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Abstract. Economic uncertainty may affect significantly people’s behavior and hence

macroeconomic variables. It is thus important to understand how people behave in

presence of different kinds of economic risk. The present dissertation focuses therefore

on the impact of the uncertainty in capital and labor income on the individual saving

behavior. The underlying uncertain variables are here modeled as stochastic processes

that each obey a specific stochastic differential equation, where uncertainty stems either

from Poisson or Lévy processes. The results on the optimal behavior are derived by

maximizing the individual expected lifetime utility. The first chapter is concerned with

the necessary mathematical tools, the change-of-variables formula and the Hamilton-

Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of

application in order make them appropriate for the analysis of the dynamic stochastic

optimization problems occurring in the following chapters and elsewhere. The second

chapter considers an optimum-saving problem with labor income, where capital risk

stems from asset prices that follow geometric Lévy processes. Chapter 3, finally, studies

the optimal saving behavior if agents face not only risk but also uncertain spells of

unemployment. To this end, we turn back to Poisson processes, which here are used to

model properly the separation and matching process.
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Introduction and Summary

Uncertainty in economic variables is a major concern of individuals and may affect

their decisions on, for example, saving or investment considerably. The presence of un-

certainty may thus have a significant impact on macroeconomic variables, such as the

capital stock or the output of an economy. It is hence for both individuals and policy

makers important to understand how economic uncertainty – or risk, as it is also called

among economists – affects individual behavior.

In the present thesis we focus on the impact of the uncertainty in capital and labor

income. More precisely, we study the optimal saving behavior of an agent facing either

uncertain returns from his capital investments or risk of unemployment. The results

are derived by maximizing the agent’s expected lifetime utility in continuous time. The

underlying uncertain variables, such as asset prices, are here, and as typically done in

the economic literature, modeled as stochastic processes by assuming they each obey

a specific stochastic differential equation. The advantage of this kind of modeling is

that mathematical theory provides a bunch of, to a certain extent, well-known tools

that can be used in the following analysis. Most prominently, these are the change-of-

variables formula (sometimes referred to as “Ito’s-Lemma”) for deriving the differentials of

mappings of stochastic processes and the Hamilton-Jacobi-Bellman equation for tackling

dynamic stochastic optimization problems, such as the expected-utility maximization

problem occurring subsequently. The thesis proceeds as follows. The first chapter is

concerned with the generalization of the aforementioned mathematical methods, i.e.,

the change-of-variables formula and the Hamilton-Jacobi-Bellman equation. The second

chapter studies the optimal saving behavior assuming uncertainty in capital income, while

the last chapter is dedicated to the impact of risk of unemployment and the uncertain

job search process.

The first chapter “Controlled Stochastic Differential Equations under Poisson Uncer-

tainty and with Unbounded Utility” deals with the Hamilton-Jacobi-Bellman equation

for solving optimal stochastic control problems as occurring in the subsequent chapters

and elsewhere in the economic literature. We assume here that uncertainty stems from
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viii INTRODUCTION AND SUMMARY

Poisson processes. So far, applying the Hamilton-Jacobi-Bellman equation has required

strong assumptions on the model, such as a bounded utility function and bounded co-

efficients in the controlled differential equation. This chapter relaxes these assumptions.

We show that one can still use the Hamilton-Jacobi-Bellman equation as a necessary

criterion for optimality if the utility function and the coefficients are linearly bounded.

We also derive sufficiency in a verification theorem without imposing any boundedness

condition at all. Finally, we show that the result on necessity extends to the case in

which Brownian motion as an additional source for uncertainty is taken into account.

An accompanying paper, Sennewald and Wälde (2006), illustrates the results derived in

this chapters. There we consider an optimum consumption and investment problem with

labor income, where uncertainty of the risky-asset price stems from a Poisson process.

In the second chapter “Keynes-Ramsey Rules in Continuous-Time Setups Under Lévy

Uncertainty” we propose a more general modeling of uncertain asset prices by introduc-

ing Lévy processes. Here we describe the optimal consumption behavior by means of

a Keynes-Ramsey rule. Observe that so far, Keynes-Ramsey rules for describing the

optimal consumption behavior in a continuous time setup under uncertainty have been

“incomplete” in the sense that they merely provide the evolution of the marginal utility

process, but not the evolution of the optimal consumption process itself. Only recently,

“complete” Keynes-Ramsey rules have been derived in a setup with CRRA (constant

relative risk aversion) utility functions and uncertainty caused by Brownian motion or

Poisson processes. These processes, however, only provide a limited tool for modeling

dynamic uncertainty and new results can be achieved by using Lévy processes. This

chapter therefore shows how the evolution of the optimal consumption process can be

derived if uncertainty stems from a Lévy process and the consumption function is not

necessarily of the CRRA type.

In the third and last chapter, titled “Optimal Saving under Risk of Unemployment”,

we consider an optimum consumption problem in which an agent is exposed to both risk

and uncertain spells of unemployment. The back and forth in the employment status

is properly modeled by a stochastic differential equation with Poisson processes. The

resulting stochastic income process gives rise to precautionary saving which decreases

in the level of wealth. We find that this excess saving, jointly with the jumps in labor

income, lead to consumption paths that are totally different from what we know from

deterministic setups. In particular, there can be, dependent on the interest rate, target



INTRODUCTION AND SUMMARY ix

saving or temporary poverty traps. We further find that uncertainty in the employment

status raises the average (though not necessary the actual) consumption growth.

Many people have contributed to the present thesis. First and foremost, I am indebted

to my supervisor, Klaus Wälde, for his support, encouragement, ideas, comments, and

discussions. Further thanks are due to my former colleagues at Dresden University of

Technology, among them in particular Udo Broll and Jens Eisenschmidt, and numerous

participants at research seminars for valuable comments and fruitful discussions that have

had influence on the works as presented therein. I also wish to thank the Dresden branch

of the Institute for Economic Research (Ifo) and the Hebrew University of Jerusalem

whose hospitality I had enjoyed for several months. Financial support from the State of

Saxony is gratefully acknowledged. Finally, a personal word of gratitude to my family

and friends for their encouragement and support.
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CHAPTER 1

Controlled Stochastic Differential Equations under Poisson

Uncertainty and with Unbounded Utility∗

Abstract. The present paper is concerned with the optimal control of stochastic dif-

ferential equations, where uncertainty stems from Poisson processes. Optimal behavior

(e.g., optimal consumption) is usually determined by employing the Hamilton-Jacobi-

Bellman equation. This requires strong assumptions on the model, such as a bounded

utility function and bounded coefficients in the controlled differential equation. The

present paper relaxes these assumptions. We show that one can still use the Hamilton-

Jacobi-Bellman equation as a necessary criterion for optimality if the utility function

and the coefficients are linearly bounded. We also derive sufficiency in a verification

theorem without imposing any boundedness condition at all. It is finally shown that,

under very mild assumptions, an optimal Markov control is optimal even within the

class of general controls.

JEL classification: C61

Keywords: Stochastic differential equation, Poisson processes, Bellman equation

∗I am indebted to Udo Broll, Jens Eisenschmidt, Christoph Schlegel, Klaus Wälde, and Joseph Zeira

for helpful suggestions and discussions and to two anonymous referees for very constructive comments.

This article is published in the Journal of Economic Dynamics and Control and throughout the thesis

cited as Sennewald (2007).

3



4 CHAPTER 1. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS

1. Introduction

This paper is concerned with the optimal control of stochastic differential equations

(SDEs) in an infinite time horizon setup where uncertainty stems from one or more Pois-

son processes. Such controlled SDEs are a standard tool in the economic literature for

modeling dynamic behavior of economic variables that are hit by randomly occurring

shocks and that can be controlled by an agent. They can be found (in a determin-

istic disguise) in quality-ladder models of growth (e.g., Grossman and Helpman, 1991,

Segerstrom, 1998, Howitt, 1999), in the endogenous cycles and growth literature with un-

certainty (e.g., Wälde, 1999, 2005, Steger, 2005), in the Mortensen-Pissaridis type labor

market literature (e.g., Mortensen, 1994, Pissaridis, 2000), and in finance (e.g., Merton,

1971 and subsequent work), to name only a few applications. Often, Poisson processes are

included as a special case in a framework with jump-diffusion, piecewise deterministic or

general Markov processes, see, e.g., Aase (1984), Bellamy (2001), Framstad et al. (2001),

and, in a more mathematical context, Davis (1993) or Fleming and Soner (1993).

Usually, the objective consists in finding an optimal control that maximizes (or min-

imizes) a certain performance criterion. Consider, for example, the following extension

of Merton’s (1971) optimal consumption and portfolio problem.1 A household can invest

its wealth a either in a safe bank account with interest rate r2 or in a risky asset whose

price grows continuously at the rate r1 and jumps at random points in time by β × 100
percent. The random times are modeled by the jump times of a Poisson processes N and

occur with a frequency λ > 0, the arrival rate of N . At each instant t, the household

receives labor income w and consumes the amount ct. Then its budget constraint obeys

the SDE,

dat = [r1bt + r2 (at − bt) + w − ct] dt+ βbt−dNt, (1)

where bt stands for the amount invested in the risky asset. Given the household’s time

preference rate ρ > 0 and the CRRA (constant relative risk aversion) utility function

u (c) = c1−σ−1
1−σ , σ > 0, σ 6= 1, the household’s objective is to find the optimal consumption

and investment stream that maximize the expected lifetime utility Es

R∞
s

e−ρ(t−s)u (ct) dt

subject to budget constraint (1).

The performance achieved with the optimal control is called the value function. As

is well known, under certain assumptions the value function and, if existing, the optimal

1For more details see Section 3 of the accompanying paper Sennewald and Wälde (2006).
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Markov control satisfy a partial differential equation, generally known as the Hamilton-

Jacobi-Bellman (HJB) equation. On the other hand, if there is a function and a Markov

control solving the HJB equation and satisfying certain terminal conditions, this function

is the value function and the Markov control is optimal. Hence, the HJB equation provides

both a necessary and sufficient criterion for optimality. In the economic literature, Merton

(1971) was one of the first to state a HJB equation for an optimal control problem with

Poisson processes. Since then it has found widespread use.

Unfortunately, the required conditions that allow the application of the HJB equa-

tion as either necessary or sufficient criterion are rather strong. In particular, besides

a sufficiently smooth value function, many authors assume the utility or cost function

to be bounded, see, e.g., Gihman and Skorohod (1979) for jump-diffusion processes or

Dempster (1991) and Davis (1993) for piecewise deterministic processes.2 The same ap-

plies for the coefficient functions in the controlled SDE, which govern the evolution of the

controlled process. Other authors impose, instead of boundedness, other underlying con-

ditions, such as a countable state and action space, cf., e.g., van Dijk (1988) for controlled

jump processes. In some cases the required conditions are rather difficult to check with-

out strong mathematical background, see, e.g., Kushner (1967) and Fleming and Soner

(1993), who assume the value function to be in the domain of the infinitesimal generator

of the controlled Markov process or the Dynkin formula to hold. Kushner (1967) requires

furthermore a certain uniform integrability condition. In other cases, precise assumptions

on, for example, utility are missing, or the HJB equation is derived at a rather heuristic

level, see, e.g., Kushner (1967), Malliaris and Brock (1982), Kushner and Dupuis (1992),

Fleming and Soner (1993), and Dixit and Pindyck (1994).3

If one thinks, for example, of the frequently used class of CRRA utility functions, such

as given in the example above, and considers that the consumption stream ct may grow

toward infinity, the condition of bounded utility is apparently too strong for economic

modeling. Also, in light of, for example, budget constraint (1), the assumption of bounded

2If the smoothness conditions are not satisfied, the value function can still be a viscosity solution of

the HJB equation. This result was first derived by Crandall and Lions (1983) for general HJB equations.

An excellent survey on that issue is provided by Crandall, Ishi, and Lions (1992).
3In both Kushner (1967) and Fleming and Soner (1993) only the necessity part is derived heuristically,

whereas sufficiency is proven rigorously.
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coefficients in the controlled SDE is obviously too restrictive.4 Further, the assumption

of countable state or action spaces is not convenient.

The objective of the present paper is therefore to present rigorous proofs for the

necessity and sufficiency of the HJB equation under weaker assumptions than before. In

particular, to show necessity, we only require linear boundedness of the utility function

and of the coefficients, whereas for deriving sufficiency we do not impose – apart from

a terminal condition – any boundedness restrictions at all. Additionally, since the HJB

equation applies only for Markov controls, and one might feel that considering Markov

controls only is too restrictive, it is also shown that the performance of Markov controls is

as that good as for any other class of controls. That is, an optimal Markov control is also

optimal within the class of general controls. Finally, as a major tool for the derivations in

this paper and also because of its relevance in economic modeling, a change-of-variables

formula (CVF ) is presented which can directly be applied on multidimensional SDEs

with many Poisson processes.

For discrete time and in a deterministic environment, Rincón-Zapatero and Rodriguez-

Palmero (2003) and Le Van and Morhaim (2002) study a similar problem. They show

for unbounded utility that the HJB equation possesses a unique solution and that this

solution is the value function. In this paper, the HJB equation is derived via the dynamic

programming approach, cf. Kushner and Dupuis (1992) and Fleming and Soner (1993).

It is crucial for the necessity property of the HJB equation that the value function be-

longs to the domain of the infinitesimal generator of the controlled process, what, e.g.,

Fleming and Soner (1993) simply assumed. Herein lies a major improvement compared

to the literature. Whereas this condition was so far almost trivially satisfied due to the

boundedness assumption for the utility and coefficient functions, we show that it also

holds true for the more general case where these functions are linearly bounded.

The proof of sufficiency draws from the fact that Poisson processes are, unlike Brown-

ian motion and general Markov processes, of bounded variation. This property implicates

according to Garćıa and Griego (1994) that any stochastic integral with respect to a com-

pensated Poisson process is a martingale if the integrand is an adapted and cádlág process.

In turn, the Dynkin formula, which is fundamental for the proof, holds for fairly general

4Consider, for example, the “jump coefficient” in (1): As bt is not bounded, βbt will be neither.
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processes and functions. That finally permits the mild assumptions we impose for the

sufficiency part.5

Our result on the performance of Markov controls was derived by, e.g., Gihman and

Skorohod (1979) and Fleming and Soner (1993), but under stronger assumptions, as

mentioned above. For the proof we adopt the arguments given in Øksendal (2003), who

arrives at an analogous conclusion for controlled diffusion processes.

Supposing similar boundedness assumptions as in the paper at hand, Krylov (1980)

derives necessity of the HJB equation for controlled diffusion processes without jumps.

Here we show that the necessity property extends to the Poisson-diffusion setup. Suffi-

ciency for that setup, on the other hand, requires assumptions such as certain integrability

conditions, that are more restrictive than those for the pure Poisson setting and which

are due to the unbounded variation of Brownian motion. Here, we refer to Øksendal and

Sulem (2005, Theorem 3.1) who presents a sufficiency result in case of controlled Lévy

type processes.

As an illustration of the proofs and results presented in this paper, the accompanying

paper by Sennewald and Wälde (2006) provides various examples, among them the opti-

mum consumption and investment problem stated above. A reader that is not interested

in the proofs can directly refer to this paper and use it as a toolbox for own modeling.

The organization of this paper is as follows. The subsequent section gives some general

assumptions and definitions concerning the formal background. In Section 3 we establish

the control problem with the necessary assumptions. Then, Section 4 provides the CVF

and useful properties of the controlled state process and the value function. Section 5

is devoted to the main results of the paper, the HJB equation as optimality criterion.

Subsequently, in Section 6, we present the extension to the Poisson-diffusion setup. The

proofs are given in Section 7, and the last section, finally, concludes.

2. General definitions and assumptions

Let (Ω,F , P ) be a probability space with filtration {Ft, t ≥ 0}. Let {Xt (ω) , t ≥ s}
be a n-dimensional adapted stochastic process starting at time s ≥ 0 and with cádlág
paths. Throughout the paper we suppress the stochastic argument ω, and we write

5Recall that for general Markov processes Fleming and Soner (1993) assumed the value function to

be in the domain of the infinitesimal generator as well as the validity of the Dynkin formula. Only, in

case of controlled diffusion processes, they relax these assumptions, but still require the value function

to be polynomially bounded.
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shortly X for {Xt (ω) , t ≥ s} whenever there is no risk of confusion. The left limit at
time t, limτ%tXτ , is denoted by Xt−, where Xs− := 0. Trivially, Xt− coincides with Xt if

X possesses continuous paths. In the following the expression cádlág is also used for any

real-valued function g (x) that is continuous from the right with left limits in its argument

x. If g : Rn → Rm, n,m ∈ N, is such a cádlág function, and the process X adapted and

cádlág, the process g (X) becomes adapted and cádlág, too, and we denote the left limit

in t, limτ%t g (Xτ), by g (Xt)−. Then, if g is continuous, g (Xt)− = g(Xt−).

For vectors x, y ∈ Rn and a matrix M ∈ R(n,m), x · y stands for the standard scalar
product and kxk and kMk for the Euclidean norm. Ck denotes the space of k-times
continuously differentiable functions. If f ∈ C1 : (0,∞)×Rn, y = (t, x) 7→ f (y) = f (t, x),

then ft stands for the partial derivative with respect to t and fx and fy for the gradients

with respect to x and y, respectively. If f ∈ C2, fxx and fyy denote the Hesse matrices

with respect to x and y, respectively.

3. The control problem

Let C be a r-dimensional adapted cádlág process and N1, ..., Nd independent adapted

Poisson processes with arrival rates λ1, . . . , λd. Then the n-dimensional state process X

controlled by the process C and starting at time s in point x ∈ Rn is supposed to obey

a SDE of the form

Xt = x+
R t
s
α (τ ,Xτ , Cτ) dτ +

dP
k=1

R t
s
βk(τ ,Xτ− , Cτ−)dN

k
τ ,
6 (2)

with continuous coefficient functions α, β1, . . . , βd : [0,∞)× Rn × Rr → Rn. Note that,

due to the continuity, we can write βk(τ ,Xτ− , Cτ−) for βk(τ ,Xτ , Cτ)−, k = 1, . . . , d. The

coefficient function α describes the time continuous evolution of the state process X,

whereas for each k = 1, . . . , d the function βk gives the magnitude of the jump in X

whenever Poisson process Nk jumps. Both the time continuous behavior and the jump

size are controlled by the choice of the control process C. In the following we always

assume that SDE (2) possesses a unique adapted solution XC,s,x. A detailed analysis of

6The n-dimensional stochastic integral is to be read componentwise. That is, for each k = 1, . . . , d,

R t
s
βk(τ ,Xτ− , Cτ−)dN

k
τ =


R t
s
β1k(τ ,Xτ− , Cτ−)dN

k
τ

...R t
s
βnk(τ ,Xτ− , Cτ−)dN

k
τ

, with βik, i = 1, . . . , n being the components of

βk.
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SDEs with sufficient conditions for the existence of such a unique solution can be found

in, e.g., Garćıa and Griego (1994) and Protter (1995).

According to requirements in many economic models, we introduce a state space

constraint by assuming that X is allowed to lie only within a certain convex state space

Θ ⊂ Rn. We require furthermore that, if at time t state z ∈ Θ is observed, the control

at this time, Ct, can take only values in a certain convex control space Γt,z ⊂ Rr. Let

Γ := ∪(t,z)∈[0,∞)×ΘΓt,z be the union of all possible control spaces. A control C with

Ct ∈ Γt,XC,s,x
t

for all t ≥ s and of which the corresponding state process XC,s,x remains in

Θ is called admissible control.

Notice that in the economic literature SDEs appear often in differential notation. In

this somewhat shorter notation, SDE (2) reads

dXt = α (t,Xt, Ct) dt+
dX

k=1

βk
¡
t,Xt−, Ct−

¢
dNk

t ,Xs = x.

This expression might appear more intuitive since it seems to show more clearly what the

(infinitesimal) change of X at time t is driven by. Nevertheless, the differential notation is

only an “abbreviation” of the integral form, and both notations have the same meaning.

Throughout this paper, we shall always use the integral notation.

Let u : [0,∞)×Θ×Γ→ R (the “instantaneous utility function”) and ρ : [0,∞)→ R+
(the “time preference rate”) be continuous functions. Suppose that for all admissible

controls,

Es

R∞
s
e−
R t

s
ρ(τ)dτ

¯̄̄
u
³
t,XC,s,x

t , Ct

´¯̄̄
dt <∞, (3)

where Es denotes the expectation conditional on Fs. Then the objective is to find an

admissible control that maximizes the performance criterion (“expected lifetime utility”)7

WC(s, x) := Es

R∞
s
e−

R t
s ρ(τ)dτu

³
t,XC,s,x

t , Ct

´
dt. (4)

Such a control is called optimal control for the starting point (s, x). Being a function of

the initial point (s, x) ∈ [0,∞)×Θ, WC is also called performance function.

There exist various types of controls that may be considered. Following Øksendal

(2003), these are, e.g.,

7In some cases one may wish to minimize WC , for example, if u stands for a cost rate. Then one

can equivalently maximize −WC , where u in (4) is replaced with −u, and the following still applies.
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• Feedback or closed loop controls, which are adapted to the Filtration {Mt, t ≥ s}
whereMt denotes the σ-algebra generated by

©
Xs,x,C

τ , s ≤ τ ≤ t
ª
. That is, the

choice of the control value at time t depends on the whole history of Xs,x,C
t .

• Deterministic or open loop controls, which do not depend on ω.

• Markov controls, whose value at time t is given as a function of current time and
state. That is, Ct (ω) = φ(t,Xs,x,C

t (ω)) for some function φ : [0,∞)×Rn → Rr.

In that case the corresponding state process Xs,x,C
t is Markovian.

In applied optimization problems, Markov controls present the most practical class of

controls since they “say clearly” what to do if at a certain time a certain state is observed.

Moreover, the HJB equation provides a powerful tool to characterize and verify optimal

Markov controls, as we shall see in Theorems 3 and 4. It even turns out that, under

very mild assumptions, one obtains as good a performance with a Markov control as

with any other admissible control, see Theorem 5. Hence, it is justified if we work in our

analysis with Markov controls only.8 The following definitions give the necessary tools to

formulate our control problem precisely:

(i) A cádlág function φ : [0,∞) × Rn → Γ, (t, z) 7−→ φ(t, z) is called a policy. If

X is an adapted cádlág process, a Markov control Cφ induced by a policy φ via

Cφ
t := φ (t,Xt) is adapted and cádlág, too. Observe that in this case the integrals

in the controlled SDE (2) are well-defined. For SDE (2) we write then

Xt = x+
R t
s
αφ (τ ,Xτ ) ds+

dP
k=1

R t
s
βφk(τ ,Xτ)−dNk

τ , (5)

where αφ(t, z) := α(t, z, φ (t, z)) and βφk(t, z) := βk(t, z, φ (t, z)). The unique

solution is denoted by Xφ,s,x. Furthermore, the performance function, defined

according to (4), is indicated by the superscript φ (instead of C) and reads

with uφ (t, z) := u (t, z, φ (t, z)) and ρs (t) :=
1

t−s
R t
s
ρ (τ) dτ (the “average time

preference rate” from s to t):

W φ(s, x) = Es

R∞
s
e−ρs(t)(t−s)uφ

³
t,Xφ,s,x

t

´
dt. (6)

(ii) A policy φ is called admissible if φ (t, z) ∈ Γt,z for all (t, z) ∈ [0,∞)×Θ and if for

any starting point (s, x) ∈ [0,∞)×Θ the controlled process Xφ,s,x never leaves

Θ, i.e., Xφ,s,x
t ∈ Θ for all t ≥ s. The space of admissible policies is denoted by

Π.

