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                                                                                           Summary

Among mammals, primates are exceptional for their large brain size relative to

body size.  Relative brain size, or encephalization, is particularly striking among

humans and their direct ancestors.  Since the human-chimp split 5 to 7 million years

ago, brain size has tripled in the human lineage (Wood & Collard 1999).  The focus of

this doctoral work is to investigate some of the cell biological mechanisms

responsible for this increase in relative brain size.  In particular, the processes that

regulate symmetric cell division (ultimately generating more progenitors), the

constraints on progenitor proliferation, and how neural progenitors have overcome

these constraints in the process of primate encephalization are the primary questions

of interest.  Both functionally analyses in the mouse model system and comparative

neurobiology of rodents and primates are used here to address these questions.

Using the mouse model system, the cell biological role of the Aspm (abnormal

spindle-like microcephaly associated) protein in regulating brain size was

investigated.  Specifically, Aspm function in symmetric, proliferative divisions of

neuroepithelial (NE) cells was analyzed.  It was found that Aspm expression in the

mouse neuroepithelium correlates in time and space with symmetric, proliferating

divisions.  The Aspm protein localizes to NE cell spindle poles during all phases of

mitosis, and is down-regulated in cells that undergo asymmetric (neurogenic) cell

divisions.  Aspm RNAi alters the division plane in NE cells, increasing the likelihood

of premature asymmetric division resulting in an increase in non-NE progeny.  At

least some of the non-NE progeny generated by Aspm RNAi migrate to the neuronal

layer and express neuronal markers.  Importantly, whatever the fate of the non-NE

progeny, their generation comes at the expense of the expansion of the proliferative

pool of NE progenitor cells.

These data have contributed to the generation of an hypothesis regarding

evolutionary changes in the regulation of spindle orientation in vertebrate and

mammalian neural progenitors and their impact on brain size.  Specifically, in

contrast to invertebrates that regulate the switch from symmetric to asymmetric

division through a rotation of the spindle (horizontal versus vertical cleavage),

asymmetric NE cell division in vertebrates is accomplished by only a slight deviation

in the cleavage plane away from the vertical, apical-basal axis.  The requirement for
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the precise alignment of the spindle along the apical-basal axis in symmetric cell

divisions may have contributed to selection on spindle “precision” proteins, thus

increasing the number of symmetric NE cell division, and contributing to brain size

increases during mammalian evolution.

Previous comparative neurobiological analyses have revealed an increase in

basally dividing NE cells in the brain regions of highest proliferation and in species

with the largest brains (Smart 1972a,b; Martinez-Cerdeno et al. 2006).  The cell

biological characteristics of these basally dividing cells are still largely unknown.  We

found that primate basal progenitors, similar to rodent apical progenitors, are Pax6+.

This suggests that primate basal progenitors may share other properties with rodent

apical progenitors, such as maintenance of apical contact.  Our previous finding that

artificial alteration of cleavage plane in NE cells affects their ability to continue

proliferating supports the hypothesis that the apical membrane and junctional

complexes are cell fate determinants (Huttner & Kosodo 2005).  As such, the need to

maintain apical membrane contact appears to be a constraint on proliferation (Smart

1972a,b; Smart et al. 2002).  Together, these data favor the hypothesis that primate

basally dividing cells maintain apical contact and are epithelial in nature.
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I. Introduction
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I                                                                    Brain Size and Evolution

Mammals are a class of vertebrates recognized for their elaborate social

behaviors and intelligence (Figure 1A).  Correspondingly, large brain size relative to

body size, or encephalization, has evolved in multiple mammalian lineages.  The

evolution of relatively large brains is particularly evident in the primate lineage,

especially among humans and their recent ancestors.  The human brain is roughly 3

times as large as the chimp brain, which is remarkable given the similar body size of

these two species (Figure 1B).  The evolutionary mechanisms responsible for this

dramatic increase in brain size have been the basis of scientific research for decades.

To fully understand the pattern and process of brain size evolution, it is useful to

consider this question in its historical context.  The mechanisms involved in the

development of the vertebrate central nervous system (CNS) have provided the

foundation for subsequent evolutionary change.  From this basis, the cell biological

processes regulating proliferation, as well as proliferative constraints, can be

interpreted in order to understand the evolutionary changes that have generated the

exceptional human brain.

Figure 1: Evolution and brain size in mammals.  A , Mammalian phylogeny showing the
evolutionary relationships of the mammalian orders.  Primates (green asterisk) and Rodentia (red
asterisk), the primary orders discussed in this thesis, are highlighted.  Image modified from Nishihara
et al. 2006. B,  Lateral views of adult human, chimp and mouse brains showing their relative size.
Green and red asterisks reflect the position of these species on the phylogeny presented in A.  Scale
bar, 5 cm.  Images modified from Hill & Walsh 2005.
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I – 1.                                         Development of the Vertebrate Brain

I – 1.1.  From neural plate to neural tube

The first recognizable manifestation of the brain in the developing vertebrate

embryo is the neural plate.  The neural plate is induced from the underlying

mesoderm, and progressively differentiates along a rostral to caudal gradient.

Initially, the neural plate consists of a monolayer of cuboidal neuroepithelial (NE)

cells exhibiting both apical-basal polarity and planar cell polarity (Strutt 2003; Wang

et al. 2006).  Apical-basal polarity in NE cells is manifested by apical and basolateral

membrane compartments with distinct lipid and protein content that are separated by

tight junctions (Aaku-Saraste et al. 1996).

At the onset of neurulation, the neural plate invaginates, creating the neural

groove.  The lateral margins of this groove extend outward into neural folds.  These

lateral neural folds initially grow convexly into a bulge that faces opposite to the

direction of neural tube closure.  Convexity is reversed, at least in part, by the

elongation of NE cells which reduces their apical area (Jacobson & Tan 1982). This

process lengthens and narrows NE cells, leading to convergent extension of the neural

plate, resulting in neural tube closure and internalization of the central nervous

system.  Signaling via the Sonic hedgehog and non-canonical Wnt pathways are

required for convergent extension and neural tube closure (Copp et al. 2003; Doudney

& Stainer 2005; Wang et al. 2006; Ybot-Gonzalez et al. 2007).

Fusion of the neural tube involves a change in the expression of cell adhesion

molecules (CAMs).  After neural induction, NE cells up-regulate N-cadherin and N-

CAM (Thiery et al. 1982).  This change in cell-adhesive properties mediates

homotypic interaction between NE cells and inhibits their fusion with the adjacent

mesodermal cells.  Neural tube closure is also associated with a down-regulation of

some of the epithelial characteristics of NE cells, such as the loss of functional tight

junctions (Aaku-Saraste et al. 1996).

Although NE cells of the neural plate are proliferating (undergoing symmetric

divisions that generate two progenitor cells), they are neither homogenous nor static.

At the one-somite stage, prior to neural tube closure, the three primary vesicles of the

mouse brain can already be distinguished (Figure 2).  From rostral to caudal, these are

the prosencephalon (the forebrain), the mesencephalon (midbrain), and the



10

rhombencephalon (the hindbrain).  The prosencephalon is later subdivided into two

structures, the diencephalon and the larger, more anterior telencephalon.  The

rhombencephalon also divides into the metencephalon (pons) and the mylencephalon

(medulla).  The boundaries between these vesicles are molecularly characterized by

the nested expression of the paired-box containing transcription factors Pax2/5 and

Pax6 (Walther & Gruss 1991; Rowitch & McMahon 1995; Schwarz et al. 1999).

Figure 2: The primary vesicles of the developing brain.  Scanning electron micrograph of an E8.5
mouse embryo, prior to completion of neural tube closure, and showing the two major regions of the
developing CNS, the brain region in blue and the spinal cord region in red.  The primary vesicles of the
developing brain can be clearly distinguished at this developmental time point.  Image modified from
www.med.unc.edu.

I – 1.2. From neural tube to neurogenesis

In the mouse, neural tube closure occurs in approximately 12 hours, beginning

at the 6-somite stage (~E8.25) in the cervical region at the boundary of the

prospective brain and spinal cord, and completing by the 19-somite stage (~E8.75;

Jacobson & Tam 1982).  After neural tube closure, the neuroepithelium appears as a

thin sheet of cells lining the ventricles of the prospective brain (Figure 3A).  The

apical surface of NE cells is exposed to the ventricles whereas their basal processes

adhere to the basement membrane.

As development proceeds, NE cells proliferate and elongate, progressively

forming a pseudo-stratified tissue with multiple cell nuclei occupying different

positions over the apical membrane (Figure 3B).  Pseudo-stratification of the

neuroepithelium is mediated by interkinetic nuclear migration (INM), a cell-cycle
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coordinated nuclear movement across the epithelium (Sidman & Rakic 1973).

Progenitor cell nuclei migrate from the apical surface to the basal pia in G1 of the cell

cycle, replicate their DNA in S-phase at the basal side of the neuroepithelium, and

finally return to the apical surface during G2 where they will undergo mitosis (Figure

3C).

Figure 3: The neuroepithelium and NE cells.  A, Scanning electron micrograph of a sagittal section
through an E9.5 mouse embryo showing the neuroepithelium and the lumen of the neural tube.  The
area highlighted by the rectangle is enlarged in B .  B , Scanning electron micrograph of the
neuroepithelium from the telencephalon of an E9.0 mouse embryo.  The upper, blue border of the
rectangle signifies the basal pole of the neuroepithelium and the lower, red border of the rectangle
marks the apical side.  The green asterisk identifies a mitotic cell at the apical surface. Images in A and
B are modified from www.med.unc.edu.  C, A schematic cartoon representing the interkinetic nuclear
migration of NE cells.  Cell nuclei, shown in light blue, migrate from the apical surface (red line) to the
basal pia (blue line) in G1 of the cell cycle, replicate their DNA in S-phase at the basal side of the
neuroepithelium, and finally return to the apical surface during G2 where they will undergo mitosis.
Image concept following from A. Attardo, unpublished.

NE cells experience three basic types of cell division.  A symmetric,

proliferative NE cell division generates two NE progenitors, resulting in amplification

of the progenitor pool (Figure 4A).  Shortly after neural tube closure, a subset of NE

cells begin to divide asymmetrically, generating one progenitor and one post-mitotic

neuron (Figure 4B).  Finally, neural progenitors are consumed in symmetric,

neurogenic divisions (Figure 4C).  The onset of neurogenesis begins in the hindbrain

and proceeds through the central nervous system (CNS) in a wave-like fashion. The

telencephalon, which occupies the most anterior position in the CNS, is the last region

to initiate neurogenesis, doing so around E10.5.
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Figure 4: Divisions of NE cells.  NE cells experience three basic types of cell division.  A, Symmetric,
proliferative NE cell division generates two NE progenitors, resulting in amplification of the progenitor
pool.  B, Asymmetric, differentiative divisions generate one progenitor and one post-mitotic neuron.
C, Symmetric, differentiative divisions generate two post-mitotic neurons.  Image concept following
from Götz & Huttner 2005.

I – 1.3. The vertebrate telencephalon

The telencephalon ultimately gives rise to the cerebral hemispheres, the region

of the brain that has experienced the greatest evolutionary increase in size and

complexity (Figure 5).  In mammals, the telencephalon can be subdivided into 4

structures: the isocortex (also referred to as neocortex), the hippocampus, and the

olfactory cortex, which constitute the dorsal telencephalon, and the striatum (ganglion

eminences) of the ventral telencephalon.  Amphibians have the simplest brain

organization of all vertebrates, with no large cell masses and little neuronal migration.

Reptilian brains are slightly more complex, having a three-layered cortex, but are still

relatively small.  The medial and dorsomedial regions of the reptilian brain are

homologous to the mammalian hippocampus, the lateral cortex corresponds to the

olfactory cortex, and the dorsal cortex is the homologue of the mammalian isocortex

(Aboitiz et al. 2002).
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Figure 5: Major regions of the cerebral cortex in terrestrial vertebrates.  A cladogram of the major
classes of terrestrial vertebrates, showing a schematic drawing of a cerebral hemisphere from a
representative species.  DCx: Dorsal cortex; DP: Dorsal pallium; DVR: Dorsal ventral ridge; HP:
Hippocampus; ICx: Isocortex; LCx: Lateral cortex; LP: Lateral pallium; MCx: Medial cortex; MP:
Medial pallium; OCx: Olfactory cortex; STR: striatum.  Image modified from Aboitiz et al. 2002.

It is the evolution and expansion of the isocortex, in particular, that is often

associated with the intelligence and social complexity of mammals.  The isocortex is

a derived feature of the mammalian brain that can be distinguished from the less

complex areas of the dorsal telencephalon (the hippocampus and olfactory cortex) as

well as the reptilian cortex by two critical features (Aboitiz et al. 2001).  First, the

mammalian isocortex is characterized by a six-layered architecture, which develops

from an inside-out neurogenic gradient.  In contrast, the reptilian dorsal cortex is a

three-layered structure that develops from an outside-in gradient.  Non-isocortical

regions of the mammalian dorsal telencephalon have an intermediate structure: the

hippocampus and dentate gyrus both have only three layers, but the hippocampus

develops inside-out whereas the dentate gyrus retains the ancestral outside-in

gradient.

A second unique feature of the mammalian isocortex is the tremendous

increase in surface area it has undergone in the mammalian lineage.  For example, the

surface area of the human cortex is 1000 fold greater than that of a mouse, but is only

3-5 times as thick (Rakic 1995).  This pattern of morphological change indicates that

brain size increases have resulted from a lateral, rather than radial, expansion of the

neuroepithelium.
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I – 2.                                Development of the Mammalian Isocortex

I – 2.1.  Origin and migration of cortical neurons

The mammalian isocortex is composed of two basic types of neurons,

inhibitory local circuit interneurons and excitatory pyramidal neurons (Anderson et al.

1999).  Inhibitory interneurons, also called GABAergic interneurons, form local

synaptic connections and release the neurotransmitter Gamma Amino Butirric Acid

(GABA) (Gupta et al. 2000).  Importantly, the vast majority of GABAergic

interneurons are not born in the isocortex, but migrate tangentially into the dorsal

telencephalon from their point of origin in the ganglionic eminences (Anderson et al.

1997; Letinic et al. 2002).  This migration is dependent upon the expression of the

homeodomain proteins Dlx-1 and Dlx-2 (Anderson et al. 1997).  In rodents,

interneurons comprise only 15-30% of all isocortical neurons (Parnavelas et al. 1977).

Pyramidal neurons, also often referred to as projection neurons or glutamergic

neurons, project their axons to distant targets and excite via the neurotransmitter

glutamate.  Pyramidal neurons are born locally in the isocortex and migrate basally to

the cortical plate (Rakic 1988; Tan et al. 1998).  Although all pyramidal neurons

migrate to the cortical plate along the processes of radial glia, they derive from

several distinct progenitors that occupy different germinal layers in the isocortex.

I – 2.2.  Isocortical germinal layers

The mammalian isocortex is composed of two germinal layers: the ventricular

zone (VZ), and the subventricular zone (SVZ), which lies basal to the VZ (Figure 6).

The VZ contains at least two molecularly distinct progenitors, NE cells and radial glia

(RG) cells.  Both NE and RG cells have apical and basal processes, however, NE cell

processes do not always contact the pia (Götz & Huttner 2005).  Progenitors of the

SVZ lack processes, and as a consequence, are rounded and randomly organized

(Miyata et al. 2004; Attardo et al. in prep.).  Until recently, progenitors of the SVZ

were thought to give rise to glia, not neurons (Altman & Bayer 1990; Takahashi et al.

1995).  Recent imaging and lineage analyses have revealed that SVZ progenitors can

also produce neurons (Haubensak et al. 2004; Miyata et al. 2004; Noctor et al. 2004).
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These basal progenitors, or intermediate progenitor cells (IPCs), typically divide only

once in a symmetric division that generates two neurons (Noctor et al. 2004; Attardo

et al. in prep.).

Figure 6:  Progenitors and germinal layers of the neuroepithelium.  The mammalian
neuroepithelium has two germinal layers, the ventricular zone (VZ) and the subventricular zone (SVZ).
NE cells (shown in yellow) and radial glia (RG) cells (shown in blue) have elongated processes and
divide at the apical surface.  Asymmetric NE or RG cell divisions can generate either one RG/NE
progenitor and one post-mitotic neuron (shown in red), or one RG/NE progenitor and one intermediate
progenitor (IPC) that will divide in the SVZ to generate two post-mitotic neurons.  Apical cell divisions
are only shown for the blue RG cell, but are similar for the yellow NE cell.  The red dashed line
represents the apical membrane, the solid blue line represents the basal pia, and the black dashed line
separates the germinal layers from the neuronal layer (NL).  Image concept following from A. Attardo,
unpublished.

Given these data, the contribution of IPCs to different cortical layers and their

general role in brain size and evolution has been a topic of much interest.  The

molecular identity of IPCs suggests that they contribute neurons predominantly to the

upper, supergranular layers of the cortical plate.  In particular, Svet1 and Cux2, which

have been shown to be reliable markers of upper layer neurons, are initially expressed

in the SVZ (Tarabykin et al. 2001; Zimmer et al. 2004).  Similarly, Englund and

colleagues (2005) have shown that Tbr2 is a molecular marker of IPCs.  Importantly,

their data suggests a distinct molecular identity for IPCs.  In contrast to apically

dividing NE cells expressing Pax6, basal neurogenic progenitors are characterized by

Tbr2 expression (Englund et al. 2005).  Since Tbr2 is also predominantly expressed in

the SVZ, this correlation has contributed to the hypothesis that IPCs generate upper

layer neurons.  It should be noted, however, that IPCs are present in the telencephalon
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from the onset of neurogenesis (Haubensak et al. 2004).  Additionally, Miyata and

colleagues (2004) concluded that IPCs were the major source of deep layer neurons,

and that their early generation may be important for the initial development of the

cortical plate.

I – 2.3.  Isocortical layering

The first neurons to settle in the isocortex form the loosely arranged preplate,

or primordial plexiform layer (PPL), a prominent and transient association of cells.

Subsequent waves of radially migrating neurons give rise to the cortical plate, which

will become the mature six-layered isocortex.  The preplate consists of Cajal-Retzius

(C-R) cells, GABAergic neurons, pioneer neurons, and predecessor neurons (Meyer et

al. 2000; Bystron et al. 2006).  Most preplate neurons are derived from the ventral

telencephalon and migrate tangentially into the isocortex.  Although these cell

populations largely disappear late in development due to apoptosis, they have

important roles during corticogenesis, particularly for radial migration.

The cortical plate forms within the preplate, splitting it into a superficial

marginal layer, which is the future layer 1, and a deeper subplate.  The cortical plate

forms in an inside-out gradient, with early born neurons occupying the deep layers,

and later born neurons migrating past them to settle in more superficial layers (Figure

7A).  The most predominant cells of the preplate are the C-R cells, which secrete

Reelin, an extracellular matrix protein that is believed to stop migrating neurons and

detach them from radial glia (D’Arcangelo et al. 1995).  In reeler mutant mice, in

which Reelin is not expressed, the preplate fails to split and neurons are arranged

inversely, in an outside-in gradient (Figure 7B; Caviness 1973; Rakic & Caviness

1995; Lambert de Rouvroit & Goffinet 1998).
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Figure 7: Cortical layering in normal, A, and reeler mutant, B, mice.  A, Wild-type mouse cortex
(+/+).  The first neurons to arrive in the isocortex form the marginal zone and sub-plate.  Subsequent
neurons born at the ventricular surface migrate basally along radial guides and settle in the cortical
plate in an inside-out gradient.  The birthdate of the neurons is represented by the number on their left.
Late born neurons migrate past earlier born neurons and settle in the upper layers of the cortex.  B,
Reeler mutant cortex (rl –/–).  Radially migrating neurons are disorganized, fail to split the sub-plate
and align inversely to wildtype, with late born neurons occupying the deep layers of the cortical plate.
CP: cortical plate; IZ: intermediate zone; MZ: marginal zone; RG: radial glia; SP: sub-plate; VZ:
ventricular zone.  Image modified from Aboitiz et al. 2001.

Reelin is necessary but not sufficient for the formation of the inside-outside

neurogenic gradient.  Reelin is secreted into the extracellular matrix by C-R neurons

of the MZ.  The response to the Reelin signal by migrating neurons in the cortical

plate requires at least one of two lipoprotein receptors, the VLDLR (very low density

lipoprotein receptor) or ApoER2 (apolipoprotein E receptor type-2) and the

intracellular adaptor, Dab1 (Disabled 1) (Trommsdorff et al. 1999; Howell et al. 1997;

Sheldon et al. 1997; Ware et al. 1997).  Reelin binds to the ligand binding domains of

VLDLR or ApoER2.  Subsequently, Dab1 binds to the cytoplasmic tails of the

lipoprotein receptors and initiates the signal transduction pathway (Trommsdorff et al.

1998, 1999).  VLDLR and ApoER2 are expressed by migrating neurons in the cortical

plate in a partially redundant manner, and are both capable of responding to the stop

signal conferred by Reelin, which tells neurons to detach from their radial guide and

prevents them from invading layer 1 (Trommsdorff et al. 1999).
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I – 3.                                      Evolution of the Mammalian Isocortex

I – 3.1.  Evolutionary increase in the SVZ and upper layer neurons

The SVZ is non-existent or rudimentary in lizards (Goffinet 1983), turtles

(Martinez-Cerdeno et al. 2006), and chick (Molnar et al. 2006).  In mammals, the size

of the SVZ correlates with brain size, a trend that is particularly evident in primates

(Figure 8, right panel).  The increase in SVZ cellular density correlates with

increasing thickness of the upper neuronal layers.  In rodents and primates, neuronal

layers V and VI are similar in thickness.  In contrast, layers II, III, and IV of the

primate cortex are obviously thicker than their rodent counterparts (Figure 8B,C).

