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Introduction

The study of equations describing the time evolution of systems in natural sciences and
engineering, in which the history of the system is among the driving forces, has seen
a rapid development in the last decades. Typical examples are (possibly controlled)
systems with a delayed feedback or with memory effects. In this thesis we will contribute
to the theory of linear delay equations. Throughout this work we assume that any
operator is linear. Let X be a Banach space, h ∈ (0,∞] and J := [−h, 0] if h < ∞
and J := (−∞, 0] otherwise. We are particularly concerned with the well-posedness and
asymptotic behaviour of the following linear delay equations

u̇(t) = Au(t) + Lut, u(0) = x, u0 = f (t ≥ 0), (0.0.1)

u(t) = Lut, u0 = f (t ≥ 0), (0.0.2)

u̇(t) = Au(t) +

t∫

0

dℓ(s)u(t− s), u(0) = x (t ≥ 0), (0.0.3)

u̇(t) = Au(t) +

t∫

0

ℓ(t− s)u̇(s) ds, u(0) = x (t ≥ 0), (0.0.4)

where x ∈ X is a given initial state, and f : J → X is the given history of the system. The
Banach space X is the space of states of the system. The function u : [−h,∞) → X (for
(0.0.1) and (0.0.2)) and u : [0,∞) → X (for (0.0.3) and (0.0.4)), respectively, represents
the states of the system started at t = 0 as a function of time. (For the first two equations
we recall that ut is a notation for the function s 7→ u(t + s), or shortly u(t + ·).) In
most cases continuity of u|[0,∞) is a natural assumption which we will adopt throughout
this thesis. The operator A is always assumed to be the generator of a (linear) C0-
semigroup on X. The operator-valued function ℓ maps [0,∞) into the operators L(X)
or more generally into L(Y, Z), where Y and Z are Banach spaces related to Sobolev
or fractional power spaces associated with A. The delay operator L, occuring in (0.0.1)
and (0.0.2), is assumed to act on a function space of X-valued functions with domain
J . In applications L can often be written as the Riemann-Stieltjes type integral

Lf =

0∫

−h

dη(s)f(s),

where η is an L(X)-valued function (or more generally an L(Y, Z)-valued function with
Y and Z as above) of bounded variation and f ∈ Cb(J ;X).

Our main pool of concepts and methods which we are going to use originates in the
theory of C0-semigroups. The structure of C0-semigroups is the natural mathematical
model for an autonomous deterministic system. However, one has to choose a suitable
state space before a system can be expressed by an abstract Cauchy problem and thus
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be tackled by C0-semigroup methods. In the case of the delay equations listed above
one should be aware of the fact that they are not autonomous when considered in the
space X, as the history of the system is not included in this state space.

For the equations (0.0.1) and (0.0.3) delay and Volterra semigroups have been utilised.
These semigroups act on the product ofX and a function space ofX-valued functions. In
the case of delay semigroups the history of the system is stored in the second component
of the product space. For Volterra semigroups in the context of (0.0.3) the second
component contains the function

∫ t
0
dℓ(s + ·)u(t − s), so that the Dirac functional δ0

applied to the second component yields the integral term of (0.0.3).
In both cases the choice of the function space leads to additional regularity condi-

tions on L and ℓ (necessary for the applicability of perturbation theorems) for which
the corresponding abstract Cauchy problem becomes well-posed. In this work we use
fractional power spaces associated with the (weak) derivative on spaces of continuous
and Lp-integrable functions for these semigroups to explore (0.0.1) and (0.0.3). As a
preparation we generalise the Miyadera-Voigt and the Desch-Schappacher perturbation
theorem by shifting them on the scale of fractional power spaces associated with the
generator to be perturbed.

Equation (0.0.4) can be treated by Volterra semigroup methods similar to (0.0.3).
In contrast to (0.0.3) we can also write (0.0.4) in the form of (0.0.1) without loosing
the differentiability of u|R+ by choosing the history u0 := x · 1(−∞,0]. Then the weak
derivative u̇ exists and becomes zero on the negative time axis. Since we only have
the existence as a weak derivative we cannot express it in the framework of continuous
functions. Moreover the necessary perturbation arguments only work in the Lp-context.

The equation (0.0.2) is of a different kind. It can be dealt with by left transla-
tion semigroups on the space Lp(−h, 0;X). These C0-semigroups are generated by
the weak derivative on Lp(−h, 0;X) with a boundary condition at 0. They have been
studied for operators L ∈ L(Lp(J ;X), X) and for special cases such as Lf = δ−hf
(f ∈ W 1

p (−h, 0;X)) and delay operators associated with flows in networks. We present
a general approach unifying these cases by extending the Desch-Schappacher perturba-
tion theorem. The perturbation result for translation semigroups is generalised to the
corresponding boundary perturbations of evolution semigroups induced by backward
propagators.

As translations are part of delay and Volterra semigroups our investigations fit well into
this work. So for example, perturbation arguments for delay and translation semigroups
hold for similar delay operators and share common estimates.

For many evolutionary systems the asymptotic behaviour is of great interest. In this
thesis we also devote ourselves to topics in the field of the asymptotics of evolution
equations. First we will study domination of C0-semigroups acting on Banach lattices.
This notion is of interest for the understanding of the asymptotic behaviour of suitably
dominated C0-semigroups, as the analysis of a C0-semigroup is often simplified if this
semigroup is positive. This can be used to derive asymptotic properties of dominated
semigroups from dominating ones. We contribute methods for the determination of
smallest dominating C0-semigroups, so-called modulus semigroups. Besides other exam-

vi



Contents

ples we apply our results to Volterra semigroups related to integro-differential equations,
linking these results with the equations above.

We also derive spectral conditions for the strong stability of solutions of (0.0.4), using
the notion of the half line spectrum and other recent methods and results from Laplace
transform theory and harmonic analysis. These have been rapidly developed in the
last decade and successfully applied to various delay equations. In our studies we will
assume that a solution operator family exists for (0.0.4) given by the first part of a delay
semigroup.

We could not apply standard C0-semigroup techniques for these investigations as the
involved Volterra and delay semigroups are generally not bounded due to the fact that
they contain translations on unbounded intervals. If ℓ or L satisfy additional growth
bound conditions, rescaling of the translation parts will be applicable leading to bounded
semigroups. In particular the spectral behaviour of solutions of the equations in the
neighbourhood of iR will become visible in the spectrum of the generator of the corre-
sponding delay or Volterra semigroups. However, in the context of aeroelasticity, which
was the motivation for our studies, such assumptions do not hold.

Even though the chapters in this thesis are only loosely connected they share a common
origin. Our starting point were the two closely related works [48] and [71].

In [48] the authors prove a perturbation theorem for delay equations in the Lp-context
which is of interest for equations in aeroelasticity modelling the flutter of aerofoils under
aerodynamic load in a subsonic airflow. These equations can be written in the form
of (0.0.4). This observation initiated the works on the well-posedness of the equations
mentioned above as well as the analysis of the strong stability of solutions of (0.0.4).
(Strong stability is the type of stability which engineers in this field of aeroelasticity are
striving to understand.) The results are presented in the Chapters 3 and 4.

The paper [71] deals with the problem of determining the modulus semigroup of delay
semigroups in the Lp-context and presents a partial answer. In the search for a complete
answer questions were raised which are presented and solved in the Chapters 1 and 2.

The thesis is organised as follows.
In Chapter 1 we prove approximation formulas for modulus semigroups and their

generators. Our main tool is a sandwiching result for sequences of C0-semigroups. The
second part of this chapter is devoted to various applications.

In Chapter 2 we mainly study translation semigroups on Lp-spaces. We present a uni-
fied approach to different boundary perturbations of the weak derivative on Lp(−h, 0;X)
with zero boundary condition at 0. As a preparation we generalise the Desch-Schappacher
perturbation theorem by closely examining the Volterra operator approach to this pertur-
bation theorem published in [39; Section III.3(a)]. The generalised Desch-Schappacher
perturbation theorem is also applied to boundary perturbations of evolution semigroups
induced by backward propagators.

We also determine the modulus semigroup of translation semigroups and discuss an
application to flows in networks. Last we deal with certain delay semigroups on spaces
of continuous functions and their modulus semigroups.
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Chapter 3 presents two approaches to (0.0.4) via Volterra and delay semigroups. We
investigate the relation to evolutionary integral equations as presented in [58]. Finally
we derive conditions for the strong stability of solutions of (0.0.4).

The first part of Chapter 4 is devoted to the development of various perturbation
results for operators acting on the scale of fractional power spaces associated with
generators of C0-semigroups. We are particularly concerned with the shifting of the
Miyadera-Voigt and the Desch-Schappacher perturbation theorems on these scales. In
the second part we apply these perturbation results to Volterra and delay semigroups.
This yields numerous well-posedness results for inhomogeneous abstract Cauchy prob-
lems and delay equations with fractional regularity conditions on the inhomogeneities
and the delay part, respectively.

Acknowledgements: In the first place, I am very grateful to my supervisor, Prof.
Jürgen Voigt. His fascinating lectures with their structured and efficient approaches
to key results drew my interest to applied functional analysis. The many copious and
inspiring discussions with him were always of great benefit. I also thank Kathrin Weise,
who shared a small and crammed office with me for several years, for the many helpful
discussions of mathematical, linguistical and TEXnical matters. Finally I want to express
my gratitude to my parents whose support in all respects from early childhood until now
has an important part in accomplishing this thesis.

The research was partially funded by the Studienstiftung des Deutschen Volkes. The
support is greatly appreciated.
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Chapter 1 Approximation of Modulus Semigroups and Their Generators

Let T and S be C0-semigroups on a Banach lattice X. We say that T is dominated
by S if

|T (t)x| ≤ S(t)|x| (t ≥ 0, x ∈ X).

If there exists a smallest C0-semigroup dominating T it is called the modulus semigroup
and denoted by T ♯. Similarly, we denote its generator by adding the superscript ♯ to
the generator of T . If X has order continuous norm then any dominated C0-semigroup
on X has a modulus semigroup; cf. [11; Theorem 2.1]. If X is a KB -space and T is a
C0-semigroup which is quasi-contractive with respect to the regular norm then T has a
modulus semigroup; cf. [71; Proposition A.1].

For a norm continuous semigroup T on an order complete Banach lattice, generated
by a regular operator A, it was shown in [11] that

A♯ = lim
t→0

1

t
(|T (t)| − I), (1.0.1)

where the limit exists in operator norm. One of the aims of this chapter is the investi-
gation of the validity of (1.0.1) in a more general context. If T is a C0-semigroup on a
Banach lattice with order continuous norm and T possesses a modulus semigroup then
we show that (1.0.1) is valid, where the limit holds in the strong resolvent sense; cf.
Corollary 1.3.3. The crucial step for the proof of this fact is the following sandwiching
result for sequences of C0-semigroups. For the notion of convergence for a sequence of
C0-semigroups we refer to Remark B.1(a).

1.0.1 Theorem. Let X be a Banach lattice with order continuous norm. For n ∈ N,
let Tn, Sn, and Un be C0-semigroups on X, Tn consisting of regular operators, and

|Tn(t)| ≤ Un(t) ≤ Sn(t) (t ≥ 0).

Further we assume that (Tn) converges to a C0-semigroup T , that T possesses a modulus
semigroup, and that (Sn) converges to T ♯.

Then (Un) converges to T ♯.

This result will be proved in Section 1.2.
In the paper [11] mentioned above it was also shown that for norm continuous semi-

groups the modulus semigroup is given by the Chernoff product formula

T ♯(t) = s-lim
n→∞

|T (t/n)|n.

As a consequence of Theorem 1.0.1 we obtain the Chernoff product formula and similar
approximation formulas for the modulus semigroup of (not necessarily norm continuous)
C0-semigroups on a Banach lattice with order continuous norm; cf. Section 1.3.

The chapter is organised as follows.
In Section 1.1 we prove a characterisation of order continuity of the norm in a Banach

lattice. This result is used for an improvement of a sandwiching lemma for sequences of
operators.

2



Chapter 1 Approximation of Modulus Semigroups and Their Generators

Section 1.2 is devoted to the proof of Theorem 1.0.1, where the characterisation in
Proposition 1.1.1 plays a decisive role.

In Section 1.3 we draw conseqences concerning the approximation of the generator
of the modulus semigroup and concerning Chernoff product formulas for the modulus
semigroup.

In Section 1.4 we present an operator norm version of the Chernoff product formula
stated above in the context of norm continuous semigroups.

In Section 1.5 we apply the previously established theory to perturbations of semi-
groups by bounded operators. The abstract result is then applied to matrix semigroups
and multiplication semigroups. At the end of this section we study the modulus of
Volterra semigroups.

We also refer to Appendices B and C where we supplement the main body of this
chapter. In Appendix B we shortly review the notions of strong resolvent convergence
of generators and strong convergence of C0-semigroups. We further introduce a general
type of approximation of the generator of a C0-semigroup. In Appendix C we review the
Chernoff product formula in a general context for which we could not find a reference in
the literature. Also, we note an operator norm version of Chernoff’s product formula.

1.1 Weakly and Norm Convergent Sequences

We start this section by adding a further property to the numerous properties charac-
terising order continuity of the norm of a Banach lattice; cf. [50; Theorem 2.4.2 and
Corollary 2.4.3]. We recall that the norm on a Banach lattice X is called order con-
tinuous if each downward directed system in X+ with infimum 0, norm converges to
0.

1.1.1 Proposition. A Banach lattice X has order continuous norm if and only if any
order bounded weak null sequence in X+ is a norm null sequence.

Proof. The necessity follows easily from [2; Lemma 4.12.15 and Theorem 4.12.14].
In order to show the sufficiency we use that X has order continuous norm if and only

if any order bounded disjoint sequence in X+ converges to zero (cf. [50; Theorem 2.4.2]).
Let z ∈ X+, and assume that the sequence (xn) ⊆ [0, z] is disjoint. For x′ ∈ X ′

+ we
conclude

0 ≤
k∑

n=1

x′(xn) = x′

(
k∑

n=1

xn

)
≤ x′(z) (k ∈ N).

Hence x′(xn) is a null sequence, and thus (xn) converges weakly to zero. The assumption
implies that (xn) converges to zero in norm. �

The property in the following corollary will be needed in the proof of the result given
subsequently as well as in the following sections. In fact, this property is equivalent to
the order continuity of the norm.

3



Chapter 1 Approximation of Modulus Semigroups and Their Generators

1.1.2 Corollary. Let X be a Banach lattice with order continuous norm. Let (xn) and
(yn) be sequences in X, and assume that 0 ≤ xn ≤ yn (n ∈ N). If xn → y ∈ X weakly
and yn → y in norm as n→ ∞ then xn → y in norm.

Proof. Let (ynk
) be a subsequence of (yn) with

∑∞
k=1 ‖ynk+1

− ynk
‖ < ∞. Then z :=

|yn1| +
∑∞

k=1 |ynk+1
− ynk

| exists and satisfies z ≥ ynk
for all k ∈ N. For zk := ynk

− xnk

we have zk → 0 weakly as k → ∞ and zk ∈ [0, z] for all k ∈ N. Proposition 1.1.1 implies
that zk → 0, and therefore xnk

→ y (k → ∞) in norm. Since this argument can be
applied to any subsequence of (xn) we see that xn → y as n→ ∞. �

From Corollary 1.1.2 we infer the following improvement of the sandwiching result
[71; Lemma 3.5] for sequences of operators, giving a positive answer to a question asked
in [71; Remark 3.6].

1.1.3 Lemma. Let X be an Archimedean vector lattice, and let Y be a Banach lattice
with order continuous norm. Assume that (Ak), (Bk), (Ck) are sequences of operators in
Lr(X, Y ), |Ak| ≤ Bk ≤ Ck (k ∈ N), A ∈ Lr(X, Y ), and Ak → A, Ck → |A| (k → ∞) in
the strong operator topology. Then Bk → |A| (k → ∞) in the strong operator topology.

We refer to [61; Chapter IV, §1], [50; Section 1.3] for regular operators in the context
of Lemma 1.1.3.

Proof of Lemma 1.1.3. As in [71; Lemma 3.5] we obtain that Bk → |A| in the weak
operator topology. Corollary 1.1.2 then implies Bk → |A| in the strong operator topol-
ogy. �

1.1.4 Remark. (a) If X is a Banach lattice then all the operators occuring in Lemma 1.1.3
are bounded (cf. [61; Theorem II.5.3]).

The reduced assumption on X allows for the application to unbounded operators
defined on sublattices of some Banach lattice.

(b) Assume that X = Y in Lemma 1.1.3. The following two examples illustrate that
Lemma 1.1.3 cannot be improved in two respects. We cannot omit the order continuity
of the norm nor obtain convergence of (Bk) in operator norm by imposing convergence
in operator norm on (Ak) and (Ck).

Let Xn := R2n be equipped with the Euclidean norm. There exist operators Tn in
L(Xn) with ‖Tn‖ = 2−n/2 and ‖ |Tn| ‖ = 1 (cf. [2; Example 5.16.6]). Let

X := {(xn)n∈N ; xn ∈ Xn, ‖(xn)‖∞ := sup
n∈N

‖xn‖ <∞}

and Y ⊆ X the (closed) subspace of all null sequences inX. Then X is an order complete
Banach lattice and Y has order continuous norm. For k ∈ N we define the operators

A := diag(Tn)n∈N, Ak := diag(T1, T2, . . . , Tk, 0 . . .),

on X. We have |A| = diag(|Tn|)n∈N, |Ak| = diag(|T1|, . . . , |Tk|, 0, . . .), Ak → A in
operator norm, and Ck := |A| ≥ |Ak| (k ∈ N). However, (|Ak|) does not converge to |A|

4



Chapter 1 Approximation of Modulus Semigroups and Their Generators

in the weak operator topology. In order to see this let x = (xn) ∈ X, ‖x‖∞ ≤ 1, such
that ‖|Tn|xn‖ = 1 (n ∈ N). As Y is a closed subspace of X there exists x′ ∈ X ′, x′|Y = 0
and x′(|A|x) = 1. Since |Ak|x ∈ Y (k ∈ N) we have x′(|Ak|x) = 0 and thus (|Ak|x) does
not converge weakly to |A|x.

Now we consider the restrictions Ã, Ãk, B̃k and C̃k of A, Ak, Bk and Ck to the subspace
Y , respectively. As before (Ãk) tends to Ã in operator norm, |Ãk| ≤ |Ã|. In accordance
with Lemma 1.1.3 (|Ãk|) converges to |Ã| in the strong operator topology. However,
(|Ãk|) does not converge in operator norm.

1.2 Proof of the Sandwiching Result for
C0-Semigroups

The aim of this section is the proof of the sandwiching result Theorem 1.0.1. In order
to motivate this result we include the following simple observation.

1.2.1 Remarks. (a) Let X be a Banach lattice. For n ∈ N, let Tn, Un, Sn, T , U and S
be C0-semigroups on X,

|Tn(t)x| ≤ Un(t)|x| ≤ Sn(t)|x| (x ∈ X, t ≥ 0, n ∈ N),

let T , U , and S be C0-semigroups on X, and assume that (Tn) converges to T , (Un) to
U , and (Sn) to S. Then

|T (t)x| ≤ U(t)|x| ≤ S(t)|x| (x ∈ X, t ≥ 0).

In particular, if T possesses a modulus semigroup and (Sn) converges to T ♯ then (Un)
converges to T ♯.

(b) Assume additionally that X is order complete. Let T be a C0-semigroup on X
consisting of regular operators, and assume that there exists a sequence (tn) ⊆ (0,∞),
tn → 0 (n → ∞), such that the sequence (Ãn) :=

(
1
tn

(|T (tn)| − I)
)

converges to a gen-
erator Ã in the strong resolvent sense, as n → ∞. Then the C0-semigroup T̃ generated
by Ã is the modulus semigroup of T .

Indeed, let S be a C0-semigroup dominating T , and define An := 1
tn

(T (tn) − I),
Bn := 1

tn
(S(tn) − I) (n ∈ N). Then |etAn | ≤ etÃn ≤ etBn for all t ≥ 0, n ∈ N.

Further, the sequences (An) and (Bn) converge to A and B in the strong resolvent sense,
respectively; cf. Remark B.3(a). Therefore part (a) above implies that T̃ dominates T
and is dominated by S, and this implies the assertion.

The important point of Theorem 1.0.1 is that the convergence of the sequence (Un),
which was part of the hypothesis in Remark 1.2.1(a), can in fact be concluded if the
Banach lattice has order continuous norm.

For the proof of this sandwiching result we need several preparations. First, for
x, y ∈ X, y ≥ 0 we introduce the truncation of x by y, denoted by τ(y)x, defined as the
element uniquely determined by the properties

5



Chapter 1 Approximation of Modulus Semigroups and Their Generators

(i) |τ(y)x| = |x| ∧ y,
(ii) (Re γτ(y)x)+ ≤ (Re γx)+ for all γ ∈ K, |γ| = 1

(cf. [71; Section 1]). We recall that, for x1, x2 ∈ X, y1, y2 ∈ X+ we have

|τ(y1)x1 − τ(y2)x2| ≤ |x1 − x2| + |y1 − y2|. (1.2.1)

In particular we shall use that if x ∈ X and (yn) ⊆ X+ with yn → y ∈ X (n→ ∞) then
τ(yn)x→ τ(y)x.

A second preparation consists in a formula interchanging the supremum of a set with
a positive operator.

1.2.2 Lemma. Let X be a Banach lattice with order continuous norm. Let A ∈ L(X)+,
M ⊆ X+ order bounded. Let Pf(M) := {F ⊆M ; F finite}, directed by inclusion. Then

A(supM) = A( sup
F∈Pf(M)

(supF )) = A( lim
F∈Pf(M)

(supF ))

= lim
F∈Pf(M)

A(supF ) = sup
F∈Pf(M)

A(supF ).

Proof. The equalities follow from the order continuity of the norm of X, the continuity
of A, and the fact that the net (A(supF ))F∈Pf(M) is increasing. �

Finally, we single out the following technical result.

1.2.3 Lemma. Let X be a Banach lattice with order continuous norm. Let A1, . . . , Am ∈
Lr(X), for 1 ≤ j ≤ m let (Ajk)k be a sequence in Lr(X), and Ajk → Aj (k → ∞) in the
strong operator topology. Further, let x, y, yk ∈ X+ (k ∈ N), yk → y (k → ∞) weakly,
and

|Amk| · · · |A1k|x ≤ yk

for all k ∈ N. Then

|Am| · · · |A1|x ≤ y. (1.2.2)

Proof. For z ∈ X+, the solid hull of the element z will be denoted by

sol{z} := {x ∈ X; |x| ≤ z}.

We consider (m−1)-tuples (Z0, . . . , Zm−2) of non-empty finite subsets of X with the
following property:

Zj ⊆ sol{zj} for all j = 0, . . . , m− 2, (1.2.3)

where

z0 := x,

zj+1 := sup{|Aj+1z| ; z ∈ Zj} for j = 0, . . . , m− 2.
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Chapter 1 Approximation of Modulus Semigroups and Their Generators

For an (m−1)-tuple satisfying (1.2.3), and for k ∈ N, j = 0, . . . , m− 2 we define

z0k := z0 (= x),

Zjk := {τ(zjk)z ; z ∈ Zj}, zj+1,k := sup{|Aj+1,kz| ; z ∈ Zjk}.

Using property (i) of the truncation τ we obtain

Zjk ⊆ sol{zjk},
zj+1,k ≤ sup{|Aj+1,k| |z| ; z ∈ Zjk} ≤ |Aj+1,k| zjk, (1.2.4)

for k ∈ N, j = 0, . . . , m− 2.
Next we show that

zjk → zj (k → ∞) (1.2.5)

for all 0 ≤ j ≤ m − 1. For j = 0 this is trivial. Assume that (1.2.5) is shown for some
0 ≤ j ≤ m− 2, and let z ∈ Zj . Then the properties of τ and the inclusion Zj ⊆ sol{zj}
imply that τ(zjk)z → τ(zj)z = z, |Aj+1,k(τ(zjk)z)| → |Aj+1z| (k → ∞). Hence we
obtain (recall that Zj is finite)

zj+1,k = sup{|Aj+1,kz| ; z ∈ Zjk} = sup{|Aj+1,k(τ(zjk)z)| ; z ∈ Zj}
→ sup{|Aj+1z| ; z ∈ Zj} = zj+1 (k → ∞).

Now let z ∈ sol{zm−1}. Then, using inequality (1.2.4), we obtain

|Amk(τ(zm−1,k)z)| ≤ |Amk| zm−1,k ≤ |Amk| |Am−1,k| zm−2,k

≤ · · · ≤ |Amk| |Am−1,k| · · · |A1k| z0k
= |Amk| |Am−1,k| · · · |A1k| x ≤ yk,

(1.2.6)

for all k ∈ N. Because of (1.2.5), inequality (1.2.6) implies

|Amz| = |Am(τ(zm−1)z)| ≤ y.

This implies

|Am|zm−1 = sup{|Amz| ; |z| ≤ zm−1} ≤ y.

This inequality can also be written as

|Am| sup{|Am−1z| ; z ∈ Zm−2} ≤ y.

This holds for arbitrary finite subsets Zm−2 ⊆ sol{zm−2}. Therefore Lemma 1.2.2 implies

|Am| |Am−1| zm−2 = |Am| sup
Zm−2∈Pf(sol{zm−2})

sup{|Am−1z| ; z ∈ Zm−2}

= sup
Zm−2∈Pf (sol{zm−2})

|Am| sup{|Am−1z| ; z ∈ Zm−2} ≤ y.

Iterating this argument we finally obtain (1.2.2). �
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Chapter 1 Approximation of Modulus Semigroups and Their Generators

Proof of Theorem 1.0.1. We have to show that for all t > 0 the sequence (Un(t))n con-
verges to T ♯(t), in the strong operator topology. (The fact that the semigroups have a
common exponential bound then implies the convergence of (Un) to T ♯; cf. [57; Theorem
3.4.2].)

Let x ∈ X+. The convergence Sn(t)x → T ♯(t)x implies that the solid hull of the set
{Sn(t)x; n ∈ N} is relatively weakly compact (cf. [2; Theorem 4.13.8]), and therefore the
set {Un(t)x; n ∈ N} is relatively weakly compact. By the Eberlein-Šmulyan theorem
there exists a subsequence (Unk

)k∈N such that (Unk
(t)x)k∈N is weakly convergent, y :=

w-limUnk
(t)x ≤ limSnk

(t)x = T ♯(t)x.
Let m ∈ N, t1, . . . , tm > 0, t1 + t2 + · · · + tm = t. Then, by hypothesis,

|Tnk
(tm)| |Tnk

(tm−1)| · · · |Tnk
(t1)|x ≤ yk := Unk

(t)x,

for all k ∈ N. The application of Lemma 1.2.3 yields

|T (tm)| |T (tm−1)| · · · |T (t1)|x ≤ y ≤ T ♯(t)x. (1.2.7)

The validity of inequality (1.2.7) for arbitrary m ∈ N, t1, . . . , tm as above implies
y = T ♯(t)x (cf. [11; Theorem 2.1] and the paragraph preceding Corollary 1.3.3). As this
argument can be applied to any subsequence of (Un(t)) we conclude that Un(t)x→ T ♯(t)x
weakly. Corollary 1.1.2 shows that Un(t)x→ T ♯(t)x in norm. �

1.3 Approximation of Modulus Semigroups and their
Generators

In this section we assume that X is a Banach lattice with order continuous norm. For
a C0-semigroup T with generator A and growth bound ω ∈ R the bounded operators
n(T (1/n)−I) (n ∈ N) and n2R(n,A)−n (n > ω) are generators of norm continuous semi-
groups which approximate T (cf. Remarks B.3). Moreover, the formation of these opera-
tors respect domination in the sense that domination carries over to the generated semi-
groups. This observation suggests to apply the sandwiching result Theorem 1.0.1 to the
sequences of semigroups generated by (n(|T (1/n)| − I))n∈N

and (n2|R(n,A)| − n)n>ω.
This yields approximation formulas for the generator of the modulus semigroup as well
as for the modulus semigroup itself.

We shall derive these applications from the more general kind of approximations in-
troduced in Appendix B.

1.3.1 Theorem. Let T be a C0-semigroup on X with generator A. Suppose that T
possesses a modulus semigroup with exponential estimate ‖T ♯(t)‖ ≤ Meωt (t ≥ 0). Let
ν be a finite Borel measure on [0,∞) satisfying

ν([0,∞)) =

∞∫

0

τ dν(τ) = 1.
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Chapter 1 Approximation of Modulus Semigroups and Their Generators

If ω ≤ 0 let h := ∞. If ω > 0 we additionally assume that
∫∞

0
τeατ dν(τ) <∞ for some

α > 0, and we define h := α/ω. We define W (0) := I and

W (s) :=
∣∣∣

∞∫

0

T (sτ) dν(τ)
∣∣∣, B(s) := 1

s
(W (s) − I) (s ∈ (0, h)).

Then B(s) → A♯ in the strong resolvent sense, as s→ 0. Moreover,

T ♯(t) = s-lim
n→∞

W ( t
n
)n,

uniformly for t in compact subsets of [0,∞).

Proof. In order to derive the first statement from Theorem 1.0.1 we choose a sequence
(sn)n ⊆ (0, h), sn → 0 as n→ ∞. We define

V (s) :=

∞∫

0

T (sτ) dν(τ), A(s) := 1
s
(V (s) − I) ,

Ṽ (s) :=

∞∫

0

T ♯(sτ) dν(τ), Ã(s) := 1
s
(Ṽ (s) − I) (s ∈ (0, h)) .

It is easy to see that |etA(sn)| ≤ etB(sn) ≤ etÃ(sn) for all t ≥ 0. In Theorem B.2 it
is shown that (A(sn)) and (Ã(sn)) converge to A and A♯ in the strong resolvent sense,
respectively, and thus, by the Trotter-Kato approximation theorem (see Remark B.1),
(etA(sn))t≥0 and (etÃ(sn))t≥0 converge to T and T ♯, respectively. Hence Theorem 1.0.1
implies the convergence of (etB(sn))t≥0 to T ♯. The first assertion of the theorem now
follows from the (easy part of the) Trotter-Kato approximation theorem.

The second assertion is a consequence of the Chernoff product formula (Theorem C.1).
We note that the boundedness condition required for W follows from W (s) ≤ Ṽ (s) and
the fact that the boundedness condition is satisfied for Ṽ , by Theorem B.2. �

1.3.2 Remark. In the situation of Theorem 1.3.1 and its proof, the semigroup (etA(sn))

is dominated by (etB(sn)) (and, a fortiori, by (etÃ(sn))), for n ∈ N. Thus, Theorem 1.0.1
implies that the sequence of modulus semigroups

(
(etA(sn)♯

)t≥0

)
n∈N

converges to T ♯.

As a first application of Theorem 1.3.1 we obtain a formula for the modulus semigroup.
In order to put this formula into the proper context we recall that, for a C0-semigroup
T , the modulus semigroup (if it exists) can be obtained by

T ♯(t) = sup
(γ1,...,γn)∈Γ

|T (γ1t)| · · · |T (γnt)| = s-lim
(γ1,...,γn)∈Γ

|T (γ1t)| · · · |T (γnt)|, (1.3.1)

where Γ = {γ ∈ (0, 1]n ; n ∈ N, γ1 + · · · + γn = 1} (cf. [11; Theorem 2.1] or [46] for a
special case).
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1.3.3 Corollary. Let T be a C0-semigroup with generator A, which possesses a modulus
semigroup. Then 1

s
(|T (s)| − I) → A♯ in the strong resolvent sense as s→ 0, and

T ♯(t) = s-lim
n→∞

|T (t/n)|n,

uniformly for t in compact subsets of [0,∞).

Proof. With ν = δ1 the assertion follows from Theorem 1.3.1; cf. Remark B.3(a). �

1.3.4 Remark. We could not decide whether, in Corollary 1.3.3, there exists a core D
for A♯ such that 1

s
(|T (s)| − I)x→ A♯x (s→ 0) for all x ∈ D.

For a generator A, one of the exponential formulas states that (n/tR(n/t, A))n tends
to the semigroup generated by A in the strong operator topology, uniformly on compact
intervals of [0,∞); cf. Remark B.3(b). As a second consequence of Theorem 1.3.1 we
obtain the following approximation for the modulus semigroup.

1.3.5 Corollary. Let A be the generator of a C0-semigroup T and suppose that T pos-
sesses a modulus semigroup. Then µ2|R(µ,A)| − µ → A♯ in the strong resolvent sense
as µ→ ∞, and

T ♯(t) = s-lim
n→∞

(n/t|R(n/t, A)|)n,

uniformly for t in compact subsets of [0,∞).

Proof. With dν(τ) = e−τdτ , the assertion follows from Theorem 1.3.1; cf. Remark B.3(b).
�

1.4 The Case of Norm Continuous Semigroups

In this section we assume that X is an order complete Banach lattice. If T is a norm
continuous semigroup on X with generator A ∈ Lr(X), one obtains stronger results than
in the previous section. For A ∈ Lr(X) let A = M + B be the unique decomposition
of A into M ∈ Z(X), the centre of Lr(X), and B ∈ Z(X)d (cf. [53; C-I, section 9]).
Derndinger proved that A♯ = ReM + |B| (cf. [29]). It was shown in [11; Proposition 1.2]
that A♯ = limt→0

1
t
(|T (t)| − I), where the limit is in operator norm. The ‘operator norm

version’ of Chernoff’s product formula (cf. Remark C.2) shows that

T ♯(t) = lim
n→∞

|T (t/n)|n

in operator norm, uniformly on compact subsets of [0,∞). The objective of the following
theorem is to generalise this result to the kind of approximations of A dealt with in the
previous section. We recall that ‖A‖r = ‖|A|‖ denotes the regular norm of A ∈ Lr(X).

1.4.1 Theorem. Let A ∈ Lr(X), A = M +B, where M ∈ Z(X) and B ∈ Z(X)d. Let
ν be a finite Borel measure on [0,∞) satisfying

ν([0,∞)) =

∞∫

0

τ dν(τ) = 1.
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We assume that
∫∞

0
τeατ dν(τ) <∞ for some α > 0. Let h := α/‖A‖r, W (0) := I and

W (s) :=
∣∣∣

∞∫

0

esτA dν(τ)
∣∣∣, B(s) := 1

s
(W (s) − I) (s ∈ (0, h)).

Then B(s) → ReM + |B| in operator norm, as s → 0, and W (t/n)n → et(ReM+|B|) in
operator norm, uniformly on compact intervals of [0,∞), as n→ ∞.

Proof. From etA = I + tA + t2

2
A2 + · · · we see that

∥∥|etA − (I + tA)|
∥∥ ≤ (t‖A‖r)2et‖A‖r (t ∈ [0,∞)).

From
∫∞

0
τ 2ecτ dν(τ) <∞ for c < α we obtain

1

s

∥∥∥∥∥∥

∣∣∣
∞∫

0

esτA dν(τ)
∣∣∣−
∣∣∣

∞∫

0

(I + sτA) dν(τ)
∣∣∣

∥∥∥∥∥∥

≤ 1

s

∞∫

0

(sτ‖A‖r)2esτ‖A‖r dν(τ) → 0

(1.4.1)

as s→ 0. Thus B(s) converges if and only if

1

s




∣∣∣

∞∫

0

(I + sτA) dν(τ)
∣∣∣− I



 =
|I + sA| − I

s
=

|I + sM | − I

s
+ |B| (1.4.2)

converges. From [11; Proof of Proposition 1.2] we know that |I+sM |−I
s

→ ReM (s → 0)
in operator norm. From (1.4.1) and (1.4.2) we conclude B(s) → ReM + |B| in operator
norm as s→ 0. By Remark C.2 this implies that W (t/n)n converges to (et(ReM+|B|))t≥0

(n→ ∞) in operator norm uniformly on compact subsets of [0,∞). �

1.5 Application to Perturbed Semigroups

1.5.1 Bounded Perturbations

First we will prove an abstract result which deals with the modulus of a semigroup
perturbed by a regular operator. As an application we present a new proof concerning
the modulus of matrix semigroups.

1.5.1 Proposition. Let X be a Banach lattice with order continuous norm. Let T0 be
a C0-semigroup with generator A0, and assume that T0 possesses a modulus semigroup.
Let B ∈ Lr(X) and suppose that one of the following assumptions holds.

11
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(i) There exists τ > 0 such that

∣∣∣∣∣∣
T0(t) +

t∫

0

T0(t− s)BT0(s) ds

∣∣∣∣∣∣
= |T0(t)| +

∣∣∣∣∣∣

t∫

0

T0(t− s)BT0(s) ds

∣∣∣∣∣∣

for all t ∈ (0, τ). (This is satisfied, in particular, if
∫ t
0
T0(t−s)BT0(s) ds and T0(t)

are order disjoint in Lr(X) for all t ∈ (0, τ).)

(ii) There exists τ > 0 such that B and T0(t) are order disjoint in Lr(X) for all
t ∈ (0, τ), and |T0(s) − I| → 0 in the strong operator topology as s→ 0.

Then the operator A♯0 + |B| is the generator of the modulus semigroup of the perturbed
semigroup T :=

(
et(A0+B)

)
t≥0

.

Proof. With T1(t) :=
∫ t
0
T0(t − s)BT0(s) ds, R1(t) :=

∫ t
0
T (t − s)BT1(s) ds (t ≥ 0) we

have the representation

T (t) = T0(t) + T1(t) +R1(t) (t ≥ 0).

It is easy to see that the semigroup T̃ generated by A♯0 + |B| dominates T . For the
remainder R1 we have the estimate

|R1(t)| ≤
t∫

0

T̃ (t− s)|B|
s∫

0

T ♯0(s− r)|B|T ♯0(r) dr ds (t ≥ 0), (1.5.1)

and thus
∥∥|R1(t)|

∥∥ ≤ ct2 (t ∈ [0, 1]), for some constant c ≥ 0. This implies that
∣∣∣∣
|T (t)| − I

t
− |T0(t) + T1(t)| − I

t

∣∣∣∣ ≤
1

t
|R1(t)| → 0 (t→ 0). (1.5.2)

Next, we observe that 1
t
T1(t) → B and

∣∣ 1
t
T1(t)

∣∣ ≤ 1

t

t∫

0

T ♯0(t− s)|B| T ♯0(s) ds→ |B|,

both in the strong operator topology as t → 0. Thus Lemma 1.1.3 implies that
|1
t
T1(t)| → |B| in the strong operator topology. Let x ∈ D(A♯0). By Corollary 1.3.3

and Remark B.1(c) there exists (xn) ⊆ X, xn → x such that n(|T0(1/n)|xn−xn) → A♯0x
as n→ ∞, and therefore

n(|T0(1/n)|xn − xn) + n|T1(1/n)|xn → (A♯0 + |B|)x (n→ ∞). (1.5.3)

From (i), (1.5.2), and (1.5.3) we obtain n(|T (1/n)|xn − xn) → (A♯0 + |B|)x. Using
Remark B.1(c) we conclude that (n(|T (1/n)| − I))n∈N converges to A♯0 + |B| in the

12
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strong resolvent sense. Remark 1.2.1(b) implies that T possesses a modulus semigroup
whose generator is A♯0 + |B|.

Now let assumption (ii) be satisfied. Then

1

t

∣∣∣|T0(t) + T1(t)| − |T0(t) + tB|
∣∣∣ ≤

∣∣1
t
T1(t) −B

∣∣

≤ 1

t

t∫

0

|T0(t− s)BT0(s) − B| ds

≤ 1

t

( t∫

0

T ♯0(t− s) |B| |T0(s) − I| ds+

t∫

0

|T0(t− s) − I| |B| ds
)

→ 0 (t→ 0),

(1.5.4)

in the strong operator topology. (We note that, due to the inequality |T0(s
′) − T0(s)| ≤

|T0(s)||T0(s
′ − s)− I|, for 0 ≤ s ≤ s′, the integrands in (1.5.4) are strongly continuous.)

For x ∈ D(A♯0) and (xn) as above we see that

n
(∣∣T0(1/n) + 1

n
B
∣∣ xn − xn

)
= n(|T0(1/n)|xn − xn) + |B|xn

→ (A♯0 + |B|)x (n→ ∞).
(1.5.5)

As in the first part of this proof we conclude from (1.5.2), (1.5.4), and (1.5.5) that
A♯0 + |B| is the generator of the modulus semigroup of T . �

1.5.2 Remark. In the proof of Proposition 1.5.1, with condition (iii), the order continuity
of the norm was only used for the existence of sequences (xn) approximating elements of
D(A♯0). If X is order complete, and the semigroup T0 has the property that

(
1
s
(|T0(s)|−

I)
)

converges to A♯0 in the strong resolvent sense then, by the proof given above, A♯0+ |B|
is the generator of the modulus semigroup.

1.5.3 Remark. In condition (iii) of Proposition 1.5.1 it is required that |T (t) − I| → 0
in the strong operator topology as t → 0. We could not decide how to characterise
semigroups possessing this property. Dominated norm continuous semigroups and mul-
tiplication semigroups (see subsection 1.5.2, in particular the proof of Proposition 1.5.5)
possess this property. On the other hand, if the semigroup operators T (t) are order
disjoint to the centre of Lr(X) for t > 0 then |T (t) − I| = |T (t)| + I which does not
tend to 0 strongly. An example of such a semigroup is the left translation on Lp(R)
(p ∈ [1,∞)).

1.5.4 Proposition. (cf. [23], [64]) Let X1 and X2 be Banach lattices with order con-
tinuous norm, and set X := X1 ×X2. Moreover let A :=

(
A11 A12
A21 A22

)
, D(A) := D(A11) ×

D(A22), be an operator matrix on X, where

(i) for j = 1, 2, the operator Ajj is the generator of a C0-semigroup Tj on Xj possess-
ing a modulus semigroup,

13
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(ii) A12 ∈ L(X2, X1) and A21 ∈ L(X1, X2) are regular operators.

Then the generator of the modulus semigroup of
(
etA
)
t≥0

is A♯ =
(

A♯
11 |A12|

|A21| A♯
22

)
, D(A♯) =

D(A♯11) ×D(A♯22).

Proof. Let T0(t) :=
(
T1(t) 0

0 T2(t)

)
. The assertion follows from Proposition 1.5.1, with

condition (ii), and the order disjointness of T0(t) and

t∫

0

T0(t− s)

(
0 A12

A21 0

)
T0(s) ds =

(
0 B1(t)

B2(t) 0

)
(t > 0),

where B1(t) :=
∫ t
0
T1(t− s)A12T2(s) ds and B2(t) :=

∫ t
0
T2(t− s)A21T1(s) ds. �

1.5.2 Perturbation of Multiplication Semigroups

A C0-semigroup T on a (real or complex) order complete Banach lattice X is called a
multiplication semigroup if T (t) belongs to the centre Z(X) for all t ≥ 0. Multipli-
cation semigroups on real (and to some extent on complex) Banach lattices have been
investigated in [53; C-II, Section 5] and [68]. We note that on real Banach lattices
all multiplication semigroups are positive; cf. [53; C-II, Corollary 5.14]. Let A be the
generator of the multiplication semigroup T . Then D(A) is a dense ideal, A is band pre-
serving, and A = ReA+ i ImA with both ReA and ImA real operators on the domain
D(A). Moreover, ReA is band preserving and bounded from above (i.e., there exists
ω ∈ R such that (ReA)x ≤ ωx for all x ∈ D(ReA)+). Hence ReA is closable, and the
closure is the generator of a multiplication semigroup ([68; Theorem 1.5]). The modulus
semigroup of T is given by T ♯(t) = |T (t)| ([53; C-II, Proposition 5.2]). As T (t) ∈ Z(X)
we have (cf. Section 1.4 for the first equality)

(1

s
(T (s) − I)

)♯
x =

1

s
(ReT (s) − I)x→ (ReA)x

for x ∈ D(ReA) as s → 0. The semigroups generated by 1
s
(ReT (s) − I) are domi-

nated by those generated by 1
s
(|T (s)| − I) = 1

s
(T ♯(s) − I). Using Remark B.3(a) and

Remark 1.2.1(b) we obtain ReA = A♯. In a similar way, this conclusion can also be
inferred from

1

s




∞∫

0

T (sτ) dν(τ) − I




♯

=
1

s




∞∫

0

ReT (sτ) dν(τ) − I



→ (ReA)x (s→ 0),

for x ∈ D(ReA) and a suitable Borel measure ν.
If we additionally assume order continuity of the norm this result also follows from

[53; C-II, Theorem 5.5].
The application of Remark 1.5.2 to multiplication semigroups yields the following

generalisation of the result for norm continuous semigroups (cf. Section 1.4).
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1.5.5 Proposition. Let X be an order complete Banach lattice. Let (etA)t≥0 be a mul-
tiplication semigroup, and let B ∈ Lr(X) be disjoint to the centre. Then

(A +B)♯ = ReA + |B|.

Proof. It was noted above that the modulus semigroup of (etA)t≥0 is generated by ReA,
and that (1

s
(|esA| − I)) converges to ReA in the strong resolvent sense. As etA − I are

disjointness preserving operators for t ≥ 0 we infer ‖|etA − I|x‖ = ‖(etA − I)x‖ → 0 as
t → 0 (x ∈ X) (cf. [53; C-II, Proposition 5.1]). Since B and etA are disjoint (t ≥ 0), we
can apply Remark 1.5.2 to obtain the assertion. �

1.5.3 Volterra Semigroups

In our last application we treat Volterra semigroups associated with inhomogeneous
abstract Cauchy problems and integro-differential equations.