8Restricting ourselves only to deterministic controls is clearly not sufficient since in a stochastic

environment it is not likely that a deterministic control is optimal.
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(iii) If the supremum is finite for all (s, x) ∈ [0,∞) × Θ, we call the function V :

[0,∞)×Θ→ R given by

V (s, x) := sup
φ∈Π

W φ(s, x) (7)

the value function.

(iv) An admissible policy φ∗ ∈ Π is called optimal policy if its performance function

is equal to the value function (7). That is, W φ∗(s, x) = V (s, x) for all (s, x) ∈
[0,∞) × Θ. Notice that the function φ∗ does not depend on the initial point

(s, x).

The control problem consists in finding an optimal admissible policy and can be

tackled with the HJB equation. As mentioned in the introductory section, we do not

limit ourselves to a bounded utility function or to bounded coefficients in order to ensure

applicability for more general setups. Nevertheless, to show the necessity of the HJB

equation for optimality in Theorem 3 we assume the following conditions to be satisfied.

For the sufficiency part in Theorem 4 they are not required.

(H1) We say that u satisfies a linear boundedness condition if there exists a constant

µ > 0 such that for all (t, z) ∈ [0,∞)×Θ and c ∈ Γt,z,

|u (t, z, c)| ≤ µ [kzk+ kck+ 1] . (8)

(H2) If existing, an optimal policy φ∗ is said to be linearly bounded if there exists a

constant γ ≥ 0 such that for all (t, z) ∈ [0,∞)×Θ

kφ∗ (t, z)k ≤ γ [kzk+ 1] . (9)

(H3) We say that a coefficient function g ∈ {α, β1, . . . , βd} satisfies a linear growth
condition if for any admissible policy φ boundedness coefficients pg (t) ≥ 0 and
qg (t) ≥ 0 exist for each t ≥ 0 such that for all z ∈ Θ,°°gφ (t, z)°° ≤ pg (t) kzk+ qg (t) , (10)

and the mappings t 7→ pg (t) and t 7→ qg (t) are cádlág. Notice that this condition

holds uniformly over the set of admissible policies.

(H4) Define for any s ∈ [0,∞)

Ps (t) :=
1

t− s

R t
s

µ
pα (τ) +

dP
k=1

λkpβk (τ)

¶
dτ, t ≥ s, (11)
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and

Qs (t) :=
R t
s
e−Ps(τ)(τ−s)

µ
qα (τ) +

dP
k=1

λkqβk (τ)

¶
dτ, t ≥ s. (12)

If for some g ∈ {α, β1, . . . , βd} there exists a t∗ ≥ 0 with qg (t
∗) > 0, the right

continuity of qg implies that Q0 (t) > 0 for all t > t∗, and we say that the

regularity condition is satisfied if

B :=
R∞
0
e−[ρ0(t)−P0(t)]tQ0 (t) dt <∞. (13)

If, in contrast, in the degenerated case, for each g ∈ {α, β1, . . . , βd} the bound-
edness coefficient qg (t) is equal to 0 for all t ≥ 0 , then Q0 (t) = 0 and the

regularity condition is said to be satisfied if

A :=
R∞
0
e−[ρ0(t)−P0(t)]tdt <∞. (14)

Let us give a quick preview of the results presented in the subsequent sections in order

to explain why and where we shall use the conditions stipulated in (H1)-(H4). The linear

growth condition (10) gives an upper bound for the growth rate of the controlled process

Xφ,s,x. It allows to derive a finite upper bound for the expectation of Xφ,s,x
t , which can

be expressed in terms of the initial state x, see Lemma 1. Regularity conditions (13) and

(14), respectively, make sure that the expected present value of the controlled process

is finite for any admissible policy φ, see Corollary 2. Then, together with the linear

boundedness conditions (8) and (9), we can deduce that the value function is linearly

bounded with respect to the initial state x, see Theorem 2. This result will be used

to show that the value function is in the domain of the infinitesimal generator of the

controlled process (see Lemma 3), which in turn is crucial for deriving the HJB equation

as a necessary criterion for optimality in Theorem 3.

The linear boundedness condition (8) is a substantial progress compared to the ab-

solute boundedness required in the literature. It is, for example, indispensable for the

CRRA utility function given in the example above.9 Assumption (9) is not very restric-

tive. In most applications such as, again, our example9 or models of exploiting renewable

resources, linear boundedness of the controls is even naturally implied. The linear growth

condition (10) is a common requirement in the theory of SDEs. It ensures that the solu-

tion Xφ,s,x does not explode. In addition, observe that (10) follows from another common

9For more details see Sennewald and Wälde (2006, Subsection 3.2).
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assumption on SDEs, namely that the coefficients satisfy a Lipschitz condition, which en-

sures the existence of a unique solution Xφ,s,s.10 Regularity conditions (13) and (14) are

easily met for sufficiently high time preference rates, cf. also part (iii) of the following

remark.

Remark 1. (i) Condition (10) can be replaced by the following “easy-to-check” growth

condition: There exist cádlág mappings pg (t) , p̃g (t) , qg (t) ≥ 0 such that kg (t, z, c)k ≤
pg (t) kzk+ p̃g (t) kck+ qg (t). Then (10) follows immediately with (9).

(ii) The following conclusion will be helpful for the proofs in Section 7. In the non-

degenerated case, where there exist some g ∈ {α, β1, . . . , βd} and t∗ > 0 with qg (t
∗) > 0,

regularity condition (13) implies A < ∞, where A is defined as in (14). This result is

derived in appendix A.1. On the other hand, if qg (t) = 0 for all g and t, we obtain

immediately B = 0 and, by assumption, A < ∞. Thus, in either case we have A < ∞
and B <∞.
(iii) If the linear boundedness coefficients qg and pg as well as the time preference rate ρ

are constants, regularity conditions (13) and (14) hold if and only if ρ > pα+
Pd

k=1 λkpβk .

4. Properties of the state process and the value function

This section serves as preparation for the derivation of the HJB equation as a necessary

and sufficient condition for optimality. It provides a CVF, the central tool in this paper,

and furthermore some useful properties of the controlled state process and the value

function if the assumptions (H1)-(H4) from the preceding section are met. The proofs

are given in Section 7. The CVF is presented in the following theorem. It can directly be

applied on multidimensional SDEs as given by (5) and allows to describe the evolution

of processes induced by a C1-mapping of the time-state process {(t,Xφ,s,x
t ) : t ≥ s}.

Theorem 1. Let f : [0,∞) × Rn → R be a C1 - function. Then the process

{f(t,Xφ,s,x
t ) : t ≥ s} is adapted and cádlág, too, and it obeys11

f
³
t,Xφ,s,x

t

´
= f (s, x) +

R t
s

£
ft
¡
τ ,Xφ,s,x

τ

¢
+ αφ

¡
τ ,Xφ,s,x

τ

¢ · fx ¡τ ,Xφ,s,x
τ

¢¤
dτ

+
dP

k=1

R t
s

h
f
³
τ ,Xφ,s,x

τ− + βφk(τ ,X
φ,s,x
τ− )

´
− f

¡
τ ,Xφ,s,x

τ−

¢i
dNk

τ .

10For more details see, e.g., Garćıa and Griego (1994) or Gihman and Skorohod (1979, Ch. 3).

11Recall that the operator “·” denotes the standard scalar product.
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The following lemma shows that the expectation of ||Xφ,s,x
t || is linearly bounded with

respect to the initial value x. This property holds uniformly over all admissible policies

φ ∈ Π.

Lemma 1. If the coefficients α, β1, . . . , βd satisfy the linear growth condition (10),

then for all admissible policies φ ∈ Π,

Es

°°°Xφ,s,x
t

°°° ≤ ePs(t)(t−s) [kxk+Qs (t)] ,

where Ps (t) and Qs (t) are defined as in (11) and (12), respectively.

From Lemma 1 we deduce the following corollary.

Corollary 1. If the coefficients α, β1, . . . , βd satisfy the linear growth condition (10),

then for all admissible policies φ ∈ Π,

Es sup
s≤τ≤t

°°Xφ,s,x
τ

°° ≤ ePs(t)(t−s) [kxk+Qs (t)] .

The next corollary shows that, for any admissible policy φ, the expected present

value of the controlled process Xφ,s,x discounted with the time preference rate is finite

and linearly bounded with respect to the initial state x.

Corollary 2. If the coefficients α, β1, . . . , βd satisfy the linear growth condition (10)

such that regularity conditions (13) and (14), respectively, hold, then for all admissible

policies φ ∈ Π,

Es

R∞
s
e−ρs(t)(t−s)

°°°Xφ,s,x
t

°°° dt ≤ A (s) kxk+B (s) <∞,

where

A (s) :=
R∞
s
e−[ρs(t)−Ps(t)](t−s)dt (15)

and

B (s) :=
R∞
s
e−[ρs(t)−Ps(t)](t−s)Qs (t) dt, (16)

and Ps (t) and Qs (t) are defined as in (11) and (12), respectively.

If the utility function u is linearly bounded in the sense of (8), we derive the following

theorem from the preceding results. It shows that the value function, as well, is linearly

bounded with respect to the initial state x.
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Theorem 2. Suppose the utility function u satisfies the linear boundedness condition

(8) and the coefficients α, β1, . . . , βd the linear growth condition (10) such that regularity

conditions (13) and (14), respectively, hold. In addition, let the optimal policy φ∗ be

linearly bounded according to (9). Then for all (s, x) ∈ [0,∞)×Θ,

|V (s, x)| ≤ (1 + γ)µA (s) kxk+K (s) <∞,

where A (s) is defined as in (15), and K (s) is a deterministic value that depends on the

boundedness coefficients γ, µ, qg, and pg, where g ∈ {α, β1, . . . , βd}.

5. The Hamilton-Jacobi-Bellman equation

This section presents the main results of the paper, the HJB equation as a necessary

and sufficient criterion for optimality. In order to achieve a shorter notation, we first

define the following differential operator D associated with the controlled SDE (5). For

a C1-function f : [0,∞)×Rn → R let D be given by

Dcf(s, x) := ft (s, x) + α(s, x, c) · fx(s, x) +
dP

k=1

λk[f(s, x+ βk(s, x, c))− f(s, x)]. (17)

Then the necessity part is presented in the following theorem.

Theorem 3. Assume that for any (s, x) ∈ [0,∞) × Θ and c ∈ Γs,x there exists

an admissible policy φ with φ (s, x) = c. Let the utility function u satisfy the linear

boundedness condition (8), and the coefficients α, β1, . . . , βd the linear growth condition

(10) such that regularity conditions (13) and (14), respectively, hold. Assume that an

optimal policy φ∗ satisfying (9) exists. If furthermore the value function V is once con-

tinuously differentiable with bounded first derivatives, the following equation is satisfied

for all (s, x) ∈ [0,∞)×Θ:

ρ (s)V (s, x) = max
c∈Γs,x

{u(s, x, c) +DcV (s, x)} , (18)

and the maximum is achieved by φ∗ (s, x).

Equation (18) is called the HJB equation. Theorem 3 says that under the stipulated

conditions the HJB equation must be necessarily satisfied by the value function and the

optimal policy. Based on the fact that the optimal policy maximizes the right-hand side

of (18), we derive the following corollary.

Corollary 3. Let the conditions of Theorem 3 be satisfied, and let furthermore u be

differentiable with respect to c. Then, for all (s, x) ∈ [0,∞) × Θ for which φ∗ (s, x) lies
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in the interior of Γs,x, the following first-order condition holds:

∂

∂ci
u(s, x, φ∗ (s, x)) = − ∂

∂ci
Dφ∗(s,x)V (s, x) , i = 1, . . . , r. (19)

If the value function and the optimal policy are unknown, equation (19) can be used for

further analysis. For example, starting from (19) it is possible to derive a Keynes-Ramsey

rule for optimum-consumption problems, see, e.g., Wälde (1999) and the accompanying

paper Sennewald and Wälde (2006) or, for the case of Brownian motion, Turnovsky

(2000). In some cases, one may even derive explicit expressions for candidates of both

the value function and the optimal policy, see also Sennewald and Wälde (2006).

So far, we only know that the HJB equation is necessary. The subsequent theorem

shows that it is also a sufficient condition for optimality.

Theorem 4. Let a C1 - function J : [0,∞)×Θ→ R satisfy

ρ (s) J(s, x) ≥ u(s, x, c) +DcJ(s, x), ∀ (s, x) ∈ [0,∞)×Θ, ∀c ∈ Γs,x, (20)

and suppose in addition that there exists an admissible policy φ∗ such that

ρ (s) J(s, x) = uφ
∗
(s, x) +Dφ∗(s,x)J(s, x), ∀ (s, x) ∈ [0,∞)×Θ. (21)

If furthermore for all (s, x) ∈ [0,∞)×Θ the limiting condition

lim
t→∞

E
h
e−ρs(t)tJ(t,Xφ∗,s,x

t )
i
= 0 (22)

and the limiting inequality

lim
t→∞

E
h
e−ρs(t)tJ(t,Xφ,s,x

t )
i
≥ 0, ∀φ ∈ Π, (23)

are satisfied, then J is the value function V and the policy φ∗ is optimal.

The HJB equation from Theorem 3 is divided here into inequality (20) and equation

(21). The theorem tells us that, if there exist a C1-function and a policy such that this

policy maximizes the HJB equation and terminal conditions (22) and (23) are satisfied,

then this policy is optimal and the function is the value function. Thus, one can use

Theorem 4 to verify whether a given function and a given policy (which were, for example,

found by “guessing” or via the first-order conditions in Corollary 3)12 coincide with the

value function and the optimal policy. Such theorems are therefore also called verification

12The method of “guessing” the value function and then verifying it has first been applied by Merton

(1971). He showed that, if the utility function u is of the HARA class, the value function can easily be

guessed as it is of similar form as u.
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theorems. Notice that the conditions in Theorem 4 are much milder than for the necessity

part in Theorem 3. In particular, one can show that the linear boundedness and growth

conditions (8), (9), and (10) together with regularity conditions (13) and (14) are sufficient

for both terminal conditions (22) and (23) to be satisfied.

Limiting condition (22) generalizes the boundary condition for finite time horizon

settings, see, e.g., Kushner and Dupuis (1992). In a deterministic framework, Michel

(1982) and later Kamihigashi (2001) show that such terminal (or transversality) condi-

tions may even be necessary conditions. In many control problems, the utility function u

is assumed to be nonnegative, for example, if u (c) = cσ, σ > 0. Then limiting inequality

(23) holds obviously since only candidates J for the value function with J(s, x) ≥ 0 for
all (s, x) ∈ [0,∞)×Θ are sensible.

The following corollary shows that, under certain conditions and making use of the

fact that a concave function can have only a unique maximum point, the verification can

be carried out quite easily.

Corollary 4. Let the instantaneous utility function u be nonnegative as well as

strictly concave and differentiable in the control variable c. Assume furthermore that

also the coefficients α, β1, . . . , βd are concave in c.13 Then, if a concave C1 - function

J : [0,∞)×Θ→ R and an admissible policy φ∗ satisfy equation (21) and the first-order
condition

∂

∂ci
u(s, x, φ∗ (s, x)) = − ∂

∂ci
Dφ∗(s,x)J (s, x) , i = 1, . . . , r, (24)

and if furthermore limiting condition (22) holds, φ∗ is an optimal policy and J is the

value function V .

The following theorem tells us that an optimal Markov control is even optimal within

the class of general admissible controls under very mild assumptions.

Theorem 5. Suppose that an optimal Markov policy φ∗ exists and assume the value

function V to be once continuously differentiable and to satisfy

ρ (s)V (s, x) ≥ u(s, x, c) +DcV (s, x), ∀ (s, x) ∈ [0,∞)×Θ,∀c ∈ Γs,x. (25)

Furthermore, let the following limiting inequality hold for all admissible controls C:

lim
t→∞

Es

h
e−ρs(t)tV (t,XC,s,x

t )
i
≥ 0. (26)

13Note that α, β1, . . . , βd can be linear in the control variable as well, cf. budget constraint (1).
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Define the supremum of the performance function over all general admissible controls

C by V a (s, x) := sup{C adm. control}W
C (s, x). Then, V (s, x) = V a (s, x) for all (s, x) ∈

[0,∞)×Θ.

The result in Theorem 5 is not surprising since the “implicit” Markov nature of the

controlled SDE (2) suggests that Markov controls represent, so to speak, the natural class

of controls, and no wider class has to be taken into account. Note that the HJB equation

is sufficient for inequality (25) to be satisfied. That is, under the conditions of Theorems

3 and 4, inequality (25) holds and only limiting condition (26) has to be checked.

6. The Poisson-diffusion setting

In the following we show that the necessity property of the HJB equation extends

to the Poisson-diffusion case under the same mild conditions as before. Let B1, . . . , Bd̃

be d̃ independent standard Brownian motions that are also independent of the Poisson

processes. The controlled process Xφ,s,x
t is now given as the solution of

Xt = x+
R t
s
αφ (τ ,Xτ ) ds+

d̃P
l=1

R t
s
σφl (τ ,Xτ )dB

l
τ +

dP
k=1

R t
s
βφk(τ ,Xτ)−dNk

τ , (27)

where for each l = 1, . . . , d̃ the diffusion coefficient σφl (t, x) := σl(t, x, φ (t, x)) is defined

by a continuous vector function σl : [0,∞)×Rn×Rr → Rn.14 The differential operator D̃

corresponding to the controlled SDE (27) applies to C1,2 - functions f : [0,∞)×Rn → R
and reads

D̃cf(s, x) : = ft (s, x) + α(s, x, c) · fx(s, x) + 1
2

d̃P
l=1

σl(s, x, c)
0fxx (s, x)σl(s, x, c)

+
dP

k=1

λk[f(s, x+ βk(s, x, c))− f(s, x)]. (28)

Then the necessity of the HJB equation analogous to Theorem 3 is stated in the following

theorem.

Theorem 6. Assume the conditions from Theorem 3 to be satisfied. In addition let

the diffusion coefficients σφ1 , . . . , σ
φ

d̃
be linearly bounded in the sense of (10), i.e.,°°°σφl (t, x)°°° ≤ pσl (t) kxk+ qσl (t) . (29)

14As the jump integral, the n-dimensional diffusion integral is to be read componentwise.
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If then the value function V is twice continuously differentiable with bounded Hesse matrix

Vyy, the following equation is satisfied for all (s, x) ∈ [0,∞)×Θ:

ρ (s)V (s, x) = max
c∈Γs,x

n
u(s, x, c) + D̃cV (s, x)

o
, (30)

where the maximum is achieved by the optimal policy φ∗ (s, x).

The proof is in analogy to the proof of Theorem 3. Appendix A.2 shows where and

how to make the necessary adjustments.

7. Proof of results

This part presents the proofs for the findings from Sections 4 and 5. Before starting,

we repeat a crucial property of the stochastic integral with respect to Poisson processes. It

is due to the fact that Poisson processes are of bounded variation. We are given a Poisson

process N with arrival rate λ and a cádlág process X. Both processes are adapted. Then,

according to Garćıa and Griego (1994, Section 3), the following relation holds true for

any 0 ≤ ν ≤ s < t:

Eν

hR t
s
Xτ−dNτ

i
= λEν

hR t
s
Xτdτ

i
. (31)

For the reader’s convenience we recall the following result from real analysis. It can

be proven using the (ε, δ) - definition of continuity at point t. A proof can be found in

many textbooks on real analysis as in, e.g., Browder (1996).

Lemma 2. Let the function f : [0,∞)→ R be integrable and right continuous at point
t ∈ [0,∞). Then,

lim
h&0

1

h

R t+h
t

f(τ)dτ = f(t).

We now turn to the proofs. Theorem 1 is derived from Garcia and Griego’s (1994)

CVF on p. 344. The necessary assumptions (Xφ,s,x is cádlág and the stochastic integrals

in (5) are in the Lebesgue-Stieltjes sense) are obviously met. Lemma 1, which shows

that the expectation of ||Xφ,s,x
t || is linearly bounded with respect to the initial state x, is

proven as follows.

Proof of Lemma 1. Using a comparison principle as, e.g., Bassan et al. (1993,

Corollary 3.5), we deduce from the linear growth condition (10) that
°°°Xφ,s,x

t

°°° ≤ Zs,x
t ,
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where Zs,x
t denotes the unique solution of 15

Zt = kxk+
R t
s
[pα (τ)Zτ + qα (τ)] dτ +

dP
k=1

R t
s

£
pβk (τ−)Zτ− + qβk (τ−)

¤
dNk

τ . (32)

Hence,

Es

°°°Xφ,s,x
t

°°° ≤ EsZ
s,x
t . (33)

We now compute EsZ
s,x
t . Taking expectation on SDE (32) and using (31) yields

EsZ
s,x
t = kxk+Es

R t
s

·
pα (τ)Zτ + qα (τ) +

dP
k=1

λk
£
pβk (τ)Zτ + qβk (τ)

¤¸
dτ. (34)

Interchanging expectation and integral due to the theorem of bounded convergence leads

to16

EsZ
s,x
t = kxk+ R t

s

·µ
pα (τ) +

dP
k=1

λkpβk (τ)

¶
EsZ

s,x
τ + qα (τ) +

dP
k=1

λkqβk (τ)

¸
dτ.

This deterministic linear differential equation in EsZ
s,x
t has the unique solution

EsZ
s,x
t = ePs(t)(t−s) [kxk+Qs (t)] , (35)

where Ps (t) and Qs (t) are defined as in (11) and (12), respectively. This relation together

with (33) finishes the proof. ¤

The preceding proof immediately implies the subsequent proof of Corollary 1.

Proof of Corollary 1. Since the boundedness coefficients pg and qg, g ∈ {α, β1,
. . . , βd}, are nonnegative, Zs,x has increasing paths. Remember from the proof of Lemma

1 that
°°°Xφ,s,x

t

°°° ≤ Zs,x
t for all t ≥ s. Thus, sups≤τ≤t

°°Xφ,s,x
τ

°° ≤ sups≤τ≤t Zs,x
τ = Zs,x

t and

hence, Es sups≤τ≤t
°°Xφ,s,x

τ

°° ≤ EsZ
s,x
t , which together with (35) yields Corollary 1. ¤

Proof of Corollary 2. From the proof of Lemma 1 we know that
°°°Xφ,s,x

t

°°° ≤
Zs,x
t . Thus,

Es

R∞
s
e−ρs(t)(t−s)

°°°Xφ,s,x
t

°°° dt ≤ Es

R∞
s
e−ρs(t)(t−s)Zs,x

t dt. (36)

Using (35) and assuming for the moment that A (s) and B (s) defined as in (15) and

(16), respectively, are finite, we can now apply the theorems of bounded and monotone

15Using Protter (1990, theorem V.6), one can show easily that (32) possess a unique solution with

finite expectation.

16See Appendix A.3 to see how to use the theorem of bounded convergence in this case.



7. PROOF OF RESULTS 21

convergence in order to interchange expectation and integral on the right-hand side of

(36),17 which yields

Es

R∞
s
e−ρs(t)(t−s)

°°°Xφ,s,x
t

°°° dt ≤ A (s) kxk+B (s) . (37)

It remains to be shown that A (s) and B (s) are finite. For this purpose we use that

A (s) ≤ e[ρ0(s)−P0(s)]sA (38)

and

B (s) ≤ e[ρ0(s)−P0(s)]sB. (39)

But since we know from Remark 1 (ii) that due to regularity conditions (13) and (14),

respectively, A and B are always finite, the result follows. ¤

We proceed with the proof of Theorem 2, which shows that the value function is

linearly bounded with respect to the initial value x.