These comparative neuroanatomical data suggest that the SVZ is a mammalian

specific germinal zone, and that SVZ expansion may have been an important

contributor to brain size evolution (Molnar et al. 2006).  Expansion of the SVZ in

primates is such that the SVZ can be sub-divided into the inner SVZ (ISVZ) and the

outer SVZ (OSVZ) (Figure 8D; Smart et al. 2002).

Figure 8:  The SVZ and upper layer neurons.  The relationship between SVZ density and cortical
thickness and complexity in a lizard (A), mouse (B), and monkey (C).  The images represent the
germinal layers during mid-neurogenesis (left panels) and the cortical layers of an adult brain (right
panels).  Note that the increasing thickness and diversity of the adult neuronal layers correlates with the
increasing density of the SVZ (yellow cells) during development.  D, The neuroepithelium of a
monkey at mid-neurogenesis, showing the SVZ sub-divided into the ISVZ and the OSVZ.  Image in A,
B, and C, modified from Molnar et al. 2006.  Image in D modified from Smart et al. 2002.
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I – 3.2.  Evolutionary increase in cortical interneurons

Recent experimental data from primate species reveal the increasing

importance of GABAergic interneurons to brain size and function. During primate

evolution, GABAergic interneurons have increased in number, complexity, and

proportion relative to projection neurons (Hendry et al. 1994; Jones 1993; Letinic et

al. 2002).  In contrast to rodents where 95% of GABAergic interneurons tangentially

migrate into the dorsal telencephalon, in humans, only 35% of GABAergic

interneurons are born in the GE and arrive to the cortical plate via radial migration

(Letinic et al. 2002).  This change in origin is reflected by a change molecular

identity.  Similar to rodents, GABAergic interneurons of the human isocortex express

DLX1/2, however, the subpopulation of interneurons that are born in the dorsal

telencephalon also express MASH1 (Letinic et al. 2002).

These data indicate the increasing importance of the radial migration of

neurons generated locally from the progenitors in the VZ/SVZ for the evolution of

brain size in primates, which is also reflected by changes in regulation of the Reelin

signaling pathway.  The inside-out neurogenic gradient is unique to mammals, but

Reelin expression is not.  Reelin positive neurons are present in all vertebrates

examined, irrespective of isocortex architecture and neuronal migration patterns

(Molnar et al. 2006).  Rather, the importance of Reelin in cortical evolution is

indicated by the increasing intensity of its expression with increasing cortical

complexity (Bar et al. 2000).  C-R cells increase in number and morphological

complexity during mammalian evolution (Molnar et al. 2006).  In particular, the

human marginal zone expresses an exceptionally high level of Reelin signal (Meyer et

al. 2000).

Despite the relative increase in number of radially migrating neurons in

primate corticogenesis, tangentially migrating neurons also play an important

evolutionary role.  In rodents, generation of layer 1 neurons occurs only during a

limited time early in neurogenesis.  In contrast, neurons of layer 1 are continuously

generated throughout primate corticogenesis (Zecevic & Rakic 2001; Rakic &

Zecevic 2003; Smart et al. 2002).  These neurons are born in the ventral telencephalon

and are likely immune to the Reelin signaling pathway, allowing them to integrate

into the superficial layer 1 (Zecevic & Rakic 2001).
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I – 3.3.  Evolutionary increase in surface area

The above data highlight critical morphological changes that have occurred

during the evolution of the mammalian isocortex.  In particular, changes in preplate

(layer 1) structure and function and the appearance of the inside-out neurogenic

gradient provided the basis for the evolution of cortical size.  However, these changes

largely reflect the organization of cortical neurons and the thickness of the cortical

plate.  So then, what are the changes that produced more cortical neurons and resulted

in the lateral expansion of the cortex?

Early in development, NE cells proliferate via symmetric cell divisions.  At

the onset of neurogenesis, NE cells generate neurons through asymmetric divisions

(see Figure 4).  Whereas symmetric divisions result in an exponential expansion of

progenitor cells, asymmetric divisions result in a linear increase in neuronal number

while maintaining the progenitor population.  Consequently, a delay in the timing of

the switch between symmetric, proliferative and asymmetric, differentiative divisions

will affect the final number of neurons generated (Figure 9).  Delayed differentiation,

as a mechanism to generate more progenitors, forms the basis of several prominent

hypotheses offered to explain lateral expansion, however, there are important

differences in the hypothesized processes responsible for this delay.

Figure 9:  The number of neurons generated within a given number of cell cycles depends on the
timing of the switch between symmetric and asymmetric cell divisions.  Initially, NE cell
progenitors increase exponentially via symmetric cell division (represented by the blue line).  At the
onset of neurogenesis, asymmetric divisions generate one progenitor and one neuron (represented by
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the red line), resulting in maintenance of the progenitor population and a linear increase in neurons.
An early switch from symmetric to asymmetric divisions generates fewer neurons than a late switch.
Image modified from W. B. Huttner, unpublished.

I – 4.                          Lateral Expansion: Hypotheses and Processes

I – 4.1.  The radial unit hypothesis and Smart’s two rules

In the early 1970’s, Ian Smart specifically addressed the question of how the

CNS generates more cells, and offered the following two rules: 1) In order to produce

the maximum number of nerve cells in a given number of generations differentiation

must be delayed, and 2) Given the pseudostratified nature of the ependymal layer,

proliferation without a corresponding increase in area of the central canal will lead to

a disproportion between cell number and canal surface such that cell production will

decrease unless the apical migration of mitotic figures characteristic of the layer is

discontinued and nuclei are free to go into mitosis away from the central canal surface

(Smart 1972a,b).

Echoing Smart’s first rule, Pasko Rakic considered neural proliferation to

occupy two phases.  The first is the proliferative phase where symmetric divisions

predominate, and the second reflects the period of asymmetric, differentiative

divisions (Rakic 1995).  His hypothesis is that the length of the first phase establishes

the number of radial units in the cortex (Figure 10A), and the length of phase two

determines column thickness (Figure 10B).  The emphasis here is on the number of

precursors, or founder cells, generated before the onset of neurogenesis, each of

which will generate one cortical column.

Rakic’s “radial unit” hypothesis and Smart’s two rules essentially agree on the

primary issue that differentiation must be delayed.  There are, however, two other

important points embedded in these hypotheses.  First, Rakic uses the term radial unit

to emphasis the highly organized, radial structure of the cortical plate.  He also

emphasizes the obvious, but not trivial, morphological feature of the cortex that it

develops as a sheet, rather than as a lump.  The radial unit hypothesis accounts for this

morphological feature.  The second point comes from Smart’s second rule, which

emphasizes his observation that the number of basal mitoses increases in areas of

higher cell production.  He explicitly notes the possibility that apical membrane space

may act as a constraint on cell proliferation.
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The suggestion that apical membrane space acts as a constraint on cell

proliferation has been elaborated on in two opposing hypotheses.  The first comes

from Smart himself, and is based on comparisons between rodent and primate

neuroepithelia.  Smart and colleagues (2002) noticed that the SVZ in primates, while

vastly increased compared to rodents, actually consists of two distinct cell types (see

Figure 8d).  The first, the ISVZ consists of randomly organized cells and appears

similar to the SVZ of rodents.  The second layer, the OSVZ, consists of more

organized, radially aligned cells, similar to those of the VZ.  Based on this

observation, Smart and colleagues (2002) have hypothesized that the OSVZ may

derive from progenitors of the VZ that no longer move their nucleus inter-kinetically.

Consequently, NE cells of the OSVZ may maintain their epithelial characteristics,

including radial alignment and contact to both the apical membrane and basal pia.  By

dividing basally, OSVZ nuclei avoid mitotic congestion at the apical surface, allowing

more progenitors to accumulate per apical membrane area  (Smart et al. 2002).

I – 4.2.  The intermediate progenitor hypothesis

More recently, Kriegstein and colleagues (2006) hypothesized that the

important evolutionary change behind cortical evolution was an increase in non-

epithelial progenitors.  It has been noted that approximately 10% of the IPCs rodents

do not divide only once in a symmetric, consumptive manner, but appear capable of

multiple cell divisions (Haubensak et al. 2004; Noctor et al. 2004).  In their

“intermediate progenitor hypothesis,” Kriegstein and colleagues propose that lateral

expansion occurs via an increase in symmetric, proliferative divisions of these non-

epithelial progenitors (Figure 10C).  In contrast to Smart and colleagues, Kriegstein

and colleagues argue that constraints imposed by apical membrane space are

overcome by an increase in non-epithelial neural progenitors.
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Figure 10:  The radial unit and intermediate progenitor hypotheses.  A,B  The radial unit
hypothesis.  A, Symmetric proliferative divisions of NE/RG cells lead to an exponential increase in
“radial units.”  B, Asymmetric neurogenic divisions generate neurons that migrate to the cortical plate
in an inside-out gradient.  The radial unit hypothesis predicts that the number of divisions shown in A
will determine the lateral expansion of the cortex whereas the number of divisions shown in panel B
determine the thickness of the cortex. C,  The intermediate progenitor hypothesis suggests that neurons
are produced predominantly from non-epithelial, basally dividing “intermediate progenitors.”  In this
model, evolutionary lateral expansion of the cortex results from an increase in these non-epithelial
precursors, largely driven by their self-amplification.  Numbers B, C represent the order of cell birth.
New-born neurons are presented in purple; Neurons that have already settled in the cortical plate are
presented in red.  Image concept following from Kriegstein et al. 2006.

I – 4.3.  Cellular processes implicated in lateral expansion

Although important evolutionary changes in cortical thickness and layering of

the isocortex have occurred in mammalian evolution, it is the lateral expansion of the

isocortex that is predominantly responsible for an increase in brain size.  Thus,

evolutionary expansion of the brain must be due, at least in part, to an increase in the

number of progenitors (generated by symmetric, proliferative cell divisions) in the
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developing neuroepithelium (Kornack and Rakic 1998).  Evidence in favor of this

hypothesis includes the development of a gyrencephalic rodent brain upon constituent

overexpression of beta-catenin, which induces cell cycle re-entry (Chenn and Walsh

2002).

Similarly, the duration of the cell cycle is an important factor involved in NE

cell proliferation.  The cell cycle of NE cells lengthens as development proceeds

(Takahashi et al. 1995).  Calegari and colleagues (2003, 2005) showed more

specifically that the cell cycle is longer in NE cells undergoing neurogenic division

than in proliferating NE cells.  These data suggest that a fast cell cycle is important to

maintain NE cell proliferation.  This observation was also reported by Lukaszewicz

and colleagues (2005), however, they also noted that the cell cycle in primate neural

progenitors is longer than that of rodent progenitors.  The authors propose that a

longer cell cycle in primates is an adaptive mechanism for fine-tuning differentiation

programs.  Consistent with this model, primate embryonic stem cells have a longer

cell cycle than their rodent counterparts (Fluckiger et al. 2006), suggesting that

lengthening of the cell cycle could be a general aspect of evolutionary change

between the Primate and Rodent orders.

Another important cellular factor implicated in cell proliferation is the

cleavage plane of neuronal progenitors.  Due to the importance of these mechanisms

to the results reported in this thesis, factors related to cleavage plane and spindle

orientation will be discussed in greater detail in the following section.

I – 5.   Regulation of Symmetric Versus Asymmetric Cell Division

Up to this point, I have distinguished symmetric from asymmetric cell division

based on the fate of the daughter cells.  However, the symmetry of division can also

be described in cell biological terms.  Much research has been dedicated to

understanding the cell biological factors that regulate differences in daughter cell fate.

Because of their accessibility to genetic manipulation, Drosophila have proven to be

an excellent model for this question.  Importantly, this system has contributed to our

understanding of how the symmetry (or asymmetry) of division is a consequence of

the symmetric (or asymmetric) segregation of cell fate determinants between daughter

cells.
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In contrast to vertebrates that internalize their CNS by invagination to form

the neural tube, Drosophila (and other invertebrates) internalize the CNS by

delamination. Drosophila neural progenitors, called neuroblasts (NBs), lose their

adherens junctions and delaminate from the overlying layer of neuroecotodermal

epithelial cells, also called epidermoblasts.  As NBs delaminate, they form a transient

apical stalk, which is lost once NBs begin asymmetric cell division.  Unlike

epidermoblasts that divide symmetrically to produce two daughter epidermoblasts,

NBs divide asymmetrically to generate another NB and a ganglion mother cell

(GMC).  The GMC will divide once more in a symmetric, consumptive manner and

give rise to either two neurons or two glia.

I – 5.1. Cell polarity in Drosophila neuroblasts

Despite losing their epithelial characteristics during delamination, NBs remain

polarized along the apical-basal axis.  The PAR/aPKC apical protein complex is

essential for regulating apical-basal polarity in both NBs and epidermoblasts.

Members of the PAR/aPKC complex include bazooka, atypical protein kinase C,

DaPKC, and DmPAR-6 (Müller and Wieschaus 1996; Wodarz et al. 2000; Petronczki

& Knoblich 2001; Wodarz & Huttner 2003).  This protein complex directs the

asymmetric localization of cell fate determinants in NBs, Prospero and Numb.

Prospero (Pros; Hirata et al. 1995; Knoblich et al. 1995; Spana & Doe 1995)

and Numb (Knoblich et al. 1995), as well as their adaptor proteins Miranda

(Ikeshima-Kataoka et al. 1997; Shen et al. 1997) and Partner of Numb (Pon; Lu et al.

1998), localize to the basal cortex of NBs, ensuring their exclusive inheritance by the

GMC where they promote differentiation.  Prospero is required for the transcription of

GMC specific genes and also suppresses cell cycle regulators, leading to cell cycle

exit (Doe et al. 1991).  The ability of the apical PAR/aPKC complex to regulate basal

localization of cell fate determinants is achieved by its interaction with the

cytoskeletal protein Lethal giant larvae (Lgl).  LGL directs Miranda binding to the

cell cortex.  At the apical cortex, aPKC inhibits Lgl by phosphorylation, thus

restricting Lgl activity to the basal pole of the cell, where it promotes association of

Miranda to the cell cortex (Betschinger et al. 2003).

Cortical polarity in NBs, is established by the Pins-Gαi protein complex (Cai

et al. 2003; Yu et al. 2003).  The apical localization of the Inscuteable (Insc), Partner
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of Inscuteable (Pins), and heterotrimeric G-proteins in NBs is also regulated by the

PAR/aPKC complex (Kraut et al. 1996; Kaltschmidt et al. 2000; Schaefer et al. 2000,

2001; Yu et al. 2000).  During NB delamination, Insc associates with the apical stalk

in a Bazooka dependent manner via binding of its PDZ domains (Schaefer et al.

2000).  Maintenance of Insc apical localization after delamination requires both

Bazooka and Pins (Yu et al. 2000).  Work in Drosophila suggests a biochemical

pathway whereby G-proteins recruit Pins to the apical cortex (Schaefer et al. 2000).

Pins, in turn, is required with Bazooka to localize to the apical stalk during NB

delamination.

I – 5.2. Regulation of spindle orientation in the Drosophila CNS

Asymmetric division of Drosophila NBs requires the coordination of spindle

alignment with the axis of polarity.  In contrast to epidermoblasts that divide

vertically along the planar axis, Drosophila NBs align their mitotic spindle along the

apical-basal axis, resulting in a horizontal cleavage plane (Figure 11).  This process

involves two major components: establishment of cortical polarity followed by

alignment of the spindle with the cortical polarity cues.

Figure 11: Spindle orientation in asymmetric divisions of Drosophila neuroblasts.  Drosophila
epidermoblasts divide along the planar axis with a cleavage plane vertical to the lumen.  In neuroblasts,
Insc (represented by the green line) directs a 90° rotation of the spindle, aligning it along the apical-
basal axis and generating a cleavage plane horizontal to the lumen.  Spindle alignment is represented
by the red dashed line.  The plane of cleavage will be perpendicular to spindle alignment.  Image
concept following from Buchman and Tsai 2006.
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At NB delamination during interphase, the Par/Insc pathway coordinates Pins-

Gαi localization with CNS tissue polarity (Cai et al. 2003).  Communication between

the cortically localized Pins-Gαi complex and spindle microtubules is mediated by

the NuMA-related Mushroom body defect (Mud) protein (Izumi et al. 2006; Siller et

al. 2006; Bowman et al. 2006).  Cortical localization of the Pins-Gαi complex in NBs

is mediated by Insc, which is necessary and sufficient for spindle rotation (Kraut et al.

1996; Kaltschmidt et al. 2000).  In Drosophila, Insc is expressed specifically in NBs,

and its ablation leads to randomization of spindle orientation (Kaltschmidt et al.

2000).  Moreover, ectopic expression of Insc in epidermoblasts which normally divide

vertically, leads to spindle rotation and horizontal cleavage (Kraut et al. 1996).

In the absence of the Par/Insc pathway, astral microtubules can also align the

Pins-Gαi complex into cortical crescents over one spindle pole during metaphase

(Siegrist & Doe 2005).  This “microtubule-to-cortex” signaling pathway can align the

spindle to cortical polarity cues (Pins-Gαi), however, in the absence of Insc, cortical

polarity is not properly aligned with apical-basal polarity.  As a consequence, the

cleavage plane in NBs is randomized.

I – 5.3.  Cell polarity in mammalian NE cells

Consistent with their epithelial nature, NE cells also exhibit apical-basal

polarity.  NE cells (including radial glia cells) contact both the apical and basal

membranes through extended processes.  The apical process forms an endfoot at the

ventricular lumen.  The apical and basolateral membranes have distinct protein and

lipid contents which are separated by junctional complexes.  The Drosophila

PAR/aPKC apical protein complex, which in mammals includes ZO-1, ASIP/PAR-

3/Bazooka, PAR-6, aPKC, and Cdc42, is functionally conserved and localizes to the

junctions.  Integral components of the apical plasma membrane include the

transmembrane protein Prominin-1 (Weigmann et al. 1997).  The apical membrane of

NE cells also contains protrusions such as microvilli and a primary cilium, which is

anchored from the apically localized centrosome (Chenn et al. 1998).

One important difference between Drosophila and mammalian (vertebrate)

neural development is that mammalian NE progenitors do not delaminate from the

epithelium at the onset of differentiation.  Thus, whereas Drosophila progenitors and
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stem cells are segregated into stratified layers, vertebrate progenitors undergoing

asymmetric, neurogenic division are junctionally connected to proliferating,

symmetrically dividing progenitors within a single, pseudo-stratified cell layer.

I – 5.4.  Regulation of spindle orientation in the mammalian CNS

The eloquence of the Drosophila model has tempted many researchers to

investigate if spindle orientation and daughter cell fate are similarly correlated in the

mammalian neuroepithelium.  However, the vast majority of NE cells in mammals

divide with a vertical cleavage plane (i.e., perpendicular to the ventricular surface)

irrespective of daughter cell fate (Smart 1972,1973; Zamenhof 1976; Silva 2002;

Kosodo 2004; Stricker et al. 2006), suggesting that cleavage plane itself is not

sufficient to predict cell fate (Figure 12).  Instead, it was recently discovered that

vertical cleavage planes can result in both symmetric and asymmetric cell division

(Kosodo et al. 2004).

This was achieved by evaluating the apical plasma membrane distribution in
proliferating NE cell divisions versus neuron-generating cell divisions.  Neurogenic

cell divisions were distinguished from proliferating divisions by the presence of
Tis21, an anti-proliferative gene that is specifically expressed in NE cells that are

undergoing neurogenic divisions (Iacopetti et al. 1999).  Utilizing a transgenic mouse

in which GFP is expressed under the control of the Tis21 promoter, cells that are
undergoing symmetric, proliferative divisions can be distinguished from those that are

undergoing asymmetric, neurogenic divisions because the former are GFP–negative

while the latter are GFP–positive (Haubensak et al. 2004).  It was shown that the
cleavage plane of proliferating NE cells bisects the apical membrane, symmetrically

distributing it to both daughter cells (Figure 12A).  In contrast, the cleavage plane of
neuron-generating cells bypasses the apical membrane, resulting in its asymmetric

distribution to only one of the daughter cells (Figure 12B; Kosodo et al. 2004).
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Figure 12: Spindle orientation in mammalian NE cell divisions. In mammals, the spindle of both
(A) symmetrically dividing (Tis21-GFP negative) and (B) asymmetrically dividing  (Tis21-GFP
positive) NE cells is vertically aligned along the planar axis.  In these cells, the switch from symmetric,
proliferative to asymmetric, neurogenic is accompanied by only a slight deviation of the cleavage plane
from the apical-basal orientation, but nonetheless results in the apical membrane (shown in red) and
junctional complexes (brown boxes) being bypassed, as in B (rather than bisected, as in A) by the
cleavage furrow.  Spindle alignment is represented by the red dashed line.  The plane of cleavage will
be perpendicular to spindle alignment.  Image modified from Y. Kosodo, unpublished.