Let p ∈ [1,∞). Let A be the generator of a C0-semigroup T on a (real or complex)
Banach lattice X with order continuous norm possessing a modulus semigroup. The
operator A :=

(
A δ0
0 D

)
with domain D(A) := D(A) × W 1

p (R+;X) on X × Lp(R+;X)

is the generator of the C0-semigroup T given by T :=
(
T (·) R(·)
0 S(·)

)
, where S denotes

the left translation semigroup on Lp(R+;X) and R(t) ∈ L(Lp(R+;X), X) is defined by
R(t)f :=

∫ t
0
T (t − s)f(s) ds (t ∈ R+, f ∈ Lp(R+;X)) (cf. [39; Section VI.7]). The C0-

semigroup T is related to inhomogeneous abstract Cauchy problems (cf. Section 4.7).
We will first determine the modulus semigroup of T .

The main objective of this section is the computation of the modulus of the C0-
semigroup S generated by C :=

(
A δ0
L D

)
with domain D(C) = D(A) on X × Lp(R+;X),

where we assume that L ∈ Lr(X,Lp(R+;X)). We recall that for L ∈ L(X,Lp(R+;X))
the matrix operator ( 0 0

L 0 ) ∈ L(X×Lp(R+;X)) is a bounded perturbation of A and so C is
indeed a generator. We refer to [39; Section VI.7] for an overview on Volterra semigroups
and their relation to integro-differential equations. In Sections 3.1, 4.6 and 4.7 we
will also encounter Volterra semigroups in the context of various integro-differential
equations.

1.5.6 Proposition. The modulus semigroup of T is generated by Ã :=
(
A♯ δ0
0 D

)
with the

domain D(Ã) := D(A♯) ×W 1
p (R+;X).

Proof. By Corollary 1.3.3 and Remark B.1(c) we know that for x ∈ D(A♯) there exists
(xn) ⊆ X with xn → x such that n(|T (1/n)|xn − xn) → A♯x as n → ∞. For f ∈
W 1
p (R+;X) we therefore obtain

n
(∣∣∣
(
T (1/n) 0

0 S(1/n)

)∣∣∣ ( xn

f ) − (
xn

f )
)

= n
((

|T (1/n)| 0
0 S(1/n)

)
(
xn

f ) − (
xn

f )
)
→
(
A♯x
Df

)

as n → ∞. For f ≥ 0 we conclude from 1
t
R(t)f = 1

t

∫ t
0
T (t − s)f(s) ds → δ0f and

1
t
|R(t)|f ≤ 1

t

∫ t
0
T ♯(t − s)f(s) ds → δ0f for t → 0 that 1

t
|R(t)|f → δ0f (t → 0). For

15
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arbitrary f ∈ W 1
p (R+;X) we see this convergence by writing f as the difference of two

positive functions. From

n |T (1/n)| ( xn

f ) − (
xn

f ) = n
(∣∣∣
(
T (1/n) R(1/n)

0 S(1/n)

)∣∣∣ ( xn

f ) − (
xn

f )
)

= n
((

|T (1/n)| |R(1/n)|
0 S(1/n)

)
(
xn

f ) − (
xn

f )
)
→
(
A♯x+δ0f

Df

)
(n→ ∞)

we conclude that Ã ⊆ A♯. As both operators are generators we see that Ã = A♯. �

1.5.7 Proposition. Assume that L ∈ L(X,Lp(R+;X)) is a regular operator possess-

ing the modulus |L| ∈ L(X,Lp(R+;X)). Then C̃ :=
(
A♯ δ0
|L| D

)
with domain D(A♯) ×

W 1
p (R+;X) is the generator of the modulus semigroup of S.

For the proof we will need the following lemma (cf. [4; Proposition 1.3.4] for the
convolution of strongly continuous operator families).

1.5.8 Lemma. Let Y1, Y2 and Y3 be Banach spaces, U : R+ → L(Y2, Y3) and V : R+ →
L(Y1, Y2). Assume that U and V are strongly continuous. Then W : R+ → L(Y1, Y3)
defined by W (t)x := 1

t

∫ t
0
U(t − s)V (s)y ds (t ∈ R+, y ∈ Y ) converges to U(0)V (0) in

the strong operator topology as t→ 0.

Proof. We first observe that by the principle of uniform boundedness the operators U(t)
are uniformly bounded in t in compact intervals of R+.

For y ∈ Y1 we have

1

t

t∫

0

U(t− s)V (0)y ds→ U(0)V (0)y (t→ 0) (1.5.6)

by the strong continuity of U . Further we obtain
∥∥∥∥∥∥

1

t

t∫

0

U(t− s)(V (s)y − V (0)y) ds

∥∥∥∥∥∥
≤ sup

s∈[0,t]

‖U(s)‖ sup
s∈[0,t]

‖V (s)y − V (0)y‖ → 0 (t→ 0)

(1.5.7)

by the uniform boundedness of the operators U(s) for s ∈ [0, t] and the strong continuity
of V . The assertion now follows from (1.5.6) and (1.5.7). �

Proof of Proposition 1.5.7. By the Dyson-Phillips series for bounded perturbations we
have the representation

S(t) = T (t) +

t∫

0

T (t− s) ( 0 0
L 0 )T (s) ds+ R1(t) (t ∈ R+),

16
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with
∥∥|R1(t)|

∥∥ ≤ ct2 (t ∈ [0, 1]) for some constant c ≥ 0 (for the estimate of R1(t) in
the regular norm we refer to equation (1.5.1)). In order to deal with the integral

t∫

0

T (t− s) ( 0 0
L 0 )T (s) ds =

t∫

0

(
R(t− s)LT (s) R(t− s)LR(s)
S(t− s)LT (s) S(t− s)LR(s)

)
ds

let R♯(t)f :=
∫ t
0
T ♯(t− s)f(s) ds (t ∈ R+, f ∈ Lp(R+;X)). By [4; Proposition 1.3.4] the

operator families R and R♯ are strongly continuous. We further have R(0) = R♯(0) = 0.
From Lemma 1.5.8 we see that

1

t

t∫

0

R♯(t− s) |L| T ♯(s) ds→ 0,

1

t

t∫

0

R♯(t− s) |L|R♯(s) ds→ 0,

1

t

t∫

0

S(t− s) |L|R♯(s) ds→ 0 (t→ 0)

in the strong operator topology. Since T ♯(t) and R♯(t) dominate T (t) and R(t) (t ∈ R+),
respectively, we obtain

1

t

∣∣∣∣∣∣

t∫

0

(
R(t− s)LT (s) R(t− s)LR(s)

0 S(t− s)LR(s)

)
ds

∣∣∣∣∣∣
→ 0 (t→ 0)

in the strong operator topology. This implies that

∣∣∣∣∣∣∣∣

|S(t)| − I

t
−

∣∣∣∣T (t) +
(

0 0
R t
0 S(t−s)LT (s) ds 0

) ∣∣∣∣− I

t

∣∣∣∣∣∣∣∣

≤ 1

t

∣∣∣∣∣∣

t∫

0

(
R(t− s)LT (s) R(t− s)LR(s)

0 S(t− s)LR(s)

)
ds

∣∣∣∣∣∣
+

1

t
|R1(t)| → 0 (1.5.8)

as t→ 0 in the strong operator topology.
From the proof of Proposition 1.5.6 we know that for ( xf ) ∈ D(C̃) = D(A♯) ×

W 1
p (R+;X) there exists (xn) ⊆ X with xn → x such that

n
(∣∣T (1/n)

∣∣ ( xn

f ) − (
xn

f )
)
→ A♯ ( xf ) (n→ ∞).

From Lemma 1.5.8 we infer that 1
t

∫ t
0
S(t−s)LT (s) ds→ L and 1

t

∫ t
0
S(t−s) |L| T ♯(s) ds→

|L| both in the strong operator topology as t → 0. As the first term is dominated by

17
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the second term we can apply Lemma 1.1.3 to infer that 1
t

∣∣∣
∫ t
0
S(t− s)LT (s) ds

∣∣∣ → |L|
in the strong operator topology. Thus we have

n

(∣∣∣∣T (1/n) +

(
0 0∫ 1/n

0
S(1/n− s)LT (s) ds 0

) ∣∣∣∣− I

)(
xn
f

)
→ C̃

(
x
f

)
(n→ ∞).

Taking into account (1.5.8) we infer that C̃ ⊆ C♯. As both operators are generators we
obtain C̃ = C♯. �

Let ℓ : R+ → L(X) be an operator-valued function with ℓ(·)x ∈ Lp(R+;X) for all
x ∈ X. The closed graph theorem implies that Lx := ℓ(·)x is a bounded operator from
X to Lp(R+;X) (cf. Lemma 3.1.1). As this type of operator is particularly interesting
in applications to integro-differential equations we provide the following supplement to
Proposition 1.5.7.

1.5.9 Proposition. Let X be a separable (real or complex) Banach lattice with order
continuous norm. Let ℓ : R+ → Lr(X) with ℓ(·)x ∈ Lp(R+;X) (x ∈ X). Assume that
the operator Lx := ℓ(·)x (x ∈ X) is regular. Then L possesses a modulus which is
induced by |ℓ(·)|.

Proof. Let x ∈ X, x ≥ 0. By the separability of X there exists M ⊆ {y ∈ X ; |y| ≤ x}
which is countable and dense in {y ∈ X ; |y| ≤ x}. Let (yn)n∈N be an enumeration
of G := {|Ly| ; y ∈ M} ⊆ Lp(R+;X). We define the upward directed sequence zn :=
sup{yk ; 1 ≤ k ≤ n}. Clearly we have

|L|x = sup{|Ly| ; |y| ≤ x} = supG = lim
n→∞

zn,

|ℓ(t)|x = sup{|ℓ(t)y| ; |y| ≤ x} = sup{g(t); g ∈ G} = lim
n→∞

zn(t) (t ∈ R+),

where the last equality in both lines follow from the order continuity of the norm in
Lp(R+;X) and X, respectively. By choosing a subsequence of (zn) if necessary we can
assume that zn → |L|x pointwise almost everywhere. Therefore |L|x = |ℓ(·)|x almost
everywhere. �
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Chapter 2 A Generalised Desch-Schappacher Perturbation Theorem

In this chapter we are mainly concerned with C0-semigroups generated by the deriva-
tive operator on Lp-spaces with suitable boundary conditions. On Xp := Lp(−h, 0;X),
where h ∈ (0,∞], p ∈ [1,∞) and X is a Banach space, we shall consider the operator

ALf := f ′, D(AL) := {f ∈W 1
p (−h, 0;X); f(0) = Lf}. (2.0.1)

Here L : W 1
p (−h, 0;X) → X is a suitable linear operator. In the case that AL is a

generator we denote the C0-semigroup generated by AL by TL. Such semigroups will
be called translation semigroups (cf. Definition 2.1.1). For L = 0 it is well-known that
A0 is the generator of the left translation semigroup T0 given by T0(t)f(s) = f(t+ s) if
t+ s < 0 and T0(t)f(s) = 0 if t+ s ≥ 0 (t ≥ 0, s ∈ (−h, 0)).

Translations occur as components in different types of semigroups, as are delay semi-
groups and semigroups arising from integro-differential equations (see for example Chap-
ter 3 and Sections 4.7 and 4.8).

They are also interesting in their own right, for they are closely related to the equation
u(t) = Lut, t ≥ 0, with initial value u0. Further they are suitable for modelling transport
processes in networks (cf. Section 2.7). For other applications to population, renewal and
Volterra equations we refer to [42]. We also mention that the equation u(t) = Au(t)+Lut,
for a closed operator A with 1 ∈ ρ(A), can be written as u(t) = R(1, A)Lut and is
therefore not more general (cf. [53; Section C-IV.3.2]).

If L is bounded from Xp to X it has been shown that AL is the generator of a C0-
semigroup on Xp in [42], see also [53; Corollary C-IV.3.2] and [39; Example III.3.5].
In [42] translation semigroups on the space L1(−∞, 0;X; eηxdx), with η ∈ R, were
considered. (We only mention that our results also hold for such weighted Lp-spaces.
This generalisation becomes interesting in the spectral analysis of the operators AL if
h = ∞ and η can be chosen to be negative.)

We will mainly investigate operators L for which there is a (finite) Borel measure µL
on [−h, 0] (respectively (−∞, 0] for h = ∞) and r ∈ [1, p] such that ‖Lf‖ ≤ ‖f‖Lr(µ;X)

(f ∈ Xreg; see Section 2.1 for the space of regulated functions). This class of operators
was introduced in [69] as perturbations of the closely related delay semigroups. Most
of the interesting operators such as operators given by Riemann-Stieltjes integrals are
among this type of operators.

Even though AL can “almost” be obtained as a Desch-Schappacher perturbation of A0,
these operators are not covered by this kind of perturbation. The boundary perturbation
theory developed in [43] and [56] is likewise not applicable to these boundary perturba-
tions. As a preparation we generalise the perturbation theorem of Desch-Schappacher
so that AL can be represented as a generalised Desch-Schappacher perturbation (see
[39; Theorem III.3.1] for the general Desch-Schappacher perturbation theorem and The-
orem A.2 for a special case). We will also consider the corresponding boundary pertur-
bation of evolution semigroups induced by backward propagators.

A further objective is the determination of the modulus semigroup of translation semi-
groups on Xp; for the definition of modulus semigroups we refer to the previous chapter.
We particularly show that for a bounded operator L in L(Lr(µL;X), X) possessing a
modulus |L|, the modulus semigroup T ♯L of TL is T|L|. In [42] this assertion was shown
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for regular operators L ∈ Lr(Xp, X). The technique of associating a delay operator with
a dominated translation semigroup as done in [42] however does not work well in this
more general setting. We will rather use a sandwiching argument (see Lemma 2.5.3).
This idea also works for certain translation semigroups on the space of Banach space
valued continuous functions (usually called delay semigroups), which is explored at the
end of this chapter.

The chapter is organised as follows.
First we recall regulated functions and define translations on spaces of p-integrable

and regulated functions in Section 2.1.
In Section 2.2 we introduce generalised Desch-Schappacher perturbations and prove a

generalisation of the Desch-Schappacher perturbation theorem.
In Section 2.3 we introduce the class of delay operators L which we are going to deal

with. In order to avoid technical difficulties we only treat the case h <∞.
In Section 2.4 we first show that the operator AL as defined in (2.0.1) generates a

translation semigroup if L is a delay operator and h < ∞. We then use approximation
techniques to cover the case h = ∞.

In Section 2.5 we will determine the modulus semigroup of such translation semi-
groups.

Section 2.6 is devoted to the perturbation of evolution semigroups arising from back-
ward propagators.

In Section 2.7 we show how the evolution of flows in networks can be described in the
framework of translation and evolution semigroups.

Finally we determine the modulus semigroup of delay semigroups on the space of
Banach space valued continuous functions for a special case.

2.1 Preliminaries

In this section we recall the definition of regulated functions and introduce the notion
of translations.

The space of X-valued regulated functions on an interval J ⊆ R is defined as the
closure of the space of step functions in ℓ∞(J ;X). It is denoted by Reg(J ;X) and
abbreviated by Xreg := Reg([−h, 0];X) if h <∞. The space Reg(J ;X) contains exactly
those functions in ℓ∞(J ;X) which possess right and left hand limits at all points (and
which vanish at infinity in the case that J is not a bounded interval). For a regulated
function f : J → X we introduce the notation

←

f : J → X for the function
←

f(t) :=
limsցt f(s) (t ∈ J) (in case J is closed on the right hand side with endpoint a we set
←

f(a) := f(a)).
We are interested in translations acting on Xp and/or on Xreg. The common notation

for a function f translated by t ∈ R is ft. More precisely we define ft for a function
f : J → X on an interval J ⊆ R and t ∈ R as

ft : R → X, ft(s) :=

{
f(t+ s) if t+ s ∈ J ,
0 otherwise.
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We can now fix the terminology of a translation semigroup on Xp or Xreg.

2.1.1 Definition. Let τ > 0 and Y ∈ {Xp, Xreg} (if h = ∞ then Y = Xp). A function
F ∈ ℓ∞([0, τ ];L(Y )) is called a translation if for all f ∈ Y there is a g ∈ Lp(−h, τ ;X)
(for Y = Xp) and g ∈ Reg([−h, τ ];X) (for Y = Xreg), respectively, such that

F (t)f = gt|(−h,0) (0 ≤ t ≤ τ).

A C0-semigroup T on Xp is called a translation semigroup if T |[0,τ ] is a translation for
some (or equivalently all) τ > 0.

An alternative proof of the following fundamental result on translation semigroups
can be found in [42; Proposition 1.4].

2.1.2 Proposition. Let T be a translation semigroup on Xp with generator A. Then
D(A) ⊆ W 1

p (−h, 0;X) and Af = f ′.

Proof. Let f ∈ D(A) and ϕ ∈ C∞
c (−h, 0). For all δ > 0 with sptϕ ⊆ (−h,−δ) we can

compute

0∫

−h

T (δ)f − f

δ
(t)ϕ(t) dt =

0∫

−h

f(t)
ϕ(t− δ) − ϕ(t)

δ
dt. (2.1.1)

The left hand term of (2.1.1) converges to
∫ 0

−h
Afϕ whereas the right hand term goes to

−
∫ 0

−h
fϕ′ as δ → 0. Hence f ∈W 1

p (−h, 0;X) and Af = f ′. �

Finally for an operator A whose domain is a function space F (J ;X) of functions from
an interval J ⊆ R to X and a function f which is defined on a larger interval than J we
write Af as an abbreviation for A(f |J) provided that f |J ∈ F (J ;X).

2.2 A generalised Desch-Schappacher Perturbation

Theorem

In this section we prove a generalised Desch-Schappacher perturbation theorem. We
start with some notations.

For an operator-valued function F and a suitable Banach space valued function g,
both defined on some interval of R, the convolution of F and g is (formally) defined by
(F ∗ g)(t) =

∫
R
F (t−s)g(s) ds where F and g are taken to be zero outside their domains

(cf. [4; Section 1.3] where general conditions on the existence of the integral are given).
By C(J ;Ls(X)), where J ⊆ R is an interval and X a Banach space, we denote the

space of strongly continuous operator-valued functions on J .
We also need the Sobolev tower (Xn

A)n∈Z associated with a generator A on the Banach
space X = X0

A and the induced generators An on Xn
A for n ∈ Z. The definitions and

properties can be found in e.g. [39; Section II.5a] or [54] and also in Chapter 4.
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Let A be the generator of the C0-semigroup T acting on the Banach space X. We
recall that an operator B ∈ L(X) is a multiplicative Desch-Schappacher perturbation
of A if there is a τ > 0 such that the Volterra operator V defined by C([0, τ ];Ls(X)) ∋
F 7→ T−1 ∗ A−1BF is a strictly contractive operator in L(C([0, τ ];Ls(X))). The Desch-
Schappacher perturbation theorem states that if B is a Desch-Schappacher perturbation
of A, then A(I + B) is a generator of a C0-semigroup S satisfying the variation of
parameters formula S = T + V S. For a proof of this theorem and a discussion of
additive versus multiplicative perturbations we refer the reader to [39; Section III.3.a
and III.3.d] and Theorem A.2 in the Appendix for a special case of this theorem.

We now introduce our notion of a generalised Desch-Schappacher perturbation. Let
Y be a Banach space satisfying DA →֒ Y →֒ X and let B ∈ L(Y ). Our main obser-
vation is that the Volterra operator V might still act on sufficiently nice subspaces of
C([0, τ ];Ls(X)).

By K we denote the space L(X) ∩ L(Y ), i.e. the space of those operators K ∈
L(X) for which K ∩ (Y × Y ) = K|Y ∈ L(Y ). We equip K with the norm ‖K‖K :=
sup

{
‖K‖L(X), ‖K|Y ‖L(Y )

}
(K ∈ K). As there is no danger of confusion we omit the

index |Y from now on.
For τ > 0 we introduce the space

Zτ
0 := {F ∈ ℓ∞([0, τ ];K); F ∈ C([0, τ ];Ls(X))}

as a subspace of ℓ∞([0, τ ];K) equipped with the norm ‖F‖∞,K := sups∈[0,τ ] ‖F (s)‖K
(F ∈ Zτ

0 ). We note that if (Fn) ⊆ Zτ
0 converges to F in ℓ∞([0, τ ];K) then F is already

strongly continuous with respect to Ls(X). Thus Zτ
0 is a closed subspace of ℓ∞([0, τ ];K)

and therefore a Banach space.
We say that B ∈ L(Y ) is a generalised Desch-Schappacher perturbation of A if there

exist a τ > 0 and a closed subspace Z ⊆ Zτ
0 such that

(i) T |[0,τ ] ∈ Z;

(ii) for all F ∈ Z, y ∈ Y and t ∈ [0, τ ] we have BF (·)y ∈ L1([0, τ ];X), (T−1 ∗
A−1BF (·)y)(t) ∈ Y and (T−1 ∗A−1BF )(t) extends to a bounded operator UF (t) ∈
K;

(iii) the Volterra operator V defined by V F := UF (·) (F ∈ Z) is a bounded operator
in L(Z), and the Neumann series

∑∞
n=0 V

n converges absolutely in L(Z);

(iv) λ ∈ ρ(A(I +B)) for λ ∈ R sufficiently large.

2.2.1 Remark. If B ∈ L(X) is a (usual) Desch-Schappacher perturbation of A then the
norm of AR(λ,A)B is smaller than 1 for λ ∈ R sufficiently large and thus I−AR(λ,A)B
and (A − λ)(I − AR(λ,A)B) = A(I + B) − λ are bijective mappings on X. For the
generalised Desch-Schappacher perturbation the norm of AR(λ,A)B ∈ L(Y ) does not
need to get smaller than 1. (For an example we refer to the translation semigroups
below.) We were not able to decide whether the bijectivity of I − AR(λ,A)B in L(Y )
can be concluded from (i)-(iii). If this is the case then (iv) will become superfluous.
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The proof of the following generalisation of the Desch-Schappacher perturbation the-
orem utilises ideas from [32; Theorem 5] and [39; Theorem III.3.1].

2.2.2 Theorem. Let A be the generator of a C0-semigroup T on a Banach space X.
Let Y be a Banach space satisfying DA →֒ Y →֒ X. If B ∈ L(Y ) is a generalised
Desch-Schappacher perturbation then A(I + B) is the generator of a C0-semigroup S.
The space Y is S-invariant and S satisfies the variation of parameters formula

S(t)y = T (t)y + A

t∫

0

T (t− s)BS(s)y ds (t ≥ 0, y ∈ Y ). (2.2.1)

Proof. Let Z and V be as above. By our assumptions the operator I − V is invertible
in L(Z). Let S := (I − V )−1T . As in [39; Theorem III.3.1] we verify the formula

[V nT ](s+ t)y =
n∑

k=0

[V n−kT ](s) · [V kT ](t)y (2.2.2)

for all y ∈ Y , n ≥ 0 and s, t ∈ [0, τ ] with s + t ≤ τ . A denseness argument shows
that this formula also holds for all y ∈ X. Considering the absolutely convergent series
S(t) =

∑∞
0 [V nT ](t) for t ∈ [0, τ ] we verify the semigroup law for S by using the Cauchy

product formula and (2.2.2). So we can extend S to a C0-semigroup on [0,∞) which we
also denote by S.

The S-invariance of Y and the validity of (2.2.1) for t ∈ [0, τ ] and y ∈ Y directly
follow from the definition of S and the properties of Z. For t = nτ + r with n ∈ N,
r ∈ [0, τ) we see from assumption (ii) and

t∫

0

T (t− s)BS(s)y ds =
n−1∑

k=0

T (t− (k + 1)τ)

τ∫

0

T (τ − s)BS(s)S(kτ)y ds

+

r∫

0

T (r − s)BS(s)S(nτ)y ds
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that
∫ t
0
T (t− s)BS(s)y ds ∈ D(A). Similar to [39; Theorem III.3.1] we obtain

A

t∫

0

T (t− s)BS(s)y ds

=

n−1∑

k=0

T (t− (k + 1)τ)A

τ∫

0

T (τ − s)BS(s)S(kτ)y ds

+ A

r∫

0

T (r − s)BS(s)S(nτ)y ds

=

n−1∑

k=0

T (t− (k + 1)τ)(S(τ) − T (τ))S(kτ)y + (S(r) − T (r))S(nτ)y

= S(t)y − T (t)y.

Let C be the generator of S. It remains to show that C = A(I + B) or equivalently
λ − C = (λ − A)(I − AR(λ,A)B). To this end let λ ∈ R be sufficiently large. Taking
the Laplace transform of the variation of parameters formula (2.2.1) in the norm of the
space X yields

R(λ, C)y = R(λ,A)y + AR(λ,A)BR(λ, C)y (y ∈ Y ). (2.2.3)

Let Hλ := (λ − A)(I − AR(λ,A)B) = λ − A(I + B). From (2.2.3) we see that
HλR(λ, C)y = y (y ∈ Y ). By assumption (iv) the operator Hλ has a bounded inverse in
X for λ ∈ R sufficiently large. Therefore R(λ, C)y = H−1

λ y (y ∈ Y ) for λ ∈ R sufficiently
large. Since Y is dense in X we infer that λ− C = Hλ. Hence C = A(I +B). �

2.3 Delay Operators

In order to avoid technical problems we refrain from introducing delay operators for
h = ∞ and assume h <∞ throughout this section.

Before we can present the definition of a delay operator we need the following lemma.
It ensures that the operators Λ(t) in (D3) of Definition 2.3.2 below indeed map regulated
functions to regulated functions.

2.3.1 Lemma. Let h <∞, and L : Xreg → X be a bounded linear operator satisfying

(D1) If (fn) ⊆ Xreg, fn → f ∈ Xreg pointwise as n → ∞ and ‖fn(·)‖ ≤ g ∈ Lp(−h, 0)
almost everywhere then Lfn → Lf as n→ ∞.

If f ∈ Reg(R;X) then g(t) := Lft (t ∈ R) is a regulated function, ‖g‖∞ ≤ ‖L‖‖f‖∞
and limsց0 g(s) = L

←

f .
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Proof. We are going to prove that g has left and right hand limits at all points. To this
end let t ∈ R, δ > 0. As ft+δ →

←

ft pointwise as δ ց 0 and

sup
δ>0

‖ft+δ‖[−h,0],∞ ≤ ‖f‖∞ <∞,

(D1) implies that g(t + δ) = Lft+δ → L
←

ft as δ ց 0. In the same way we see that g
possesses left hand limits at all points. Finally as L is a bounded operator and f vanishes
at infinity (D1) shows that g vanishes at infinity. Therefore g ∈ Reg(R;X). The norm
estimate follows from the definition of g. �

2.3.2 Definition. Let h <∞ and c ∈ (0, 1]. A bounded linear operator L : Xreg → X is
called a c-delay operator if it satisfies (D1) above and the following additional properties.

(D2) L has no mass at 0 in the sense that

mL(t) := sup{‖Lϕ‖ ; ϕ ∈ Xreg, sptϕ ⊆ [−t, 0], ‖ϕ‖∞ ≤ 1}

tends to 0 as t→ 0.

(D3) There is a τ ∈ (0, h) such that the operators

Λ(t) : Reg([−h, τ ];X) → Xreg, Λ(t)ϕ(s) :=

{
0 for s ∈ [−h,−t],
Lϕt+s for s ∈ (−t, 0]

are bounded in the norm of L(Lp(−h, τ ;X), Xp) uniformly in t ∈ [0, τ ], and if the
domain is restricted to functions with support in [0, τ ] then strictly contractive
with a common contraction constant less than c.

If c = 1 we say that L is a delay operator rather than 1-delay operator. If c can be
chosen arbitrarily small then we call L a 0-delay operator.

A large and interesting class of delay operators arises as bounded operators from
Lr(µ;X) to X, where r is in [1, p] and µ is a suitable measure on [−h, 0].

2.3.3 Proposition. Let h < ∞. Let L be a linear operator from Xreg to X. Assume
there exist r ∈ [1, p] and a finite Borel measure µL on [−h, 0] such that

‖Lϕ‖ ≤ ‖ϕ‖Lr(µL;X) (ϕ ∈ Xreg). (2.3.1)

If µL has no mass at 0, then L is a 0-delay operator.

Proof. For ϕ ∈ Xreg the finiteness of the Borel measure implies

‖Lϕ‖ ≤ ‖ϕ‖Lr(µL;X) ≤ µL([−h, 0])1/r‖ϕ‖∞. (2.3.2)

Thus L is a bounded linear operator from Xreg to X. By Lebesgue’s convergence the-
orem (D1) holds (observe that Lp(−h, 0) ⊆ Lr(−h, 0)). Property (D2) immediately
follows from that fact that µL is supposed to have no mass at 0. For the verification
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of (D3) we first estimate the operator norm of Λ(t) in L(Reg([−h, τ ];X), Xreg) and
L(Lr(−h, τ ;X), Xr) for τ ∈ (0, h) and t ∈ (0, τ). We then use interpolation to show
(D3). For ψ ∈ Lr(R) we compute

0∫

−t

∫

R

|ψ(ϑ+ s)|r dµL(ϑ) ds =

∫

R

∫

R

1[−t,0](s)|ψ(ϑ+ s)|r dµL(ϑ) ds

=

∫

R

∫

R

1[s,s+t](ϑ)|ψ(s)|r dµL(ϑ) ds

≤ ‖ψ‖rr sup
s∈sptψ

µL([s, s+ t]).

(2.3.3)

(Here we have used that
∫

R

∫
R
f(s, ϑ) dµL(ϑ) ds =

∫
R

∫
R
f(s − ϑ, ϑ) dµL(ϑ) ds for an

integrable function f , by Fubini’s theorem.) Let τ ∈ (0, h) and t ∈ [0, τ ]. If ϕ ∈
Reg([−h, τ ];X) then (2.3.3) and (2.3.1) yield




0∫

−t

‖Lϕt+s‖r ds




1/r

≤




0∫

−t

∫

R

‖ϕt(ϑ+ s)‖r dµL(ϑ) ds





≤ ‖ϕ‖r sup
s∈sptϕt

µL ([s, s+ t])1/r .

(2.3.4)

Therefore we have ‖Λ(t)ϕ‖r ≤ µL([−h, 0])1/r‖ϕ‖r. Furthermore (2.3.2) provides the
estimate ‖Λ(t)ϕ‖∞ ≤ µL([−h, 0])1/r‖ϕ‖∞. The Banach space valued version of the
interpolation theorem by Riesz-Thorin implies that

‖Λ(t)ϕ‖p ≤ 2µL([−h, 0])1/r‖ϕ‖p (t ∈ (0, h)).

(In the complex case we can omit the factor 2.) Hence the operators Λ(t) extend to a
uniformly bounded family of operators in L(Lp(−h, τ ;X), Xp) for any τ ∈ (0, h). From
(2.3.2) and (2.3.4) we also see that if we additionally have sptϕ ⊆ [0, τ ] then ‖Λ(t)ϕ‖r ≤
µL([−t, 0])1/r‖ϕ‖r and ‖Λ(t)ϕ‖∞ ≤ µL([−t, 0])1/r‖ϕ‖∞. Again by an application of the
Riesz-Thorin theorem we infer

‖Λ(t)ϕ‖p ≤ 2µL([−t, 0])1/r‖ϕ‖p (t ∈ (0, h)). (2.3.5)

As µL has no mass at 0 we can find τ ∈ (0, h) such that the restrictions of Λ(t)
to {f ∈ Reg([−h, τ ];X); spt f ⊆ [0, τ ]} become strict contractions in the norm of
L(Lp(−h, τ ;X), Xp) with a common contraction constant less than c for any c > 0 and
for all t ∈ [0, τ ]. This shows that (D3) holds. �

2.3.4 Remarks. There are two important types of delay operators which we like to men-
tion.

(a) Any bounded linear operator L : Xp → X is a 0-delay operator. This is easily seen
by setting r := p and µL := ‖L‖λ where λ denotes the Lebesgue-measure on [−h, 0].
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(b) The second interesting type of delay operators are operator-valued Riemann-
Stieltjes integrals. Let η : [−h, 0] → L(X) be of bounded variation without mass at
0. The bounded linear operator Lf :=

∫ 0

−h
dη(s)f(s) from Xreg to X is a 0-delay oper-

ator. We verify this by choosing r := 1 and µL := d|η|. Here d|η| denotes the variation
of η.

(c) For further reading on operators for delay problems dominated by a measure we
refer to [69].

2.3.5 Remark. For our purposes it would suffice to have delay operators defined on
the domains C([−h, 0];X) or W 1

p (−h, 0;X). There are several reasons for considering
delay operators defined on spaces of regulated functions. First of all if an operator
L ∈ L(C([−h, 0];X), X) is for example weakly compact (which is for example always
true if X is reflexive), if (2.3.1) is satisfied for some r ∈ [1,∞) and a finite Borel
measure µ, or if L is of finite variation then L always extends to a bounded operator
on the regulated functions (cf. [35; Section VI.5], [36; Section III.19] and [10; III.2.a]).
Furthermore the definition as well as the perturbation argument carried out in the
next section become easier for the larger domain of regulated functions (namely the
abstract perturbation argument using Volterra operators would have to be replaced by
an explicit fixed point argument). Lastly in the second part of this chapter we deal
with translation semigroups on Dedekind-complete Banach lattices and delay operators
being regular. Such operators always possess a bounded extension to the space of regular
functions. To see this let L ∈ L(C([−h, 0];X), X) be regular. If L is positive then
L̂f := sup{Lf ; g ∈ C([−h, 0];X), 0 ≤ g ≤ f} (f ∈ Xreg, f ≥ 0) defines an extension of
L in L(Xreg, X). Otherwise there are positive operatos L+ and L− with L = L+ − L−,
which extend to bounded operators L̂+ and L̂− in L(Xreg, X). Now L̂ := L̂+ − L̂− gives
an extension of L to a bounded operator in L(Xreg, X).

2.4 The Generator Property of the Perturbed Weak

Derivative

The objective of this section is to show that AL defined in the introduction generates
a C0-semigroup if L is a delay operator. We first consider the case h < ∞. Then we
use this result to treat operators L : W 1

p (−∞, 0;X) → X for which there is a suitable
Borel measure µL on (−∞, 0], such that ‖Lϕ‖r ≤ ‖ϕ‖Lr(µ;X) for some r ∈ [1, p] (cf.
Corollary 2.4.3).

We now assume that h < ∞ and that L ∈ L(Xreg, X) is a delay operator. The
operator Bf := −Lf · 1(−h,0) (f ∈ Xreg) belongs to L(Xreg). We are now going to show
that B is a generalised Desch-Schappacher perturbation of A0. First we observe that by
a straightforward computation AL = A0(I + B). (We remark that by writing AL as a
multiplicative perturbation of A0 we avoid extrapolation spaces; cf. [39; Section III.3.d]
and [39; Example III.3.5]).

Let τ > 0 such that mL(τ) < 1 (see (D2)) and such that (D3) holds for this τ (with
c = 1). Let K be the space of operators in L(Xp) ∩ L(Xreg) (cf. Section 2.2). By Z we
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denote the (closed) subspace of all translations in ℓ∞([0, τ ];K). Observe that translations
in ℓ∞([0, τ ];L(Xp)) are automatically strongly continuous. Further notice that T0|[0,τ ] ∈
Z. For F ∈ Z and f ∈ Xreg we define the function G(t) :=

∫ t
0
T0(t − r)BF (r)f dr

(t ∈ [0, τ ]). For t ∈ [0, τ ] and s ∈ [−h, 0] we obtain

G(t)(s) = −
t∫

0

LF (r)f · 1[−h,r−t](s) dr = −
t∫

max{0,t+s}

LF (r)f dr.

As F is a translation there is a function g ∈ Reg([−h, τ ];X) such that gr|[−h,0] = F (r)f .
By an application of Lemma 2.3.1 we see that [0, τ ] ∋ r 7→ LF (r)f = Lgr is again a
regulated function. Therefore G(t) is weakly differentiable. The weak derivative of G(t)
is given by

G(t)′ =

(
[−h, 0] ∋ s 7→

{
0 if s ∈ [−h,−t],
LF (s+ t)f if s ∈ (−t, 0]

)
. (2.4.1)

As G(t)′ ∈ Xreg ⊆ Xp and G(t)(0) = 0 we see that G(t) ∈ D(A0). From (2.4.1) we
derive ‖A0G(·)‖∞ ≤ ‖L‖‖F‖‖f‖∞. Thus for F ∈ Z and f ∈ Xreg we can define the
Volterra operator Ṽ ∈ L(Z, ℓ∞([0, τ ];Xreg)) by

(Ṽ F )(t)f := A0

t∫

0

T0(t− r)BF (r)f dr (t ∈ [0, τ ], F ∈ Z, f ∈ Xreg). (2.4.2)

In order to see that Ṽ F is a translation for all F ∈ Z let f ∈ Xreg, g(t) := 0 for t ∈ [−h, 0]
and g(t) := LF (t)f for t ∈ (0, τ ]. From (2.4.1) we deduce that Ṽ F (t)f = gt|[−h,0]. Thus
Ṽ F is a translation. From (D3) and (2.4.1) we see that Ṽ is continuous in the norm of
L(Z) and so extends to a Volterra operator V ∈ L(Z). As V F (0) = 0 for all F ∈ Z
we see that V maps into the closed subspace Z0 := {F ∈ Z ; F (0) = 0}. From the
assumption mL(τ) < 1 and the second assumption in (D3) we infer that V0 := V |Z0

is
strictly contractive in L(Z0).

As V n = V n−1
0 V we infer that the Neumann series

∑∞
n=0 V

n converges absolutely in
L(Z). In order to be able to apply Theorem 2.2.2 it remains to show that λ ∈ ρ(AL)
for λ ∈ R sufficiently large (which corresponds to assumption (iv)).

2.4.1 Lemma. (a) For λ ∈ R we define Lλx := L(s 7→ eλsx) (x ∈ X). Then Lλ ∈ L(X),
Lλ → 0 as λ→ ∞ and 1 ∈ ρ(Lλ) for λ sufficiently large.

(b) If λ ∈ R is sufficiently large, then Kλ, defined by

Kλg(s) := eλsR(1, Lλ)LR(λ,A0)g (s ∈ (−h, 0), g ∈ Xp),

belongs to L(Xp).
(c) If λ ∈ R is sufficiently large then λ ∈ ρ(AL) and

R(λ,AL) = R(λ,A0) +Kλ.

29



Chapter 2 A Generalised Desch-Schappacher Perturbation Theorem

Proof. Assertion (a) follows from (D1) and (D2). Hence 1 − Lλ is invertible for λ
sufficiently large. In order to show the boundedness of Kλ first notice that R(λ,A0)
is bounded as a mapping from Xp to DA0 = (D(A0), ‖ · ‖A0), where ‖ · ‖A0 denotes
the graph norm of A0. As DA0 is continuously embedded into W 1

p (−h, 0;X) which
again is continuously embedded into Cb([−h, 0];X) we see that the operator LR(λ,A0)
is bounded from Xp to X. This implies the boundedness of Kλ and shows (b).

In order to prove (c) we first show that λ−AL is surjective for λ sufficiently large (so
that 1 ∈ ρ(Lλ) by (a)). To this end let g ∈ Xp and f := (R(λ,A0) + Kλ)g. Obviously
f ∈ W 1

p (−h, 0;X). Differentiation shows that f ′ = −g + λf . As R(λ,A0)g(0) = 0 we
have f(0) = (Kλg)(0) = R(1, Lλ)LR(λ,A0)g. Hence

Lλ(f(0)) = L(s 7→ eλsR(1, Lλ)LR(λ,A0)g) = LKλg.

Moreover we have (1 − Lλ)(f(0)) = LR(λ,A0)g. From these equations we conclude

f(0) = Lλ(f(0)) + (I − Lλ)(f(0)) = Lλ(f(0)) + LR(λ,A0)g

= L(Kλ +R(λ,A0))g = Lf.

Thus f ∈ D(AL) and (λ− AL)f = g. To finish the proof we have to show that λ− AL
is injective. To this end we first observe that any solution f ∈ D(AL) of (λ−AL)f = 0
has the form f(s) = eλsx for some x ∈ X. The boundary condition f(0) = Lf yields
x = Lλx, which has the unique solution x = 0. Thus λ−AL is bijective for λ sufficiently
large. This proves assertion (c). �

We have now shown that the assumptions of Theorem 2.2.2 are met and thus obtain
the generator property of AL.

2.4.2 Corollary. (a) Let h < ∞. If L is a delay operator then AL is the generator of
a C0-semigroup TL on Xp.

(b) TL maps regulated functions to regulated functions and

lim
sց−h

TL(h)f(s) = L
←

f (f ∈ Xreg). (2.4.3)

Proof. It remains to show (b). The Xreg-invariance of TL is stated in Theorem 2.2.2.
Let f ∈ Xreg and define the function g : [−h,∞) → X by

g(t) :=

{
TL(t)f(0) if t > 0,
f(t) if t ∈ [−h, 0].

(2.4.4)

The variation of parameters formula (2.2.1) and (2.4.1) imply that g(s) = Lgs for s ∈
(0, τ). From Lemma 2.3.1 we infer that

lim
sց0

g(s) = lim
sց0

Lgs = L
←
g = L

←

f. �
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In the second part of this section we deal with the case h = ∞. Since −x·1(−∞,0) 6∈ Xp

for x 6= 0 we cannot obtain AL as a multiplicative perturbation of A0 as above. However
we have AL = (A0 −ω)(I +B)+ω for some ω > 0 and Bf := (t 7→ −Lf · e−ωt). For our
purposes it seems easier to use approximation techniques and the translation semigroups
already obtained for h <∞.

2.4.3 Corollary. Let L be a bounded linear operator from W 1
p (−∞, 0;X) to X. Assume

that there exist r ∈ [1, p] and a Borel measure µL on (−∞, 0] such that supt≤0 µL([t −
δ, t]) <∞ for some (or equivalently all) δ > 0 and such that

‖Lϕ‖ ≤ ‖ϕ‖Lr(µL;X) (ϕ ∈W 1
p (−∞, 0;X)). (2.4.5)

If µL has no mass at 0, then AL is a generator. Moreover the semigroup TL generated
by AL maps regulated functions with compact support to regulated functions, and (2.4.3)
holds for regulated functions with compact support.

Proof. Let L̂ be the extension of L to a bounded operator in Lr(µL;X). As this space
includes regulated functions with compact support we can define L(n)f := L̂(1[−n,0]f) for
f ∈ W 1

p (−∞, 0;X) and n ∈ N and L̃(n)f := L̂f̃ for f ∈W 1
p (−n, 0;X) and f̃(s) := f(s)

(s ∈ (−n, 0)) and f̃(s) = 0 (s ∈ (−∞,−n)).
It is easy to see that L̃(n) are delay operators for n ∈ N (cf. Proposition 2.3.3).

From Corollary 2.4.2 we see that AL̃(n) is the generator of a C0-semigroup TL̃(n) on
Lp(−n, 0;X). We can extend TL̃(n) to a translation semigroup on Lp(−∞, 0;X). To
this end let f ∈ Lp(−∞, 0;X) and g ∈ Lp(−∞, n;X) such that g|(−∞,0) = f and
g|(0,n) =

(
T̃L(n)(n)f

)
−n

. Then TL(n)(t)f := gt|(−∞,0) defines a translation semigroup on
Lp(−∞, 0;X) whose generator is easily identified to be AL(n).

We are now going to show that
(
AL(n)

)
n∈N

approximate AL in the sense of the Trotter-
Kato approximation theorem. As in Lemma 2.4.1 we can show that for λ > 0 sufficiently
large and n ∈ N the operators 1 − Lλ(n) and 1 − Lλ are invertible, Kλ(n) and Kλ

(analogously defined as in Lemma 2.4.1 for L(n) and L, respectively) are bounded,
λ ∈ ρ(AL(n)), λ ∈ ρ(AL) and R(λ,AL) = R(λ,A0) + Kλ. From this representation we
see that R(λ,AL(n)) → R(λ,AL) in the strong operator topology. In order to obtain
a common growth bound for the semigroups TL(n) we first notice that the operators
L̃(n) are delay operators on Reg(−n, 0;X) satisfying (D3) for a common τ ∈ (0, 1). We
choose τ such that 2µL([−τ, 0])1/r < 1. For this τ let Ṽ (n) be the Volterra operator
from above corresponding to the operator L̃(n) on Reg(−n, 0;X). Using the equalities
TL̃(n)

∣∣∣
[0,τ ]

= (I − Ṽ (n))−1T0 and (I − Ṽ (n))−1 = I + Ṽ (n)(I − Ṽ0(n))−1 we obtain the

estimate

sup
t∈[0,τ ]

‖TL(n)(t)‖ ≤ 1 + sup
t∈[0,τ ]

‖TL̃(n)(t)‖ ≤ 2 +
‖V (n)‖

1 − ‖V0(n)‖

≤ 2 +
2c1/r

1 − 2µL([−τ, 0])1/r
(n ∈ N),
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where c := supt≤0 µL([t − τ, t]) < ∞. Thus there exist M ≥ 1 and ω ∈ R such that
‖TL(n)(t)‖ ≤ Meωt (t ≥ 0, n ∈ N). The second Trotter-Kato Approximation Theorem
(cf. [39; Theorem III.4.9]) shows that AL is the generator of a C0-semigroup TL which
is the limit of TL(n). Equation (2.4.3) follows from Corollary 2.4.2(b) and the fact that
TL(t)f = TL(n)(t)f for a regulated function f with compact support, t ≥ 0 and n ∈ N

sufficiently large. �

2.4.4 Remarks. (a) In the proof of Corollary 2.4.2(b) we have derived that g(s) = Lgs
for the function g defined in (2.4.4). In fact g is the unique (locally regulated) solution
of the equation u(s) = Lus, with s ∈ R+, u : [−h,∞) → X, and for the initial value
u0 = f ∈ Xreg.