Proof of Theorem 2. Using the linear boundedness conditions (8) and (9), we

find the following upper bound for the value function:

|V (s, x)| = ¯̄
W φ∗(s, x)

¯̄ ≤ Es

R∞
s
e−ρs(t)(t−s)

¯̄̄
uφ

∗
³
t,Xφ∗,s,x

t

´¯̄̄
dt

≤ µEs

R∞
s
e−ρs(t)(t−s)

h°°°Xφ∗,s,x
t

°°°+ °°°φ∗ ³Xφ∗,s,x
t

´°°°+ 1i dt
≤ (1 + γ)µ

·
Es

R∞
s
e−ρs(t)(t−s)

°°°Xφ∗,s,x
t

°°° dt+ Z ∞

s

e−ρs(t)(t−s)dt
¸
. (40)

Since A (s) is an upper bound for
R∞
s

e−ρs(t)(t−s)dt and A (s) is finite according to (38) and

Remark 1 (ii), the second term in brackets on the right-hand side is finite, too. The first

term is finite according to Corollary 2. Hence, setting K (s) := (1 + γ)µ[
R∞
s

e−ρs(t)(t−s)dt

+B (s)], we finally obtain K (s) <∞ and hence |V (s, x)| ≤ (1 + γ)µA (s) kxk+K (s) <

∞, which is what was to be shown. ¤

In order to simplify the notation in the following, we drop the explicit time argument

by introducing the time-state processn
Y φ,y
t =

³
s+ t,Xφ,s,x

s+t

´
, t ≥ 0

o
, Y φ,y

0 := y := (s, x) . (41)

Then the state space corresponding to this process is Θ̃ := [0,∞)×Θ ⊂ Rn+1, and Y φ,y

solves the transformed SDE

Yt = y +
R t
0
α̃φ (Yτ) dτ +

dP
k=1

R t
0
β̃
φ

k (Yτ)− dÑ
k
τ , (42)

17See Appendix A.4.
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where the coefficients are given by α̃φ (t, z) :=
¡
1, αφ (t, z)

¢0
and β̃

φ

k (t, z) :=
³
0, βφk (t, z)

´0
,

and for each k = 1, . . . , d the process Ñk defined by Ñk
τ := Nk

s+τ − Nk
s forms a Poisson

process. The corresponding filtration is
n
F̃t, t ≥ 0

o
, where F̃t := Fs+t. We rewrite the

performance function by time transformation as

W φ(y) = Ẽ0
R t
0
e−ρ̃s(t)tuφ

³
Y φ,y
t

´
dt, (43)

where ρ̃s (t) :=
1
t

R t
0
ρ (s+ r) dr = ρs (s+ t), and Ẽt denotes the conditional expectation

with respect to F̃t.

Altogether, by deriving (42) and (43), we have transformed the general control prob-

lem into a time-autonomous one. The corresponding differential operator D is the same

as in (17) and reads, adapted to the time-autonomous setup,

Dcf(y) = α̃(y, c) · fy(y) +
dP

k=1

λk[f(y + β̃k(y, c))− f(y)]. (44)

The following lemma shows that the value function V belongs to the domain of the

infinitesimal generator of the controlled process Xφ,s,x for any admissible policy φ. This

result is crucial for deriving the necessity of the HJB equation in Theorem 3. Whereas

the proof is almost trivial if utility (or value function)18 and the coefficients are bounded,

it becomes more complex for the more general case with linearly bounded utility and

coefficient functions.

Lemma 3. Under the conditions of Theorem 3 we obtain for any admissible policy φ,

lim
h&0

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i
= Dφ(y)V (y)− ρ (s)V (y).

Proof. Applying the CVF from Theorem 1 to the C1 - function f (v) = f (t, z) =

e−ρ̃s(t)tV (v) yields

e−ρ̃s(h)(h)V
³
Y φ,y
h

´
− V (y)

=
R h
0

£
α̃φ
¡
Y φ,y
τ

¢ · e−ρ̃s(τ)τVy ¡Y φ,y
τ

¢− ρ (s+ τ) e−ρ̃s(τ)τV (Y φ,y
τ )

¤
dτ

+
dP

k=1

R h
0

h
e−ρ̃s(τ)τV

³
Y φ,y
τ− + β̃

φ

k

¡
Y φ,y
τ

¢
−

´
− e−ρ̃s(τ)τV (Y φ,y

τ− )
i
dÑk

τ .

18As one can show easily, a bounded utility function implies that the value function is bounded as

well.
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Taking expectation and dividing by h gives, together with (31),

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i

= Ẽ0

½
1

h

R h
0
e−ρ̃s(τ)τ

£
α̃φ
¡
Y φ,y
τ

¢ · Vy ¡Y φ,y
τ

¢− ρ (s+ τ)V (Y φ,y
τ )

¤
dτ

¾
+

dP
k=1

λkẼ0

½
1

h

R h
0
e−ρ̃s(τ)τ

h
V
³
Y φ,y
τ + β̃

φ

k

¡
Y φ,y
τ

¢´− V (Y φ,y
τ )

i
dτ

¾
. (45)

Now let h tend to 0. We show that the theorem of bounded convergence can be applied

to interchange limit and expectation on the right-hand side in (45). For this purpose

we have to find an upper bound with finite expectation for each of the d + 1 random

variables inside the expectations. Notice that such a bound must hold uniformly over all

h that are small enough. Whereas the bound is obvious if the utility function and the

coefficients are bounded, we have to do some more calculation for the more general case

with linear boundedness.

We first consider the most-left integral on the right-hand side of (45). Remember

from real analysis that for any univariate piecewise continuous function f ,
R y
x
f (z) dz ≤

(y − x)maxx≤z≤y f (z). According to this result we derive for h ≤ 1, using the linear

boundedness of αφ, the linear boundedness of V according to Theorem 2, and the bound-

edness of the first derivative of V :¯̄̄̄
1

h

R h
0
e−ρ̃s(τ)τ

£
α̃φ
¡
Y φ,y
τ

¢ · Vy ¡Y φ,y
τ

¢− ρ (s+ τ)V (Y φ,y
τ )

¤
dτ

¯̄̄̄
≤ [kpαk1 kVyk+ (1 + γ)µ kρk1 kAk1] sup

τ∈[0,1]

°°°Xφ,s,x
s+τ

°°°+ (1 + kqαk1) kVyk+ kρk1 kKk1
where, by assumption, kVyk := supy∈Θ̃ kVy (y)k <∞ and, due to their cádlág property (re-

spective continuity), kpαk1 := supτ∈[0,1] pα (s+ τ) <∞, kAk1 := supτ∈[0,1]A (s+ τ) <∞,
and so forth. According to Corollary 1, supτ∈[0,1]

°°°Xφ,s,x
s+τ

°°° possesses finite expectation.
Hence, the right-hand side in the latter inequality is an upper bound with finite expec-

tation for the first integral on the right-hand side in (45). In analogy, for each of the

remaining k integrals in (45) an upper bound for all h ≤ 1 is given by¯̄̄̄
1

h

R h
0
e−ρ̃s(τ)τ

h
V
³
Y φ,y
τ + β̃

φ

k

¡
Y φ,y
τ

¢´− V (Y φ,y
τ )

i
dτ

¯̄̄̄
≤ (1 + γ)µ kAk1

¡
2 +

°°pβk°°1¢ sup
τ∈[0,1]

°°°Xφ,s,x
s+τ

°°°+ (1 + γ)µ kAk1
°°qβk°°1 + 2 kKk1

Again with Lemma 1 we deduce that the expectation of this upper bound is finite. The

theorem of bounded convergence can hence be applied on (45), and interchanging limit
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and expectation finally yields jointly with Lemma 2

lim
h&0

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i

= α̃φ (y) · Vy (y)− ρ (s)V (y) +
dP

k=1

λk
³
V
³
y + β̃

φ

k (y)
´
− V (y)

´
= Dφ(y)V (y)− ρ (s)V (y),

which is what was to be shown. ¤

In the remaining part of this section we finally present the proofs of the main results

from Section 5.

Proof of Theorem 3. Let y ∈ Θ̃. We first prove that the optimal policy φ∗ yields

equality in the HJB equation (18). For some small h > 0 we obtain, cf. also Fleming and

Soner (1993) or Kushner and Dupuis (1992),

0 = Ẽ0
R∞
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt− V (y)

= Ẽ0
R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt+ Ẽ0

R∞
h
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt− V (y)

= Ẽ0
R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt

+Ẽ0
n
e−ρ̃s(h)hE

hR∞
0
e−ρ̃s+h(t)tuφ

∗
³
Y φ∗,y
h+t

´
dt
¯̄̄
Y φ∗,y
h

io
− V (y)

= Ẽ0
R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt+ Ẽ0

h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
. (46)

Dividing by h and applying the limit h& 0, this becomes

0 = lim
h&0

Ẽ0
1

h

R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt+ lim

h&0
Ẽ0
1

h

h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
.

For the first term we use in analogy to appendix A.3 the theorem of bounded convergence

to interchange expectation and integral.19 Then, we obtain with Lemma 2,

lim
h&0

Ẽ0
1

h

R h
0
e−ρ̃s(t)tuφ

∗
³
Y φ∗,y
t

´
dt = uφ

∗
(y) .

For the second term, Lemma 3 gives the limit. Thus, altogether, 0 = uφ
∗
(y)+Dφ∗(y)V (y)−

ρ (s)V (y), which shows that equality in (18) is satisfied for the optimal policy.

It remains to be shown that for any c ∈ Γy, ρ (s)V (y) ≥ u(y, c) +DcV (y). For this

purpose we follow an argument applied by Kushner and Dupuis (1992) and Duffie (1992),

19An upper bound is
R∞
0

e−ρ̃s(t)t
¯̄̄
uφ
∗
³
Y φ∗,y
t

´¯̄̄
dt, which possess finite expectation due to assumption

(3).
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in defining a policy

ψy,h (v) :=

(
φ (v) for s ≤ t < s+ h

φ∗ (v) for t ≥ s+ h
, v = (t, z) ∈ Φ̃,

where φ is an arbitrary admissible policy with φ (y) = c.20 Since from time s+ h on the

policies ψy,h and φ∗ equal each other, we obtain

Wψy,h(Y
ψy,h,y
t ) =W φ∗(Y

ψy,h,y
t ) = V (Y

ψy,h,y
t ), ∀t ≥ h.

Then in analogy to (46),

0 ≥Wψy,h(y)− V (y) = Ẽ0
R h
0
e−ρ̃s(t)tuφ(Y φ,y

t )dt+ Ẽ0

h
e−ρ̃s(h)hV (Y φ,y

h )− V (y)
i
.

Now, if we divide by h and let h tend toward 0, we obtain

0 ≥ lim
h&0

Ẽ0
1

h

R h
0
e−ρ̃s(t)tuφ(Y φ,y

t )dt+ lim
h&0

1

h
Ẽ0
h
e−ρ̃s(h)hV (Y φ∗,y

h )− V (y)
i
.

Again, the limit of the first term is derived by first interchanging expectation and integral

according to the theorem of bounded convergence and then by applying Lemma 2, whereas

Lemma 3 gives the second limit. Hence, 0 ≥ u(y, c) +DcV (y)− ρ (s)V (y). Since c ∈ Γy

was chosen arbitrarily, the proof is completed. ¤

Proof of Corollary 3. Let y ∈ Θ̃. Since according to Theorem 3, uφ
∗
(y) +

Dφ∗(y)V (y) ≥ u(y, c) +DcV (y) for all c ∈ Γy, (19) must hold as a first order condition if

φ∗ (y) lies in the interior of Γy. ¤

Proof of Theorem 4. We have a continuously differentiable function J : Θ̃ → R
that satisfies inequality (20) and, with an admissible policy φ∗, equation (21). We show

(i) J(y) ≥ W φ(y) for any arbitrary admissible policy φ and (ii) J(y) = W φ∗(y), which

implies that φ∗ is an optimal policy and that J =W φ∗ is the value function V .

Step (i): Let φ ∈ Π be an arbitrary admissible policy. Then inequality (20) gives

−ρ (s)J(y) +Dφ(y)J(y) ≤ −uφ(y), ∀y ∈ Θ̃. (47)

Applying the change of variables formula from Theorem 1 to the C1 - function f (v) =

f (t, z) = e−ρ̃s(t)tJ(v) and taking the expectation on both sides yields together with (31)

the following version of the Dynkin formula:

Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t )− J(y) = Ẽ0
R t
0
e−ρ̃s(τ)τ

h
−ρ (s+ τ)J(Y φ,y

τ ) +Dφ(Y φ,y
τ )J(Y φ,y

τ )
i
dτ.

20By assumption, there exists an admissible policy φ with φ (y) = c for any c ∈ Γy.
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Then, inequality (47) implies J(y) ≥ Ẽ0
R t
0
e−ρ̃s(τ)τuφ(Y φ,y

τ )dτ+Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t ). Letting

t approach infinity and applying the theorem of bounded convergence on the first term

on the right-hand side gives J (y) ≥ W φ(y) + limt→∞ Ẽ0e
−ρ̃s(t)tJ(Y φ,y

t ).21 Thus, since by

assumption (23) the limit on the right-hand side is equal to or greater as 0, J(y) ≥W φ(y).

Step (ii): We may rewrite (21) as −ρ (s)J(y) + Dφ∗(y)J(y) = −uφ∗(y). Then, in
exactly the same way as in step (i), only with “=” instead of “≤”, we deduce that
J(y) = W φ∗(y) + limt→∞ Ẽ0e

−ρ̃s(t)tJ(Y φ∗,y
t ). Since by limiting condition (22) the right-

most term goes to zero, we obtain J(y) =W φ∗(y), which completes the proof. ¤

Proof of Corollary 4. We show that the conditions of Theorem 4 are satisfied.

Then, by Theorem 4, the result follows. At first we derive from the nonnegativity of

u that the value function V is nonnegative, too. Hence, limiting inequality (23) holds.

Thus, it remains to be shown that φ∗(y) is a global maximum point of u(y, c)+DcJ(y), or

uφ
∗
(y) +Dφ∗(y)J(y) ≥ u(y, c) +DcJ(y) for all c ∈ Γy. The first order condition for φ

∗ (y)

to be a local maximum point is satisfied by assumption (24). From the strict concavity

of u and V and the concavity of α, β1, . . . , βd we know that u(y, c) + DcJ(y) is strictly

concave in c as well. Hence, φ∗ (y) is both a local and a global maximum point. ¤

Proof of Theorem 5. This proof is similar to the one presented in Øksendal (2003)

for controlled diffusion processes. In analogy to part (i) of the proof of Theorem 4, we

get for any admissible control C, V (y) ≥ WC (y) + limt→∞ e−ρ̃s(t)tẼ0J(Y
C,y
t ). According

to limiting inequality (26) the limit on the right-hand side is equal to or greater than

0. Thus, V (y) ≥ WC (y). Since the control C was chosen arbitrarily and the class

of Markov controls is included in the class of generalized admissible controls (and thus

V (y) ≤ V a (y)), the theorem follows. ¤

8. Conclusion

In a model of optimal control where the state variable is subject to random jumps

driven by one or more independent Poisson processes we have presented rigorous proofs for

both the necessity and the sufficiency of the HJB equation under milder conditions than

before. We especially relax the assumption of bounded utility and coefficient functions.

More precisely, it could be shown that the HJB equation is still a necessary condition

for optimality if these functions are linearly bounded. On the other hand, apart from a

21An upper bound with finite expectation is given by
R∞
0

e−ρ̃s(τ)τ
¯̄
uφ(Y φ,y

τ )
¯̄
dτ .
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terminal condition, sufficiency could be derived even without requiring any boundedness

condition at all.

Nevertheless, we required, at least in the necessity part, other underlying, extrinsic

conditions to be satisfied, namely (i) (implicitly) the expected present value of the state

process to be finite (see assumption (H4) and Lemma 1) and (ii) the value function to

be once continuously differentiable with bounded first derivatives. Relaxing these issues

is left for further research.

A. Appendix

A.1. Derivation of Remark 1 (ii). If there exist some g and t∗ with qg (t
∗) > 0,

the cádlág property of the boundedness coefficient qg yields Q0 (t) > 0 for all t ≥ t∗.

Thus, for some T > t∗,

A ≤ R T
0
e−[ρ0(t)−P0(t)]tdt+

1

Q0 (T )

R∞
T
e−[ρ0(t)−P0(t)]tQ0 (t) dt ≤

R T
0
e−[ρ0(t)−P0(t)]tdt+

B

Q0 (T )
,

and hence, due to (13), A <∞.

A.2. The Poisson-diffusion setting - Proofs. In the present section we show

where and how the proofs from Section 7 have to be adjusted in order to prove Theorem 6.

First, we find that the assertions from the preparatory Section 4 carry over to the Poisson-

diffusion setup if the following modifications are carried out. The CVF corresponding to

the Poisson-diffusion SDE (27) reads as stated in the following theorem. It can be derived

by “translating” the generalized Itô formula from Øksendal and Sulem (2005, Theorem

1.16) to the setup at hand.

Theorem 7. Let Xφ,s,x
t obey SDE (27). For a C1,2 - function f : [0,∞) × Rn → R

the process {f(t,Xφ,s,x
t ) : t ≥ s} is adapted and cádlág and follows

f
³
t,Xφ,s,x

t

´
= f (s, x) +

R t
s

 ft
¡
τ ,Xφ,s,x

τ

¢
+ αφ

¡
τ ,Xφ,s,x

τ

¢ · fx ¡τ ,Xφ,s,x
τ

¢
+1
2

d̃P
k=1

σφl (τ ,X
φ,s,x
τ )0fxx

¡
τ ,Xφ,s,x

τ

¢
σφl (τ ,X

φ,s,x
τ )

 dτ
+

d̃P
l=1

R t
s
σφl (τ ,X

φ,s,x
τ ) · fx

¡
τ ,Xφ,s,x

τ

¢
dBl

τ

+
dP

k=1

R t
s

h
f
³
τ ,Xφ,s,x

τ− + βφk(τ ,X
φ,s,x
τ− )

´
− f

¡
τ ,Xφ,s,x

τ−

¢i
dNk

τ .
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In the proof of Lemma 1, SDE (32), now bounding (27), has to be changed to

Zt = kxk+ R t
s
[pα (τ)Zτ + qα (τ)] dτ +

d̃P
l=1

R t
s
[pσl (τ)Zτ + qσl (τ)] dB

l
τ

+
dP

k=1

R t
s

£
pβk (τ−)Zτ− + qβk (τ−)

¤
dNk

τ . (48)

According to Øksendal and Sulem (2005, Theorem 1.19), this linear SDE possesses a

unique solution with finite second moment. Then, after taking expectation and using

the martingale property of the Brownian motion, we see that the proof and hence the

assertion of Lemma 1 remain unchanged. In the proof of Corollary 1 we find that Zs,x
t

following (48) has still increasing paths since the boundedness coefficients of the diffusion

components σl given by (29) are nonnegative. Thus Corollary 1 still holds true, as do

Corollary 2 and Theorem 2 whose proofs do not need to be altered at all.

We now turn to the proof of Theorem 6. The time-state process Y φ,y
t from (41) obeys

here Y φ,y
t = y +

R t
0
α̃φ
¡
Y φ,y
τ

¢
dτ +

d̃P
l=1

R t
s
σ̃φl (Y

φ,y
τ )dB̃l

τ +
dP

k=1

R t
0
β̃
φ

k

¡
Y φ,y
τ

¢
− dÑ

k
τ , where for

each l = 1, . . . , d̃, σ̃φl (t, x) :=
³
0, σφl (t, x)

´0
and B̃l

τ := Bl
s+τ − Bl

s is a Brownian motion

starting at s. The corresponding differential operator is given by D̃c in (28). If the

conditions from Theorem 6 are satisfied, Lemma 3 holds true with D̃c instead of Dc. For

its proof we now apply CVF from Theorem 7, and equation (45) changes to

1

h
Ẽ0
h
e−ρ̃s(h)(h)V

³
Y φ,y
h

´
− V (y)

i
= Ẽ0

1

h

R h
0

 αφ
¡
Y φ,y
τ

¢ · e−ρ̃s(τ)τVy ¡Y φ,y
τ

¢
+ 1

2

d̃P
l=1

σ̃φl (Y
φ,y
τ )0Vyy

¡
Y φ,y
τ

¢
σ̃φl (Y

φ,y
τ )

−ρ (s+ τ) e−ρ̃s(τ)τV (Y φ,y
τ )

 dτ
+

dP
k=1

λkẼ0
1

h

R h
0

h
e−ρ̃s(τ)τV

³
Y φ,y
τ− + βφk

¡
Y φ,y
τ

¢
−

´
− e−ρ̃s(τ)τV (Y φ,y

τ− )
i
dτ.

In order to be allowed to apply the theorem of bounded convergence we have to find an

upper bound with finite expectation for the additionally obtained diffusion term. Using

the linear boundedness (29) of the coefficient σ, we arrive for each l = 1, . . . , d̃ at the

upper bound

1

h

R h
0

"
1

2

d̃P
l=1

σ̃φl (Y
φ,y
τ )0Vyy

¡
Y φ,y
τ

¢
σ̃φl (Y

φ,y
τ )

#
≤ sup

τ∈[0,1]

1

2

d̃P
l=1

°°°σ̃φl (Y φ,y
τ )

°°°2 kVyyk
≤ sup

τ∈[0,1]

1

2
kVyyk

d̃P
l=1

" °°p2σl°°1 supτ∈[0,1] °°Xφ,s,x
τ

°°2
+2 kpσlk1 kqσlk1 supτ∈[0,1]

°°Xφ,s,x
τ

°°+ °°q2σl°°1
#
, (49)
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where kpσlk1 := supτ∈[0,1] pσl (s+ τ) < ∞, kqσlk1 := supτ∈[0,1] qσl (s+ τ) < ∞ and, by

assumption, kVyyk := sup(t,z)∈[0,∞)×Θ kVyy (t, z)k < ∞. From Corollary 1 we know that

E0 supτ∈[0,1]
°°Xφ,s,x

τ

°° < ∞. Finiteness of E0 supτ∈[0,1]
°°Xφ,s,x

τ

°°2 follows from

E0 supτ∈[0,1]
°°Xφ,s,x

τ

°°2 ≤ E0Z
2
1 , which is according to the adapted proof of Corollary

1, and EsZ
2
1 < ∞, as is mentioned above. The right-hand side in (49) is hence of finite

expectation and the theorem of bounded convergence can be applied. The remaining

part of this proof as well as the proof of Theorem 6 are then exactly as in the pure jump

setting. We only have to add, whenever it is necessary, the quadratic diffusion term,

which leads finally to D̃c instead of Dc.

A.3. Interchanging expectation and integral in (34). If we define the process

Hτ := pα (τ)Zτ + qα (τ) +
Pd

k=1 λk
£
pβk (τ)Zτ + qβk (τ)

¤
, (34) reads EsZ

s,x
t = kxk +

Es

R t
s
Hτdτ . We may express the integral as a limit of Riemann sums by

R t
s
Hτdτ =

lim∆→0∆
Pn∆−1

T=0 Hs+T , where ∆ is the length of the subintervals for an equidistant parti-

tion of the interval [s, t] and n∆ the number of these subintervals, i.e., ∆ ·n∆ = t−s. Now
the problem of interchanging expectation and integral has been converted into a problem

of interchanging expectation and limit. Here the theorem of bounded convergence comes

into play. We have to find an upper bound with finite expectation for the absolute value

of ∆
Pn∆−1

T=0 Hs+T that holds uniformly for all ∆ small enough. Since the boundedness

coefficients pg and qg, g ∈ {α, β1, . . . , βd} are nonnegative, Zs,x is nonnegative, too, and

has increasing paths. Therefore,°°°°∆ n∆−1P
T=0

Hs+T

°°°° = ∆
n∆−1P
T=0

Hs+T

≤ (t− s)

·µ
kpαks,t +

dP
k=1

λk
°°pβk°°s,t¶Zs,x

t + kqαks,t +
dP

k=1

λk
°°qβk°°s,t¸ ,

where, for g = α, β1, . . . , βd, kpgks,t := sups≤τ≤t |pg (τ)| <∞ and kqgks,t := sups≤τ≤t |qg (τ)|
< ∞. Thus, since the right-hand side has clearly finite expectation, the theorem of

bounded convergence allows to interchange expectation and limit, and we obtain

EsZ
s,x
t = kxk+Es lim

∆→0
∆

n∆−1P
T=0

Hs+T = kxk+ lim
∆→0

∆
n∆−1P
T=0

EsHs+T = kxk+
R t
s
EsHτdτ.