As a result of this finding, a refined model of neurogenesis was proposed in

which inheritance of the apical plasma membrane maintains a cell in the proliferative

state while loss of the apical plasma membrane contributes to cell differentiation

(Huttner &Kosodo 2005).  Nonetheless, despite the absence of spindle rotation in

mammals, spindle alignment is controlled at the cell cortex in a similar manner to

Drosophila.  NuMA is recruited to the cell cortex during mitosis via a cell cycle

dependent interaction with LGN and Gαi proteins, which are homologous to the Pins-

Gαi complex in Drosophila (Du & Macara 2004).   A major question, then, is what

regulates asymmetric division in mammalian NE cells?  Further, how might this

regulation be subject to evolutionary change?  The recent discovery that some

primary microcephaly genes code for proteins that localize to the mitotic spindle, has

led to the hypothesis that these genes regulate brain size by controlling some aspect of

NE cell division (Bond et al 2002; Woods et al. 2005).  Further investigation of the

cell biological function these candidates may therefore provide insight into the

relationship between asymmetric division and brain size in mammals.
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I – 6.    The abnormal spindle-like microcephaly associated (Aspm) Protein

I – 6.1.  Primary microcephaly

Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental

disorder characterized by a small but architecturally normal brain (Woods 2004).

Brain size of affected patients is at least 4 standard deviations below the age and sex

adjusted mean (Woods et al. 2005).  The greatest reduction in size occurs in the

cerebral cortex, the region of the brain associated with cognitive function (Figure 13;

Bond et al. 2002).  Correspondingly, microcephalic individuals suffer from mental

retardation, but lack any other abnormalities.  Primary microcephaly is distinguished

from secondary microcephaly in that the brain is smaller at birth.  This is likely due to

a deficit in neuronal production, since the vast majority of neurons are produced in the

first 21 weeks of gestation (Sidman & Rakic 1973; O’Rahilly & Müller 1999).

Although the microcephalic brain is smaller, it appears to have normal cortical

thickness and morphology, also suggestive of a reduction in neural progenitors

(Mochida and Walsh 2001). In contrast, individuals with secondary microcephaly are

born with normal brain size, but develop microcephaly progressively from a lack of

dendritic growth post-natally (Woods 2004).

There are at least 7 MCPH loci, of which 4 genes have been identified:

Microcephalin (MCPH1), CDK5RAP2  (MCPH3; cyclin-dependent kinase 5

regulatory subunit-associated protein 2), ASPM (MCPH5; abnormal spindle-like

microcephaly associated), and CENPJ (MCPH6; centromere protein J) (see Table 1).

The molecular function in neurogenesis is unknown for all four of these genes, but

some functional inferences can be made.  The protein products of the latter three

genes have been shown to localize to the centrosome during mitosis, suggesting that

they may be involved in cell division (Bond et al. 2005; Kouprina et al. 2005; Zhong

et al. 2005).  Microcephalin has been proposed to be involved in cell cycle regulation

through its BRCT domains (Evans et al. 2004a).  Irrespective of the details of their

molecular function, at the tissue level, microcephaly genes appear to regulate brain

size, specifically lateral expansion of the brain.
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MCPH loci Gene Subcellular

localization

Predicted

functions

References

MCPH 1 Microcephalin unknown DNA damage

response, Cell cycle

control, Telomerase

regulation

Jackson et al. 2002

Evans et al. 2004

Evans et al. 2005

MCPH 2 unidentified unknown Woods 2004

MCPH 3 CDK5RAP2 Spindle poles Enhance centrosomal

microtubule

production

Bond et al. 2005

MCPH 4 unidentified unknown Woods 2004

MCPH 5 ASPM Spindle poles

Central spindle

Microtubule bundling

and cross-linking

Bond et al. 2002

Kouprina et al. 2005

Zhong et al. 2005

MCPH 6 CENPJ Spindle poles Regulation of

microtubule

nucleation and

depolymerization

Bond et al. 2005

Basto et al. 2006

unassigned unidentified unknown Woods 2004

Table 1: Microcephaly genes.  The identified microcephaly loci are listed along with the genes,
subcellular localization and predicted functions, where known.  Table concept follows from Woods
2004.

I – 6.2.  ASPM mutations

Mutations in the ASPM (abnormal spindle-like microcephaly associated) gene

are the most common cause of primary microcephaly in humans.  ASPM is a large

protein consisting of 28 exons and 3477 amino acids (3123 in mouse) with a N-

terminal microtubule binding domain, two calponin-homology domains, multiple

isoleucine-glutamine (IQ) calmodulin-binding repeats, and a C-terminal domain of

unknown function (Figure 13A).  To date, there are 30 known ASPM mutations,

occurring throughout the length of the gene (Roberts et al. 2002; Bond et al 2003;

Kumar et al.2004; Pichon et al 2004; Gul et al. 2006).  There is no correlation

between the location of the mutation and degree of microcephaly (Bond et al. 2003),

suggesting that all the mutations result in a functional null protein.  It has been

hypothesized that non-sense mediated decay is the mechanism behind the phenotype

(Bond et al. 2003; Woods et al, 2005).  However, western blots of a cell line produced
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from a patient with a frameshift mutation in ASPM revealed that a truncated protein

was produced (Kouprina et al. 2005).

Further, at least one non-truncating pathogenic mutation has been identified, a

missense mutation occurring within the IQ repeat region (Gul et al. 2006).  This

mutation occurs within a region of the IQ repeats that is conserved between rodents

and primates and is predicted to be important for forming higher-order trimer repeats

(HOR) that may be essential for calmodulin binding and ASPM function (Kouprina et

al 2005; Gul et al. 2006).  Taken together, these results indicate that multiple domains

(at least some IQ repeats and the C-terminus) are necessary for the function of ASPM

in the developing brain.

Figure 13:  ASPM: Structure and phenotype. A, The ASPM protein has 28 exons and 4 major
domains: an N-terminal microtubule binding domain, a calponin homology domain, multiple IQ
calmodulin binding repeats, and a C-terminal domain of unknown function.  Image modified from
Ponting and Jackson 2005.  B, Human patients with homozygous mutations in ASPM have brains >3
standard deviations below the age and sex average.  The left panels show an 11 year-old mutant
individual.  The brain of a normal 13 year-old individual is shown in the right panels.  Image taken
from Bond et al. 2002.
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I – 6.3.  Aspm/ASPM expression in development, adult tissues, and cancer

The expression of Aspm  in mammals was first reported by in situ

hybridization on embryonic mouse tissue.  In the developing mouse brain, Aspm

expression was observed in the VZ of the neuroepithelium during mid-neurogenesis

(E14, E16) and shown to be down-regulated post-natally (Bond et al. 2002).  Luers et

al. (2002) reported a more broad expression both temporally and spatially, with Aspm

(also known as Calmbp1) expression observed in the VZ at E11.5 and later in the

SVZ and cortical plate at E16.5.  These differences may be attributed to the choice of

in situ probes: Bond and colleagues hybridized using an N-terminal probe whereas

Luers and colleagues generated a C-terminal probe corresponding to the cDNA of

Calmbp1 (later identified as homologous to the C-terminal region of Aspm).

Expression of Aspm was also found in the fetal liver and spleen, but was absent in

adult tissues with the exception of the testis (Luers et al. 2002).

Aspm expression in the developing mouse embryo was re-evaluated by

Kouprina and colleagues (2005), confirming that Aspm is not a brain specific gene.

Expression detected by in situ hybridization was found in the embryonic liver, heart,

lungs, and kidney.  A similar pattern was observed for ASPM expression in human

fetal tissues.  RT-PCR from cDNA libraries of human fetal tissue revealed ASPM

expression in fetal brain, bladder, colon, heart, liver, lungs, muscle, skin, spleen, and

stomach (Kouprina et al. 2005).  This near ubiquitous expression is present, but

reduced, in all examined adult human tissues except for the brain.  That is, ASPM

expression is maintained in those tissues that continue to proliferate into adulthood.

Additionally, ASPM is up-regulated in multiple types of cancer cells (Kouprina et al.

2005; Zhong et al. 2005), including glioblastoma, a tumor of the brain (Horvath et al.

2006).  Taken together, ASPM expression correlates with cell proliferation: it is high

in dividing cells and is low or absent in post-mitotic cells.

I – 6.4. Adaptive evolution of ASPM

Positive selection indicates increased organismal fitness resulting from

modifications in a DNA segment (Kreitman 2000; Zhang et al. 2002).  A common

method for identifying positive selection is to compare the ratio of the rate of

nonsynonymous nucleotide substitutions (Ka) to synonymous substitutions (Ks).
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Since most nonsynonymous mutations are deleterious, Ka/ Ks in most functional

genes is less than 1.  When advantageous nonsynonymous mutations are fixed by

positive selection, the value of this ratio increases (Kreitman 2000).  ASPM sequences

in humans and several other primate and mammal species have been evaluated for

signs of evolutionary change by several groups.  In all cases, strong evidence for

positive selection acting on ASPM within the human lineage has been found (Zhang

2003; Evans et al. 2004b; Kouprina et al. 2004).  In ape lineages leading to humans,

the Ka/ Ks ratio of ASPM is nearly one, whereas in other lineages (e.g., monkeys,

carnivores, artiodactyls, rodents) the ratios are less than 0.5.  This data suggests that

the increased Ka/ Ks ratio represents positive selection on ASPM that is specific to the

ape lineages (Evans et al. 2004).

More compelling evidence indicates positive selection on ASPM  in the

terminal human lineage (i.e. since the human-chimp split) and comes from the

McDonald-Kreitman test.  If a gene is evolving neutrally or under constant purifying

selection, the Ka/ Ks ratio between species should be similar to the Ka/ Ks ratio within

a species (McDonald & Kreitman 1991).  Evans and colleagues (2004b) sequenced 40

humans representing a world-wide distribution to determine the polymorphism

distribution of ASPM among modern human populations. They found that the number

of nonsynonymous polymorphisms within the human species is significantly less than

the number of nonsynonymous substitutions occurring between humans and their last

common ancestor with chimpanzees (Evans et al. 2004b).  Interestingly,

nonsynonymous changes within the ASPM protein are variable; most substitutions

occur within the N-terminal microtubule binding domain and the IQ repeat region,

while the calponin-homology domain and the C-terminal region are more conserved

(Evans et al. 2004b; Kouprina et al. 2004).

Evidence for positive selection on ASPM exists at two branches in the primate

lineage: along the terminal human linage after the human-chimp split, and at the base

of the hominoid lineage.  There is disagreement, however, about whether this occurs

after the great apes split from the lesser apes (Evans et al. 2004b) or after the African

apes split from orangutans (Kouprina et al. 2004).  Nonetheless, the consensus is that

strong positive selection on the ASPM locus correlates with brain size increases in the

primate lineage.
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I – 6.5.  Asp, the Drosophila ortholog of ASPM

Because ASPM mutations result in microcephaly, it can be inferred that ASPM

regulates brain size.  However, the molecular and cellular mechanism of this

regulation is unknown.  The function of ASPM in mammalian neurogenesis is largely

inferred from its Drosophila ortholog, Asp, which exerts a critical role at spindle

poles during both mitosis and meiosis (Ripoll et al. 1985; Casal et al. 1990; Avides &

Glover 1999).  Asp is a 220-kDa microtubule-associated protein (MAP) that localizes

to the polar regions of the mitotic spindle in Drosophila embryos and larval NBs

(Saunders et al. 1997; Avides & Glover 1999).

Biochemical studies have shown that the N-terminal region of Asp has a

strong affinity for microtubules. The Asp N-terminal region binds microtubules with

very high affinity and is not removed at salt concentrations that disassociate most

MAPs (Saunders et al. 1997).  The central region (containing the calponin homology,

actin-binding domain) binds microtubules poorly.  The microtubule binding ability of

the C-terminal domain is unknown because it is unstable in bacterial and insect

expression systems.  Additionally, the N-terminal domain of Asp is an excellent

substrate for phosphorylation by Polo kinase, the central region is a poor substrate,

and it is unknown for the C-terminal region (Avides el at. 2001).

The mitotic function of asp has been predominantly studied in Drosophila

NBs.  Asp associates with the spindle poles during all phases of mitosis, but during

late anaphase and telophase, Asp is also found on the central spindle (Saunders et al.

1997; Wakefield et al. 2001).  This localization may be mediated dynein-dynactin

since Asp is partially mis-localized when dynein-dynactin is depleted (Morales-Mulia

& Scholey 2005).  It has been suggested that Asp organizes the γ–tubulin ring

complex within the PCM to form a microtubule nucleating center, rather than directly

nucleating microtubules itself (Avides & Glover 1999).

Further investigation of Asp in other mutant backgrounds indicates that Asp is

required for the aggregation of microtubules into focused spindle poles, independently

of its microtubule nucleating activity (Wakefield et al. 2001).  Dividing asp mutant

NBs frequently arrest in metaphase, likely due to the activation of a spindle integrity

checkpoint (Gonzalez et al. 1990; Avides & Glover 1999).  Most arrested asp NBs

have bipolar spindles with a normal chromosome complement, but with broad,

unfocused microtubules at the spindle poles (Gonzalez et al. 1990; Avides & Glover
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1999).  The lack of a stringent spindle checkpoint in meiosis allows asp mutant

spermatids to proceed through mitosis.  As a consequence, asp mutants exhibit a high

incidence of non-disjunction, resulting in aneuploidy and nuclei of variable size in

spermatids (Casal et al. 1990).  This is caused, at least in part, by the dissociation of

centrosomes from the chromatids during meiosis (Gonzalez et al. 1990).  In the

absence of Asp, “free” centrosomes are observed in both mitotic NBs and meiotic

spermatocytes (Gonzalez et al. 1990; Wakefield et al. 2001).

Taken together, these data indicate that Asp functions specifically during cell

division to focus both the spindle poles and the central spindle.  Asp appears to

mediate spindle pole integrity by bundling microtubule minus ends and operating as a

link between the microtubule minus ends at the centrosome.  In the absence of Asp,

NB cell division is arrested, inhibiting proliferation.

I – 6.6.  Aspm function in mammals

Similar to Asp, ASPM in non-neural human cells has been shown to localize

to spindle poles, suggesting that it may be involved in some aspect of cell division in

mammalian cells (Kouprina et al. 2005; Zhong et al. 2005).  Bioinformatics and

structural modeling predict that ASPM directly interacts with the cytoskeleton and

can form a rod-like conformation upon interaction and binding with calmodulin (Cox

et al. 2006).  The N-terminal domain of ASPM has also been identified as a member

of the ASH (ASPM, SPD-2, Hydin) family of proteins (Pointing 2006).  The ASH

domain is predicted to have a fundamental role in cilia formation.  Pointing (2006)

suggests that the essential function of ASPM in the developing neuroepithelium may

not be during mitosis, but rather be related to cilia.  In this regard, he postulates that

ASPM may have a ciliary role either in neuronal migration or in directing movement

of cerebral spinal fluid (Pointing 2006).

The only data about Aspm function in mammals comes from a study on the

calmodulin binding protein, Sha1 (Craig & Norbury 1998).  Sha1 was isolated from a

murine cDNA library and shown to disrupt normal spindle function when over-

expressed in yeast, a phenotype that was suppressed by simultaneous over-expression

of calmodulin.  It is now known that Sha1 is a partial Aspm cDNA corresponding to

the C-terminal region of the gene (Bond et al. 2002).  Still, the study by Craig and

Norbury (1998) is important because it indicates a potential role for calmodulin in the
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regulation of Aspm function.  This finding is particularly relevant since ASPM has

the highest number of the IQ repeats of any known calmodulin binding protein

(Kouprina et al. 2005).

To date, there is not much known about Aspm function in mammals or how it

might regulate brain size.  From what is known about Asp and the limited information

available from mammals suggest that Aspm may control an aspect of mitotic spindle

function that is crucial for maintaining symmetric, proliferative divisions of the highly

elongated, polarized NE cells, thereby allowing the lateral expansion of the neocortex.

In the present study, we have investigated a possible role of Aspm in regulating

cleavage plane orientation and symmetric, proliferative versus asymmetric,

neurogenic divisions of NE cells in the mouse embryonic telencephalon.
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I – 7.                                                                         Aims of this Study

Given the importance of symmetric cell division to the lateral growth of the

isocortex, we are interested in cell biological mechanisms involved in the switch from

symmetric, proliferative NE cell divisions to asymmetric, differentiative NE cell

divisions.  In particular, we aim to test the hypothesis that maintenance of epithelial

characteristics, including apical membrane attachment, is important for lateral

expansion of the isocortex.  We have chosen two approaches to for this investigation:

a candidate approach and a comparative analysis.

I – 7.1.  Candidate analysis: Aspm

In the developing neuroepithelium, the primary progenitor cells of the central

nervous system are the neuroepithelial (NE) cells, which characteristically exhibit

apical-basal polarity. A key feature of proliferative divisions of NE cells is that

cleavage occurs along their apical-basal axis, which ensures the symmetric

distribution of polarized cell fate determinants to the daughter cells. The switch of NE

cells from symmetric, proliferative to asymmetric, neurogenic divisions is

accompanied by a deviation of the cleavage plane from the apical-basal orientation.

This deviation is often only relatively small, but nonetheless results in the apical

plasma membrane of NE cells being bypassed by the cleavage furrow, and hence

being inherited by only one of the daughter cells.  Our hypothesis is that some factors

must exist to tightly maintain spindle position in symmetrically dividing cells and that

these factors are down-regulated at the onset of neurogenesis, allowing the spindle to

wobble and thus increasing the likelihood of asymmetric cell division.  We are

interested in the role of the Aspm (abnormal spindle-like microcephaly associated)

protein in controlling this process.

Aspm was chosen as a candidate for analysis because human patients with

homozygous mutations in ASPM have brains severely reduced in size, but with

apparently normal cortical patterning and organization (Bond et al. 2002).

Additionally, ASPM has shown accelerated evolution within the primate lineage

(Bond et al. 2003; Evans et al. 2004; Kumar et al. 2004; Kouprina et al. 2005).

Finally, the Drosophila ortholog of Aspm, Asp, is essential for normal cell division
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(Avides & Glover 1999).  Following from these data, we generated two hypotheses

about the role of Aspm in NE cell division:

1. Aspm stabilizes mitotic spindle position, promoting symmetric,

proliferative cell division by ensuring inheritance of apical membrane by

both daughter cells.

2. Loss of Aspm causes premature asymmetric division, increasing the

generation of non-NE cells, and thereby inhibiting expansion of the

proliferating cell population.

Predictions following from these two hypotheses about the function of Aspm

will be evaluated in the mouse model system.  Subsequently, the evolutionary

implications of the data will be discussed.

I – 7.1.  Comparative analysis: Primate and rodent progenitors

The increase in basal mitotic cells during developmental and evolutionary

time has been widely noted.  This trend is exceptional in primates where the majority

of neurons are generated from basally dividing progenitors (Lukazewicz et al. 2005).

In rodents, basal progenitors can be distinguished from apical progenitors in at least

two ways.  First, basal progenitors in rodents lack apical membrane (Miyata et al.

2004).  Second, basal progenitors express the transcription factor Tbr2, in contrast to

apical progenitors that express Pax6 (Englund et al. 2005).  In primates, the

characteristics of basally dividing cells are largely unknown.  In particular, the

epithelial nature of primate basal progenitors is debated, and has become central to

evolutionary hypotheses (c.f., Kriegstein et al. 2006). Therefore, we aim to evaluate

the epithelial characteristics of primate basal progenitors.  We will test the following

two questions:

1. Do primate basal progenitors express Tbr2 or Pax6?

2. Do primate basal progenitors maintain apical contact?

These two questions will be evaluated in fixed tissue specimens from monkey

and human developing neuroepithelia.
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II. Results
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II – 1.                                                         Candidate Analysis: Aspm

II – 1.1.  Expression and localization of Aspm in the mouse neuroepithelium

Previous reports on Aspm expression, as revealed by in situ hybridization in

the developing mouse brain, gave somewhat inconsistent results.  Luers and

colleagues (2002) found expression of Aspm in the VZ of the telencephalon from the

onset of neurogenesis (E11.5) and continuing until late neurogenesis (E16.5), in both

the VZ and SVZ.  Interestingly, they also described Aspm expression in the neuronal

layer.  Bond and colleagues (2002) looked at mid- (E14) and late- (E16) neurogenic

embryos, as well as post-natal brains and found that Aspm expression was limited to

the germinal layers and decreased over time.  To resolve the issue of whether or not

Aspm expression was specific to proliferating NE cells, or also expressed by post-

mitotic cells, we preformed in situ hybridization on the mouse forebrain from E8.5

(prior to the onset of neurogenesis) to E17.5 (when neurogenesis is largely complete).

In situ hybridization (Figure 14) confirmed previous observations that Aspm

mRNA is expressed in the ventricular zone (VZ) of the murine embryonic forebrain.

Interestingly, Aspm expression in NE cells was highest when these cells underwent

symmetric, proliferative divisions and exhibited a highly (rather than only

moderately) elongated shape. Specifically, Aspm  expression (i) was still

comparatively rare at early developmental stages (E8.5), when NE cells are not yet

highly elongated; (ii) was detected in most, if not all, VZ cells around the onset of

neurogenesis (E9.5-E11.5), when symmetric, proliferative divisions of NE cells

prevail; and (iii) declined progressively at later stages of neurogenesis (E13.5-E17.5),

when an increasing proportion of VZ cells have switched to asymmetric, neurogenic

divisions.  We did not observe Aspm expression in the neuronal layer, suggesting that

it is specific to proliferating cells.  Given these observations, we decided to explore

the possibility that Aspm may function specifically in the symmetric, proliferative

divisions of NE cells.
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Figure 14: Aspm expression in the embryonic mouse brain is highest in the VZ and when
symmetric, proliferative NE cell divisions prevail.  In situ hybridization for Aspm mRNA in the
dorsal telencephalon at the indicated developmental stages. The apical surface of the VZ is down. Scale
bar in right panel, 100 µm.  Image modified from supplemental data, Fish et al. 2006.