(b) For an investigation of the spectral properties of AL and the asymptotic behaviour
of TL in the case L ∈ L(Xp, X) we refer to [53; Section C-IV.3] and [42]. There the
reader can find additional conditions on L such that the assertion 1 ∈ ρ(Lλ) if and only
if λ ∈ ρ(AL) holds (cf. Lemma 2.4.1).

2.5 The Modulus Semigroup of Translation
Semigroups

In this section we additionally assume that X is a (real or complex) Banach lattice with
order continuous norm. Again we distinguish between the cases h <∞ and h = ∞.

From [50; Section 1.3] we recall that for Banach lattices Y and Z regular operators in
L(Y, Z) always possess a modulus if Z is Dedekind-complete. Hence if L1 ∈ L(Xreg, X),
L2 ∈ L(Lr(µ;X), X) (for some Borel measure µ on [−h, 0] or (−∞, 0]) are regular
operators, then both possess a modulus. Moreover if h < ∞ and L1 is the restriction
of L2 then |L1| is the restriction of |L2|; see Remark 2.5.5 for details. For the modulus
of Riemann-Stieltjes type operators (cf. Remarks 2.3.4) we refer the reader to [71;
Section 3].

For the definition and an overview on modulus semigroups we refer to Chapter 1.
Here we only recall that on Banach lattices with order continuous norm a dominated
C0-semigroup automatically possesses a modulus semigroup; cf. [11; Theorem 2.1]. We
therefore start by showing that translation semigroups induced by a dominated delay
operator are dominated and thus possess a modulus semigroup. (We point out that the
following lemma does not require order-continuity of the norm of X.)

2.5.1 Lemma. (a) Assume that h <∞, and let L, L̂ be delay operators. If L̂ dominates
L then TL̂ dominates TL.

(b) Assume that h = ∞. Let r ∈ [1, p] and let µ be a Borel measure on (−∞, 0]
without mass at 0 and with supt≤0 µL([t−δ, t]) <∞ for some (or equivalently all) δ > 0.

Let L, L̂ ∈ L(Lr(µ;X), X). If L̂ dominates L in L(Lr(µ;X);X) for some r ∈ [1, p] then
TL̂ dominates TL.

Proof. (a) By VL and VL̂ we denote the Volterra operators on Z corresponding to L and
L̂, respectively (see Section 2.4). Without loss of generality we can assume that VL and
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VL̂ are defined for the same τ > 0. As L̂ dominates L we see that VL̂ dominates VL. From
the representations of TL and TL̂ via the Neumann series of VL and VL̂, respectively, we
infer the domination of TL by TL̂.

(b) Let L(n) be defined as in the proof of Corollary 2.4.3, and similarly L̂(n) for
the operator L̂. From (a) we already know that TL(n) is dominated by TL̂(n). Since
TL(n) → TL and TL̂(n) → TL̂ in the strong operator topology uniformly on compact
intervals the domination property carries over to TL and TL̂. �

2.5.2 Theorem. (a) Assume that h <∞, and let L be a delay operator possessing the
modulus |L|. If |L| is a delay operator then TL possesses the modulus semigroup T|L|.

(b) Assume that h = ∞. Let r ∈ [1, p] and let µ be a Borel measure on (−∞, 0]
without mass at 0 and with supt≤0 µL([t−δ, t]) <∞ for some (or equivalently all) δ > 0.
If L ∈ L(Lr(µ;X), X) be a regular operator. Then T|L| is the modulus semigroup of TL.

The proof of this theorem relies on the following two lemmata.

2.5.3 Lemma. Let G ⊆ Lp(0, 1;X)+ be such that each g ∈ G has a representative g̃
which is continuous at 0 and assume that infg∈G g̃(0) = 0. Then f := inf G ∈ Lp(0, 1;X)
has a representative f̃ which is continuous at 0 and satisfies f̃(0) = 0.

Proof. The order continuity of the norm of X implies that each set which possesses
a supremum has a countable subset possessing the same supremum (cf. [72; The-
orem 8.17.8] or [61; Corollary 1 of Theorem II.5.10]). Therefore we can find a se-
quence (gn)n∈N ⊆ G such that infn∈N gn(0) = 0. The sequence (hn)n∈N defined by
hn := inf{gi ; 1 ≤ i ≤ n} is a monotone decreasing sequence of functions which have rep-
resentatives h̃n being continuous at 0. Furthermore 0 ≤ f ≤ infn∈N hn and infn∈N h̃n(0) =
limn→∞ h̃n(0) = 0. Let ε > 0. Then there is an n ∈ N such that ‖h̃n(0)‖ ≤ ε/2. As hn
is continuous at 0 we can find δ > 0 such that ‖h̃n(s) − h̃n(0)‖ ≤ ε/2 for all s ∈ [0, δ].
As f ≤ h̃n almost everywhere we obtain ‖f(s)‖ ≤ ‖h̃n(s)‖ ≤ ε almost everywhere
(s ∈ [0, δ]). Thus we can find a representative f̃ of f with ‖f̃(s)‖ ≤ ε for all s ∈ [0, δ].
This shows f̃(0) = 0. �

The statement of the next lemma can be understood as a generalisation of [71; Propo-
sition 9]. In fact we can almost copy the proof of Lemma 8 in [71] as (D1) is the
generalisation of the crucial equations (2) and (3) in this paper.

2.5.4 Lemma. Let h <∞, and let L ∈ L(Xreg, X) be a regular operator. If |L| satisfies
(D1) in Lemma 2.3.1 then the modulus of L|C([−h,0];X) is the operator |L| restricted to
C([−h, 0];X).

Proof. We first show that for ψ ∈ Xreg and ε > 0 there is a ψε ∈ C([−h, 0];X) satisfying

‖|L| |ψ − ψε|‖ ≤ ε (2.5.1)

(this generalises [71; Lemma 8]). It suffices to show the assertion for functions x · 1(a,b)

and x · 1{a} (a ∈ [−h, 0], b ∈ (a, 0], x ∈ X) as step functions on [−h, 0] with values in
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X are dense in Xreg and as step functions can be represented as linear combinations of
such functions.

First let −h ≤ a < b ≤ 0, x ∈ X+ and ε > 0. For ϑ0 ∈ (−h, 0] and ϑ1 ∈ [−h, 0) we
conclude from (D1) that

lim
ϑ→ϑ0−

|L|(x · 1[ϑ,ϑ0)) = 0, lim
ϑ→ϑ1+

|L|(x · 1(ϑ1,ϑ]) = 0 (2.5.2)

(these two assertions correspond to equations (2) and (3) in [71]). Therefore there exist
a′, b′ ∈ (a, b) with a′ ≤ b′ such that

∥∥|L|(x · 1(a,a′))
∥∥ ≤ ε

2
,
∥∥|L|(x · 1(b′,b))

∥∥ ≤ ε

2
.

Thus for ϕ ∈ C([−h, 0]) with sptϕ ⊆ [a, b], 0 ≤ ϕ ≤ 1 and ϕ(s) = 1 for all s ∈ [a′, b′] we
have

∥∥|L|(x · 1(a,b) − x · ϕ)
∥∥ ≤

(∥∥|L|(x · 1(a,a′))
∥∥+

∥∥|L|(x · 1(b′,b))
∥∥) ≤ ε.

Now let a ∈ [−h, 0], x ∈ X and ε > 0. From (2.5.2) we infer that there is an open
interval J ⊆ [−h, 0] with a ∈ J such that

∥∥|L|(x · 1{a} − x · 1J)
∥∥ ≤ ε. Therefore if

ϕ ∈ C([−h, 0]) with ϕ(a) = 1, sptϕ ⊆ J and 0 ≤ ϕ ≤ 1, then
∥∥|L|(x · 1{a} − x ·ϕ)

∥∥ ≤ ε.
This shows (2.5.1).

In order to show the assertion of this lemma we have to prove that

|L|f = sup{|Lg| ; g ∈ C([−h, 0];X), |g| ≤ f} (f ∈ C([−h, 0];X)+). (2.5.3)

To this end it suffices to show that the set {|Lg| ; g ∈ C([−h, 0];X), |g| ≤ f} is dense in
{|Lg| ; g ∈ Xreg, |g| ≤ f}, i.e. for f ∈ C([−h, 0];X)+, g ∈ Xreg with |g| ≤ f and ε > 0
we have to find ψ ∈ C([−h, 0];X) satisfying |ψ| ≤ f and

∥∥L(g − ψ)
∥∥ ≤ ε.

Let ε > 0 and g ∈ Xreg with |g| ≤ f . By the first part of the proof there exists
ϕ ∈ C([−h, 0];X) so that

∥∥|L|(g − ϕ)
∥∥ ≤ ε. Let ψ := τ(f)ϕ; cf. Remark 2.5.5 for the

definition of the truncation τ . Then we have |g−ψ| ≤ |g−ϕ| (this follows from property
(i) of the truncation; see [48; Section 2]). Therefore

∥∥L(g − ψ)
∥∥ ≤

∥∥|L||g − ψ|
∥∥ ≤

∥∥|L||g − ϕ|
∥∥ ≤ ε. �

Proof of Theorem 2.5.2. (a) From [11; Theorem 2.1] and Lemma 2.5.1 we already know
that TL possesses a modulus semigroup T ♯L with generator A♯L and that T|L| dominates
TL. This implies that the modulus semigroup T ♯L is a translation (cf. [42; proof of
Proposition 3.10]). Hence by Proposition 2.1.2 we get D(A♯L) ⊆ W 1

p (−h, 0;X) and
A♯Lf = f ′ for f ∈ D(A♯L). Now it suffices to show that D(A♯L)+ ⊆ D(A|L|)+. As
both operators are generators of positive semigroups this implies D(A♯L) ⊆ D(A|L|) and
therefore also A♯L ⊆ A|L|. Hence A♯L = A|L| as both operators are generators.

In order to show the inclusion let f ∈ D(A♯L)+. Let ϕ := T ♯L(h)f ∈ D(A♯L). From
D(A♯L) ⊆ W 1

p (−h, 0;X) we see that ϕ is a continuous function. The domination of TL
by T|L| implies that

sup{|TL(h)g| ; g ∈ C([−h, 0];X), |g| ≤ f} ≤ ϕ ≤ T|L|(h)f. (2.5.4)
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In Corollary 2.4.2(b) it was shown that the right hand limit of TL(h)g at −h exists for
all g ∈ C([−h, 0];X) and limsց−h TL(h)g(s) = L

←
g = Lg. Similarly the right hand limit

of T|L|(h)f at −h is |L|f . From Lemma 2.5.4 we infer that

|L|f = sup{|Lg| ; g ∈ C([−h, 0];X)} = sup{|TL(h)g|(−h); g ∈ C([−h, 0];X)}

and therefore

T|L|(h)f(−h) − sup{|TL(h)g|(−h); g ∈ C([−h, 0];X)} = 0.

Thus from (2.5.4) and Lemma 2.5.3 we obtain (ϕ− T|L|(h)f)(−h) = 0. Hence ϕ(−h) =

|L|f = f(0) and so f ∈ D(A|L|). This shows that D(A♯L)+ ⊆ D(A|L|)+.
(b) The case h = ∞ is solved in almost the same way as in (a). First we set ϕ := T ♯L(t)f

for some arbitrary t > 0 (instead of T ♯L(h)f which does not make sense for h = ∞). Now
the only differences in the proofs of these two cases are that in (2.5.4) we have to replace
g ∈ C([−h, 0];X) by g ∈ Cc((−∞, 0];X), that we need to consider right hand limits at
−t instead of −h and that instead of Lemma 2.5.4 we have to invoke [71; Remark 2] (cf.
Remark 2.5.5) to infer that |L|f = sup{|Lg| ; g ∈ Cc((−∞, 0];X), |g| ≤ f}. �

2.5.5 Remark. We recall [71; Remark 2]. Let X and Y be (real- or complex) Banach
lattices. First, for x, y ∈ X, y ≥ 0 we need to introduce the truncation of x by y,
denoted by τ(y)x, defined as the element uniquely determined by the properties

(i) |τ(y)x| = |x| ∧ y,
(ii) (Re γ τ(y)x)+ ≤ (Re γx)+ for all γ ∈ K, |γ| = 1.

If X is countably order complete and x ∈ X then the signum operator sgn x ∈ L(X)
exists and the truncation can be written as τ(y)x = (sgn x)(|x| ∧ y). Also if X = C(K)
with K compact, then the formula holds if sgn x denotes the (possibly discontinuous)
pointwise signum of K ∋ t 7→ x(t).

Now let Z be a dense subspace of X enjoying the property that x, z ∈ Z, x ≥ 0
implies τxz ∈ Z. If A ∈ L(X, Y ) is a regular operator possessing a modulus satisfying
|A|x = sup{|Ay| ; y ∈ X, |y| ≤ x} (x ∈ X+) then the modulus is already given by

|A|x = sup{|Az| ; z ∈ Z, |z| ≤ x} (x ∈ Z+).

2.6 Boundary Perturbations of Evolution Semigroups

Evolution semigroups arising from backward propagators are a natural generalisation of
translation semigroups. In this section we consider the corresponding boundary pertur-
bations of evolution semigroups. We refer to [40], [15], [60] and [39; Section VI.9] for
propagators, particularly in the context of delay equations.

First we recall the definition of a backward propagator. Let J ⊆ R be an inter-
val, J∆ := {(s, t) ∈ J × J ; s ≤ t}. Let X be a Banach space. An operator family
(U(s, t))(s,t)∈J∆ ⊆ L(X) is called a backward propagator if U : J∆ → L(X) is strongly
continuous, U(s, s) = I and U(r, s)U(s, t) = U(r, t) (r, s, t ∈ J , r ≤ s ≤ t).
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We will restrict ourselves to the case h < ∞. Let X be a Banach space and
let (U0(s, t))−h≤s≤t≤0 ⊆ L(X) be a bounded backward propagator on X. Let M :=
sup−h≤ϑ1≤ϑ2≤0 ‖U0(ϑ1, ϑ2)‖. As in [40] we extend U0 to a backward propagator on the
interval [−h,∞) by

U(s, t) :=






U0(s, t) if s ≤ t ≤ 0,
U0(s, 0) if s ≤ 0 < t,
I if 0 < s ≤ t.

Let W+ be the evolution semigroup on Lp(−h,∞;X) induced by U , i.e.
(
W+(t)f

)
(ϑ) := U(ϑ, ϑ+ t)f(ϑ+ t) (t ∈ R+, ϑ ∈ (−h,∞), f ∈ Lp(−h,∞;X)),

and denote by G+ the generator of W+. It is well-known that D(G+) ⊆ C0([−h,∞);X)
and that G+ is a local operator. We can therefore define the operator

Gf := (G+f+)|(−h,0), D(G) := {f ∈ Xp ; ∃f+ ∈ D(G+) : f+|(−h,0) = f}

(cf. [40; Definition 2.3]). As D(G+) →֒ C0([−h,∞);X) we have D(G) →֒ C([−h, 0];X).
For L ∈ L(Xreg, X) we define the restriction

GLf := Gf, D(GL) := {f ∈ D(G); f(0) = Lf}.

The operator G0 (which is GL with L = 0) can be identified as the part of G+ in {f ∈
Lp(−h,∞;X); f |R+ = 0}, which is a closed andW+-invariant subspace of Lp(−h,∞;X).
Therefore G0 is the generator of a C0-semigroup on Xp, denoted by W0 and given by

(W0(t)f)(ϑ) =

{
U(ϑ, ϑ+ t)f(ϑ+ t) if ϑ ≤ −t,
0 if −t < ϑ.

As for translation semigroups we writeGL as a perturbation ofG0 and use the generalised
Desch-Schappacher perturbation theorem to show that GL is the generator of a C0-
semigroup on Xp, provided that L is a 1

M
-delay operator.

In order to represent GL as a multiplicative perturbation of G0 we introduce the
function

ψλ(ϑ; x) :=

{
e−ϑx if 0 ≤ ϑ,
eλϑU(ϑ, 0)x if ϑ < 0,

for ϑ ∈ (−h,∞), x ∈ X and λ ∈ R. Since

(
(W+(t) − I)ψλ( · ; x)

)
(ϑ) =






(e−ϑ−t − e−ϑ)x if 0 ≤ ϑ,
(e−ϑ−t − eλϑ)U(ϑ, 0)x if −t ≤ ϑ < 0,
(eλ(ϑ+t) − eλϑ)U(ϑ, 0)x if ϑ < −t,
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for t ∈ (0, h) and ϑ ∈ (−h,∞) we see that
(

1

t
(W+(t) − I)ψλ( · ; x)

)
(ϑ) →

{
−e−ϑx if 0 ≤ ϑ,
λeλϑU(ϑ, 0)x if ϑ < 0,

(2.6.1)

as t→ 0 for ϑ ∈ (−h,∞) pointwise almost everywhere. As this convergence is easily seen
to be dominated in Lp(−h,∞;X) we conclude that ψλ( · ; x) ∈ D(G+), ψλ( · ; x)|(−h,0) ∈
D(G) and Gψλ( · ; x) = λψλ( · ; x)|(−h,0).

Let Bf := ψ0( · ;−Lf)|(−h,0) (f ∈ Xreg). From Gψ0( · ; x) = 0 we derive that GL =
G0(I+B). (We remark that for evolution semigroups the constant function 1(−h,0), that
we used to define the perturbation operator for the translation semigroups, does not
yield the proper perturbation generally.)

In order to define the Volterra operator we further need a suitable generalisation of the
notion of a translation. Let τ > 0 and Y ∈ {Xp, Xreg}. We say that F ∈ ℓ∞([0, τ ];L(Y ))
is a U-evolution if for all f ∈ Y there exists g ∈ Lp(−h,∞;X) (for Y = Xp) and
g ∈ Reg([−h,∞);X) ∩ Lp(−h,∞;X) (for Y = Xreg) such that

F (t)f = (W+(t)g)|(−h,0) (t ∈ [0, τ ]).

From now on we assume that L is a 1
M

-delay operator. Let τ > 0 such that mL(τ) <
1
M

(see (D2)) and such that (D3) holds for this τ . Again let K be the space of operators
in L(Xp) ∩ L(Xreg) (cf. Section 2.2). By Z we denote the (closed) subspace of all U -
evolutions in ℓ∞([0, τ ];K). Observe that U -evolutions in ℓ∞([0, τ ];L(Xp)) are automati-
cally strongly continuous as translations and the propagator U are strongly continuous.
Further notice that W0|[0,τ ] ∈ Z.

For F ∈ Z and f ∈ Xreg we define the function v(t) :=
∫ t
0
W0(t − r)BF (r)f dr

(t ∈ [0, τ ]). For t ∈ [0, τ ] we obtain

v(t) =

t∫

0

W0(t− r)
(
ψ( · ;−LF (r)f)|(−h,0)

)
dr

= (−h, 0) ∋ ϑ 7→ −
t∫

max{0,t+ϑ}

U(ϑ, 0)LF (r)f dr.

In order to show that v(t) ∈ D(G0) we compute for s ∈ (0, h) and ϑ ∈ (−h, 0)

((W0(s) − I)v(t))(ϑ) =






0 if ϑ < −t− s,
∫ t+ϑ+s

0
U(ϑ, 0)LF (r)f dr if −t− s ≤ ϑ < −t,

∫ t+ϑ+s

t+ϑ
U(ϑ, 0)LF (r)f dr if −t ≤ ϑ.

From the domination of 1
s
(W0(s)−I)v(t) by the function M‖L‖ ‖F‖ ‖f‖∞ ·1(−h,0), from

the convergence of
(

1

s
(W0(s) − I)v(t)

)
(ϑ) → w(ϑ) :=

{
0 if ϑ < −t,
U(ϑ, 0)LF (t+ ϑ)f if −t ≤ ϑ

(s→ 0)
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for ϑ ∈ (−h, 0) and from v(t)(0) = 0 we infer that v(t) ∈ D(G0), G0v(t) = w and
‖G0v(t)‖ ≤M‖L‖ ‖F‖ ‖f‖∞.

Let Mf := ((−h, 0) ∋ ϑ 7→ U(ϑ, 0)f(ϑ)) (f ∈ Xp). The boundedness of U implies that
M ∈ K. Let g̃ : [−h,∞) → X be defined by g̃(t) := 0 (t ∈ [−h, 0]) and g̃(t) := LF (t)f
(t ∈ (0,∞)). From Lemma 2.3.1 we see that [0, τ ] ∋ t 7→ LF (t)f = Lg̃t is again
a regulated function. Since U is strongly continuous and bounded we conclude that
G0v(t) = Mg̃t ∈ Xreg. Thus for F ∈ Z and f ∈ Xreg we can define the Volterra
operator Ṽ ∈ L(Z, ℓ∞([0, τ ];Xreg)) by

(Ṽ F )(t)f := G0

t∫

0

W0(t− r)BF (r)f dr (t ∈ [0, τ ], F ∈ Z, f ∈ Xreg). (2.6.2)

In order to see that Ṽ F is a U -evolution for all F ∈ Z let f ∈ Xreg and let g̃ be defined
as above. A straightforward computation shows that Ṽ F (t)f = Mg̃t = (W+(t)g̃)|(−h,0).
Hence Ṽ F is a U -evolution.

As ‖M‖K ≤ M we see from (D3) that Ṽ F is continuous in the norm of Z and thus
has an extension in Z denoted by V F . The extended Volterra operator V belongs to
L(Z).

As V F (0) = 0 for all F ∈ Z we further see that V maps into the closed subspace
Z0 := {F ∈ Z ; F (0) = 0}. From the assumptionmL(τ) < 1

M
and the second assumption

in (D3) in conjunction with ‖M‖K ≤M we infer that V0 := V |Z0
is strictly contractive

in L(Z0).
As V n = V n−1

0 V we infer that the Neumann series
∑∞

n=0 V
n converges absolutely in

L(Z). As for translation semigroups it remains to show that λ ∈ ρ(GL) for λ ∈ R

sufficiently large.

2.6.1 Lemma. (a) For λ ∈ R we define Lλx := L(ψλ( · ; x)) (x ∈ X). Then Lλ ∈ L(X),
Lλ → 0 as λ→ ∞ and 1 ∈ ρ(Lλ) for λ sufficiently large.

(b) If λ ∈ R is sufficiently large then Kλ, defined by

Kλg := ψλ ( · ;R(1, Lλ)LR(λ,A0)g) |(−h,0) (g ∈ Xp),

belongs to L(Xp).
(c) If λ ∈ R is sufficiently large then λ ∈ ρ(AL) and

R(λ,AL) = R(λ,A0) +Kλ.

Proof. Assertion (a) and (b) follow analogously to Lemma 2.4.1(a) and (b).
In order to prove (c) we first show that λ−GL is surjective for λ sufficiently large (so

that 1 ∈ ρ(Lλ) by (a)). Let g ∈ Xp and f := (R(λ,G0) + Kλ)g. As ψλ( · ; x) ∈ D(G+)
and therefore Kλx ∈ D(G) (x ∈ X) we see that f ∈ D(G). As G0 is a restriction of G we
can write GR(λ,G0)g = G0R(λ,G0)g = λR(λ,G0)g−g. From (2.6.1) we obtainGKλg =
λKλg. Therefore we have Gf = −g + λf . Since R(λ,G0)g(0) = 0 we see that f(0) =
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(Kλg)(0) = R(1, Lλ)LR(λ,G0)g. Hence Lλ(f(0)) = L(ψλ( · ;R(1, Lλ)LR(λ,G0)g)) =
LKλg. Moreover we have (I − Lλ)(f(0)) = LR(λ,G0)g. Thus

f(0) = Lλ(f(0)) + (I − Lλ)(f(0)) = Lλ(f(0)) + LR(λ,G0)g

= L(Kλ +R(λ,G0))g = Lf.

We infer that f ∈ D(GL) and (λ−GL)f = g. To finish the proof we have to show that
λ − GL is injective. To this end let f ∈ D(GL) be a solution of (λ − GL)f = 0. By
definition there is a function f+ ∈ D(G+) such that f+|(−h,0) = f . Let g+ := (λ−G+)f+.
The locality of λ − G+ implies that g+|(−h,0) = (λ − GL)f = 0. As λ ∈ ρ(G+) for λ
sufficiently large (to be precise for λ > 0) we can compute

f(ϑ) = R(λ,G+)g+(ϑ) =

∞∫

0

e−λs
(
W+(s)g+

)
(ϑ) ds

=

∞∫

−ϑ

e−λsU(ϑ, ϑ + s)g+(ϑ+ s) ds = eλϑ
∞∫

0

e−λsU(ϑ, s)g+(s) ds

= eλϑ
∞∫

0

e−λsU(ϑ, 0)g+(s) ds = ψλ(ϑ; x) (ϑ ∈ (−h, 0)),

where x :=
∫∞

0
e−λsg+(s) ds. The boundary condition f(0) = Lf yields x = Lλx. Taking

into account that 1 ∈ ρ(Lλ) we infer that this equation has the unique solution x = 0.
Therefore f = 0 and the injectivity of λ − GL follows. Thus λ − GL is bijective for λ
sufficiently large. This proves assertion (c). �

By an application of Theorem 2.2.2 we have proved the following corollary.

2.6.2 Corollary. Let U0 be a backward propagator on [−h, 0] and assume that M :=
sup−h≤s≤t≤0 ‖U(s, t)‖ <∞. Let L be a 1

M
-delay operator. Then the operator GL associ-

ated with U0 and L is the generator of a C0-semigroup on Xp.

2.7 Flows in Networks

Dynamical networks have attracted the attention of semigroup theorists lately. In [47],
[49] and [62] the flow on a network is described by a C0-semigroup on L1(0, 1)n (with
n ∈ N being the number of edges in the network). In this section we extend the results
on well-posedness of these C0-semigroups by allowing that the matter flowing in these
networks might take values in an arbitrary Banach space rather than R or C. By using
evolution semigroups we cover networks where evolution of the matter along the edges
takes place. We also outline how bounded linear transformations inside vertices are
coded into the delay operator of the translation or evolution semigroup used to model
the flow.
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Let G = (V,E, ι, ℓ) be a directed graph with weighted edges, where V and E are two
finite and disjoint sets, ι : E → V ×V and ℓ : E → R+. The sets V and E are the vertices
and the edges in G, respectively. The function ι is the incidence relation giving the start
and end vertex of an edge. To be precise ι(e) = (v1, v2) for e ∈ E and v1, v2 ∈ V means
that the edge e starts in v1 and goes to v2. The function ℓ gives the weights for each
edge. In our case it describes the length of each edge.

We want to model the flow of matter such as fluids or populations, which can be
represented as elements of a Banach space X and which “behaves linearly”. The matter
moves along the edges of G, leaves them at the end points to the corresponding vertices
and is redistributed at the vertices to the outgoing edges. We assume that the velocity of
the flow on the edges is constant throughout the system, which is not really a restriction
as we can adjust the length of each edge separately. (In the mentioned papers the edges
all have the same length whereas the velocity might vary.)

To this end we will use translation semigroups or more generally evolution semigroups.
Let p ∈ [1,∞). The distribution of matter along an edge e ∈ E is represented by a
function f ∈ Lp(−ℓ(e), 0;X), where f(0) is the matter at the starting point of e and
f(−ℓ(e)) is the matter at the endpoint. In order to arrive at our translation semigroups
we define h := supe∈E ℓ(e) and unify the length of the edges so that we can describe
our system of edges as an element of the space Lp(−h, 0;X)E. We will use the Dirac
functionals δ−ℓ(e) to recover the value of the edge e ∈ E at the proper endpoint.

Observing that Lp(−h, 0;X)E can be identified by Lp(−h, 0;XE) we are now well pre-
pared to introduce different delay operators which will result in a C0-semigroup modelling
the flow in the network G.

First we assume that the matter x ∈ X leaving the edge e ∈ E at the vertex v = P2 ι(e)
is processed inside the vertex by a transformation wke ∈ L(X) before entering the
outgoing edge k ∈ Out(v) := {k ∈ E ; P1 ι(k) = v}. So we have a vertex transformation
matrix (wke)(k,e)∈E×E with values in L(X) and where wke = 0 for all e ∈ E and k 6∈
Out(P2 ι(e)).

For example if for each vertex the incoming matter is distributed among the outgoing
edges by a fixed ratio so that no matter appears out of nowhere or disappears, we can
describe it by a matrix (wke) ∈ [0, 1]E×E such that wke = 0 for all e ∈ E and k 6∈
Out(P2 ι(e)), and satisfying

∑
k∈E wke = 1. Sinks and sources in vertices are realised by

weakening the assumption
∑

k∈E wke = 1 to
∑

k∈E wke ≤ 1 (for a sink) or
∑

k∈E wke ≥ 1
(for a source). However only the (dis)appearance of a multiple of the mass at an endpoint
of an edge is realised. More sophisticated transformations can be modelled by choosing
appropriate operators wjk ∈ L(X).

We define the delay operator L : Reg([−h, 0];X)E → XE as the matrix operator

L =
(
wjk δ−ℓ(k)

)

(j,k)∈E×E
.

Since we can write L as
∑

j,k∈E wjkPkδ−ℓ(k) as an operator from Reg([−h, 0];XE) to
XE we immediately see that L satisfies the requirements of Proposition 2.3.3 for any
r ∈ [1, p] and the Borel measure µ =

∑
j,k∈E

∥∥wjk
∥∥δ−ℓ(k). Thus AL is the generator of a

translation semigroup on Lp(−h, 0;XE) = Lp(−h, 0;X)E.
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Let g ∈ D(AL), t ∈ R+ and f := TL(t)g. The boundary condition f(0) = Lf in
D(AL) directly leads to the coupling

fj(0) =
∑

k∈E

wjkfk(−ℓ(k)) (j, k ∈ E).

This is exactly the behaviour which we expect from our network. So TL indeed describes
the desired flow on G.

If (nonautonomous) evolution of the matter takes place during the transportation
along the edges we can use the corresponding evolution semigroup generated by GL

(recall that delay operators majorized by a Borel measure as above are 0-delay operators).
We point out that if we need different Banach spaces Xe for each edge e then we can

still model the network in our framework by using a translation or evolution semigroup
on Lp

(
−h, 0;

∏
e∈EXe

)
and transformations wjk ∈ L(Xk, Xj).

2.7.1 Remarks. (a) As values beyond the endpoint −ℓ(e) of an edge e ∈ E do not matter
in L and the translation or evolution semigroup TL we can actually define a C0-semigroup
S on the more natural space Y :=

∏
e∈E Lp(−ℓ(e), 0;X) by

S(t)f :=

(
(TL(t)f)e

∣∣∣∣(
−ℓ(e),0

)

)

e∈E

(f ∈ Y),

where functions outside their domain are taken to be zero.

2.8 The Modulus of Delay Semigroups in the Space

of Continuous Functions

In the last section of this chapter we look at the modulus semigroup of translation
semigroups on the space C([−1, 0];X) (see Chapter 1 for the definition and an overview
on modulus semigroups). In the literature these semigroups are called delay semigroup
which is the term we will also use. To make it precise we say that T is a delay semigroup
on C([−1, 0];X) if there exists a τ > 0 such that for each f ∈ C([−1, 0];X) there is a
function g ∈ C([−1, τ ];X) so that T (t)f = gt (see also Defintition 2.1.1).

We will consider the delay semigroup associated with the delay equation u̇(t) = Au(t)+
Lut (t ≥ 0) on a Dedekind-complete (real or complex) Banach lattice X, where A is
the generator of a C0-semigroup on X and L ∈ L(C([−1, 0];X), X). We assume that
the delay operator L has no mass at 0. By this we mean that for each function f ∈
C([−1, 0];X) there is a sequence (ϕk) ⊆ C([−1, 0]) with 0 ≤ ϕk ≤ 1, sptϕk = [−1/k, 0]
and ϕk(0) = 1 (k ∈ N) such that L(ϕk · f) → 0 as k → ∞.

The delay equation is solved by the delay semigroup generated by

BA,Lf := f ′,

D(BA,L) := {f ∈ C1([−1, 0];X); f(0) ∈ D(A), f ′(0) = Af(0) + Lf},
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on C([−1, 0];X). In [39; Section VI.6] the generator property of BA,L is shown. The
C0-semigroup generated by BA,L is denoted by TA,L. The solution of the delay equation
is given by u(t) = (TA,L(t)f)(0) for the initial value u0 = f ∈ D(BA,L).

Let A, Ã be generators of C0-semigroup on X, and let L, L̃ ∈ L(C([−1, 0];X), X).
By T and T̃ we denote the C0-semigroups generated by A and Ã, respectively. In
[45] it has been shown that if T̃ dominates T and L̃ dominates L then TÃ,L̃ dominates
TA,L. In general it is open whether TÃ,L̃ is the modulus semigroup of TA,L, and even
whether TA,L has a modulus semigroup at all. The main obstacle in the search for the
modulus semigroup arises from the fact that the Banach lattice C([−1, 0];X) does not
have order-continuous norm, nor is it Dedekind-complete. In particular we cannot apply
[11; Theorem 2.1] to deduce that a modulus semigroup exists.

For X = Rn it was shown in [11] that the modulus semigroup of TA,L is given by
TA♯,|L|.

In recent years the delay equation has been considered in the Lp-context (cf. [19],
[48], [21], [69]). In [14], [71] and [63] the modulus semigroup of a delay semigroup with
Lp-history space was determined. In [63] this result was applied to deal with delay
semigroups on history spaces of continuous functions and delay operators L given as
the Riemann-Stieltjes integral Lf =

∫
dη f , where η ∈ BV ([−1, 0];L(X)) is of bounded

regular variation and thus L possesses a modulus (cf. [71; Section 3]).
In this section we treat the problem with the additional assumptions A = 0 and L

has no mass at 0 in the sense that for all x ∈ X we have

sup{‖L(x · ϕ)‖ ; ϕ ∈ C([−1, 0]), sptϕ ⊆ [−t, 0]} → 0 (t→ 0). (2.8.1)

We therefore write BL and TL instead of BA,L and TA,L. Our main result is the following
theorem.

2.8.1 Theorem. The C0-semigroup TL possesses the modulus semigroup T ♯
L = T|L|.

The key observation for the proof of this theorem is that a dominating semigroup S
of TL provides a solution u : [−1,∞) → X, continuously differentiable on [0,∞), of the
inequality u̇(t) ≥ |L|ut (t ≥ 0) and u0 = f in the domain of the generator of S. The
proof requires some preparation.

2.8.2 Lemma. Let g ∈ C([−1, 0];X). Then [0,∞) ∋ t 7→ TL(t)g(0) is continuously
differentiable with derivative t 7→ LTL(t)g.

Proof. Let ϕ : [0,∞) → X, ϕ(t) := TL(t)g(0) (t ≥ 0). Further let (gn) ⊆ D(BL), gn → g
in C([−1, 0];X) and ϕn : [0,∞] → X, ϕn(t) := TL(t)gn(0) (t ≥ 0). Then we have
ϕ′
n(t) = LTL(t)gn (t ≥ 0). Since TL is strongly continuous and L is bounded we see

that ϕn → ϕ and ϕ′
n → LTL(·)g, both uniformly on compact intervals. This shows the

differentiability of ϕ with the continuous derivative ϕ′(t) = LTL(t)g. �

2.8.3 Lemma. Let T be a delay semigroup on C([−1, 0];X) and S a positive C0-
semigroup dominating T . Furthermore let f ∈ C([−1, 0];X) and f ≥ 0. Then the
following statements hold.
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(a) S(t)f(τ) ≥ S(t+ τ)f(0) for all t ≥ 0 and τ ∈ [max{−t,−1}, 0].
(b) Let g : [−1,∞) → X be defined by

g(t) :=

{
S(t)f(0) for t > 0,

f(t) for t ≤ 0.

Then S(t)f ≥ gt for all t ≥ 0.

Proof. From S(t)f = S(−τ)S(t + τ)f ≥ T (−τ)S(t + τ)f we conclude

S(t)f(τ) ≥ T (−τ)(S(t + τ)f)(τ) = S(t+ τ)f(0),

which shows (a). In order to prove (b) let t ≥ 0. For τ ∈ [−1,−t] we have

S(t)f(τ) ≥ T (t)f(τ) = f(t+ τ) = gt(τ).

For τ ∈ [max{−t,−1}, 0] we apply (a) to obtain S(t)f(τ) ≥ S(t + τ)f(0) = gt(τ). �

2.8.4 Lemma. Let S be a positive C0-semigroup dominating TL. Let C be the generator
of S and f ∈ D(C)+. We define g : [−1,∞) → X,

g(t) :=

{
S(t)f(0) for t > 0,

f(t) for t ≤ 0.

Then g is continuously differentiable on [0,∞) and g′(t) ≥ |L|gt.
Proof. The differentiability of g on [0,∞) and the continuity of g′ follow from f ∈ D(C).
Let t ≥ 0 and ϕ := S(t)f . Since S is a positive C0-semigroup we have ϕ ∈ D(C)+ and
thus

g(t+ τ) − g(t)

τ
=

S(τ)ϕ(0) − ϕ(0)

τ
≥ Re

TL(τ)ψ(0) − ψ(0)

τ
(τ > 0),

for all ψ ∈ C([−1, 0];X) with |ψ| ≤ ϕ and ψ(0) = ϕ(0). Lemma 2.8.2 shows that the
right hand term has the limit ReLψ, so we see that g′(t) ≥ ReLψ. Taking the supremum
on the right hand side we obtain

g′(t) ≥ sup{ReLψ ; ψ ∈ C([−1, 0];X), |ψ| ≤ ϕ, ψ(0) = ϕ(0)} = |L|ϕ. (2.8.2)

(For the equality in (2.8.2) we recall that we suppose that L has no mass at zero; see
(2.8.1).) Thus L maps {ψ ∈ C([−1, 0];X); |ψ| ≤ ϕ, ψ(0) = ϕ(0)} to a dense subset
of L

(
{ψ ∈ C([−1, 0];X); |ψ| ≤ ϕ}

)
.) By Lemma 2.8.3(b) we have ϕ ≥ gt, and by the

positivity of |L| we conclude g′(t) ≥ |L|gt. �

The inequality obtained in the previous lemma makes it necessary to look at functional-
differential inequalities of the form u̇(t) ≥ Lut, with initial value u0 ∈ C([−1, 0];X). In
particular we are interested in the relation between solutions of this inequality and the
(unique) solution of the corresponding equality for L ∈ L(C([−1, 0];X), X) being posi-
tive. We say that u ∈ C([−1,∞);X) is a classical solution of the inequality above if u
is continuously differentiable on [0,∞) and u satisfies the inequality.
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2.8.5 Lemma. Let u be a classical solution of the functional-differential inequality

u̇(t) ≥ |L|ut, u0 = f (t ≥ 0),

with initial value f ∈ C([−1, 0];X). Then we have u(t) ≥ T|L|(t)f(0) for 0 ≤ t ≤ δ :=
max

{
1, 1

2
‖ |L| ‖−1

}
.

Proof. It suffices to consider the case f = 0. (Otherwise we can subtract the equation
d
dt

(
T|L|(t)f(0)

)
= |L|(T|L|(t)f) from the inequality. Notice that by Lemma 2.8.2 the

function t 7→ T|L|(t)f(0) is differentiable on [0,∞) with derivative |L|(T|L|(t)f).)
For the initial value f = 0 we simply have to show that any solution of the inequality

is positive. To this end we define the operator Ψ: C([0, δ];X) → C([0, δ];X) by

(Ψf)(t) :=

t∫

0

|L|(fs) ds (f ∈ C([0, δ];X), t ∈ [0, δ]).

This mapping is strictly contractive because of

‖Ψf(t)‖ ≤
t∫

0

‖ |L|fs‖ ds ≤ δ‖ |L| ‖‖f‖∞ ≤ 1

2
‖f‖∞ (t ∈ [0, δ]).

Let ψ0 be a solution of the inequality on [0, δ] and let ψn := Ψn(ψ0) (n ∈ N). From

ψ1(t) =

t∫

0

|L|(ψ0)s ds ≤
t∫

0

ψ′
0(s) ds = ψ0(t) (t ∈ [0, δ])

and the positivity of Ψ we conclude that ψ0 ≥ ψ1 ≥ ψ2 ≥ . . .. As Ψ is strictly contractive
we have ψn → 0 (n→ ∞) and so we see that ψ0 ≥ 0. �

We are now prepared to prove the main result of this section.

Proof of Theorem 2.8.1. Let S be a positive C0-semigroup with generator C, which dom-
inates TL. Further let δ be as in Lemma 2.8.5 and t ∈ [0, δ]. For f ∈ D(C)+ we have
S(t)f(0) ≥ T|L|(t)f(0) (Lemmata 2.8.4 and 2.8.5). Using Lemma 2.8.3 we conclude

S(t)f(τ) ≥ S(t + τ)f(0) ≥ T|L|(t+ τ)f(0) = T|L|(t)f(τ) (−t ≤ τ ≤ 0).

Finally for −1 ≤ τ ≤ −t we have

S(t)f(τ) ≥ TL(t)f(τ) = f(t+ τ) = T|L|(t)f(τ).

This proves S(t)f ≥ T|L|(t)f for all f ∈ D(C)+ and 0 ≤ t ≤ δ. As D(C)+ is dense in
C([−1, 0];X)+ we see that S dominates T|L|. Thus we have shown that any dominating
semigroup of TL also dominates T|L|. Since T|L| dominates TL we have proven that TL
possesses a modulus semigroup and T ♯

L = T|L|. �
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In this chapter we treat the integro-differential equation

(IDE•) u̇(t) = Au(t) +

t∫

0

ℓ(t− s)u̇(s)ds+ g(t), u(0) = x ∈ X (t ∈ R+)

on a Banach space X. The operator A is assumed to be the generator of a C0-semigroup
T on X. The function ℓ is a function on R+ = [0,∞) with values in L(X). We assume
that ℓ has the following two properties.

(a) ℓ is strongly Bochner measurable, i.e. ℓ(·)x is Bochner measurable for all x ∈ X.

(b) ‖ℓ(·)‖L(X) is dominated by a locally integrable function.

These two conditions guarantee that the integral in (IDE•) exists as a Bochner integral
if u̇ is a continuous function.

We recall that for a closed operator C the space D(C) equipped with the graph norm
coming from C is denoted by DC . We define classical solutions and well-posedness of
(IDE•) as follows.

3.0.6 Definition. (a) A function u ∈ C(R+;DA) ∩ C1(R+;X) is called a classical
solution of (IDE•) for the initial value x ∈ X and inhomogeneity g ∈ C(R+;X), if
u(0) = x and (IDE•) holds for all t ∈ R+.

(b) A function u ∈ C(R+;X) is called a mild solution of (IDE•) for the initial value
x ∈ X and inhomogeneity g ∈ L1,loc(R+;X) if for all t ∈ R+ we have

∫ t
0
u(s) ds ∈

DA and

u(t) = x+

t∫

0

(g(s) − ℓ(s)x) ds+ A

t∫

0

u(s) ds+

t∫

0

ℓ(t− s)u(s) ds.

(c) We say that (IDE•) is well-posed, if for all x ∈ DA and g = 0 there exists a unique
classical solution u(· ; x) and for any (xn)n∈N ⊆ DA, limn→∞ xn = 0 in X we have
limn→∞ u(· ; xn) = 0 uniformly in compact intervals. In this case we say that
S : R+ → L(X) defined as the continuous extension of S0(t)x := u(t; x) (x ∈ DA,
t ∈ R+) is the solution operator family associated with (IDE•).

If ℓ is of bounded variation with respect to L(X) then integration by parts leads to
the inhomogeneous integro-differential equation

u̇(t) = (A+ ℓ(0))u(t) +

t∫

0

dℓ(s)u(t− s)ds+ g̃(t) − ℓ(t)x, u(0) = x ∈ X (t ∈ R+).

This type of integro-differential equations has been dealt with in numerous publica-
tions (cf. [58] and the references therein). Our first concern is the presentation of
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well-posedness conditions for (IDE•) for which integration by parts is not applicable.
Such conditions are obtained by employing the forcing function approach (cf. [58; Sec-
tion 13.6], [30]) as well as delay semigroups with history function spaces of p-integrable
functions (cf. [19], [21], [48], [20], [22]). The author did not succeed in applying the Vol-
terra equation technique developed in [58; Section 0] for evolutionary integral equations.
In fact an investigation of the relation of (IDE•) to such equations (see Section 3.3)
reveals that (IDE•) does not fit well into the notion of a solution operator family for
evolutionary intregral equations presented in [58] (see also Remarks 3.4.4(b)).

Further well-posedness results based on Volterra and delay semigroups and involving
fractional regularity conditions in time and space are presented in Section 4.7.3 and
Corollary 4.8.7.

The investigation of this type of equation was motivated by models describing the
phenomenon of flutter of aerofoils under aerodynamic load. We refer the reader to
[6], [7], [5], [9], [8] and [37]. Engineers are interested in the characterisation of strong
stability of (IDE•). The second part is devoted to an analysis of this type of stability by
means of a spectral analysis via Laplace transform methods (for this concept we refer
particularly to the monograph [4] and the references therein, and to [26], [25] for recent
developments).

The plan of this chapter is as follows.
Well-posedness conditions for (IDE•) using Volterra and delay semigroups are pre-

sented in Sections 3.1 and 3.2.
Section 3.3 is devoted to the exploration of the relationship of solution operator fam-

ilies of (IDE•) and resolvents of the corresponding evolutionary integral equation.
Finally in Section 3.4 we present conditions for strong stability of (IDE•) by means of

Laplace transform methods.