A.4. Interchanging expectation and integral in (36). Assuming A (s) and

B (s) to be finite, we show how the theorems of monotone and bounded convergence

can be used to interchange expectation and integral in Es

R∞
s

e−ρs(t)(t−s)Zs,x
t dt. At first,

we consider the expectation of the finite horizon integral
R T
s
e−ρs(t)(t−s)Zs,x

t dt. Here, in
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analogy to appendix A.3 and with the upper bound (T − s)Zs,x
T , the theorem of bounded

convergence yields together with (35)

Es

R T
s
e−ρs(t)(t−s)Zs,x

t dt =
R T
s
e−[ρs(t)−Ps(t)](t−s) [kxk+Qs (t)] dt. (50)

In the next step, we write
R∞
s

e−ρs(t)(t−s)Zs,x
t dt = limT→∞

R T
s
e−ρs(t)(t−s)Zs,x

t dt. SinceR T
s
e−ρs(t)(t−s)Zs,x

t dt is increasing in T and since according to (50),

sup
T≥s

Es

R T
s
e−ρs(t)(t−s)Zs,x

t dt =
R∞
s
e−[ρs(t)−Ps(t)](t−s) [kxk+Qs (t)] dt

= A (s) kxk+B (s) <∞,

the theorem of monotone convergence tells us that
R∞
s

e−ρs(t)(t−s)Zs,x
t dt possesses finite

expectation and that

Es

R∞
s
e−ρs(t)(t−s)Zs,x

t dt =
R∞
s
e−ρs(t)(t−s)EsZ

s,x
t dt = A (s) kxk+B (s) .
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CHAPTER 2

Keynes-Ramsey Rules in Continuous-Time Setups Under Lévy

Uncertainty∗

Abstract. Keynes-Ramsey rules for describing the optimal consumption behavior in a

continuous time setup under uncertainty are “incomplete” in the sense that they provide

only the evolution of the marginal utility process and not the evolution of the optimal

consumption process itself. Only recently, “complete” Keynes-Ramsey rules have been

derived in a setup with CRRA (constant relative risk aversion) utility functions and un-

certainty caused by Brownian motion or Poisson processes. But these processes provide

only a limited tool for modeling dynamic uncertainty. New results can be achieved by

using Lévy processes. We show how the evolution of the optimal consumption process

can be derived if uncertainty stems from a Lévy process and the consumption function

is not necessarily of the CRRA type.

JEL classification: C61; D81; D91

Keywords: Optimal consumption; Lévy processes; Keynes-Ramsey rule

∗I am indebted to Klaus Wälde for encouraging discussions concerning Lévy processes, and I would

like to thank Udo Broll for helpful comments.
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1. Introduction

Understanding optimal consumption and saving behavior of households is central

to understand many macroeconomic phenomena. For example, in models of economic

growth the aggregate savings of the households in an economy yield the capital stock of

that economy, see, e.g., Steger (2005) and Wälde (2005). In a dynamic setup, the most

“valuable” result is a closed-form expression for the optimal consumption or saving rule,

usually given by a Markov policy, i.e., by a function of current wealth and other state

variables, cf., e.g., Merton (1971). But unfortunately, finding such an expression is rather

the exception than the rule. Nevertheless, it is in most cases possible to derive a Keynes-

Ramsey rule, which describes the evolution of the optimal consumption process over time.

This rule is available for deterministic models in both continuous and discrete time (see,

e.g., Cass, 1965, and Koopman, 1965) and for stochastic models in discrete time (see,

e.g., de Hek, 1999). As will be discussed in turn, it has not yet been completely derived

for stochastic models in continuous time. The present paper therefore provides a Keynes-

Ramsey rule in a continuous-time setup with general utility and uncertainty stemming

from a Lévy process, i.e., from a process with stationary and independent increments,

thus including the special cases with Brownian motion and Poisson processes.

Keynes-Ramsey rules for stochastic continuous-time models provided in the economic

literature are “incomplete” in the sense that they describe only the evolution of the mar-

ginal utility process induced by optimal consumption behavior and not the evolution of

the optimal consumption process itself, see, e.g., Turnovsky (2000) and Wälde (1999,

2002). Only recently, Steger (2005) and Sennewald and Wälde (2006) presented “com-

plete” Keynes-Ramsey rules assuming CRRA utility functions and uncertainty stemming

from Brownian motion or Poisson processes. But in many cases, these processes rep-

resent a poor model for dynamic uncertainty in real data. For example, a frequently

used model for asset price dynamics is the geometric Brownian motion, which implies

normally distributed logreturns for all time spans in question. But whereas monthly

logreturn data are fitted very well by a normal distribution, daily or weekly logreturns

exhibit more mass around the origin and in the tails than the normal distribution can

provide, see, e.g., Eberlein and Keller (1995). The authors show that the logreturns can

be fitted much better by the hyperbolic distribution, and that therefore hyperbolic Lévy

processes are more appropriate for modeling uncertainty of stock prices. Other authors

as, e.g., Barndorff-Nielsen (1997), propose a similar class of Lévy processes – processes



2. THE SETUP 35

of the normal inverse Gaussian type – for a more realistic stock-price modeling. The

contribution of the present paper lies in introducing Lévy processes and in providing a

method that allows to deduce the evolution of the optimal consumption process from the

evolution of the marginal utility process for arbitrary utility functions.

We consider a model in which the household’s objective is to maximize his expected

lifetime utility by choosing between consumption and investment in a risky asset. At first

glance, this one-asset framework seems to be rather unrealistic. But introducing alterna-

tive investment opportunities, risky or risk-free, as in, e.g., Merton (1971) or Turnovsky

(2000), and thus taking into account that households may react to changes in riskiness by

reallocation among assets, does not change the results substantially. Furthermore, many

types of macroeconomic uncertainty affect the returns of all assets, including risk-free

assets as, e.g., a bank account or government bonds. Moreover, for an economy as a

whole, real capital constitutes the only form of saving. Therefore the model presented

here can also be understood as a model of growth under uncertainty. Here, again, Lévy

processes may appear more adequate for modeling shocks in, e.g., capital or productivity,

even though there are no empirical results on that issue available yet.

The paper is organized as follows. In the subsequent section we introduce the optimum-

consumption problem. Section 3 contains the derivation of the Keynes-Ramsey rule. In

Section 4 we consider some examples with special Lévy processes (Brownian motion,

Poisson processes, and hyperbolic Lévy processes, which were proposed by Eberlein and

Keller, 1995), and the results in Steger (2005) for the optimal growth of average con-

sumption in a model of economic growth under Gaussian and Poisson uncertainty are

reproduced. Section 5, finally, concludes.

2. The Setup

2.1. The budget constraint. Let the wealth of a household at time t, a (t), be given

by the number of stocks n (t) it owns times their price v (t). That is, a (t) = n (t) v (t).

Assume the price v (t) to be a geometric Lévy process, following the stochastic differential

equation

dv (t) = µv (t) dt+ v (t−) dx (t) , (1)
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where µ ∈ R and x (t) is a Lévy process, i.e., x (t) is cádlág and has stationary and

independent increments.1,2 Suppose that x (t) has finite expectation, i.e., E |x (t)| < ∞,
and that its jumps are not smaller than −1. The latter condition ensures that the

asset price v (t) always remains positive. As shown in Appendix A.1, the first condition,

E |x (t)| <∞, holds if and only if the logreturns have finite expectation. Thus, since asset
prices exhibit usually bounded logreturns (see, e.g., Eberlein and Keller, 1995), assuming

E |x (t)| <∞ does not limit the scope of the model. The existence of the first moments

of x (t) is equivalent to the fact that x (t) has not “too many big jumps”, which in turn

allows the following representation of x (t) (see, e.g., Sato, 1999):

x (t) = E [x (1)] t+ z̃ (t) +
R∞
−1 ζq̃ (t, dζ) . (2)

Here z̃ (t) denotes a Brownian motion and q̃ (t, ·) = q (t, ·) − tλ (·) an independent com-
pensated Poisson measure, where q (t, ·) is the Poisson measure that, roughly speaking,
counts the jumps of x (t) and λ (·) = E [q (1, ·)] can be understood as the corresponding
arrival rate of q (t, ·). More precisely, given a Borel set A ⊂ R, q (t, A) counts the jumps of
x (t) with size ζ ∈ A that occur up to time t. Thus, λ (A) represents the average number

of jumps with size in A that occur per unit of time, and it is called the Lévy measure of

x (t).

Equation (2) shows that x (t) can be decomposed into a sum consisting of a lin-

ear deterministic part, a Brownian motion, and a jump part, which is independent of

the Brownian motion. The integral
R∞
−1 ζq̃ (t, ζ) may be rewritten as

R∞
−1 ζq̃ (t, dζ) =R∞

−1 ζq (t, dζ) − t
R∞
−1 ζλ (dζ), where

R∞
−1 ζq (t, dζ) represents the “sum” of all jumps the

process x (t) makes up to time t and t
R∞
−1 ζλ (dζ) is the expectation of that sum. Thus,

unlike composite Poisson processes, Lévy processes allow for a continuum of jump sizes.

Recall that, in order to ensure positive prices v (t), we assumed only jumps of a size

greater than −1, whereas in the general case x (t) may also have jumps less than −1. If
the jump size can only take a certain value α > −1, we obtain the simple Poisson setup,
i.e.,

R∞
−1 ζq̃ (t, dζ) = αq (t)− αλt, where q (t) is a Poisson process with arrival rate λ.

The increments of the Brownian motion z̃ (t) have variance V ar [z̃ (t)− z̃ (s)]

= (t− s)σ2, where the parameter σ > 0 depends on the underlying Lévy process, x (t).

1A process is called cádlág if its paths are continuous from the right with left limits. The expression

cádlág is an acronym from the french “continu á droite, limites á gauche”.
2A detailed introduction into the topic of Lévy processes can be found in, e.g., Jacod and Shiryaev

(1987), Protter (1995), or Sato (1999).
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Hence, we may express z̃ (t) by z̃ (t) = σz (t), where z (t) denotes a standard Brownian

motion with V ar [z (t)− z (s)] = t− s.

Clearly, both the Brownian motion and the jump part are martingales. Thus, E [x (t)]

= E [x (1)] t grows linearly in time, and we can say that the paths of a Levy process are

given by a linear deterministic trend with both continuous and jump disturbances that

are zero in average. The variance of x (t) is given by V ar [x (t)] =
³
σ2 +

R∞
−1 ζ

2λ (dζ)
´
t.

Inserting the Lévy decomposition (2) into the price differential (1) and assuming

without loss of generality the expectation of the Lévy process to be zero, i.e., E [x (1)] =

0,3 we obtain

dv (t) = µv (t) dt+ σv (t) dz (t) + v (t−)
R∞
−1 ζq̃ (dt, dζ) . (3)

Thus, the asset price grows in average with the deterministic rate µ and is disturbed by

“white” and jump noise.

Let the household earn dividend payments π (t) per unit of asset it owns and labor

income w (t). Assume furthermore that it spends c (t) on consumption. When buying

assets is the only way of saving, the number of stocks held by the household changes in

a deterministic way according to

dn (t) =
n (t)π (t) + w (t)− c (t)

v (t)
dt. (4)

Thus, when savings n (t)π (t) + w (t)− p (t) c (t) are positive, the number of stocks held

by the household increases by savings divided by the price of one stock. When savings

are negative, the number of stocks decreases.

The change of the household’s wealth, i.e., the household’s budget constraint, is then

simply given by applying the change-of-variables formula on a (t) = n (t) v (t) and the

differentials (3) and (4)4

da (t) = v (t)
n (t)π (t) + w (t)− c (t)

v (t)
dt+ µn (t) v (t) dt

+σn (t) v (t) dz (t) + n (t−) v (t−)
R∞
−1 ζq̃ (dt, dζ)

= [r (t) a (t) + w (t)− c (t)] dt+ σa (t) dz (t) + a (t−)
R∞
−1 ζq̃ (dt, dζ) , (5)

where the interest rate is defined as r (t) ≡ µ+ π (t) /v (t). Budget constraint (5) shows

that the general framework with Lévy processes includes also the special cases with Brow-

nian motion and Poisson processes as considered in, e.g., Steger (2005) or, in a slightly

3If E [x (1)] 6= 0, we include E [x (1)] in the drift parameter µ in (1), cf. also Subsection 4.2.
4The change-of-variables formula is given in Appendix A.2, Corollary 1.
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different setup with an additional riskless asset, in Turnovsky (2000) and Sennewald and

Wälde (2006).

2.2. The optimal control problem. Let the household derive utility from con-

sumption with an instantaneous utility function u (c) that is three times continuously

differentiable. Starting at time s ≥ 0 and given a fixed time preference rate ρ > 0 the

household’s objective consists in choosing an optimal consumption path that maximizes

the expected lifetime utility,

U c(t) (s, a (s)) = E
R∞
s
e−ρ[t−s]u(c(t))dt

subject to budget constraint (5). Assume that an optimal consumption process c∗ (t) that

is given by a Markov policy exists. That is, the optimal consumption expenditure at time

t depends only on wealth at t and time t itself. Thus, the only way that uncertainty affects

c∗ (t) is through a (t) and we may express, if we find it convenient, c∗ (t) by c∗ (t, a (t)).

The value function V is defined as the expected lifetime utility derived from the

optimal consumption process. That is,

V (s, a (s)) ≡ E
R∞
s
e−ρ[t−s]u(c∗(t))dt. (6)

3. The Keynes-Ramsey rule

In this section we show, how starting with the Hamilton-Jacobi-Bellman (HJB) equa-

tion, one can derive a Keynes-Ramsey rule for the optimal control problem stated above.

Assume that the value function V is twice continuously differentiable. Then, according

to, e.g., Øksendal and Sulem (2005, Ch. 3), it solves the HJB equation5

ρV (t, a) = max
c≥0

(
u (c) + Vt (t, a) + [r (t) a+ w (t)− c]Va (t, a) +

1
2
σ2a2Vaa (t, a)

+
R∞
−1 [V (t, (1 + ζ) a)− V (t, a)− ζaVa (t, a)]λ (dζ)

)
,

(7)

where Vt denotes the partial derivative of V with respect to the time argument t and Va

and Vaa the first and second derivatives, respectively, with respect to a. The maximum

5Similar to the problem for Poisson uncertainty described in Sennewald (2007) or Chapter 1 of this

thesis, the boundedness condition for the instantaneous utility function and the differential coefficients

still holds if one wishes to apply the HJB equation as a necessary condition under Lévy uncertainty. The

reference mentioned here, Øksendal and Sulem (2005), actually only covers the sufficiency property of

the HJB equation. A heuristic derivation of the HJB equation can be found in Appendix A.3.
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in (7) is attained by the optimal Markov control c∗ (t, a). Assuming that c∗ is an interior

maximum, i.e., c∗ > 0, the first-order condition is then found to be

u0 (c∗) = Va (t, a) . (8)

In the next step, we compute the evolution of the marginal value Va (t, a (t)) evaluated

along the optimally controlled wealth process a (t). Since there is no risk of confusion

in the following, we shall as from now write c instead of c∗ for the optimal consumption

expenditure. With budget constraint (5), the change-of-variables formula then yields6

dVa (t, a (t)) = Vta (t, a (t)) dt

+ [r (t) a (t) + w (t)− c (t)]Vaa (t, a (t)) dt+
1

2
σ2a2 (t)Vaaa (t, a (t)) dt

+σa (t)Vaa (t, a (t)) dz (t)

+
R∞
−1 [Va (t, (1 + ζ) a (t))− Va (a (t))− ζa (t)Vaa (t, a (t))]λ (dζ) dt

+
R∞
−1 [Va (t, (1 + ζ) a (t−))− Va (t, a (t−))] q̃ (dt, dζ) , (9)

where Vaaa stands for the third derivative of V with respect to a. On the other hand, the

derivation of the maximized HJB equation (7) with respect to a yields according to the

envelope theorem

ρVa (t, a) = Vta (t, a) + r (t)Va (t, a) + [r (t) a+ w (t)− c]Vaa (t, a)

+σ2aVaa (t, a) +
1

2
σ2a2Vaaa (t, a)

+
d

da

R∞
−1 [V (t, (1 + ζ) a)− V (t, a)− ζaVa (t, a)]λ (dζ) .

Assuming that differentiation and integral on the right-most term on the right-hand hand

side are interchangeable, rearranging leads to

(ρ− r (t))Va (t, a)− σ2aVaa (t, a)−
R∞
−1 ζ [Va (t, (1 + ζ) a)− Va (t, a)]λ (dζ)

= Vta (t, a) + [r (t) a+ w (t)− c]Vaa (t, a) +
1

2
σ2a2Vaaa (a)

+
R∞
−1 [Va (t, (1 + ζ)a)− Va (t, a)− ζaVaa (t, a)]λ (dζ) .

Inserting this expression evaluated at a (t) into the stochastic differential (9) yields

dVa (a (t)) =

"
(ρ− r (t))Va (t, a (t))− σ2a (t)Vaa (t, a (t))

− R∞−1 ζ [Va (t, (1 + ζ) a (t))− Va (t, a (t))]λ (dζ)

#
dt

+σa (t)Vaa (t, a (t)) dz (t) +
R∞
−1 [Va (t, (1 + ζ) a (t−))− Va (t, a (t−))] q̃ (dt, dζ) .

6For the change-of-variables formula see Corollary 1 in Appendix A.2.
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Now replacing Va with u
0
, according to the first-order condition (8), and Vaa with u

00 (c) ca

(which is also due to (8) and where ca ≡ ∂c (t, a) /∂a stands for the marginal prospensity

to consume), we arrive at the Keynes-Ramsey rule in the “traditional” form as derived in,

e.g., Turnovsky (2000) for Gaussian uncertainty (and a slightly different setup in which

also a riskless asset is available)

du0 (c (t))
u0 (c (t−))

=

½
ρ− r (t)− u00 (c (t))

u0 (c (t))
ca (t) a (t)σ

2 − R∞−1 ζ ·u0 (cζ (t))u0 (c (t))
− 1
¸
λ (dζ)

¾
dt

+
u00 (c (t))
u0 (c (t))

ca (t) a (t)σdz (t) +
R∞
−1

·
u0 (cζ (t−))
u0 (c (t−))

− 1
¸
q̃ (dt, dζ) . (10)

Here cζ (t) denotes the optimal consumption expenditure when a jump in wealth by

ζ percent has occurred, i.e., cζ (t) = c (t, (1 + ζ) a (t)). In this version of the Keynes-

Ramsey rule, the optimal consumption behavior is given implicitly by the evolution of

the marginal utility. In the following we derive from (10) the evolution of the optimal

consumption process itself. To this end, we only need to apply the change-of-variables

formula from Corollary 1 in Appendix A.2 on the mapping y 7→ (u0)−1 (y), where for y

we insert the marginal utility u0 (c (t)) whose evolution is given by (10). That yields

dc (t) = − 1

u00 (c (t))


[r (t)− ρ]u0 (c (t))

+
£
1
2
u000 (c (t)) ca (t) a (t) + u00 (c (t))

¤
ca (t) a (t)σ

2

− R∞−1 (1 + ζ) [u0 (c (t))− u0 (cζ (t))]λ (dζ)

 dt

+
R∞
−1 [cζ (t−)− c (t−)]λ (dζ) dt+ ca (t) a (t)σdz (t) +

R∞
−1 [cζ (t−)− c (t−)] q̃ (dt, dζ) ,

where we used that according to the rule df−1 (f (x)) /df (x) = 1/f 0 (x),

d (u0)−1 (u (c))
du (c)

=
1

u00 (c)
and

d2 (u0)−1 (u (c))

[du (c)]2
= − u000 (c)

[u00 (c)]3
.

If we denote the Arrow-Pratt measure for relative risk aversion by

θ (t) ≡ −u
00 (c (t))
u0 (c (t))

c (t)

and the measure for relative prudence by

η (t) ≡ −u
000 (c (t))
u00 (c (t))

c (t) ,
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rearranging leads to

θ (t−)
dc (t)

c (t−)
= [r (t)− ρ] dt+

·
1

2
η (t)

ca (t) a (t)

c (t)
− 1
¸
θ (t)

ca (t) a (t)

c (t)
σ2dt

− R∞−1 (1 + ζ)

·
1− u0 (cζ (t))

u0 (c (t))

¸
λ (dζ) dt+ θ (t)

ca (t) a (t)

c (t)
σdz (t)

+θ (t−)
R∞
−1

·
cζ (t−)
c (t−)

− 1
¸
q (dt, dζ) , (11)

Unlike (10), this version of the Keynes-Ramsey rule describes explicitly the evolution of

the optimal consumption process. In a deterministic setup, the left-hand side must be

equal to the first term on the right-hand side, see, e.g., Barro and Sala-i-Mart́ın (1995).

The other terms on the right-hand side are thus due to the uncertainty introduced by

the Lévy process x (t). More precisely, the second and fourth term appear because of

the diffusion part, whereas the third and fifth term stem from the jump part of the Lévy

process.

Keynes-Ramsey rule (11) shows that some interpretations from the deterministic setup

carry over to the stochastic environment: Assuming that u satisfies the usual conditions,

i.e., u0 > 0 and u00 < 0, we can conclude that the higher the interest rate r (t) or the

lower the time preference rate ρ the more consumption the household sacrifices today for

consumption tomorrow, i.e., dc (t) /c (t−) goes up.

If the utility function is of the CRRA type, given by

u (c) =
c1−γ − 1
1− γ

, γ > 0, γ 6= 1, 7 (12)

the measures for relative risk aversion and prudence are constants and read θ = γ and

η = 1 + γ, respectively. Then Keynes-Ramsey rule (11) reads

dc (t)

c (t−)
=

½
r (t)− ρ

γ
−
·
1− 1

2
(1 + γ)

ca (t) a (t)

c (t)

¸
ca (t) a (t)

c (t)
σ2
¾
dt

−1
γ

R∞
−1 (1 + ζ)

"
1−

µ
cζ (t)

c (t)

¶−γ#
λ (dζ) dt

+
ca (t) a (t)

c (t)
σdz (t) +

R∞
−1

·
cζ (t−)
c (t−)

− 1
¸
q (dt, dζ) . (13)

7The following also applies to the special case γ → 1, i.e. u (c) = log c.
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Taking expectation on the latter differential yields the expected growth rate of optimal

consumption

dEc (t) /dt

c (t)
=

r (t)− ρ

γ
−
·
1− 1

2
(1 + γ)

ca (t) a (t)

c (t)

¸
ca (t) a (t)

c (t)
σ2

−1
γ

R∞
−1

(
(1 + ζ)

"
1−

µ
cζ (t)

c (t)

¶−γ#
− γ

·
cζ (t)

c (t)
− 1
¸)

λ (dζ) . (14)

Here we used the martingale property of the Brownian motion z (t) and the compensated

Poisson measure q̃ (t, ·), cf. Subsection 2.1. If the flow of labor income w is equal to

zero, one can show that the optimal consumption expenditure is proportional to current

wealth. In this case, using that then

cζ (t)

c (t)
=
(1 + ζ) a (t)

a (t)
= 1 + ζ,

Keynes-Ramsey rule (13) and the expected consumption growth rate (14) read

dc (t)

c (t−)
=

·
r (t)− ρ

γ
− 1
2
(1− γ)σ2

¸
dt− 1

γ

R∞
−1
£
(1 + ζ)− (1 + ζ)1−γ − γζ

¤
λ (dζ) dt

+σdz (t) +
R∞
−1 ζq̃ (dt, dζ)

and

dEc (t) /dt

c (t)
=

·
r (t)− ρ

γ
− 1
2
(1− γ)σ2

¸
dt− 1

γ

R∞
−1
£
(1 + ζ)− (1 + ζ)1−γ − γζ

¤
λ (dζ) dt.