In order to determine the sub-cellular localization of Aspm in NE cells, an

antibody raised against a recombinantly expressed fragment of mouse Aspm

(Aspm150-263), corresponding to exon three of this gene, was generated (see methods

for details).  The affinity-purified antibody was tested by Western blot analysis of two

different cell extracts.  First, Aspm exon 3 tagged with GFP was over-expressed in

Cos7 cells.  The fusion construct was detected on western blots of Cos7 cell extracts

using antibodies directed against either GFP or Aspm (Figure 15A).  Both antibodies

detected a similar band of approximately 78kDa, the predicted size of the fusion

construct.  Second, we checked for the presence of the full-length protein in protein

extracts from the heads of E12.5 mice (Figure 15B).  Surprisingly, multiple bands

from the in vivo extract were found.  A band larger than 250kDa, likely corresponding

to the full-length protein predicted to be 364kDa was identified.  The other bands are

likely splice variants as human non-neuronal cells express several, the largest

predicted to be 218 kDa with multiple variants between 150 and 110 kDa (Kouprina

et al. 2005).
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Figure 15: Western blot of Aspm antibody.  A, Aspm exon 3 was over-expressed as a GFP fusion
protein in Cos7 cells.  Protein extracts were run on 12% acrylamide gels and blotted using antibodies
generated against Aspm exon 3 (right lane) and against GFP (left lane).  Both antibodies recognize a
band between 98 and 64 kDa which is consistent with the expected size of the fusion protein (78kDa).
A, Protein extracts from E12.5 mouse heads were run on a 4% acrylamide gel, followed by western
blot analysis.  Red arrows point to four bands recognized by our Aspm antibody.  The largest band
(~364 kDa) is likely the full-length protein.  See text for details.

Immunostaining of mitotic NE cells in the E12.5 mouse telencephalon showed

that Aspm was concentrated at the poles of the mitotic spindle (Figure 16).

Specifically, Aspm immunoreactivity was clustered in the immediate vicinity of, but

did not overlap with, the γ-tubulin staining of centrosomes. Association of Aspm with

the spindle poles was observed during all phases of mitosis, with an apparent decrease

in the intensity of immunostaining in telophase (Figure 16D). However, Aspm did not

appear to be associated with centrosomes during interphase (see Figure 19, arrows).

The association of Aspm with the spindle poles of NE cells is consistent with

previous observations on the subcellular localization of Asp in mitotic Drosophila

NBs (Avides & Glover 1999) and of ASPM in mitotic non-neural human cells in

culture (Kouprina et al. 2005; Zhong et al. 2005).
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Figure 16: Aspm is concentrated at the spindle poles during mitosis.  Dorsal telencephalon of
E12.5 Tis21-GFP knock-in mice was stained with DAPI (DNA, blue) to reveal NE cells in prophase,
metaphase, anaphase and telophase, and immunostained for Aspm (red) and γ-tubulin (green). All cells
analyzed were Tis21-GFP–negative (not shown). Note the concentration of Aspm in the immediate
vicinity of the γ-tubulin–stained centrosomes.  Image modified from Fish et al. 2006.

II – 1.2.  Aspm is down-regulated in NE cells undergoing neurogenic divisions

The spatio-temporal pattern of Aspm expression revealed by our in situ

hybridization analysis correlates with the incidence of symmetric, proliferative NE

cell divisions.  Further, the localization of Aspm at spindle poles is consistent with a

factor involved in cleavage plane orientation.  Together, these data suggest that Aspm

may have a critical function in maintaining spindle orientation during symmetric,

proliferative NE cell divisions.  If this is true, it predicts that Aspm is more highly

expressed in proliferating rather than neuron-generating NE cells.

To test this prediction, we utilized the Tis21-GFP knock-in mouse line

(Haubensak et al. 2004) to compare Aspm immunoreactivity between these two cell

populations.  To do so, neighboring NE cells in the same mitotic phase (prophase or

metaphase as revealed by DAPI staining) were compared in E14.5 Tis21-GFP knock-

in mice.  In each comparison, at least one cell was Tis21-GFP–negative and one was

Tis21-GFP–positive.  For example, three neighboring metaphase NE cells are shown

in Figure 17A, stained for DAPI (upper panel), Aspm (middle panel), GFP (lower
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panel).  For each mitotic cell, the centrosome-specific Aspm immunostaining was

evaluated relative to the non-specific background staining and then given a relative

intensity assessment (strong, medium, or weak) independently of the GFP channel.

Each mitotic cell was then scored separately for Tis21-GFP expression as positive or

negative.  The percentage of cells from each relative intensity of Aspm

immunoflourescence was then plotted against GFP expression.   As shown in Figure

17B, Tis21-GFP–negative NE cells, which undergo proliferative divisions, tended to

exhibit more intense Aspm immunostaining at spindle poles than Tis21-GFP–positive

NE cells, which undergo neurogenic divisions.  This trend is consistent with a down-

regulation of Aspm in NE cells concomitant with their switch from proliferative to

neurogenic divisions.  Further, it suggests that the function of Aspm is more critical in

symmetric divisions than asymmetric divisions.

Figure 17: Aspm is down-regulated in NE cells undergoing neurogenic divisions.  A, Comparison
of Aspm immunoreactivity at spindle poles in metaphase Tis21-GFP–negative NE cells (proliferative
divisions, open triangles) versus Tis21-GFP–positive NE cells (neurogenic divisions, closed triangles)
in the dorsal telencephalon of an E14.5 Tis21-GFP knock-in mouse. Upper, DNA staining using DAPI
(blue); circles indicate the three metaphase cells analyzed. Middle, Aspm immunoreactivity (white);
the small, medium and large triangles indicate weak, medium and strong Aspm immunoreactivity at
spindle poles, respectively. Lower, Tis21-GFP fluorescence (green).  B, Quantification, in the dorsal
telencephalon of E14.5 Tis21-GFP knock-in mice, of pro- or metaphase Tis21-GFP–negative (black
columns, 22 cells) and Tis21-GFP–positive (green columns, 18 cells) NE cells showing either weak,
medium, or strong Aspm immunoreactivity at spindle poles, expressed as percent of total
(weak+medium+strong). Data are from 19 cryosections which originate from at least four brains. A,
The apical surface of the VZ is down.  Image modified from Fish et al. 2006.
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II – 1.3.  Knock-down of Aspm results in its loss from spindle poles

Functional analysis of Aspm was performed using RNA interference-mediated

gene depletion.  We chose to use endoribonuclease-prepared short interfering RNAs

(esiRNAs), an approach combining multiple different short-interfering RNAs
(siRNA) that target a broad region of the mRNA.  This approach is more specific for a

particular target gene, with less off target effects than gene depletion by a single

siRNA construct (Kittler et al. 2007).  Our esiRNAs were generated against the entire
coding region of exon 3, a region within the N-terminal microtubule binding domain

(Figure 13), shared by all known splice-variants of Aspm (Kouprina et al. 2005).
Knock-down was mediated by electroporation of the esiRNAs into the telencephalon

of developing embryos, followed by at least 24 hours of development (Figure 18).

We injected the telencephalon with esiRNAs and a monomeric red fluorescent protein
(mRFP) reporter construct (Roger Tsien, University of California, San Diego).  The

nucleic acids were then directionally electroporated so that only one telencephalic
vesicle received them.  This method allows us to use the non-targeted vesicle as a

control for the manipulation.  As an additional control, we electroporated buffer

containing mRFP alone into some embryos.

Figure 18:  Procedure for Aspm knock-down.  A,  The mouse telencephalon is injected with nuclei
acids (a reporter plasmid with or without Aspm esiRNAs) via glass capillary (Cap).  The nucleic acids
are then directionally electroporated into one half of the telencephalon with electrodes (El).  B,
Diagram showing the neural tube after electroporation in which the targeted side expresses the injected
nucleic acids, represented by the red cells, whereas the non-targeted side does not.  Image modified
from Calegari et al. 2002.
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We used two different methods to mediate Aspm down regulation: whole

embryo culture (WEC) and in utero electroporation (IUP).  For WEC experiments,
embryos were removed from the uterus and cultured ex utero, with an open yolk sac,

in oxygenated rat serum (Eto & Osumi-Yamashito 1995; Calegari et al. 2004).
Embryos were dissected and electroporated at E10.5 (around the onset of

neurogenesis in the mouse telencephalon), followed by 24 hours of development in

culture.
IUP experiments involve a surgical procedure on the pregnant mother to open

the peritoneum.  Embryos are injected through the uterine wall while the mother is
anesthetized.  After injection and electroporation, the peritoneum is closed, and the

embryos develop in utero (Takahashi et al. 2002).  We used E12.5 embryos for IUP,

and allowed them to develop for 24 to 48 hours after electroporation.
We determined the efficiency of our knock-down protocol at the tissue level

by in situ hybridization and at the cellular level by immunohistochemistry.  Figure

19a shows the telencephalic hemispheres of an embryo electroporated at E10.5 and
followed by 24 hours WEC, with the targeted side presented in the lower panel.  The

electroporated region was identified in a consecutive section by mRFP expression
(Figure 19B).  Aspm mRNA levels were significantly reduced in the targeted

hemisphere compared to the non-targeted side (Figure 19A).  The reduction in Aspm

mRNA levels was associated with a loss of spindle pole-associated Aspm protein
(Figure 19C).  Red arrowheads point to the spindle-poles of an RFP-negative cell

from the non-targeted hemisphere, indicating Aspm association with the centrosomes
(Figure 19C, upper panel).  In contrast, little to no Aspm is seen on RFP-positive

mitotic centrosomes from the targeted region (Figure 19C, lower panel).  From these

data, we concluded that our esiRNA electroporation and culture system resulted in
sufficient knock-down of Aspm mRNA leading to loss of Aspm function from the

spindle-poles during mitosis.
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Figure 19: Knock-down of Aspm results in its loss from centrosomes in mitosis.  A, RNAi of Aspm
mRNA. Mouse E10.5 dorsal telencephalon was co-electroporated with Aspm esiRNAs and mRFP
plasmid followed by 24 h whole-embryo culture, and consecutive cryosections were analyzed by in situ
hybridization for Aspm mRNA (left) and RFP fluorescence (right).  Non-targeted (control, top) and
targeted (Aspm RNAi, bottom) hemispheres are from the same cryosections. The apical surface of the
VZ is down. B, Knock-down of Aspm. Mouse E12.5 dorsal telencephalon was co-electroporated with
Aspm esiRNAs and mRFP plasmid followed by 24 h in utero development, and cryosections were
analyzed for mitotic NE cells (asterisks) by DNA staining using DAPI (blue), RFP fluorescence (red),
and γ-tubulin (green) and Aspm (white) immunofluorescence. Single optical sections are shown. Top,
non-targeted hemisphere serving as control; bottom, targeted hemisphere subjected to Aspm RNAi.
Note the loss of Aspm immunoreactivity from the spindle poles (arrowheads) upon Aspm knock-down.
The cell shown is representative of all targeted cells of the electroporated hemisphere. Arrows indicate
centrosomes of adjacent NE cells in interphase, which lack Aspm. The apical surface of the VZ is
down.  Image modified from Fish et al. 2006.

II – 1.4.  Knock-down of Aspm perturbs vertical cleavage plane orientation

Following from our previous results, we were particularly interested in the
consequence of Aspm depletion during symmetric NE cell divisions.  Therefore, we

examined targeted mitotic cells.  The first thing we noticed is that Aspm knock-down

had severe effects on centrosome localization in mitotic NE cells, as shown in Figure
20.  The upper panel shows a control cell that has been electroporated with mRFP

only.  In this cell, the centrosomes are properly positioned near the chromatids (red
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arrowheads), which are aligned vertically to the ventricular surface.  In contrast, a cell

targeted with mRFP and Aspm esiRNAs shown in the lower panel, appears to have
“free” centrosomes that are not associated with the chromatids.  At the same time, the

chromatids are mis-aligned and oblique to the ventricular surface.

Figure 20: Knock-down of Aspm alters the cleavage plane of NE cells.  Mouse E12.5 dorsal
telencephalon was either electroporated with mRFP plasmid only (top) or co-electroporated with Aspm
esiRNAs and mRFP plasmid (bottom), followed by 24 h in utero development, and cryosections were
analyzed for NE cells in anaphase or telophase by DNA staining using DAPI (blue), RFP fluorescence
(red), and γ-tubulin (green) and cadherin (white) immunofluorescence.  The cleavage plane (dashed
lines) was deduced from the orientation of the sister chromatids. Note the aberrant position of the γ-
tubulin–stained centrosomes (arrowheads, stack of optical sections) in the targeted cell and the oblique
cleavage plane which bypasses the cadherin hole (red bar, single optical section), upon Aspm knock-
down. The apical surface of the VZ is down.  Experiment done in collaboration with Y. Kosodo.
Image modified from Fish et al. 2006.

Notably, Aspm knock-down did not perturb the localization of centrosomes in

interphase NE cells, which remained associated with the apical cell cortex (Figure
21).  The apical endfeet of the processes of two cells in either G1 or G2 phase contain

centrosomes (Figure 21A).  Similarly, Aspm knock-down did not disrupt the apical

localization of centrosomes in S-phase cells in which the nucleus is at the basal side
of the VZ (Figure 21B).
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Figure 21: Aspm knock-down does not affect the apical localization of centrosomes of interphase
NE cells.  Mouse E10.5 dorsal telencephalon was co-electroporated with Aspm esiRNAs and mRFP
plasmid followed by 24 h whole-embryo culture, and cryosections were analyzed for DNA staining
using DAPI (blue), RFP fluorescence (red), and γ-tubulin immunofluorescence (green). Note the apical
localization of centrosomes (arrowheads) in the targeted NE cells in interphase of two NE cells in
G1/G2 (A) and in an S-phase NE cell (B). The apical surface of the VZ is down.  Image modified from
Fish et al. 2006.

From these data, we conclude that the free centrosome phenotype was specific

to Aspm loss of function during mitosis.  This phenomenon was particularly evident

in telophase cells and was not observed prior to anaphase.  This suggests that Aspm

may have a vital function during the metaphase to anaphase transition.  One

possibility is that Aspm may maintain the attachment of microtubules to the
centrosome, buffering forces generated during sister chromatid separation.

What initially interested us most was the related phenotype also pictured in

Figure 20.  That is, upon Aspm knock-down there is an alteration in chromatid

orientation that is associated with a change in the predicted plane of cleavage.  The

dashed lines in Figure 20 represent the predicted cleavage plane orientation as

determined by the mid-line of the separating chromatids (see methods for details).

Upon immunostaining for cadherin, a constituent of the lateral NE cell plasma

membrane, the apical plasma membrane of mitotic NE cells, identified by the

presence of the apical marker prominin-1, appears as a small, unstained segment of

the cell surface, referred to as the “cadherin hole” (Figure 20, middle panel).

Symmetric versus asymmetric distribution of the apical plasma membrane to the
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daughter cells can be predicted from the orientation of the cleavage plane relative to

the cadherin hole (Kosodo et al. 2004).

In the control condition, represented in the upper panel, the cleavage plane is

predicted to bisect the cadherin hole which would result in a symmetric distribution of

the apical membrane and junctional complexes to both daughter cells.  In contrast, in

the lower panel, there is a significant alteration in the orientation of the cleavage

plane.  This corresponds with a cleavage plane that is predicted to bypass the cadherin

hole, resulting in an asymmetric distribution of apical membrane and junctional

complexes to the daughter cells.

This observation was striking for two reasons.  First, at such early stages in

neurogenesis, the vast majority of cells have vertical cleavage planes, i.e.
perpendicular or nearly perpendicular to the ventricular surface of the

neuroepithelium.  Second, most NE cells at this developmental time point are Tis21-

GFP–negative, which tend to bisect the cadherin hole upon cell division even if the
cleavage plane is slightly oblique.

II – 1.5.  Loss of Aspm promotes asymmetric cell division

Therefore, we sought to quantify the effect of Aspm knock-down on cell

division in Tis21-GFP–negative NE cells.  First, we deduced the cleavage plane from
the orientation of the sister chromatids of NE cells in anaphase / early telophase.  In

agreement with previous observations (Kosodo et al. 2004), nearly all mitotic Tis21-
GFP–negative NE cells in the control condition showed a vertical cleavage plane

orientation (Figure 22A, black columns).  Upon Aspm knock-down, however, almost

half of the cleavage planes of Tis21-GFP–negative NE cells deviated significantly
from the normal, vertical orientation (Figure 22A, white columns).

This data indicates that loss of Aspm disrupts the normal cleavage orientation

in proliferating NE cells.  However, in mammalian NE cells, cleavage plane

orientation and symmetry of division are not correlated (Smart 1972a,b; Haydar et al.

2003; Kosodo et al. 2004).  Therefore, we investigated whether or not the alteration in

cleavage plane angle might also affect the symmetry of division in terms of

distribution of apical plasma membrane to the daughter cells.
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The distribution of the apical plasma membrane upon division of Tis21-

GFP–negative NE cells was evaluated by determining the cleavage plane relative to
the cadherin hole.  In the control condition, consistent with previous observations,

80% of the cleavage planes were predicted to bisect the apical membrane, resulting in
its symmetric distribution to the daughter cells (Figure 22B, control).  In contrast,

almost half of the cleavage plane orientations observed upon Aspm knock-down were

predicted to bypass the apical membrane, resulting in its asymmetric distribution
(Figure 22B, Aspm RNAi). Such effects on cleavage plane orientation have not been

noticed upon RNA interference using esiRNAs for various other proteins expressed in
neuroepithelial cells (F. Calegari, L. Farkas, A. Grzyb, A.-M Marzesco and W.B.H.,

unpublished data), indicating that the present phenotype was specifically due to Aspm

esiRNAs.

Figure 22: Cleavage plane and cadherin hole analysis.  Quantification of cleavage plane orientation
(A) and cadherin hole distribution (B).  Dorsal telencephalon of E10.5 Tis21-GFP knock-in mice was
either electroporated with mRFP plasmid only (control) or co-electroporated with mRFP plasmid and
Aspm esiRNAs (Aspm RNAi) followed by 24 h whole-embryo culture, and Tis21-GFP–negative,
mRFP-expressing NE cells in anaphase or telophase were analyzed for cleavage plane orientation and
the position of the cadherin hole as in Figure 20.  A, Orientation of the cleavage plane relative to the
radial, apical-basal axis of the neuroepithelium (defined as 90°), expressed as percentage of all
divisions for either the control (black columns, n=24) or Aspm RNAi (white columns, n=22) condition.
Groups of cleavage plane angle are ±5°.  B, Quantification of cadherin hole distribution.  Cleavage
planes bisecting (symmetric, blue columns) or bypassing (asymmetric, red columns) the cadherin hole,
expressed as percentage of all divisions for either the control (n=15) or Aspm RNAi (n=15) condition.
Image modified from Fish et al. 2006.

II – 1.6.  Increased non-NE fate of NE cell progeny after Aspm knock-down

In normal mouse brain development, an asymmetric distribution of the apical

plasma membrane upon division of NE cells is highly correlated with these divisions

being neurogenic (Kosodo et al. 2004), as reflected by Tis21-GFP expression.  The
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cleavage plane of Tis21-GFP–positive NE cells, despite the fact that it is usually

vertical, tends to bypass the cadherin hole. This correlation suggests that the apical

plasma membrane and junctional complexes are important cell fate determinants.

Given the increase in cleavage plane orientations leading to an asymmetric apical

membrane distribution in dividing NE cells upon Aspm knock-down, we explored

whether this would also cause a change in cell fate.  That is, would the loss of Aspm

cause Tis21-GFP–negative divisions to become neurogenic, rather than proliferative.

We first tried to identify newborn neurons in the VZ by βIII-tubulin

immunoreactivity, which is reported to be an early neuronal marker (Fanarraga et al.
1999).  However, we did not observe a significant increase in βIII-tubulin–positive

cells in the VZ after Aspm knock-down (data not shown). This result was not too

surprising given other observations in our lab about the onset of βIII-tubulin

expression in newborn neurons.  Results of live imaging of telencephalic

neuroepithelium of transgenic mouse embryos expressing GFP under the control of

the βIII-tubulin promoter imply that βIII-tubulin expression in the majority of cells

born at the ventricular surface occurs relatively late, that is, after these cells have left

the ventricular zone (A. Attardo et al., manuscript in preparation).

Because we needed a very early indication of neuron generation, we chose to

use a cellular, rather than molecular, marker.  To identify neuron-like cells in the VZ
irrespective of whether they have already turned on neuron-specific gene expression,

we used abventricular centrosomes as a marker.  In contrast to NE cells whose

centrosomes are located at the ventricular (apical) surface (Chenn et al. 1998), one of
the characteristics of their non-NE progeny, which lack apical plasma membrane, is

the abventricular localization of their centrosome (see Figure 11).  For example, in
neurons, centrosomes are located in the vicinity of the nucleus, both when they are

migrating through the VZ (Tanaka et al. 2004; A. Attardo personal communication)

and after they have reached the neuronal layers.
Both newborn neurons and basal progenitors are predicted to have

abventricular centrosomes due to their non-epithelial nature.  To support the use of

abventricular centrosomes as a marker of newborn neurons distinct from basal

progenitors, we wanted to confirm that abventricular centrosomes in the VZ were

associated with post-mitotic cells.  Bromodeoxyuridine (5-bromo-2-deoxyuridine,

BrdU) is a synthetic nucleoside which is an analogue of thymidine and can be used to
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detect cells that are synthesizing DNA.  We labeled E11.5 NE cells in S-phase by
exposing embryos to BrdU for 30 minutes prior to sacrificing them.  After

immunolabeling with γ-tubulin, we observed that NE cells in the VZ with

abventricular centrosomes in the vicinity of their nucleus indeed lacked BrdU
incorporation (Figure 23).