3.1 The Forcing Function Approach

In [30] and many other puplications (see [58; Section 13.6] for references) the forcing
function approach was used to solve the integro-differential equations without time-
derivative of the solution in the integral term. With some modifications this method
also works for (IDE•).

We first derive the Volterra semigroup corresponding to (IDE•). To this end we
start by introducing the spaces BVp(R+;X) (with p ∈ [1,∞)) of p-integrable X-valued
functions of bounded variation equipped with the norm

‖f‖p,V ar := ‖f‖p + sup

{ n∑

j=1

‖f̃(tj) − f̃(tj−1)‖ ; n ∈ N, 0 = t0 < · · · < tn

}

for f ∈ BVp(R+;X), where f̃ denotes the left continuous representative of f . We also
need the following lemma on the boundedness of certain operators which frequently
occur in the context of delay equations.
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3.1.1 Lemma. Let X be a Banach space and p ∈ [1,∞). Let k : R+ → L(X) and
Kx := k(·)x (x ∈ X).

(a) If k(·)x ∈ BVp(R+;X) for all x ∈ X then K ∈ L(X,BVp(R+;X)).
(b) If k(·)x ∈ Lp(R+;X) for all x ∈ X then K ∈ L(X,Lp(R+;X)).

Proof. By the closed graph theorem the proof in both cases is accomplished if we can
show that K is a closed operator. To this end let (xn) ⊆ X be a null sequence such
that Kxn → f with f ∈ BVp(R+;X) and f ∈ Lp(R+;X), respectively. In the first
case convergence in the variation norm implies pointwise convergence. In the second
case we can assume without loss of generality (by choose a subsequence if necessary)
that the convergence is pointwise almost everywhere. So in both cases we see that
(Kxn)(t) = k(t)xn → f(t) for t ∈ R+ (almost everywhere). Since k(t) is a bounded
operator we conclude k(t)xn → 0 = f(t) (almost everywhere). Hence f = 0 (almost
everywhere) and so K is closed operator. �

From now on we assume that ℓ(·)x ∈ L1(R+;X) (x ∈ X). Lemma 3.1.1 implies that
the operator Lx := ℓ(·)x (x ∈ X) belongs to L(X,L1(R+;X)).

By S we denote the left translation semigroup on L1(R+;X). Its generator, denoted
by D, is the weak derivative on L1(R+;X) with maximal domain W 1

1 (R+;X). Let u be a
classical solution of (IDE•) with inhomogeneity g ∈ L1(R+;X), F (t) := S(t)g+

∫ t
0
S(t−

s)Lu̇(s) ds and U(t) :=
(
u(t)
F (t)

)
(t ∈ R+). The function F is called the forcing function

associated with u. As Lu̇ is a continuous function on R+ with values in L1(R+;X) we see
that F is the mild solution of the inhomogeneous abstract Cauchy problem associated
with D with initial value F (0) = g. Hence F satisfies the equation

F (t) = D
t∫

0

F (s) ds+

t∫

0

Lu̇(s) ds (t ∈ R+). (3.1.1)

As δ0F (t) = g(t) +
∫ t
0
ℓ(t − s)u̇(s) ds we further conclude that u̇(t) = Au(t) + δ0F (t).

Using this equation in (3.1.1) we obtain F (t) = LA
∫ t
0
u(s) ds + (D + Lδ0)

∫ t
0
F (s) ds

(t ∈ R+). This shows that U is a mild solution of the abstract Cauchy problem

(FFA)






U̇(t) = AU(t), U(0) =

(
x
g

)
∈ X × L1(R+;X),

A :=

(
A δ0
LA D + Lδ0

)
,

D(A) := DA ×W 1
1 (R+;X)

on X ×L1(R+;X). We have seen that a classical solution of (IDE•) for the initial value
x and inhomogeneity g yields a mild solution of (FFA) for the initial value ( xg ). We will
now show that a classical solution of (FFA) provides a classical solution of (IDE•).

3.1.2 Lemma. Let U(t) =
(
u(t)
F (t)

)
be a classical solution of (FFA) for the initial value

U(0) = ( xg ) ∈ D(A). Then u is a classical solution of (IDE•).

48



Chapter 3 Well-Posedness and Stability for an Integro-Differential Equation

Proof. Obviously, u is continuously differentiable and u(0) = x. In order to see that u
satisfies (IDE•) we infer from the second component of the equation U̇(t) = AU(t) that

Ḟ (t) = LAu(t) + (Lδ0 + D)F (t) = Lu̇(t) + DF (t).

Therefore F is a classical solution of the inhomogeneous abstract Cauchy problem asso-
ciated with the left translation semigroup on L1(R+;X) with initial value g and inho-
mogeneity Lu̇(·) ∈ C(R+;L1(R+;X)). Therefore (cf. [39; Section VI.7]) we obtain

F (t) = S(t)g +

t∫

0

S(t− s)Lu̇(s) ds (3.1.2)

and δ0F (t) = g(t) +
∫ t
0
ℓ(t − s)u̇(s) ds. Thus the first component of U̇(t) = AU(t)

becomes (IDE•). �

3.1.3 Lemma. If (FFA) is well-posed then (IDE•) is well-posed. In this case classical
and mild solutions of (IDE•) are given by t 7→ P1e

tA ( xg ) for ( xg ) ∈ D(A) and ( xg ) ∈
X × L1(R+;X), respectively.

Proof. By Lemma 3.1.2 (IDE•) has a classical solution for all x ∈ DA. In order to
show uniqueness let u be a classical solution of (IDE•) with initial value 0 and F be
the forcing function corresponding to u. Then as we have seen above U(t) :=

(
u(·)
F (·)

)

is a mild solution of (FFA). The well-posedness of (FFA) implies uniqueness of mild
solutions of (FFA) and therefore U = 0. This shows u = 0.

Finally let (xn)n∈N be a sequence in DA which converges to zero in X. As (FFA)
is well-posed T (·) ( xn

0 ) tends to zero uniformly on compact intervals of R+. Hence
solutions of (IDE•) depend continuously on the initial value. This shows that (IDE•) ist
well-posed. �

We can now apply perturbation theory, namely the Desch-Schappacher perturbation
theorem, to obtain a well-posedness criterion for (IDE•). To this end we recall that the
Favard space F 1

D for the generator D of the left translation semigroup on L1(R+;X)
is the space BV1(R+;X); cf. (A.1) for the general definition of Favard spaces and [55;
Proposition 3.6], [16; Proposition A.5] for the Favard space of the generator D.

3.1.4 Theorem. If Lx ∈ BV1(R+;X) for all x ∈ X then (FFA) and hence (IDE•) are
well-posed.

Proof. It is a well-known fact in the theory of Volterra equations (cf. [39; Section VI.7])
that the operator

A0 =

(
A δ0
0 D

)
, D(A0) = D(A) ×W 1

1 (R+;X)
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on X × L1(R+;X) generates the C0-semigroup T0,

T0(t)

(
x
g

)
:=

(
T (t)x+

∫ t
0
T (t− s)g(s) ds
S(t)g

)
(t ∈ R+).

This semigroup solves the inhomogeneous Cauchy problem associated with A. The
operator A is the additive perturbation of A0 with B :=

(
0 0
LA Lδ0

)
, D(B) := D(A0). We

shall prove that B is a Desch-Schappacher perturbation of A0 which shows that A is a
generator.

To this end we first note that by Lemma 3.1.1 the perturbation B is bounded from
DA to {0} × F 1

D. We show that {0} × F 1
D is continuously embedded into F 1

A0
. In order

to estimate

lim sup
t→0

∥∥∥∥
1

t
(T0(t) − I)

(
0
f

)∥∥∥∥ = lim sup
t→0

∥∥∥∥
1

t

(∫ t
0
T (t− s)f(s) ds
(S(t) − I)f

)∥∥∥∥ (3.1.3)

for f ∈ F 1
D we first observe that BV1(R+;X) is contractively embedded into L∞(R+;X).

Hence the first component of (3.1.3) is estimated by

lim sup
t→0

∥∥∥∥∥∥
1

t

t∫

0

T (t− s)f(s) ds

∥∥∥∥∥∥
≤ M‖f‖1,V ar,

where M := sup0≤t≤1 ‖T (t)‖. For the second component we have (cf. (A.3))

lim sup
t→0

1

t
‖(S(t) − I)f‖1 ≤ c1‖f‖F 1

D
≤ c2‖f‖1,V ar

for some c1, c2 ≥ 0. Therefore {0} × F 1
D is continuously embedded into F 1

A0
and thus

B maps DA0 continuously to F 1
A0

. This shows that A is a generator and (FFA) is
well-posed. By Lemma 3.1.3 (IDE•) is well-posed. �

3.2 The Delay Semigroup Approach

In this section we shall solve the homogeneous version of (IDE•) using the initial value
problem

u̇(t) = Au(t) +

0∫

−∞

ℓ(−s)u̇(t+ s) ds, u(0) = x, u0 = g (t ≥ 0). (3.2.1)

If u is a classical solution of (IDE•) then

v(t) :=

{
u(t) if t ≥ 0,
u(0) if t < 0,
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is weakly differentiable and

0∫

−∞

ℓ(−s)v̇(t+ s) ds =

t∫

0

ℓ(t− s)u̇(s) ds (t ≥ 0),

where v̇ is the weak derivative of v. Thus v satisfies (3.2.1) for all t ∈ R+. On the
other hand if v solves (3.2.1) (in a suitable sense) for the initial value u(0) = x and
u0 = x · 1(−∞,0] we can expect that u|R+ becomes a solution of (IDE•).

There are a number of results for the well-posedness of delay equations (cf. [19], [48],
[69], [21], [20], [22] and [39; Section VI.6]). Most of the results are not applicable to
(3.2.1) as derivation of u in the delay term is usually not allowed. In [48] well-posedness
was deduced for linear delay operators being bounded from W 1

p (−∞, 0;X) to X. Un-
fortunately history functions of the form x · 1(−∞,0) do not belong to W 1

p (−∞, 0;X) if
x 6= 0. However solutions of (IDE•) on compact intervals can be obtained (see Theo-
rem 3.2.1 below). The main focus of this section is the construction of a C0-semigroup
similar to [48; Theorem 3.1] solving (IDE•) on R+. This is achieved by enlarging the
space Lp(−∞, 0;X) using the notion of sum spaces.

3.2.1 Theorem. Let p ∈ [1,∞). Assume that ℓ : R+ → L(X,F 1
A) is strongly Bochner

measurable with respect to F 1
A (i.e. ℓ(·)x is Bochner measurable with respect to F 1

A for
all x ∈ X) and that ‖ℓ(·)‖L(X,F 1

A) is dominated by some h ∈ Lp′,loc(R+) where p′ denotes
the conjugate exponent of p. Then (IDE•) is well-posed.

Proof. We first recall [48; Theorem 3.1] (cf. Theorem 3.2.6 for a similar result and
Proposition 4.8.6, where a generalisation of [48; Theorem 3.1] is presented). Let τ > 0.
Let A := ( A L

0 D ), D(A) := {(x, f) ∈ DA ×W 1
p (−τ, 0;X); f(0) = x}, where D denotes

the weak derivative in Lp(−τ, 0;X) and L ∈ L(W 1
p (−τ, 0;X), X). Theorem 3.1 in [48]

states that A is the generator of a C0-semigroup on X × Lp(−τ, 0;X).
Now let L : W 1

p (−τ, 0;X) → X be defined by Lf :=
∫ 0

−τ
ℓ(−ϑ)ḟ(ϑ) dϑ. Then we have

L ∈ L(W 1
p (−τ, 0;X), F 1

A) and thus A becomes a generator. Obviously [0, τ ] ∋ t 7→
P1e

tA
( x
x·1(−τ,0)

)
is a classical solution of (IDE•) on the interval [0, τ ] for all x ∈ DA.

On the other hand, if u is a classical solution of (IDE•) with initial value x, then
v(t) :=

(
u(t)
ut

)
(where we set ut(s) := x if t+ s < 0) is a classical solution of the abstract

Cauchy problem associated with A for the initial value
( x
x·1(−τ,0)

)
. Thus for all x ∈ DA

there exists a unique classical solution of (IDE•) on [0, τ ].
As τ can be chosen arbitrarily large we obtain a solution of (IDE•) on R+; the unique-

ness property ensures that solutions for different τ1, τ2 > 0 do not differ on [0, τ1]∩ [0, τ2].
The continuous dependence on the initial values immediately follows from the gener-

ator properties of A. This shows the well-posedness of (IDE•). �

3.2.1 Sum spaces

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces which are continuously embedded into
a Hausdorff topological vector spaces X . Let p ∈ [1,∞) and s : X ⊕p Y → X be defined
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as s(x, y) := x + y. Then s is a surjective map onto Z := X + Y . As s is continuous
ker s = {(x, y) ∈ X × Y ; x + y = 0} is a closed subspace of X ⊕p Y , and thus the
quotient space Z̃ := (X ⊕p Y )/ker s equipped with the quotient norm is a Banach space.
It is straightforward to check that Z̃ ∋ (x, y)+ker s 7→ x+y ∈ Z becomes an isometrical
isomorphism if Z is equipped with the norm

‖z‖ := inf{(‖x‖pX + ‖y‖pY )1/p ; x ∈ X , y ∈ Y, x+ y = z}.

We call Z = X + Y the p-sum space of X and Y . If X and Y are Hilbert spaces
and p = 2 then Z is isometrically isomorphic to (ker s)⊥ ⊆ X ⊕2 Y . Therefore Z also
becomes a Hilbert space (cf. [28; Theorem I.2.6, Theorem III.4.2]). For sum spaces in
interpolation theory we refer to [17; Proposition 2.1.6], [18; Section 3.2], [33; Section 6.1],
[12; Section 2.3] and [59; IX.4 Appendix].

3.2.2 The sum space Zp

Let Xp := Lp(−∞, 0;X). The space

Yp := {f ∈W 1
1,loc(−∞, 0;X); f(0) = 0, f ′ ∈ Xp}

becomes a Banach space if equipped with the norm ‖f‖′p := ‖f ′‖p (f ∈ Yp). The p-
sum space Zp := Xp + Yp (as a subspace of L1,loc(−∞, 0;X)) endowed with the norm
‖f‖+,p := inf{(‖g‖pp + ‖h′‖pp)1/p ; g ∈ Xp, h ∈ Yp, f = g + h} (f ∈ Zp) is a Banach space.
If p = 2 and X is a Hilbert spaces then Zp becomes a Hilbert space.

Let Z1
p be the subspace of all weakly differentiable functions in Zp whose first deriva-

tives are again in Zp. The following estimate (3.2.2) applied to the right translation
semigroup on Zp will reveal that a function in Z1

p is already p-integrable. This esti-
mate is closely related to the Landau-Kolmogorov inequality (cf. [57; Lemma 1.2.8], [1;
Lemma 4.10]).

3.2.2 Proposition. Let p ∈ [1,∞) and let X, Y be Banach spaces as in Section 3.2.1.
Let T be a C0-semigroup on the p-sum space Z = X + Y , with generator A. Assume
that the following conditions hold.

(i) T restricted to X is a C0-semigroup on X.

(ii) Y ⊆ D(A) and AY ⊆ X.

Then A|Y ∈ L(Y,X), rgA ⊆ X and

‖Az‖X ≤ cp max{M + 1,M‖A|Y ‖}
(
‖z‖Z + ‖Az‖Z

)
(3.2.2)

for all z ∈ D(A), and where M := sup0≤s≤1 ‖T (s)‖L(X) and cp := 21−1/p.

Proof. First we show that A|Y is bounded from Y to X. To this end let (yn) ⊆ Y ,
yn → y ∈ Y and Ayn → z ∈ X (n→ ∞). As X and Y are contractively embedded into
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Z we have yn → y and Ayn → z in Z and the closedness of A implies (A|Y )y = Ay = z.
Hence A|Y is a closed operator. The closed graph theorem implies that A|Y is bounded.

Let z ∈ D(A), z = x0 + y0, Az = x1 + y1 with x0, x1 ∈ X and y0, y1 ∈ Y . Let t > 0.
Integration by parts yields the formula

t∫

0

(t− r)T (r)Ay1 dr = −ty1 +

t∫

0

T (r)y1 dr. (3.2.3)

As z, y0 ∈ D(A) we also have x0 ∈ D(A) and thus we can write

T (t)x0 − x0 =

t∫

0

T (r)Ax0 dr =

t∫

0

T (r)(x1 + y1 − Ay0) dr. (3.2.4)

Using (3.2.3) and (3.2.4) we obtain

ty1 = T (t)x0 − x0 −
t∫

0

T (r)(x1 −Ay0) dr −
t∫

0

(t− r)T (r)Ay1 dr. (3.2.5)

As T (r) maps X to X continuously and x1 −Ay0 and Ay1 are in X the integrals on the
right hand side of (3.2.5) take values in X. Hence ty1 ∈ X and

‖ty1‖X ≤ (Mt + 1)‖x0‖X + tMt‖x1 −Ay0‖X +
t2

2
Mt‖Ay1‖X , (3.2.6)

where Mt := sup0≤s≤t ‖T (s)‖L(X). As Az = x1 + y1 we obtain from (3.2.6) that Az ∈ X
and

‖Az‖X ≤ Mt + 1

t
‖x0‖X +Mt‖Ay0‖X + (Mt + 1)‖x1‖X +

t

2
Mt‖Ay1‖X . (3.2.7)

Choosing t = 1 in (3.2.7) we obtain

‖Az‖X ≤ max{M + 1,M‖A|Y ‖}
(
‖x0‖X + ‖y0‖Y + ‖x1‖X + ‖y1‖Y

)
.

As a + b ≤ cp(a
p + bp)1/p (a, b ∈ R, a, b ≥ 0) we further obtain

‖Az‖X ≤ M̃
(
(‖x0‖pX + ‖y0‖pY )1/p + (‖x1‖pX + ‖y1‖pY )1/p

)
, (3.2.8)

where M̃ := cp max{M + 1,M‖A|Y ‖}. By taking the infimum in (3.2.8) over all decom-
positions of z and Az we infer (3.2.2). �

3.2.3 Corollary. Let p ∈ [1,∞). Then the weak derivative on Z1
p is a bounded operator

in L(Z1
p , Xp) and

‖f ′‖p ≤ 2cp(‖f‖+,p + ‖f ′‖+,p) ≤ 2c2p(‖f‖p+,p + ‖f ′‖p+,p)1/p (f ∈ Z1
p).
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Proof. We shall apply Proposition 3.2.2 to the right translation semigroup on Zp. For
t ≥ 0 and f ∈ Zp we define S(t)f := f(· − t). Obviously S satisfies the semigroup
law. Let t ≥ 0. Let f = g + h, g ∈ Xp, h ∈ Yp. We define ϕ : (−∞, 0) → R as
ϕ(s) := max{0, s+ 1} (s < 0). Then

‖S(t)f‖+,p ≤ ‖g + h(−t)ϕ‖p + ‖S(t)h− h(−t)ϕ‖′p
≤ ‖g‖p + ‖h′‖p + ‖h(−t)‖(‖ϕ′‖p + ‖ϕ‖p).

As ‖h(−t)‖ ≤
∫ 0

−t
‖h′(s)‖ ds ≤ t1−1/p‖h′‖p, ‖ϕ‖p = (1 + p)−1/p ≤ 1 and ‖ϕ′‖p = 1 we

obtain

‖S(t)f‖+,p ≤ ‖g‖p +
(
1 + 2t1−1/p

)
‖h‖′p.

Thus ‖S(t)f‖+,p ≤ (1 + 2t1−1/p)‖f‖+,p and so S(t) are bounded operators on Zp. If we
choose h such that spt h ⊆ (−∞,−δ) for some δ > 0 the strong continuity follows from

‖S(t)f − f‖+,p ≤ ‖S(t)g − g‖p + ‖S(t)h′ − h′‖p → 0 (t→ 0).

So S is a C0-semigroup on Zp. In order to determine the generator of S, which we
denote by D, let λ > 0 be larger than the growth bound of S. For f ∈ Zp we define
F (s) := (R(λ,D)f)(s) =

∫∞

0
e−λtf(s − t) dt (s ∈ (−∞, 0)). Let ψ ∈ C∞

c (−∞, 0).
Standard computations yield

∫
ψ′(s)F (s) ds =

∫
ψ(s)(−f(s) + λF (s)) ds.

Thus F is weakly differentiable and F ′ = f − λF ∈ Zp. This implies D(D) ⊆ Z1
p and

Df = −f ′ (f ∈ D(D)). In order to show that D(D) = Z1
p we define D̃f := −f ′,

D(D̃) := Z1
p . As λ − D is bijective and λ − D ⊆ λ − D̃, it suffices to prove that

λ− D̃ : Z1
p → Zp is injective. To this end let f ∈ Z1

p , λf + f ′ = 0. Then there is x ∈ X
such that f(s) = e−λsx (s ∈ (−∞, 0)). As functions in Zp cannot grow exponentially
(as s goes to −∞) and λ > 0 we infer x = 0 and thus f = 0.

We have shown that D(D) = Z1
p . In particular this implies that Yp ⊆ D(D) and

DYp ⊆ Xp. It is well known that S restricted to Xp is a C0-semigroup. The application
of Proposition 3.2.2 yields the assertion. �

3.2.4 Remark. The proof of Corollary 3.2.3 shows that Z1
p equipped with the norm

‖f‖+,p,1 :=
(
‖f‖p+,p + ‖f ′‖p+,p

)1/p
(f ∈ Z1

p)

is a Banach space. If p = 2 and X a Hilbert space then Z1
p is a Hilbert space, too.
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3.2.3 Delay Semigroups in the Zp-Context

Let p ∈ [1,∞) and Xp := X × Zp. By D we denote the weak derivative on Z1
p . In this

section we show well-posedness of the abstract Cauchy problem

(DE)






A =

(
A L
0 D

)
, D(A) =

{
( xf ) ∈ D(A) × Z1

p ; f(0) = x
}
,

u̇(t) = Au(t), u(0) = ( xf ) ∈ Xp (t ≥ 0)

if L satisfies a range condition. This result directly leads to a C0-semigroup solving
(IDE•). In order to derive the generator property of A we represent this operator as a
perturbation of the operator A0 := ( A 0

0 D ), D(A0) := D(A).

3.2.5 Lemma. The operator A0 is the generator of the C0-semigroup T0 given by

T0(t) : Xp → Xp, T0(t) :=

(
T (t) 0
Tt S(t)

)
(t ≥ 0),

where Tt : X → Zp (t ≥ 0) is defined as

Ttx(s) :=

{
T (t+ s)x if s ≥ −t,
0 if s < −t,

and S(t) (t ≥ 0) denotes the left translation on Zp (i.e. S(t)f(s) := f(t+ s) if t+ s < 0,
otherwise S(t)f(s) := 0).

Proof. It is straightforward to see that S and therefore T0 are C0-semigroups. Let Ã0

be the generator of T0 and λ > 0 be greater than the growth bound of T0. From

R(λ, Ã0)

(
x
f

)
=

(
R(λ,A)x

s 7→ eλs
(
R(λ,A)x+

∫ 0

s
e−λrf(r) dr

)
)

(3.2.9)

we infer R(λ, Ã0)(λ−A0) ( xf ) = ( xf ) for all ( xf ) ∈ D(A0). Thus A0 ⊆ Ã0. From (3.2.9)
we also see that the range of R(λ, Ã0) is a subset of D(A0). This shows Ã0 = A0. �

Presenting A as the perturbation of A0 with the operator B := ( 0 L
0 0 ), D(B) := D(A0),

we can apply the Desch-Schappacher perturbation theorem.

3.2.6 Theorem. If L : Z1
p → F 1

A is a bounded operator then A is a generator.

Proof. We will apply Theorem A.2. Let Z := F 1
A × {0}. Then B = ( 0 L

0 0 ) is a bounded
operator from DA0 to Z. We show that Z satisfies the range condition (RC) of Proposi-
tion A.3 with respect to A0. To this end let ϕ : [0, 1] → Z be continuous, ϕ(t) = (ϕ1(t), 0)
and

ψ : (−∞, 0] → X, ψ(r) :=

{∫ t+r
0

T (t+ r − s)ϕ1(s) ds if r ∈ [−t, 0],
0 if r ∈ (−∞,−t).
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From [48; proof of Theorem 3.1] we adopt the facts that ψ(0) =
∫ t
0
T (t − s)ϕ1(s) ds ∈

D(A), ψ ∈W 1
p (−∞, 0;X) ⊆ Z1

p ,
∫ t
0
T0(t− s)ϕ(s) ds ∈ D(A0), and

∥∥∥∥∥∥
A0

t∫

0

T0(t− s)ϕ(s) ds

∥∥∥∥∥∥
X×Xp

≤ ct1/p sup
0≤s≤t

‖ϕ1(s)‖F 1
A

(t ∈ [0, 1])

for some c ≥ 0. As Xp is contractively embedded into Zp we obtain
∥∥∥∥∥∥
A0

t∫

0

T0(t− s)ϕ(s) ds

∥∥∥∥∥∥
X×Zp

≤

∥∥∥∥∥∥
A0

t∫

0

T0(t− s)ϕ(s) ds

∥∥∥∥∥∥
X×Xp

(t ∈ [0, 1]).

Hence Z fulfils (RC). The application of Theorem A.2 shows that A is a generator. �

3.2.7 Corollary. Assume that ℓ : R+ → L(X,F 1
A) is strongly Bochner measurable with

respect to F 1
A (i.e. ℓ(·)x is Bochner measurable with respect to F 1

A for all x ∈ X) and
‖ℓ(·)‖L(X,F 1

A) is dominated by some h ∈ Lp′(R+), where p′ denotes the conjugate exponent

of p. Let Lf :=
∫ 0

−∞
ℓ(−ϑ)ḟ(ϑ) dϑ (f ∈ Z1

p). Then L ∈ L(Z1
p , F

1
A) and A = ( A L

0 D ) is
a generator. The classical solution of (IDE•) for the initial value x ∈ DA and inhomo-
geneity g = 0 is given by t 7→ P1e

tA
( x
x·1(−∞,0)

)
.

Proof. For the proof it suffices to observe that (cf. Corollary 3.2.3)

‖Lf‖F 1
A
≤ ‖h‖p′‖f ′‖p ≤ 2c2p‖h‖p′‖f‖+,p,1.

�

For later use we mention the following delay property of inhomogeneous solutions of
delay semigroups.

3.2.8 Proposition. Assume that A is a generator. Let T be the C0-semigroup generated
by A. Let ( xf ) ∈ X × Zp, ϕ ∈ L1,loc(R+;X), t ≥ 0. Let

(
u(t)
F (t)

)
:= T (t)

(
x
f

)
+

t∫

0

T (t− s)

(
ϕ(s)

0

)
ds

be the (mild) solution of the inhomogeneous Cauchy problem associated with A. Then

F (t)(τ) =

{
u(t+ τ) if t+ τ ≥ 0,

f(t+ τ) if t+ τ < 0,
almost everywhere τ ∈ (−∞, 0). (3.2.10)
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Proof. For ϕ = 0 the delay property (3.2.10) is well-known. In order to deal with the
general case ϕ ∈ L1,loc(R+;X) we compute (using (3.2.10) with ϕ = 0)

F (t)(τ) = P2



T (t)

(
x
f

)
+

t∫

0

T (t− s)

(
ϕ(s)

0

)
ds



 (τ)

= P1T (t+ τ)

(
x
f

)
+

t+τ∫

0

P1T (t+ τ − s)

(
ϕ(s)

0

)
ds = u(t+ τ)

for τ ∈ (−t, 0) almost everywhere. This shows that (3.2.10) holds on the interval (−t, 0).
For τ ∈ (−∞,−t) it is straightforward to verify (3.2.10). �

3.3 Relation to Evolutionary Integral Equations

We shall explore the relation of (IDE•) to the evolutionary integral equation

(EIE) u(t) = f(t) +

t∫

0

(A+ ℓ(t− s))u(s) ds (t ≥ 0),

where f ∈ L1,loc(R+;X). When discussing (EIE) we always assume that ℓ satisfies at
least assumptions (a) and (b) in the introduction.

In the theory of evolutionary integral equations one is looking for a resolvent of (EIE),
i.e. a strongly continuous solution operator family R : R+ → L(X) such that for x ∈ X
the function R(·)x is the unique solution (in a suitable sense) of (EIE) for f = x ·1(−∞,0).
We say that a function u : R+ → X is a mild solution of (EIE) for f ∈ L1,loc(R+;X) if∫ t
0
u(s) ds ∈ D(A) for all t ≥ 0 and

u(t) = f(t) + A

t∫

0

u(s) ds+

t∫

0

ℓ(t− s)u(s) ds (t ≥ 0). (3.3.1)

Observe that by definition a mild solution of (IDE•) with inhomogeneity g ∈ L1,loc(R+;X)

is a mild solution of (EIE) for f(t) := x +
∫ t
0
(g(s) − ℓ(s)x) ds (t ∈ R). A resolvent for

(EIE) is a strongly continuous operator family R : R+ → L(X), so that for all x ∈ X
the function R(·)x is a mild solution of (EIE) for f = x · 1(−∞,0).

For various other notions for solutions of evolutionary integral equations, which are
not suitable in our situation, we refer to [58; Definition 1.1 and Definition 6.2] and [26;
Definition 3.1 and Definition 4.1]

First we show that a resolvent of (EIE) suffices to obtain mild solutions of (EIE) for
f = x+1[0,∞) ∗g, g ∈ L1,loc(R+;X). A similar result is obtained in [58; Proposition 6.3].

3.3.1 Lemma. Let R be a resolvent for (EIE), g ∈ L1,loc(R+;X). Then (1[0,∞) ∗ R ∗
g)(t) ∈ D(A) for all t ≥ 0 and

A(1[0,∞) ∗ R ∗ g) = R ∗ g − 1[0,∞) ∗ g − ℓ ∗ R ∗ g. (3.3.2)
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Proof. It suffices to show that (3.3.2) holds for functions g = x ·1[t1,t2], 0 ≤ t1 < t2 <∞,
x ∈ X. By linearity this implies that (3.3.2) holds for step functions. By Young’s
inequality (cf. [4; Theorem 1.3.5]) and the closedness of A we infer (3.3.2) for all g ∈
L1,loc(R+;X). In order to show (3.3.2) for g = x · 1[t1,t2] and t ≥ t2 we compute

t∫

0

s∫

0

R(s− r)g(r) dr ds =

t∫

0

t∫

r

R(s− r)g(r) ds dr

=

t∫

0

t−r∫

0

R(s)g(r) ds dr =

t2∫

t1

t−r∫

0

R(s)x ds dr.

(3.3.3)

As the terms occurring in (3.3.2) do not change their value if g is replaced by g · 1[0,t] =

x ·1[t1,t2]∩[0,t] we conclude that (3.3.3) also holds for all t ∈ [0, t2). Therefore
∫ t
0

∫ s
0
R(s−

r)g(r) dr ds ∈ D(A) (t ∈ R+) and

A

t∫

0

s∫

0

R(s− r)g(r) dr ds

=

t2∫

t1



R(t− r)x− x−
t−r∫

0

ℓ(t− r − s)R(s)x ds



 dr

=

t∫

0

(R(t− r)g(r) − g(r)) dr−
t∫

0

ℓ(t− r)

r∫

0

R(r − s)g(s) ds dr

establishes (3.3.2). �

3.3.2 Proposition. Let R be a resolvent for (EIE), g ∈ L1,loc(R+;X). Then R(·)x +
R∗g is a mild solution of (EIE) for f = x+1[0,∞)∗g. In particular R(·)x+R∗(g−ℓ(·)x)
is a mild solution of (IDE•) for the initial value x ∈ X and the inhomogeneity g.

Proof. Let t ≥ 0, x ∈ X and u := R(·)x+R∗g. From our assumptions and Lemma 3.3.1
we infer that (1[0,∞) ∗ u)(t) ∈ D(A) and

A(1[0,∞) ∗ u) = A(1[0,∞) ∗ (R(·)x+ R ∗ g))
= (R(·)x− x− ℓ ∗ R(·)x) + (R ∗ g − f − ℓ ∗ R ∗ g)
= (R(·)x+ R ∗ g) − x− ℓ ∗ (R(·)x+ R ∗ g) − f

= u− x− ℓ ∗ u− f.

As this is just (3.3.1) we have shown that u is a mild solution of (EIE) for f = x +
1[0,∞) ∗ g. �

We now look at the relation of delay semigroups and (EIE). Let T be the delay
semigroup generated by A from Corollary 3.2.7. Then S(·)x := P1T (·)

( x
x·1(−∞,0)

)
is

a solution operator family for (IDE•). The delay semigroup also yields a resolvent for
(EIE).
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3.3.3 Proposition. Let T =
(
T11 T12
T21 T22

)
be the delay semigroup from Corollary 3.2.7 with

generator A. Then R := T11 is a resolvent for (EIE).

Proof. Let x ∈ X and V : R+ → X, V (t) := T (t) ( x0 ) (t ∈ R+). Then V satisfies

V (t) − V (0) = A
t∫

0

V (s) ds (t ∈ R+). (3.3.4)

Let u := R(·)x = P1V (·) and F := P2V (·). Projection onto the first component in
(3.3.4) yields

u(t) − x = A

t∫

0

u(s) ds+ L

t∫

0

F (s) ds, (3.3.5)

where Lf :=
∫ 0

−∞
ℓ(−s)ḟ(s) ds (f ∈ Z1

p ). From Proposition 3.2.8 we know that

F (s)(τ) =

{
u(s+ τ) if s+ τ ≥ 0,
0 otherwise,

(τ ∈ (−∞, 0) almost everywhere).

Therefore L
∫ t
0
F (s) ds =

∫ t
0
ℓ(t−s)u(s) ds. From (3.3.5) we see that u = R(·)x is a mild

solution of (EIE) for f = x · 1[0,∞). Hence R is a resolvent for (EIE). �

If well-posedness of (IDE•) is obtained by the forcing function approach we have the
following result.

3.3.4 Proposition. Assume that A from (FFA) in Section 3.1 is a generator. Let T
be the C0-semigroup generated by A. Let ( xg ) ∈ X × L1(R+;X) and u(t) := P1T (t) ( xg ).
Then

u(t) = x+

t∫

0

(g(s) − ℓ(s)x) ds+ A

t∫

0

u(s) ds+

t∫

0

ℓ(t− s)u(s) ds (t ≥ 0).

In particular R : R+ → L(X), R(·)x := P1T (·) (
x

ℓ(·)x ) (x ∈ X) is a resolvent for (EIE).

Proof. If ( xg ) ∈ D(A) the equation is easily verified. Otherwise an approximation by a
sequence of initial values in D(A) and the closedness of A prove the assertion. �

3.4 Strong Stability of (IDE•)

Let S : R+ → L(X) be a strongly continuous family of operators. We say that S is
strongly stable if S(t) → 0 in the strong operator topology as t→ ∞. Further S is said
to be strongly integrable if S(·)x is integrable for all x ∈ X. We call (IDE•) strongly
stable (strongly integrable) if a solution operator family exists, and if this family is
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strongly stable (strongly integrable). For models describing the phenomenon of flutter
strong stability is the type of stability which engineers are interested in.

We start with a remark concerning integrability of a resolvent for (EIE) and the
relation to strong stability of (IDE•). Assume that R is a strongly integrable resolvent
for (EIE), that S is a solution operator family for (IDE•) and that ℓ(·)x ∈ L1(R+;X)
(x ∈ X). Then for x ∈ X the function S(·)x is the sum of the integrable functions R(·)x
and −R ∗ ℓ(·)x (cf. [58; Section 10.1]). Therefore if we additionally assume that S is
uniformly continuous then S(t)x → 0 as t→ ∞. Hence (IDE•) is strongly stable.

We point out that general conditions for strong integrability of resolvents of non-
scalar evolutionary integral equations seem to be available only for special cases (see
[58; Section 10]). One reason is the fact that the conditions on Laplace transforms
ensuring integrability of the transformed functions are generally difficult to check (cf.
[58; Theorem 0.3]).

As a motivation for the main result of this section Theorem 3.4.3 we recall a well-known
condition for strong stability of C0-semigroups: A bounded C0-semigroup is strongly
stable if the spectrum of its generator on iR is countable and the residual spectrum of
its generator on iR is empty. Two different proofs can be found in [4; Theorem 5.5.5]
and [39; Theorem V.2.21]. In both cases the algebraic structure of C0-semigroup plays
a crucial role.

For Volterra equations similiar results have been derived using Laplace transform
methods. However, for such equations the uniform continuity and the uniform ergodicity
of individual solutions can not generally be derived from the boundedness of resolvents
as in the case of C0-semigroups (cf. [26]).

In the case that (IDE•) is solved by the delay semigroup approach from Section 3.2
more can be said. From now on we suppose that the assumptions of Corollary 3.2.7
hold. Let p ∈ (1,∞) and T =

(
T11 T12
T21 T22

)
be the delay semigroup on X × Zp obtained in

this corollary (our method does not work for p = 1, see Remarks 3.4.4). We assume that
P1T is a bounded operator family (or equivalently T11 and T12 are bounded operator
families). We recall that solutions of (IDE•) for the initial value x ∈ X are given by
R+ ∋ t 7→ P1T (t)

( x
x·1(−∞,0)

)
. Let S : R+ → L(X) be defined as the solution operator

family S(·)x := P1T (·)
( x
x·1(−∞,0)

)
(x ∈ X). Taking the Laplace transform of (IDE•)

(strongly as a Bochner integral and with g = 0) we obtain

(λ− A− λℓ̂(λ))Ŝ(λ) = I − ℓ̂(λ) (3.4.1)

for λ ∈ C+ (as we assume that ‖ℓ(·)‖L(X,F 1
A) is bounded by a function in Lp′(R+), the

Laplace transform ℓ̂ exists on C+ strongly as a Bochner integral in X).
We make the following assumptions additional to the boundedness of P1T :

(a) ℓ(·)x, (s 7→ sℓ(s)x) ∈ L1(R+;X) for all x ∈ X;

(b) U : C+ → L(DA, X), defined by U(λ) := λ − A − λℓ̂(λ), is invertible in L(X) for
λ ∈ C+.

We point out that by (a) the Laplace transform of ℓ(·)x exists as a Bochner integral on
C+ and thus the definition of U in (b) makes sense.
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For the following lemma in the context of C0-semigroups we refer to [4; Proposi-
tion 4.3.1].

3.4.1 Lemma. Let η ∈ R and x ∈ X. If (I − ℓ̂(iη))x ∈ rgU(iη) then

αŜ(α + iη)x→ 0 (α→ 0+).

Proof. As T11 is a bounded resolvent for (EIE) (cf. Proposition 3.3.3) its Laplace trans-
form exists on C+ (strongly as a Bochner integral) and is given by T̂11(λ) = U(λ)−1

for λ ∈ C+. Moreover αU(α + iη)−1 is uniformly bounded in α ∈ (0,∞) as eiηT11 is
bounded.

First let y = U(iη)z for some z ∈ D(A). Assumption (a) implies that αℓ̂(α+ iη) → 0
strongly as α→ 0+. From this convergence, the boundedness of αU(α+ iη)−1 uniformly
in α ∈ (0,∞) and

U(α + iη)−1U(iη) = U(α + iη)−1(U(iη) − U(α + iη)) + I

= αU(α + iη)−1(ℓ̂(α + iη) − I)

+ iηU(α + iη)−1(ℓ̂(α + iη) − ℓ̂(iη)) + I

(3.4.2)

we conclude that αU(α + iη)−1y = αU(α + iη)−1U(iη)z → 0 as α → 0+. (We remark
that (3.4.2) is a variant of the well-known relation R(λ,A)A = λR(λ,A) − I.)

For y ∈ rgU(iη) we choose a sequence (yn) ⊆ rgU(iη) converging to y as n → ∞.
The boundedness of αU(α + iη)−1 uniformly in α ∈ (0,∞) implies that for any ε > 0
we can find n ∈ N and α0 > 0 such that ‖αU(α + iη)−1(yn − y)‖ ≤ ε/2 (α ∈ (0, α0))
and ‖αU(α + iη)−1yn‖ ≤ ε/2 (α ∈ (0, α0)). Hence αU(α + iη)−1y → 0 as α → 0+ for
all y ∈ rgU(iη).

From the continuity of α 7→ ℓ̂(α + iη)x at α = 0 (which follows from (a)) and the
uniform boundedness of αU(α + iη)−1 we conclude that

αŜ(α + iη)x = αU(α + iη)−1(ℓ̂(iη) − ℓ̂(α+ iη))x

+ αU(α + iη)−1(I − ℓ̂(iη))x→ 0 (α → 0+). �

3.4.2 Lemma. Let f ∈ Yp and g(t) :=
∫∞

0
ℓ(t+s)ḟ(−s) ds (t ≥ 0). Then P1T (·)

(
0
f

)
=

P1(T ∗
(
g(·)
0

)
).

Proof. Let

u(s) :=

{
P1T (s)

(
0
f

)
if s ≥ 0,

f(s) if s < 0,
v(s) :=

{
P1T (s)

(
0
f

)
if s ≥ 0,

0 if s < 0.
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As
(

0
f

)
∈ D(A) and u(0) = v(0) = 0 both functions are weakly differentiable on R and

u̇(t) = Au(t) +

t∫

−∞

ℓ(t− s)u̇(s) ds

= Au(t) +

t∫

0

ℓ(t− s)u̇(s) ds+

∞∫

0

ℓ(t+ s)ḟ(−s) ds

= Au(t) +

t∫

−∞

ℓ(t− s)v̇(s) ds+

∞∫

0

ℓ(t+ s)ḟ(−s) ds (t ≥ 0).

Therefore v is the solution to the inhomogeneous abstract Cauchy problem associated
with A for the initial value 0 and the inhomogeneity g. Hence u|R+ = v|R+ = P1(T ∗
( g0 )). �

We are now prepared to prove a stability results for solutions of (IDE•) in the case
that we have a delay semigroup solving (IDE•).

3.4.3 Theorem. Assume that

Σ := R \ {η ∈ R; Ŝ has a holomorphic extension to a neighbourhood of iη}

is countable and that the range of U(iη) is dense in X for all η ∈ R. Then S is strongly
stable.

Proof. We refer the reader to [4; Chapter 4] for the notions of ergodicity and frequency
we are now going to employ.

Let x ∈ X. We first show that u := S(·)x ∈ Cub(R+;X). Let t, h ∈ R+. From

S(t+ h)x− S(t)x = P1T (t)
(
T (h) − I

)( x
x · 1(−∞,0)

)
,

the boundedness of the operator family P1T and the convergence T (h)−I → 0 strongly
as h→ 0 we infer the uniform continuity of S(·)x. Hence S(·)x ∈ Cub(R+;X).

Next we show that u is totally ergodic with respect to the left translation semi-
group (which we denote by S) on Cub(R+;X) and the set of frequencies is empty, i.e.
1
τ

∫ τ
0
e−iηsS(s)u ds → 0 (τ → ∞) in Cub(R+;X) for all η ∈ R. To this end we extend u

and set u(ϑ) := x for ϑ ∈ (−∞, 0). Further let F (s) := us ∈ Zp (s ∈ R+). Since we can
write

1

τ

τ∫

0

e−iηsS(s)u ds =
1

τ

τ∫

0

e−iηsu(s+ ·) ds

= R+ ∋ t 7→ 1

τ

τ∫

0

e−iηsP1T (t)

(
u(s)
us

)
ds
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we will first show that

α

(
P1T (t)

(
u(·)
F (·)

))∧

(α+ iη) = αP1T (t)

(
û(α+ iη)

F̂ (α + iη)

)
→ 0 (α→ 0+)

uniformly in t ∈ R+; then the total ergodicity of u and the emptiness of the set of
frequencies follow from [4; Theorem 4.2.7]), applied to the function

(R+ ∋ s 7→ e−iηsS(s)u) ∈ Cb(R+;Cbu(R+;X)).

For λ ∈ C let ελ(ϑ) := eλϑ (ϑ ∈ (−∞, 0)). As rgU(iη) is dense in X for all η ∈ R the
application of Lemma 3.4.1 yields that αû(α + iη) → 0 (α → 0+). The boundedness

of P1T implies that αP1T (t)

(
û(α + iη)

0

)
→ 0 (α → 0+) uniformly in t ∈ R+. For the

Laplace transform of F we compute

F̂ (α+ iη) =



(−∞, 0) ∋ ϑ 7→
−ϑ∫

0

e−(α+iη)tx dt+

∞∫

−ϑ

e−(α+iη)tu(t+ ϑ) dt





=
x

α+ iη

(
1(−∞,0) − εα+iη

)
+ û(α + iη)εα+iη

= û(α+ iη) · 1(−∞,0) +

(
x

α+ iη
− û(α+ iη)

)(
1(−∞,0) − εα+iη

)
. (3.4.3)

For the first summand in (3.4.3) we observe that αû(α + iη) · 1(−∞,0) → 0 in Zp as

α→ 0+. Hence αP1T (t)
(

0
û(α+iη)·1(−∞,0)

)
→ 0 uniformly in t ∈ R+.

