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Introduction

Univariate mixed Poisson distributions and univariate mixed Poisson processes are
widely used for modelling the occurrence of rare events. This dates back to the
twenties of the last century and an enormous amount of work in various scientific
areas has been published since then and is based on a solid fundament of theoretical
results.

The tradition of using multivariate mixed Poisson distributions and multivariate
mixed Poisson processes is almost as long. Bates and Neyman [1952], Consael
[1952], and Hofmann [1955] have to be mentioned in this context. But in contrast
to the univariate case the number of publications is relatively small. Nevertheless,
different areas are covered by the work published so far, as aerial accidents (Bates
and Neyman [1952]), working and non–working accidents (Hofmann [1955]), motor
car insurance (Picard [1976], Partrat [1994], Lemaire [1995], Walhin and Paris [2001],
Zocher [2005]), victimizations (Nelson [1984]), hurricanes (Partrat [1994]), image
detecting in astro physics (Ferrari et al. [2004]), and loss reserving (Schmidt and
Zocher [2005]).

Since the theoretical background has not yet been developed to the same extent as
in the univariate case, there exists a gap between desired practical applications and
available theoretical results. The aim of the present work is to close this gap a little
bit. The basis of this study is the multivariate counting process, which is related
to the birth process. The model of multivariate counting processes will be specified
by different assumptions leading to different models of multivariate mixed Poisson
processes, which are, however, connected with each other. Starting with the most
general model and specifying it step by step, this work is organized as follows:

Chapter 1 provides some definitions and propositions of auxiliary character on mul-
tivariate counting distributions which will be needed in the subsequent chapters
and for which no citable reference was found. This involves multivariate versions of
the probability generating function (Section 1.1), the moment generating function
(Section 1.2), and the Bernstein–Widder theorem (Section 1.3). The reader who is
primarily interested in the results for multivariate mixed Poisson processes may skip
this chapter at the first reading.
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4 Introduction

Multivariate counting processes are the subject of Chapter 2. First, these processes
are introduced (Section 2.1) and then some properties, which counting processes may
have and which are related to mixed Poisson processes, are presented (Section 2.2).
The relations between such properties, like for example stationary increments, the
multinomial property, and the Markov property, are also studied in detail. Further-
more, the concept of regularity, which is closely connected with transition intensities,
is introduced (Section 2.3). This section also contains a characterization of regular-
ity in terms of the system of Kolmogorov forward differential equations and in terms
of the system of Kolmogorov backward differential equations.

Chapter 3 is devoted to multivariate mixed Poisson processes with an arbitrary
mixing distribution. Again some properties of these processes are derived and it
is shown that the one–dimensional distributions are sufficient to determine the dis-
tribution of a multivariate mixed Poisson process (Section 3.1). The use of the
multivariate setting is justified in this section by Theorem 3.1.4 which asserts that
the coordinates of a multivariate mixed Poisson process are independent if, and only
if, the mixing distribution has a representation as a product measure. Moreover,
multivariate mixed Poisson processes are characterized as multivariate counting pro-
cesses having the multinomial property (Section 3.2). Upon this result it is shown
that a multivariate mixed Poisson process with independent increments even is a
multivariate Poisson process in the sense that the coordinates are independent and
each coordinate is a univariate Poisson process. Properties of the moment struc-
ture of multivariate mixed Poisson processes are given as well (Section 3.3). If such
a process has a finite moment of first order then, and only then, it is a regular
process. This result and some properties of transition probabilities and transition
intensities of multivariate mixed Poisson processes (Section 3.4) conclude the study
of multivariate mixed Poisson processes with an arbitrary mixing distribution.

An alternative way to model multivariate mixed Poisson processes within the class
of multivariate counting processes is to assume the existence of a random vector
on the same probability space and to consider conditional probabilities of the pro-
cess with respect to this random vector, such that the process is still a multivariate
mixed Poisson process. This yields multivariate mixed Poisson processes with a ran-
dom parameter, which are discussed in Chapter 4, and their mixing distribution is
then given by the distribution of the random vector. With the mixing distribution
originating from a random vector, simpler representations of some results are ob-
tained whereas the use of conditional probabilities offers new questions. Similar to
the previous chapter some basic properties (Section 4.1) and the moment structure
(Section 4.2) of multivariate mixed Poisson processes are studied. Because of the
additional assumption a characterization analogous to that of Section 3.2 is not pos-
sible. Since the model considered in this chapter requires the existence of a random
parameter, posterior distributions of the parameter with respect to the process can
be considered (Section 4.3). Again, the chapter is concluded by a look at properties
of transition probabilities and transition intensities (Section 4.4).
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The model in Chapter 5 originates from the multivariate mixed Poisson process
with random parameter by adding an additional assumption on the parameter. This
assumption, which is implicitly made in most of the models discussed in literature,
leads to the multivariate mixed Poisson process with special parameter and offers
at the same time new results and simpler representations of distributions (Section
5.1), moments (Section 5.2), posterior distributions (Section 5.3), and transition
intensities (Section 5.4). Although the specification made in this chapter reduces
the complexity of the multivariate modelling, it still allows for a large variety of
correlation structures between the coordinates.

Throughout this work it is studied for each property if this property is transferred
from the original multivariate process to processes obtained by certain linear trans-
formations. For example, coordinates and the sum of all coordinates of a multivari-
ate mixed Poisson process are again a mixed Poisson process. Moreover, it is shown
with the help of the incremental process that all models under consideration are in
a certain sense stable over time. Thus, in order to be able to accept one of these
models it is not crucial to know when the process started, which has a substantial
impact on possible applications.