Figure 23: Abventricular centrosomes in the VZ are associated with BrdU-negative cells.
Cryosections of mouse E11.5 midbrain labeled for 30 min with BrdU were analyzed for DNA staining
using DAPI (blue), and γ-tubulin (green) and BrdU (red) immunofluorescence.  Arrowheads,
abventricular centrosomes; asterisks, abventricular centrosome-associated nuclei, which lack BrdU
incorporation. Scale bar in right panel, 10 µm.  Experiment done in collaboration with Y. Kosodo.
Image modified from supplemental data, Fish et al. 2006.

In order to determine if Aspm knock-down had an affect on the number of
abventricular centrosomes, we compared the VZ of the targeted telencephalic

hemisphere to the opposite, non-targeted hemisphere in the same embryo (Figure 24).

After identification of the electroporated region via RFP fluorescence, abventricular
γ-tubulin–immunostained centrosomes in the VZ of the targeted and non-targeted side

were counted within a 200x50 µm field which excluded the strip containing the apical

mitotic cells and the βIII-tubulin–immunostained neuronal layers (e.g., the area

between the yellow and white lines in Figure 24). The ratio of abventricular

centrosomes in the VZ of the targeted over non-targeted side was then calculated.
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Figure 24: Knock-down of Aspm increases the generation of non-NE cells.  Mouse E12.5 dorsal
telencephalon was either co-electroporated with Aspm esiRNAs and mRFP plasmid or electroporated
with mRFP plasmid only, followed by 48 h in utero development.  Cryosections of the non-targeted
(control) and targeted (Aspm RNAi) hemispheres were analyzed for RFP fluorescence (red), and γ-
tubulin (green) and βIII-tubulin (blue) immunofluorescence.  Note the increase in abventricular
centrosomes (arrowheads) upon Aspm knock-down.  The yellow lines indicate the boundary between
the VZ/SVZ and the neuronal layers.  The white line indicates the apical boundary for counting
abventricular centrosomes in order to exclude interphase centrosomes.  The apical surface of the VZ is
down.  Experiment done in collaboration with Y. Kosodo.  Image modified from Fish et al. 2006.

We observed a significant increase in abventricular centrosomes in the VZ of
the targeted hemisphere (Figure 24, right panels) compared to the non-targeted

hemisphere (Figure 24, left panels) 48 h after initiation of Aspm knock-down in E12.5
mice. This increase was 1.6-fold over the abventricular centrosomes observed in the

VZ under control conditions (Figure 25, Aspm RNAi), which is what would be

expected, given (i) the efficiency of targeting of NE cells upon in utero
electroporation (<50%), (ii) the normal abundance of abventricular centrosomes (cf.

Figure 25, left), (iii) the proportion of NE cells undergoing proliferative divisions at
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this developmental stage, and (iv) the increase in asymmetric NE cell divisions upon

Aspm knock-down (Figure 22B), among other parameters. The increase in

abventricular centrosomes was due to the presence of Aspm esiRNAs as no such

increase was observed upon electroporation of the mRFP reporter plasmid only

(Figure 25, control).

Figure 25: Knock-down of Aspm  increases the generation of non-NE cells. Numbers of
centrosomes per 10,000 µm2 counted in γ-tubulin–immunostained cryosections are expressed as a ratio
of targeted/non-targeted hemispheres for mRFP plasmid only (control) and mRFP plasmid plus Aspm
esiRNAs (Aspm RNAi) electroporation. Data are the mean of 5 cryosections from 3 different embryos
each; bars indicate S.D.  Image modified from Fish et al. 2006.

As Aspm knock-down did not perturb the apical localization of centrosomes in

interphase NE cells (Figure 21), we conclude from the increase in abventricular

centrosomes that knock-down of Aspm causes an increase in the generation of non-

epithelial (non-NE) cells.  Because neurons are not the only non-NE cells in the

developing telencephalon, this result by itself does not allow us to conclude that NE

cells to switch from proliferative to neurogenic divisions upon Aspm knock-down.

Therefore, we characterized the non-NE cells generated by Aspm knock-down in

more detail.

II – 1.7.  Increased neuron-like fate of NE cell progeny after Aspm knock-down

To begin with, we analyzed the neuronal layer of the targeted hemisphere of

Tis21-GFP knock-in mouse embryos identified by βIII-tubulin immunofluorescence

(Figure 26).  Consistent with previous observations (Haubensak et al. 2004), in the
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control condition (electroporation of mRFP only), less than half of the young neurons

in the neuronal layer lacked GFP fluorescence (Figure 26B, left column).  Aspm

knock-down resulted in a significant increase in the proportion of GFP-negative/RFP-

positive cells in the neuronal layer (Figure 26B, right column), suggesting an

increasing contribution of progeny derived from NE cells lacking Tis21-GFP

expression.  Remarkably, almost all of the GFP-negative/RFP-positive cells in the

neuronal layer observed upon Aspm knock-down showed βIII-tubulin expression, as

exemplified in Figure 26A.  From these results, we conclude that at least some of the

non-NE progeny generated by Aspm knock-down migrate to the neuronal layer and

express neuronal markers.

Figure 26: The increase in non-NE cells correlates with an increase in Tis21-GFP- cells in the
neuronal layer.  Dorsal telencephalon of E10.5 Tis21-GFP knock-in mice was either co-electroporated
with Aspm esiRNAs and mRFP plasmid (Aspm RNAi) or electroporated with mRFP plasmid only
(control), followed by 24 h whole-embryo culture.  A, Representative example of two neighboring
RFP-positive cell bodies (red) in the neuronal layer, with one being positive (green circles) and one
negative (yellow circles) for Tis21-GFP fluorescence (green) but both exhibiting βIII-tubulin
immunofluorescence (white). Scale bar in left panel, 5 µm.  B, Cryosections were analyzed for the
proportion of RFP-positive cells in the neuronal layer that lacked Tis21-GFP fluorescence. Data are the
mean of 3 cryosections from 2-3 different embryos each (control, 70 cells; Aspm RNAi, 74 cells); bars
indicate S.D. Image modified from Fish et al. 2006.
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In the telencephalon, neurons arise from NE and radial glia cells dividing at

the ventricular surface and from progenitors dividing basally in the VZ and SVZ

(Haubensak et al. 2004; Miyata et al. 2004; Noctor et al. 2004).  Given that the

centrosomes of the basal progenitors are also abventricular, we examined whether the

increase in abventricular centrosomes in the VZ upon Aspm knock-down reflected an

increase in basal progenitors.  However, no obvious increase in abventricular mitotic

cells was observed upon Aspm RNAi (Figure 27).  This lack of increase in basal

progenitors in turn suggests that the neuron-like cells observed in the neuronal layer

after Aspm knock-down were generated directly by NE cells.

Figure 27: Aspm knock-down does not result in an increase in basal progenitors. Mouse E10.5
dorsal telencephalon was co-electroporated with Aspm esiRNAs and mRFP plasmid, followed by 24 h
whole-embryo culture. Cryosections of the non-targeted (control) and targeted (Aspm RNAi)
hemispheres were analyzed for mitotic cells in the basal region versus apical surface of the VZ, using
phosphohistone H3 immunofluorescence. Basal mitotic cells are expressed as a percentage relative to
apical mitotic cells, whose frequency of occurrence was similar for the control (244 cells per total
reference area) and Aspm RNAi (219 cells per total reference area) condition. Data are the sum of 18
cryosections, each with the same size field for the non-targeted (control) and targeted (Aspm RNAi)
hemisphere, from 3 different embryos.  Image modified from supplemental data, Fish et al. 2006.

Taken together, our observations indicate that Aspm knock-down in NE cells

increases the probability of their progeny adopting a non-NE fate.  This includes a

neuron-like fate (migration to neuronal layers, expression of neuronal markers).  We

do not know whether the neuron-like cells observed develop into functional neurons,

and we cannot exclude that the progeny generated by the Aspm–knocked-down NE

cells, including the neuron-like cells, eventually undergo apoptosis.  However, we can

conclude that whichever fate the progeny ultimately adopt, it is a non-NE fate, which
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in any case implies a reduction in the NE progenitor pool relative to control.

II – 1.8. Loss of Aspm affects mitotic cells in anaphase

Having made some conclusions about the cellular function of Aspm, we

wanted to dissect the molecular mechanism of this function in a little more detail.  In

our earlier analysis, we noticed that the deviation in chromatid alignment of cells

lacking Aspm only became apparent after anaphase.  Initially, our quantification of

cleavage plane orientation only considered cells in anaphase or telophase.  Now, we

have expanded that analysis to include NE cells in metaphase.  In these experiments, a

reporter plasmid (pCAGGS-Cherry) was co-electroporated with either Aspm

esiRNAs or PBS.  As before, cleavage plane orientation was predicted from

chromatid alignment relative to the ventricular surface.  Representative cells

electroporated with Aspm esiRNAs in metaphase (upper panel) and telophase (lower

panel) are shown in Figure 28A.

In contrast to cells in anaphase or telophase, Aspm knock-down does not affect

metaphase cells which align perpendicular to the ventricular surface in the vast

majority of the cases (Figure 28C, blue bars).  The increasing tendency for chromatids

to deviate from a vertical orientation during anaphase and telophase (Figure 28C, red

bars) suggests that Aspm is particularly important in stabilizing spindle orientation

throughout the metaphase to anaphase transition.  This indicates that Aspm is not

important for spindle position (which is determined by the end of metaphase by

regulators at the cell cortex, as discussed in the introduction), but rather for ensuring

the precision of spindle precision through cytokinesis.
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Figure 28: Knock-down of Aspm affects the cleavage plane angle of NE cells in anaphase.  A, NE
cells in metaphase (upper panels) and anaphase/telophase (lower panels) from mouse E10.5 dorsal
telencephalon of Tis21-GFP knock-in mice after co-electroporation with Aspm esiRNAs and
pCAGGS-Cherry plasmid and 24 h whole-embryo culture.  Dapi is shown in blue, Cherry is shown in
red, and γ-tubulin is shown in green.  All cells analyzed were Tis21-GFP negative (not shown).  The
apical surface is down.  Scale bar in lower left panel, 5 µm.  B, C, Quantification of cleavage plane
angle in NE cells of control (B) and Aspm RNAi (C) embryos.  B, In the control condition, metaphase
(blue bars, n=12) and anaphase/telophase (red bars, n=12) are predominantly vertical.  C, Upon Aspm
RNAi, the cleavage plane of anaphase/telophase (red; n=21) NE cells tends to deviate from vertical,
consistent with previous findings.  However, the majority of metaphase (blue; n=19) NE cells are
vertical, similar to control conditions. Cleavage plane angle was predicted by measuring the angle of
the chromatids to the ventricular surface. Vertical = 90-80°, oblique = 79-40°, horizontal = 40-0°.

II – 1.9.  Model for Aspm function during symmetric NE cell divisions

How could Aspm be involved in the maintenance of spindle position?  The

data presented here suggest that suggest that Aspm exerts a critical role at the spindle

poles of NE cells in maintaining spindle position through mitosis and, consequently,
in ensuring the precise cleavage plane orientation required for symmetric,

proliferative divisions (Figure 29).  In particular, Aspm may be required to maintain

the tight association of kinetochore microtubules to the centrosome.  This association
becomes particularly important in anaphase when forces are generated on the spindle

in order to separate the sister chromatids (Alberts et al. 1994; Mitchison & Salmon
2001).

In the absence of Aspm, the interaction between centrosomes and kinetochore

microtubules may weaken, causing spindle position to deviate from its precise
alignment.  This deviation would not have to be great in order for it to be significant.

Since NE cells are highly elongated, the requirement to bisect their small apical
membrane for symmetric, proliferative division implies not only that the mitotic

spindle has to adopt an axis exactly perpendicular to the NE cell apical-basal axis by

the end of metaphase. It also necessitates that this spindle axis is maintained during
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anaphase and telophase to ensure that the basal-to-apical ingression of the cleavage

furrow occurs precisely along the apical-basal NE cell axis.

Figure 29: Model of Aspm function in mammalian NE cells.  A schematic diagram of NE cells in
anaphase.  In proliferating cells (left), Aspm expression is high.  Aspm (red crescents) localizes to the
centrosome (green circles) where it maintains the precise alignment of the spindle along the apical-
basal axis, contributing to the bisection of the apical membrane (red line) and junctional complexes
(brown boxes).  In neurogenic divisions (right), Aspm expression is low.  In the absence of Aspm at the
spindle poles, precision of the spindle along the apical-basal axis is not maintained, contributing to the
cleavage furrow bypassing the apical membrane and junctional complexes.

II – 1.10.  Strategy for testing ASPM in an evolutionary context

Our results can only provide a possible explanation for the ASPM loss of

function phenotypes observed in humans.  However, our data does suggest that

evolutionary changes in ASPM  have been selected to increase the number of

symmetric, proliferative cell divisions, thus increasing the precursor pool.  If this is

true, human ASPM should promote more symmetric, proliferative cell divisions than

mouse Aspm.  In order to assess if expression of human ASPM provides a gain of

function, we have generated a “humanized” mouse.  The humanized mouse is a

transgenic animal in which a copy of the human ASPM gene has been added to the

genome.  Expression of the human gene in the developing neuroepithelium of our

humanized mouse was confirmed by in situ hybridization (Figure 30).  ASPM appears

to be properly expressed in the VZ, as expected.  Further characterization of ASPM

expression, localization and function in the humanized mouse is necessary to
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determine if ASPM confers any gain of function that might have led to evolutionary

selection.  This project is currently being pursued by another student in our

laboratory.

Figure 30: Expression of ASPM in the “humanized” mouse.  In situ hybridization on E10.5
transverse cryosections of NMRI mouse brains.  Two littermate embryos from a cross between a
heterozygous transgenic mouse carrying a copy of the human ASPM gene and a wildtype mouse.
Consecutive cryosections from an embryo negative for the human ASPM gene are shown in the upper
panels.  The lower panels display consecutive cryosections from an embryo positive for the human
ASPM gene.  Both embryos express the mouse Aspm gene (left panels).  The positively transgenic
embryo also expresses human ASPM, which is absent in the negative embryo (middle panels).  A sense
probe against the human ASPM gene is negative for both embryos (right panels).
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II – 2.      Comparative Analysis: Primate and Rodent Progenitors

II – 2.1. Pax6 and Tbr2 in rodent neuronal progenitors

In the rodent CNS, two distinct pathways of neuron generation have been

described (see Figure 6): 1) asymmetric cell division at the apical surface of the VZ

yielding one post-mitotic neuron and one cell that continues to cycle (apical

progenitors), and 2) symmetric cell division in the SVZ yielding two post-mitotic

neurons (IPCs, basal progenitors).  Based on mitotic position (apical or basal), the

abundance of these two progenitors was quantified in the mouse at early

developmental times (Haubensak et al. 2004).  More recently, the transcription factors

Pax6 and Tbr2 have been shown to be reliable lineage markers distinguishing these

neuronal progenitors.  Pax6 is expressed in apical mitotic cells whereas Tbr2 marks

basal mitotic cells (Englund et al. 2005).

For the purposes of the analysis presented here, it was important to determine

the specificity of Tbr2 and Pax6 as markers for different progenitor populations in

rodents.  The mouse neuroepithelium was immunostained for Tbr2 or Pax6 together

with Phosphohistone H3 (Figure 31).  As predicted, Tbr2 is largely present in the

SVZ (Figure 31A), and Pax6 is widely expressed in the VZ (Figure 31B).  In the case

of Tbr2, its co-localization with Tis21-GFP could also be visualized, allowing its

expression in neurogenic versus proliferating cells to be determined.  This analysis

was not possible for Pax6 because the immunostaining protocol requires special

treatment for antigen retrieval, which destroys the GFP signal.

Tbr2 and Pax6 positive mitotic cells, both basal and apical, were counted and

assessed for the presence or absence of these markers (Figure 31C).  Basal mitotic

cells are almost always Tbr2+ regardless of Tis-21-GFP expression (80/82 cells; the

two negative cells were negative for both markers).  In contrast, apical mitotic cells

are predominantly negative for Tbr2.  Instead, apical mitotic cells appear to be

exclusively labeled by Pax6 (128/128).  Pax6 is also present in approximately one-

third of basal mitotic cells (9/32), although the immunoflourescence is weaker relative

to apical mitotic cells.  This data indicates that Tbr2 is more broadly expressed in

basal mitotic cells than Tis21 (which is only expressed in 90% of basal mitotic cells),

at least at early developmental times.
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Figure 31: Tbr2 and Pax6 in rodent apical and basal mitotic cells. A, Cryosections of E13.5 mouse
telencephalon were analyzed for DNA staining using DAPI (blue), and Tbr2 (white) and
PhosphoHistone-H3 (red) immunofluorescence.  B, Cryosections of E12.5 mouse telencephalon were
analyzed for DNA staining using DAPI (blue), and Pax6 (white) and PhosphoHistone-H3 (red)
immunofluorescence.  A , B, The apical surface is down.  Scale bar in lower left panel, 20 µm.  C,
Mitotic cells, represented by PhosphoHistone-H3 positive immunostaining, were scored for their
localization (apical or basal) and the presence of Tbr2 (left) or Pax6 (right).  Nearly all basal mitoses
are positive for Tbr2 (80/82), while less than one-third of basal mitoses are Pax6 (9/32) positive.
Pax6+ basal mitoses are weaker than Pax6+ apical mitoses (represented by grey versus black bars).  In
contrast, apical mitotic cells are almost exclusively Pax6 positive (128/128) and Tbr2 negative
(11/408).  Data come from E12.5 (n=4) and E13.5 (n=4) embryos.

Recently, a transgenic mouse carrying a bacterial artificial chromosome

(BAC) coding for GFP under the control of the Tbr2 locus was generated (Gong et al.

2003). Characterization of this mouse has been undertaken with the intent of

determining the fate of the Tbr2+/Tis21-GFP– basal mitotic cells.  First, to ensure that

the cells identified by Tbr2 immunostaining were also GFP+ in the transgenic mouse,

co-localization of Tbr2 immunoreactivity and Tbr2-GFP expression in E10.5 mouse

telencephalon was assessed (Figure 32A).  Early developmental times were chosen in

order to reduce the number of cells that would be GFP+ due to inheritance of the
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protein rather than due to activation of the Tbr2 locus.  However, the fact that GFP is

inherited by the daughter cells of the progenitor that expressed Tbr2 allows the

progeny of all Tbr2+ progenitors to be followed.  Interestingly, throughout

development, the neuronal layer of Tbr2-GFP knock-in mice is completely GFP+

(Figure 32B).  This data suggests that either Tbr2 is expressed in neurons or that all

neurons derive from a Tbr2+ progenitor.  Since it has been shown that many neurons

are born from apically dividing NE cells, which are largely Tbr2–, we suggest that

Tbr2 may, in fact, be an early neuronal marker.  This hypothesis is supported by the

recent study of Tbr2 mutations in humans that indicated a role for Tbr2 in neuronal

migration (Baala et al. 2007).

Figure 32: Tbr2 expression in the Tbr2-GFP knock-in mouse. A, Dorsal telencephalon of E10.5
Tbr2-GFP knock-in mice was stained with DAPI (DNA, blue), and immunostained for Tbr2 (red).
Intrinsic GFP–fluorescence driven from the Tbr2 locus is shown in green.  Tbr2 immunofluorescence
colocalizes with Tbr2-GFP–fluorescence, although Tbr2-GFP– fluorescence is also seen in neurons
that are not positively immunostained.  B, Tbr2-GFP– fluorescence in E10.5, E12.5, and E15.5
telencephali, showing Tbr2-GFP–positive cells in the VZ and the neuronal layer.  All cells in the
neuronal layer appear positive for Tbr2-GFP.  The apical surface is down.  Scale bar in lower left
panel, 20 µm.

That Tbr2 is not a general marker for basal mitotic cells, but rather may be

specific to the neuronal lineage, is suggested by its absence in basal mitotic cells at

late developmental times.  We found that most basal mitotic cells at E18.5 are Tbr2-

GFP– (Figure 33).  At this developmental time point, neurogenesis is largely

complete, and gliogenesis has begun (Sauvageout 2002).
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Consistent with previous observations (Englund et al. 2005), these data

suggest that Pax6 is expressed in apically dividing NE and RG cells in the VZ, the

polarized epithelial progenitors, and down-regulated in cells that have lost their

epithelial characteristics.  Conversely, Tbr2 immunoreactivity identifies SVZ

progenitors, the non-epithelial IPCs.  That Tbr2-GFP is found in all neurons suggests

that Tbr2 is transiently expressed in newborn neurons.

Figure 33: Tbr2 is not expressed in basal mitotic cells at late developmental stages.  Dorsal
telencephalon of E18.5 Tbr2-GFP knock-in mice was stained with DAPI (DNA, blue) and
immunostained for Phosphohistone H3 (red).  At this stage, basal mitotic cells (yellow circles) are
negative for Tbr2-GFP.  Scale bar in lower left panel, 20 µm.  The apical surface is down.