Let xα,η := x
α+iη

− û(α + iη). In order to deal with the second summand we first
assume that η = 0. As αxα,0 = x + αû(α + iη) → x (α → 0+) the elements αxα,0 are
uniformly bounded for α ∈ (0, 1]. Since
∥∥y(1(−∞,0) − εα)

∥∥
Zp

≤
∥∥y(1(−∞,0) − εα)

∥∥
Yp

≤ α‖y‖ ‖εα‖p = α1−1/pp−1/p‖y‖ (3.4.4)

for y ∈ X we see that

αxα,0
(
1(−∞,0) − εα

)
→ 0 (α → 0+)

in Zp. Hence by the boundedness of P1T we conclude that αP1T (t)
(
û(α)

F̂ (α)

)
→ 0 (α →

0+) uniformly in t ∈ R+.
Now we assume that η 6= 0. By using Lemma 3.4.2 we can write the second summand
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in (3.4.3) as

∥∥∥∥αP1T (t)

(
0

xα,η
(
1(−∞,0) − εα+iη

)
)∥∥∥∥

=

∥∥∥∥∥∥
α

t∫

0

∞∫

0

T11(t− s)ℓ(s+ r)xα,η(α + iη)e(α+iη)r dr ds

∥∥∥∥∥∥

≤Mα|α + iη|
∞∫

0

∞∫

0

‖ℓ(s+ r)xα,η‖ dr ds

= Mα|α + iη|
∞∫

0

ρ∫

0

‖ℓ(τ + (ρ− τ))xα,η‖ dτ dρ

= Mα|α + iη|
∞∫

0

ρ‖ℓ(ρ)xα,η‖ dρ,

where M := supt∈R+
‖T11(t)‖ < ∞. Let k(ρ) := ρℓ(ρ) (ρ ∈ R+). By assumption (a)

and the closed graph theorem the operator (y 7→ k(·)y) belongs to L(X,L1(R+;X)).
Therefore

∥∥∥∥αP1T (t)

(
0

xα,η
(
1(−∞,0) − εα+iη

)
)∥∥∥∥ ≤M |α + iη| ‖k‖L(X,L1(R+;X)) α‖xα,η‖.

Since η 6= 0 we have αxα,η → 0 as α → 0+. Thus αP1T (t)
(

0
xα,η(1(−∞,0)−εα+iη)

)
converges

to 0 as α → 0+ uniformly in t ∈ R+. Hence we see that αP1T (t)
(
û(α+iη)

F̂ (α+iη)

)
→ 0

(α→ 0+) uniformly in t ∈ R+.
So we have shown that u is totally ergodic with respect to the left translation semi-

group on Cub(R+;X) with an empty set of frequencies. Now [4; Corollary 4.7.8] (using
the countability of Σ) implies that S(·)x ∈ C0(R+;X). �

We conclude with some remarks.

3.4.4 Remarks. (a) If T is a C0-semigroup then the function T (·)x is automatically
uniformly continuous for all x ∈ X provided that T is bounded. This easily follows
from the semigroup law. For solution operator families of integro-differential equations
boundedness generally does not imply uniform continuity.

(b) Assume that R is a resolvent for (EIE) with growth bound ω ∈ R. Then R̂(λ)
exists for Reλ > ω and U(λ)R̂(λ) = I. Thus if U(λ) is invertible then U(λ)−1 = R̂(λ).
We note that, unlike to the evolutionary integral equations dealt with in [58], we cannot
deduce the equation R̂(λ)U(λ) = I to obtain invertibility of U(λ) for Reλ > ω due
to missing commutativity; see in particular equations (6.2) and (6.3) or (6.5) and (6.6)
in [58] for the relevant commutativity type properties in the context of evolutionary
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integral equations. If we additionally assume that R∗ (A ·1[0,∞) +ℓ) = (A ·1[0,∞) +ℓ)∗R
on DA, then it is easy to show that R̂(λ)U(λ) = I and invertibility of U(λ) follows.

(c) Unlike to the spaces Zp for p ∈ (1,∞) we do not have the convergence of εα to
ε0 = 1(−∞,0) in Z1, cf. the estimate (3.4.4). (In fact, one can show that ε0 6∈ X1

Z1.) For
this reason we cannot prove Theorem 3.4.3 for p = 1.

(d) In the proof of Theorem 3.4.3 we have to distinguish the cases η = 0 and η 6= 0
partly due to the fact that x · εiη belongs to Zp if and only if x = 0 or η = 0. Assume
that x 6= 0 and f := x · εiη ∈ Zp. Then f ′ = iηf ∈ Zp and therefore f ∈ Z1

p . By
Corollary 3.2.3 we see that f ′ ∈ Lp. From this we immediately conclude that η = 0.
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The Sobolev Tower (Xn
A)n∈Z is a family of spaces associated with a generator A of

a C0-semigroup on a Banach space X = X0
A. For n > 0 the space Xn

A is the domain
of An equipped with the graph norm coming from An. For n < 0 the space Xn

A is the
completion of X equipped with the norm (A−ω)n for some ω ∈ R larger than the growth
bound of the C0-semigroup generated by A. In the perturbation theory of C0-semigroups
the “floor” (Xn

A)n∈{−1,0,1} is of particular interest. For example these three spaces remain
invariant (up to an equivalent norm) under a bounded perturbation of A. This stability
property allows the transfer of the well-known bounded perturbation theorem to the
spaces X1

A and X−1
A : If B1 ∈ L(X1

A) and B2 ∈ L(X−1
A ) then A+B1 and (A−1 +B2)|X are

generators of C0-semigroups onX; cf. [39; Corollary III.1.5]. (For the definition of Aα for
α ∈ R see Proposition 4.1.2 and [39; Definition II.5.4]. The part of an operator C in X is
the operator C|X defined by C|X x := Cx for x ∈ D(C|X) := {x ∈ D(C) ∩X ; Cx ∈ X}.
Equivalently we can define C|X := C ∩ (X ×X).)

The idea of shifting perturbation theorems on the Sobolev tower also occurs in [39;
Corollary III.3.22] and [32; Theorem 1].

In [39; Exercise VI.7.10(3)] this method was applied to inhomogeneous abstract Cau-
chy problems using abstract Hölder spaces, which extend the Sobolev Tower to a con-
tinuous scale of interpolation and extrapolation spaces.

The objective of this chapter is the application of the concept to the scale (Xγ
A)γ∈R of

fractional power spaces related to A; see Section 4.1 for their definition. As we will see
this scale is more suitable for it has a better iteration property (cf. Theorem 4.1.4 and
[39; Proposition II.5.35]).

For a general introduction to Banach scales and in particular fractional power scales
we refer to [3; Chapter V]. There one can also find a more complicated proof of the
iteration property in a more general context (cf. [3; Theorem V.1.5.4]).

Besides the iteration property our main abstract tool is a stability property for certain
fractional power spaces Xγ

A under perturbations of A. Namely if A and C are generators
of C0-semigroups and C = (A−1 +B)|X for some B ∈ L(Xγ1

A , X
γ2
A ) with γ1, γ2 ∈ (−1, 1)

and γ1 − γ2 < 1 then we will see that for α ∈ (γ1 − 1, γ2 + 1] the spaces Xα
A and Xα

C are
equal with equivalent norms.

This stability property together with the iteration property allows us to shift pertur-
bation theorems (mainly the Desch-Schappacher and the Miyadera-Voigt perturbation
theorem) on the continuous scale of fractional power spaces. In applications to in-
homogeneous abstract Cauchy problems, various integro-differential equations as well
as delay equations in the Lp-context, this notion yields well-posedness conditions with
mixed fractional time and space regularity conditions on the inhomogeneities and delay
terms, respectively, in these equations.

The chapter is organised as follows. In Section 4.1 we introduce fractional powers
for generators of C0-semigroups and for slightly more general operators. We also show
the iteration property, determine Favard spaces associated to the scale of generators
induced by the power spaces and provide a preparative estimate for certain compositions
of fractional powers.

Sections 4.2 and 4.3 are devoted to the proof of our main tool on the stability of
fractional power spaces under perturbation of the underlying generator. In Section 4.3
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σ(A)

Σ γ

Figure 1

we also show stability of certain Favard spaces, which we will use in our applications.
In Section 4.4 we use the previously developed tools to shift perturbation theorems

on the scale of fractional power spaces.
In Section 4.5 we provide two conditions on perturbing operators related to Desch-

Schappacher and Miyadera-Voigt perturbations which ensure that the perturbing oper-
ator belongs to the class of operators covered in the previous sections.

Applications are presented in Sections 4.6, 4.7 and 4.8. Our main results for in-
homogeneous abstract Cauchy problems are Propositions 4.6.1 and 4.6.3; see also Re-
marks 4.6.2(c). For integro-differential equations we mention Propositions 4.7.2, 4.7.3,
4.7.5, 4.7.7, 4.7.9 and 4.7.10 and Corollary 4.8.7; see also Remark 4.7.4. The perturbation
results for delay semigroups are stated in Propositions 4.8.5 and 4.8.6.

4.1 Fractional Power Spaces

We recall the definition and elementary properties of fractional powers of generators of
C0-semigroups and similar operators. We also prove some elementary properties of the
induced fractional power spaces. In particular we show that fractional power spaces of
generators of C0-semigroups possess the iteration property.

Let K(X) be the set of closed and densely defined operators A on the Banach space
X whose resolvent set ρ(A) contains an open sector Σ such that R+ := [0,∞) ⊆ Σ ⊆ C

and ‖R(λ,A)‖ ≤ M
1+|λ|

for all λ ∈ Σ and some M ≥ 0. We mention that generators of
C0-semigroups with negative growth bound belong to K(X).

Let A ∈ K(X). The fractional power Aα for α < 0 is defined by

Aα :=
1

2πi

∫

γ

λαR(λ,A) dλ

for a suitable path γ ∈ Σ \ R+ (cf. Figure 1). and with λ 7→ λα = eα lnλ defined on
C\R+ (here ln denotes a branch of the logarithm on C\R+) (cf. [27; Definition III.2.18]).
The required estimate for the resolvent ensures that the integral exists. By Cauchy’s
integral theorem the integral is independent of the path γ. For details on this approach
to fractional powers we refer to [39; Section II.5].
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For α ∈ (0, 1) we also mention the formulas

A−α = cα

∞∫

0

s−αR(s, A) ds, cα :=
1

2πi
(1 − e−2πiα), (4.1.1)

A−α = c̃α

∞∫

0

sα−1T (s) ds, c̃α :=
(−1)−α

Γ(α)
, (4.1.2)

where in the second formula we assume that A is the generator of a C0-semigroup T (cf.
[39; Corollary II.5.28, Exercise II.5.36(2)]).

The operators Aα are injective for α < 0. For α > 0 we define Aα on X as the inverse
of A−α with domain D(Aα) := rgA−α. We set A0 := I. To justify the terminology
we note that for α, β ∈ R the operators AαAβ and Aα+β agree on D(Aγ) with γ :=
max{α, β, α+ β} (for the proof of these properties we refer to [39; Proposition II.5.30,
Theorem II.5.32]).

For α ≥ 0 the norm ‖x‖α := ‖Aαx‖ (x ∈ D(Aα)) makes Xα := (D(Aα), ‖ · ‖α) a
Banach space. For α < 0 the space X equipped with the norm ‖x‖α := ‖Aαx‖ (x ∈ X)
is not complete in general. By Xα we denote the completion of X with respect to ‖ · ‖α.
This scale of Banach spaces includes the Sobolev tower (Xn)n∈Z (where Xn = Xn). We
again refer to [39; Proposition II.5.33] for details on this scale and on the (close) relation
to the abstract Hölder spaces. We call (Xα)α∈R the fractional power tower. (We often
write Xα

A instead of Xα to highlight the associated operator. When considering iterated
fractional power spaces we sometimes need to write ‖ · ‖Xα

A
or ‖ · ‖Xα for the norm on

Xα.)

4.1.1 Lemma. Let X be a Banach space and A ∈ K(X).
(a) For α, β ≥ 0 we have A−βXα = Xα+β.
(b) Let α, β ∈ R, α ≥ β. Then Xα is densely embedded in Xβ.

Proof. In order to proof (a) we observe that x ∈ Xα+β if and only if x = A−(α+β)y =
A−β(A−αy) for some y ∈ X if and only if x = A−βz for some z ∈ Xα.

We prove (b) for β ≥ 0 first. To this end we choose n ∈ N such that β + n ≥ α. Let
x ∈ Xβ and y := Aβx ∈ X. As Xn is densely embedded in X there exists a sequence
(ym) ⊆ Xn which converges to y as m→ ∞. As A−β is a bounded operator we conclude
that (A−βym) ⊆ Xβ+n ⊆ Xα tends to A−βy = x.

If β ≤ 0 and α ≤ 0 then the assertion follows from X ⊆ Xα ⊆ Xβ and the fact that
X is densely embedded in Xβ.

Last let β ≤ 0 and α > 0 and choose n ∈ N, n ≥ α. For x ∈ X there exists a sequence
(xm) ⊆ Xn, converging to x in X. The boundedness of Aβ in X implies that (xm)
converges to x in Xβ. As X is densely embedded in Xβ this shows assertion (b). �

4.1.2 Proposition. Let A be the generator of a C0-semigroup T on a Banach space X
with negative growth bound.

(a) The operators T (t) (t ∈ R+), R(λ,A) (λ ≥ 0) and the fractional powers Aα

(α ∈ R) commute with each other.
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(b) For α ≥ 0 the operators T (t) leave the spaces Xα invariant (t ∈ R+). Moreover
they are continuous with respect to the norm ‖ · ‖α. The restrictions of T (t) to Xα are
denoted by Tα(t).

(c) For α < 0 the operators T (t) are continuous with respect to the norm ‖ · ‖α and
therefore extend to operators Tα(t) on Xα (t ∈ R+).

(d) Tα is a C0-semigroup on Xα for all α ∈ R.
(e) For α ≥ 0 the generator Aα of Tα is the part of A in Xα. Its domain is Xα+1.
(f) For α < 0 the generator Aα of Tα is the closure of A in Xα. Its domain is Xα+1.
(g) For any α, β ∈ R, α ≤ β the operator Aβ is the part of Aα in Xβ and Aα is the

continuous extension of Aβ to an isomorphism of Xα+1 to Xα.

Proof. For α < 0, assertion (a) follows from the definition of fractional powers. In
particular this implies that T (t)X−α ⊆ X−α. Therefore we obtain for α > 0 from
T (t)A−α = A−αT (t) and the definition of Aα as the inverse of A−α that T (t) and Aα

commute. The commutativity of the fractional powers and the resolvents of A follows
from the integral representation for the resolvents of A.

We conclude the continuity of T (t) with respect to ‖ · ‖α for α ∈ R from

‖T (t)x‖α = ‖AαT (t)x‖ = ‖T (t)Aαx‖ ≤ ‖T (t)‖ ‖Aαx‖ = ‖T (t)‖ ‖x‖α (4.1.3)

(x ∈ Xmax{0,α}). This shows (b) and (c). In order to proof (d) we need to show that
Tα(t) is strongly continuous. For x ∈ Xmax{0,α} we conclude the strong continuity from

‖T (t)x− x‖α = ‖Aα(T (t)x− x)‖ = ‖(T (t) − I)(Aαx)‖ → 0 (t→ 0).

For α ≥ 0 this shows assertion (d). For α < 0 the strong continuity of Tα follows from
the denseness of X in Xα and the uniform boundedness of Tα(t) for t ∈ R+ (note that
(4.1.3) implies ‖T (t)‖L(Xα) ≤ ‖T (t)‖L(X)).

Let α ∈ R and x, y ∈ Xmax{0,α}. In order to determine the generator of Tα(t) we
compute

∥∥∥∥
Tα(t)x− x

t
− y

∥∥∥∥
α

=

∥∥∥∥
T (t)(Aαx) − (Aαx)

t
−Aαy

∥∥∥∥ . (4.1.4)

First assume that α ≥ 0. Then (4.1.4) converges to 0 if and only if Aαx ∈ X1 (i.e.
x ∈ Xα+1; cf. Lemma 4.1.1(a)) and Aαy = A(Aαx) = Aα+1x, thus y = Ax. This shows
(e). If α < 0 then (4.1.4) converges to 0 if and only if Aα+1x = Aαy, thus x = A−1y.
Therefore A is the part of Aα in X. We already have shown that X1 is dense in Xα and
invariant under Tα. By Nelson’s Lemma X1 is a core for Aα. Hence Aα is the closure of
A in Xα. As the graph norm of Aα on X1 is equivalent to ‖ · ‖α+1 and X1 is dense in
Xα+1 we see that D(Aα) = Xα+1. This shows (f).

Let α, β ∈ R, α ≤ β. From (d) and (e) it is clear that Aβ is the part of Aα in Xβ

and Aα is the unique continuous extension of Aβ to a bounded operator from Xα+1 to
Xα. It remains to show that Aα is an isomorphism. To this end we first observe that by
(4.1.3) the C0-semigroups Tα have negative growth bound for all α ∈ R. Therefore Aα
is a bijective mapping from Xα+1 to Xα. As ‖Aαx‖α = ‖Aα+1x‖ = ‖x‖α+1 (x ∈ Xα+1)
we see that Aα is isometric. �
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In applications we need iterated fractional power spaces. For the corresponding result
on iterated abstract Hölder spaces we refer to [39; Proposition II.5.35]. We note that
in contrast to abstract Hölder spaces the iteration of fractional power spaces works for
all orders (cf. Theorem 4.1.4). This is in fact a crucial advantage which will allow us
to derive new perturbation theorems from known ones. First we provide an embedding
lemma for iterated fractional power spaces. We write Aβα as an abbreviation for (Aα)

β.
We also omit the generator in the index of fractional power spaces whenever we think
that the corresponding generator is clear from the context.

4.1.3 Lemma. Let A be the generator of a C0-semigroup on a Banach space X with
negative growth bound. Further let α, β, γ ∈ R. If one of the following two conditions is
met, then Xγ

A is dense in (Xα
A)βAα

.
(a) β ≤ 0 and γ ≥ α.
(b) β ≥ 0 and γ ≥ max{β, α+ β}.

Proof. If assumption (a) holds, then (Xα)β is the completion of Xα with respect to
the norm ‖ · ‖(Xα)β . Therefore it suffices to show that Xγ is dense in Xα with respect
to ‖ · ‖(Xα)β . To this end let x ∈ Xα. As Xγ is dense in Xα there exists a sequence
(xn) ⊆ Xγ such that xn → x in Xα. The continuity of Aβα implies that Aβαxn → Aβαx in
Xα. This is equivalent to xn → x with respect to ‖ · ‖(Xα)β and shows the assertion for
assumption (a).

Now suppose that (b) holds. First we show that Xγ ⊆ (Xα)β . To this end let x ∈ Xγ

and y ∈ X such that x = A−γy. From x = A−β(Aβ−γy) and β − γ ≤ min{0,−α}
we conclude that Aβ−γy ∈ Xα and thus x ∈ (Xα)β. Next let x ∈ (Xα)β and y ∈ Xα

such that x = A−β
α y. The denseness of Xγ−β in Xα allows us to choose a sequence

(yn) ⊆ Xγ−β such that yn → y in Xα. As A−β
α is continuous on Xα we infer that

Xγ ∋ A−β
α yn → A−β

α y = x. Thus Xγ is densely embedded in (Xα)β. �

For the following theorem we also refer to [3; Theorem V.1.5.4].

4.1.4 Theorem. Let A be the generator of a C0-semigroup on a Banach space X with
negative growth bound and α, β ∈ R. Then

(Xα
A)βAα

= Xα+β
A and (Aα)β = Aα+β .

Proof. Let γ := max{0, α, β, α + β}. By Lemma 4.1.3 we know that Xγ is dense in
(Xα)β. So it suffices to show that the norms ‖ · ‖Xα+β and ‖ · ‖(Xα)β agree on Xγ. This
is done by computing

‖x‖(Xα)β = ‖Aβαx‖α = ‖Aβx‖α = ‖Aα+βx‖ = ‖x‖α+β (x ∈ Xγ).

In order to prove the equality of the two generators we first observe that Aα and A
coincide on the domain X1∩Xα+1. Therefore (Aα)β and A agree on X1∩ (Xα)β+1. This
implies that (Aα)β and Aα+β agree on X1 ∩Xα+β+1. As this is a core for both operators
we obtain the equality. �
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We mention that if the norm onX is replaced by an equivalent norm then the fractional
power spaces only change by equivalent norms. We also point out that Xα

A−λ = Xα
A with

equivalent norms for all λ ≥ 0. We therefore always write Xα
A, even if the semigroup

generated by A does not have negative growth bound. The particular choice of λ will
not be relevant in the situations we shall encounter except for a few estimates where we
will mention the λ being used.

For the applications we have in mind we need the extrapolated Favard space F 0
Aα

of
Aα, which we will denote by F α

A (see (A.1) in the appendix for details). (The space F α
A

is not to be confused with the Favard space of fractional order α.)

4.1.5 Proposition. Let A be the generator of a C0-semigroup T on X with growth
bound less than ω ∈ R. Let α ∈ R. For the extrapolated Favard space F α

A of Aα the
equality F α

A = (Amin{−1,α−1} − ω)−αF 0
A holds.

Proof. Without loss of generality we assume that T has negative growth bound and
ω = 0. Let x ∈ Xα−1 and y := Aαmin{−1,α−1}x ∈ X−1. The assertion now follows from the
bijectivity of Aαmin{−1,α−1} from Xα−1 to X−1, the definition of the Favard space (A.1)
and

‖λR(λ,Aα−1)x‖α = ‖λAmin{0,α}R(λ,Aα−1)x‖
= ‖λR(λ,A−1)A

α
min{−1,α−1}x‖ = ‖λR(λ,A−1)y‖. �

Last we show that for an operator A ∈ K(X) and 0 ≤ α < β, the operators (A −
r)α(A−s)−β are bounded, uniformly for 0 ≤ r ≤ s. To this end let Σ be a suitable open
sector and M ≥ 0 such that ‖R(λ,A)‖ ≤ M

1+|λ|
(λ ∈ Σ). For 0 ≤ α < β and 0 ≤ r ≤ s

we define

A(α, β, r, s) :=
1

2πi

∫

γ

λα

(λ− (s− r))β
R(λ+ r, A) dλ, (4.1.5)

where γ is a path as in Figure 1. As α < β and ‖R(λ,A)‖ ≤ M
1+|λ|

for some M ≥ 0
and λ ∈ Σ the integral exists. Moreover, by Cauchy’s integral theorem the expression is
independent of the particular choice of γ.

4.1.6 Lemma. Let A ∈ K(X), 0 ≤ α < β and 0 ≤ r ≤ s. Then

A(α, β, r, s) = (A− r)α(A− s)−β. (4.1.6)

Proof. First we choose paths γ1 and γ2 in Σ \ R+, such that γ1 lies to the right of γ2.
Replacing A with A− r we can assume that r = 0 without loss of generality. We start
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by computing

A−αA(α, β, 0, s) =
1

(2πi)2

∫

γ1

∫

γ2

µ−α λα

(λ− s)β
R(µ,A)R(λ,A) dλ dµ

=
1

(2πi)2

∫

γ1

∫

γ2

µ−α λα

(λ− s)β

[
R(µ,A)

λ− µ
+
R(λ,A)

µ− λ

]
dλ dµ

=
1

2πi

∫

γ1

µ−α



 1

2πi

∫

γ2

λα

(λ− s)β
1

λ− µ
dλ



R(µ,A) dµ

+
1

2πi

∫

γ2

λα

(λ− s)β



 1

2πi

∫

γ1

µ−α

µ− λ
dµ



R(λ,A) dλ

=
1

2πi

∫

γ2

λα

(λ− s)β
λ−αR(λ,A) dλ

=
1

2πi

∫

γ2−s

λ−βR(λ,A− s) dλ = (A− s)−β.

Here we have used that by Cauchy’s integral theorem we have

1

2πi

∫

γ2

λα

(λ− s)β
1

λ− µ
dλ = 0 (µ ∈ γ1),

1

2πi

∫

γ1

µ−α

µ− λ
dµ = λ−α (λ ∈ γ2).

From A−αA(α, β, 0, s) = (A − s)−β and the definition of Aα as the inverse of A−α we
obtain the assertion. �

4.1.7 Proposition. Let A ∈ K(X) and 0 ≤ α < β. Then there exists K ≥ 0, depending
only on α and β, such that

‖(A− r)α(A− s)−β‖ ≤ K (0 ≤ r ≤ s).

Proof. We use (4.1.6) and the integral definition (4.1.5) of A(α, β, r, s) to show the
assertion. To this end we choose δ > 0 and m > 0, both sufficiently small, such that
γ1/2(x) := x± im(x+ δ) (x ∈ [−δ,∞)) are in Σ. Then for λ ∈ γ1/2(R+) we obtain (with
s′ := s− r)

∣∣∣∣
λα

(λ− s′)β

∣∣∣∣ = |λ|α−β
∣∣∣∣

λ

λ− s′

∣∣∣∣
β

≤ |λ|α−β
( |λ|
| Imλ|

)β
≤ |λ|α−β

(
m2 + 1

m2

)β/2
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and ‖R(λ+ r, A)‖ ≤ M
1+|λ+r|

≤ M
1+|λ|

, whereas for λ ∈ γ1/2([−δ, 0)) we have

∣∣∣∣
λα

(λ− s)β

∣∣∣∣ ≤ |λ|α−β
( |λ|
|λ|

)β
= |λ|α−β

and ‖R(λ + r, A)‖ ≤ M ′ for some M ′ ≥ 0 independent of r. Therefore the norm of
the integrand in (4.1.5) is bounded uniformly in s and r by an integrable function for
the path consisting of γ1([−δ,∞)) and γ2([−δ,∞)). Thus the operators A(α, β, r, s) are
bounded uniformly in s and r. �

4.1.8 Remark. We were not able to show the assertion in Proposition 4.1.7 for α = β.
This improvement would at least simplify the proof of Lemma 4.3.1.

4.2 Preliminary Estimates

Throughout this section we assume that A and C are operators in K(X) for some Banach
space X. Let M ≥ 0 such that ‖R(s, A)‖, ‖R(s, C)‖ ≤M(1+s)−1 for all s ≥ 0. Further
we assume that there are γ1 ∈ [0, 1) and γ2 ∈ (−1, 0] with γ1 − γ2 < 1, and a bounded
operator B : Xγ1

A → Xγ2
A such that C = (Aγ2 + B)|X (here the index “ |X” denotes the

part of Aγ2 + B in X). We also define the important quantity Γ := 1 − γ1 + γ2, which
is by assumption strictly positive.

4.2.1 Lemma. Let Y be a Banach space. Let E ∈ K(Y ), α, β ≥ 0 and ε > 0 such that
α + ε < β. There exists K ≥ 0, only depending on α, β and ε, such that the following
assertions hold.

(a) ‖(E − s)−α‖ ≤ K(1 + s)−α (0 ≤ s).
(b) ‖(E − r)α(E − s)−β‖ ≤ K(1 + s− r)α+ε−β (0 ≤ r ≤ s).

Proof. Let M ′ ≥ 0 be such that ‖R(λ,E)‖ ≤ M ′

1+λ
for all λ ≥ 0. For α ∈ N∪{0} the first

statement is a well-known fact. For α ∈ (0, 1) we verify it by computing (using (4.1.1))

‖(E − s)−α‖ ≤ |cα|
∞∫

0

r−α‖R(r + s, E)‖ dr

≤ |cα|M ′

∞∫

0

r−α(1 + r + s)−1 dr = |cα|M ′(1 + s)−α
∞∫

0

t−α(1 + t)−1 dt,

where in the last step we have used the substitution t = r/(1 + s). If α = k + α0 with
k ∈ N and α0 ∈ (0, 1) assertion (a) follows from (E − s)−α = (E − s)−k(E − s)−α0 and
the estimates above.

The second assertion follows from the first one and Proposition 4.1.7 by writing

(E − r)α(E − s)−β = (E − r)α(E − s)−α−ε(E − s)α+ε−β. �
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For later use we single out the following consequence of Lemma 4.2.1 (it also follows
from [39; Proposition II.5.33 and Lemma III.2.13]).

4.2.2 Lemma. Let Y be a Banach space and E ∈ K(Y ). Let γ ∈ [0, 1) and B : Y γ
E → Y

be a bounded operator. Then B has E-bound 0.

Proof. Let β ∈ (γ, 1) arbitrary. The assertion follows from Lemma 4.2.1 and

‖Bx‖ ≤ ‖BE−γ‖L(Y )‖Eγ(E − λ)−β‖L(Y )‖(E − λ)β−1‖L(Y )‖(E − λ)x‖

which holds for all x ∈ D(E) and λ ≥ 0. �

Our next aim is a formula for the resolvents of C in terms of A and B. For λ ≥ 0,
0 ≤ ε < Γ/2 and δ ∈ [−γ2, 1 − γ1] we define the operators

Gλ,ε := (Aγ2 − λ)γ2−εB (A− λ)−γ1−ε,

Hλ,δ := −(A−δ − λ)−δ B (A− λ)δ−1

on X. These operators are bounded by the assumptions on B. From Lemma 4.2.1(b)
and

Gλ,ε =
[
(Aγ2 − λ)γ2−εA−γ2

γ2

]
G0,0

[
Aγ1(A− λ)−γ1−ε

]

=
[
A−γ2(A− λ)γ2−ε

]
G0,0

[
Aγ1(A− λ)−γ1−ε

]

we see that Gλ,ε are uniformly bounded in λ ≥ 0, provided ε > 0. Therefore if δ ∈
(−γ2 + ε, 1 − γ1 − ε) there exists K ≥ 0, depending only on ε such that

‖Hλ,δ‖ = ‖(A− λ)−δ−γ2+εGλ,ε (A− λ)δ−1+γ1+ε‖ ≤ K(1 + λ)2ε−Γ. (4.2.1)

As 2ε− Γ < 0 we conclude Hλ,δ → 0 as λ → ∞. Hence I −Hλ,δ becomes invertible for
λ sufficiently large.

For δ ∈ [−γ2, 1 − γ1] and λ ≥ 0 the operators C̃−δ := A−δ + B on X−δ
A with domain

X1−δ
A satisfy

C̃−δ = Aδ−δ(I −H0,δ)A
1−δ,

C = Aδ(I −H0,δ)A
1−δ,

λ− C̃−δ = −(A−δ − λ)δ (I −Hλ,δ) (A− λ)1−δ. (4.2.2)

We already have seen that I −Hλ,δ is a bijective operator on X for λ sufficiently large
and δ ∈ (−γ2, 1− γ1). Moreover (A−δ − λ)δ and (A− λ)1−δ are bijective mappings from
X to X−δ

A and from X1−δ
A to X, respectively. Hence λ− C̃−δ is a bijective mapping from

X1−δ
A to X−δ

A and the resolvent is given by

R(λ, C̃−δ) = −(A− λ)δ−1(I −Hλ,δ)
−1(A−δ − λ)−δ. (4.2.3)

This almost proves the following representation formula for the resolvent of C.
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4.2.3 Proposition. Let δ ∈ (−γ2, 1 − γ1). There exists h ≥ 0 (depending on δ) such
that for all λ ≥ h the resolvent R(λ, C) is given by

R(λ, C) = −(A− λ)δ−1(I −Hλ,δ)
−1(A− λ)−δ. (4.2.4)

Proof. We know that λ− C is invertible for all λ ≥ 0. As λ− C is the part of λ− C̃−δ

in X, which means that the graph of λ − C is the graph of λ − C̃−δ restricted to the
space X × X, we see that R(λ, C) is the part of R(λ, C̃−δ) in X. Let h ≥ 0 such that
Hλ,δ is invertible for all λ ≥ h. The proof is done by observing that for λ ≥ h the part
of R(λ, C̃−δ) in X is obviously given by (4.2.4). �

Formula (4.2.3) for the resolvent of C̃−δ implies that there is a K ≥ 0 such that for all
λ ≥ h we have ‖R(λ, C̃−δ)‖ ≤ K(1+λ)−1. This means that C̃−δ−h belongs to K(X−δ

A ).
We will use fractional powers of this operator in the next section.

We now turn our attention to the difference of the resolvents R(λ, C) and R(λ,A). We
recall that for a bounded perturbation B the norm of this difference can be estimated
by K(1 + λ)−2 for some K ≥ 0 and all λ ≥ 0 (cf. Remarks 4.5.2(a)).

4.2.4 Lemma. Let δ ∈ (−γ2, 1 − γ1). Let h ≥ 0 be as in Proposition 4.2.3. For λ ≥ h
the following assertions hold.

(a) R(λ, C) −R(λ,A) maps X into Xγ2+1 and

R(λ, C) −R(λ,A) = −(A− λ)δ−1Hλ,δ(1 −Hλ,δ)
−1(A− λ)−δ. (4.2.5)

(b) Let β1 ∈ [0, δ], β2 ∈ [0, γ2 + 1). For ε > 0 there exist K,L ≥ 0 such that

‖(R(λ, C̃−δ) − R(λ,A−δ))(A−δ − λ)β1‖ ≤ K(1 + λ)β1−1−Γ+ε, (4.2.6)

‖(A− λ)β2(R(λ, C) − R(λ,A))‖ ≤ L(1 + λ)β2−1−Γ+ε. (4.2.7)

Proof. Equation (4.2.5) is obtained by computing

R(λ, C) − R(λ,A) = −(A− λ)δ−1(I −Hλ,δ)
−1(A− λ)−δ + (A− λ)(δ−1)−δ

= −(A− λ)δ−1Hλ,δ(1 −Hλ,δ)
−1(A− λ)−δ.

Using

(A− λ)δ−1Hλ,δ = −(A− λ)−1−γ2Gλ,0(A− λ)δ−1+γ1

we infer that the range of R(λ, C) − R(λ,A) is contained in Xγ2+1. In order to show
(4.2.6) we choose ε ∈ (0, (δ + γ2)/2) and compute

(R(λ, C̃−δ) − R(λ,A−δ))(A−δ − λ)β1

= −(A− λ)δ−1(1 −Hλ,δ)
−1Hλ,δ(A−δ − λ)−δ(A−δ − λ)β1

= (A− λ)δ−1 (1 −Hλ,δ)
−1 (A− λ)−δ−γ2+εGλ,ε (A− λ)β1+γ1−1+ε

Using Lemma 4.2.1(a) we obtain (4.2.6). The estimate (4.2.7) is derived similarly. �
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4.3 Perturbation of the Fractional Power Tower

In this section we investigate the stability of the fractional power spaces while perturb-
ing the underlying semigroup generator. Besides the iteration property the stability
properties will be our main tool in the remaining sections.

4.3.1 Lemma. Let A and C be generators of C0-semigroups on a Banach space X
with negative growth bound. Assume that there exists γ1 ∈ [0, 1), γ2 ∈ (−1, 0] with
Γ := 1− γ1 + γ2 > 0, and an operator B : Xγ1

A → Xγ2
A such that C = (Aγ2 +B)|X. Then

the followings assertions hold.
(a) Let h ≥ 0 such that (4.2.7) holds for all λ ≥ h. If α ∈ [0, γ2 + 1) then Xα

C ⊆ Xα
A

and (A− r)α(C − r)−α are bounded uniformly in r ≥ h.
(b) If α ∈ [0, 1− γ1), δ ∈ (−γ2, 1− γ1) ∩ [α, 1− γ1) and h ≥ 0 such that (4.2.6) holds

for all λ ≥ h, then (C̃−δ − r)−α(A−δ − r)α is bounded on X uniformly in r ≥ h.
(c) If α ∈ [0, γ2 + 1) then Xα

A ⊆ Xα
C and (C − h)α(A − h)−α is bounded for h ≥ 0

sufficiently large.
(d) If α ∈ [0, 1− γ1), δ ∈ (−γ2, 1− γ1) ∩ [α, 1− γ1) and h ≥ 0 such that (4.2.6) holds

for all λ ≥ h, then (A−δ − h)−α(C̃−δ − h)α is bounded on X.

Proof. In order to show (a) we first write

(C − r)−α = (A− r)−α + ((C − r)−α − (A− r)−α)

= (A− r)−α + cα

∞∫

0

s−α(R(s+ r, C) − R(s+ r, A)) ds.
(4.3.1)

From (4.2.7) and Lemma 4.2.1(b) we infer that for ε > 0 sufficiently small

I + (A− r)α cα

t∫

0

s−α(R(s+ r, C) − R(s+ r, A)) ds

= I + cα

t∫

0

s−α(A− r)α(A− s− r)−α−ε(A− s− r)α+ε

(R(s+ r, C) −R(s+ r, A)) ds

is a bounded operator on X and converges in operator norm as t→ ∞. The closedness
of (A− r)α implies that for x ∈ X we have (C − r)−αx ∈ Xα

A and thus Xα
C ⊆ Xα

A. From

(A− r)α(C − r)−α = I + cα

∞∫

0

s−α(A− r)α(R(s+ r, C) − R(s+ r, A)) ds,

where the integral exists in operator norm, we see that (A− r)α(C − r)−α are bounded
uniformly in r ≥ h.
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Assertion (b) immediately follows from (4.2.6) and Lemma 4.2.1(b) if we write

(C̃−δ − r)−α(A−δ − r)α

= I + cα

∞∫

0

s−α(R(s+ r, C̃−δ) −R(s+ r, A−δ))

(A−δ − s− r)α+ε(A−δ − s− r)−α−ε(A−δ − r)α ds,

for some ε > 0 sufficiently small.
The proof of (c) requires more labour. First we choose an arbitrary δ ∈ (−γ2, 1 − γ1)

and h ≥ 0 such that (4.2.6) and (4.2.7) hold. As in (4.3.1) we start by writing

(A− h)−α = (C − h)−α + cα

∞∫

0

s−α(R(s+ h,A) −R(s+ h, C)) ds.

We need to reason that (C − h)α(R(s + h,A) − R(s + h, C)) is a bounded operator on
X and that

I + cα

t∫

0

s−α(C − h)α(R(s+ h,A) − R(s+ h, C)) ds (4.3.2)

converges in operator norm as t→ ∞. To this end we expand

R(s+ h,A) − R(s+ h, C)

= (C̃−δ − s− h)δ−1
[
(C̃−δ − s− h)−δ(A−δ − s− h)δ

]

(I −Hs+h,δ)
[
(A− s− h)1−δ(R(s + h,A) −R(s+ h, C))

]
,

(4.3.3)

where we have used

C̃−δ − s− h = (A−δ − s− h)δ(I −Hs+h,δ)(A− s− h)1−δ.

By (b) and (4.2.7) the second, third and fourth bracketed expression in (4.3.3) are
bounded operators on X. Thus we can restrict the operator (C̃−δ − s − h)δ−1 in this
composition to the space X. As R(λ, C) is the part of R(λ, C̃−δ) in X we see that the
restriction of (C̃−δ − s− h)δ−1 is (C − s− h)δ−1. As (C − s− h)δ−1 maps X into X1−δ

C

and 1 − δ > α we conclude that R(s + h,A) − R(s + h, C) maps X into Xα
C . We infer

that (C − h)α(R(s+ h,A) −R(s+ h, C)) is a bounded operator.
In order to derive assertion (c) with a closedness argument as in (a) we now need to

show that the integral (4.3.2) exists in operator norm. To this end we use (4.3.3) to
rewrite the integrand of (4.3.2) as

s−α(C − h)α(R(s+ h,A) −R(s+ h, C))

= s−α
[
(C − h)α(C − s− h)δ−1

] [
(C̃−δ − s− h)−δ(A−δ − s− h)δ

]

(I −Hs+h,δ)
[
(A− s− h)1−δ(R(s+ h,A) −R(s+ h, C))

]
.
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We already have shown that (C̃−δ − s − h)−δ(A−δ − s − h)δ are uniformly bounded in
s ≥ 0. Applying the usual suspects Lemma 4.2.1(b) and (4.2.7) we obtain the integrable
bound Ks−α(1 + s)α−1−Γ+ε for some ε ∈ (0,Γ) and K ≥ 0. We now infer (c) as in (a)
by a closedness argument.

The proof of (d) is done very similarly to (c), so we only sketch it. We start with

(A−δ − h)−α(C̃−δ − h)α

= I + cα

∞∫

0

s−α(R(s+ h,A−δ) − R(s+ h, C̃−δ))(C̃−δ − h)α ds,

and then rewrite the integrand as

s−α(R(s+ h,A−δ) − R(s+ h, C̃−δ))(C̃−δ − h)α

= s−α
[
(R(s+ h,A−δ) −R(s+ h, C̃−δ))(A−δ − s− h)δ

]
(I −Hs+h,δ)

[
(A− s− h)1−δ(C − s− h)δ−1

] [
(C̃−δ − s− h)−δ(C̃−δ − h)α

]
.

First observe that by assumption 1− δ ∈ (γ1,min{γ2 + 1, 1−α}) ⊆ [0, γ2 + 1). Thus we
can apply (a) to see that (A− s− h)1−δ(C − s− h)δ−1 is bounded uniformly in s ≥ 0.
The remaining steps of the proof of (d) are now done as for (c), except for the fact that
(4.2.6) has to be invoked instead of (4.2.7). This yields the different restriction on α
compared to (c). �

After this trudge through tedious estimates we are ready to proof our main tool.

4.3.2 Theorem. Let A and C be generators of C0-semigroups on X with negative growth
bound. Assume that there exists B : Xγ1

A → Xγ2
A , with −1 < γ2 ≤ γ1 < 1 and γ1−γ2 < 1,

such that

C = (A−δ +B)|X = Aδ(I + A−δ
−δBA

δ−1)A1−δ

where δ := −min{0, γ2}. Then Xα
A = Xα

C with equivalent norms for all α ∈ (γ1 −1, γ2 +
1).

Proof. As Xα
A = Xα

A−h with equivalent norms for any h ≥ 0 (and similarly Xα
C = Xα

C−h)
it suffices to show Xα

A−h = Xα
C−h for some h ≥ 0 sufficiently large.

First assume that α ∈ (−1, 1). Then without loss of generality we can assume that
γ1 ≥ 0 and γ2 ≤ 0. If α ≥ 0 the assertion follows immediately from (a) and (c) of
Lemma 4.3.1, whereas for α < 0 we infer the assertion from (b) and (d).

Next we suppose that γ2 > 0 and α ∈ [1, γ2 + 1). We do the proof in two steps using
the iteration property of fractional power spaces (cf. Theorem 4.1.4). To this end we
set α′ := γ2, α′′ := α − α′, γ′1 = γ1, γ′′1 := γ1 − α′, γ′2 := 0 and γ′′2 := γ2 − α′ = 0. As
B is a bounded operator from X

γ′1
A to Xγ′2

A we first observe that Y := Xα′

A = Xα′

C with
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equivalent norms by the first part of this proof. Now B becomes a bounded operator
from Y

γ′′1
Aα′

→ Y
γ′′2
Aα′

. As α′′ ∈ [0, γ′′2 + 1) we see that

Xα
A = (Xα′

A )α
′′

Aα′
= Y α′′

Aα′
= Y α′′

Cα′
= (Xα′

C )α
′′

Cα′
= Xα

C .

The case γ1 < 0 and α ∈ (γ1 − 1,−1] is done similarly. �

4.3.3 Remark. The assumption Γ > 0 (i.e. γ1 − γ2 < 1) in Theorem 4.3.2 cannot be
dropped. For example let A be the generator of a C0-semigroup with negative growth
bound and assume that A is unbounded. Let B := −Aγ with γ ∈ [−1, 0]. Then
B ∈ L(Xγ+1, Xγ), and therefore Γ = 0. As C := (A∗ +B)|X = 0 we see that the spaces
Xα
A and Xα

C coincide only for α = 0.

4.3.4 Corollary. Let A, B and C be as in Theorem 4.3.2. If α ∈ (γ1 − 1, γ2 + 1) then
Cα = (A−δ +B)|Xα

A
is a generator on Xα

A, where δ := −min{α, γ2}.

Proof. By definition Cα is a generator on Xα
C = Xα

A. It remains to show that Cα =
(A−δ +B)|Xα

A
. To this end we first assume that α ≥ 0. Then

Cα = C|Xα
C

= ((A−δ +B)|X)|Xα
A

= (A−δ +B)|Xα
A
.

Now let α ∈ (γ1 − 1, γ2). Then D(Cα) = Xα+1
C = Xα+1

A . The operator Cα is the closure
of {(x, Cx); x ∈ X1

C} in Xα
A × Xα

A. Let x ∈ Xα+1
A . There exists (xn) ⊆ X1

C such that
xn → x and Cxn → Cαx both in Xα

A. As C and Aα + B agree on X1
C we see from the

closedness of Aα+B (cf. Lemma 4.2.2 and [44; Theorem IV.1.1]) that (Aα+B)x = Cαx.
In order to show the assertion for α ∈ [γ2, 0) we observe that Cα = (Cβ)α−β for some
arbitrary β ∈ (γ1 − 1, γ2). Hence this case follows from the first two. �

The fact that the Aγ2-bound of the considered type of perturbation is 0 allows the
following extension (cf. Lemma 4.2.2).

4.3.5 Corollary. The assertions of Theorem 4.3.2 and Corollary 4.3.4 also hold for
α = γ2 + 1.

Proof. In Corollary 4.3.4 we have seen that Cγ2 = Aγ2 +B on Xγ2
C = Xγ2

A . As B has Aγ2-
bound 0 we infer that D(Aγ2) = Xγ2+1

A and D(Cγ2) = Xγ2+1
C are equal with equivalent

(graph) norms. The equality of Cγ2+1 and (A + B)
|X

γ2+1
A

and the generator property of
Cγ2+1 follow as in the proof of Corollary 4.3.4. �

For later use we show that certain extrapolated Favard spaces also remain preserved.

