pattern reduction in one-dimensional cutting
stock problems, International Journal of Production Research 38 (2000),
no. 7, 1657–1676.

[GG61] P. C. Gilmore and R. E. Gomory, A linear programming approach to the
cutting-stock problem, Operations Research 9 (1961), 849–859.

BIBLIOGRAPHY 109

[GG63] , A linear programming approach to the cutting-stock problem (Part
II), Operations Research 11 (1963), 863–887.

[GG65] , Multistage cutting stock problems of two and more dimensions,
Oper. Res. 13 (1965), 94–120.

[GG66] , The theory and computation of knapsack functions, Oper. Res. 14
(1966), 1045–1075.

[GS01] C. Gomes and B. Selman, Algorithm portfolios, Artificial Intelligence 126
(2001), 43–62, URL: www.ilog.com (technical papers).

[Hae75] R. W. Haessler, Controlling cutting pattern changes in one-dimensional trim
problems, Operations Research 23 (1975), 483–493.

[Hif99] M. Hifi, The strip cutting/packing problem: incremental substrip
algorithms-based heuristics, Working paper, 1999.

[Hif01] , Exact algorithms for large-scale unconstrained two and three
staged cutting problems, Computational Optimization and Applications 18
(2001), no. 1, 63–88.

[HM03] M. Hifi and R. M’Hallah, Strip generation algorithms for constrained two-
dimensional two-staged cutting problems, Working paper, 2003.

[Hol02] O. Holthaus, Decomposition approaches for solving the integer one-
dimensional cutting stock problem with different types of standard lengths,
European Journal of Operational Research 141 (2002), 295–312.

[HR01] M. Hifi and C. Roucairol, Approximate and exact algorithm for constrained
(un)weighted two-dimensional two-staged cutting stock problems, Journal
of combinatorial optimization 5 (2001), 465–494.

[ilo02] ILOG Solver 5.1, User’s manual, ILOG Corporation, 2002, URL:
http://www.ilog.com.

[JRZ99] M. P. Johnson, C. Rennick, and E. Zak, One-dimensional cutting stock prob-
lem in just-in-time environment, Pesquisa Operacional 19 (1999), no. 1, 145–
158.

[JT00] M. Jünger and S. Thienel, The ABACUS system for branch-and-cut-and-
price algorithms in integer programming and combinatorial optimization,
Software: Practice and Experience 30 (2000), no. 11, 1325–1352.

[Kan60] L. V. Kantorovich, Mathematical methods of organizing and planning pro-
duction, Management Science 6 (1960), 363–422, (in Russian 1939).

[Kar02] V. Kartak, A grouping method and problem reduction by column generation,
Draft paper, 2002, Produced in 2001/2002 during a postgraduate scholarship
in Dresden.

110 BIBLIOGRAPHY

[Kup98] J. Kupke, Lösung von ganzzahligen Verschnittproblemen mit Branch-and-
Price, Diplomarbeit, Universität zu Köln, 1998.

[LD02] M. E. Lübbecke and J. Desrosiers, Selected topics in column generation, Les
Cahiers du GERAD G-2002-64, Montréal, Canada, 2002.

[LL02] A. N. Letchford and A. Lodi, Strengthening Chvátal-Gomory cuts and Go-
mory fractional cuts, Operations Research Letters 30 (2002), no. 2, 74–82.

[LM02] A. Lodi and M. Monaci, Integer linear programming models for 2-staged
two-dimensional knapsack problems, Mathematical Programming, Ser. B
94 (2002), 257–278.

[LS99] J. T. Linderoth and M. W. P. Savelsbergh, A computational study of strate-
gies for mixed integer programming, INFORMS Journal on Computing 11
(1999), 173–187.

[MA92] R. Morabito and M. Arenales, Staged and constrained two-dimensional guil-
lotine cutting problems: A new approach, Tech. report, Notas do ICMSC
126, Universidale de Sao Paulo, Sao Carlos, S.P., Brazil, 1992.

[Mar01] A. Martin, General mixed-integer programming: computational issues
for branch-and-cut algorithms, Computat. Comb. Optimization, LNCS
(M. Jünger and D. Naddef, eds.), vol. 2241, 2001, pp. 1–25.