II – 2.2.  Pax6 in primate basal neuronal progenitors

Following from the observation that Pax6 and Tbr2 immunoreactivity identify

distinct neuronal progenitors in rodents, the pattern of these markers in primate

neuronal progenitors may reflect evolutionary changes in one of these two progenitor

populations.  In order to perform this analysis, monkey telencephalic tissue was

obtained as part of a collaboration with the lab of Collette Dehay in the Department of

Stem Cell and Cortical Development at the Université Claude Bernard Lyon I in

Lyon, France.  Several slices of E80 (late-mid-neurogenesis) macaque brain,

representing cortical areas 17 and 18, were analyzed.  Unfortunately, Tbr2

immunostaining in this tissue was weak to absent (data not shown).  It is not yet clear

if this reflects an absence of expression at this developmental time point or technical

limitations due to the method of preservation.  However, Pax6 immunoreactivity in

this tissue provided some interesting results.  The OSVZ, as well as the VZ, contains

many Pax6+ cells (Figure 34).  Most of the mitotic figures in the VZ and OSVZ were

Pax6 positive.  Under the immunostaining conditions employed, mitotic cells are

more highly immunoreactive, most likely due to the lack of a nuclear envelope that
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may make them more accessible to the antibody.  Thus, it is possible that most, if not

all of the cells of the OSVZ are Pax6+.

Figure 34: Pax6 in primate basal mitotic cells.  Dorsal telencephalon of E80 macaque was stained
with DAPI (DNA, blue) and immunostained for Phosphohistone H3 (red) and Pax6 (green).  A, Low
power view of the entire neuroepithelium indicating the major layers.  The area inside the white box is
magnified in B.  Scale bar in lower left panel, 250 µm.  The apical surface is down.  B, Mitotic cells at
the apical surface in the VZ as well as basal mitosis in the OSVZ are Pax6 positive. Scale bar in lower
left panel, 100 µm.  The apical surface is down.

Mitotic cells of the monkey VZ and OSVZ were compared more precisely in

high magnification confocal images.  As shown in Figure 35, mitotic cells of the

OSVZ are strongly positive for Pax6, with similar or greater immunoreactivity than

that of mitotic cells of the VZ.  This is interesting to note given that, in rodents, basal

mitotic cells that are Pax6+ are much weaker than apical mitotic cells.  The difference

between mouse and monkey in Pax6 identity of basal mitotic cells is even more

striking when considered in quantitative terms.  In the mouse, less than one third of

the basal mitotic cells were Pax6 positive (Figure 31C).  In contrast, 89% of basal

mitotic cells in the monkey OSVZ were found to be Pax6 positive (Figure 36). More

samples will be required in order to reliably quantify this pattern, but it provides some

evidence that basal progenitors of the OSVZ are more similar to the apical progenitors

of the rodent VZ than to the basally dividing IPCs.
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Figure 35: Pax6 in mitotic cells of the primate germinal layers.  Dorsal telencephalon of E80
macaque was stained with DAPI (DNA, blue, left panel) and immunostained for Pax6 (white, middle
panel) and Phosphohistone H3 (red, right panel).  Single optical sections are shown.  Mitotic cells
identified by Phosphohistone H3 immunofluorescence are highlighted with yellow circles.  A, Mitotic
cells of the OSVZ are positive for Pax6.  The orange arrow points to a mitotic cell from a different
optical section that is shown in an insert at the bottom right of each panel.  The boxed mitotic cell is
strongly Pax6 positive. B, Mitotic cells of the VZ are also Pax6 positive.  The green arrow points to a
Pax6 positive telophase cell that was not positive for Phosphohistone H3.  Note that Pax6
immunoreactivity is roughly equal in cells of the VZ and OSVZ.  Scale bar in lower right panel, 20
µm.  The apical surface is down.

Figure 36: Pax6 in mitotic cells of the primate OSVZ. A, Dorsal telencephalon of E80 macaque was
immunostained for Pax6 (green, left panel) and Phosphohistone H3 (red, middle panel).  Mitotic cells
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from a portion of the OSVZ are shown.  B, Mitotic cells of the VZ (not shown) and OSVZ, represented
by PhosphoHistone-H3 positive immunostaining, were scored for the presence of Pax6.  All VZ
mitoses were Pax6 positive (20/20) and 89% of OSVZ mitoses were Pax6 positive (94/106).  Data
come from a 60µm thick macaque section.

II – 2.3. Pax6 and Tbr2 in human neuronal progenitors

The implication that basal mitotic cells in monkeys may have different

properties than basal mitotic cells in rodents suggests an evolutionary change in

progenitors between these two lineages.  However, to confirm that this pattern was

general for primates rather than specific to monkeys, a second primate species was

analyzed.  To this end, fetal human telencephalon samples were collected.  We

established a collaboration with the University Clinic in Dresden, Germany, which

provided human fetal tissue coming from legal abortions with parental consent.  In

total, 41 embryonic samples were collected (Table 2).  However, from these 41, only

one sample (number 36) was sufficiently preserved to obtain an intact and identifiable

telencephalic sample.  This sample, aged 10 weeks post conception, was used for

immunostaining analyses.

Sample number Date collected Sample age Tissue identified

1 2 June 2004 8 weeks No CNS

2 4 June 2004 10 weeks No CNS

3 11 June 2004 11 weeks Partial SC

4 11 June 2004 11 weeks Un-ID brain

5 23 June 2004 9 weeks Partial HB

6 25 June 2004 10 weeks No CNS

7 25 June 2004 9 weeks No CNS

8 9 July 2004 10 weeks No CNS

9 21 July 2004 7 weeks No CNS

10 6 August 2004 10 weeks No CNS

11 9 August 2004 11 weeks Partial SC

12 9 August 2004 10 weeks Partial SC, HB

13 11 August 2004 11 weeks SC, 2 un-ID brain

14 24 September 2004 9 weeks Partial SC

15 4 October 2004 10 weeks 2 partial SC, partial HB

16 8 October 2004 9 weeks 2 partial SC

17 22 October 2004 8 weeks No CNS

18 10 December 2004 12 weeks Partial SC, HB

19 21 January 2005 11.5 weeks Partial SC, HB

20 26 January 2005 10 weeks Partial SC
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21 7 February 2005 7 weeks Partial SC

22 25 February 2005 12 weeks Partial SC, HB

23 19 March 2005 12 weeks Partial HB

24 18 April 2005 11 weeks No CNS

25 18 April 2005 9 weeks Partial SC, HB

26 10 June 2005 7 weeks No CNS

27 13 June 2005 10 weeks 4 Un-ID brain

28 1 July 2005 7 weeks 3 Un-ID brain

29 22 July 2005 10 weeks Partial HB

30 22 July 2005 10 weeks Partial SC, MB

31 9 September 2005 7 weeks Partial HB

32 14 October 2005 11 weeks 2 Un-ID brain

33 17 October 2005 10 weeks Partial SC, HB

34 5 November 2005 12 weeks 2 Un-ID brain

35 9 December 2005 10 weeks 2 partial HB

36 6 February 2006 10 weeks Complete brain

37 3 April 2006 9 weeks No CNS

38 17 May 2006 11 weeks 2 Un-ID brain

39 22 May 2006 10 weeks No CNS

40 12 February 2007 12 weeks Partial SC

41 21 February 2007 12 weeks Partial SC

Table 2: Human tissue samples collected.  The number, date, age, and identification of each sample
collected are listed.

In contrast to the monkey tissue, the human tissue was positively

immunostained for Tbr2.  Double-labeling with Tbr2 and Pax6 revealed a pattern that

is superficially similar to that in rodents (Figure 37).  Pax6 strongly labels the VZ,

whereas Tbr2 labels cells of the SVZ (ISVZ).  It is not clear if the difference in

staining is tissue specific (monkey versus human), related to developmental stage (the

human tissue is from a relatively earlier developmental time), or differences in

preservation and storage of the tissue.  Nonetheless, comparison of the human and

mouse Tbr2 and Pax6 immunostainings reveals some interesting differences.  First,

Pax6 immunoreactivity in humans is more broad, overlapping with Tbr2

immunoreactivity and extending more basally (compare Figure 37A with Figure

31B).

Second, basal mitotic cells in the human are Pax6 positive.  In this sample,

basal mitotic cells were rare, perhaps due to its early developmental stage, thus

limiting quantitative analysis.  However, two examples of basal mitotic cells

identified by phosphohistone H3 immunostaining that are Pax6 positive and Tbr2

negative are shown in Figure 37 A and B.  Tbr2 positive basal mitotic cells could also
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be identified by Dapi staining (highlighted by the red arrow in Figure 37B), but as

seen in this sample, they are also strongly positive for Pax6.  These data suggest that

Pax6 expression in basal mitotic cells is a general pattern in primate NE cells that is

distinguishes primate basal progenitors from rodent IPCs.

Figure 37: Tbr2 and Pax6 in human basal mitotic cells. A, B, Consecutive cryosections of 10wpc
human dorsal telencephalon were stained for Dapi (DNA, blue, left panels) and immunostained for
Pax6 (A) or Tbr2 (B) (red, middle panels).  Scale bar in lower right panel, 20 µm.  The apical surface is
down.

II – 2.4.  The epithelial characteristics of primate basal neuronal progenitors

In rodents, Pax6 immunoreactivity identifies progenitors with epithelial

characteristics, which maintain apical contact.  The finding that primate basal

progenitors are Pax6 positive suggests that they may also have apical processes (as

predicted by Smart and colleagues 2002).  Therefore, attempts were made to further

evaluate the epithelial characteristics of primate basal mitotic cells. Due to

preservation issues, the structural quality of the monkey tissue that we received from

the Dehay lab was not sufficient for us to make reliable conclusions about the cellular

structure of the cells in the OSVZ.  Consequently, this analysis focused on the human

tissue.  A first attempt to visualize cell processes with DiI labeling of fixed tissue, did

not result in any positive labeling (data not shown).
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Immunostaining with MPM2, a mitotic protein marker that labels the

cytoplasm of mitotic cells including their processes, was slightly more informative.

The immunostaining worked quite well on the human tissue, however, the processes

were too numerous and thin to follow (Figure 38).  An additional problem with this

method is that MPM2 also labels neurons, which caused a lot of background in our

analysis.  Unfortunately, these results cannot contribute to the discussion about apical

contact in basal mitotic cells, but they do indicate the extensive processes present in

the human germinal layers.

Figure 38: NE cell processes in the human VZ.  10wpc human dorsal telencephalon stained for Dapi
(DNA, blue, left panel) and immunostained for MPM2 (red, middle panel).  The image is presented as
a projection of 8 1µm confocal sections.  Note the numerous, thin cell processes.  Scale bar in lower
left panel, 20 µm.  The apical surface is down.
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III. Discussion
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III – 1.                         ASPM and the Evolution of NE Cell Division

III – 1.1.  Aspm has functionally diverged from Asp

In Drosophila, mutations in asp cause NBs to arrest in metaphase. However,

beside the observation that Aspm knocked-down NE cells progressed through

telophase (Figure 20, bottom), we did not detect any increase in mitotic NE cells

(identified by phosphohistone H3 immunostaining or DAPI staining) upon Aspm

knock-down (Figure 27). Thus, unlike asp mutations in Drosophila NBs, Aspm

knock-down in mouse NE cells does not appear to block mitosis in metaphase.

It is important to note that, in Drosophila, loss of Asp function only disrupts

asymmetric division of NBs.  There is no reported function/role for Asp in the

symmetric division of Drosophila epidermoblasts, although the functional data does

not indicate that Asp should be specific for asymmetric division.  Our data indicate

that, in mammals, Aspm is expressed in both proliferating and neurogenic NE cells,

with a specific role in maintaining symmetric NE cell divisions.  These observations

demonstrate that there has been some functional evolution separating Aspm and Asp.

III – 1.2.  The role of Aspm in mammalian development and evolution

Our results provide a cell biological explanation for the function of Aspm in

mammalian neocortical development.  The need of the highly elongated, polarized NE

cells to bisect their small apical membrane for symmetric, proliferative division

implies not only that the mitotic spindle has to adopt an axis exactly perpendicular to

the NE cell apical-basal axis by the end of metaphase.  It also necessitates that this

spindle axis is maintained during anaphase and telophase to ensure that the basal-to-

apical ingression of the cleavage furrow occurs precisely along the apical-basal NE

cell axis.  Our observations suggest that Aspm exerts a critical role at the spindle

poles of NE cells in maintaining spindle position through mitosis and, consequently,

in ensuring the precise cleavage plane orientation required for symmetric,

proliferative divisions.

Loss of Aspm upon knock-down results in a deviation of spindle position, and

hence an alteration in cleavage plane orientation, thereby increasing the probability of
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asymmetric division of NE cells, with only one daughter cell inheriting apical

membrane and adherens junctions and thus remaining epithelial. In other words, loss

of Aspm reduces the expansion of the NE progenitor pool.  This would explain why

humans with mutations in ASPM suffer from primary microcephaly (Bond et al.

2002).  Similar considerations may hold true for mutations in other genes encoding

centrosomal proteins that cause primary microcephaly (Bond et al. 2005).  The

observation that only the brain is affected in these patients (Woods et al. 2005),

despite the expression of Aspm in other developing epithelia (Kouprina et al. 2005),

likely reflects the highly elongated shape of NE cells and their small apical

membrane, which make them more vulnerable to any perturbations in spindle position

when undergoing symmetric, proliferative divisions.  A corollary of this is that with

the increase in brain size during primate evolution, the further reduction in the apical

membrane of NE cells, which predicts the need for even greater accuracy of cleavage

plane orientation, offers a potential reason for the positive selection of ASPM

observed in the primate lineage (Zhang et al. 2003; Kouprina et al. 2004).

III – 1.3.  Evolution of the regulation of asymmetric division

All vertebrates studied (e.g., turtles, fish, birds, lizards, rodents, carnivores,

primates) have a multi-layered cortex that develops from a pseudo-stratified

neuroepithelium (Nakai & Fujita 1994; Aboitiz et al. 1999).  In contrast,

invertebrates, such as Drosophila, have a simple brain that develops from a stratified

epithelium.  After losing their junctional complexes, Drosophila NBs delaminate

from the overlying neuroectodermal epithelium.  Asymmetric division in Drosophila

NBs occurs via a horizontal cleavage plane that results from a 90° rotation of the

spindle away from the apical-basal axis.  In contrast, vertebrate neurogenic

progenitors maintain junctional contact with proliferating NE cells and both divide

vertically (Figure 11).  It is interesting to note that progenitor cells of non-nervous

epithelial tissues of the mouse, such as the epidermis (Smart 1970a; Lechler & Fuchs

2005) and esophagus (Smart 1970b) also develop from a stratified epithelium, which

involves rotation of the spindle for asymmetric divisions.

Given that Drosophila NBs and non-nervous epithelial tissue share a

developmental pattern where asymmetric divisions are associated with a 90°rotation
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of the spindle, the question then arises: why is the mammalian neuroepithelium

different?  One hypothesis is that the pattern of spindle orientation in mammalian NE

cells is related to the increase in the size of their brain.  Since epithelial cells are

polarized along their apical-basal axes, any developmental change that increased the

number of vertical cleavages along the polarized axis would contribute to an increase

in symmetric, proliferative divisions, and consequently an increase in overall tissue

size.

III – 1.4.  Evolution of the regulation of spindle orientation

As detailed in the introduction, spindle alignment is largely controlled by

factors operating at the cell cortex.  In particular, the mammalian ternary complex of

the NuMA/LGN/Gα proteins regulates the attachment of aster microtubules to the

cell cortex during mitosis (Du and Macara 2004).  This complex appears to be

evolutionarily conserved, as the Drosophila (Mud/Pins) and C. elegans (Lin-

5/GPR1/2) homologues of NuMA and LGN also attach the spindle to the cell cortex

in a G-protein dependent manner (Yu et al. 2003; Srinivasan et al. 2003, 2006;

Bowman et al. 2006; Izumi et al. 2006; Siller et al. 2006).

The factors responsible for determining where on the cell cortex this complex

associates, and consequently the orientation of spindle alignment, are less clear.  In

Drosophila, Insc is necessary and sufficient for spindle rotation (Kraut et al. 1996;

Kaltschmidt et al. 2000).  Insc is expressed specifically in NBs, and its ablation leads

to randomization of spindle orientation (Kaltschmidt et al. 2000).  Further, ectopic

expression of Insc in epidermoblasts, leads to spindle rotation and horizontal cleavage

(Kraut et al. 1996).  Importantly, in wildtype conditions, cleavage in epidermoblasts is

not random, but vertical.  However, loss of adherens junctions in Drosophila

epidermoblasts does cause randomization of spindle orientation and cleavage plane

(Lu et al. 2001).  These observations lead to the hypothesis that junctional complexes

provide a signal for vertical cleavage while Insc directs horizontal cleavage, with Insc

being the dominant factor.  In the absence of either signal (junctional complexes

signaling vertical cleavage or Insc mediating horizontal cleavage), cells divide

randomly.

In mammals, the vertical cleavage signal provided by junctional complexes

appears to be conserved, however, horizontal cleavages are exceptionally rare.  In



77

neural progenitors of the SVZ (which lack apical contact), cleavage plane is

randomized (Attardo et al., in prep).  Additionally, in mice with mutations that cause

NE cells to lose apical membrane attachment, there is an increase in abventricular

mitoses and randomization of cleavage plane (e.g., aPKC, Imai et al. 2006; Cdc42,

Cappello et al. 2006).  Insc expression has been reported in the mammalian

neuroepithelium (Zigman et al. 2005), however the rarity of horizontal divisions in

this tissue suggests that Insc is not acting in a dominant fashion.

III – 1.5.  Evolution of spindle precision

The most parsimonious explanation for these data is that there is a conserved

pattern of spindle orientation regulation in epithelial derived animal tissues, where

vertical cleavage planes are associated with symmetric divisions and horizontal

cleavage planes are associated with asymmetric divisions.  The difference in the

mammalian neuroepithelium could be explained by a prolongation of the proliferative

phase of cell division (most likely via signaling pathways), which includes

maintaining a vertical cleavage plane orientation, with a loss of the response to the

horizontal cleavage signal.

Figure 39: Elongation of NE cells during ontogenetic or phylogenetic time.  A schematic
representation of NE cells elongating over time.  Across ontogenetic or phylogenetic time, the
neuroepithelium thickens and NE cells elongate.  As a consequence, the apical membrane (shown in
red) is reduced in size.
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A consequence of an increase in NE cell proliferation is the pseudo-

stratification of the neuroepithelium, which in turn results in increasingly elongated

NE cells.  As NE cells become more elongated, the total size of their apical membrane

shrinks, requiring increasing spindle precision in order to bisect it during symmetric

divisions (Figure 39).  Because only a slight deviation from the apical-basal axis

during cytokinesis can result in bypassing, rather than bisecting, the apical membrane,

imprecision of spindle orientation can result in an asymmetric division even with a

vertically orientated cleavage plane.

Based on the available data, we propose an hypothesis for the two-step

evolution of NE cell division in vertebrates, leading to an increase in brain size:

1. Maintenance of junctional complexes in neurogenic progenitors leading to

a prolongation of vertical cleavages, with loss of the response to the

horizontal cleavage signal leading to pseudo-stratification and increased

progenitor number.

2. Evolution of precision proteins as pseudo-stratification increases and the

apical membrane shrinks, leading to an increase in symmetric,

proliferative divisions.

In this model, symmetry versus asymmetry of division in mammalian NE cells

would be modulated by spindle precision along the apical-basal axis, rather than

spindle position perpendicular or parallel to the apical-basal axis.  We suggest that

Aspm may have evolved as a “precision protein” functioning to maintain spindle

position from the time it is set at the end of metaphase through anaphase and

telophase until cytokinesis is completed.

Regarding the first point, it is interesting to consider the evolutionary history

of the Reelin signaling pathway.  If the neuronal layer is no longer created by

delamination into a stratified tissue, there will have to be a mechanism for neurons to

properly migrate out of the germinal zone.  Reelin is important for neuronal migration

and the condensation of the cortical plate (radial and laminar CP organization).

Importantly, Reelin is present in all vertebrates, but absent in the invertebrates

Drosophila and C. elegans (Bar et al. 2000).  In the absence of Reelin, the developing

mouse cortex is poorly organized, with neurons that are obliquely rather than radially

aligned and less densely packed than in wildtype animals (Bar et al. 2000).  Thus, the
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establishment and elaboration of the Reelin signaling pathway may have been

important to the advent of pseudo-stratification.

With regard to the second point, it has been noted that NuMA mutants have a

similar phenotype to Asp mutants (Compton 1998).  That is, that mutations in NuMA

block mitosis.  Consequently, it was suggested that Asp was the Drosophila NuMA

homologue.  Now it is established that Mud is the NuMA homologue in Drosophila

and that Asp is the homologue of Aspm.  However, these data indicate that there may

be some functional redundancy between Asp and Mud.  The recent discovery of an

essential role for NuMA at the cell cortex (Du & Macara 2004) in addition to its

previously defined role at the spindle poles (Fant et al. 2004), may have led to

conservation of NuMA/Mud structure and function.  Consequently, any redundancy

of function between Mud and Asp at the spindle poles could have contributed to

relaxation of selective constraints on Aspm, allowing it to diverge functionally.

III – 1.6.  ASPM evolution: Selection for other cellular roles?

It follows from the functional study in mouse NE cells presented here that

selection for changes in ASPM in the primate and human lineages could have

promoted an increase in symmetric, proliferative divisions, resulting in an increase in

brain size.  We suspect that the role of ASPM gains increasing importance as

proliferation of NE cells increases, due to their increased elongation during

ontogenetic and phylogenetic time (see Figure 39).  However, while our data is

consistent with this inference, we have yet to demonstrate any gain of function

associated with ASPM that would be necessary to support our hypothesis.

Ponting (2006) has argued that selection on ASPM may not have been for its

role during mitosis of NE cells, but rather for a role in ciliary function.  While our

data cannot exclude this hypothesis, particularly as it relates to sperm flagella, we

consider it unlikely.  First, we did not observe Aspm associating with the centrosome

during interphase when it serves as the basal body of the cilium.  Second, our in situ

hybridization data indicate that Aspm is not expressed in the neuronal layer, which

would reduce the possibility of it directing neuronal migration.  We cannot exclude

that Aspm is inherited by newborn neurons where it could then be involved in cell

migration.  However, the fact that Aspm is down-regulated as NE cells switch from
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proliferative to neurogenic divisions makes a critical role for Aspm in neurons

unlikely.