4.3.6 Corollary. Let A, B and C be as in Theorem 4.3.2. If α ∈ (γ1 − 1, γ2 + 1] then
F α
A = F α

C .
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Proof. By Theorem 4.3.2 and Corollary 4.3.5 it suffices to show that F 0
A ⊆ F 0

C (note that
A = C−B and −B is bounded from Xγ1

C to Xγ2
C ). Hence we also can assume that γ1 ≥ 0

and γ2 ≤ 0. Let x ∈ F 0
A, then x ∈ Xα for any α < 0 (cf. [39; Proposition II.5.33]). For

δ ∈ (−γ2, 1 − γ1) and λ sufficiently large we have (cf. Lemma 4.2.4)

‖λR(λ, C−δ)x‖ ≤ ‖λR(λ,A−δ)x‖
+ ‖λδ−1(A− λ)δ−1(I −Hλ,δ)

−1Hλ,δλ
−δ(A−δ − λ)−δx‖.

The first expression on the right hand side is bounded by assumption. The second
expression becomes bounded if we rewrite

(A−δ − λ)−δx = A2ε(A− λ)−δAε(A− λ)−2εA−ε
−δx

for ε > 0 sufficiently small such that Hλ,δA
ε remain uniformly bounded operators in λ.

This shows the inclusion F 0
A ⊆ F 0

C . �

4.4 Perturbation Theorems

In this section we use the results on iterated and perturbed fractional power spaces to
derive new perturbation theorems from known ones. In order to slightly curb the ongoing
blizzard of indices we introduce (for the remaining part of this section!) the notation A∗

as an abbreviation of Aβ for some β ∈ R sufficiently small (in most situations β = −2
or β = −1 is suitable).

4.4.1 Theorem. Let A be a generator of a C0-semigroup on a Banach space X. Further
let −1 ≤ γ2 ≤ γ1 ≤ 1, γ1 − γ2 < 1 and B : Xγ1

A → Xγ2
A be a bounded operator. If

(A∗ + (A∗ − ω)αB(A∗ − ω)−α)|X is a generator of a C0-semigroup on X for some α ∈
[γ1 − 1, γ2 + 1] and ω ∈ R sufficiently large then (A∗ +B)|X is a generator.

Proof. Let B̃ := (A∗ − ω)αB(A∗ − ω)−α ∈ L(Xγ1−α, Xγ2−α). Without loss of generality
we can assume that the C0-semigroups generated by A and C := (A∗ + B̃)|X both have
negative growth bound. (Otherwise we choose ω1 ≥ 0 sufficiently large and consider
A− ω1 instead of A.)

First we assume that −1 < γ2 ≤ γ1 < 1 and α ∈ (γ1 −1, γ2 +1). From Corollary 4.3.4
we know that Cγ2−α = (A∗ + B̃)|Xγ2−α is a generator of a C0-semigroup on Xγ2−α. Let T
denote the C0-semigroup generated by Cγ2−α. Observe that V := (Amin{γ2,γ2−α} − ω)α is
an isomorphism from Xγ2 to Xγ2−α. Thus V −1T (·)V generates a C0-semigroup on Xγ2

similar to T (for the notion of similarity of C0-semigroups we refer to [39; Section II.2.1]).
Its generator is given by

V −1Cγ2−αV = V −1
(
Aγ2−α + V BV −1

)
V = Aγ2 +B

(with domain Xγ2+1). Applying Corollary 4.3.4 once more we see that (Aγ2 + B)−γ2 =
(A∗ +B)|X is a generator.
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We next consider the case −1 < γ2 ≤ γ1 < 1 and α ∈ {γ1 − 1, γ2 + 1}. For α = γ2 + 1
let Q := I + (A−1 − ω)−1B̃ ∈ L(X). As (A− ω)Q+ ω = (A−1 + B̃)|X is a generator by
our assumptions we see from [39; Theorem 3.20(ii)] that

Q(A− ω) + ω = A+ (A∗ − ω)γ2B(A∗ − ω)−γ2

is also a generator (observe that ρ(Q(A−ω)) 6= ∅ as (A∗−ω)γ2B(A∗−ω)−γ2 has A-bound
0; cf. [39; Lemma III.2.6]). As γ2 ∈ (γ1 − 1, γ2 + 1) we obtain the generator property of
(A∗ +B)|X from the first part of this proof.

Similarly if α = γ1−1 then [39; Theorem 3.20(i)] implies that
(
A−1+(A∗−ω)γ1B(A∗−

ω)−γ1
)
|X

is a generator. As γ1 ∈ (γ1 − 1, γ2 + 1) we obtain the generator property of
(A∗ +B)|X again from the first part of this proof.

Now assume that γ1 = 1 and α ∈ [γ1 − 1, γ2 + 1]. Let Q := I + B(A− ω)−1 ∈ L(X)
and B′ := (A∗ − ω)B(A − ω)−1 ∈ L(X,Xγ2−1). As we have (A∗ − ω)αB(A∗ − ω)−α =
(A∗ − ω)α−1B′(A∗ − ω)1−α we infer from the parts of the assertion already proved that
(A∗ +B′)|X = (A− ω)Q+ ω is a generator. From [39; Theorem III.3.20(ii)] we see that
Q(A−ω) +ω = A+B is a generator (observe that ρ(A+B) 6= ∅ as B has A-bound 0).

Last we assume that γ2 = −1 and α ∈ [γ1 − 1, γ2 + 1]. Let Q := I + (A−1 − ω)−1B ∈
L(X). Similarly as above we conclude that A+(A−1 −ω)−1B(A−ω) = Q(A−ω)+ω is
a generator. From [39; Theorem III.3.20(i)] we infer that (A− ω)Q+ ω = (A−1 + B)|X
is a generator. �

We now apply our technique to some of the more prominent perturbation theorems.
They can all be found in [39; Chapter III]. In the appendix we recall the variants of the
Miyadera-Voigt and the Desch-Schappacher perturbation theorem which we use here.

4.4.2 Corollary. Let A be the generator of a C0-semigroup T on X, −1 ≤ γ2 ≤ γ1 ≤ 1,
γ1 − γ2 < 1 and B : Xγ1 → Xγ2 a bounded operator. Let α ∈ [γ1 − 1, γ2 + 1], ω ≥ 0
sufficiently large and B̃ := (A∗ − ω)αB(A∗ − ω)−α. If one of the following additional
assumptions hold, then (A∗ +B)|X is a generator.

(a) α ≤ γ2 and B̃ is a Miyadera-Voigt perturbation of A.
(b) α ≥ γ1 and B̃ is a Desch-Schappacher perturbation of A.
(c) T is an analytic semigroup.
(d) T is a contraction semigroup, α ≤ γ2 and B̃ is dissipative in Xα.

Proof. Assertions (a) and (b) are easily deduced from Theorem 4.4.1. In order to obtain
(c) we choose α := γ2 and observe that B̃ has A-bound zero (cf. Lemma 4.2.2). For (d)
we note that the dissipativity of B in Xα implies the dissipativity of B̃ in X. �

As a special case of Corollary 4.4.2(b) we state a perturbation theorem for perturba-
tions satisfying a range condition (cf. Proposition A.3).

4.4.3 Corollary. Let A be the generator of a C0-semigroup. Let α ∈ [−1, 1] and Y a
Banach space satisfying (RC) in Proposition A.3 with respect to Aα. Further assume
that there exists γ ∈ [−1, 1] ∩ (α − 1, α] such that Y →֒ Xγ. If B ∈ L(Xα, Y ) then
(A∗ +B)|X is a generator.
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Proof. We observe that B̃ := (Aβ − ω)αB(Aβ − ω)−α, where β := min{0, α} and ω ≥ 0
sufficiently large, is a bounded operator from X to Z := (Aβ − ω)αY . From Proposi-
tion A.4 and Proposition A.3 we see that B̃ is a Desch-Schappacher perturbation of A.
The assertion now follows from Corollary 4.4.2(b). �

4.4.4 Remarks. (a) Arbitrary Miyadera-Voigt and Desch-Schappacher perturbations are
not covered by Corollary 4.4.2. In [39; Corollary III.3.22] these perturbations are treated
for α = −1 and α = 1, respectively.

(b) The statement of Corollary 4.4.3 for α = 1 was obtained in [30]; also cf. [48;
Theorem A.1].

(c) We note that most of the common regularity properties of a C0-semigroup T such
as analyticity and (immediate, eventual) differentiability hold for the whole scale of C0-
semigroups (Tα)α∈R and remain preserved under similarity constructions. Preservation
of such regularity properties in Theorem 4.4.1, Corollary 4.4.3 and Corollary 4.4.2 thus
depends on the perturbation theorem invoked.

(d) Theorem 4.3.2 can be slightly improved if B ∈ L(X,X−1) is a Desch-Schappacher
perturbation of A. In (4.2.2) we have derived the representation λ − (A−1 + B) =
(λ−A−1)(I−R(λ,A−1)B) for λ ∈ R sufficiently large. Further in [39; Equation (III.3.6)]
it was shown that the norm of (I − R(λ,A−1)B) becomes smaller than 1 for λ suffi-
ciently large. Hence (I −R(λ,A−1)B) has a bounded inverse and so the norms ‖R(λ−
(A−1 +B)) · ‖ and ‖R(λ,A−1) · ‖ on X are equivalent. It shows that X−1

A = XA−1+B =
X−1

(A−1+B)|X
. This implies (together with Corollary 4.3.5) that if B ∈ L(Xγ1 , Xγ2) is a

Desch-Schappacher perturbation of Aγ1 then the assertion of Theorem 4.3.2 holds for
α ∈ [γ1 − 1, γ2 + 1].

4.5 Perturbations with a Growth Condition

We investigate Miyadera-Voigt and Desch-Schappacher type perturbations with an ad-
ditional growth condition. We will see that such perturbations are among the type
of perturbation we have considered in the previous sections. This will greatly help to
apply the perturbation theorems presented in the last section. For examples of such
perturbations we refer to the Sections 4.6, 4.7 and 4.8 and to [39; Corollary III.3.4,
Example III.3.5, Exercise III.3.8(5)(iv)].

4.5.1 Proposition. Let A be the generator of a C0-semigroup T on X.
(a) (Miyadera-Voigt type perturbation) Assume that B1 ∈ L(X1, X) satisfies

∥∥∥∥∥∥

t∫

0

B1T (r)x dr

∥∥∥∥∥∥
≤ Kt1−β‖x‖ (t ∈ [0, t0], x ∈ X1) (4.5.1)

for some K ≥ 0, t0 ≥ 0 and β ∈ (0, 1). Then B1 extends to a bounded operator in
L(Xα, X) for all α > β.
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(b) (Desch-Schappacher type perturbation) Let B2 ∈ L(X,X−1). Assume that there is
a t0 ≥ 0 so that

∫ t
0
T−1(r)B2x dr ∈ X for all t ∈ [0, t0] and x ∈ X. If

∥∥∥∥∥∥

t∫

0

T−1(r)B2x dr

∥∥∥∥∥∥
≤ Kt1−β‖x‖ (t ∈ [0, t0], x ∈ X) (4.5.2)

holds for some K ≥ 0 and β ∈ (0, 1), then B2 ∈ L(X,Xα) for all α < β − 1.

Proof. Without loss of generality we may assume that T has negative growth bound.
Let α ∈ (β, 1), x ∈ X1 and t > 0. First we observe that by the semigroup law the
operator

∫ t
0
B1T (s) ds ∈ L(X1, X) extends to a bounded operator on X for all t ∈ R+.

Let t ≥ t0 and choose n ∈ N such that τ := t/n ∈ [1
2
min{1, t0},min{1, t0}]. Further let

M ≥ 1 and ω < 0 such that ‖T (t)‖ ≤Meωt (t ∈ R+). Using

t∫

0

B1T (r) dr =

n−1∑

k=0

τ∫

0

B1T (r)T (kτ) dr

we infer that for x ∈ X1 we have
∥∥∥∥∥∥

t∫

0

B1T (r)x dr

∥∥∥∥∥∥
≤

n−1∑

k=0

Mτ 1−βeωkτ‖x‖ ≤ M

n∫

0

eωτϑ dϑ ‖x‖

≤ − L

ωτ
‖x‖ ≤ − 2L

ωmin{1, t0}
‖x‖.

Thus supt∈R+
‖
∫ t
0
B1T (r)x dr‖ ≤ K‖x‖ (x ∈ X1) for some K ≥ 0. In order to reason

that B1A
−α extends to a bounded operator on X we approximate B1A

−αx for x ∈ X1

by

c̃α

∞∫

t

sα−1B1T (s)x ds

= c̃α



sα−1

s∫

0

B1T (r)x dr

∣∣∣∣∣∣

∞

t

+ (1 − α)

∞∫

t

sα−2

s∫

0

B1T (r)x dr ds



 ,

where t > 0 (cf. (4.1.2)). First note that the integrals exist as
∫ s
0
B1T (r)x dr is uniformly

bounded in s ∈ R+ for x ∈ X1. The first expression in the parenthesis converges to
0 as t → 0 for we have ‖tα−1

∫ t
0
B1T (r)x dr‖ ≤ Ktα−β‖x‖ and α > β. The second

expression converges as tα−β−1 is integrable on [0, t0]. Hence there exists K ≥ 0 such that
‖B1A

−αx‖ ≤ K‖x‖ for all x ∈ X1. This is equivalent to ‖B1y‖ ≤ K‖Aαy‖ = K‖y‖α for
all y ∈ A−αX1 = Xα+1. Since Xα+1 is dense in Xα we see that B1 extends to a bounded
operator in L(Xα, X).
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If the assumptions in (b) hold we infer from A−1

∫ t
0
T−1(r)B2x dr = (T−1 − I)B2x and

(4.5.2) that B2 maps continuously into the Favard space of fractional order β − 1 with
respect to A (cf. [39; Definition II.5.10] or [18; Proposition 3.1.3] for Favard spaces of
fractional order). Assertion (b) now follows from the embedding properties of Favard
spaces, Hölder spaces and fractional power spaces; cf. [39; Proposition II.5.33]. �

4.5.2 Remarks. (a) The assumptions (a) and (b) in Proposition 4.5.1 in the stronger
sense of Propositions A.1 and A.2 imply that C1 := A + B1 and C2 := (A−1 + B2)|X
are generators of C0-semigroups, denoted by S1 and S2, respectively. Moreover ‖Si(t)−
T (t)‖ ≤ Lt1−β and ‖R(λ, Ci) − R(λ,A)‖ ≤ L(1 + λ)β−2 (i ∈ {1, 2}, t ∈ [0, t0], λ ≥ ω)
for some L ≥ 0 and ω ≥ 0 sufficiently large.

In [31] and [34] (see also [39; Theorem III.3.9]) it was shown that if a densely defined
operator C with [ω,∞) ⊆ ρ(A) ∩ ρ(C) for some ω ≥ 0 satisfies ‖R(λ, C) − R(λ,A)‖ ≤
L(1 + λ)−2 (λ ≥ ω) for some L ≥ 0, then there is a bounded operator B : X → F 0

A such
that C = (A−1 +B)|X . (Here F 0

A denotes the extrapolated Favard space of A; cf. (A.1).)
(b) Perturbations satisfying Condition (4.5.1) with β = 1 have recently been explored

in [65].

4.6 Inhomogeneous Abstract Cauchy Problems

Our first application are inhomogeneous abstract Cauchy problems. The function spaces
for the inhomogeneities will be fractional power spaces associated with the left translation
semigroup on spaces of continuous and p-integrable functions.

This section also serves as a preparation for Section 4.7 where we extensively use
the Volterra semigroups constructed in this section in the treatment of various integro-
differential equations.

Let A be the generator of a C0-semigroup T on a Banach space X. In order to solve
the inhomogeneous abstract Cauchy problem

(iACP) u̇(t) = Au(t) + f(t), u(0) = x ∈ X, f ∈ L1,loc(R+;X−1),

we use the Volterra semigroup approach (cf. [39; Section VI.7.a]) with different function
spaces. The inhomogeneities will either take values in Xα or the extrapolated Favard
space F α

A for some suitable α; cf. Proposition 4.1.5. We recall that if X is reflexive
then F α

A = Xα. A further relaxation on the range of the inhomogeneities is presented in
Remarks 4.6.2(c).

Let Y be a Banach space with X →֒ Y →֒ X−1. In the following we say that
u ∈ C1(R+;X) is a classical solution of (iACP) in Y if A∗u(t) ∈ Y for all t ∈ R+ and
u̇(t) = A∗u(t) + f(t). For Y = X this corresponds to the usual definition of a classical
solution of (iACP) (cf. [39; Definition VI.7.2]).

4.6.1 Inhomogeneities in Spaces of Continuous Functions

Let α ∈ (−1, 1] and Z := X ×C−α
bu (R+;F α

A), where C−α
bu (R+;F α

A) denotes the fractional
power space of order −α with respect to the left translation semigroup on Cbu(R+;F α

A),
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which we denote by S and its generator by D; cf. Remarks 4.6.2(d) for embeddings of
the fractional power spaces associated with D. On Z we consider the operator

D(A) := X1 × C1−α
bu (R+;F α

A), A :=

(
A 0
0 D−α

)
,

which is obviously a generator. The operator B :=
(

0 δ0
0 0

)
on Zα = Xα × Cbu(R+;F α

A)
is a bounded operator from Zα into the Favard space F α

A. Therefore B satisfies the
assumptions of Corollary 4.4.3 and we infer the generator property of C := (A∗ + B)|Z .

4.6.1 Proposition. (a) For α ∈ (0, 1] we obtain classical solutions of (iACP) whenever
x ∈ X1 and f ∈ C1−α

bu (R+;F α
A).

(b) For α ∈ (−1, 0] we obtain classical solutions of (iACP) in F α
A , whenever x ∈ F α+1

A ,
f ∈ C1−α

bu (R+;F α
A) and A∗x+ f(0) ∈ X.

Proof. We first note that for f ∈ C1−α
bu (R+;F α

A) we have δ0S−α(t)f = f(t) (t ∈ R+).
Thus the first component of t 7→ etC ( xf ) is differentiable in X for ( xf ) ∈ D(C) and solves
(iACP) in F α

A . If α > 0 this means that we obtain classical solutions whenever x ∈ X1

and f ∈ C1−α
bu (R+;F α

A). If α ≤ 0 the domain of D(C), for which we obtain solutions
differentiable in X, is given by the part of A∗ + B in Z. This yields

D(C) = {( xf ) ∈ F α+1
A × C1−α

bu (R+;F α
A); A∗x+ f(0) ∈ X}.

Hence for x ∈ F α+1
A , f ∈ C1−α

bu with A∗x + f(0) ∈ X we obtain classical solutions in
F α
A . �

4.6.2 Remarks. (a) A similar result can be obtained by using abstract Hölder spaces; see
[39; Exercise VI.7.10(3)] for details. For the case α = 1 we refer to [39; Corollary VI.7.8].

(b) If we assume that the inhomogeneities only take values in Xα instead of F α
A , then

the perturbation B becomes a bounded operator in Zα
C for all α ∈ [−1, 1]. For α ∈ [0, 1]

we obtain classical solutions.
(c) Let Y be a Banach space satisfying (RC) in Proposition A.3 with respect to Aα;

cf. Proposition A.4. Assume that there exists γ > max{−1, α− 1} such that Y →֒ Xγ.
Using Z = X ×C−α

bu (R+;Y ) instead of X ×C−α
bu (R+;F α

A) in the computations above we
still obtain the generator property of C by Corollary 4.4.3.

For x ∈ Xα, f ∈ C1−α
bu (R+;Y ) with A∗x ∈ Y and A∗x + f(0) ∈ X we get a classical

solution of (iACP) in Y . If additionally Y ⊆ X we obtain classical solutions of (iACP)
for all x ∈ X1 and f ∈ C1−α

bu (R+;Y ).
If A generates an analytic semigroup this generalisation becomes particularly inter-

esting as any Y = Xγ with γ > max{−1, α− 1} fulfils condition (RC).
(d) Let Y be a Banach space. For β, γ ∈ (0, 1), β > γ we have the embeddings

hβ(R+;Y ) →֒ Cγ
bu(R+;Y ) →֒ hγ(R+;Y ),

where hβ(R+;Y ) denotes the space of Y -valued little Hölder functions of order β. (cf.
[39; Proposition II.5.33 and Exercise II.5.23(5)]).

86



Chapter 4 The Fractional Power Tower in Perturbation Theory of C0-semigroups

4.6.2 Inhomogeneities in Spaces of p-integrable Functions

We now solve the inhomogeneous abstract Cauchy problem in the space Z := X ×
W−α
p (R+;Xα) where p ∈ (1,∞) and α ∈ [−1, 1− 1/p). Here W−α

p (R+;Xα) denotes the
fractional power space of order −α associated with the left translation on Lp(R+;Xα).
The generator of the left translation is again denoted by D. On Z we consider the
generator

D(A) := X1 ×W 1−α
p (R+;Xα), A :=

(
A 0
0 D−α

)
.

Let ω > 0 be larger than the growth bound of T . (The growth bound of the translation
semigroup is 0 and thus in any case smaller than ω.) In the following estimates we assume
that Xγ and W γ

p (R+;Xα) (γ ∈ R) are equipped with the norms x 7→ ‖(A∗ − ω)γx‖ and
f 7→ ‖(D∗−ω)γf‖p, respectively. (The index p refers to the usual p-norm of Banach space
valued p-integrable functions, so there will be no danger of confusing it with the norm
of fractional power spaces.) Let B :=

(
0 δ0
0 0

)
with domain Zα+1 = Xα+1 ×W 1

p (R+;Xα).
It is not difficult to see that the operator

B̃ := (A∗ − ω)αB(A∗ − ω)−α =

(
0 (A∗ − ω)αδ0(D∗ − ω)−α

0 0

)

with domain Z1 is a Miyadera-Voigt perturbation of A. In fact for ( xf ) ∈ Z1 and
g := (D∗ − ω)−αf ∈W 1

p (R+;Xα) we have

t∫

0

∥∥∥∥B̃Tα(r)
(
x
f

)∥∥∥∥
Z

dr =

t∫

0

∥∥∥∥
(

(A∗ − ω)αδ0(D∗ − ω)−αf(r + ·)
0

)∥∥∥∥
Z

dr

=

t∫

0

‖g(r)‖Xα dr ≤ t1−1/p‖g‖p ≤ t1−1/p

∥∥∥∥
(
x
f

)∥∥∥∥
Z

.

Since α + 1/p < 1 the generator property for C := (A∗ + B)|X follows from Proposi-
tion 4.5.1(a) and Corollary 4.4.2(a). (We also infer that B extends to a bounded operator
from Zα+1/p+ε to Zα for any ε > 0.) After this preparation the proof of the next result
can be followed through as in Proposition 4.6.1.

4.6.3 Proposition. (a) For α ∈ [0, 1 − 1/p) we obtain classical solutions of (iACP)
whenever x ∈ X1 and f ∈W 1−α

p (R+;Xα).
(b) For α ∈ [−1, 0) we obtain classical solutions of (iACP) in Xα, whenever x ∈ Xα+1,

f ∈ W 1−α
p (R+;Xα) and A∗x+ f(0) ∈ X.

4.6.4 Remarks. (a) For the case p = 1 and inhomogeneities with values in F 0
A we refer

to [39; Proposition VI.7.12]. We cannot expect that our method works for p = 1.
(b) There are a number of fractional order Sobolev spaces, and numerous embedding

theorems concerning these spaces; cf. e.g. [1; Chapter VII] or [66] for real- and complex-
valued Sobolev spaces. In our applications we need the embedding

W α
p (R+;Y ) →֒ C0(R+;Y ) (α > 1/p),
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where Y is some Banach space (for the real- and complex-valued case see [1; Theo-
rem 7.57], [66; Theorem 1.15.2(d) and Section 2.8]).

4.7 Integro-Differential Equations

Let A be the generator of a C0-semigroup T on the Banach space X. The forcing function
method utilises Volterra semigroups to solve the equation

(IDE) u̇(t) = A∗u(t) +

t∫

0

ℓ(t− s)u(s) ds+ f(t), u(0) = x ∈ X (t ∈ R+),

where f is a locally integrable Xα- or F α
A -valued function and ℓ is a function defined

on R+ with values in L(Y, Z), where Y and Z are Banach spaces with Y →֒ X and
Z →֒ X−1. We additionally assume that ℓ(·)x is a locally integrable function for all
x ∈ Y . This assumptions guarantees that the integral in (IDE) exists for all t ∈ R+

whenever u ∈ C(R+;Y ).
A function u is called a classical solution of (IDE) if u ∈ C(R+;Y ) ∩ C1(R+;X) and

u satisfies (IDE) in X−1. Further a function u ∈ C(R+;X) is a mild solution of (IDE) if∫ t
0
u(s) ds ∈ Y for all t ∈ R+,

∫ ·

0
u(s) ds is in L1,loc(R+;Y ) and the integrated equation

of (IDE)

u(t) = u(0) + A∗

t∫

0

u(s) ds+

t∫

0

ℓ(t− r)

r∫

0

u(s) ds dr +

t∫

0

f(s) ds

holds for all t ∈ R+.
We say that (IDE) is well-posed if for all x ∈ X1 a unique classical solution of (IDE)

with f = 0 exists, continuously depending (in the norm of X) on the initial value
uniformly in compact intervals.

We mention that the approach via Volterra semigroups also yields classical or mild
solutions of (IDE) for certain inhomogeneities, depending on the forcing-function space
chosen for the Volterra semigroup.

In Section 4.7.3 we look at a variant of (IDE) where instead of u the derivative u̇
occurs in the integral.

For the forcing-function approach we refer the reader to [30] and [58; Section 13.6].

4.7.1 (IDE) in the Context of Continuous Functions

We use the generators A and C on Z = X × C−α
bu (R+;F α

A) from Section 4.6.1, with
α ∈ (−1, 1]. We are going to perturb C in such a way that the first component of the
obtained C0-semigroup solves (IDE).

Let β ∈ (α − 1, α + 1) ∩ (−1, 1]. Then Zβ
C = Zβ

A and F β
C = F β

A (cf. Theorem 4.3.2
and Corollary 4.3.6). As A is a diagonal matrix with no coupling in the domain we
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have Zβ
A = Xβ × Cβ−α

bu (R+;F α
A) and F β

A = F β
A × F β−α

D . Thus if L ∈ L(Xβ, F β−α
D ) then

Q := ( 0 0
L 0 ) is a bounded operator from Zβ

C to F β
C and (C∗ + Q)|Z becomes a generator

by Corollary 4.4.3. For β > 0 the domain of (C∗ +Q)|Z = C + Q is D(C). If β ≤ 0 then

D
(
(C∗ + Q)|Z

)
=
{

( xf ) ∈ F α+1
A × F β−α+1

D ; A∗x+ f(0) ∈ X,

Lx+ D∗f ∈ C−α
bu (R+;F α

A)
}
.

So in this case we can expect only to obtain mild solutions of (IDE).
For α ∈ (−1, 0] and β ∈ [α + 1, 1] we first observe that

Zβ
C = D(Cβ−1) =

{
( xf ) ∈ F α+1

A × Cβ−α
bu (R+;F α

A); A∗x+ f(0) ∈ Xβ−1
}
.

From this we see that for β > α + 1 the operator L would still have to continuously
map F α+1

A to some function space related to Cbu(R+;F α
A). So it seems that only the

case β = α + 1 is worth to be considered. Next we show that {0} × F 1
D is continuously

embedded into the Favard space F α+1
C .

4.7.1 Lemma. The space {0} × F 1
D is continuously embedded into F α+1

C .

Proof. Let f ∈ F 1
D. It is easy to see that F 1

D = Lip(R+;F α
A), by which we denote the

Banach space of uniformly Lipschitz-continuous functions on R+ with values in F α
A . In

order to show the assertion we use the alternative definition of the Favard space given
in (A.2). First we note that etC

(
0
f

)
=
(

R t
0
Tα(t−s)f(s) ds

S(t)f

)
(t ∈ R+). As the norm of Zα

C is
equivalent to Zα

A = Xα × Cbu(R+;F α
A) we obtain for ω ∈ R sufficiently large

|||
(

0
f

)
|||Fα+1
C

= sup
t>0

1

t

∥∥et(C−ω)
(

0
f

)
−
(

0
f

)∥∥
Zα
C

≤ c sup
t>0





∥∥∥∥∥∥
1

t
e−ωt

t∫

0

Tα(t− s)f(s) ds

∥∥∥∥∥∥
Xα

+

∥∥∥∥
1

t
(e−ωtS(t)f − f)

∥∥∥∥
∞





≤ c sup
t>0

∥∥∥∥∥∥
1

t
e−ωt

t∫

0

T (t− s)Aαf(s) ds

∥∥∥∥∥∥
X

+ c|||f |||F 1
D

≤ c
(

sup
t∈R+

‖e−ωtT (t)‖ ‖f‖∞ + |||f |||F 1
D

)

≤ c′|||f |||F 1
D

for some c, c′ ≥ 0. �

Now if L ∈ L(F α+1
A , F 1

D) then Q := ( 0 0
L 0 ) is a bounded operator from Zβ

C to F α+1
C by

Lemma 4.7.1. Again from Corollary 4.4.2(b) we infer the generator property of C + Q.
As a last preperation we identify the Favard space F 0

D. If F α
A has the Radon-Nikodym

property (cf. [4; Section 1.2], [35; Section VII.6]), then it was shown in [55; Proposi-
tion 3.4] that F 0

D can be identified with L∞(R+;F α
A). However in general we cannot
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expect that F α
A possesses the Radon-Nikodym property. At least we can show that

L∞(R+;F α
A) is a subspace of F 0

D. To this end let ω > 0. From (D−1−ω)−1L∞(R+;F α
A) →֒

Lip(R+;F α
A) = F 1

D and Proposition 4.1.5 we conclude that for the general case we have
L∞(R+;F α

A) →֒ F 0
D.

Now we can give conditions on ℓ so that (IDE) becomes well-posed.

4.7.2 Proposition. (a) Assume that α ∈ (−1, 1] and β ∈ (0, 1] ∩ [α, α + 1). If ℓ(t) ∈
L(Xβ, F α

A) (t ∈ R+), and ℓ(·)x ∈ F β−α
D for all x ∈ Xβ, then (IDE) becomes well-posed.

In particular for β = α this holds if ℓ(·)x ∈ L∞(R+;F α
A).

(b) Assume that α ∈ (−1, 0] (and β = α + 1). If ℓ(t) ∈ L(F α+1
A , F α

A) (t ∈ R+), and
ℓ(·)x ∈ Lip(R+;F α

A) for all x ∈ Xα+1, then (IDE) becomes well-posed.

Proof. We only show (b), the proof of (a) is done similarly.
If the assumptions in (b) hold then we observe that L, defined by Lx := ℓ(·)x (x ∈

F α+1
A ), is a bounded operator from F α+1

A to F 1
D = Lip(R+;F α

A) by the closed graph
theorem (see Lemma 3.1.1 for similar cases). Hence C + Q becomes a generator. Let
( xf ) ∈ D(C + Q) = D(C) and

(
u(t)
F (t)

)
:= exp(t(C + Q)) ( xf ) (t ∈ R+) be the classical

solution of the abstract Cauchy problem associated with C + Q. Thus we have

u̇(t) = A∗u(t) + δ0F (t), (4.7.1)

Ḟ (t) = Lu(t) + D−αF (t) (t ∈ R+). (4.7.2)

From (4.7.2) we infer that F is the classical solution of the inhomogeneous abstract
Cauchy problem associated with the left translation semigroup on Cbu(R+;F α

A) with
inhomogeneity Lu(·). This gives us

F (t) = S(t)f +

t∫

0

S(t− s)Lu(s) ds = S(t)f +

t∫

0

ℓ(t− s+ ·)u(s) ds (t ∈ R+).

Therefore we obtain δ0F (t) = f(t) +
∫ t
0
ℓ(t − s)u(s) ds (t ∈ R+). This shows that u

indeed solves (IDE). In order to show that solutions of (IDE) are unique assume that u
is a solution for the initial value u(0) = 0. Let F (t) :=

∫ t
0
S(t − s)Lu(s) ds (t ∈ R+).

Then F is a mild solution of the inhomogeneous abstract Cauchy problem associated
with S and with the continuous inhomogeneity Lu(·) ∈ C(R+;Lip(R+;F α

A)). Therefore
F satisfies the integrated version of (4.7.2). Since δ0F (t) =

∫ t
0
ℓ(t − s)u(s) ds equation

(4.7.1) is also met and thus
(
u(·)
F (·)

)
is a mild solution of the abstract Cauchy problem

associated with C+Q. As mild solutions are unique we conclude u = 0. The continuous
dependence on the initial value follows from the uniform boundedness of the operators of
the semigroup generated by C + Q in compact intervals. This shows the well-posedness
of (IDE). �

For analytic semigroups T we derive the following result, this time starting with the
Volterra semigroup outlined in Remarks 4.6.2(c).
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4.7.3 Proposition. Assume that T generates an analytic semigroup. Let α ∈ (−1, 1],
γ ∈ [−1, 1] ∩ (α − 1, α] and β ∈ [α,max{1, γ + 1}]. If ℓ(t) ∈ L(Xβ, Xγ) (t ∈ R+) and
ℓ(·)x ∈ F β−α

D (x ∈ Xβ) then (IDE) is well-posed. For β = α this particularly holds if
ℓ(·)x ∈ L∞(R+;Xγ) (x ∈ Xβ).

Proof. From Remarks 4.6.2(c) we take the space Z = X × Cbu(R+;Xγ) and the cor-
responding generators A =

(
A 0
0 D−α

)
and C =

(
A δ0
0 D−α

)
. The generator C is obtained

by perturbing A with
(

0 δ0
0 0

)
∈ L(Zα

A,Zγ
A). Therefore Zβ

A = Zβ
C and F β

A = F β
C for all

β ∈ (α− 1, γ + 1]; cf. Theorem 4.3.2, Corollary 4.3.5 and Corollary 4.3.6. Hence ( 0 0
L 0 )

with Lx := ℓ(·)x (x ∈ Xβ) becomes a bounded operator from Zβ
C to F β

C . The proof is
now accomplished as in Proposition 4.7.2. �

4.7.4 Remarks. (a) The case β = 0 in Proposition 4.7.2(a) can be included by demanding
the stronger condition ℓ(·)x ∈ C−α

bu (R+;F α
A).

(b) If we replace the space Cbu(R+;F α
A) by Cbu(R+;Xα) then Proposition 4.7.2(b) holds

with the conditions ℓ(t) ∈ L(Xα+1, Xα) (t ∈ R+) and ℓ(·)x ∈ Lip(R+;Xα) (x ∈ Xα+1).
(c) Proposition 4.7.2 can be generalised using the idea being at the bottom of Propo-

sition 4.7.3. Let T be an arbitrary semigroup, α ∈ (−1, 1], γ ∈ (max{−1, α−1}, α], and
let Y →֒ Xγ be a Banach space satisfying (RC) with respect to Aα; cf. Proposition A.4.
Let β ∈ [α, γ + 1] ∩ (0, 1]. Then (IDE) becomes well-posed if ℓ(t) ∈ L(Xβ, Y ) (t ∈ R+)
and ℓ(·)x ∈ F β−α

D (x ∈ Xβ). This particularly holds if ℓ(t) ∈ L(Xα, Y ) (t ∈ R+) and
ℓ(·)x ∈ L∞(R+;Y ) (x ∈ Xα).

4.7.2 (IDE) in the Context of p-integrable Functions

If we use the Volterra semigroup from Section 4.6.2 with inhomogeneities in Sobolev
spaces of fractional order, a similar result to Proposition 4.7.2 can be deduced (however
the generalisation in Proposition 4.7.3 and Remarks 4.7.4 do not apply). We only sketch
the proof of this analogous result in the first part of this section.

In the second part we deal with assumptions involving that ℓ is p-integrable and of
bounded variation with respect to either L(Zα) or L(Zα+1,Zα). This will extend known
results for integro-differential equations obtained by using the forcing function approach
on X × L1(R+;X); cf. [30], see also [58; Theorem II.6.1 and Corollary II.6.1] for a
different approach.

Let p ∈ (1,∞) and α ∈ [−1, 1 − 1/p). We start with Z := X ×W−α
p (R+;Xα) and

the generator C from Section 4.6.2. Again we perturb C in such a way that the first
component of the obtained C0-semigroup solves (IDE).

Let β ∈ (α + 1/p − 1, α + 1]. Then Zβ
C = Xβ × W β−α

p (R+;Xα). Hence if L ∈
L(Xβ,W β−α

p (R+;Xα)) then Q := ( 0 0
L 0 ) ∈ L(Zβ

C ). If additionally β ∈ [−1, 1] then (C∗ +
Q)|Z becomes a generator. This yields the following well-posedness criteria for (IDE),
where the proof of the well-posedness of (IDE) is done as in the proof of Proposition 4.7.2.

4.7.5 Proposition. Let p ∈ (1,∞). Assume that α ∈ [−1, 1−1/p), β ∈ [0, 1]∩[α, α+1].
If ℓ(t) ∈ L(Xβ, Xα) (t ∈ R+), and ℓ(·)x ∈ W β−α

p (R+;Xα) for all x ∈ Xβ, then (IDE)
is well-posed.
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We are now going to improve Proposition 4.7.5 considerably. To this end we assume
that α ∈ [−1, 0], Z and C are as above and ℓ ∈ BVp(R+;L(Xα+1, Xα)). (For a Banach
space Y we denote the space of p-integrable Y -valued functions being of bounded varia-
tion by BVp(R+;Y ). The norm is the sum of the p-norm and the variation norm of the
function and will be denoted by ‖ · ‖p,V ar; also see the paragraph before Lemma 3.1.1.)
We also note that in contrast to Proposition 4.7.5 it will not be sufficient to require that
ℓ(·)x ∈ BVp(R+;Xα) for all x ∈ Xα+1.

Let Lx := ℓ(·)x, (x ∈ Xα+1), then Q := ( 0 0
L 0 ) ∈ L(Zα+1

C ,Zα
C ), since we have Zα

C =
Xα × Lp(R+;Xα) and Zα+1

C = Xα+1 ×W 1
p (R+;Xα). We first show that Q is a Desch-

Schappacher perturbation of Cα+1. Let Tα denote the semigroup generated by Cα on Zα
C =

Xα×Lp(R+;Xα). We recall that Tα =
(
Tα(·) Rα(·)

0 S(·)

)
, where Tα and S are the semigroups

generated by Aα and D, respectively, and Rα(t)f =
∫ t

0
Tα(t−s)f(s) ds (f ∈ Lp(R+;Xα),

t ∈ R+). In the following computations we need the operator-valued Riemann-Stieltjes
measure dℓ and its variation d|ℓ|; we refer the reader to [36; Section III.17.2], a treatment
of the vector-valued Riemann-Stieltjes integral, which can be extended without much
change to the operator-valued case, can also be found in [4; Section 1.9].

4.7.6 Lemma. Let Y be a Banach space and η ∈ BVp(R+;L(Y,Xα)). For t ∈ R+ and
u ∈ Cc(R+;Y ) the following assertions hold.

(a)
∫ t
0
Rα(t− s)(η(·)u(s)) ds ∈ Xα+1 and ‖

∫ t
0
Rα(t− s)(η(·)u(s)) ds‖α+1 ≤ ct‖u‖∞ for

some c ≥ 0.
(b)
∫ t
0
S(t−s)(η(·)u(s)) ds ∈W 1

p (R+;Xα) and ‖
∫ t
0
S(t−s)(η(·)u(s)) ds‖p,1 ≤ ct1/p‖u‖∞

for some c ≥ 0.

Proof. Let Ey := η(·)y (y ∈ Y ). Let ϕ(t) :=
∫ t
0
η(s)u(t − s) ds = (η ∗ u)(t) (t ∈ R+)

(as usual ∗ denotes the convolution where the convoluted functions are taken to be zero
outside their domains). A straightforward computation yields

·∫

0

Rα(t− s)Eu(s) ds = Rα ∗ Eu(·) = (Tα ∗ η) ∗ u = Tα ∗ ϕ = Rα(·)ϕ.

In order to estimate the norm of Rα(t)ϕ we first observe that by the bounded variation
of η we have ϕ ∈ C1(R+;Xα), where the derivative of ϕ is given by ϕ′(t) = η(0)u(t) +∫ t
0
dη(s)u(t− s) (t ∈ R+). Since η ∈ BVp(R+;L(Y,Xα)) Young’s inequality implies that

ϕ ∈W 1
p (R+;Xα). Therefore
(
Rα(t)ϕ
S(t)ϕ

)
= Tα(t)

(
0
ϕ

)
∈ D(Cα) = Xα+1 ×W 1

p (R+;Xα) (t ∈ R+).

In particular Rα(t)ϕ ∈ Xα+1 (t ∈ R+). In order to obtain an estimate for the norm we
infer from (

AαRα(t)ϕ + ϕ(t)
S(t)ϕ′

)
= CαTα(t)

(
0
ϕ

)
= Tα(t)Cα

(
0
ϕ

)

= Tα(t)
(
ϕ(0)
ϕ′

)
=

(
Tα(t)ϕ(0) +Rα(t)ϕ

′

S(t)ϕ′

)
.

92



Chapter 4 The Fractional Power Tower in Perturbation Theory of C0-semigroups

and ϕ(0) = 0 that AαRα(t)ϕ = Rα(t)ϕ
′ − ϕ(t). Hence we obtain

‖Rα(t)ϕ‖α+1 = ‖AαRα(t)ϕ‖α ≤ t sup
0≤s≤t

‖Tα(s)‖‖ϕ′‖∞ + ‖ϕ(t)‖.

Assertion (a) follows from ‖ϕ‖∞ ≤ t‖η‖∞‖u‖∞ and ‖ϕ′‖∞ ≤
(
d|η|(R+) + ‖η(0)‖

)
‖u‖∞.

In order to show (b) we observe that the derivative of
∫ t
0
S(t − s)Eu(s) ds =

(
R+ ∋

ϑ 7→
∫ t
0
η(t− s+ ϑ)u(s) ds

)
is the continuous function



ϑ 7→
t∫

s=0

dη(t− s+ ϑ)u(s)



 =



ϑ 7→
t+ϑ∫

ϑ

dη(s)u(t− s+ ϑ)



 .

Thus
∫ t
0
S(t− s)Eu(s) ds ∈ C1(R+;Xα). The p-norm of the derivative can be estimated

by
∥∥∥∥∥∥
D

t∫

0

S(t− s)Eu(s) ds

∥∥∥∥∥∥

p

p

=

∞∫

0

∥∥∥∥∥∥

t+ϑ∫

ϑ

dη(s)u(t− s+ ϑ)

∥∥∥∥∥∥

p

dϑ

≤ ‖u‖p∞
∞∫

0




t+ϑ∫

ϑ

d|η|(s)




p

dϑ

≤ ‖u‖p∞(d|η|(R+))p−1

∞∫

0

t+ϑ∫

ϑ

d|η|(s) dϑ

≤ ‖u‖p∞(d|η|(R+))p−1

∞∫

0

t∫

s−t

dϑ d|η|(s)

=
(
t1/pd|η|(R+)‖u‖

)p
.

For the p-norm of the function itself we have
∥∥∥∥∥∥

t∫

0

S(t− s)Eu(s) ds

∥∥∥∥∥∥

p

p

=

∞∫

0

∥∥∥∥∥∥

t∫

0

η(t− s+ ϑ)u(s) ds

∥∥∥∥∥∥

p

dϑ

≤ tp−1‖u‖p∞
∞∫

0

t∫

0

‖η(t− s+ ϑ)‖p ds dϑ

≤ (t‖u‖∞‖η‖p)p .

This shows assertion (b). �

We can now reason that Q is a Desch-Schappacher perturbation of Cα+1. By Theo-
rem A.2 it suffices to show that for t0 sufficiently small and for all U ∈ C([0, t0];Zα+1

C )
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we have
t∫

0

Tα(t− s)QU(s) ds =

t∫

0

(
Rα(t− s)Lu(s)
S(t− s)Lu(s)

)
ds ∈ Zα+1

C ,

(by u we denote the first component of U) and the norm of the integral is bounded by
q‖U‖∞ for some q ∈ [0, 1). By the fact that Zα+1

A = Zα+1
C with equivalent norms this

immediately follows from Lemma 4.7.6 showing that (Cα + Q)|Zα+1
C

is a generator of a
C0-semigroup on Zα+1

C . Even more can be deduced from Lemma 4.7.6. The estimates
show that the assumptions of Proposition 4.5.1(b) are satisfied for β = 1/p. Hence Q
maps Zα+1

C continuously to Zα+1/p−ε
C for all ε > 0. From Corollary 4.3.4 we infer that

(Cα + Q)|Z is a generator. This yields the following well-posedness criteria for (IDE).

4.7.7 Proposition. Let p ∈ (1,∞), α ∈ [−1, 0] and ℓ ∈ BVp(R+;L(Xα+1, Xα)). Then
(C∗ + Q)|Z is the generator of a C0-semigroup on Z = X ×W−α

p (R+;Xα). We further
have:

(a) If −1/p < α ≤ 0 then Q ∈ L(Zα+1
C ,Z) and

D(C + Q) = {( xf ) ∈ Xα+1 ×W 1
p (R+;Xα); A∗x+ f(0) ∈ X}.

In particular X1 × {0} ⊆ D(C + Q) and thus (IDE) is well-posed.
(b) If −1 ≤ α ≤ −1/p then

D
(
(Cα + Q)|Z

)
={( xf ) ∈ Xα+1 ×W 1

p (R+;Xα);

A∗x+ f(0) ∈ X, ℓ(·)x+ Df ∈W−α
p (R+;Xα)}.