(15)

Equation (15) allows us analyze the effects of risk on the average consumption growth.

Recall that the variance of the underlying stochastic process, i.e., our measure of risk, is

given by V ar [x (t)] =
³
σ2 +

R∞
−1 ζ

2λ (dζ)
´
t. Then, looking at Equation (15), it is easy to

see that an increased risk due to a rise in the variance of the Brownian-motion part, σ2,

leads to lower (higher) consumption growth if the relative risk aversion γ is less (greater)

than 1, whereas consumption growth remains unaffected in the log-utility case with γ = 1.

As is shown in Appendix A.4, the same result holds true if risk increases due to a higher

variance of the jump part,
R∞
−1 ζ

2λ (dζ). Notice that while rising the variance of x (t),

the expected value remains unchanged. Hence, the well-known results on the effects of

capital risk on the average consumption growth obtained for different setups with, e.g.,

Brownian motion and Poisson processes (cf. Steger, 2005 and Sennewald and Wälde,

2006) or generally distributed increments in discrete time (cf. de Hek, 1999) carry over

to the continuous-time case with Lévy uncertainty. The intuitive argumentation behind

these findings is standard. On the one hand, higher risk makes the consumer less willing
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to save since he faces a higher probability of loss. This is the so called substitution effect.

On the other hand, increased risk leads to more saving in order to protect oneself against

very low levels of future consumption. This is called the income effect. In case of low

risk aversion (i.e., γ < 1) the substitution effect dominates the income effect, whereas

the opposite holds true if risk aversion is high (i.e., γ > 1). Only in case of log-utility

(γ = 1) both effects are balanced.

4. Examples

4.1. Geometric Brownian motion. As mentioned before, the Lévy-process frame-

work covers the special case in which the asset price is given as a geometric Brownian

motion, i.e., dv (t) = µv (t) dt+σv (t) dz (t). Under this assumption the budget constraint

turns out to be

da (t) = [r (t) a (t) + w (t)− c (t)] dt+ σa (t) dz (t) ,

and the corresponding Keynes-Ramsey rule reads (cf. Equation (11))

θ (t)
dc (t)

c (t)
= [r (t)− ρ] dt+

·
1

2
η (t)

ca (t) a (t)

c (t)
− 1
¸
ca (t) a (t)

c (t)
σ2dt+θ (t)

ca (t) a (t)

c (t)
σdz (t) ,

or, for the CRRA utility function (12),

dc (t)

c (t)
=

½
r (t)− ρ

γ
−
·
1− 1

2
(1 + γ)

ca (t) a (t)

c (t)

¸
ca (t) a (t)

c (t)
σ2
¾
dt+

ca (t) a (t)

c (t)
σdz (t) .

Taking expectation on the latter stochastic differential gives the average consumption

growth rate

dEc (t) /dt

c (t)
=

r (t)− ρ

γ
−
·
1− 1

2
(1 + γ)

ca (t) a (t)

c (t)

¸
ca (t) a (t)

c (t)
σ2.

If labor income w is equal to zero, this growth rate simplifies to

dEc (t) /dt

c (t)
=

r (t)− ρ

γ
− 1
2
(1− γ)σ2,

which, with a slightly different notation, coincides with Steger’s (2005) Equation (5).

4.2. Poisson processes. Assume that the asset price evolves deterministically with

jumps at random times according to

dv (t) = µv (t) dt+ αv (t−) dq1 (t)− βv (t−) dq2 (t) , (16)

where α ≥ 0, 0 ≤ β < 1, and q1 and q2 are Poisson processes with arrival rates λ1 and

λ2, respectively. Now the price grows continuously with the rate µ, and at random times
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it jumps upwards by α percent (when dq1 (t) = 1) or downwards by β percent (when

dq2 (t) = 1). To achieve a martingale structure as in differential (3), we rewrite (16) to

dv (t) = (µ+ λ1α− λ2β) v (t) dt+ αv (t−) dq̃1 (t)− βv (t−) dq̃2 (t) ,

where q̃i (t) = qi (t)− λit, i = 1, 2, denote the compensated Poisson processes. Then, the

budget constraint reads

da (t) = [ra (t) + w (t)− c (t)] dt+ a (t−) [αdq̃1 (t)− βdq̃2 (t)] ,

with r = µ + λ1α − λ2β and where for sake of simplicity dividend payments are not

taken into account. In analogy to (11), optimal consumption growth must then obey

Keynes-Ramsey rule

θ(t−)
dc (t)

c (t−)
= (µ− ρ) dt− λ1 (1 + α)

·
1− u0 (cα (t))

u0 (c (t))

¸
dt+ λ2 (1− β)

·
u0 (c−β (t))
u0 (c (t))

− 1
¸
dt

+θ (t−) [cα (t−)− c (t−)] dq1 (t)− θ (t−) [c (t−)− c−β (t−)] dq2 (t) ,

where cα (t) and c−β (t) denote the optimal consumption expenditures if the asset price

at t jumps upwards (dq1 (t) = 1) and downwards (dq2 (t) = 1), respectively. In case of

CRRA utility function (12) the Keynes-Ramsey rule reads

dc (t)

c (t−)
=

µ− ρ

γ
dt− λ1 (1 + α)

γ

"
1−

µ
cα (t)

c (t)

¶−γ#
dt+

λ2 (1− β)

γ

"µ
c−β (t)
c (t)

¶−γ
− 1
#
dt

+

·
cα (t−)
c (t−)

− 1
¸
dq1 (t)−

·
1− c−β (t−)

c (t−)

¸
dq2 (t) .

Setting w = 0, assuming that the jumps are symmetric, i.e., λ1 = λ2 and α = β, and

taking expectation, we find further

dEc (t) /dt

c (t)
=

µ− ρ

γ
− λ1

2− (1 + α)1−γ − (1− α)1−γ

γ

which, only with different notation, is the same result as derived by Steger (2005, Eq.

(7)).

4.3. Hyperbolic Lévy motion. Let x (t) be a centered and symmetric hyper-

bolic Lévy process. That is, the increments of x (t) are hyperbolic distributed sym-

metrically around zero. Then x is a pure jump martingale with representation x (t) =R t
0

R
R\{0} ζ [q (dt, dζ)− λ (dζ) dt], cf. Eberlein and Keller (1995). The Lévy measure λ
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has density8

g (ζ) =
1

π2 |ζ|
R∞
0

e−|ζ|
√
2y+(φ/δ)2

y
£
J21
¡
δ
√
2y
¢
+ Y 2

1

¡
δ
√
2y
¢¤dy + e−|ζ|

|ζ| ,

where J1 and Y1 denote the Bessel functions with index 1 of the first and second kind,

respectively. Notice that x (t) may have jumps minor than −1, so that the asset price
v (t) may become negative. We therefore stop the decision problem at the time the

asset price falls below −1 for the first time, i.e., at T ≡ inf {t > 0 : ∆x (t) < −1}. The
household maximizes then U c(t) (s, a (s)) = Es

R T
s
e−ρ[t−s]u(c(t))dt and, as long as t < T ,

the Keynes-Ramsey rule reads9

θ (t−)
dc (t)

c (t−)
= [r (t)− ρ] dt− R∞−1 (1 + ζ)

·
1− u0 (cζ (t))

u0 (c (t))

¸
g (ζ) dζdt

+θ (t−)
R∞
−1

·
cζ (t−)
c (t−)

− 1
¸
q (dt, dζ) .

For CRRA utility function (12) this Keynes-Ramsey rule becomes

dc (t)

c (t−)
=

r (t)− ρ

γ
dt− 1

γ

R∞
−1 (1 + ζ)

"
1−

µ
cζ (t)

c (t)

¶−γ#
g (ζ) dζdt

+
R∞
−1

·
cζ (t−)
c (t−)

− 1
¸
q (dt, dζ) .

Taking expectation yields the average consumption growth rate

dEc (t) /dt

c (t)
=

r (t)− ρ

γ
− 1

γ

R∞
−1

(
(1 + ζ)

"
1−

µ
cζ (t)

c (t)

¶−γ#
− γ

·
cζ (t)

c (t)
− 1
¸)

g (ζ) dζ.

and for w = 0 we finally obtain

dEc (t) /dt

c (t)
=

r (t)− ρ

γ
− 1

γ

R∞
−1
£
(1 + ζ)− (1 + ζ)1−γ − γζ

¤
g (ζ) dζ.

5. Conclusion

In a continuous-time setup and under Lévy uncertainty we have derived a version of

the Keynes-Ramsey rule that describes explicitly the evolution of the optimal consump-

tion process, given any arbitrary sufficiently smooth utility function. Lévy processes allow

a much more realistic modelling of stock prices. From the general Lévy framework we

have drawn the special cases with Brownian motion, Poisson processes, and processes

8That is, λ (dη) = g (η) dη.
9According to Øksendal and Sulem (2005, Ch. 3), the HJB equation does not change by introducing

a stopping time, such as our T . The Keynes-Ramsey rule can therefore be derived as shown in Section

3.
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with hyperbolic distributed increments, and the results for the average evolution of op-

timal consumption in a growth model under uncertainty from Steger (2005) have been

reproduced.

The model presented in this paper can be applied easily to the analysis of economic

growth under uncertainty. Here also, Lévy processes may be more suitable for modeling

dynamic uncertainty as, e.g., shocks in productivity. To find out which class of Lévy

processes fits best to real data is left for further (empirical) research.

A. Appendix

A.1. Logreturns and noise with finite expectation. We prove that E |x (t)| <
∞ iff E log v (t) < ∞. Recall that the asset price v (t) obeys the stochastic differential
equation (1). If we define the process y (t) ≡ µt+ x (t), which is also a Lévy process, we

may rewrite (1) to dv (t) = v (t−) dy (t). Then, since v (t) is positive by construction, we

know from Goll and Kallsen (1999, Lemma 5.8) that v (t) is an exponential Lévy process,

i.e., there exists a Lévy process ỹ (t) with v (t) = v0e
ỹ(t). This in turn allows, again with

Goll and Kallsen (1999, Lemma 5.8), to conclude that ỹ (t) has finite expectation if and

only if x (t) has finite expectation.

A.2. The change-of-variables formula (Itô’s formula) for Lévy processes.

The following change-of-variables formula is taken from Gihman and Skorohod (1972,

p.128).

Theorem 1. Let for k = 1, . . . , d the process yk (t) exhibits the following decomposi-

tion:

yk (t) = yk (0) + αk (t) + βk (t) + γk (t) ,

where αk (t) is a deterministic and continuous process, βk (t) a continuous martingale,

and γk (t) a stochastic pure-jump process with Lévy measure λ. More precisely, γk (t) is

given by

γk (t) =
R t
0

R
R φk (s−, ζ) q̃ (ds, dζ) =

R t
0

R
R φk (s−, ζ) q (ds, dζ)−

R t
0

R
R φk (s, ζ)λ (dζ) ds,

where the measure q (t, ·) does not depend on the martingales βk (t) and φk (s, ζ) is a

integrable, cádlág process that depends on the jumps size ζ. If f : [0,∞)× Rd → R is a
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twice continuously differentiable function, the process f (t, y (t)) obeys

df (t, y (t)) = ft (t, y (t)) dt+
dP

k=1

fyk (t, y (t)) d [αk (t) + βk (t)]

+
1

2

dP
k,l=1

fykyl (t, y (t)) hβk (t) , βl (t)i

+
R
Rd

"
f (t, y (t) + φ (t, ζ))− f (t, y (t))

−Pd
k=1 fyk (t, y (t))φk (t, ζ)

#
λ (dζ) dt

+
R
Rd [f (t, y (t−) + φ (t−, ζ))− f (t, y (t−))] q̃ (dt, dζ) .

Here hβk (t) , βl (t)i stands for the quadratic covariation process of βk (t) and βl (t), ft and
fyk for the partial derivatives of f with respect to t and yk, and φ is the vector function

consisting of the components φ1, . . . , φd.

Using that the quadratic covariation is bilinear and that for two independent standard

Brownian motions z1 (t) and z2 (t), hzi (t) , zj (t)i = δijt, i, j = 1, 2, we deduce with a slight

change of the notation the following corollary.

Corollary 1. Let y (t) be a d-dimensional stochastic process whose components obey

dyk (t) = αk (t, y (t)) dt+ βk (t, y (t)) dzk (t) +
R
R γk (t−, y (t−) , ζ) q̃ (dt, dζ) .

If the function f is given as above, then

df (t, y (t)) = ft (t, y (t)) dt+
dP

k=1

fyk (t, y (t))αk (t, y (t)) dt

+
1

2

dP
k,l=1

fykyl (t, y (t))βk (t, y (t))βl (t, y (t)) dt

+
dP

k=1

fyk (t, y (t))βk (t, y (t)) dzk (t)

+
R
Rd

"
f (t, y (t) + γ (t, y (t) , ζ))− f (t, y (t))

−Pd
k=1 fyk (t, y (t)) γk (t, y (t−) , ζ)

#
λ (dζ) dt

+
R
Rd
[f (t, y (t−) + γ (t−, y (t−) , ζ))− f (t, y (t−))] q̃ (dt, dζ) ,

where γ = (γ1, . . . , γd)
T .

A.3. A heuristic derivation of the HJB equation. This appendix shows how

HJB equation (7) can be heuristically derived. As a starting point, we write the HJB
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equation in the general form as

ρV (t, a (t)) = max
c(t)

½
u (c (t)) +

1

dt
EtdV (t, a (t))

¾
, (17)

where the maximum is achieved by the optimal consumption choice c∗ (t), and V de-

notes the value function (6). The general HJB equation (17) says that the household

chooses consumption in t such that she maximizes her instantaneous return from con-

sumption, which consists of the instantaneous utility flow u (c (t)) plus the expected

change 1
dt
EtdV (t, a (t)) in the value of wealth corresponding to the consumption choice

in t. It tells furthermore that the intertemporal return ρV (t, a (t)) from holding a (t)

is given by the return from the optimal consumption in t, u (c∗ (t)) + 1
dt
EtdV (t, a (t)).

We see that, when determining the optimal behavior at t, the household only needs to

consider the value function at t and its expected change in order to cover future behavior.

This is a direct result of Bellman’s principle of optimality, see, e.g., Bellman (1957).

Assume that V is once continuously differentiable. Obtaining the HJB equation for

a specific maximization problem then requires (i) application of CVF on V (t, a (t)), (ii)

computing expectations and (iii) “dividing” by dt. With budget constraint (5), CVF

from Corollary 1 in Appendix A.2 yields

dV (t, a (t)) = Vt (t, a (t)) dt

+ [r (t) a (t) + w (t)− c (t)]Va (t, a (t)) dt+
1

2
σ2a2 (t)Vaa (t, a (t)) dt

+σa (t)Va (t, a (t)) dz (t)

+
R∞
−1 [V (t, (1 + ζ) a (t))− V (a (t))− ζa (t)Va (t, a (t))]λ (dζ) dt

+
R∞
−1 [V (t, (1 + ζ) a (t−))− V (t, a (t−))] q̃ (dt, dζ) , (18)

where Vx and Vxy denote the partial derivatives of the value function. Using that, anal-

ogously to Poisson processes, the expected value of the compensated jumps of size ζ,

q̃ (t, ζ) = q (t, ζ)− tλ(ζ), is equal to zero, we find that the expected value of the last term

in (18) is zero, too. Also, the dz(t)-term becomes zero when taking expectation. The

expected value of (18) hence reads

Etd (t, a (t)) = Vt (t, a (t)) dt

+{[r (t) a (t) + w (t)− c (t)]Va (t, a (t)) +
1

2
σ2a2 (t)Vaa (t, a (t))}dt

+
R∞
−1 [V (t, (1 + ζ) a (t))− V (a (t))− ζa (t)Va (t, a (t))]λ (dζ) dt.

Dividing by dt gives and inserting into (17) finally yields HJB equation (7).
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A.4. The effects of jump risk on the optimal consumption growth. Recall

that the variance of the Lévy process x (t) is given by V ar [x (t)] =
³
σ2 +

R∞
−1 ζ

2λ (dζ)
´
t.

Thus, an increase of risk in the jump part may be due to a rise in the “arrival rate” λ

or due to higher jump sizes ζ. We shall show that in both cases the usual results on

the effect of risk hold true, namely that for low risk aversion (γ < 1) consumption grows

more slowly, for high risk aversion (γ > 1) consumption grows faster, and for γ = 1 risk

has no impact on the consumption growth rate at all.

A.4.1. Increasing λ. A rise in λ (ζ) means that jumps with size ζ occur with a higher

intensity. To see how this affects the optimal consumption growth, we consider Keynes-

Ramsey rule (15). Then we find that the sign of the term g (γ) ≡ −1/γ[(1 + ζ) −
(1 + ζ)1−γ − γζ] determines whether a higher λ (ζ) has a positive or negative impact on

the consumption growth. We show that

g (γ)


< 0 for γ < 1;

= 0 for γ = 1;

> 0 for γ < 1.

(19)

Since for γ = 1, g (γ) obviously becomes zero, this statement is true if the derivative of

g,

g0 (γ) =
1

γ2
£
(1 + ζ)− (1 + ζ)1−γ − γζ

¤− 1
γ

£
(1 + ζ)1−γ ln (1 + ζ)− ζ

¤
,

is negative. Collecting terms and rearranging shows that this holds if and only if ln (1 + ζ)γ

< (1 + ζ)γ−1, which in turn is satisfied if and only if (1 + ζ)γ < exp(1+ζ)
γ−1. Now, using

the power series representation of the exponential function, we can conclude that the

latter inequality is true if and only if 0 <
P∞

n=2
[(1+ζ)γ−1]n

n!
, which in turn can be rewritten

to

0 <
∞P
k=2

n
[(1 + ζ)γ − 1]2

ok
(2k)!

·
1 +

[(1 + ζ)γ − 1]
2k + 1

¸
.

It is easy to see that for any ζ > −1 all summands on the right-hand side are positive.
The latter inequality therefore holds true, and (19) follows, which in turn establishes the

results on the effects of risk as stated above.

A.4.2. Increasing the jump size. Let ζ0 ∈ (−1,∞) and assume that λ ({ζ0}) > 0. If

we increase all jumps with size ζ0 by a factor κ > 0 (assuming that (1 + κ) ζ0 > −1), the
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underlying Lévy process becomes10

xκ (t) ≡ x (t) +
R
{ζ0} κζq̃ (t, dζ) ,

where the corresponding Lévy measure reads

λκ (ζ) =


0 for ζ = ζ0

λ (ζ) + λ (ζ0) for ζ = (1 + κ) ζ0

λ (ζ) otherwise

.

Then, due to Keynes-Ramsey rule (15), the optimal average consumption growth accord-

ing to xκ (t) obeys

dEcκ (t) /dt

cκ (t)
=

·
r (t)− ρ

γ
− 1
2
(1− γ)σ2

¸
dt

−1
γ

R∞
−1
£
(1 + ζ)− (1 + ζ)1−γ − γζ

¤
λκ (dζ) dt

=
dEc (t) /dt

c (t)
− 1

γ
[g (κ)− g (0)]λ ({ζ0}) dt,

where we set g (κ) ≡ [1 + (1 + κ) ζ0]− [1 + (1 + κ) ζ0]
1−γ − γ (1 + κ) ζ0. Hence, the sign

of the derivative of g (κ) determines whether a rise in the jump size increases or decreases

consumption growth. The derivative reads g0 (κ) = (1− γ)
£
1− (1 + (1 + κ) ζ0)

−γ¤ ζ0.
Now it is easy to see that, since (1 + κ) ζ0 was assumed to be greater than −1, g0 (κ) >
0 for γ < 1, g0 (κ) = 0 for γ = 1, and g0 (κ) < 0 for γ > 1. This shows that

(dEcκ (t) /dt) /cκ (t) is less than (dEc (t) /dt) /c (t) if γ < 1, equal if γ = 1, and greater if

γ > 1, which finally yields the aforementioned results on the effects of risk.

10The following demonstration can be easily extended to the case in which jumps of (infinitely) many

sizes increase.
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CHAPTER 3

Optimal Saving Under Risk of Unemployment∗

Abstract. We consider a continuous-time optimum-consumption problem in which an

agent is exposed to both risk and uncertain spells of unemployment. The back and forth

in the employment status is properly modeled by a stochastic differential equation with

Poisson processes. The resulting stochastic income process gives rise to precautionary

saving which is decreasing in the level of wealth. We find that this excess saving jointly

with the jumps in labor income lead to consumption paths that are totally different

from what we know from deterministic setups. In particular, there can be, dependent

on the interest rate, target saving or temporary poverty traps. We further find that

the uncertainty in the employment status raises the average (though not necessary the

actual) consumption growth.

JEL classification: C61; D11; E24

Keywords: Optimal consumption; Risk of unemployment; Labor income risk; Precau-

tionary Saving

∗Special thanks are due to Udo Broll, Jens Eisenschmidt, Klaus Wälde, and seminar participants at

the Ente “Luigi Einaudi”.
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1. Introduction

Uncertainty in labor income is a major concern of individuals. Theoretic and empirical

results show that such earnings uncertainty leads to precautionary saving as a kind of

personal insurance against bad income draws. This behavior increases not only individual

and aggregate wealth but also, at least in average, individual and aggregate consumption

growth. The theoretic basis for precautionary saving was established by Leland (1968)

and Sandmo (1970); important extensions were provided by, e.g., Kimball (1990a, 1990b).

The authors find that precautionary saving is associated with convexity of the marginal

utility (i.e., with a positive third derivative of the utility function), such as exhibited by,

for example, the widely used class of CRRA1 utility functions. Empirical studies confirm

the theoretic results. Caballero’s (1991) simulation, for example, conjectures that on the

aggregate level the excess wealth due to precautionary saving may account for as much

as 60 percent of U.S. household’s net worth. Similarly, Gourinchas and Parker (2001)

estimate precautionary wealth to be 65 percent of total liquid wealth. They find further

that in average four percent per annum of consumption growth at young ages is due to

precautionary motives. Though there are authors presenting less dramatic results (see,

e.g., Guiso et al., 1992, or Lusardi, 1998), precautionary saving is a widely accepted and

important issue of individuals’ behavior.2

A major source for the uncertainty in labor income is risk of unemployment and the

uncertain outcome of the job search process. In the paper at hand we therefore present

a continuous-time optimum-consumption problem in which an agent with CRRA prefer-

ences is exposed to both risk and uncertain spells of unemployment. We find that the

back and forth between job and unemployment leads through the channel of precaution-

ary saving to consumption trajectories that are totally different from what we know from

deterministic setups. In particular, the usual rule that the agent (dis)saves whenever the

interest rate is greater (less) than the time preference does not hold anymore. Instead

we obtain, depending on the parameter settings, target saving, where the agent’s wealth

and consumption converge toward a target state, or temporary poverty traps in case the

agent’s employment history has been unlucky. Furthermore and not surprising in light

of the precautionary saving motive, we find that the uncertainty in labor income due to

risk of unemployment raises the average (though not necessarily the actual) consumption

1Constant relative risk aversion.
2The large differences in the estimated contribution of precautionary saving stem mainly from the

various variables employed in order to proxy earnings uncertainty.
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growth. As a consequence, if the interest rate is equal to the time preference rate –

which in absence of uncertainty leads to constant levels for both consumption and wealth

–, expected consumption expenditure and wealth always grow with a positive rate.