III – 2.                                        Constraints on NE Cell Proliferation

III – 2.1.  The apical membrane as a cell fate determinant

The data presented here indicates that expansion of the pool of proliferating

NE cells can be inhibited by artificial alteration of the cleavage plane away from the

apical-basal axis.  Similar results were also reported for Nde1 (Feng & Walsh 2004).

Despite this, it is still unknown if and how daughter cell fate may be determined.  For

example, the inheritance of apical plasma membrane may be important to maintain

the proliferative state.  At the same time, loss of apical contact and junctional

complexes might be a critical step to initiate the differentiation process in newborn

neurons.

The difference in cell fate observed in Drosophila NBs upon horizontal

cleavage is predicated upon the segregation of cell fate determinants along the apical

basal axis.  For example, the Prospero, Brat, and Miranda proteins localize to the

basal side of the NB and are inherited only by the GMC.  In contrast, the vertical

cleavages of epidermoblasts equally distribute cell fate determinants, generating

daughter cells of similar cell fate.  In Drosophila NBs, Numb is asymmetrically

localized to the basal cortex and is inherited only by the GMC (Knoblich et al. 1995).

In contrast, mammalian numb (mNUMB) localizes to the apical cortex of NE cells,

and is variably inherited between daughter cells (Zhong et al. 1996).  This suggests

that the localization of and/or response to cell fate determinants has diverged between

Drosophila NBs and mammalian NE cells.

Instead, the critical cell fate determinants in mammalian NE cells appear to be

the apical plasma membrane and junctional components (Huttner & Kosodo 2005).

Mouse mutants that disrupt apical contact lead to premature neurogenesis and

disordered cortices (e.g., cdc42, aPKC, Pax6).  Constitutive over-expression of beta-

catenin, an integral component of adherens junctions, leads to increased cell-cycle re-

entry of progenitors, resulting in an expansion of the progenitor pool (Chenn & Walsh
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2002).  All of these data are consistent with Smart’s hypothesis (1972) that limited

apical membrane space is a constraint on proliferation.

III – 2.2.  Basal mitotic populations and the SVZ

It is readily accepted in the literature that the SVZ is the source of upper layer

neurons.  Further, the expansion of the SVZ correlates with the expansion of upper

layer neurons in primates.  From these data, it is inferred that IPCs increase in number

and evolutionary importance.  But what is the evidence that the size of the SVZ is

equivalent to the number of IPCs, or that the gene expression of the SVZ represents

gene expression of IPCs?  In addition to IPCs, the SVZ contains many newborn and

young neurons that are migrating through this layer towards the cortical plate.  The

correlation of IPC marker identity with SVZ identity is largely based on in situ

hybridization data that cannot distinguish between mitotic cells and other cells that

might be in the SVZ, such as migrating neurons.

One study that specifically evaluated mitotic cells concluded that Tbr2 is a

marker of the IPC lineage (Englund et al. 2005).  However, data presented in this

thesis, while preliminary, suggests that Tbr2 might be more generally a neuronal

marker.  The finding that basal mitotic cells in rodents have a higher Tbr2 expression

than apical progenitors could be explained by the hypothesis that IPCs are more

primed from neurogenesis (Haubensak et al. 2004; Miyata et al. 2004; Noctor et al.

2004).

Related to the hypothesis of the apical membrane being important to

proliferation is the possibility that something in the apical membrane inhibits

differentiation.  That is, apical membrane contact is not only important to receive

signals at the junctions or from the lumen for cell cycle re-entry, but that

differentiation is actively inhibited.  Thus, Tbr2, and perhaps other neuronal markers

may be more obviously expressed in IPCs, because their expression is no longer

inhibited once apical contact and junctions are lost.  This hypothesis may also hold for

Cux2 and Svet1, which have already been clearly described as neuronal markers.

Further, since these genes are known to be neuronal markers, their expression in the

SVZ may also be accounted for by newborn neurons migrating through the SVZ

rather than reflecting an increase in progenitors from this layer.
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Finally, an important finding reported in this thesis is that basal mitotic cells in

primates are Pax6 positive, similar to apical progenitors in rodents (Figure 40).  If

Tbr2 is a marker of the IPC lineage, then the data presented here suggest that the Tbr2

lineage does not increase in primates as hypothesized by Kriegstein and colleagues

(2006).  Instead, it supports the hypothesis that basal mitotic cells of the primate

OSVZ are derived from rodent VZ progenitors.  Confirmation of epithelial

characteristics in primate basal mitotic cells, specifically maintenance of apical

processes, was not achieved by the results reported here.  However, it should be noted

that basal Tbr2 positive cells increase in the mice with mutations that disrupt apical

contact (e.g., Cdc42, Cappello et al. 2006), suggesting that Tbr2 is a reliable marker

of cells that have lost their apical processes.  Together, these data favor the hypothesis

that basal mitotic cells in the primate maintain apical contact as proposed by Smart

and colleagues (2002).

Figure 40: Tbr2 and Pax6 in primate and rodent basal mitotic cells.  A schematic representation of
the germinal layers of rodents (A) and primates (B).  A, In rodents, NE/RG progenitors of the VZ (blue
nuclei) have elongated processes, divide at the apical surface, and express Pax6.  In contrast, SVZ
progenitors (IPCs, green nuclei) lack apical processes, divide basally, and express Tbr2.  B , In
primates, the Tbr2 positive mitotic cell population (green nuclei) is reduced.  Moreover, both basal and
apical dividing progenitors express Pax6 (blue nuclei).  Dashed lines represent the hypothesized
epithelial nature of basal mitotic cells in primates.

III – 2.3.  Epithelial versus non-epithelial progenitors

An impressive feature of the isocortex is its highly organized morphology.

This contrasts starkly with the ganglionic eminences of the ventral telencephalon.
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Why is it then, that the isocortex forms a thin, tightly compact, radially organized

sheet of cells whereas the GE appears as a globular lump of cells (Rakic 1995)?  One

phenomenon that correlates with these structures is mitotic populations.  In the cortex,

most progenitors divide apically, from a radial precursor.  In the GE, most progenitors

are basal, arising from cells without apical membrane.  This correlation, together with

previously mentioned increasing role of the Reelin signaling pathway, indicate the

importance of radial guidance to cortical structure and function.  Further, most data

from mammals indicates that the apical membrane is important for continued

proliferation (see above discussion).

It is unclear how a vast increase in non-epithelial cells would allow for the

maintenance of radial organization.  The increased number of neurons generated from

such IPCs, could, in principle, contribute to increased thickness of the CP by hopping

onto a neighboring radial guide, but a mechanism by which non-epithelial precursors

could contribute to an ordered, radial lateral expansion of the brain has not been

offered.  Thus, although the hypothesis of non-epithelial progenitor expansion cannot

yet be rejected, it is not the most parsimonious explanation for lateral expansion of the

primate brain because it requires multiple evolutionary changes.

In contrast, there is at least some direct evidence in favor of the epithelial

nature of SVZ progenitors in primates.  First, GFP labeling of OSVZ progenitors in

monkey tissue slices clearly shows elongated apical and basal processes extending

from OSVZ nuclei (Lukaszewicz et al. 2006).  The number of OSVZ nuclei with

processes was not quantified, but comparative morphological studies on primates and

rodents reveal a difference in shape and organization between the OSVZ and the

rodent SVZ (Smart et al. 2002).  In this work, I tried to quantify the epithelial nature

of basal mitotic cells in monkey and human tissue, but I was limited by tissue

availability and quality.  The processes of the human VZ cells are too thin and too

abundant to reliably trace their identity to individual nuclei.  Future work in which

live cells are labeled in a slice culture system may allow quantitative data to be

obtained.

III – 2.4.  Delayed versus extended differentiation

A related point that is not specifically addressed in this thesis, but is

nonetheless relevant to the discussion, is the issue of the kinetics of the switch from



84

symmetric to asymmetric divisions.  Both Smart’s two rules and Rakic’s two phases

emphasize expansion of the proliferative pool via delayed differentiation.  This is

undubitably true in the mathematical sense that more progenitors make more neurons.

However, this mathematical model refers to the average onset of neurogenesis.  That

is, to say that primates have a delay in neurogenesis compared to rodents means that

the time that the majority of progenitors are generating neurons rather than

undergoing symmetric, proliferative divisions is relatively later in primates than in

rodents.  While true, this conceptualization diminishes the importance of another

potentially critical component contributing to lateral expansion- that is, the potential

early onset of neurogenesis in primates.   

MPM2 immunostaining which was used to look for processes in mitotic cells

of the human VZ, revealed a striking amount of positive staining throughout the

whole VZ (see Figure 38).  At the same time, there is already a well-developed

neuronal layer at 10 weeks post-conception.  These observations lead to the

consideration that neurogenesis is occurring relatively earlier in the humans than it

does in mouse.  Recently, it was reported that “predecessor” neurons are found in the

human isocortex prior to neural tube closure (Bystron et al. 2006).  To date, this type

of cortical neurons appear unique to humans, both in their molecular characteristics

and early birthdate.

Thus, it could be that the onset of neurogenesis is earlier in primates than in

rodents, even if “on average” neurogenesis is delayed.  Why is this important?  If

apical membrane space is a constraint on proliferation, there will be a finite number of

progenitors that can exist at one time per given apical membrane area.  At some point,

it will be mechanically impossible to put more progenitors in the same area.  Still the

neuron generating potential of this apical membrane area can be increased by

allowing some of the progenitors to undergo neurogenesis early, generate their

allotment of neurons, and then be consumed, thus freeing some apical membrane

space for new progenitors which continue to be generated.

The effects of the kinetics of the switch from symmetric to asymmetric

division are presented in Figure 41.  In this example, it can be seen that an early onset

of neurogenesis with a slow rate of progression (green line) can ultimately lead to

more progenitors in the same number of generations than a late onset of neurogenesis

with a fast switch (red line).
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Figure 41: Delayed versus extended differentiation.  Graph displaying a hypothetical change in the
kinetics of the switch from symmetric, proliferative to asymmetric, neurogenic cell divisions.  An
earlier, but slow switch in primates may allow more lateral expansion than a later, but fast switch.

As an hypothesis, one could add a third rule to Smart’s two: In order to

maximally optimize the neuronal production over a given apical membrane space, the

duration of neurogenesis should be increased, with some progenitors initiating

neurogenesis early and the rate at which subsequent progenitors switch to neurogenic

divisions decreased.  This point has not been explicitly emphasized in the literature,

and it is not trivial when considering the evolutionary mechanisms generating

increases in brain size.  It suggests that whatever mechanisms are triggering the onset

of neurogenesis must be induced earlier rather than later, maintained for a longer

time, and regulated with a slower rate.  It changes the question from how to delay

neurogenesis to how to extend neurogenesis.  This hypothesis also suggests that

progenitors may escape the apical crunch by dividing basally, and/or dividing apically

over a more extended period.

III – 3.                                                                   Future Perspectives

The mouse model system provides a powerful tool for genetic manipulation

and functional studies.  As exemplified by our study on Aspm, cell biological

mechanisms can be dissected, and their role in embryonic development studied.

These studies allow us to generate hypotheses about evolutionary processes.

However, the mouse model system is restricted in the sense that it cannot account for
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developmental processes that are specific to primates (see Molnar et al. 2005 for

review).  In the case of Aspm, its evolutionary importance might only be relevant in

the highly elongated cells of the OSVZ that do not exist in the mouse

neuroepithelium.  For this and other reasons, comparative studies in primate tissue are

essential.  Further, more live imaging and genetic manipulation via viral infection in

slice culture of primate tissue will be necessary to understand primate neurogenesis.

A more complete picture of primate neural development will help elucidate the

important changes in this lineage and contribute to our understanding of its evolution.

One of the most obvious open questions is whether or not the progenitors of

the OSVZ divide in a symmetric, proliferative manner, and the percentage of these

progenitors that maintain apical contact.  It is known that the OSVZ generates the

majority of neurons in the primate cortex (Lukaszewicz et al. 2005), however, it is not

known if these cells also proliferate.  It would also be interesting to know the

mechanics of how these cells divide.  If OSVZ progenitors do proliferate, this would

imply that they can symmetrically distribute their apical membrane to both daughters

or that one daughter can “re-grow” apical membrane in a similar manner that has been

proposed for the basal processes of apical progenitors in rodents (Miyata et al. 2001).

Answering these questions about the cell biology of the developing primate brain will

provide invaluable insight into the molecular genetics behind the evolutionary

changes that generated the large brains of primates.
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IV – 1.                                                                            Materials

IV - 1.1.   Antibodies

Antibody I                    Kind                                         Dilution                                   Source
α-Aspm Rabbit, polyclonal, IgG 1:1000  (generated in house)
α-βIII-tubulin Mouse, monoclonal, IgG 1:400 Sigma
α-BrdU Mouse, monoclonal, IgG 1:500 Hybridoma cell line (in house)
α-Cadherin Mouse, monoclonal, IgG 1:200 Sigma
α-Cadherin Rabbit, polyclonal, IgG 1:200 Sigma
α-γ-tubulin Mouse, monoclonal, IgG 1:200  Alexis Biochemicals
α-γ-tubulin Rabbit, polyclonal, IgG 1:200 Sigma
α-MPM2 Mouse , Monoclonal, IgG 1:6000            Upstate
α-Pax6 Rabbit, polyclonal, IgG 1:200          Covance
α-PH3 Rabbit, polyclonal, IgG 1:400            Upstate
α-Tbr2 Rabbit, polyclonal 1:250            AbCam

Antibody II                  Kind                                         Dilution                                   Source
α-Mouse A532 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch
α-Mouse Cy3 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch
α-Mouse Cy5 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch
α-Rabbit A532 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch
α-Rabbit Cy3 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch
α-Rabbit Cy5 Goat, polyclonal IgG 1:1000       Jacksons immunoresearch

IV - 1.2. Mouse strains and tissue samples

IV-1.2.1  Mouse strains
All experiments with Tis21-GFP knock-in mice were performed on

heterozygous embryos obtained from crossing homozygous males with C57BL/6J
females. Wildtype embryos were obtained from NMRI mice. The vaginal plug was
defined as embryonic day E0.5.  All experiments with Tbr2-GFP knock-in mice were
performed on heterozygous embryos obtained from crossing homozygous males with
CD1 females.

IV-1.2.2  Monkey tissue
Fixed 60µm thick sections of E80 macaque brain (areas 17 and 18) were

obtained from the laboratory of Collette Dehay in the Department of Stem Cell and
Cortical Development at the Université Claude Bernard Lyon I in Lyon, France.  The
samples were shipped and stored in 1ml of anti-freeze solution.  Sections were
washed 3 times for a total of 24 hours in PBS + 0.1% Tween prior to proceeding with
immunostaining.

IV-1.2.3  Human tissue
Human embryonic tissue age 7-12 weeks was obtained from the Frauenklinik,

Dresden, Germany after legal abortions.  All tissue was received with consent of the
mother and obtained following national ethics guidelines under German law.  Tissue
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was fixed in 4% paraformaldehyde at 4°C for 24 hours, embedded in Tissue Tek, and
stored at -80°C until used.

IV - 1.3.  Buffers and culture media
10X DNA loading buffer 50mM Tris/Hcl, pH7.6

2.5mg/ml Bromophenol Blue
2.5mg/ml Xylene Cyanol

60% Glycerol
in H2O

10X TBE 0.89 Tris
0.89 Boric Acid
20mM EDTA
pH8.0
in H2O

Western Blot:
High Molecular Weight Transfer Buffer: 25mM Tris-

190mM Glycine, pH 8.2-8.5
20% EtOH

Buffer 1 0.3M Tris
20%MeOH
pH 10.4 with NaOH

Buffer 2 0.025M Tris
20%MeOH
pH 10.4 with NaOH

Buffer 3 0.025M Tris
20%MeOH
0.04M 6-Aminohexane acid
pH 9.4

Immunofluorescence:
(i) Permeabilization 0.3% Triton X 100 in PBS
(ii) Quenching 0.1M Glycine in PBS, pH 7.4
(iii) Tx Buffer 0.2%gelatin

300mM NaCl
0.3% Triton X 100
in PBS

Moviol 6.9g Glycerol
2.4g Moviol
120ul 200mM Tris/Hcl pH8.5
in 6ml H2O

In situ Hybridization:
Ripa buffer 150mM NaCl

1% NP-40
0.5% Na Deoxycholate
0.1% SDS
1mM EDTA
50 mM Tris, pH 8.0
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Triethanolamine buffer 100mM Triethanolamine
Acetic Acid to pH 8.0

Hybridization buffer 50% Formamide
5X SSC
5X Denhardts
500µg/ml Herring sperm DNA
250µg/ml Yeast RNA

Post-hybridization buffer 50% Formamide
2X SSC
0.1% Tween

Buffer B1 100mM Maleic Acid, pH 7.5
150mM NaCl
0.1% Tween

Buffer B3 100mM Tris, pH9.5
50mM MgCl2

100mM NaCl
0.1% Tween

Bacteria:
LB 10mg/ml NaCl

10mg/ml Bacto-Tryptone (Difco)
5mg/ml Bacto-Yeast extract (Difco)

LB-Agar 15mg/ml Bacto-Agar (Difco)
in LB

Embryo culture and dissection:
PBS 137mM NaCl

2.7mM KCl
8mM Na2HPO4

1.5mM KH2PO4

Penicillin/Streptomycin (100X) 10.000U/ml Penicillin
10.000U/ml Streptomycin
in PBS

Tyrod 16g NaCl
0.4g KCl
0.4g CaCl2

0.42g MgCl2 
. 6H2O

0.114g NaH2PO4 
.  2H2O

2g NaHCO3

2g Glucose
pH 7.4
in H2O
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Whole embryo culture Medium Freshly centrifuged rat serum (Charles River
Japan)

1X Penicillin/Streptomycin
2mg/ml Glucose

IV - 1.4.   Chemicals, enzymes, DNA standards and films

For routine work, standard chemicals from the companies Merck, Roth and Sigma were used.

Digoxygenin labeling and detection systems Roche
DNA standards NEB
Films Amersham Hyperfilm
Penicillin/Streptomycin GibcoBRL
Restriction enzymes and ligases MBI Fermentas

NEB
Roche

IV - 1.5.   Devices and computer applications

Computer software Adobe Photoshop
Illustrator
Image ready

Microsoft Office for Mac
Scanalytics Inc. IpLab 3.5.5
Zeiss LSM image examiner

Centrifuges Eppendorf 5417R
5415R

Beckmann Coulter Avanti J-25
Cryostat Microm HM560
Developer Kodak M35X-OMAT-Processor
Electroporator Genetronics BTX®-ECM®830
Electrophoresis chambers EMBL
Heating block Eppendorf Thermostat 5320
Heating chamber Saur Bachoffer Chamber
Microscopes Olympus BX61

SZX12
Fluoreview FV1000

Zeiss LSM510
Nikon TE300

pH Meter Radiometer Analytical MeterLab PHM210
Spectrophotometer Pharmacia Ultrospec III
Sterile Hood The Baker Company SteriGard Hood
Thermal Cycler MJ Research PTC-200

IV - 1.6. Commercial Kits
Digoxygenin labeling and detection systems Roche
DNA preparation
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(i) Maxiprep Quiagen Endofree Plasmid
Maxi Kit

(ii) Miniprep Quiagen QUIAprep spin
Miniprep Kit

(iii) Tail preparation Quiagen DNAeasy Tissue
Kit

DNA transfer Schlecker & Schuell Turbo blotter

IV - 1.7. Oligonucleotides

Aspm cloning
ASPMex3-s2: GGC TCG AGGG CCA GCC TCT TCA AAA CAT AC (585-604)
ASPMex3-a2: CCA GAA TTC GGC TGC TTA TCC GCT TTG (1932-1915)

Aspm esiRNAs
Aspm esi sense T7 promoter sequence
5’-CGTAATACGACTCACTATAGGG TCTGGCTATGAGTGAATGCTC (695-
715)
anti-sense T7 promoter sequence
5’-CGTAATACGACTCACTATAGGG ACCTACTAGACCTTCGAGAC (1628-

1609)

Aspm in situ:
5’-AATTAACCCTCACTAAAGGG AACGGGATTGACGGACTTG (1250-1232)

IV- 1.8. Plasmids

Clontech EGFP C1 EGFP mammalian expression vector (CMV promoter)
pCAGGS-mRFP mRFP mammalian expression vector (CAGGs promoter)
pCAGGS-Cherry Cherry mammalian expression vector (CAGGs promoter)
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IV – 2.                                                                                      Methods

IV - 2.1.  DNA preparation
Plasmid and genomic DNA from mouse tails was prepared using commercially

available Kits from Quiagen, according to the manufacturer instructions. For details and
buffer composition refer to the manufacturer handbooks.

IV - 2.1.1.  Miniprep (QUIAKprep spin Miniprep Kit)
A single bacterial colony was selected with a sterile toothpick and used to inoculate

5ml of LB, supplemented with the appropriate concentration of the appropriate antibiotic.
The culture was grown overnight in a shaking incubator at 37°C.  The bacteria were
harvested by centrifugation (5’ at 13,000 rpm, room temperature) and re-suspended in 250µl
of buffer P1, then lysed by the addition of 250µl of buffer P2.  The lysed suspension was
neutralized after 5’ by the addition of 350µl of buffer N3 and centrifuged for 10’ at 13,000
rpm.  The supernatant was applied to the QUIAprep column and centrifuged for 1’ at 13,000
rpm.  The column was washed twice by the addition of 750µl of buffer PE followed by
centrifugation for 1’ at 13,000 rpm.  The DNA was eluted by the addition of 50µl of buffer
EB and centrifugation for 1’ at 13,000 rpm.