[MBKM01] E. A. Mukhacheva, G. Belov, V. Kartak, and A. S. Mukhacheva, One-
dimensional cutting stock problem: Numerical experiments with the se-
quential value correction method and a modified branch-and-bound method,
Pesquisa Operacional 20 (2001), no. 2, 153–168.

[MPT99] S. Martello, D. Pisinger, and P. Toth, Dynamic programming and strong
bounds for the 0-1 knapsack problem, Management Science 45 (1999), 414–
423.

[MT90] S. Martello and P. Toth, Knapsack problems – algorithms and computer im-
plementations, John Wiley and Sons, Chichester et al., 1990.

[MZ93] E. A. Mukhacheva and V. A. Zalgaller, Linear programming for cutting
problems, International Journal of Software Engineering and Knowledge
Engineering 3 (1993), no. 4, 463–477.

[NST99] C. Nitsche, G. Scheithauer, and J. Terno, Tighter relaxations for the cutting
stock problem, European Journal of Operational Research 112 (1999), 654–
663.

[NW88] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization,
John Wiley and Sons, New York, 1988.

[Pee02] M. Peeters, One-dimensional cutting and packing: new problems and algo-
rithms, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 2002.

BIBLIOGRAPHY 111

[PPSG00] V. Parada, R. Palma, D. Sales, and A. Gómes, A comparative numerical
analysis for the guillotine two-dimensional cutting problem, Annals of Op-
erations Research 96 (2000), 245–254.

[RS02] J. Rietz and G. Scheithauer, Tighter bounds for the gap and non-IRUP con-
structions in the one-dimensional cutting stock problem, Optimization 51
(2002), no. 6, 927–963.

[Sch02a] J. E. Schoenfield, Fast, exact solution of open bin packing problems without
linear programming, Draft, US Army Space & Missile Defense Command,
Huntsville, Alabama, USA, 2002.

[Sch02b] H. Schreck, A sequence problem in practical trim optimization, Proceed-
ings of the sixteenth triennial conference of the International Federation of
Operational Research Societies, 2002, p. 121.

[SKJ97] A. Scholl, R. Klein, and C. Jürgens, BISON: A fast hybrid procedure for
exactly solving the one-dimensional bin-packing problem, Computers and
Operations Research 24 (1997), no. 7, 627–645.

[ST95a] G. Scheithauer and J. Terno, A branch-and-bound algorithm for solving one-
dimensional cutting stock problems exactly, Applicationes Mathematicae 23
(1995), no. 2, 151–167.

[ST95b] , The modified integer round-up property of the one-dimensional cut-
ting stock problem, European Journal of Operational Research 84 (1995),
562–571.

[Sta88] H. Stadtler, A comparison of two optimization procedures for 1– and 1,5–
dimensional cutting stock problems, OR Spektrum 10 (1988), 97–111.

[STMB01] G. Scheithauer, J. Terno, A. Müller, and G. Belov, Solving one-dimensional
cutting stock problems exactly with a cutting plane algorithm, Journal of the
Operational Research Society 52 (2001), 1390–1401.

[SW99] P. Schwerin and G. Wäscher, A new lower bound for the bin-packing prob-
lem and its integration into MTP, Pesquisa Operacional 19 (1999), no. 2,
111–130.

[TLS87] J. Terno, R. Lindemann, and G. Scheithauer, Zuschnittprobleme und ihre
praktische Lösung, Verlag Harri Deutsch, Thun und Frankfurt/Main, 1987.

[UYI03] S. Umetani, M. Yagiura, and T. Ibaraki, One dimensional cutting stock prob-
lem to minimize the number of different patterns, European Journal of Oper-
ational Research 146 (2003), no. 2, 388–402.

[Vah96] R. Vahrenkamp, Random search in the one-dimensional cutting stock prob-
lem, European Journal of Operational Research 95 (1996), 191–200.

112 BIBLIOGRAPHY

[Van99] F. Vanderbeck, Computational study of a column generation algorithm for
bin packing and cutting stock problems, Mathematical Programming, Ser.
A 86 (1999), no. 3, 565–594.