Beside the references mentioned above, there are many authors who are concerned

with the theory of the optimal saving behavior in presence of uncertain labor income, see,

e.g., Kimball and Mankiw (1989), Zeldes (1989), Carroll and Kimball (1996), Talmain

(1998), and Rendon (2006). Several authors even include a simultaneous portfolio choice,

see, e.g., Merton (1971), Svensson and Werner (1993), Duffie et al. (1997), and Lentz

and Tranæs (2005), or endogenize individual labor supply as, e.g., Bodie et al. (1992)

and Basak (1999). Still other authors, such as Deaton (1991) and Carroll (2004), add

liquidity constraints, which on its own lead to precautionary saving.

Most of the models describing earnings uncertainty are, however, not suitable for

capturing properly the back and forth between employment and unemployment. Some

authors simply assume (in discrete time) the income process to be given by i.i.d. random

shocks or to follow a geometric random walk, see, e.g., Zeldes (1989), Deaton (1991),

Aiyagari (1994), and Carroll (2001), while others describe (in continuous time) the income

process as a geometric Brownian motion, see, e.g., Merton (1971), Bodie et al. (1992),

and Duffie et al. (1997). To the best of our knowledge, only Lentz and Tranæs (2005)

and Rendon (2006) address and model risk of unemployment explicitly. They, however,

consider discrete-time models in which the agent chooses both consumption and, while

unemployed, job-search effort which affects the arrival rate of new job offers. In neither

of these models the authors derive a closed-form solution.3 Lentz and Tranæs (2005)

provide instead implicit results on the interaction between wealth, saving, unemployment

spell, and search effort, while Rendon (2006) determines the optimal policies and other

variables numerically.

While finishing the article at hand, a related, but independent work by Toche (2005)

was drawn to our attention. Toche (2005) considers an optimum-consumption problem

in continuous-time in which unemployment is assumed to be an absorbing state. That

3Finding a closed-form solution for optimum-saving problems with uncertain labor income is re-

stricted to special cases. These include models with exponential utility (see, e.g., Kimball and Mankiw,

1989), risk-neutral agents (see, e.g., Aghion and Howitt, 1992), perfect correlation of risky securities

and uncertain labor income (see, e.g., Merton, 1971), or a combination of these properties (see, e.g.,

Svensson and Werner, 1993). Approaches for numerical and analytical approximations to the solution

can be found in, e.g., Zeldes (1989) or Talmain (1998).
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means, once the agent has been laid off, he remains unemployed throughout the rest of

his life. This assumption is obviously a very unrealistic simplification since unemployed

persons usually find a new job again.

The present paper provides a more realistic modeling by allowing the agent to jump

back and forth between job and unemployment throughout his lifetime. Technically this

is achieved, by assuming the job state, or more precisely the associated income process,

to obey a stochastic differential equation driven by Poisson processes. This modeling is

not only more suitable in light of the random changes in the employment status but also

allows the rigorous use of the Hamilton-Jacobi-Bellman equation as a tool for tackling

the optimum-consumption problem.

Unfortunately, but not surprisingly, a closed-form solution cannot be derived. How-

ever, using previous work on the subject of precautionary saving, which includes many

of the aforementioned references, we obtain an analytical characterization of the optimal

consumption rule. Jointly with a suitable form of the Keynes-Ramsey rule, which is also

derived in this paper, these characterizations lead to interesting insights into the opti-

mal saving behavior. We find that some of our results, such as target saving in case of

employment, also hold (at least qualitatively) in the simple setup from Toche (2005). In

this context we may also refer to, e.g., Carroll (2001) who, too, proves the existence of a

target level of wealth, though for a different setup as discussed above. Other findings, in

contrast, such as poverty traps, are new and only explainable with our specific modeling

of the labor income process.

The model is kept as simple as possible in order to identify the pure effect of both

risk and uncertain spells of unemployment on the saving behavior, cf. also Toche (2005).

In detail, that means we do neither consider portfolio and leisure choice nor liquidity

constraints, i.e., the agent can borrow freely whenever he thinks it is useful to do so.

Furthermore we assume, unlike Lentz and Tranæs (2005) and Rendon (2006), both the

separation and the matching process to be exogenously given.

The remainder of the paper is organized as follows. Section 2 describes the model.

In Section 3 we provide fundamental characteristics of the optimal consumption rule.

Subsequently, in Section 4, we derive the Keynes-Ramsey rule and analyze the resulting

differential systems. Section 5 presents and discusses the results on the saving behavior,

while in Section 6 we consider the average consumption growth. The last section finally

concludes.



2. THE MODEL 57

2. The model

We consider an agent who is at time t0 endowed with some initial wealth a0. At

each instant t ≥ t0 he is paid a wage rate w while working in a job at t, whereas, while

unemployed at t, he receives unemployment benefits b. For sake of simplicity, we assume

both b and w to be constants. The agent can spend his wealth at t, a (t), on either

consumption c (t) or investment that bears a constant interest rate r > 0. Then, wealth

changes according to

da (t) = [ra (t) + z (t)− c (t)] dt, (1)

where z (t) ∈ {b, w}. Whenever we find it useful in the following, we shall write ab (t) or
aw (t) instead of a (t) in order to distinguish between the two different laws of motion that

wealth can obey with respect to the employment status. We abstract away from liquidity

constraint, which means that the agent, whenever necessary, can borrow without limit.

In case of unemployment, job offers arrive Poisson distributed with an exogenous

matching rate λm > 0. We assume that the agent accepts any job offer that arrives

during unemployment and that there is no on-the-job search.4 Let qm denote the Poisson

process that counts how often the agent has found a new job after unemployment. The

arrival rate of qm is λm in case of unemployment and 0 while the agent is working in a

job. That is, qm “stops” after it has jumped (i.e., a new job has been found) and starts

not until the agent has become unemployed again. The average unemployment spell is

thus 1/λm.

Similarly, while working in a job, the agent is laid off with a separation rate λs > 0,

and a Poisson process qs counts how often he has been separated from a firm. Again, qs

stops after it has jumped and starts again not until a jump of qm has occurred, i.e., the

agent has found a new job. Thus, the arrival rate of qs is λs in periods with job and 0

during unemployment, resulting in an average job duration of 1/λs.

Summarizing, the dynamics of z (t) can be described by the stochastic differential

equation

dz (t) = [w − z (t−)] dqm (t) + [b− z (t−)] dqs (t) , (2)

4The assumption that job offers are always accepted is justified if the potential output of a vacancy

is sufficiently high, or the unemployment benefits sufficiently low, such that the wage (which is usually

achieved by bargaining between agent and firm) exceeds the agent’s reservation wage (which is mainly

determined by the amount of the unemployment benefits), cf. Pissarides (2000) or the survey of Rogerson

et al. (2004) and the references therein.
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where the initial income z (t0) = z0 ∈ {b, w} also indicates the initial employment status.
It turns out that z (t) is a two-state birth-death process with birth rate λm and death

rate λs, see, e.g., Ross (1983, Ch. 5). In the following we shall occasionally make use of

the properties of this special class of Markov jump processes.

Notice that with (2) we have expressed z (t) by a stochastic differential equation. As

mentioned in the introductory section most authors assume the income process either to

be given by i.i.d. distributed shocks or to follow a geometric random walk or Brownian

motion. Though such modeling may simplify the analysis, it is not at all suitable to mirror

the back and forth in the employment status. In addition, having z (t) described by a

stochastic differential equation allows a straightforward use of the dynamic programming

approach, i.e., of the Hamilton-Jacobi-Bellman equation, in order to tackle the following

maximization problem.5

We denote by Et the expectation operator conditional on information available at

time t, i.e., conditional on z (t) and a (t). Let the agent’s time preference rate be given

by the constant ρ > 0 and assume the planning horizon to be infinite. Then, given the

CRRA utility function

u (c) =
c1−σ − 1
1− σ

, σ > 0, σ 6= 1, 6 (3)

the agent’s objective consists in maximizing his expected lifetime utility

U c(t) (z0, a0) = Et0

R∞
t0
e−ρ(t−t0)u (c (t)) dt (4)

subject to budget constraint (1) and labor income dynamics (2). Assume that an optimal

(Markov) consumption rule c (z, a) maximizing (4) exists. Then, the value function V

reads

V (z0, a0) ≡ U c(z,a) (z0, a0) = Et0

R∞
t0
e−ρ(t−t0)u (c (z (t) , a (t))) dt.7

3. Properties of the optimal consumption rule

Before studying the stated consumption problem more closely, we provide in the

present section some important properties of the optimal consumption rule c (z, a) and

the marginal prospensity to consume, ∂c (z, a) /∂a, which are illustrated in Figure 1. We

5Naturally, the dynamic programming approach also applies if the income process is a geometric

Brownian motion.

6The following also applies to the special case σ → 1, i.e. u (c) = log c.
7Since the dynamics of a (t) and z (t) do not explicitly depend on time t, the state space is completely

described be these two variables. Thus, as utility function (3) does not depend on time neither, we

conclude that neither U c, V and c are explicit functions of time.
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Figure 1. The optimal consumption rules c(b, a) and c(w, a).

first provide lower and upper bounds for c (z, a) and analyze then asymptotic behavior

and curvature.

In what follows we assume the agent to be in time t, and we denote future time by

T , where T ≥ t. In order to find bounds for c (z, a), we use that, as the third derivative

of utility function (3) is positive, there exists a motive for precautionary saving, see, e.g.,

Sandmo (1970) and Kimball (1990b). Thus, given current income z (t) = z, uncertainty

in future labor income z (T ) leads for any level of wealth to less consumption expenditure

than in a setting in which the agent receives the expected value of z (T ), denoted by

ωz (t, T ), rather than the actual, uncertain amount z (T ). In Appendix A.1.2 we show

that ωz (t, T ) depends on the current income z and that ωb (t, T ) < ωw (t, T ) for all T ≥ t.

The optimal consumption rule in absence of labor income uncertainty is thus different

for either state z ∈ {b, w} and reads, see Appendix A.1.3,

cE (b, a) ≡ ρ− (1− σ) r

σ

¡
a+ Ωb

¢
(5)

if the agent is currently unemployed (i.e., z = b) and

cE (w, a) ≡ ρ− (1− σ) r

σ
(a+ Ωw) (6)

if he is currently working in job (i.e., z = w). Here,

Ωb ≡ rb+ λsb+ λmw

r (r + λs + λm)
(7)
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and

Ωw ≡ rw + λsb+ λmw

r (r + λs + λm)
(8)

stand for the present values of the expected future labor income ωz (t, T ) conditional

on z (t) = z = b and z (t) = z = w, respectively. The subscript “E” from cE shall

indicate that expected rather than actual labor income is considered. In order to obtain

economically meaningful results, i.e., positive consumption expenditures cE (z, a), we

assume that ρ− (1− σ) r > 0.

While with (5) and (6) we have obtained upper bounds for c (b, a) and c (w, a), re-

spectively, we get a lower bound by the optimal consumption rule cmin (a) for permanent

unemployment. It reads, see also Appendix A.1.3,

cmin (a) =
ρ− (1− σ) r

σ

µ
a+

b

r

¶
, (9)

where b/r stands for the present value of an infinite payment of unemployment benefits.

Summarizing, we have found that

cmin (a) < c (b, a) < cE (b, a) (10)

and

cmin (a) < c (w, a) < cE (w, a) , (11)

cf. also Figure 1. Notice that, as b < w, we get b/r < Ωb < Ωw, where here the difference

between Ωb and Ωw is not due to, e.g., more skills or experience the employed agent may

have acquired on the job, but rather only due to the underlying search mechanism, cf.

Appendix A.1.2.

An immediate conclusion from the fact that the agent if currently working can expect

to earn more over his lifetime than if he was currently unemployed is that c (w, a) >

c (b, a),8 and thus

χ (a) ≡ c (w, a)

c (b, a)
> 1.

8Notice that even though expected earnings were equal for each employment status, we would not

obtain equality here, since, as also stressed by many authors such as Kimball and Mankiw (1989),

Gourinchas and Parker (2002), or Toche (2005), agents cannot fully smooth consumption at points of

time at which labor income jumps randomly.
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We now turn to the asymptotic behavior and curvature of c (z, a) and ∂c (z, a) /∂a.

According to, e.g., Kimball (1990a, 1990b) the precautionary premium9 is decreasing in

the level of consumption c if absolute prudence −u000 (c) /u00 (c) is. A simple calculation
shows that our utility function (3) exhibits the latter property. Thus, since according

to Appendix A.3 the consumption good is normal, the precautionary premium is also

decreasing in the level of wealth a. Therefore, as the precautionary premium is the

rightward shift of the consumption function c (z, a) in comparison to cE (z, a) in response

to future income risk, we conclude that

lim
a→∞

[cE (z, a)− c (z, a)] = 0. (12)

Graphically, the latter limit means that both c (z, a)-curves approach the corresponding

cE (z, a)-line as the level of wealth increases, see Figure 1. This result is very intuitive.

The agent, when getting wealthier, can use his wealth increasingly as buffer against the

uncertainty in labor income, reducing therefore precautionary saving. At high levels of

wealth he thus behaves approximately as under certainty.

Strongly related to the latter arguments is a further conclusion drawn from Kimball

(1990a, 1990b): The marginal prospensity to consume, ∂c (z, a) /∂a, is decreasing in the

level of wealth a. In other words, the optimal consumption rule c (z, a) is concave in a and

∂2c (z, a) / (∂a)2 < 0, z ∈ {b, w}. Additionally, we obtain that the marginal prospensity
to consume increases in the level of uncertainty in labor income. Looking at (5) and (6),

we thus conclude that

∂c (z, a)

∂a
>

∂cE (z, a)

∂a
=

ρ− (1− σ) r

σ
, 10 (13)

and, jointly with the aforementioned monotonicity of ∂c(z,a)
∂a

,

∂c (z, a)

∂a
& ρ− (1− σ) r

σ
> 0 as a→∞.

9The precautionary premium is the certain reduction in total wealth that has the same effect on the

optimal consumption value as the addition of future labor income uncertainty. It is hence the rightward

shift of the consumption function c (z, a) in comparison to cE (z, a), see, e.g., Kimball (1990a).
10Kimball (1990a, 1990b) actually shows that at any given level of consumption c, higher uncertainty

raises the marginal prospensity to consume. That is, (13) holds for identical levels of consumption

c = c (z, a1) = cE (z, a2) but, presumably, not for the same levels of wealth (i.e., a1 6= a2). But since the

right-hand side of inequality (13) is a constant, the inequality also holds for different levels of consumption

and thus for all a > ab.
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For related setups, though with different modelings of earnings uncertainty, several

authors obtain similar results on the optimal consumption rule by either analytical studies

(e.g., Carroll and Kimball, 1996, Duffie et al., 1997, and Carroll, 2004) or numerical

determinations of the optimal consumption rule (e.g., Zeldes, 1989, Deaton, 1991, and

Toche, 2005). Empirical evidence for the concavity of the consumption rule is provided

by, e.g., Lusardi (1996) and Souleles (1999).

We now consider the origins of the c (b, a)- and c (w, a)-curve. Combining (5)-(11), or

simply looking at Figure 1, leads to the conclusion that there exist levels of wealth, ab and

aw with −Ωw < aw < ab < −Ωb, at which the corresponding consumption expenditures

c
¡
b, ab

¢
and c (w, aw), respectively, are equal to zero. In order to avoid the problem that

c (b, a) may not be well defined for a < ab and also since in Section 5 it turns out that, if

starting with levels of wealth greater than ab, the agent chooses consumption in such a

way that wealth always remains above ab, we consider throughout the paper only levels

of wealth greater than ab.

A further conclusion drawn from (5)-(11) is that lima→∞ c (z, a) /a = [ρ− (1− σ) r] /σ

and that therefore,

lim
a→∞

χ (a) = lim
a→∞

c (w, a) /a

c (b, a) /a
= 1. (14)

This result, jointly with χ (a) > 1 for all a > ab and lima→ab χ (a) = ∞, suggests
that χ0 (a) < 0 for all a > ab which again mirrors the decreasing effect of labor in-

come uncertainty as the level of wealth rises. From χ0 (a) < 0 we obtain easily that

∂c (b, a) /∂a > ∂c (w, a) /∂a, i.e., the marginal prospensity to consume is greater under

unemployment than under employment. This again is a very plausible result since an

extra Euro loosens the agent’s budget constraint more if he is currently unemployed than

if he was currently working in a job since, as discussed before, being unemployed means

less expected future labor income (ωb (t, T ) < ωw (t, T )), cf. also Appendix A.1.2.

4. Derivation of the optimal behavior

4.1. The Keynes-Ramsey rule. Using the Hamilton-Jacobi-Bellman (HJB) equa-

tion, we present in the following a stochastic form of the Keynes-Ramsey rule, which tells

us how the optimal consumption process changes over time. Supposed that the value

function and the optimal consumption rule are sufficiently smooth, the HJB equation
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reads according to Sennewald (2007)11

ρV (z, a) = max
c≥0

(
u (c) + [ra+ z − c]Va (z, a)

+λs [V (b, a)− V (z, a)] + λm [V (w, a)− V (z, a)]

)
, (15)

where Va stands for the partial derivative of V with respect to a, and the maximum on

the right-hand side is attained by the optimal consumption expenditure c (z, a). The

Keynes-Ramsey rule, which is derived in Appendix A.2, reads then

dc (z (t) , a (t))

c (z (t−) , a (t))
=

r − ρ

σ
+ λs

h
c(z(t),a(t))
c(b,a(t))

iσ
− 1

σ
+ λm

h
c(z(t),a(t))
c(w,a(t))

iσ
− 1

σ

 dt

+

·
c (b, a (t))

c (z (t−) , a (t))
− 1
¸
dqs (t) +

·
c (w, a (t))

c (z (t−) , a (t))
− 1
¸
dqm (t) . (16)

Thus, the optimal consumption process of the agent when unemployed is described by

dc
¡
b, ab (t)

¢
c (b, ab (t))

=

"
r − ρ

σ
− λm

1− χ
¡
ab (t)

¢−σ
σ

#
dt+

£
χ
¡
ab (t)

¢− 1¤ dqm (t) ,
whereas during employment optimal consumption follows

dc (w, aw (t))

c (w, aw (t))
=

·
r − ρ

σ
+ λs

χ (aw (t))σ − 1
σ

¸
dt− £1− χ (aw (t))−1

¤
dqs (t) .

Keynes-Ramsey rule (16) tells us how optimal consumption changes over time. The

left-most term on the right-hand side, (r − ρ) /σ, is the deterministic part of the overall

growth rate. It is equal to the growth rate of the consumption process cE (z, a
z
E (t))

induced by the optimal consumption rules (5) and (6), respectively, that are obtained for

the deterministic setting described in Section 3 and the underlying wealth process azE (t)

obeying

dazE (t) = [ra
z
E (t) + rΩz − cE (z, a

z
E (t))] dt, (17)

cf. Appendix A.1.4. Here, z = z (t) denotes the current employment status. The sub-

script “E” shall again indicate that we here consider the expected instead of the actual

labor income.

The term (r − ρ) /σ shows that the usual properties for deterministic setups carry over

to the stochastic problem at hand. That is, the higher the interest rate r, or the lower

the time preference rate ρ and the risk aversion parameter σ, the more consumption the

individual sacrifices today for consumption tomorrow which yields higher consumption

11The reader may alternatively resort to Chapter 1 of this thesis, which provides a reproduction of

Sennewald (2007).
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growth, i.e., dc (z (t) , a (t)) /c (z (t−) , a (t)) goes up. Further economic insights derived

from the stochastic parts in Keynes-Ramsey rule (16) are provided later on in Section 5.

4.2. The reduced form. In order to obtain more insights into the optimal behavior,

it is useful to distinguish between the two employment states the individual can be in.

As long as the employment situation does not change, Keynes-Ramsey rule (16) shows

that the optimal consumption path does not jump and that it is differentiable from the

right. In case of unemployment and as long as the agent remains unemployed, optimal

consumption grows thus with the rate

dc
¡
b, ab (t)

¢
c (b, ab (t))

=

"
r − ρ

σ
− λm

1− χ
¡
ab (t)

¢−σ
σ

#
dt, (18)

where wealth obeys

dab (t) =
£
rab (t) + b− c

¡
b, ab (t)

¢¤
dt. (19)

Analogously, as long as the agent is working in a job, optimal consumption growth is

given by
dc (w, aw (t))

c (w, aw (t))
=

·
r − ρ

σ
+ λs

χ (aw (t))σ − 1
σ

¸
dt, (20)

and wealth accumulates according to

daw (t) = [raw (t) + w − c (w, aw (t))] dt. (21)

We call (18) and (20) the reduced forms of Keynes-Ramsey rule (16). Recalling that

χ (a) = c (w, a) /c (b, a), we see that each pair of corresponding differential equations, (18)

together with (19) and (20) joint with (21), represents a under-determined differential

system in t with three unknown functions of time, c
¡
b, ab (t)

¢
, c
¡
w, ab (t)

¢
, and ab (t) for

(18), (19) and c (b, aw (t)), c (w, aw (t)), and aw (t) for (20), (21). That means, even if we

knew, say, the initial consumption expenditures c (b, a0) and c (w, a0), respectively, the

systems would not be very helpful in determining the optimal consumption paths or rules.

In the following subsection we shall therefore show how on the basis of the differentials

(18)-(21) we can derive a differential system with two unknowns and two equations.

Notice that, unfortunately, the systems (18), (19) and (20), (21) cannot be considered

simultaneously nor can the reduced forms (18) and (20) be “linked” by, for example, sim-

ply equating the ratios χ
¡
ab (t)

¢
and χ (aw (t)). The reason is that the underlying wealth

processes in (18) and (20) follow different laws of motion, namely (19) and (21), respec-

tively. Therefore the consumption process c
¡
w, ab (t)

¢
in (18), which is the numerator of

χ
¡
ab (t)

¢
, does in general not obey (20), as well as c (b, aw (t)) in (20), the denominator of
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χ (aw (t)), is not driven by (18). To be more explicit, consider, for example, c
¡
w, ab (t)

¢
in (18). While c

¡
w, ab (t)

¢
is the optimal consumption decision under the assumption of

employment, wealth ab (t) changes according to unemployment, hence as in (19). Thus,

as the consumption rule c (w, a) is a “fixed” mapping a 7→ c (w, a), c
¡
w, ab (t)

¢
in (18)

can, as a function of time, not exhibit the same law of motion as c (w, aw (t)) in (20),

where wealth changes as in (21), which finally triggers the aforementioned difficulties.

4.3. Consumption given by a system of deterministic differential equa-

tions in a. This subsection provides a method how to condense the under-determined

differential systems (18), (19) and (20), (21) in order to obtain a two-dimensional differ-

ential system with two unknown functions. More precisely, applying the time-elimination

method on (18)-(21), we show that the optimal consumption rules c (b, a) and c (w, a)

solve a two-dimensional system of deterministic differential equations in a. Though not

being of great use in the following analysis, this result may be the starting point for a

numerical approximation to the optimal consumption rules. This step, however, is left

for further research, and the reader not interested in this subject may skip the present

subsection.

As long as the employment status z does not change and daz (t) 6= 0 (i.e., c (z, az (t)) 6=
raz (t)+z), the time-elimination methods yields that the marginal prospensity to consume

at time t, ∂c (z, az (t)) /∂a, is given by the ratio of the time-differentials dc (z, az (t)) and

daz (t),12

∂c (z, az (t))

∂a
=

dc (z, az (t))

daz (t)
. (22)

Thus, for the case of unemployment we obtain by inserting the consumption growth

rate (18) and the equation of wealth accumulation (19) that for any a > ab with c (b, a)

6= ra+ b,

∂c (b, a)

∂a
=

r−ρ
σ
− λm

1−χ(a)−σ
σ

ra+ b− c (b, a)
c (b, a) . (23)

In analogy, now using (20) and (21), the marginal prospensity to consume for the job

case reads

∂c (w, a)

∂a
=

r−ρ
σ
+ λs

χ(a)σ−1
σ

ra+ w − c (w, a)
c (w, a) . (24)

12The time-elimination method employs the chain rule of differentiation which yields that

the time evolution of the optimal consumption process c (z, az (t)) is given by dc (z, az (t)) =

[∂c (z, az (t)) /∂a] daz (t). Dividing by daz (t) 6= 0 yields Equation (22).
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Hence, recalling that χ (a) = c (w, a) /c (b, a), the optimal consumption rules c (b, a) and

c (w, a) are a solution to the system of deterministic differential equations in a given by

(23) and (24). The terminal condition is the convergence property (12).