IV - 2.1.2.  Maxiprep (Endofree Plasmid Maxi Kit)
A single bacterial colony was selected with a sterile toothpick and used to inoculate

5ml LB, supplemented with the appropriate concentration of the appropriate antibiotic. The
culture was grown overnight in a shaking incubator at 37°C.   500µl of the culture was used
to inoculate 250ml LB, supplemented with the appropriate concentration of the appropriate
antibiotic.  The bacteria were harvested by centrifugation (15’ at 6,000g, 4°C) and re-
suspended in 10ml of buffer P1, then lysed by the addition of 10ml of buffer P2.   The lysate
was neutralized after 5’ by the addition of 10ml of cold buffer P3.  The lysate was then
poured into the QUIAfilter cartridge and filtered after 10’ incubation.  The filtered lysate was
incubated for 30’ with the endotoxin removal buffer ER, then applied onto the QIAGEN-tip
500 column and allowed to elute by gravity flow.  The column was washed twice by the
addition of 30ml of buffer QC.  The DNA was eluted into a corex tube by the addition of
15ml of buffer QN.  The eluate was precipitated by the addition of 10.5ml (0.7 volumes) of
isopropanol followed by centrifugation (30’ at 15,000g, 4°C).  The DNA pellet was washed
with 5ml of 70% endotoxin free ethanol, followed by centrifugation (15’ at 15,000g, 4°C).
The pellet was air-dried and re-suspended in 100µl of cell culture-grade PBS.  The DNA
solution was centrifuged once more for 10’ at 13,000 rpm to clear it from possible debris.

IV - 2.2.  Genomic cloning via the polymerase chain reaction

An aliquot of genomic DNA obtained from mouse tails was used for amplification via
Polymerase Chain Reaction. The recombinant TAQ DNA polymerase, made in house by D.
Drechsel, has a proofreading activity.  Amplification products were run on a 2% agarose gel
containing Ethidium Bromide at 0.5mg/ml. The gel was prepared in TBE and gel run in TBE
buffer.

PCR Mix Thermal Cycler Program
Reaction Buffer (10x) 3ul Cycle(s) Temperature

Time
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dNTPs (10mM) 0.3ul 1 950C 5’
Oligonucleotides (100um) 0.3ul 10 950C 30”
Template DNA 5ul 0.10C/ second down to
“super” TAQ (5U/ul) 0.3ul 550- 650C 45”
ddH2O up to 30ul 720 C 

1’/Kb
20 950C 30”

550- 650C 45”
720 C 

1’/Kb
1 720 C 10’

The amplified band corresponding to Mouse Aspm exon 3 was excised from
the gel and purified using a Qiagen kit protocol.  Prior to ligation, both the PCR
product (Aspm exon 3) and the target vector (EGFP-C1) are digested with Xho1 and
EcoR1 enzymes at 37°C.  The PCR product is digested overnight, and the vector is
digested for one hour.  After digestion, the nucleic acids are purified by phenol
extraction.  Digested PCR products and vector are ligated at 16°C for 16 hours.  The
ligation reaction mix contains 100ng of vector, 10ng PCR product, 1µl 10X reaction
buffer, 1µl 10mM ATP, 0.1 unit of T4 DNA ligase, and water up to 10µl total
volume.  The ligated vector is then transformed into Top10 competent cells.  3µl of
the ligation mix is added to 50µl bacteria and transformed by heat shock at 45°C for
90 seconds.  After transformation, the bacteria is amplified in a shaking incubator at
37°C for 3 hours.  Bacteria are then plated on drug resistant agar plates to obtain
transformed colonies.

IV - 2.3.  Aspm antibody

GST-tagged recombinant protein from mouse Aspm exon 3, representing
amino acids 150-263, was used as an immunogen in rabbits. The resulting antisera
were affinity-purified. Antisera and affinity-purified Aspm antibodies were first tested
in immunoblots of total protein of Cos7 cells overexpressing a GFP-Aspm150-263

fusion protein.  The specificity of the affinity-purified Aspm antibodies was further
corroborated in immunoblots of total protein from mouse E12.5-13.5 heads, in which
a band >300 kDa and 3 smaller bands were recognized.

IV - 2.4.  Embryo electroporation

Using a glass capillary, wild type or transgenic mice embryos (from 10.5 to E12.5)
were injected (in or ex utero) into the developing telencephalic vesicle with 1-2ul of an
endotoxin-free DNA solution (, pCAGGs-mRFP, or pCAGGs-Cherry, or Aspm esiRNAs;
concentrations ranging from 0.3ug/ul to 1ug/ul in PBS) containing a vital dye (Fastgreen in
PBS, 10%).  5 unidirectional squared electrical pulses (30V for in utero, 42V for ex utero, 50
ms each at 1-s intervals), were delivered through platinum electrodes (2 mm diameter, 1 mm
space between the electrodes), using a BTX®-ECM®830 electroporator.  The orientation of
the electric field was used to direct the uptake of the plasmid to cortical cells with an apical
contact.  The embryos were allowed to develop 24h to 1 day, then collected and checked for
fluorescence prior to fixation.
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IV - 2.4.1.  In utero electroporation

In utero electroporation of mouse embryos was performed as described in (Takahashi
2002) except that the topology of the embryos was determined using illumination and a
dissecting microscope rather than ultrasound microscopy.  Pregnant mice 12 days post
coitum were anesthetized with isofluorane vapor and their uteri exposed. 1-2 µl of the DNA
solution described above were injected through the uterine wall into the lumen of the
telencephalic vesicles. Immediately after injection, electrical pulses were delivered as
described above. After electroporation, the uterus was relocated into the peritoneal cavity and
the abdomen sutured. The mice were sacrificed either 24h or 48h after this procedure and
embryos collected for further analysis.

IV - 2.4.2.  Ex utero electroporation and whole embryo culture

Ex utero electroporation and whole embryo culture were performed as previously
described (Eto, 1995; Calegari et al. 2004).  The uteri were collected from time-mated
females killed by cervical dislocation, and dissected in Tyrod solution. E10.5 embryos were
freed from uterine walls, decidua capsularis and Reichert’s membrane.  They were then
cultured with their open amnion, yolk sac and ectoplacental cone for approximately one hour
to allow equilibration with the culture conditions. The culture was carried out in glass bottles
(one embryo per bottle) containing 1.5 ml of whole embryo culture medium. To ensure
proper oxygenation, the bottles were kept in continuous rotation (25 rpm) with a continuous
oxygen flow (from 60% to 95% O2, 5% CO2 in N2) going from 50cm3/min (60% O2) to 50
cm3/min (95% O2) according to the developmental stage.  After equilibration, the embryos
were transferred to the electroporation station and immobilized . 1-2 µl of the DNA solution
described above were injected into the lumen of the telencephalic vesicles. Immediately after
injection, electrical pulses were delivered as described above. The embryos were transferred
back to the culture bottle and analyzed 24 hrs later.

IV - 2.4.3.  Aspm knock-down

Following previously established methods (Yang et al. 2002; Calegari et al.
2004), Aspm esiRNAs (0.6 µg/µl) generated from double-stranded RNA
complementary to nucleotides 585-1932 of exon 3 of mouse Aspm, together with an
mRFP plasmid (0.75 µg/µl), were injected and directionally electroporated into one
half of the dorsal telencephalon of E10.5 embryos ex utero or E12.5 embryos in utero,
which were then allowed to develop in whole-embryo culture for 24 h or in utero for
24-48 h, respectively. The contralateral side of the dorsal telencephalon and/or dorsal
telencephalon electroporated with mRFP plasmid only were used as controls. The
mRFP plasmid was a pCAGGS vector expressing mRFP (kind gift of Dr. Roger
Tsien) under the control of the chicken β-actin promoter coupled to the CMV
enhancer.

IV - 2.5.  Immunofluorescence

Cryosections were surrounded with a layer of hydrophobic compound (PAP-pen).
Then kept in a humidified chamber and treated according to the following protocol. The
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stained slides were mounted in moviol and stored in the dark at 4° C.  Monkey slices (60µm)
were stained while floating in a 1.5ml microfuge tube according to the following protocol
and then mounted on coated glass slides (Histobond Marienfeld).

Wash 2x 5’ incubation in PBS, 0.3% TritonX100
Permeabilization 30’ incubation in PBS, 0.3% TritonX100
Quenching 30’ incubation in PBS, 0.1M glycine
Wash 3x 10’ in Tx Buffer
Primary antibody 2h at room temperature in Tx Buffer
Wash 5x 5’ in Tx Buffer
Secondary antibody and Dapi 1h at room temperature in Tx Buffer
Wash 5x 5’ in Tx Buffer
Wash 3x 1’ in PBS
Wash 1x in ddH2O

For BrdU immunostaining, 5 U DNAse per ml of TX buffer were added to the primary
antibody incubation.  GFP and mRFP were detected by their intrinsic fluorescence.

For Pax6 immunostaining, the slides are boiled in 0.1M Sodium Citrate for 10 minutes prior
to the primary antibody incubation.  After boiling, the slides are washed 3 times for 5 minutes
in PBS and then the regular protocol can be followed.

IV - 2.6.  In situ hybridization

Non-radioactive in situ hybridization using digoxigenin-labeled cRNA
antisense and sense probes corresponding to nucleotides 585-1932 of exon 3 of mouse
Aspm was carried out on 10 µm cryosections by standard methods.  Slides were
washed with PBS and treated 2x 10min with RIPA buffer.  Postfix for 10min in 4%
PFA in PBS at RT (without a washing step after RIPA treatment).  Wash the slides 3x
5min with PBS.  Treat 15min with triethanolamine buffer and dropwise add acetic
anhydride (0.25% final concentration). Wash 3x 5min with PBS-Tween 0,1%.
Prehybridise the slides 15min to 1h at 70°C using hybridization solution.

Hybridization (hybridization buffer + 50-1000ng/ml of cold probe) could be
done directly on the slides, using 250-300µl/slide or in a bath, using a 5 slides
container (17ml). Hybridization is done overnight in a humidified chamber (or in a
bath) at 70°C. If needed, stringency of the hybridization can be lowered by decreasing
the temperature or the percentage of formamide or by increasing the salt
concentration. Heat the probe at least for 10min.  Rinse quickly 1x with the pre-
heated hybridisation buffer (@70°C) and then wash the slides 2x 1h at 70°C in the
post-hybridization solution.

Slides are washed 2x 5min and 1x 20min at RT in buffer B1. Then block in B2
buffer (10% FCS or Goat Serum in B1) for 30min to 1h at RT directly on the slides
(200µl/slide).  Anti-DIG antibody diluted 1/2000 in B2 buffer is incubated overnight
at 4°C (directly on the slides with 250µl/slide). Put the antibody on the slides in the
4°C.  Wash the slides 2x 5min with B1 and then incubate the slides in B3 buffer for
30min.

Overlay each slide with 250-300µl of NBT-BCIP (filter the ready-to-use
solution and add 0.1% of Tween-20). The colour reaction is developed in the dark for
30min to one day at RT or overnight at 4°C. When one tests a new probe, it should
first be done at room temperature, and the coloring of the sample should be checked
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after 1h. If everything is OK, the samples are left overnight at 4°C.  The reaction is
stopped with PBST (PBS + 0.1% Tween-20); wash 3-5x for 5min in PBST. If no
more reaction is to be done briefly wash the slides in water and let them dry. Then
mount in aqueous mounting medium.

IV - 2.6.1 Preparation of DIG labeled probe

The plasmid (20µg) is linearized via enzyme digestion on a reaction mix with a total
volume of 100µl.  The reaction mix included 10µl 10x buffer, 2µl of the appropriate enzyme,
20µg of plasmid DNA, and sdH20 up to 100µl.  The reaction mix is incubated at 37°C for 1
hour.  The digested DNA is recovered by phenol extraction.  An equal volume of
phenol/chloroform is added to the reaction mix, it is vortexed for 1 minute, and then spun in a
microfuge at 13,000rpm for 10 minutes.  The upper phase is then transferred to a new tube.
Two volumes of 100% ethanol and 0.1 volume 3M sodium acetate are added to the upper
phase.  The solution is briefly vortexed and the DNA is precipitated by incubation at -20°C
for at least 1 hour.  The DNA is collected by centrifugation at 13,000rpm for 30 minutes at
4°C.  The digested DNA can now be used for DIG labeling.  The reaction mix is as follows:

DNA 10µl (1µg)
10X Buffer 2µl
sdH20 4µl
10X DIG label mix 2µl
RNA polymerase 2µl

Total volume = 20µl

This reaction is mixed and incubated at 37°C for 2 hours.  The in vitro
transcribed RNA is collected by precipitation with 2.5µl pre-chilled 4M LiCl and
75µl pre-chilled EtOH.  The mix is precipitated at -20°C overnight.  RNA is collected
by centrifugation at 13,000rpm for 30 minutes at 4°C and then re-suspended in 50µl
sdH20.  RNAse inhibitors should be added for long term storage.  RNA concentration
was quantified on an agarose gel.

IV - 2.7.  Western Blot
Pour stacking gel.  The volume for a minigel is ~6ml.  Leave ~1cm below comb for

stacking gel.  Pour separation gel and gently add ~1ml isopropanol to top of gel with blue tip.
Allow separation gel to polymerize.  Pour isopropanol off, rinse with water 3X, then use 3M
paper to get most of the water off the gel.  Pour stacking gel.  Allow the gel to polymerize.
Prepare and load samples:  Boil samples 3-5 minutes in a 95°C heating block.  Spin samples
down.  All samples should have same amount of protein in the same loading volume.  All
wells must be loaded- use equal volume loading buffer.  Load sample placing the pipette tip
at the bottom of the well and move up.  Run the gel at 15mA until dye front is at the end.
Transfer the gel a PVDF nylon membrane.  The membrane should be the size of the gel
(8x7cm).  Cut 10 pieces of 3M Whatman paper slightly larger than the membrane (8x9cm).
Rehydrate the membrane in 100% EtOH for 1minute.  Move membrane to buffer 2.  Wash
the gels in water.  Remove the stacking gel from the separation gel and rinse in water again.
Rinse the gel in buffer 2.  Wash blotting apparatus with water and leave humid.  Individually
wet three 3M papers in Buffer 1 and place then on the transfer apparatus.  Remove air
bubbles with a pipette.  Individually wet two more 3M papers in Buffer 2 and add to other
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papers in a stack.  Remove air bubbles with pipette.  Place the membrane on top of the
stacked 3M papers using forceps, and avoiding bubbles.  With a pencil, label one corner of
the membrane.  Place the gel on top of the membrane, avoiding lots of movements.
Individually wet five more 3M papers in Buffer 3.  Stack these on top of the gel, membrane
and other papers.  Two first, remove air bubbles, then the last three.  Remove air bubbles.
Put on apparatus lid.  Add 2 (1)-Liter bottles as weights.  Run at 150mAmp for 1 hour.  After
the transfer, cut the corner of the gel and membrane for orientation.  Put the gel into
commassie buffer to confirm the transfer.  Put the membrane into a container with blocking
buffer (5% milk in PBS; 0.1% Tween 20) and incubate overnight at +4°C.  The following
day, incubate the membrane with the primary antibody diluted in blocking buffer (5% milk in
PBS; 0.05% Tween 20) for 2 hours at RT.  (Blocking buffer can also be diluted 1:1 in
PBS/Tween (0.1%)).  Wash for 1 hour at RT in PBS/Tween 20 (0.1%).  Incubate with
secondary antibody in blocking buffer (5% milk in PBS; 0.05% Tween 20) for 1 hour at RT.
Wash for 1 hour at RT in PBS/Tween 20 (0.1%).  After washing, expose the membrane.  Mix
the ECL compounds 1:1 (200µl: 200µl).  Incubate immediately with the membrane for 5
minutes.  Put the membrane between two transparent sheets.  Remove air bubbles.  Tape the
membrane into place inside a dark cassette.  Develop for 10 seconds, 30 seconds, one minute,
and longer if necessary.

Proteins from over-expressing cells were separated on a 12% acrylamide gel
and transferred as described above.  Proteins from the embryo extract were separated
on a 4% agarose gel.  Since the proteins from the embryo extract are of a high
molecular weight, the transfer of proteins to the membrane was done overnight (16
hours) at 4°C.  The transfer buffer (high molecular weight transfer buffer) was
continuously circulated overnight.

IV - 2.8.  Mouse handling, embryo collection, and fixation

The mice were always handled according to German legal standards.  For embryo
collection, the pregnant females were killed by cervical dislocation.  Embryos were removed
from the mother and fixed in freshly depolymerized 4% PFA overnight, then transferred in a
sucrose solution (30% in PBS) for cryopreservation.  For cryosectioning, the brains were
embedded in Tissue Tek (Sakura), deep frozen (on dry ice) then stored at -200 C until used.
Cryosections (10-16µm-thick) were cut with a cryostat (Microm, HM560) and collected on
coated glass slides (Histobond Marienfeld).  Slides were kept at  -20°C in the dark until used.

IV - 2.9.  Confocal microscopy

Confocal microscopy on cryosections of paraformaldehyde-fixed E10.5-E14.5 mouse
brains from wildtype or heterozygous Tis21-GFP knock-in mouse embryos was performed
according to standard procedures.  Two different confocal microscopes were used for
imaging.  The different fluorophores in the 16µm-thick sections were excited with the
following laser lines.  Pinhole size was 1 airy unit, except for detection of the cadherin hole,
where a pinhole of 0.75 airy unit was used.

Dapi 405 or 364
GFP 488
A532 532
mRFP 594
Cherry 594
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Cy3 633
Cy5 688

IV - 2.10.  Quantitative data analysis

IV - 2.10.1 Assessment of Aspm immunofluorescence intensity in Tis21-
GFP–negative versus Tis21-GFP–positive NE cells

Neighboring NE cells in the same mitotic phase (prophase or metaphase as
revealed by DAPI staining) in E14.5 Tis21-GFP knock-in mice, of which at least one
cell was Tis21-GFP–negative and one was Tis21-GFP–positive, were analyzed. The
cells were scored in print-outs of the confocal scans showing either Aspm
immunostaining or GFP fluorescence. For each mitotic cell, the centrosome-specific
Aspm immunostaining was evaluated relative to the non-specific background staining
and then given an intensity assessment (strong, medium, or weak) by an investigator
who was unaware of the absence or presence of Tis21-GFP expression in the
respective neuroepithelial cell. Each mitotic cell was then scored separately for Tis21-
GFP expression as positive or negative. Scoring for Aspm and GFP intensity was
performed by two independent investigators, with essentially identical results.

IV - 2.10.2  Analysis of cleavage plane orientation and apical membrane
distribution

Cleavage plane orientation and apical plasma membrane distribution were
determined in optical sections of mitotic NE cells stained for DNA and cadherin as
previously described (Kosodo et al. 2004). Briefly, cryosections labeled for DNA and
cadherin from electroporated Tis21–GFP knock-in mouse embryos were first
examined for the pattern of DNA to identify mitotic NE cells in anaphase / early
telophase. Only mitotic cells that were both Tis21-GFP–negative and mRFP–positive
were considered for this analysis.  The cleavage plane was deduced from the
orientation of the sister chromatids. Cleavage planes were classified into groups +/-5°.
Following the determination of the position of the cadherin hole relative to the
predicted cleavage plane, divisions with cleavage planes passing through the cadherin
hole were defined as symmetric in terms of distribution of apical membrane, and
those with cleavage planes bypassing the cadherin hole as asymmetric, irrespective of
whether the cleavage plane was vertical or oblique to the ventricular surface.

IV - 2.10.3  Quantification of abventricular centrosomes

After identification of the electroporated region via RFP fluorescence, at least
eight consecutive optical sections (1 µm) were obtained from γ-tubulin– and βIII-
tubulin–immunostained 16 µm-thick cryosections. For each cryosection, abventricular
γ-tubulin–immunostained centrosomes in the VZ of the targeted and non-targeted side
were counted in three separate optical sections (with one non-counted optical section
in between) within a 200x50 µm field which excluded the strip containing the apical
mitotic cells and the βIII-tubulin–immunostained neuronal layers. The number of
centrosomes was summed for the 3 optical sections within each cryosection, and the
ratio of targeted over non-targeted side was calculated.  In the case of BrdU-labeled
samples, centrosomes revealed by γ-tubulin–immunostaining were assigned to DAPI-
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stained nuclei by an investigator who was unaware of the BrdU immunostaining.

IV - 2.10.4  Quantification of Tis21-GFP–negative versus Tis21-GFP–positive NE
cell progeny

Cryosections from E10.5 Tis21-GFP knock-in mice electroporated with either
Aspm esiRNAs plus mRFP plasmid or mRFP plasmid only and developed for further
24 h in whole-embryo culture were analyzed. Cells in the neuronal layer adjacent to
the VZ were scored as follows. Cells derived from electroporated NE cells were first
identified by their RFP fluorescence in the cell body. RFP-positive cell bodies were
then scored for the absence or presence of Tis21-GFP fluorescence. Scoring of cells
was performed by an investigator who was unaware of whether the various
cryosections derived from the control or Aspm knock-down condition. Tis21-
GFP–negative and Tis21-GFP–positive, RFP-positive cell bodies were finally
analyzed for βIII-tubulin immunofluorescence.
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