[Van00a] , Exact algorithm for minimizing the number of setups in the one-
dimensional cutting stock problem, Operations Research 48 (2000), no. 6,
915–926.

[Van00b] , On Dantzig-Wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm, Operations Research
48 (2000), no. 1, 111–128.

[Van01] , A nested decomposition approach to a 3-stage 2-dimensional cut-
ting stock problem, Management Science 47 (2001), 864–879.

[VW96] F. Vanderbeck and L. A. Wolsey, An exact algorithm for IP column genera-
tion, Operations Research Letters 19 (1996), 151–159.

[Wan83] P. Y. Wang, Two algorithms for constrained two-dimensional cutting stock
problems, Oper. Res. 31 (1983), 573–586.

[WG96] G. Wäscher and T. Gau, Heuristics for the one-dimensional cutting stock
problem: A computational study, OR Spektrum 18 (1996), 131–144.

[Wol98] L. A. Wolsey, Integer programming, Wiley Interscience Series in Discrete
Mathematics and Optimization, John Wiley and Sons, Chichester, 1998.

[YBS99] H. H. Yanasse, J. C. Becceneri, and N. Y. Soma, Bounds for a problem of
sequencing patterns, Pesquisa Operacional 19 (1999), no. 1, 249–278.

[Yue91a] M. Yue, A simple proof of the inequality �������zí��?� Ã@Ã������s�s� �zí���� Ã ,� í , for the ����� bin-packing algorithm, Acta Math. App. Sinica 7 (1991),
321–331.

[Yue91b] B. J. Yuen, Heuristics for sequencing cutting patterns, European Journal of
Operational Research 55 (1991), 183–190.

[Zak02] E. Zak, A counterpart of one-dimensional stock cutting: skiving stock prob-
lem, Proceedings of the sixteenth triennial conference of the International
Federation of Operational Research Societies, 2002, p. 121.

[ZB03] C. Zelle and R. E. Burkard, A local search heuristic for the reel cutting prob-
lem in paper production, SFB Report No. 257, Institute of Mathematics B,
Technical University Graz, 2003.

List of Tables

2.1 Notations for test results . 44
2.2 1D-CSP: benchmark results . 46
2.3 The hard28 set of the bin-packing problem 48
2.4 2D-2CP: medium+large instances, effects of pseudo-costs, first

cut along the first dimension . 51
2.5 2D-2CP: medium instances, first cut along the first dimension . . . 52
2.6 2D-2CP: medium instances, first cut along the second dimension . 53
2.7 2D-2CP: large instances, first cut along the first dimension 54
2.8 2D-2CP: large instances, first cut along the second dimension . . . 54
2.9 2D-2CP: medium+large instances, pure approaches: pure branch-

ing, pure cuts, effects of rounding 56

3.1 Pure setup minimization: benchmark results 70
3.2 Setup minimization: tradeoff with material input 70
3.3 Average number of patterns in comparison to KOMBI 72
3.4 Comparison to the exact method of Vanderbeck 73
3.5 Average best solution values of SVC for different x 80
3.6 Average best solution values of SVC for different x : a refined search 80
3.7 Effects of randomization, different weighting schemes, and the

number of iterations in SVC: average material gap, % of the min-
imum . 81

3.8 Average/maximum material surplus (%) and the number of setups
for SVC with a limited number of open stacks 85

3.9 Combining setups and open stack minimization 87
3.10 Setups and open stacks minimization combined: further reduction

of open stacks by problem splitting for ���0�1¼)2 90

4.1 2D-2CP: medium+large classes, models M1, M2, and M4, first
cut along the first dimension . 103

4.2 2D-2CP: medium classes, models M1, M2, and M4, first cut along
the second dimension . 104

113

114 LIST OF TABLES

Appendix

A.1 Example of an Idea Leading to Branch-and-
Price

Sometimes it is possible to prove that an instance is non-IRUP in the following
simple way [Kar02]. Let the LP value be 4 � . Suppose we investigate the domain of
optimum LP solutions by setting $ s �02 for some basic variable $ s and resolving
the LP which gives the LP value 4 s . If � 4 � � ¡ � 4 s � then column

¬
must be in

an integer optimum if the instance is IRUP. Thus, we can reduce the problem:���'�§� z i s which gives a new LP value
s 4 � . Now, if � s 4 � [×� � $ � 4 � � then the

problem is non-IRUP.
This looks complicated at first sight but in fact it is branching on variable $ s :

the first subproblem has $ s B,2 and the second has $ s Hø� . If both subproblems
have a local lower bound greater than the root LP bound � 4 � � then it is also the
global lower bound.