Note that due to the imposed condition az (t) 6= 0 (or equivalently c (z, a) 6= ra + z)

the agent must be either saving or dissaving if we wish to apply (22). However, as the

consumption good is normal and thus 0 < ∂c (z, a) /∂a < ∞ for all a > ab, we know

that the differential system (23), (24) does not explode at levels azr of wealth at which the

optimal consumption spending is equal to total income, i.e., at which c (z, azr) = razr+z.13

A numerical approach would nevertheless require a very cautious proceeding at these

points since the denominators in (23) and (24) tend toward zero as a moves toward abr

and awr , respectively, which may lead to numerical distortions.

5. Results I: Saving and dissaving between jumps

Starting from the reduced forms (18) and (20) and the budget constraints (19) and

(21) we consider in the present section the saving behavior in each employment status

more closely. It turns out that for interest rates less then the time preference rate the

agent, while unemployed, always dissaves, whereas, while working in a job, he saves at

little wealth but dissaves when wealthy. That means during employment wealth tends

toward a certain target level. If the interest rate is equal to the time preference rate,

the agent always dissaves while unemployed, but always saves while working in a job.

For interest rates above the time preference rate, the agent always saves while working

in a job, whereas, while unemployed, he dissaves at low levels of wealth and saves when

wealthy. Only for very high interest rates, the agent always saves, for either employment

status and any level of wealth.

5.1. First conclusions. A first result is derived directly from the reduced forms

(18) and (20). As χ (a) > 1, we deduce that

dc
¡
b, ab (t)

¢
c (b, ab (t))

<
r − ρ

σ
<

dc (w, aw (t))

c (w, aw (t))
. (25)

Recall from Subsection 4.1 that (r − ρ) /σ is the optimal consumption growth rate in

absence of labor income uncertainty (i.e., the agent receives the expected rather than the

13For the existence of azr , see Proposition 1. There it turns out that both the existence and the level

of azr depend on the interest rate r. Therefore, the subscript “r” at a
z
r .
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actual, uncertain labor income). With Appendix A.1.4 we can thus conclude that

dc
¡
b, ab (t)

¢
c (b, ab (t))

<
dcE

¡
b, abE (t)

¢
cE
¡
b, abE (t)

¢ and
dc (w, aw (t))

c (w, aw (t))
>

dcE (w, a
w
E (t))

cE (w, awE (t))
, (26)

where cE (z, a) is given by (5) and (6), respectively, and a
z
E (t) obeys differential (17). The

inequalities in (26) show that in case of unemployment consumption grows more slowly

than in the corresponding deterministic setup, while it grows faster when the agent is

working in a job. The first result, concerning unemployment, seems to be somehow

paradox given the presence of precautionary saving which actually should increase con-

sumption growth due to the following mechanism. As the agent faces uncertainty in labor

income, he reduces present consumption (i.e., c (z, a) < cE (z, a)) in order to protect him-

self against long unemployment spells and short job durations. As a consequence, wealth

accumulates faster which yields, jointly with a higher marginal prospensity to consume

than in the deterministic setting (see Section 3), higher consumption growth.

But the contribution of precautionary saving is only one part of the story. A second

effect stems from the different levels of labor income that contribute to the accumulation

of wealth underlying the processes c (z, az (t)) and cE (z, a
z
E (t)). While a

z (t) accumulates

according to (19) (when z = b) or (21) (when z = w), azE (t) obeys (17). Now, looking at

these differentials, we can see that beside the different consumption expenditures also dif-

ferent levels of labor income affect the accumulation of wealth and therefore consumption

growth.

To explain things more precisely, consider first the case of unemployment. Here, the

agent earns unemployment benefits b. In the corresponding deterministic setup, on the

other hand, he would earn the amount rΩb, which is, as a simple calculation using (7)

shows, greater than b. Thus, looking at the differentials (17) and (19), we can immediately

conclude that ab (t) accumulates ceteris paribus more slowly than abE (t). That in turn

leads, again ceteris paribus, to less consumption growth during unemployment compared

to the deterministic benchmark case. This effect is so strong that it even outweighs the

increase in consumption growth that is due to precautionary saving, which explains the

“paradox” result stated in the first inequality of (26).

An analogous story holds for the job case, i.e., the second inequality in (26). But,

since here labor income w is greater than average earnings rΩw, the precautionary saving

effect is even amplified and consumption always grows faster than in the deterministic

setting. Later, in Section 6 we shall see that in average risk of unemployment in fact

always increases consumption growth.
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We now turn back to inequality (25). Since the consumption good is normal and labor

income is constant between jumps, consumption growth is positive iff the accumulation

of wealth is positive, i.e., iff the agent is saving. Inequality (25) leads therefore directly

to the following lemma.

Lemma 1. If r < ρ, the unemployed agent always dissaves. If r > ρ, the agent while

working in a job always saves.

5.2. Deeper results. We now provide a more detailed discussion on the agent’s

saving behavior. The following proposition first presents more precise analytical results.

For the proof we combine the lemmas presented in Appendices A.4.1 and A.4.2.

Proposition 1. (1) If 0 < r < ρ, the agent always dissaves during unemploy-

ment. For the job case there exists a target level of wealth, awr > ab, which is

increasing in the interest rate r and toward which the agent’s wealth converges

as long as he is working in a job. That means, while working in a job, the agent

saves for all a < awr , dissaves for all a > awr , and spends his total income on

consumption at awr , i.e., c (w, a
w
r ) = rawr +w. In addition, we find limr&0 awr ≥ ab

and limr%ρ a
w
r =∞.

(2) If r = ρ, the agent, while unemployed, dissaves, whereas, while working in a job,

he saves .

(3) If ρ < r < ρ + λm, the agent always saves while working in a job. For the case

of unemployment, there exists a level abr > ab of wealth which is decreasing in r

and exhibits the following properties. While unemployed, the agent dissaves for

all a < abr, saves for all a > abr, and spends his total income on consumption at

abr, i.e., c
¡
b, abr

¢
= rabr + b. In addition, limr&ρ a

b
r =∞ and limr%ρ+λm awr = ab.

(4) If r ≥ ρ+ λm, the agent always saves for each employment status and any level

of wealth.

Point 1 from the proposition, where r < ρ, is illustrated in Figure 2.14 Here exists

with (awr , c (w, a
w
r )) a stable target state for the job case toward which the agent’s wealth

and consumption converges during employment. The existence of such target levels was

also shown by, e.g., Carroll (2001) and Toche (2005), but there, as mentioned before,

using models that are not suitable for our purposes.

14Using similar arguments as in Remark 3 from Appendix A.4.1 would show that the position of the

curves under consideration is indeed as depicted in Figure 2.
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Figure 2. Saving behavior if r < ρ

Let us consider a typical path for wealth and consumption. Assume the agent initially

be endowed with some wealth a0 > awr and working in a job. Then he chooses consumption

c (w, a0) and starts in the a-c space in point p0 ≡ (a0, c (w, a0)) on the c (w, a)-curve. As
right from the target level awr the zero-motion line for a

w (t), depicted by the upper

dotted line labeled by daw (t) = 0, lies above the c (w, a)-curve, the agent dissaves at

a0. Thus, wealth and therefore consumption decrease and a and c move left-down on

the c (w, a)-curve until, say, ps,−1 where the agent is separated from his job for the first

time. Consumption jumps then downwards and the system jumps to ps1 on the c (b, a)-

curve. Now, being unemployed, the agent dissaves (the zero-motion line for ab (t), the

lower dotted line, always lies below the c (b, a)-curve). Wealth and consumption therefore

decrease further, now along the c (b, a)-curve, until point pm,−
1 where the agent finds a

new job. Then consumption jumps upwards and the system jumps from pm,−
1 to pm1 , back

on the c (w, a)-curve. Now, wealth is below the target level awr , and the agent saves so

that wealth and consumption move upwards until, say, ps,−2 where he is laid off again.

As before, consumption jumps downwards and the system jumps from ps,−2 to ps2, and so

forth. We see that, even though starting out above the target level awr , the agent finds

himself in the space southwest of (awr , c (w, a
w
r )) after some time. Once arrived there, he

always saves while working in a job, moving toward (awr , c (w, a
w
r )), whereas he always

dissaves while unemployed.
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We now consider more closely the change in the sign of saving and of consumption

growth at the target level awr . An algebraic derivation was provided in Appendix A.4.2.

But how can we explain this result economically? For sake of clarity we first focus

on saving and turn then to consumption growth. Observe that without labor income

uncertainty (i.e., the agent would earn the expected instead of the actual labor income)

the agent had little incentive to save since r < ρ. For any a > ab and for speculative

purposes only he would hence dissave the amount kra+ rΩw − cE (w, a)k and the optimal
consumption process cE (w, a

w
E (t)) would decrease with the constant rate kr − ρk /σ;15 a

target level would not exist. But risk and uncertain spells of unemployment force the

agent to precautionary saving. In addition, when employed, his earnings are in each

period above the average since w > rΩw, which, compared to the deterministic setting,

increases saving further by the amount w − rΩw.

Now observe that, on the one hand, speculative dissaving due to r < ρ increases

as wealth increases. On the other, the wealthier the agent, the lower the amount of

precautionary saving, i.e., the less the agent needs to care about the uncertainty in

labor income since wealth serves as a buffer against bad income shocks, see Section

3. Summarizing, we thus see that at low levels of wealth the additional saving due to

precautionary purposes and excess labor income is large enough in relation to the amount

of speculative dissaving such that the agent’s total saving becomes positive. However, as

wealth increases, the amount of speculative dissaving increases too, while precautionary

saving decreases and the impact of the excess labor income w − rΩw diminishes.16 As a

result, there exists a level of wealth, namely awr , at which speculative dissaving is exactly

offset by the additional saving due to precautionary purposes and excess labor income.

At levels greater than awr speculative dissaving then outweighs the additional saving, and

the agent hence dissaves.

A similar story holds for consumption growth dc (w, aw (t)) /c (w, aw (t)). Here we

know from Subsection 5.1 that due to both precautionary saving and excess labor income

w−rΩw, consumption during employment grows with a rate above the deterministic rate

(r − ρ) /σ. But applying the same arguments as before and considering the positive mar-

ginal prospensity to consume, we find that consumption growth is positive at low levels

of wealth, where the impact of both precautionary saving and the excess labor income is

15See Appendix A.1.4.

16Observe here that w − rΩw is a constant with respect to wealth.
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Figure 3. Saving behavior if ρ < r < ρ+ λm

strong, while consumption growth is negative with a rate close to the deterministic rate

(r − ρ) /σ if the agent is more wealthy.17

Observe that, as the interest rate r approaches the time preference rate ρ, the level

awr moves rightward toward ∞. That means that, if r moves toward ρ, which increases

the agent’s incentive to save, the agent will, unless he is very wealthy, always save while

working in a job. This behavior is similar to the one described in point 2 from the

proposition, where r = ρ. Here the employed agent saves even if he is very wealthy.

We now focus on point 3 where ρ < r < ρ+λm and which is illustrated in Figure 3.
18

Here we have with abr an unstable steady state for the case of unemployment. Figure 3

shows that the agent can find himself trapped in poverty. Assume he is initially working,

but not too wealthy such that a0 < abr. As long as he stays in his job, he saves, starting

in p0 ≡ (a0, c (b, a0)), and wealth and consumption move up-right on the c (w, a)-curve.
Assume the agent is laid off before reaching abr, say at p

s,−
1 . Then consumption jumps

downwards and the system jumps to ps1 on the c (b, a)-curve. Now, the agent dissaves

in order to maintain a certain level of consumption, and wealth as well as consumption

decline during the current unemployment spell, until he finds a new job again at, say,

pm,−
1 . Then, consumption jumps upwards and the agent can, starting out of pm1 , save

17Notice that combining (14), (20), and χ0 (a) < 0 clearly shows that the consumption growth rate

tends from above toward the deterministic rate (r − ρ) /σ.
18Again, using similar arguments as in Remark 3 from Appendix A.4.1 would confirm that the

position of the curves under consideration is indeed as drawn in Figure 3.
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again. But, as before, he may loose his job before reaching abr. That means, if the agent’s

employment history turns out to be unfortunate, he does not escape from poverty. On

the other hand, looking at another possible sequence, p0 → qs,−1 → qs1 → qm,−
1 → qm1 , we

find that once the agent has stayed a sufficiently long time in job, such that he has been

able to accumulate wealth beyond abr when being laid off, he will always save, even during

unemployment. That means, if the agent’s wealth is greater than abr, he still becomes

more wealthier, regardless of his job situation. Later on, in the subsequent section we

show that in average the agent’s consumption and thus wealth always grow if r ≥ ρ. In

the long run, the agent will therefore always escape from poverty.

In analogy to the case of the target level awr from point 1, we here also explain the

change in the sign of saving and consumption growth at the unstable steady state abr. As

r > ρ, the agent’s incentive to save is high and he would always save in absence of earnings

uncertainty. On the one hand, this speculative saving is amplified by precautionary

saving, which is decreasing in the level of wealth. On the other hand, since unemployment

benefits b are below the average earnings rΩb, saving is reduced by the amount rΩb − b.

At low levels of wealth, this reduction in saving is large enough to outweigh speculative

and precautionary saving, and the agent dissaves. But, as wealth increases the impact of

rΩb − b on total saving diminishes. There exists thus a point, namely abr, at which this

difference is equal to speculative and precautionary saving, and wealth and consumption

remain constant over time. For levels of wealth higher than abr the agent then always

saves. In analogy to point 1 a discussion on the change in the sign of consumption

growth is now straightforward.

We now turn to point 4 from the proposition. Here, we will hardly observe the

required parameter constellation r ≥ ρ + λm in reality. Clark and Summers (1979), for

example, suggests that an average spell of unemployment lasts between 3.5 to 4 months,

which yields a matching rate of about λm = 0.25 annually. On the other hand, estimated

time preference rates typically range between 0.01 (one percent) and 0.05 (five percent)

annually, see, e.g., Skinner (1988) or Engen and Gruber (2001). Hence, in order to satisfy

r ≥ ρ + λm, the real interest rate needs to be greater than about 0.25, i.e., 25 percent.

But which safe investment strategy yields such high returns?

Observe that the previous results on the agent’s saving behavior differ fundamentally

from what we know from deterministic setups. There, the agent always saves (dissaves)

if the interest rate r is greater (less) than the time preference rate ρ, while for r = ρ
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he always spends his total income on consumption, leading to constant levels of both

consumption and wealth.

6. Results II: The average consumption growth

In the present section we show that risk of unemployment leads to higher average (or

expected) consumption growth than in the deterministic setup. With Keynes-Ramsey

rule (16), the expected growth rate of the optimal consumption process at some future

time conditional on the initial wealth and employment status reads, see Appendix A.5,

Et0

dc (z (t) , a (t))

c (z (t) , a (t))
=


r−ρ
σ
+ λsp

w
z0
(t0, t)

n
Et0

χ(a(t))σ−1
σ

− Et0

£
1− χ (a (t))−1

¤o
+λmp

b
z0
(t0, t)

n
Et0 [χ (a (t))− 1]− Et0

1−χ(a(t))−σ
σ

o  dt,

(27)

where pzz0 (t0, t), the probability of being at time t in job status z when being at t0 in z0, is

given in (28)-(31) in Appendix A.1.1. The terms in braces on the right-hand side that are

in addition to the deterministic growth rate (r − ρ) /σ are strictly positive, see Lemma

6 in Appendix A.5. Thus, the average consumption growth under risk of unemployment

is greater than for deterministic setups where future labor income is deterministic and

given by the expectation of z (t), ωz0 (t).

This finding mirrors the precautionary saving motive. Facing not only the risk but also

the uncertain duration of unemployment, a prudent agent sacrifices some consumption

today to protect himself against possible future losses in labor income (i.e., when he

becomes unemployed or remains a long time in unemployment). This behavior yields in

average ever lasting growth of consumption and wealth if the interest rate is equal to

(or greater than) the time preference, which in deterministic setups only leads to zero

growth. Unfortunately, there is no such an unambiguous result if the interest rate is less

than the time preference rate. However, the finding that here the consumption process

after some time will only range between zero and the target-level c (w, awr ) (cf. Figure 2

in Subsection 5.2) suggests that there might exists interest rates less than ρ such that

average consumption growth becomes zero after some time and that therefore there might

exist a steady state distribution for the consumption process.

7. Conclusion

We have studied the optimal saving behavior of an agent who faces not only risk but

also uncertain duration of unemployment. We have found that precautionary saving,

which is decreasing in the level of wealth, leads to a different saving behavior than in



74 CHAPTER 3. RISK OF UNEMPLOYMENT

the deterministic setup: (i) If the interest rate is less than the time preference rate, the

agent while working in a job saves at little wealth and dissaves when wealthy, toward a

target level of wealth, whereas while unemployed he always dissaves. (ii) If the interest

rate is equal to the time preference rate, he saves while employed and dissaves while

unemployed. (iii) In case of interest rates greater than the time preference rate, the

agent while unemployed dissaves at low level of wealth and saves when wealthy, whereas

while working in a job, he always saves. Here the agent may be temporarily trapped in

poverty.

The average consumption growth turns out to be always greater than in the determin-

istic setup. That implies that, if the interest rate is equal to (or greater than) the time

preference rate – what in deterministic setups leads to zero-growth –, consumption and

wealth grow here in average always with a positive rate.

In a next step one could attempt to derive a numerical approximation to the optimal

consumption rule, using the differential system presented in Subsection 4.3. Interesting

extensions might be to introduce risky assets as investment alternative (that may be

correlated with the risk of unemployment and the job matching process) or to endogenize

both the agent’s labor supply as well as his effort to find a new job while unemployed.

These issues, however, are left for further research.

A. Appendix

A.1. The optimal consumption rule if labor income is deterministic . The

objective of the present subsection is to find closed-form expressions for the optimal con-

sumption rules cE (b, a), cE (w, a), and cmin (a). Here, cE (z, a) is the optimal consumption

expenditure if future labor income is given by the expected value of z (T ) conditional on

currently being either unemployed (z = b) or working in a job (z = w), while cmin (a) is

the optimal consumption rule under the assumption of permanent unemployment. We

first determine in Subsection A.1.1 the probabilities of being employed and unemployed in

the future, calculate then in Subsection A.1.2 the expected labor income and its present

value, and derive finally, in Subsection A.1.3, the closed-form expressions for cE (b, a),

cE (w, a), and cmin (a). Some important remarks on the deterministic consumption pro-

cesses induced by cE (b, a) and cE (w, a) are added in Subsection A.1.4.

A.1.1. The Kolmogorov probabilities of z (t). As mentioned in the main text, z (t) can

be considered as a two-state birth-death process. That allows us to apply Kolmogorov’s

Forward Equation in order to determine the distribution of future earnings. Let t ≥ t0
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be current and T ≥ t future time. Then we denote the probability of receiving in the

future (at time T ) income z̃ when currently (at t) receiving z by

pz̃z (t, T ) ≡ P (z (T ) = z̃|z (t) = z) ≡ E
£
1{z(T )=z̃}|z (t) = z

¤
.

Following Ross (1983, Ex. 5.4(a)), we find that for the two states of z (T ), b and w, these

conditional probabilities read

pbb (t, T ) =
λs

λs + λm
+

λm
λs + λm

e−(λs+λm)(T−t), (28)

pwb (t, T ) =
λm

λs + λm
− λm

λs + λm
e−(λs+λm)(T−t) (29)

if z (t) = b and

pbw (t, T ) =
λs

λs + λm
− λs

λs + λm
e−(λs+λm)(T−t), (30)

pww (t, T ) =
λm

λs + λm
+

λs
λs + λm

e−(λs+λm)(T−t) (31)

if z (t) = w. Notice that, for example, the expression pwb (t, T ) stands not only for the

probability of earning at T wage w when receiving unemployment benefits b at t, but also

for the probability of working in a job at T when currently being unemployed. Observe

that for any z ∈ {b, w}, pbz (t, T ) + pwz (t, T ) = 1. Furthermore note that, since the future

employment status z (T ) is independent of the level of wealth at t, pz̃z (t, T ) = Et1{z(T )=z}.

That means it is here the same whether we condition on both z (t) and a (t) or on z (t)

only. This result is generalized in the following remark.

Remark 1. Let f : z ∈ {b, w} 7→ f (z) ∈ R be a measurable function. Then,

E [f (z (T )) |z (t)] = Et [f (z (T ))].

A.1.2. The expected future labor income and its present value. We now turn to the

determination of the expected future labor income and its present value. Let, again,

T ≥ t. Then the expected future labor income (at T ) conditional on the current income

(at t) is denoted by ωz(t) (t, T ) ≡ E[z (T ) |z (t)] = Etz (T ), where for the second equal

sign we used Remark 1. As previously shown in Subsection A.1.1, the conditional future

labor income is two-state distributed with the conditional probabilities (28)-(31). Thus,

the conditional expected labor income reads ωz(t) (t, T ) = pbz(t) (t, T ) b+ pwz(t) (t, T )w and

therefore, if z (t) = b,

ωb (t, T ) =
λsb+ λmw − λm (w − b) e−(λs+λm)(T−t)

λs + λm
(32)
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while, if z (T ) = w,

ωw (t, T ) =
λsb+ λmw + λs (w − b) e−(λs+λm)(T−t)

λs + λm
.19 (33)

The latter equations show that the agent when currently employed can expect to receive

higher labor income in the future than when currently unemployed. Observe that this

result is not due to, e.g., more skills or experience he may have achieved on the job, but

rather only due to the underlying search mechanism. Consequently, we see that for large

time horizons the initial employment status becomes less and less important, and letting

T tend toward ∞ even yields

lim
T→∞

ωb (t, T ) = lim
T→∞

ωw (t, T ) =
λsb+ λmw

λs + λm
.

We now continue with the calculation of the present values at time T ≥ t, denoted

by Ωb (t, T ) and Ωw (t, T ), respectively. The present value of an arbitrary variable, but

deterministic flow of labor income z (T ), amounts to

Ω (T ) ≡ R∞
T
e−r(τ−T )z (τ) dτ . (34)

Inserting (32) and (33) into the latter formula yields (replace in (32) and (33) T with τ)

Ωb (t, T ) =
λsb+ λmw

r (λs + λm)
− λm (w − b)

(λs + λm) (r + λs + λm)
e−(λs+λm)(T−t) (35)

and

Ωw (t, T ) =
λsb+ λmw

r (λs + λm)
+

λs (w − b)

(λs + λm) (r + λs + λm)
e−(λs+λm)(T−t). (36)

Now observe that the stochastic income process z (t) as defined in (2) is Markovian and

that it therefore has no “memory”, which, in particular, means that the time elapsed since

the agent has become unemployed or employed for the last time is irrelevant for future

prospects. Thus, at which time t ever we look at the “system” and observe employment

status z ∈ {b, w}, the present values of expected labor income are always

Ωb ≡ Ωb (t, t) =
rb+ λsb+ λmw

r (r + λs + λm)
(37)

and

Ωw ≡ Ωw (t, t) =
rw + λsb+ λmw

r (r + λs + λm)
, (38)

respectively.