Unique classical solutions of (IDE) exist for all ( xf ) ∈ D
(
(Cα + Q)|Z

)
, continuously

depending (in the norm of X) on the initial value. Mild solutions of (IDE) exist for all
x ∈ X and f ∈W−α

p (R+;Xα).

Proof. In both cases we already have seen that E := (C∗+Q)|Z generates a C0-semigroup.
So it remains to show that the first component of the generated C0-semigroup indeed
solves (IDE). The well-posedness assertion in (a) and the statement about unique classi-
cal solutions in (b) are shown as in the proof of Proposition 4.7.2 and therefore omitted.

In order to treat the assertion on mild solutions in (b) let ( xf ) ∈ Z. Let (
xn

fn
) ∈ D(E)

(n ∈ N) be a sequence converging to ( xf ) in Z as n → ∞. By
(
u(·)
F (·)

)
and

(
un(·)
Fn(·)

)
we

denote the solutions of the abstract Cauchy problem associated with E for the initial
values ( xf ) and (

xn

fn
) (n ∈ N), respectively. For n ∈ N and t ∈ R+ we have

u̇n(t) = Aun(t) + δ0Fn(s), (4.7.3)

Ḟn(t) = Lun(t) + D−αFn(t). (4.7.4)

As in the proof of Proposition 4.7.2 we see from (4.7.4) that δ0Fn(t) =
∫ t
0
ℓ(t−s)un(s) ds+

fn(t) (t ∈ R+). Therefore we obtain

δ0

t∫

0

Fn(s) ds =

t∫

0

ℓ(t− r)

r∫

0

un(s) ds dr +

t∫

0

fn(s) ds (t ∈ R+). (4.7.5)
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In order to show that (4.7.5) also holds for u and F we first observe that Zα+1
E = Zα+1

C =
Zα+1

A with equivalent norms, where the first equation follows from Theorem 4.3.2 using
Q ∈ L(Zα+1

C ,Zα+1/p−ε
C ) (ε > 0). We also have Zα

E = Zα
C = Zα

A with equivalent norms,
the first equality being a consequence of R(λ, E) = (I − R(λ, Cα)Q)−1R(λ, Cα) and the
boundedness of the operators (I − R(λ, Cα)Q)−1 and I − R(λ, Cα)Q in Zα

C for λ ∈ R

sufficiently large; cf. the proof of the Desch-Schappacher perturbation theorem [39;
Equation (III.3.9)]. Let ω ≥ 0 be sufficiently large and assume that Zγ

E is equipped with

the norm ‖(E − ω)γ · ‖Z for γ ∈ R. As
(
u(·)
F (·)

)
is a mild solution of the Cauchy problem

associated to E (and therefore also to Eα) we obtain for t ∈ R+ the estimate

∥∥∥∥∥∥

t∫

0

u(s) ds

∥∥∥∥∥∥
Xα+1

A

+

∥∥∥∥∥∥

t∫

0

F (s) ds

∥∥∥∥∥∥
W 1

p (R+;Xα)

=

∥∥∥∥∥∥

t∫

0

(
u(s)
F (s)

)
ds

∥∥∥∥∥∥
Zα+1
A

≤ c1

∥∥∥∥∥∥

t∫

0

(
u(s)
F (s)

)
ds

∥∥∥∥∥∥
Zα+1
E

= c1

∥∥∥∥∥∥
(Eα − ω)

t∫

0

(
u(s)
F (s)

)
ds

∥∥∥∥∥∥
Zα
E

= c1

∥∥∥∥∥∥

(
u(t)
F (t)

)
−
(
u(0)
F (0)

)
− ω

t∫

0

(
u(s)
F (s)

)
ds

∥∥∥∥∥∥
Zα
E

≤ c2

(
t sup
s∈[0,t]

∥∥∥
(
u(s)
F (s)

)∥∥∥
Zα
E

+
∥∥∥
(
u(t)−u(0)
F (t)−F (0)

)∥∥∥
Zα
E

)
≤ c3 ‖( xf )‖Zα

A
≤ c4 ‖( xf )‖Z

for constants c1, c2, c3, c4 ≥ 0 independent of t in compact intervals in R+. This estimate
implies that

∫ t
0
un(s) ds →

∫ t
0
u(s) ds (n → ∞) in Xα+1

A uniformly for t in compact
intervals in R+. Hence for t ∈ R+ we have

t∫

0

ℓ(t− r)

r∫

0

un(s) ds dr→
t∫

0

ℓ(t− r)

r∫

0

u(s) ds dr (n→ ∞),

where the convergence is in Xα
A. As W 1

p (R+;Xα) →֒ C0(R+;Xα) we also infer that
δ0
∫ t
0
Fn(s) → δ0

∫ t
0
F (s) ds (n→ ∞). This shows that

δ0

t∫

0

F (s) ds =

t∫

0

ℓ(t− r)

r∫

0

u(s) ds dr+

t∫

0

f(s) ds (t ∈ R+). (4.7.6)

Now using (4.7.6) and the closedness of A we infer from the integrated equation of (4.7.3)
that u is indeed a mild solution of (IDE). �

For our last result in this section we first note that by the same estimate obtained in
the proof of Lemma 4.7.6(b) we have the following embedding.
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4.7.8 Lemma. Let p ∈ [1,∞). Let Y be a Banach space. For β < 1/p we have
BVp(R+;Y ) →֒ W β

p (R+;Y ).

Proof. By S we denote the left translation semigroup on Lp(R+;Y ). As in the proof of
Lemma 4.7.6(b) we obtain ‖

∫ t
0
S(s)f ds‖p,1 ≤ ct1/p‖f‖p,V ar (f ∈ BVp(R+;Y )) for some

c ≥ 0. This shows that BVp(R+;Y ) is continuously embedded into the Favard space of
fractional order 1/p corresponding to S, which is further continuously embedded into
W β
p (R+;Y ) for any β < 1/p by [39; Proposition II.5.33]. �

We are now going to deal with

(IDE’) u̇(t) = A∗u(t) +

t∫

0

dℓ(s)u(t− s) + f(t), u(0) = x ∈ X (t ∈ R+),

where we assume that α ∈ (−1/p, 1 − 1/p) and ℓ is a p-integrable L(Xα)-valued func-
tion of bounded variation, which is left-continuous on R+ and additionally satisfies
ℓ(0) = 0. We will see that classical solutions of (IDE’) only exists for x ∈ X1 and
f ∈ W 1−α

p (R+;Xα) satisfying the coupling condition f + ℓ(·)x ∈ W 1−α
p (R+;Xα) (if

α < 0 even a second coupling occurs). We therefore consider the integrated version of
(IDE’)

(IE) u(t) = x+

t∫

0

f(s) ds+

t∫

0

(A∗ + ℓ(t− s))u(s) ds (t ∈ R+).

A function u is called a solution of (IE) if u ∈ C(R+;Xmax{0,α}) and (IE) holds for all
t ∈ R+. We say that (IDE’) is well-posed if a unique solution u ∈ C(R+;Xmax{0,α}) of
(IE) exists for all x ∈ Xmax{0,α} and f = 0, depending continuously (in the norm of X)
on the initial value.

In Section 4.7.3 we will look at the equation (IDE•) obtained from (IDE’) by applying
integration by parts; see Remarks 4.7.11 for a comparison of the results for the two
equations.

Let α ∈ (−1/p, 1 − 1/p). Let Z, A, C and T be as above. We define Lx := D∗ℓ(·)x
and L̃x := ℓ(·)x (x ∈ Xα). Further let Q̃ :=

(
0 0
L̃ 0

)
with domain Zα

C . Since L̃ ∈
L(Xα, Lp(R+;Xα)) we have Q := Cα−1Q̃ ∈ L(Zα

C ,Zα−1
C ). As ℓ(0) = 0 we obtain

Q =

(
δ0L̃ 0
L 0

)
=

(
0 0
L 0

)
.

We show that Q is a Desch-Schappacher perturbation of Cα. To this end we have to
reason that there is a t0 > 0 such that for all U ∈ C([0, t0];Zα

C ) we have

t∫

0

Tα−1(t− s)QU(s) ds ∈ Zα
C (t ∈ [0, t0])
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and the norm of the integral is bounded by q‖U‖∞ for some q ∈ [0, 1). For λ > 0
sufficiently large we have

R(λ, Cα−1) =

(
R(λ,Aα−1) −R(λ,Aα−1)δ0R(λ,D−1)

0 R(λ,D−1)

)
.

Let u be the first component of U . With Lλ := R(λ,D−1)L we can write

t∫

0

Tα−1(t− s)QU(s) ds

= (λ− Cα−1)

t∫

0

Tα(t− s)R(λ, Cα−1)

(
0

Lu(s)

)
ds

= (λ− Cα−1)

t∫

0

Tα(t− s)

(
−R(λ,Aα−1)δ0Lλu(s)

Lλu(s)

)
ds

= (λ− Cα−1)

t∫

0

(
−R(λ,Aα)Tα(t− s)δ0Lλu(s) +Rα(t− s)Lλu(s)

S(t− s)Lλu(s)

)
ds.

We first observe that λ−Cα−1 is a bounded operator from Zα+1
A to Zα

C . Hence it suffices
to show that the integral term belongs to Zα+1

A and that there is a c ≥ 0 so that
∥∥∥∥∥∥

t∫

0

((
−R(λ,Aα)Tα(t− s)δ0Lλu(s)

0

)
+

(
Rα(t− s)Lλu(s)
S(t− s)Lλu(s)

))
ds

∥∥∥∥∥∥
Zα+1
A

is bounded by ct1/p‖u‖∞ for all t ∈ [0, t0] and u ∈ C([0, t0];X
α). The norm of the

integral of the first summand is easily seen to be bounded by c1t for some c1 ≥ 0. As
R(λ,D∗)ℓ and therefore also R(λ,D∗)D∗ℓ = λR(λ,D∗)ℓ− ℓ are in BVp(R+;L(Xα)) the
necessary estimate for the second summand follows from Lemma 4.7.6. So we infer that
(Cα−1 + Q)|Zα

C
is a generator.

From the estimates we also infer that Q is a bounded operator from Zα
C to Zβ

C for any
β < α + 1/p − 1. As β can be chosen to be α − 1 we conclude by Corollary 4.3.4 the
generator property of

E := (Cα−1 + Q)|Z =
(
Cα−1(I + Q̃)

)
|Z
. (4.7.7)

Taking into account that I + Q̃ ∈ L(Zα
C ) the domain of E is given by

D(E) = {( xf ) ∈ Zα
C ; (I + Q̃) ( xf ) ∈ Z1

C}.
If α ≥ 0 we have Z1

C = X1 ×W 1−α
p (R+;Xα) and therefore

D(E) = {( xf ) ∈ X1 × Lp(R+;Xα); f + L̃x ∈W 1−α
p (R+;Xα)}.
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(Note that 1−α > 1/p and L̃x 6∈W 1−α
p (R+;Xα) generally.) If α < 0 then Z1

C = {( xf ) ∈
Xα+1 ×W 1−α

p (R+;Xα); A∗x+ f(0) ∈ X}. Together with ℓ(0) = 0 this leads to

D(E) = {( xf ) ∈ Xα+1 × Lp(R+;Xα); f + L̃x ∈W 1−α
p (R+;Xα),

A∗x+ f(0) ∈ X}.

In general X1 × {0} does not belong to the domain of E .

4.7.9 Proposition. Let p ∈ (1,∞) and α ∈ (−1/p, 1 − 1/p). Assume that ℓ ∈
BVp(R+;L(Xα)). Then (IDE’) is well-posed.

Proof. Let x ∈ Xmax{0,α}. We have to to show that the function u defined by
(
u(t)
F (t)

)
:=

etE ( x0 ) (t ∈ R+) indeed solves (IE). We first observe that u ∈ C(R+;Xα) as ( ∈
Z )αE = Zα

A.
From

(
u(t) − u(0)
F (t) − F (0)

)
=

(
A∗ δ0
L D−1

) t∫

0

(
u(s)
F (s)

)
ds (t ∈ R+) (4.7.8)

we see that F (t) = D−1

∫ t
0
F (s) ds +

∫ t
0
D−1L̃u(s) ds. Considering F as a mild solution

of the inhomogeneous abstract Cauchy problem associated with D−1 on W−1
p (R+;Xα)

with inhomogeneity Lu(·) (where we have L̃u(·) ∈ C(R+;BVp(R+;Xα))) we infer that

F (t) =

t∫

0

S−1(s)(Lu(t− s)) ds = D−1

t∫

0

ℓ(s+ ·)u(t− s) ds

=

t∫

0

dℓ(s+ ·)u(t− s).

In particular δ0F (t) =
∫ t
0
dℓ(s)u(t− s) ds. Now the first line of (4.7.8) reads as

u(t) = x+

t∫

0

A∗u(s) ds+

t∫

0

s∫

0

dℓ(r)u(s− r) dr ds (t ∈ R+).

Using ℓ(0) = 0 standard computations show that u is a solution of (IE).
In order to show that solutions are unique assume that u ∈ C(R+;Xmax{0,α}) solves

(IE) for the initial value u(0) = 0 and f = 0. For t ∈ R+ we define the function

F (t) :=

t∫

0

dℓ(s+ ·)u(t− s) ds =

t∫

0

S−1(s)D−1L̃u(t− s) ds.

As L̃u(·) ∈ C(R+;BVp(R+;Xα)) we see that F is unique mild solution of the inho-
mogeneous abstract Cauchy problem associated with D−1 for the initial value 0 and
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inhomogeneity Lu(·) ∈ C(R+;W−1
p (R+;Xα)). Taking into account that δ0F (t) =

∫ t
0
dℓ(s)u(t − s) (t ∈ R+) by definition we conculude that

(
u(·)
F (·)

)
solves the abstract

Cauchy problem associated with E for the initial value ( 0
0 ). Since E is a generator we

have u = 0.
The continuous dependency of the solution on the initial value directly follows from

the semigroup properties. �

4.7.3 An Integro-Differential Equation with Time-Derivative in
the Delay Term

We now come back to the equation

(IDE•) u̇(t) = A∗u(t) +

t∫

0

ℓ(t− s)u̇(s)ds+ f(t), u(0) = x ∈ X, (t ∈ R+),

which we already have dealt with in Chapter 3. Now we assume that X is a Banach
space, A is the generator of a C0-semigroup on X and ℓ is an operator-valued function
on R+ with values in L(Y,X−1), where Y is a Banach space satisfying X →֒ Y →֒ X−1.
The inhomogeneity f is supposed to belong to L1,loc(R+;X−1).

In contrast to the previous chapter we now treat (IDE•) in the larger space X−1.
This requires the weakening of the notions introduced in Definition 3.0.6. Now we call a
function u a classical solution of (IDE•) if u ∈ C1(R+;X) and u satisfies (IDE•) in the
space X−1. Further a function u ∈ C(R+;X) is a mild solution of (IDE•) if

(IE’) u(t) = x+

t∫

0

(
f(s) − ℓ(s)x

)
ds+

t∫

0

(A∗ + ℓ(t− s))u(s) ds (t ∈ R+)

holds for all t ∈ R+. We say that (IDE•) is well-posed if for all x ∈ X1 a unique classical
solution u ∈ C1(R+;X) exists, which depends continuously (in the norm of X) on the
initial value uniformly in compact intervals.

In Chapter 3 well-posedness of (IDE•) has been shown under conditions on ℓ which do
not allow integration by parts. We supplement these results with further well-posedness
conditions involving mixed regularity conditions on ℓ. In Corollary 4.8.7 we obtain
similar conditions by employing delay semigroups.

In order to obtain solutions of (IDE•) we again start with the generator C =
(
A δ0
0 D−α

)

on either Z = X × C−α
bu (R+;F α

A) or Z = X ×W−α
p (R+;Xα) from Sections 4.6.1 and

4.6.2. We shall perturb C with the operator Q :=
(

0 0
ℓ(·)A∗ ℓ(·)δ0

)
=
(

0 0
ℓ(·) 0

)
C∗ with a

domain belonging to the scale
(
Zγ

C

)
γ∈R

. (We hope that the reader does not get confused
by the fact that we use Z, C and Q in two different contexts.) As for the other integro-
differential equations the solutions of (IDE•) are given by the first component of the
obtained Volterra semigroup.
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4.7.10 Proposition. (a) Assume that α ∈ (−1, 1], β ∈ [α, α + 1] ∩ (0, 1], ℓ(t) ∈
L(Xβ−1, F α

A) (t ∈ R+) and ℓ(·)x ∈ F β−α
D (x ∈ Xβ−1). Then (IDE•) is well-posed.

In particular this holds if α ∈ (−1, 0] (and β = α + 1), ℓ(t) ∈ L(Xα, F α
A) and ℓ(·)x ∈

Lip(R+;F α
A) (x ∈ Xα), or if α ∈ (0, 1] (and β = α), ℓ(t) ∈ L(Xα−1, F α

A) and ℓ(·)x ∈
L∞(R+;F α

A) (x ∈ Xα−1).
(b) Assume that p ∈ (1,∞), α ∈ [−1, 1 − 1/p), β ∈ (α + 1/p, α + 1] ∩ [0, 1], ℓ(t) ∈

L(Xβ−1, Xα) (t ∈ R+) and ℓ(·)x ∈ W β−α
p (R+;Xα) (x ∈ Xβ−1). Then (IDE•) is well-

posed.
(c) Assume that p ∈ (1,∞), α ∈ [−1, 0] and ℓ ∈ BVp(R+;L(Xα)) being left-continuous

and satisfying ℓ(0) = 0. If α ∈ (−1/p, 0] then (IDE•) is well-posed. If α ∈ [−1,−1/p]
then a mild solution of (IDE•) exists for all x ∈ X and g ∈W−α

p (R+;Xα).

Proof. For the cases (a) and (b) let Lx := ℓ(·)x (x ∈ Xβ−1).
(a) Let Z := X × C−α

bu (R+;F α
A). The closed graph theorem implies that L belongs

to L(Xβ−1, F β−α
D ) (see Lemma 3.1.1 for similar cases). From Section 4.6.1 we use that

Zγ
C = Xγ × Cγ−α

bu (R+;F α
A) and F γ

C = F γ
A × F γ−α

D (γ ∈ (α− 1, α + 1)).
For β ∈ [α, α + 1) we see that Q ∈ L(Zβ

C , F
β
C ). If β = α + 1 then we infer from

( 0 0
L 0 ) ∈ L(Zα

C ,F), where F := {0} × F 1
D, and the embedding F →֒ F α+1

C shown in
Lemma 4.7.1, that Q = ( 0 0

L 0 ) Cα ∈ L(Zα+1
C , F α+1

C ). By Corollary 4.4.3 we infer that
C + Q is a generator.

In order to show the well-posedness of (IDE•) we first show existence of solutions. Let
x ∈ X1. As ( x0 ) ∈ D(C + Q) = D(C) we see that

(
u(t)
F (t)

)
:= exp(t(C + Q)) ( xf ) (t ∈ R+)

is the classical solution of the abstract Cauchy problem associated with C +Q. Thus we
have

u̇(t) = A∗u(t) + δ0F (t), (4.7.9)

Ḟ (t) = L(A∗u(t) + δ0F (t)) + D−αF (t) (t ∈ R+). (4.7.10)

Using (4.7.9) we can write (4.7.10) as

Ḟ (t) = Lu̇(t) + D−αF (t) (t ∈ R+). (4.7.11)

From (4.7.11) we infer that F is the classical solution of the inhomogeneous abstract
Cauchy problem associated with the left translation semigroup on C−α

bu (R+;F α
A) with

inhomogeneity Lu̇(·). This gives us

F (t) =

t∫

0

S−1(t− s)Lu̇(s) ds =

t∫

0

ℓ(t− s+ ·)u̇(s) ds (t ∈ R+).

Therefore we obtain δ0F (t) =
∫ t
0
ℓ(t− s)u̇(s) ds. This shows that u solves (IDE•).

In order to show that solutions of (IDE•) are unique assume that u is a solution of
(IDE•) for the initial value u(0) = 0. Let F (t) :=

∫ t
0
S−1(t − s)Lu̇(s) ds (t ∈ R+). As

δ0F (t) =
∫ t
0
ℓ(t− s)u̇(s) ds we see that equation (4.7.9) holds. This implies that F is a
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mild solution of the inhomogeneous abstract Cauchy problem associated with S−1 and
with the continuous inhomogeneity Lu̇(·) = L(A∗u(·) + δ0F (·)) ∈ C(R+;F β−α

d ). Hence

F satisfies the integrated version of (4.7.10). Therefore
(
u(·)
F (·)

)
is a mild solution of

the abstract Cauchy problem associated with C + Q. As mild solutions are unique we
conclude u = 0.

The continuous dependence on the initial value follows from the uniform boundedness
of the operators of the semigroup generated by C + Q in compact intervals. This shows
the well-posedness of (IDE•).

(b) Let Z := X × W−α
p (R+;Xα). The assumptions on ℓ imply that L belongs to

L(Xβ−1,W β−α
p (R+;Xα)) by the closed graph theorem (similarly as in Lemma 3.1.1).

From Section 4.6.2 we use that Zγ
C = Xγ×W γ−α

p (R+;Xα) for all γ ∈ (α+1/p−1, α+1].
Hence we have Q ∈ L(Zβ

C ). Again Corollary 4.4.3 shows that C +Q is a generator. The
well-posedness of (IDE•) is shown similarly as in (a).

(c) Once more we start with the generator C on Z := X ×W−α
p (R+;Xα) from Sec-

tion 4.6.2. In (4.7.7) we have concluded that Cα−1(I + Q̃) is a generator on Zα−1
C , where

Q̃ = ( 0 0
L 0 ) with Lx := ℓ(·)x (x ∈ Xα). From [39; Theorem III.3.20(ii)] we infer that

(and by using Q̃ ∈ L(Zα
C ))

(
(I + Q̃)Cα−1

)
˛

˛

˛

˛

(Zα−1
C )

1

Cα−1

=
(
(I + Q̃)Cα−1

)

|Zα
C

= (I + Q̃)Cα = Cα + Q̃Cα =: E

is a generator on
(
Zα−1

C

)1
Cα−1

= Zα
C . If α = 0 we see that E = C +Q is a generator on Z

(observe that Q = Q̃Cα). For α ∈ [−1, 0) let λ > 0 be larger than the growth bound of
Cα as a generator on Zα

C . The operator Ẽ := (I+Q̃)(Cα−λ) = E−λ(I+Q̃) (with domain
Zα+1

C ) is a generator on Zα
C since E is a generator on this space and I + Q̃ is a bounded

operator. From the boundedness of I + Q̃ we also conclude that the norm ‖ · ‖Zα+1
C

is
finer than the graph norm ‖ · ‖Ẽ on Zα+1

C . Hence by the open mapping theorem the two
norms are equivalent (see the proof of [39; Theorem III.3.20(i)]). Therefore E1 = E|Zα+1

C

is a generator on Zα+1
C . Now we can infer from Corollary 4.3.4, taking into account that

Q̃Cα ∈ L(Zα+1
C ,Zα+1/p−ε

C ) for any ε > 0 (see above the equation (4.7.7)), that E−α = E|Z
is a generator of a C0-semigroup on Z.

If α > −1/p then E|Z = C + Q̃C and the domain of E is

D(E) =
{
( xf ) ∈ Xα+1 ×W 1−α

p (R+;Xα); Aαx+ f(0) ∈ X
}
.

Again the well-posedness of (IDE•) is shown similarly as in (a).
If α ∈ [−1,−1/p] we have

E−α = E|Z
=
{

( xf ) ∈ Zα+1
C ; (I + Q̃)Cα ∈ Z

}

=
{

( xf ) ∈ Xα+1 ×W 1
p (R+;Xα); Aαx+ f(0) ∈ X,

Df + L(A∗x+ f(0)) ∈W−α
p (R+;Xα)

}
.
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Let ( xf ) ∈ Z and
(
u(t)
F (t)

)
:= etE ( xf ) (t ∈ R+). If ( xf ) ∈ D(E) then we see similar as in

(a) that u ∈ C(R+;Xα+1) ∩ C1(R+;X) satisfies (IDE•). Integrating (IDE•) we obtain

u(t) = x+

t∫

0

(
f(s) − ℓ(s)x

)
ds+

t∫

0

(Aα + ℓ(t− s))u(s) ds (t ∈ R+).

As D(E) is dense in Z and as u depends continuously on the initial value in the norm
of X (and therefore also in the norm of Xα) in compact intervals in R+ we see by an
approximation argument that u is a mild solution of (IDE•) for all initial values ( xf ) ∈ Z.
This shows assertion (c) for α ∈ [−1,−1/p]. �

4.7.11 Remarks. (a) As in Remarks 4.7.4(c) the assertion of Proposition 4.7.10(a) can be
generalised. Let α ∈ (−1, 1], γ ∈ (max{−1, α− 1}, α] and let Y →֒ Xγ a Banach space
satisfying (RC) with respect to Aα; cf. Proposition A.4. Let β ∈ [α, γ+1]∩ (0, 1]. Then
(IDE•) becomes well-posed if ℓ(t) ∈ L(Xβ−1, Y ) (t ∈ R+) and ℓ(·)x ∈ F β−α

D (x ∈ Xβ−1).
(b) If we assume that ℓ ∈ BVp(R+;L(Xα)) as in Proposition 4.7.10(c) then integration

by parts is applicable to (IDE•) leading to the equation (IDE’) with inhomogeneity
f − ℓ(·)x. Surprisingly the conditions under which (IDE’) with inhomogeneity f − ℓ(·)x
possesses classical or mild solutions do not cover Proposition 4.7.10(c). So even for
conditions for which integration by parts is applicable it is worse investigating (IDE•)
rather than the corresponding inhomogeneous version of (IDE’).

4.8 Delay Semigroups in the Lp-Context

Let h ∈ (0,∞] and J := (−h, 0). In this section we are going to treat the equation

(DE) u̇(t) = Au(t) + Lut, u(0) = x ∈ X, u0 = f ∈ Lp(J ;Xα)

where p ∈ [1,∞), α ∈ (−1/p, 1], X is a Banach space, A is the generator of a C0-
semigroup T and L is a delay operator on a function space related to Lp(J ;Xα).

For delay semigroups in the Lp-context we refer to [19], [48], [69], [21], [20] and [22],
see also Section 3.2.

First we introduce delay semigroups. In the second part we will perturb these C0-
semigroups to solve (DE).

4.8.1 Delay Semigroups

We start by introducing fractional order Sobolev spaces for the interval J , where (in
contrast to the previous sections) we now need to take care of the zero boundary con-
dition at 0 of the left translation semigroup on this interval. Let p ∈ [1,∞) and Y
be a Banach space. We define W γ

p (−h,∞;Y ) and V γ
p (J ;Y ) as the fractional power

spaces of order γ ∈ R with respect to the left translation semigroup Š on Lp(−h,∞;Y )
and the left translation semigroup S on Lp(J ;Y ) with zero boundary condition at
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0, respectively. As Lp(J ;Y ) can be identified with the Š-invariant closed subspace
{f ∈ Lp(−h,∞;Y ); spt f ⊆ (−h, 0]}, we see that S is the restriction of Š to Lp(J ;Y ).
This immediately shows that

V γ
p (J ;Y ) = {f ∈ W γ

p (−h,∞;Y ); spt f ⊆ (−h, 0]}.

We denote the generator of the left translation semigroup S on Lp(J ;Y ) by D. We
point out that for h = ∞ the translation semigroup S has growth bound 0. So the
fractional derivatives (D − ω)α can only be evaluated for ω > 0. For h ∈ (0,∞) the
semigroup S is nilpotent and so has growth bound −∞. Fractional derivatives exist for
all ω ∈ R. Let ωh := 0 if h <∞ and ωh > 0 if h = ∞. On V γ

p (J ;X) (γ ∈ R) we use the
norm ‖ · ‖p,γ := ‖(D − ωh)

γ · ‖p.
For λ ∈ C we denote by ελ the function (−∞, 0] ∋ ϑ 7→ eλϑ. For the definition of the

fractional order Sobolev space W γ
p (J ;Y ) without a boundary condition at 0 we need the

fractional derivative of x · ελ (x ∈ X, λ > 0) with respect to S.

4.8.1 Lemma. Let p ∈ [1,∞). Let Y be a Banach space, x ∈ Y , α ∈ (0, 1) and
λ, ω ∈ R. If h = ∞ we require that λ > ω > 0. Then x · ελ ∈ V α

p (J ;Y ) if and only if
α < 1/p or x = 0 and in this case we have

(D − ω)α(x · ελ)

= J ∋ ϑ 7→ c̃1−α



(λ− ω)eλϑ
−ϑ∫

0

e(λ−ω)ss−α ds− eωϑ(−ϑ)−α



 x (4.8.1)

(cf. (4.1.2) for the constant c̃1−α).

Proof. Using (4.1.2) we compute

(D − ω)α−1(x · ελ) =



J ∋ ϑ 7→ c̃1−αe
λϑ

−ϑ∫

0

e(λ−ω)ss−α ds · x



 .

Taking the derivative in L1,loc(J ;X) we see that (4.8.1) holds in L1,loc(J ;X). For the
first term in (4.8.1) we easily obtain the estimate

|c̃1−α|(λ− ω)eλϑ
−ϑ∫

0

e(λ−ω)ss−α ds ≤ |c̃1−α|
λ− ω

1 − α
(−ϑ)1−αeλϑ (ϑ ∈ J),

which belongs to Lp(J) as a function in ϑ. The second part of (4.8.1), which is the
function ϑ 7→ −c̃1−αeωϑ(−ϑ)−α · x, is in Lp(J ;X) if and only if α < 1/p or x = 0. This
shows the assertion. �

Let λh := 0 if h ∈ (0,∞) and λh > ωh if h = ∞. For γ ≥ 1/p we define the Banach
space

W γ
p (J ;Y ) := V γ

p (J ;Y ) ⊕ {x · ελh
; x ∈ X}.
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By Lemma 4.8.1 we know that W γ
p (J ;Y ) ∋ (f, x · ελh

) 7→ f + x · ελh
∈ Lp(J ;Y ) is

injective. We therefore identify W γ
p (J ;Y ) with the space of all functions f +x · ελh

with
f ∈ V γ

p (J ;X) and x ∈ X. We further remark that for g ∈ W γ
p (J ;Y ) the decomposition

g = f + x · ελh
is unique. We write g(0) := x. On W γ

p (J ;X) we will use norm

‖g‖p,γ := ‖g(0)‖ + ‖g − g(0) · ελh
‖V γ

p (J ;Y ).

We point out that for γ > 1/p the mapping W γ
p (J ;X) ∋ g 7→ g(0) ∈ X is bounded

as W γ
p (−h,∞;Y ) is continuously embedded into C0([−h,∞);Y ), cf. Remarks 4.6.4(b).

(We have again denoted the norm on W γ
p (J ;Y ) by ‖ · ‖p,γ as V γ

p (J ;Y ) ⊆W γ
p (J ;Y ) and

both norms agree on V γ
p (J ;Y ).)

We now generalise delay semigroups introduced in [19]. Let α ∈ (−1/p, 1] and Z :=
X × V −α

p (J ;Xα). On Z we consider the generator Ã :=
(
A 0
0 D−α

)
, D(Ã) := D(A) ×

D(D−α). Let B ( xf ) :=
(

0
−(D−1−ωh)(x·ελh

)

)
with domain D(B) := D(Ãα−1) = Zα

Ã
. From

Lemma 4.8.1 we conclude that B ∈ L
(
Zα

Ã
,Zα+1/p−1−ε

Ã

)
for any ε > 0. (We also infer that

this assertion is not true for ε = 0.) Moreover B is a Desch-Schappacher perturbation
of Ãα as we will show next (also cf. [39; Exercise III.3.8(5)(iv)]).

4.8.2 Lemma. The operator B is a Desch-Schappacher perturbation of Ãα − ωh.

Proof. We will invoke [39; Corollary III.3.4] in order to prove the assertion. We have to
show that

t∫

0

er(Ãα−1−ωh)BU(t− r) dr ∈ Zα
Ã

= Xα × Lp(J ;X) (4.8.2)

for a fixed t > 0 and all U ∈ Lp
(
0, t;Zα

Ã

)
. Let f := P1U(·) ∈ Lp(0, t;X

α). The integral
in (4.8.2) can be written as

t∫

0

er(Ãα−1−ωh)BU(t − r) dr = (Ãα−1 − ωh)

t∫

0

er(Ãα−ωh)

(
0

f(t− r) · ελh

)
dr

=

(
Aα−1 − ωh 0

0 D−1 − ωh

)(
0∫ t

0
e−ωhrS(r)(f(t− r) · ελh

) dr

)

=

(
Aα−1 − ωh 0

0 D−1 − ωh

)(
0

J ∋ ϑ 7→
∫ min{−ϑ,t}

0
e−ωhreλh(r+ϑ)f(t− r) dr

)

=

(
0

(D−1 − ωh)
(
J ∋ ϑ 7→

∫ min{−ϑ,t}

0
e−ωhreλh(r+ϑ)f(t− r) dr

)
)
.
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For the second component a straightforward computation yields

(D−1 − ωh)



J ∋ ϑ 7→
min{−ϑ,t}∫

0

e−ωhreλh(r+ϑ)f(t− r) dr





= J ∋ ϑ 7→ λeωϑ
min{−ϑ,t}∫

0

e(λh−ωh)(r+ϑ)f(t− r) dr − eωϑf(t+ ϑ) (4.8.3)

(where we set f(r) := 0 for r < 0). For h = ∞ we infer that (using the Hölder-inequality)
∥∥∥∥∥∥

min{−ϑ,t}∫

0

e(λh−ωh)(r+ϑ)f(t− r) dr

∥∥∥∥∥∥
≤ ‖f‖p(

p′(λh − ωh)
)1/p′ (ϑ ∈ J),

where p′ denotes the conjugate exponent of p. For h ∈ (0,∞) the norm of this integral
is bounded by t1/p

′‖f‖p. Thus we see that the function in (4.8.3) is in Lp(J ;X). This
shows that (4.8.2) holds and so the assumptions of [39; Corollary III.3.4] are met. �

Invoking Corollary 4.4.2(b) and Remarks 4.4.4(a) we now see that A := (Ãα−1 +B)|Z
is a generator of a C0-semigroup on Z. By T we denote the C0-semigroup generated by
A. We call this C0-semigroup the delay semigroup. We first give a description of the
fractional power spaces associated with A.

4.8.3 Lemma. Let p ∈ [1,∞) and α ∈ (−1/p, 1].
(a) If β ∈ (α− 1, α+ 1/p) then Zβ

A = Xβ × V β−α
p (J ;Xα).

(b) If β ∈ [α + 1/p, α+ 1/p+ 1) then

Zβ
A = {( xf ) ∈ Xβ ×W β−α

p (J ;Xα); f(0) = x}

and the norm of Zβ
A is equivalent to the norm Zβ

A ∋ ( xf ) 7→ ‖x‖β + ‖f‖W β−α
p (J ;Xα).

(c) For the domain of D(A) we have

D(A) =

{
X1 × V 1−α

p (J ;Xα) if α ∈ (1 − 1/p, 1],{
( xf ) ∈ X1 ×W 1−α

p (J ;Xα); f(0) = x
}

if α ∈ (−1/p, 1 − 1/p].

Proof. Assertion (a) follows from Theorem 4.3.2 and Zβ

Ã
= Xβ × V β−α

p (J ;Xα).
In order to show assertion (b) we first observe that Zβ

A = D(Aβ−1). From Corol-
lary 4.3.4 we conclude that Aβ−1 = (Ãα−1 + B)|Zβ−1

Ã

. Using (a) this yields

D(Aβ−1) =
{

( xf ) ∈ Zα
Ã

; (Ãα−1 + B) ( xf ) ∈ Zβ−1

Ã

}

=
{

( xf ) ∈ Xα × Lp(J ;Xα); A∗x ∈ Xβ−1,

(D∗ − ωh)(f − x · ελh
) ∈ V β−1−α

p (J ;Xα)
}

=
{

( xf ) ∈ Xβ × Lp(J ;Xα); f − x · ελh
∈ V β−α

p (J ;Xα)
}

=
{

( xf ) ∈ Xβ ×W β−α
p (J ;Xα); f(0) = x

}
.
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Let ω > 0 be larger than the growth bound of T and T . In order to show the equivalence
of the norms we assume that Zβ−1

Ã
is equipped with the norm ( xf ) 7→ ‖(A∗ − ω)β‖ +

‖(D∗−ω)β−1−αf‖p. From (a) we know that Zβ−1

Ã
= Zβ−1

A with equivalent norms. Hence
the norm of Zβ

A is equivalent to the graph norm

Zβ
A ∋ ( xf ) 7→ ‖(Aβ−1 − ω) ( xf ) ‖Zβ−1

Ã

. (4.8.4)

From

‖(Aβ−1 − ω) ( xf )‖Zβ−1

Ã

= ‖(A− ω)βx‖ + ‖(D − ω)β−α(f − x · ελh
)‖p

for ( xf ) ∈ Zβ
A, the boundedness of (D−ω)β−α(D−ωh)α−β and (D−ωh)β−α(D−ω)α−β as

operators on Lp(J ;Xα) and the inequality ‖x‖α ≤ ‖(A− ω)α−β‖L(Xα)‖x‖β we see that

‖(A− ω)βx‖ + ‖(D − ω)β−α(f − x · ελh
)‖p ≤ c1

(
‖x‖β + ‖f‖W β−α

p (J ;Xα)

)

≤ c2
(
‖(A− ω)βx‖ + ‖(D − ω)β−α(f − x · ελh

)‖p
)

for some c1, c2 ≥ 0. Therefore the norm in (4.8.4) is further equivalent to the norm
( xf ) 7→ ‖x‖β + ‖f‖W β−α

p (J ;Xα). This shows assertion (b).
Assertion (c) follows from (a) and (b) by observing that D(A) = Z1

A. �

For β ∈ [α, α+ 1/p+ 1) the semigroup operators are given by Tβ(t) =
(
Tβ(t) 0

Vβ(t) Sβ−α(t)

)
,

where

(Vβ(t)x)(ϑ) :=

{
0 if t+ ϑ < 0,
Tβ(t+ ϑ)x if t+ ϑ ≥ 0;

cf. [19]. (Recall that for β ≥ α + 1/p the space Zβ
A contains a coupling.)

Before we perturb the delay semigroup we present a result concerning time and space
regularity properties of semigroup trajectories. The delay semigroup T has the interest-
ing feature that the second component (to be precise the operator family Vβ) “records”
the function T (·)x in a fractional order Sobolev space. The result is a corollary of
Lemma 4.8.3.

4.8.4 Corollary. Let h < ∞, p ∈ [1,∞), α ∈ (−1/p, 1] and β ∈ [α, α + 1/p + 1). If
x ∈ Xβ then

(
J ∋ τ 7→ T (τ + h)x

)
∈
{
W β−α
p (J ;Xα) if β − α ≥ 1/p,

V β−α
p (J ;Xα) if β − α < 1/p,

and ‖T (· + h)x‖W β−α
p (J,Xα) ≤ c‖x‖β, where c ≥ 0 depends on h.
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Proof. First assume that β ∈ [α, α+ 1/p). Then the assertion follows by observing that
Vβ(h)x is the desired function and Vβ(h) is a bounded operator from Xβ to V β−α

p (J ;Xα).
If β ∈ [α + 1/p, α+ 1/p+ 1) then we have ( x

x·1J ) ∈ Zβ
A. Therefore

(
Tβ(h)x
Vβ(h)x

)
= Tβ(h)

(
x

x · 1J

)
∈ Zβ

A.

Using Lemma 4.8.3(b) we infer

‖Vβ(h)x‖W β−α
p (J,Xα) ≤ c1‖Tβ(h)‖

∥∥∥∥
(

x
x · 1J

)∥∥∥∥
Zβ
A

≤ c2‖Tβ(h)‖ ‖x‖β

for some constants c1, c2 ≥ 0. �

4.8.2 Perturbation of Delay Semigroups

We are now going to perturb A with ( 0 L
0 0 ) defined on a suitable domain. We only give

conditions on L for which this perturbation yields a C0-semigroup. For the arguments
showing that the first component of this semigroup indeed solves (DE) we refer to [19;
Proposition 2.3].

We begin with a result obtained by applying the Miyadera-Voigt type perturbation
theorem. To this end let J̄ be the closure of J in R. For a Borel measure µ on J̄ and
t ≥ 0 we define the function

νµ,t : R → R+, νµ,t(ϑ) := µ
(
(ϑ− t, ϑ] ∩ J̄

)
(ϑ ∈ R)

(cf .[69; Sections 3 and 4] for details).

4.8.5 Proposition. Let p ∈ (1,∞), α ∈ (−1/p, 1 − 1/p) and L ∈ L(W 1
p (J ;Xα), Xα).

Assume that there is a Borel measure µ on J̄ and r ∈ [1, p] such that νµ,1 ∈ L p
p−r

(−h, 1)

and

‖Lf‖ ≤ ‖f‖Lr(µ;Xα) (f ∈W 1
p (J ;Xα)).

Let Q := ( 0 L
0 0 ), D(Q) := D(Aα). Then C := (A∗ + Q̃)|Z is the generator of a C0-

semigroup on Z. The domain of C is given by

D(C) =

{{
( xf ) ∈ X1 ×W 1−α

p (J ;Xα); f(0) = x
}

if α ≥ 0,{
( xf ) ∈ Xα+1 ×W 1−α

p (J ;Xα); A∗x+ Lf ∈ X, f(0) = x
}

if α < 0.

Proof. In [69; Theorem 3.1] it was shown that Q is a Miyadera-Voigt perturbation of
Aα and

t∫

0

‖QTα(s)U‖ ds ≤ ct1−1/p‖U‖Zα
A

(U ∈ Zα+1
A , t ∈ [0, 1]),
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for some c ≥ 0. From Proposition 4.5.1(a) we see that Q extends to a bounded operator
Q̃ in L(Zα+1/p+ε

A ,Zα
A) for any ε > 0. From Corollary 4.3.4 we conclude the generator

property of C. If α ≥ 0 then the domain of D(C) and D(A) coincide and so the assertion
on the domain of D(C) follows from Lemma 4.8.3. If α < 0 then the domain of C is the
set of all ( xf ) ∈ Zα+1

A for which
(

Aαx+Lf
D(f−f(0)·ελh

)

)
∈ Z. Hence x ∈ Xα+1, f ∈W 1−α

p (J ;Xα),
f(0) = x and A∗x+ Lf ∈ X. �

Our next aim is the proof of our second perturbation result which is an application of
the Desch-Schappacher perturbation theorem. We point out that the result particularly
holds for Y = Xβ (and with γ = β, that is the simplest case), for Y = F β

A (and with
γ < β) and for Y = Xγ (with γ > β − 1) provided that T is an analytic semigroup.

4.8.6 Proposition. Let p ∈ [1,∞), α ∈ (−1/p, 1], β ∈ [−1, 1] ∩ (α − 1, α + 1] and
γ ∈ [−1, 1] ∩ (β − 1, 1]. Let Y →֒ Xγ be a Banach space satisfying (RC) with respect to
Aβ. Assume that

L ∈
{
L(V β−α

p (J ;Xα), Y ) if β − α < 1/p,

L(W β−α
p (J ;Xα), Y ) if β − α ≥ 1/p.

Let Q := ( 0 L
0 0 ) with domain Zβ

A. Then C := (A∗ + Q)|Z is a generator on Z = X ×
V −α
p (R+;Xα). The domain of C is given by

{
( xf ) ∈ Xγ+1 × W 1−α

p (J ;Xα); A∗x + Lf ∈ X, f(0) = x
}

if γ < 0, α ≤ 1 − 1/p,
{

( xf ) ∈ Xγ+1 × V 1−α
p (J ;Xα); A∗x + Lf ∈ X

}
if γ < 0, α > 1 − 1/p,

{
( xf ) ∈ X1 × W 1−α

p (J ;Xα); f(0) = x
}

if γ ≥ 0, α ≤ 1 − 1/p,

X1 × V 1−α
p (J ;Xα) if γ ≥ 0, α > 1 − 1/p.

Before we present the lengthy proof we give a corollary, which was the motivation
for this proposition. In the corollary we obtain a well-posedness condition for (IDE•)
generalising Theorem 3.2.1; cf. Chapter 3 and Section 4.7.3.

4.8.7 Corollary. Let p ∈ [1,∞) and α ∈ (−1/p, 0]. Let Y →֒ Xα be a Banach space sat-
isfying (RC) with respect to Aα+1. Assume that ℓ : R+ → L(Xα, Y ) is strongly Bochner
measurable with respect to Y (i.e. ℓ(·)x is Bochner measurable with respect to Y for
all x ∈ X) and ‖ℓ(·)‖L(X,Y ) is dominated by some h ∈ Lp′,loc(R+) where p′ denotes the
conjugate exponent of p. Then (IDE•) is well-posed (in the sense of Section 4.7.3).

Proof. Let h > 0 and J := (−h, 0). By our assumptions Lf :=
∫ 0

−h
ℓ(−s)ḟ(s) ds (f ∈

W 1
p (J ;Xα)) is an operator in L(W 1

p (J ;Xα), Y ). Thus we can apply Proposition 4.8.6
with β = α + 1. Observing that x · 1J ∈ W 1−α

p (J ;Xα) for all x ∈ Xα we can literally
copy the proof of Theorem 3.2.1 in order to obtain the well-posedness of (IDE•). �

In order to be able to apply the Desch-Schappacher perturbation theorem to prove
Proposition 4.8.6 we need some preparation. Namely we will show in Corollary 4.8.12
that if a Banach space Y satisfies (RC) in Proposition A.3 with respect to Aβ for a
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β ∈ [α, α + 1] then Y × {0} satisfies (RC) with respect to Aβ. After Corollary 4.8.12
has been shown we are prepared for the proof of Proposition 4.8.6.