To compute the local bound in each subproblem, new columns may be needed.
Thus, this scheme is branch-and-price.

A.2 Example of a Solution with 4 Open Stacks

Solutions of the first instance from class 4: the initial LP solution, a material-
minimum solution, an SVC solution with at most 4 open stacks (Section 3.2).

The problem: L=10000 m=50 Piece type numbering from 0
6928:11 6923:87 6753:4 6623:21 6241:21 6131:33 6104:65 6102:75
5958:25 5678:87 5653:18 5245:6 4813:20 4809:15 4741:79 4415:11
4396:45 4305:6 4286:2 4239:95 4141:69 3910:49 3834:10 3820:74
3760:66 3661:87 3658:28 3550:16 3512:18 3465:30 3408:83 3353:34
3275:66 2922:93 2887:89 2848:5 2599:99 2392:12 2195:57 2114:93
1755:67 1618:33 1594:80 1506:22 1090:29 1060:66 965:75 551:52
438:20 204:89

115

116 APPENDIX

File: m50l100l7000L10000b1b100f0r0-5 Instance No. 1 Wed Jul 2 10:03:51 2003
The initial LP solution: time=0.09 lpval=807.788 lpbnd=808

5.2: 36:3 38:1
8.12257: 30:2 39:1 45:1
9: 28:2 33:1
0.5: 24:2 43:1 46:1
13: 24:1 31:1 34:1
4.79221: 21:2 39:1
2.9: 19:2 43:1
29.2: 19:1 20:1 42:1
6: 11:1 14:1
6: 9:1 17:1
27: 9:1 19:1
25.6017: 7:1 23:1
31.5097: 7:1 34:1 46:1
41.1114: 6:1 39:1 40:1
5: 4:1 25:1
46.1031: 1:1 33:1
11: 0:1 33:1
1.9917: 13:1 25:1 43:1
3.908: 8:1 23:1 49:1
11.8754: 5:1 26:1 49:1
50.8: 14:1 25:1 42:1
20: 12:1 30:1 40:1
5: 1:1 35:1 49:1
52: 9:1 24:1 47:1
44.4903: 23:1 32:1 34:1

10: 8:1 22:1 49:1
18: 10:1 32:1 45:1
19: 21:1 29:1 36:1
8.0837: 6:1 25:1 49:1
45: 16:1 30:1 38:1
20: 1:1 36:1 48:1
2: 9:1 18:1
9.3246: 26:1 39:3
1.75486: 30:1 32:2
13.5927: 1:1 44:1 46:2
21: 3:1 31:1
21.1246: 5:1 25:1 49:1
33: 19:1 20:1 41:1
16: 4:1 27:1 49:1
4: 2:1 44:2 45:1
13.0083: 13:1 21:1 45:1 49:1
11.092: 8:1 33:1 45:1
2.30415: 1:1 43:2
15.8049: 6:1 33:1 46:1
22.2: 14:1 36:2
5.88856: 7:1 40:1 45:2
12: 7:1 37:1 43:1
11: 15:1 29:1 39:1
6.8: 20:1 26:1 38:1
3.70364: 21:2 44:2

A.2. EXAMPLE OF A SOLUTION WITH 4 OPEN STACKS 117

File: m50l100l7000L10000b1b100f0r0-5 Instance No. 1 Wed Jul 2 10:03:52 2003
LP0 Time: 0.09 IPTime: 0.09 The best integer solution (808):