19Interestingly, we arrive at the same results if we form expectation Et on the stochastic differential

(2), apply further the martingale property of the Poisson processes (see Footnote 24 on p. 85), and solve

the resulting deterministic linear differential equation for Etz (T ).
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We can see that Ωz does not depend on current time t. In addition, and as already

suggested by the expected future labor income, we find that the agent when working in

a job can expect to earn more over his lifetime than when currently unemployed. The

difference reads Ωw−Ωb = w−b
r+λs+λm

, and, again, it only stems from the underlying search

mechanism.

Remark 2. Interestingly, as a simple calculation shows, it is not the same whether the

agent who is currently, at t, say, working in a job receives either the expected labor income

ωw (t, T ) over the life cycle or first wage w for the expected duration of a job, 1/λs, then

unemployment benefits b for the expected unemployment spell, 1/λm, afterwards again w

for a period of length 1/λs, and so on. We must thus be careful with what we use as the

“deterministic world”.

A.1.3. The optimal consumption rules for the deterministic setting . Consider the

problem

max
c(T )≥0

R∞
t
e−ρ(T−t)

c (T )1−σ − 1
1− σ

dT

subject to da (T ) = [ra (T ) + z (T )− c (T )] dT , where labor income z (T ) changes deter-

ministically over time. Applying the Hamiltonian approach or the HJB equation yields

jointly with the No-Ponzi game condition limT→∞ e−rTa (T ) = 0 the following closed-form

expression for the optimal consumption rule20

c (T, a) =
ρ− (1− σ) r

σ
[a+ Ω (T )] , (39)

where Ω (T ) stands for the present value of labor income, see (34).

In case of permanent unemployment the agent receives an infinitely lasting payment

amounting to b. The present value of this flow reads Ωmin ≡ b/r, which yields upon insert-

ing in (39) consumption rule (9). Analogously, the optimal consumption rule cE (t, T, z, a)

in case that labor income is given by the expected flow ωz (t, T ) reads then

cE (t, T, z, a) =
ρ− (1− σ) r

σ
[a+ Ωz (t, T )] , (40)

where Ωz (t, T ) is given by (35) and (36), respectively. Now, recall that the actual income

process z (t) is Markovian. The deterministic consumption rule cE (z, a) corresponding

to the rule under uncertainty, c (z, a) is thus obtained by setting in (40) T = t, and it

20The No-Ponzi game condition is a sufficient criterion for optimality, see, e.g., Wälde (2006, Sec.

5.4).
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reads cE (z, a) =
ρ−(1−σ)r

σ
[a+ Ωz]. Inserting (37) and (38) finally yields the specific rules

(5) and (6), respectively.

A.1.4. The deterministic consumption process. Using the optimal consumption rule

for the deterministic setting, (5) and (6), respectively, we present in the following a budget

constraint to which this rule is optimal and which induces the same consumption process

as the system for the deterministic setting described in the previous subsections, given

by consumption rule (40) and budget constraint

dazE (T ) = [ra
z
E (T ) + ωz (t, T )− czE (t, T, z, a

z
E (T ))] dT, T ≥ t. (41)

Recall that z = z (t) denotes the employment status at time t. The objective of the

introduction of the alternative system is threefold. Observe that, while the actual labor

income process is Markovian and constant between jumps, the expectation ωz (t, T ) de-

pends on the time elapsed since t, which, for example if z = b, can be the last time the

agent has been laid off. Thus, when we explain the differences between the consumption

growth rate obtained in the stochastic setting and the growth rate obtained in the deter-

ministic setting (see, e.g., Subsection 5.1, p. 67), conclusions may be interfered by the

following facts: (i) ωz (t, T ) continuously changes over time T , and it does not “update”

information; (ii) the optimal consumption rule (40) depends trough ωz (t, T ) on the time

span T − t, which means that in absence of uncertainty and holding all other variables

equal, the agent behaves differently at t than at some T > t, which is not the case in the

stochastic setting; (iii) a positive saving in the deterministic setting (i.e., dazE (T ) > 0)

does not necessarily mean positive consumption growth (i.e., dcE (t, T, z, a
z
E (T )) > 0)

and vice versa, as we observe in the stochastic setting. In other words, the deterministic

system as it stands is not “comparable” with the stochastic system.

The new system solves those problems. It is given by the consumption rules (5)

and (6), respectively, and budget constraint (17).21,22 We use here that under certainty

the agent does not consider current labor income but rather its present value when tak-

ing a consumption decision. In order to show that the resulting consumption process

cE (z, a
z
E (T )) is equal to the consumption process cE (t, T, z, a

z
E (T )) induced by (40) and

(41) we notice first that at “initial” time T = t and since by construction azE (t) = azE (t),

21Proceeding along the lines from Subsection A.1.3, one can show easily that the consumption rules

(5) and (6), respectively, are indeed optimal to budget constraint (17).
22Since neither the consumption rules (5) and (6) nor budget constraint (17) depend on the time

span T − t, we do not distinguish anymore between t and T whenever we deal with these formulas, and

we denote the time flow in the main text by t.
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cE (z, a
z
E (t)) = cE (t, t, z, a

z
E (t)) and, second, that both processes grow with the same

rate (r − ρ) /σ, cf. Barro and Sala-i-Mart́ın (1995, Sec. 2.1). Combining both points

yields equality.

A.2. The Derivation of the Keynes-Ramsey rule. Consider HJB equation (15).

The first-order condition for the maximum on the right-hand side reads

u0 (c (z, a)) = Va (z, a) . (42)

That is, the optimal consumption for a given level of wealth a is always chosen such that

the marginal prospensity to consume is equal to the marginal value of a. Applying the

change-of-variables formula from Sennewald (2007, Th. 1), we obtain the time evolution

of the marginal value function

dVa (z (t) , a (t)) = {[ra (t) + z (t)− c (t)]Vaa (z (t) , a (t))} dt
+ [Va (b, a (t))− Va (z (t−) , a (t))] dqs (t)

+ [Va (w, a (t))− Va (z (t−) , a (t))] dqm (t) , (43)

where Vaa denotes the second order partial derivative of V with respect to a. Now, we

differentiate the maximized HJB equation (15) with respect to a, and we find, using the

envelope theorem, that

ρVa (z, a) = rVa (z, a) + [ra+ z − c (z, a)]Vaa (z, a)

+λs [Va (b, a)− Va (z, a)] + λm [Va (w, a)− Va (z, a)] ,

which gives upon rearranging

[ra+ z − c (z, a)]Vaa (z, a) = [ρ− r]Va (z, a)− λs [Va (b, a)− Va (z, a)]

−λm [Va (w, a)− Va (z, a)] .

Inserting the latter equation evaluated at z (t) and a (t) into differential (43) yields

dVa (z (t) , a (t)) =

(
[ρ− r]Va (z (t) , a (t))− λs [Va (b, a (t))− Va (z (t) , a (t))]

−λm [Va (w, a (t))− Va (z (t) , a (t))]

)
dt

+ [Va (b, a (t))− Va (z (t−) , a (t))] dqs (t)

+ [Va (w, a (t))− Va (z (t−) , a (t))] dqm (t) .
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Now, substituting Va (·) with u0 (·) according to the first-order condition (42), we find
that the marginal utility process obeys

− du0(c(z(t),a(t)))
u0(c(z(t−),a(t))) =

 r − ρ+ λs
h

u0(c(b,a(t)))
u0(c(z(t),a(t))) − 1

i
+λm

h
u0(c(w,a(t)))
u0(c(z(t),a(t))) − 1

i  dt

−
·

u0 (c (b, a (t)))
u0 (c (z (t−) , a (t)))

− 1
¸
dqs (t)

−
·

u0 (c (w, a (t)))
u0 (c (z (t−) , a (t)))

− 1
¸
dqm (t) . (44)

Applying the change-of-variables formula from Sennewald and Wälde (2006, Cor. 3)23 on

the general Keynes-Ramsey rule (44) and the mapping x 7→ u0−1 (x), where u is given by

(3), finally yields Keynes-Ramsey (16).

A.3. The consumption good is normal. In the following we show that the con-

sumption good is a normal, i.e., ∂c (z, a) /∂a > 0, z ∈ {b, w}. The derivation is in analogy
to Chang (2004, Subsec. 4.3.1) who considers a consumption-investment problem with

Brownian motion as noise. We exploit that utility function (3) is concave and that budget

constraint (1) is linear in a and c.

Let a1 and a2 be two different initial levels of wealth, with corresponding optimal

wealth and consumption processes ai (t) and ci (t) ≡ c (z (t) , ai (t)), i = 1, 2. Then we

define for λ ∈ [0, 1], aλ (t) ≡ λa1 (t) + (1− λ) a2 (t) and cλ (t) ≡ λc1 (t) + (1− λ) c2 (t).

As by linearity of budget constraint (1) we obtain daλ (t) = [raλ (t) + z (t)− cλ (t)] dt, we

conclude that aλ (t) is the wealth process associated to cλ (t). By definition of the value

function V and using the concavity of u we obtain then

V (z, aλ) ≥ E0
R∞
t0
e−ρ(t−t0)u (cλ (t)) dt

≥ E0
R∞
t0
e−ρ(t−t0) [λu (c (z (t) , a1 (t))) + (1− λ) u (c (z (t) , a2 (t)))] dt

= λV (z, a1) + (1− λ)V (z, a2) .

This chain of inequalities shows that the value function is concave in a, which, under

suitable smoothness assumptions, is equivalent to ∂2V (z, a) / (∂a)2 < 0. Now, differenti-

ating the first-order condition (42) for maximizing the HJB equation with respect to a,

we find that u00 (c (z, a)) ∂c (z, a) /∂a = ∂2V (z, a) / (∂a)2. Hence, as both u00 (c (z, a)) and

∂2V (z, a) / (∂a)2 are negative, we obtain that ∂c (z, a) /∂a > 0.

23The reader may also resort to Chapter ?? of the present thesis, which is a slightly modified version

of Sennewald and Wälde (2006).
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A.4. Saving and Dissaving.

A.4.1. Saving and dissaving during unemployment. In this section we consider the

saving behavior for either employment status. We start with the case of unemployment.

The job case is presented in the following subsection.

Lemma 2. While unemployed, the agent

(1) dissaves (and
dc(b,ab(t))
c(b,ab(t))

< 0) if either

(a) r ≤ ρ or

(b)

ρ < r < ρ+ λm, (45)

and c (w, a) <
³
1− r−ρ

λm

´−1/σ
c (b, a);

(2) saves (and
dc(b,ab(t))
c(b,ab(t))

> 0) if either

(a) r ≥ ρ+ λm or

(b) (45) holds and c (w, a) >
³
1− r−ρ

λm

´−1/σ
c (b, a);

(3) spends exactly his total income, ra+b, on consumption if (45) holds and c (w, a) =³
1− r−ρ

λm

´−1/σ
c (b, a).

Proof. First, we recall that, as the consumption good is normal and labor income

between jumps constant, dc
¡
b, ab (t)

¢
/c
¡
b, ab (t)

¢
> 0 iff the agent is saving. Using the

reduced form (18), we find thus that the agent saves iff

r > ρ+ λm
£
1− χ (a)−σ

¤
. (46)

Since χ (a) > 1, a sufficient condition for this inequality to hold true is r ≥ ρ + λm,

whereas a necessary condition is given by r > ρ. That is, for r ≥ ρ+ λm an unemployed

agent always saves, while for r ≤ ρ he always dissaves. This proves points 1a) and 2a).

For the remaining constellation (45), the parameters do not provide such a clear

distinction between saving and dissaving. However, further rearranging of (46) shows

that the agent saves iff c (w, a) <
³
1− r−ρ

λm

´−1/σ
c (b, a), which yields points 1b), 2b), and

3. Notice that here inequality (45) implies that the term 1− r−ρ
λm

is greater than 0, which

in turn ensures that
³
1− r−ρ

λm

´−1/σ
is well defined. ¤

The following lemma focuses on the “in-between” cases 1b), 2b) and 3, in which the

interest rate satisfies (45) and where we do not know much about whether and when an

unemployed agent is saving or dissaving. The results are depicted in Figure 4.
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Figure 4. Saving behavior during unemployment if ρ < r < ρ+ λm.

Lemma 3. For any interest rate r satisfying (45) there exists a level of wealth, abr > ab,

with the following properties. For a < abr an unemployed agent dissaves, for a > abr he

saves, while at abr he spends his total income on consumption, i.e., c
¡
b, abr

¢
= rabr + b.

Furthermore, the level abr is decreasing in r and limr&ρ a
b
r =∞ and limr%ρ+λm abr = ab.

Proof. We recall from Lemma 2 that only interest rates satisfying (45) are sensible

for the case under consideration. Otherwise the agent would always save or always dissave.

We show that (i) for any r satisfying (45) there exists abr, (ii) a
b
r is decreasing in r, and

(iii) the limit properties limr&ρ a
b
r =∞ and limr%ρ+λm abr = ab hold.

(i) Define on the interval [ρ, ρ+ λm] × (ab,∞) the function h (r, a) ≡ r − ρ

−λm
£
1− χr (a)−σ

¤
, where the superscript “r” from χr (a) indicates that the optimal

consumption rule and thus χ (a) depend on r. According to (46), the agent saves iff

h (r, a) > 0. Recalling the properties of χ (a) stated in Section 3, we find that, for any

fixed r ∈ (ρ, ρ+ λ), h (r, a) is increasing in a starting from r − ρ − λm < 0 (as a & ab)

and converging toward r− ρ > 0 (as a%∞). There exists thus a level abr > ab such that

h
¡
r, abr

¢
= 0, h (r, a) < 0 for a < abr, and h (r, a) > 0 for a > abr.

(ii) Consider two interest rate r1 < r2 satisfying (45). As shown in (i), there exist a
b
1

and ab2 with h
¡
ri, a

b
i

¢
= 0, i = 1, 2. Then, as r2 > r1, we conclude that by plausibility

– higher interest rates trigger a higher saving rate – for r2 the agent saves at a
b
1 which

means that h
¡
r2, a

b
1

¢
> 0. Hence, again with (i), we now deduce that ab1 > ab2, which

shows that abr is decreasing in r.
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(iii) Consider the limits A ≡ limr&ρ a
b
r and B ≡ limr%ρ+λm abr and assume that A <∞

and B > ab. Since r is drawn from a closed interval and since abr is decreasing in

r (as shown in (ii)), it follows that A = maxr∈[ρ,ρ+λm] a
b
r and h (ρ,A) = 0 as well as

B = minr∈[ρ,ρ+λm] a
b
r and h (ρ+ λm, B) = 0. Thus, the unemployed agent does not

dissave for r = ρ and a = A as well as he does not save for r = ρ+ λm and a = B. This

behavior is a contradiction to points 1a) and 2a) in Lemma 2. We hence conclude that

A =∞ and B = ab. ¤

Remark 3. Interestingly, some of the previous results can also be derived graphically.

Consider Figure 4 that illustrates the case of unemployment for ρ < r < ρ + λm, i.e.,

points 1b), 2b), and 3 from Lemma 2. We know from Section 3 that the c (b, a)-curve

lies between the cmin (a)- and the cE (b, a)-line (depicted by the lower and upper dashed

line, respectively). These lines start in −b/r and −Ωb, respectively, and their slope is

equal to [ρ− (1− σ) r] /r. The zero-motion line for ab (t) reads c = ra + b, starts as

the cmin (a)-line in −b/r and has slope r. Since r > ρ, the zero-motion line is steeper

than both the cmin (a)- and the cE (b, a)-line. Thus, as −Ωb < −b/r, the zero-motion line
intersects the cE (b, a)-line, while it lies always above that zero-motion line. It therefore

intersects the c (b, a)-curve, which lies between the cmin (a)- and the cE (b, a)-line, at some

abr > −b/r > ab. We can then see that the agent dissaves for a < abr (the c (b, a)-curve

lies above the zero-motion line) and saves for a > abr (the c (b, a)-curve lies below the

zero-motion line), while at abr, c
¡
b, abr

¢
= rabr + b.

A.4.2. Saving and dissaving while employed in a job. We now consider the saving

behavior for the job case. As in case of unemployment most of the following results could

also be derived and illustrated graphically, cf. Remark 3.

Lemma 4. While the worker is employed in a job, he

(1) dissaves (and dc(w,aw(t))
c(w,aw(t))

< 0) if r < ρ and c (w, a) <
³
1 + ρ−r

λs

´1/σ
c (b, a);

(2) saves (and dc(w,aw(t))
c(w,aw(t))

> 0) if either

(a) r ≥ ρ or

(b) r < ρ and c (w, a) >
³
1 + ρ−r

λs

´1/σ
c (b, a);

(3) spends exactly his total current income on consumption if r < ρ and c (w, a) =³
1 + ρ−r

λs

´1/σ
c (b, a).
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Proof of Lemma 4. According to the reduced form (20) we obtain that the agent

saves iff

r > ρ− λs [χ (a
w)σ − 1] . (47)

Since χ (a) > 1, a sufficient condition for this inequality to hold true is simply r ≥ ρ,

which yields point 2a). Note that a necessary condition expressed in terms of primitives

as in the case of unemployment cannot be given here since the right-hand of (47) tends

toward −∞ as a& ab and we assumed that r > 0. That means there is no positive lower

bound for the right-hand side of (47) such that for interest rates below that bound, (47)

does never hold true.

Points 1), 2b), and 3 follow immediately by rearranging (47). ¤

In the following lemma we present more precise results on the saving behavior if r < ρ.

Lemma 5. For any r < ρ there exists a level of wealth, awr > ab, with the following

properties. The worker saves at a < awr , dissaves at a > awr , and spends his total income

on consumption at awr , i.e., c (w, a
w
r ) = rawr + w. Furthermore, the level awr is increasing

in r and limr&0 awr ≥ ab and limr%ρ a
w
r =∞.

Proof. The arguments applied here are similar to those in the proof of Lemma 3.

First note that, according to Lemma 4, only interest rates r < ρ are sensible for the case

under consideration. We show then that (i) for any r < ρ there exists such an awr , (ii) a
w
r

is increasing in r, and (iii) the limit properties limr&0 awr ≥ ab and limr%ρ a
w
r =∞ hold.

(i) In analogy to the case of unemployment, we define on the interval (0, ρ]× (ab,∞)
a function h (r, a) ≡ r − ρ + λs [χ

r (aw)σ − 1]. According to (47), the agent saves iff
h (r, a) > 0. For any fixed r, h (r, a) is decreasing in a and tends toward ∞ as a & ab

and toward r − ρ < 0 as a → ∞. There exists thus a level awr such that h (r, awr ) = 0,
h (r, a) > 0 for a < awr , and h (r, a) < 0 for a > awr .

(ii) Consider two interest rate r1 < r2 < ρ and denote for i = 1, 2 by awi the level

of wealth with h (ri, a
w
i ) = 0. Since r2 > r1, the agent saves for r2 and at a

w
1 , i.e.,

h (r2, a
w
1 ) > 0. From (i) we then deduce that aw1 < aw2 .

(iii) We consider first the limit A ≡ limr%ρ a
w
r . Assume that A < ∞. As awr is

increasing in r, we obtain that A = maxr∈(0,ρ] awr and h (ρ,A) = 0. Hence, the agent does

not save for r = ρ and at a = A, which stands in contradiction to point 2a) in Lemma

4. Thus, A = ∞. We now turn to limr&0 awr . Since according to (i) a
w
r > ab for all

0 < r < ρ, we conclude that limr&0 awr ≥ ab. Unfortunately, equality cannot be shown
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since we do not know whether limr&0 h (r, a) is negative. (Only negativity would allow to

prove equality, similarly to the derivation of limr%ρ+λm abr = ab in point (iii) of the proof

of Lemma 3.) ¤

A.5. The expected consumption growth. We first present a derivation of the

expected consumption growth rate (27) and state then a technical lemma that is useful

for the analysis in Section 6.

For sake of notational convenience we set c (t) ≡ c (z (t) , a (t)). The expected con-

sumption growth rate is given by the limit

Et0

dc (t)

c (t)
= lim

∆t→0
Et0

c (t+∆t)− c (t)

c (t)
= lim

∆t→0
Et0

1

c (t)
Et [c (t+∆t)− c (t)] , (48)

where for the second step we use the properties of the conditional expectation. We now

write Keynes-Ramsey rule (16) in integral notation, which yields

c (t) =
R t
t0

r − ρ

σ
+ λs

h
c(τ)

c(b,a(τ))

iσ
− 1

σ
+ λm

h
c(τ)

c(w,a(τ))

iσ
− 1

σ

 c (τ) dτ

+
R t
t0
[c (b, a (τ))− c (τ−)] dqs (τ) +

R t
t0
[c (w, a (τ))− c (τ−)] dqm (τ) .

Inserting this expression into (48) and using the martingale property of the compensated

Poisson processes gives24

Et0

dc (t)

c (t)
= lim

∆t→0
Et0

1

c (t)
Et

R t+∆t

t

 r−ρ
σ
+ λs

[ c(τ)
c(b,a(τ)) ]

σ−1
σ

+ λm
[ c(τ)
c(w,a(τ)) ]

σ−1
σ

λs
h
c(b,a(τ))
c(τ)

− 1
i
+ λm

h
c(w,a(τ))

c(τ)
− 1
i
 c (τ) dτ.

By interchanging limit and expectation and applying thatEtx (t) = x (t) for all (z(t),a(t))-

measurable random variables x (t), we obtain further

Et0

dc (t)

c (t)
= Et0


r−ρ
σ
+ λs

½
[ c(t)
c(b,a(t)) ]

σ−1
σ

+
h
c(b,a(t))
c(t)

− 1
i¾

+λm

½
[ c(t)
c(w,a(t)) ]

σ−1
σ

+
h
c(w,a(t))

c(t)
− 1
i¾

 dt.

24Roughly speaking, the martingale property yields for t ≤ T that Etdq̃ (T ) = 0, where q̃ (t) =

q (t)−λt and q (t) is a Poisson process with arrival rate λ. As a consequence, for any integrable stochastic
process x (t) one obtains that Et

R T
t
x (τ) dq̃ (τ) = 0, cf. also Garćıa and Griego (1994).
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As z (t) in c (t) = c (z (t) , a (t)) can only take the values b and w, we can write, using the

linearity of the expectation operator,

Et0

dc (t)

c (t)
=


r−ρ
σ
+ λsEt0

½
1{z(t)=w}

·
[ c(w,a(t))c(b,a(t)) ]

σ−1
σ

+ c(b,a(t))
c(w,a(t))

− 1
¸¾

+λmEt0

½
1{z(t)=b}

·
[ c(b,a(t))c(w,a(t)) ]

σ−1
σ

+ c(w,a(t))
c(b,a(t))

− 1
¸¾

 dt. (49)

Since for given a0 and z0 the employment status at t ≥ t0 is independent of the level of

wealth at t, we obtain, for example, further

Et0

1{z(t)=w}
h
c(w,a(t))
c(b,a(t))

iσ
− 1

σ

 = Et0

£
1{z(t)=w}

¤
Et0


h
c(w,a(t))
c(b,a(t))

iσ
− 1

σ


= pwz0 (t0, t)Et0


h
c(w,a(t))
c(b,a(t))

iσ
− 1

σ

 ,

where for the second equality we refer to Appendix A.1.1. Proceeding analogously with

the other conditional expectations in (49), we finally arrive at differential (27) from the

text.

The subsequent lemma applies when we show that risk of unemployment yields higher

expected consumption growth.

Lemma 6. Define for σ, α > 0 the function H (x) ≡ xσ−1
σ
− 1−x−α

α
, x > 0. Then for

all x 6= 1, H (x) > 0.

Proof. Obviously, H (1) = 0. As the derivative H 0 (x) ≡ xσ−1 − x−(α+1) is greater

(less) than zero for x > 1 (x < 1), we find that H (x) is increasing (decreasing) for x > 1

(x < 1). Jointly with H (1) = 0 that means that H (x) is strictly positive for all x > 0,

x 6= 1. ¤
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