In some of the following lemmata we assume that h < ∞ and that T has negative
growth bound. As the translation semigroup S is nilpotent with these additional as-
sumptions this implies that T and T̃ both have negative growth bound. (In fact if
Z is equipped with e.g. the sum norm then both have the same growth bound as T .)
These two assumptions simplify the computations considerably and does not restrict the
applicability of Corollary 4.8.12. (For C0-semigroups T not having a negative growth
bound we will later use a rescaling argument. The case h = ∞ will be dealt with by
using estimates obtained in the case h <∞.)

4.8.8 Lemma. Let p ∈ [1,∞) and α ∈ (−1/p, 1]. Let Y1 →֒ Xα−1 and Y2 →֒ Xα

be Banach spaces satisfying (RC) for Aα and Aα+1, respectively. Then Y1 × {0} and
Y2 × {0} satisfy (RC) for Aα and Aα+1, respectively.

Proof. Let (RC) for Y1 with respect to Aα be satisfied for t0 ∈ (0, h] and a ∈ C([0, t0]).
Let ϕ ∈ C([0, t0];Y1) and assume that rgϕ ⊆ Xα. For t ∈ [0, t0] we can write

t∫

0

Tα−1(t− s)

(
ϕ(s)

0

)
ds =

( ∫ t
0
Tα−1(t− s)ϕ(s) ds

ϑ 7→
∫ t
0
Tα−1(t− s+ ϑ)ϕ(s) ds

)
,

where we set Tα−1(s) := 0 for s < 0. By assumption the first component belongs to Xα

and its norm is bounded by a(t)‖ϕ‖C([0,t0];Y1). We also see that the second component is
a function with values in Xα. Its norm in Lp(J ;Xα) can be estimated by

∥∥∥
t∫

0

Tα−1(s+ ·)ϕ(t− s) ds
∥∥∥
p

p
=

0∫

−h

∥∥∥
max{t+ϑ,0}∫

0

Tα−1(s)ϕ(t− s+ ϑ) ds
∥∥∥
p

α
dϑ

≤
0∫

−h

a(max{t+ ϑ, 0})p dϑ ‖ϕ‖pC([0,t0];Y1)

≤
(
t sup
s∈[0,t]

a(s)‖ϕ‖C([0,t0];Y1)

)p
.

Since t sups∈[0,t] a(s) goes to zero as t → 0 condition (RC) is satisfied for all ϕ ∈
C([0, t0];Y1) with values in Xα. A continuity argument shows the assertion for all
ϕ ∈ C([0, t0];Y1).

For the proof of the case of the space Y2 we refer to [48; Theorem 3.1]. The compu-
tations done there carry over to this slightly more general case without changes. �

For the following computations we recall the definition of the incomplete Beta-function

B(t, γ1, γ2) :=

t∫

0

τγ1−1(1 − τ)γ2−1 dτ (t ∈ [0, 1], γ1, γ2 > 0).
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We also recall that B(1, 1 − γ, γ) = Γ(1 − γ)Γ(γ) for γ ∈ (0, 1). Finally we define the
function

Bγ(s, ϑ) :=

{
B
(
− ϑ

s−ϑ
, 1 − γ, γ

)
if ϑ < 0,

0 if ϑ ≥ 0,

for (s, ϑ) ∈ R+ × (−h,∞) and γ ∈ (0, 1). Properties of this function relevant for our
purposes are explored in Lemma 4.8.10.

4.8.9 Lemma. Let p ∈ [1,∞) and α ∈ (−1/p, 1]. Assume that h ∈ (0,∞) and that
T has negative growth bound. Let Y →֒ Xα−1 be a Banach space satisfying (RC) with
respect to Aα. Let γ ∈ (0, 1). For x ∈ Y we define the operator

Kx := P2

(
A−γ
α−1 − Ã−γ

α−1

)(x
0

)
.

Then Dγ−1K ∈ L(Y, Cb(J ;Xα)) and

Dγ−1Kx = c̃1−γ c̃γ

∞∫

0

Bγ(s, ·)Tα−1(s)x ds (x ∈ Y ). (4.8.5)

Proof. Let t0 ∈ (0, h] and a ∈ C([0, t0]) with a(0) = 0 such that Y satisfies (RC) with
respect to Aα with t0 and a. Let ω > 0 and M ≥ 1 such that ‖Tα−1(t)‖ ≤ Me−ωt

(t ∈ R+). Using (4.1.2) we infer for x ∈ Xα and ϑ ∈ J the formula

(Kx)(ϑ) = c̃γ

∞∫

−ϑ

sγ−1Tα−1(s+ ϑ)x ds = c̃γ

∞∫

0

(s− ϑ)γ−1Tα−1(s)x ds.

Again from (4.1.2) we obtain for f ∈ Lp(J ;Xα) the formula

Dγ−1f =



J ∋ ϑ 7→ c̃1−γ

−ϑ∫

0

r−γf(r + ϑ) dr



 .

As A−γ
α and Ã−γ

α are bounded operators on Xα×Lp(J ;Xα) we see that Kx ∈ Lp(J ;Xα)
and thus

Dγ−1Kx =



J ∋ ϑ 7→ c̃1−γ c̃γ

∞∫

0




−ϑ∫

0

r−γ(s− r − ϑ)γ−1 dr



Tα−1(s)x ds





= c̃1−γ c̃γ

∞∫

0

Bγ(s, ·)Tα−1(s)x ds.
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For u > 0 small enough and ϑ ∈ J we obtain

(
Dγ−1Kx

)
(ϑ) = c̃1−γ c̃γ

∞∑

k=0

u∫

0

Tα−1(s)
(
Bγ(ku+ s, ϑ)Tα−1(ku)x

)
ds.

As Bγ(·, ·) is bounded by Γ(1 − γ)Γ(γ) a straightforward estimate yields

∥∥(Dγ−1Kx
)
(ϑ)
∥∥
α
≤ c‖x‖Y , c := M |c̃1−γ c̃γ |Γ(1 − γ)Γ(γ)a(u)

∞∑

k=0

e−kuω

(here we have used condition (RC) with the function s 7→ Bγ(ku+ (u− s))Tα−1(ku)x).
For x ∈ Xα+1 we know that Dγ−1Kx ∈ W 1

p (J ;Xα) →֒ Cb(J ;Xα). A continuity ar-
gument shows that (4.8.5) holds for all x ∈ Y , that Dγ−1Kx ∈ Cb(J ;Xα), and that
‖Dγ−1Kx‖Cb(J ;Xα) ≤ c‖x‖Y . �

4.8.10 Lemma. The function Bγ has the following properties.
(a) Let s > 0. Then Bγ(s, ·) is weakly differentiable and

‖∂2B
γ(s, ·)‖L1(ϑ1,ϑ2) = Bγ(s, ϑ1) −Bγ(s, ϑ2) (−h < ϑ1 < ϑ2).

(b) Let t ∈ (0, h) and s0 ∈ R+. Then

sup
s∈[s0,∞),ϑ∈J

(
Bγ(s, ϑ) − Bγ(s, ϑ+ t)

)
= Bγ(s0,−t).

(c) Let ϑ1, ϑ2 ∈ J and s ∈ R+. Then

‖∂2B
γ(s, ϑ1 + ·) − ∂2B

γ(s, ϑ2 + ·)‖L1(0,t) ≤ Bγ(s,−|ϑ1 − ϑ2|).

(d) For 0 < δ < 1−γ
2−γ

we have Bγ(tδ ,−t)
tδ

→ 0 as t→ 0.

Proof. For (s, ϑ) ∈ R+ × (−h,∞) we define the function

f(s, ϑ) :=

{
−sγ(−ϑ)−γ(s− ϑ)−1 if ϑ < 0 and s > 0,
0 if ϑ ≥ 0.

As Bγ(s, ϑ) =
∫ ϑ
0
f(s, τ) dτ (s ∈ (0,∞), ϑ ∈ (−h,∞)) we see that Bγ(s, ·) is weakly

differentiable and its derivative is f(s, ·) for all s > 0. Moreover as f(s, ϑ) ≤ 0 we have

‖∂2B
γ(s, ·)‖L1(ϑ1,ϑ2) = −

ϑ2∫

ϑ1

∂2B
γ(s, ϑ) dϑ = Bγ(s, ϑ1) − Bγ(s, ϑ2).

In order to show (b) we observe that Bγ(s, ϑ) is monoton decreasing in ϑ, therefore it
suffices to consider the case ϑ ∈ (−h,−t]. From

d

dϑ
(Bγ(s, ϑ) −Bγ(s, ϑ+ t)) = sγ((−ϑ− t)−γ(s− ϑ− t)−1 − (−ϑ)−γ(s− ϑ)−1)
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for ϑ ∈ (−h,−t) and s ∈ [s0,∞) we learn that Bγ(s, ϑ) − Bγ(s, ϑ + t) is monoton
increasing in ϑ. Since Bγ(s, 0) = 0 we conclude

sup
ϑ∈J

(
Bγ(s, ϑ) −Bγ(s, ϑ+ t)

)
= Bγ(s,−t).

Furthermore as Bγ(·,−t) is decreasing we see that the function attains its maximum at
(s0,−t), which shows (b).

In order to prove (c) we assume that ϑ1 < ϑ2. As

∂2B
γ(s, ϑ1 + τ) − ∂2B

γ(s, ϑ2 + τ) = f(s, ϑ1 + τ) − f(s, ϑ2 + τ) ≥ 0

for all τ ∈ (0, t) we obtain from (b)

‖f(s, ϑ1 + ·) − f(s, ϑ2 + ·)‖L1(0,t)

= (Bγ(s, ϑ1 + t) − Bγ(s, ϑ2 + t)) − (Bγ(s, ϑ1) − Bγ(s, ϑ2))

≤ Bγ(s, ϑ1 − ϑ2).

We show (d) by invoking l’Hôpital’s rule. To this end we first compute

d

dt
Bγ(tδ,−t) =

d

dt

1

tδ−1+1∫

0

τ−γ(1 − τ)γ−1 dτ

= (tδ−1 + 1)γ
(
tδ−1 + 1

tδ−1

)1−γ
(1 − δ)t2−δ

(tδ−1 + 1)2

= (1 − δ)(tδ−1 + 1)−1t(1−δ)(1−γ)+δ−2 .

Now l’Hôpital’s rule yields

lim
t→0

Bγ(tδ,−t)
tδ

= lim
t→0

1 − δ

δ
(tδ−1 + 1)−1 t(1−δ)(1−γ)−1

=
1 − δ

δ
lim
t→0

1

t1−δ + 1
t(1−δ)(2−γ)−1 = 0

whenever (1 − δ)(2 − γ) − 1 > 0. This holds if 0 < δ < 1−γ
2−γ

. �

4.8.11 Lemma. Let p ∈ [1,∞) and α ∈ (−1/p, 1]. Assume that h ∈ (0,∞) and that T
has negative growth bound. Let Y , γ and K be as in Lemma 4.8.9. There is a t0 > 0
and a positive function b ∈ C([0, t0]) with b(0) = 0, such that for all ϕ ∈ C([0, t0];Y ) we
have

∫ t
0
S(τ)(Dγ−1Kϕ(t− τ)) dτ ∈ V 1

p (J ;Xα) and

∥∥∥∥∥∥

t∫

0

S(τ)(Dγ−1Kϕ(t− τ)) dτ

∥∥∥∥∥∥
V 1

p (J ;Xα)

≤ b(t)‖ϕ‖C([0,t0];Y ) (t ∈ [0, t0]).
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Proof. Let t0 ∈ (0, h] and a ∈ C([0, t0]) with a(0) = 0 such that Y satisfies (RC) with
respect to Aα with t0 and a. Let ϕ ∈ C([0, t0];Y ) and u, t ∈ (0, t0]. From (4.8.5) we
obtain

f :=

t∫

0

S(τ)(Dγ−1Kϕ(t− τ)) dτ

= c̃1−γ c̃γ

t∫

0

∞∫

0

Tα−1(s) (Bγ(s, · + τ)ϕ(t− τ)) ds dτ (4.8.6)

= c̃1−γ c̃γ

∞∑

k=0

u∫

0

Tα−1(ku+ s)

t∫

0

Bγ(ku+ s, · + τ)ϕ(t− τ) dτ ds.

Using the fact that Bγ(s, ·) ∈ W 1
1 (−h,∞) for all s with norm uniformly bounded in s

(cf. Lemma 4.8.10(a)) we see from (4.8.6) that

0∫

−h

t∫

0

∞∫

0

Tα−1(s) (Bγ(s, ϑ+ τ)ϕ(t− τ)) ds dτ ψ′(ϑ) dϑ

=

t∫

0

∞∫

0

Tα−1(s)



ϕ(t− τ)

0∫

−h

Bγ(s, ϑ+ τ)ψ′(ϑ) dϑ



 ds dτ

= −
t∫

0

∞∫

0

Tα−1(s)



ϕ(t− τ)

0∫

−h

∂2B
γ(s, ϑ+ τ)ψ(ϑ) dϑ



 ds dτ

= −
0∫

−h

t∫

0

∞∫

0

Tα−1(s) (∂2B
γ(s, ϑ+ τ)ϕ(t− τ)) ds dτ ψ(ϑ) dϑ

for all ψ ∈ C∞
c (−h, 0). Therefore f is weakly differentiable in L1,loc(J ;Y ) and

f ′ = c̃1−γ c̃γ

∞∑

k=0

u∫

0

Tα−1(ku+ s)

t∫

0

∂2B
γ(ku+ s, · + τ)ϕ(t− τ) dτ ds.

Using (RC) and Lemma 4.8.10(a) and (b) we infer that

‖f ′(ϑ)‖α ≤ |c̃1−γ c̃γ|
∞∑

k=0

Me−kuωa(u)Bγ(ku,−t)‖ϕ‖C([0,t0];Y ) (ϑ ∈ J).

For k = 0 the summand is bounded by M |c̃1−γ c̃γ|Γ(1−γ)Γ(γ)a(u)‖ϕ‖C([0,t0];Y ). For k ≥
1 we have the bound M |c̃1−γ c̃γ| a(u)Bγ(u,−t)e−kuω‖ϕ‖C([0,t0];Y ) (note that Bγ(ku,−t) ≤
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Bγ(u,−t)). As
∑∞

k=1 e
−kuω ≤ 1

uω
we get

‖f ′(ϑ)‖α ≤ c′′a(u)

(
1 +

Bγ(u,−t)
u

)
‖ϕ‖C([0,t0];Y ) (ϑ ∈ J) (4.8.7)

for some c′′ ≥ 0. By the same arguments we see from Lemma 4.8.10(c) that

‖f ′(ϑ1) − f ′(ϑ2)‖α ≤ c′′a(u)

(
1 +

Bγ(u,−|ϑ1 − ϑ2|)
u

)
‖ϕ‖C([0,t0];Y ) (4.8.8)

for ϑ1, ϑ2 ∈ J . Let δ ∈ (0, 1−γ
2−γ

) and u(t) := tδ (t ∈ [0,min{t0, t1/δ0 }]). Then u(t) → 0 and

therefore a(u(t)) → 0 as t → 0. Moreover Bγ(u(t),−t)
u(t)

→ 0 as t→ 0 by Lemma 4.8.10(d).
Thus if we put u := u(|ϑ1 − ϑ2|) in (4.8.8) we see that ‖f ′(ϑ1) − f ′(ϑ2)‖α → 0 as
|ϑ1 − ϑ2| → 0. Hence f ′ ∈ Cb(J ;Xα), in particular it belongs to Lp(J ;Xα). Using u(t)
in (4.8.7) we obtain ‖f ′‖Lp(J ;Xα) ≤ b(t)‖ϕ‖C([0,t0];Y ) with

b(t) := c′′h1/pa(u(t))

(
1 +

Bγ(u(t),−t)
u(t)

)
→ 0 (t→ 0).

Since we also have f(0) = 0 we see that f ∈ V 1
p (J ;Xα) and that f ′ = Df . This proves

the assertion. �

We are now well prepared to prove our main tool for applying the Desch-Schappacher
perturbation theorem.

4.8.12 Corollary. Let p ∈ [1,∞), α ∈ (−1/p, 1] and β ∈ (α− 1, α+ 1]. Assume that T
has negative growth bound. Let Y be a Banach space satisfying (RC) in Proposition A.3
with respect to Aβ. Then Y × {0} satisfies (RC) with respect to Aβ. This assertion

particularly holds for Y = F β
A.

Proof. The cases β ∈ {α, α+ 1} were dealt with in Lemma 4.8.8. Let γ := β − α.
First we assume that h ∈ (0,∞) and β ∈ (α, α + 1). Let Ỹ := Aγα−1Y be equipped

with the norm ‖x‖Ỹ := ‖A−γ
α−1x‖Y (x ∈ Ỹ ). Then Ỹ satisfies (RC) with respect to

Aα (cf. Proposition A.4). Let t0 > 0 be sufficiently small. Let ϕ ∈ C([0, t0];Y ) and
ϕ̃ := Aγα−1ϕ(·). Then we have ‖ϕ‖C([0,t0];Y ) = ‖ϕ̃‖C([0,t0];Ỹ ) and Ãγ

α−1

(
ϕ(·)
0

)
=
(
ϕ̃(·)
0

)
∈

C([0, t0]; Ỹ × {0}). For t ∈ [0, t0] we write

t∫

0

Tβ−1(t− s)

(
ϕ(s)

0

)
ds = A−γ

α−1

t∫

0

Tα−1(t− s)

(
ϕ̃(s)

0

)
ds

+

t∫

0

Tβ−1(t− s)
(
Ã−γ

α−1 −A−γ
α−1

)(ϕ̃(s)
0

)
ds.

(4.8.9)
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For the norm of the first expression on the right hand side in (4.8.9) we obtain from
Lemma 4.8.8 the estimate

∥∥∥∥∥∥
A−γ
α−1

t∫

0

Tα−1(t− s)

(
ϕ̃(s)

0

)
ds

∥∥∥∥∥∥
Zβ
A

=

∥∥∥∥∥∥

t∫

0

Tα−1(t− s)

(
ϕ̃(s)

0

)
ds

∥∥∥∥∥∥
Zα
A

≤ a(t)‖ϕ̃‖C([0,t0];Ỹ ) = a(t)‖ϕ‖C([0,t0];Y ),

for a positive function a ∈ C([0, t0]), a(0) = 0. The second expression on the right hand
side of (4.8.9) can be written as (using the operator K introduced in Lemma 4.8.9)

t∫

0

Tβ−1(t− s)

(
0

Kϕ̃(s)

)
ds =

(
0

D1−γ
∫ t
0
S(t− s)

(
Dγ−1Kϕ̃

)
(s) ds

)
.

Let f :=
∫ t
0
S(t− s)

(
Dγ−1Kϕ̃

)
(s) ds. From Lemma 4.8.11 we know that f ∈ V 1

p (J ;Xα)
and

‖f‖V 1
p (J ;Xα) ≤ b(t)‖ϕ̃‖C([0,t0];Ỹ ) = b(t)‖ϕ‖C([0,t0];Y )

for some function b ∈ C([0, t0]) with b(0) = 0. As we have {0} × V γ
p (J ;Xα) →֒ Zβ

A

by Lemma 4.8.3(a) and (b) we infer
(

0
D1−γf

)
∈ Zβ

A. Moreover Lemma 4.8.3(a) and (b)
imply that

∥∥∥∥
(

0
D1−γf

)∥∥∥∥
Zβ
A

≤ c‖D1−γf‖V β−α
p (J ;Xα) = c‖Df‖Lp(J ;Xα) ≤ c b(t)‖ϕ̃‖C([0,t0];Ỹ )

for some constant c ≥ 0. Therefore the second expression on the right hand side of
(4.8.9) belongs to Zβ

A and its norm is bounded by c b(t)‖ϕ‖C([0,t0];Y ). Hence Y × {0}
fulfils condition (RC) with respect to Aβ.

We now treat the case h = ∞ and β ∈ (α, α + 1). Let ĥ < ∞ arbitrary. By T̂ and
Â we denote the delay semigroup and its generator on X ×W α

p (−ĥ, 0;X−α). By the
previous case there is a t0 ∈ (0, ĥ/2) and a function a ∈ C([0, t0]) with a(0) = 0 such
that Y × {0} satisfies (RC) with respect to Âβ with t0 and a.

In order to show (RC) for Aβ let ϕ ∈ C([0, t0];Y ),
(
u(t)
F (t)

)
:=
∫ t
0
Tβ−1(t− s)

(
ϕ(s)

0

)
ds

and
(
v(t)
G(t)

)
:=
∫ t
0
T̂β−1(t − s)

(
ϕ(s)

0

)
ds (t ∈ [0, t0]). For t ∈ [0, t0] we have u(t) = v(t)

and F (t)|(−ĥ,0) = G(t). Hence

‖u(t)‖Xβ = ‖v(t)‖Xβ ≤ a(t)‖ϕ‖C([0,t0];Y ),

‖G(t)‖W β−α
p (−ĥ,0;Xα) ≤ a(t)‖ϕ‖C([0,t0];Y ).

So we already have a suitable estimate for u(t). In order to obtain such an estimate
for f := F (t) we define ψ : (−∞, 0) → R by ψ(ϑ) := max{0, ϑ/t0 + 1} (ϑ ∈ (−∞, 0)).
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Taking into account that f(0) · (ελ∞ − ψ) ∈W 1
p (−∞, 0;Xα) we obtain the estimate

‖f‖W β−α
p (−∞,0;Xα) = ‖f(0)‖Xα + ‖(D − ω∞)γ (f − f(0) · ελ∞) ‖Lp(−∞,0;Xα)

≤ c1

(
‖f(0)‖Xβ + ‖(D − ω∞)γ−1 (f − f(0) · ελ∞) ‖W 1

p (−∞,0;Xα)

)

≤ c2

(
‖f(0)‖Xβ + ‖(D − ω∞)γ−1 (f − f(0) · ψ) ‖W 1

p (−∞,0;Xα)

)

for some c1, c2 ≥ 0. Since u(t) = F (t)(0) = f(0) we already know that ‖f(0)‖Xβ ≤
a(t)‖ϕ‖C([0,t0];Y ). Let f̃ := f − f(0) · ψ. As spt f ⊆ [−t, 0) and sptψ = [−t0, 0) we have
spt f̃ ⊆ [−t0, 0). Therefore

(D − ω∞)γ−1f̃ =



(−∞, 0) ∋ ϑ 7→ c̃1−γ

−ϑ∫

0

r−γe−ω∞rS(r)f̃(ϑ) dr





= (−∞, 0) ∋ ϑ 7→ c̃1−γ

−ϑ∫

max{0,−ϑ−t0}

r−γe−ω∞rf̃(r + ϑ) dr.

(4.8.10)

If ϑ ∈ (−ĥ, 0) we see that
(
(D − ω∞)γ−1f̃

)
(ϑ) =

(
(D̂ − ω∞)γ−1 (G(t) −G(t)(0) · ψ)

)
(ϑ)

(where D̂ denotes the generator of the left translation semigroup on Lp(−ĥ, 0;Xα) with
zero boundary condition at 0). This gives the estimate

∥∥∥∥
(
(D − ω∞)γ−1f̃

)∣∣∣
(−ĥ,0)

∥∥∥∥
W 1

p (−ĥ,0;Xα)

≤ ca(t)‖ϕ‖C([0,t0];Y ) (4.8.11)

for some c ≥ 0. The proof is finished if we can show that
(
(D − ω∞)γ−1f̃

)∣∣∣
(−∞,−ĥ/2)

is

in W 1
p (−∞,−ĥ/2;Xα) with a similar estimate as in (4.8.11). To this end we compute

(using (4.8.10))
(
(D − ω∞)γ f̃

)∣∣∣
(−∞,−ĥ/2)

=

(
d

dϑ
− ω∞

)

(−∞,−ĥ/2) ∋ ϑ 7→ c̃1−γ

−ϑ∫

−ϑ−t0

r−γe−ω∞rf̃(r + ϑ) dr





=

(
d

dϑ
− ω∞

)

(−∞,−ĥ/2) ∋ ϑ 7→ c̃1−γ e
ω∞ϑ

0∫

−t0

(r − ϑ)−γe−ω∞rf̃(r) dr





= (−∞,−ĥ/2) ∋ ϑ 7→ −c̃1−γγ eω∞ϑ
0∫

−t0

(r − ϑ)−γ−1e−ω∞rf̃(r) dr.
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Since r−ϑ > ĥ/2− t0 > 0 for r ∈ (−t0, 0) and ϑ ∈ (−∞,−ĥ/2) we obtain (r−ϑ)−γ−1 <
(ĥ/2 − t0)

−γ−1. Further as

‖f(r)‖Xα = ‖u(t+ r)‖Xα ≤ c‖u(t+ r)‖Xβ ≤ c a(t+ r)‖ϕ‖C([0,t0];Y ) (r ∈ (−t, 0))

for some c ≥ 0 we obtain

sup
r∈(−t0,0)

‖f̃(r)‖Xα ≤ sup
r∈[−t,0]

‖f(r)‖Xα + ‖f(0)‖Xα ≤ b(t)‖ϕ‖C([0,t0];Y )

with b(t) := a(t) + supr∈[0,t] a(r). These considerations yield the estimate

∥∥∥∥
(
(D − ω∞)γ f̃

)∣∣∣
(−∞,−ĥ/2)

∥∥∥∥
Lp(−∞,−ĥ/2;Xα)

≤ |c̃1−γ | γ ‖εω∞|(−∞,−ĥ/2)‖p t0eω∞t0(ĥ/2 − t0)
−γ−1 b(t)‖ϕ‖C([0,t0];Y )

≤ c b(t)‖ϕ‖C([0,t0];Y )

for some c ≥ 0. Thus
(
(D − ω∞)γ−1f̃

)∣∣∣
(−∞,−ĥ/2)

is in W 1
p (−∞,−ĥ/2;Xα). Moreover

as b(t) → 0 (t→ 0) we finally see that

‖f‖W β−α
p (−∞,0;Xα) ≤ ã(t)‖ϕ‖C([0,t0];Y )

for a function ã ∈ C([0, t0]) with ã(0) = 0. This shows that Y × {0} fulfils condition
(RC) with respect to Aβ also in the case h = ∞.

Last we deal with the case β ∈ (α − 1, α) (and h ∈ (0,∞]). Let Y1 := A−1
β Y with

the corresponding norm. Then Y1 satisfies (RC) with respect to Aβ+1. Hence by the
previous cases Y1 × {0} satisfies (RC) with respect to Aβ+1. Now the assertion follows
from Proposition A.4 and Lemma 4.8.3(a) by observing that Y ×{0} = Aβ(Y1×{0}). �

We can now prove Proposition 4.8.6.

Proof of Proposition 4.8.6. Without loss of generality we can also assume that T has
negative growth bound, otherwise we consider the delay semigroup with A− ω instead
of A for ω sufficiently large, and at the very end we perturb the obtained generator with
the bounded operator ( ω 0

0 0 ).
Corollary 4.8.12 and Proposition A.3 imply that Q ∈ L(Zβ

A, Y × {0}) is a Desch-
Schappacher perturbation of Aβ. As Zβ−1+ε

A = Xβ−1+ε × V β−α−1+ε
p (J ;Xα) for ε ∈

(0, 1/p) (cf. Lemma 4.8.3(a)) we conclude that the space Y × {0} is continuously em-
bedded in Zβ−1+ε

A if ε ≤ γ − (β − 1). Thus the generator property of C follows from
Corollary 4.3.4.

In order to determine the domain of D(C) we observe that for γ ≥ 0 the perturbation
Q maps into Z and thus D(C) = D(A). Now the assertion follows from Lemma 4.8.3(c).
For the case γ < 0 we first observe that if 1 − α < 1/p then f − xελh

∈ V 1−α
p (J ;Xα) if

and only if f ∈ V 1−α
p (J ;Xα) (x ∈ Xγ+1, f ∈ Lp(J ;Xα)) by Lemma 4.8.1. Now we can

proceed as in the proof of Lemma 4.8.3(b). �

117



Chapter 4 The Fractional Power Tower in Perturbation Theory of C0-semigroups

We conclude this section with some remarks.

4.8.13 Remarks. (a) The case α = 0, β = 1 and Y = F 1
A in Proposition 4.8.6 was shown

in [48; Theorem 3.1].
(b) The case α = 0 in Proposition 4.8.5 was treated in [69; Theorem 3.1].
(c) Let p ∈ (1,∞), α ∈ (−1/p, 1− 1/p) and Lf :=

∫ 0

−h
dη(s)f(s) (f ∈ C([−h, 0];Xα))

for some η ∈ BV (J ;L(Xα)). Then L satisfies the assumptions of Proposition 4.8.5; cf.
[19] for the case α = 0. Except for the different type of delay this result compares to
Proposition 4.7.9.

(d) It can be expected that a result analogous to Corollary 4.8.4 holds in spaces
of continuous functions. However delay semigroups on C([−h, 0];X) as presented in
[39; Section VI.7] are not obtained by a suitable Desch-Schappacher perturbation of a
translation semigroup on C([−h, 0];X). This makes it difficult to apply the technique
used in the proof of Corollary 4.8.4.
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A Appendix. Desch-Schappacher and

Miyadera-Voigt Perturbation Theorem

In this appendix we recall (variants of) the Desch-Schappacher and the Miyadera-Voigt
perturbation theorems; cf. [39; Section III.3(a) and (c)], [51], [52], [70], [32] and Sec-
tion 2.2 where we prove a generalisation of the Desch-Schappacher perturbation theorem.
We also recall the definition of Favard spaces.

A.1 Theorem. (Miyadera-Voigt perturbation) Let X be a Banach space, T the C0-
semigroup generated by A. Let B ∈ L(X1, X). Assume there exist t > 0 and q ∈ [0, 1)
such that

t∫

0

‖BT (s)x‖X ds ≤ q‖x‖X (x ∈ X1).

Then A+B is a generator.

A.2 Theorem. (Desch-Schappacher perturbation) Let X be a Banach space, and let T
the C0-semigroup generated by A. Let B ∈ L(X,X−1). Assume there exist t > 0 and
q ∈ [0, 1) such that

∫ t
0
T−1(t− s)Bu(s) ds ∈ X and

∥∥∥
t∫

0

T−1(t− s)Bu(s) ds
∥∥∥ ≤ q‖u‖∞ (u ∈ C([0, t];X)).

Then (A−1 +B)|X is a generator.

The assumptions of the Desch-Schappacher perturbation theorem are met if the per-
turbing operator satisfies a range condition; cf. [30], [32; Definition 4], [48; Theorem A.1]
and [39; Corollary III.3.6].

A.3 Proposition. Let A be the generator of the C0-semigroup T on a Banach space
X, and let Y →֒ X−1

A be a Banach space. The operator B is a Desch-Schappacher
perturbation of A (i.e. satisfies the assumptions of Theorem A.2) if B ∈ L(X, Y ) and
Y satisfies the following range condition.

(RC) There is a t0 > 0 and a positive function a ∈ C([0, t0]), a(0) = 0 such that for
any ϕ ∈ C([0, t0];Y ) we have

∫ t
0
T−1(t− s)ϕ(s) ds ∈ X and

∥∥∥∥∥∥

t∫

0

T−1(t− s)ϕ(s) ds

∥∥∥∥∥∥
≤ a(t)‖ϕ‖∞ (t ∈ [0, t0]).

The most prominent extrapolation space satisfying the range condition (RC) is the
Favard space F 0

A associated with a generator A on a Banach space X. Let ω ∈ R be the
growth bound of the C0-semigroup generated by A. The Favard space is defined by

F 0
A := {x ∈ X−1 ; ‖x‖F 0

A
:= sup

λ>ω
‖λR(λ,A−1)x‖ <∞}. (A.1)
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The space does not depend on the particular choice of ω. We also mention that

F 0
A =

{
x ∈ X−1 ; |||x|||F 0

A
:= sup

t>0

1

t
‖e−ωtT (t)x− x‖X−1 <∞

}
(A.2)

=
{
x ∈ X−1 ; |||x|||′F 0

A
:= ‖x‖X−1 + lim sup

t→0

1

t
‖T (t)x− x‖X−1 <∞

}
(A.3)

and ‖ · ‖F 0
A
, ||| · |||F 0

A
and ||| · |||′F 0

A
are equivalent norms (cf. [39; Definition II.5.10, Propo-

sition II.5.12]).
For the applications we have in mind we need the extrapolated Favard space F 0

Aα
of the

generator Aα, where α ∈ R (cf. Proposition 4.1.2 for the definition of Aα). This Favard
space is denote by F α

A . The space F α
A is not to be confused with the Favard space of

fractional order α; cf. [39; Definition II.5.10] or [18; Proposition 3.1.3] for the definition
and embedding properties (we will encounter fractional order Favard spaces only in the
proof of Proposition 4.5.1). We recall that if X is reflexive then Xα, F α

A and the Favard
space of fractional order α coincide ([67; Corollary 3.2.4], [39; Corollary II.5.21]).

The condition (RC) fits well into the notion of the fractional power tower, which is
explored in the next proposition.

A.4 Proposition. Let A be the generator of the C0-semigroup T on X with growth
bound less than ω ∈ R. Let α, β ∈ R and δ := min{α, β} − 1. If the Banach space Y
satisfies (RC) with respect to Aα then the Banach space Z := (Aδ − ω)α−βY , equipped
with the norm Z ∋ z 7→ ‖(Aδ − ω)β−αz‖Y , satisfies (RC) with respect to Aβ.

Proof. By Theorem 4.1.4 it suffices to consider the case β = 0. By V we denote the
isomorphism (Aδ − ω)α from Xα to X. We assume that Xα is equipped with the norm
x 7→ ‖V x‖. Let t0 and a be as in (RC) for Y and Aα. Let ψ ∈ C([0, t0];Z) and
ϕ := V −1 ◦ ψ ∈ C([0, t0];Y ). Then

t∫

0

T−1(t− s)ψ(s) ds = V

t∫

0

Tα−1(t− s)ϕ(s) ds ∈ V Xα = X

and the norm of the integral is bounded by a(t)‖ϕ‖∞ = a(t)‖ψ‖∞. Thus Z fulfils (RC)
with respect to A. �

B Appendix. Convergence of C0-semigroups and
exponential formulas

Here we recall the usual notion of convergence for C0-semigroups. We also introduce a
general type of approximation for C0-semigroups and their generators.

B.1 Remarks. Let Tn (n ∈ N), T be C0-semigroups on a Banach space X. Let An be
the generator of Tn (n ∈ N), and let A be the generator of T .
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(a) We shortly recall the notion of convergence of a sequence of C0-semigroups. We
say that (Tn) converges to T if T (t) = s-limn→∞ Tn(t) uniformly for t in compact subsets
of [0,∞). It is equivalent to assume that there exist M ≥ 0, ω ∈ R such that ‖Tn(t)‖ ≤
Meωt for all t ≥ 0, n ∈ N, and T (t) = s-limn→∞ Tn(t) for all t ≥ 0; cf. [57; Theorem
3.4.2].

(b) We say that the sequence (An) converges to A in the strong resolvent sense if there
exist M ≥ 1, ω ∈ R such that (ω,∞) ⊆ ρ(An) (n ∈ N), (ω,∞) ⊆ ρ(A),

‖R(λ,An)
k‖ ≤M(λ− ω)−k for all λ > ω, k, n ∈ N, (B.1)

and R(λ,An) → R(λ,A) (n → ∞) in the strong operator topology, for some (or equiv-
alently all) λ > ω.

(c) We note that, under the boundedness assumption (B.1), the strong resolvent con-
vergence of (An) to A is equivalent to the graph convergence (cf. [41]), i.e.,

gr(A) = {(x, y); there exist (xn, yn) ∈ gr(An) (n ∈ N), xn → x, yn → y}.

In fact, it is furthermore equivalent to this statement that for all x in a core of A there
exist xn ∈ D(An) (n ∈ N), xn → x such that Anxn → Ax (n→ ∞).

(d) It is the content of the first Trotter-Kato approximation theorem that (An) con-
verges to A in the strong resolvent sense if and only if T = s-limn→∞ Tn; cf. [39; Theorem
III.4.8], [57; Theorem 3.4.2].

For the motivation of the following theorem we refer to the subsequent Remarks B.3.

B.2 Theorem. Let T be a C0-semigroup on the Banach space X. Let A be the generator
of T , and let M ≥ 1, ω ∈ R be such that ‖T (t)‖ ≤Meωt (t ≥ 0). Let ν be a finite Borel
measure on [0,∞) satisfying

ν([0,∞)) =

∞∫

0

τ dν(τ) = 1.

If ω ≤ 0 let h := ∞. If ω > 0 we additionally assume that
∫∞

0
τeατ dν(τ) <∞ for some

α > 0, and we define h := α/ω.
We define V (0) := I and

V (s) :=

∞∫

0

T (sτ) dν(τ), A(s) := 1
s
(V (s) − I) (s ∈ (0, h)).

Then A(s)x → Ax for all x ∈ D(A), and A(s) → A in the strong resolvent sense,
as s → 0. There exists ω′ ≥ 0 such that ‖V ( t

n
)n‖ ≤ Meω

′t, for all t ≥ 0, n ∈ N such
that t/n < h. Moreover, T (t) = s-limn→∞ V ( t

n
)n, uniformly for t in compact subsets of

[0,∞).
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B.3 Remarks. The motivation for Theorem B.2 was to formulate a result covering the
following two cases.

(a) Setting ν := δ1 (unit mass at the point 1) we obtain V (s) = T (s). Then Theorem
B.2 yields the known strong resolvent convergence of 1

s
(T (s)− I) to A (cf. [38; Theorem

VIII.1.10], [39; subsection III.4.12]) and the trivial formula T (t) = s-limn→∞ T ( t
n
)n. In

Section 1.3 it is shown that this ν yields a formula for the generator of the modulus
semigroup.

(b) Setting dν(τ) := e−τdτ we obtain V (s) = 1
s
R(1

s
, A). The operators A(s) =

1
s2
R(1

s
, A)− 1

s
I are the Yosida approximants of A, and the last formula of Theorem B.2

is the known exponential formula T (t) = s-limn→∞

(
n
t
R(n

t
, A)
)n

= s-limn→∞

(
I− t

n
A
)−n

(cf. [38; proof of Theorem VIII.1.13] for the strong resolvent convergence of (A(s)) to A,
and [39; Corollary III.5.5] for the exponential formula).

Proof of Theorem B.2. If x ∈ D(A) then

A(s)x =

∞∫

0

1
s

(
T (sτ)x− x) dν(τ) →

∞∫

0

τAx dν(τ) = Ax (s→ 0),

by dominated convergence. (Using T (t)x−x =
∫ t
0
T (r)Axdr one obtains the ν-integrable

bound τM‖Ax‖ if ω ≤ 0, and τeατM‖Ax‖ if ω > 0.)
Thus it remains to obtain uniform bounds for the semigroups (etA(s))t≥0. Let cs :=∫∞

0
eωsτ dν(τ) (s ∈ [0, h)). Using

etA(s) = e−
t
s

∞∑

n=0

1

n!

( t
s
V (s)

)n
,

∥∥V (s)n
∥∥ =

∥∥∥
( ∞∫

0

T (sτ) dν(τ)
)n∥∥∥

=
∥∥∥
∫

[0,∞)n

T (s(τ1 + · · · + τn)) dν(τ1) · · · dν(τn)
∥∥∥

≤M

∫

[0,∞)n

eωs(τ1+···+τn) dν(τ1) · · ·dν(τn)

= M
( ∞∫

0

eωsτ dν(τ)
)n

= Mcns

(B.2)

we obtain
∥∥etA(s)

∥∥ ≤M exp
(
t
cs − 1

s

)
.

If ω ≤ 0 one obtains the uniform bound M . If ω > 0 the estimate
1

s

(
eωsτ − 1

)
≤ ωτeωsτ ≤ ωτeατ
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shows 1
s
(cs−1) ≤ ω

∫∞

0
τeατ dν(τ). (And in both cases we have 1

s
(cs−1) → ω as s→ 0).

From the previous considerations we conclude that there exists ω′ ≥ 0 such that
cs ≤ 1+ω′s for all s ∈ [0, h). Therefore (B.2) implies ‖V ( t

n
)n‖ ≤Mcnt/n ≤M

(
1+ ω′t

n

)n ≤
Meω

′t, for all t ≥ 0, n ∈ N with t/n < h.
Now the last assertion follows from Theorem C.1. �

C Appendix. A generalised Chernoff product formula

In this appendix we assume that X is a Banach space. The following generalised ver-
sion of the Chernoff product formula was shown in [24; Theorem 1.1] for the case of
contractions, i.e., for M = 1, ω = 0.

C.1 Theorem. Let M ≥ 0, ω ∈ R, h ∈ (0,∞] and assume that the function V : [0, h) →
L(X) satisfies V (0) = I, ‖V (t/n)n‖ ≤ Meωt for all t ≥ 0, n ∈ N with t/n < h. Let A
be the generator of a C0-semigroup T satisfying ‖T (t)‖ ≤Meωt (t ≥ 0).

For s ∈ (0, h) we define

A(s) :=
1

s
(V (s) − I),

and we assume that A(s) converges to A in the strong resolvent sense as s→ 0.
Then

T (t) = s-lim
n→∞

V (t/n)n,

uniformly for t in compact subsets of [0,∞).

Proof. We note that a straightforward computation shows that for each ω′ > ω there
exist M ′ ≥ 0, δ ∈ (0, h) such that

‖etA(s)‖ ≤M ′eω
′t (t ≥ 0, 0 < s ≤ δ).

Thus, for each λ > ω, one has λ ∈ ρ(A(s)) for small s, and the hypothesis means that
R(λ,A(s)) → R(λ,A) strongly, as s→ 0.

First we show that, without loss of generality, we may assume ω = 0. Rescaling

Ṽ (s) := e−ωsV (s), T̃ (s) := e−ωsT (s) (s ∈ (0, h))

we obtain
(Ṽ (t/n))n = e−ωt(V (t/n))n (t ≥ 0, n ∈ N, t/n ∈ (0, h)).

Thus, with Ã(s) := 1
s
(Ṽ (s) − I) (s ∈ (0, h)), we have to show that, for all λ̃ > 0, one

has (λ̃− Ã(s))−1 → (λ̃− Ã)−1 strongly, as s→ 0, where Ã := A− ω is the generator of
T̃ . Let λ̃ > 0. Noting Ã(s) = e−ωs(A(s) − 1

s
(eωs − 1)) we obtain

λ̃− Ã(s) = e−ωs(eωsλ̃+
1

s
(eωs − 1) − A(s)).

Using standard arguments one concludes (λ̃ − Ã(s))−1 → (λ̃ + ω − A)−1 = (λ̃ − Ã)−1

strongly, as s→ 0.
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We now assume ω = 0. As a consequence of the Trotter-Kato approximation theorem,
the convergence

s-lim
n→∞

(T (t) − etA(t/n)) = 0,

uniformly for t in compact subsets of [0,∞), is obtained as in [39; proof of Theorem
III.5.2].

Let λ > 0. Then (λ − A(s))−1 → (λ − A)−1 strongly (s → 0), by hypothesis. Let
x ∈ D(A). For s ∈ (0, h) we define

x(s) := (λ− A(s))−1(λ− A)x.

Then x(s) → x, A(s)x(s) → Ax (s → 0). Recall that, for S ∈ L(X) satisfying ‖Sm‖ ≤
M for all m ∈ N, the estimate

∥∥en(S−I)x− Snx
∥∥ ≤

√
nM‖Sx− x‖ (C.1)

holds for every n ∈ N and x ∈ X (cf. [39; Lemma III.5.1]). Applying this estimate with
S := V (t/n) we obtain

‖etA(t/n)x(t/n) − V (t/n)nx(t/n)‖ = ‖en(V (t/n)−I)x(t/n) − V (t/n)nx(t/n)‖

≤
√
nM ‖V (t/n)x(t/n) − x(t/n)‖ =

tM√
n
‖A(t/n)x(t/n)‖ → 0

as n→ ∞, uniformly for t in compact subsets of [0,∞). Observing ‖etA(t/n)−V (t/n)n‖ ≤
2M (t ≥ 0, n ∈ N) we conclude

‖T (t)x− V (t/n)nx‖ ≤ ‖(T (t) − etA(t/n))x‖ + ‖(etA(t/n) − V (t/n)n)x‖
≤ ‖(T (t) − etA(t/n))x‖ + 2M‖x− x(t/n)‖ + ‖(etA(t/n) − V (t/n)n)x(t/n)‖ → 0,

as n → ∞, uniformly for t in compact subsets of [0,∞). Now the fact that D(A) is
dense in X implies the assertion. �

C.2 Remark. If in Theorem C.1 one assumes A ∈ L(X) and A(s) → A in operator norm
then the conclusion is that

T (t) = lim
n→∞

V (t/n)n

(operator norm limit!), uniformly for t in compact subsets of [0,∞).
This fact, except for the uniformity of the convergence, can be obtained as a conse-

quence of [13; Theorem 1.1]. We include a simple proof for our special case. We note
that, for small s, the logarithm of V (s) exists and is given by

lnV (s) = ln(I + sA(s)) =
∞∑

n=1

(−1)n−1s
n

n
A(s)n .

Obviously 1
s
lnV (s) → A as s→ 0. Therefore

V (t/n)n = en lnV (t/n) = et(n/t) lnV (t/n) → etA

as n→ ∞, uniformly for t in compact subsets of [0,∞). This shows the assertion.
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