5: 36:3 38:1
8: 30:2 39:1 45:1
9: 28:2 33:1
13: 24:1 31:1 34:1
5: 21:2 39:1
3: 19:2 43:1
29: 19:1 20:1 42:1
6: 11:1 14:1
6: 9:1 17:1
27: 9:1 19:1
26: 7:1 23:1
31: 7:1 34:1 46:1
41: 6:1 39:1 40:1
5: 4:1 25:1
46: 1:1 33:1
11: 0:1 33:1
2: 13:1 25:1 43:1
4: 8:1 23:1 49:1
12: 5:1 26:1 49:1
51: 14:1 25:1 42:1
20: 12:1 30:1 40:1
5: 1:1 35:1 49:1
52: 9:1 24:1 47:1
44: 23:1 32:1 34:1
10: 8:1 22:1 49:1

18: 10:1 32:1 45:1
19: 21:1 29:1 36:1
8: 6:1 25:1 49:1
45: 16:1 30:1 38:1
20: 1:1 36:1 48:1
2: 9:1 18:1
9: 26:1 39:3
2: 30:1 32:2
14: 1:1 44:1 46:2
21: 3:1 31:1
21: 5:1 25:1 49:1
33: 19:1 20:1 41:1
16: 4:1 27:1 49:1
4: 2:1 44:2 45:1
13: 13:1 21:1 45:1 49:1
11: 8:1 33:1 45:1
2: 1:1 43:2
16: 6:1 33:1 46:1
22: 14:1 36:2
6: 7:1 40:1 45:2
12: 7:1 37:1 43:1
11: 15:1 29:1 39:1
7: 20:1 26:1 38:1
3: 21:2 44:2
1: 24:1 36:1 39:1 43:1
1: 21:1 34:1 44:1

118 APPENDIX

SVC: max. open stacks 4.
Iter 146. Sol. found: (4 51[51] 811)

25: 8/1 29/1 47/1
5: 6/1 29/1 49/2
60: 6/1 25/1 49/1
19: 5/1 25/1 49/1
14: 5/1 23/1
60: 7/1 23/1
8: 4/1 25/1
13: 4/1 42/2 47/1
10: 7/1 22/1
4: 2/1 42/1 47/3
1: 9/1 42/2 47/2
6: 9/1 17/1
2: 9/1 18/1
78: 9/1 19/1
5: 7/1 24/1
10: 24/2 42/1 48/2
12: 24/2 37/1
17: 10/1 19/1
1: 10/1 42/2 44/1
16: 24/1 27/1 42/1 44/1
12: 16/2 44/1
1: 16/1 24/1 40/1
20: 3/1 40/1 42/1
1: 3/1 31/1
20: 16/1 31/1 38/1
11: 15/1 31/1 38/1

8: 30/1 38/3
1: 38/2 40/3
20: 12/1 30/1 40/1
15: 13/1 30/1 40/1
2: 30/1 31/1 41/2
19: 30/2 45/3
9: 26/2 41/1 45/1
10: 26/1 39/3
20: 20/1 39/2 41/1
44: 20/1 34/2
1: 34/1 40/4
5: 20/1 33/2
11: 0/1 33/1
72: 1/1 33/1
11: 1/1 43/2
23: 21/2 39/1
4: 1/1 35/1
1: 28/2 35/1
8: 28/2 46/3
3: 21/1 32/1 40/1 46/1
24: 14/1 32/1 46/2
6: 11/1 14/1
49: 14/1 36/2
13: 32/3
1: 36/1 40/1

Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde
vorgelegt.

I affirm that I have written this dissertation without any inadmissible help from
any third person and without recourse to any aids other than cited; all sources are
clearly referenced. The dissertation has never been submitted in this or similar
form before, neither in Germany nor in any foreign country.

Die vorgelegte Dissertation habe ich am Institut für Numerische Mathematik
der Technischen Universität Dresden unter der wissenschaftlichen Betreuung von
Herrn Dr.rer.nat. Guntram Scheithauer angefertigt.

I have written this dissertation at the Institute for Numerical Mathematics, Tech-
nical University Dresden, under the scientific supervision of Dr.rer.nat. Guntram
Scheithauer.

Gleb Belov

Dresden, den 8. September 2003