It is possible to initially skip the sections on regularity and read these sections
consecutively since they do not influence the other sections. Further it has to be
mentioned that, of course, the publications concerning the univariate setting, like
Schmidt [1996] and Grandell [1997] to name just two of them, also offer relations
between properties, questions to ask, and ideas for some proofs in the multivariate
case. This influence will not be pronounced at every possible occasion, but when-
ever the ideas of univariate setting are also essential in the multivariate setting the
references will be given.

Throughout this work (Ω,F , P) is the underlying probability space. Every bold
letter represents a vector or a random vector. Special notation for vectors can be
found in the list of symbols. It should be pointed out that every sum in which the
summation is restricted to a multivariate interval is understood to be also restricted
to N k

0 .
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Chapter 1

Multivariate Counting
Distributions

1.1 Probability Generating Function

In this section we will state some properties of the probability generating function,
which we need analyzing multivariate mixed Poisson processes. The probability
generating function belongs to a distribution. Since we only need this function in
connection with moments of random vectors, we keep the notation simple by defining
the probability generating function for random vectors.

But before we define the probability generating function we introduce a notation
concerning derivatives of functions with a multivariate argument.

Dnf(t) :=
∂1′nf

∂t1
n(1) · · · ∂tk

n(k)
(t)

Of course this notation will only be used when the partial derivatives are contin-
uous and so the order of execution of the derivatives is negligible. Due to linear
transformations, which will occur, we will use another notation for derivatives. For
example consider g : Rk → R

k with g(t) = r (t− 1) for r ∈ R+. Then, for the sake
of clearness, we will use

∂1′nf (r (t− 1))

∂nt

∣∣∣∣
t=0

instead of Dn (f ◦ g) (0). Other notations concerning vectors, which will always be
written in bold letters, can be found in the list of symbols.

Let X : Ω → N
k
0 be a random vector. The function g

X
: [0,1] → R with

g
X
(r) := E

[
rX
]

=
∑

n∈N k
0

rn P [{X = n}]

7



8 Chapter 1. Multivariate Counting Distributions

is called the probability generating function of X.

The probability generating function is therefore a power series in k coordinates. The
theorems we need to prove the propositions in this section are taken from Dieudonné
[1971] Chapter 9 (power series in k coordinates) and Heuser [2003a] Chapter 103
(series of functions). The treatment of the probability generating function of a ran-
dom vectors utilizes ideas used for the treatment of probability generating functions
of random variables as given in Schmidt [2002].

1.1.1 Lemma. The probability generating function g
X

of a random vector
X : Ω → N

k
0 possesses the following properties.

(1) g
X

is increasing and

0 ≤ g
X
(r) ≤ g

X
(1) = 1

holds for all r ∈ [0,1].
(2) g

X
is continuous on [0,1].

(3) g
X

is infinitely often differentiable on [0,1).
(4) For all l ∈ N k

0 and r ∈ [0,1) the probability generating function fulfils

Dlg
X
(r) =

∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]

(5) For all l ∈ N k
0 the derivative Dlg

X
is increasing on [0,1) and

sup
r∈ [0,1)

Dlg
X
(r) =

∑
n∈ [l,∞)

n!

(n− l)!
P [{X = n}]

is valid.

Proof:
(1): obvious

(2): For all r ∈ [0,1] and m ∈ N k
0 we get∣∣∣∣∣∣

∑
n∈N k

0

rn P [{X = n}]−
∑

n∈ [0,m]

rn P [{X = n}]

∣∣∣∣∣∣ =
∑

n∈N k
0 \[0,m]

rn P [{X = n}]

≤
∑

n∈N k
0 \[0,m]

P [{X = n}]

Since this last series is a tail of a convergent series, we get for every ε > 0 the
existence of some m ∈ N k

0 such that∣∣∣∣∣∣
∑

n∈N k
0

rn P [{X = n}]−
∑

n∈ [0,m]

rn P [{X = n}]

∣∣∣∣∣∣ < ε



1.1 Probability Generating Function 9

holds for all r ∈ [0,1]. Hence, the power series converges uniformly on [0,1]. Since
every partial sum of the power series is a polynomial and therefore continuous the
theory of series of functions yields, the continuity of the power series and thus of g

X
.

(3): Since the power series ∑
n∈N k

0

rn P [{X = n}]

is absolutely convergent on [−1,1], the theory of power series yields that the power
series is infinitely often differentiable on (−1,1) and thus the probability generating
function g

X
is infinitely often differentiable on [0,1).

(4): From Dieudonné [1971] we have

Dejg
X
(r) =

∑
n∈ [ej ,∞)

n(j) rn−ej P [{X = n}]

and induction yields the assertion.

(5): Let l ∈ N k
0 . It is obvious that Dlg

X
is increasing on [0,1). Furthermore, we set

cl := sup
r∈ [0,1)

Dlg
X
(r)

For all r ∈ [0,1) we obtain

Dlg
X
(r) =

∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]

≤
∑

n∈ [l,∞)

n!

(n− l)!
P [{X = n}]

and therefore

cl ≤
∑

n∈ [l,∞)

n!

(n− l)!
P [{X = n}]

On the other hand we get for all m ∈ N k
0 and all r ∈ [0,1)∑

n∈ [l,m]

rn−l n!

(n− l)!
P [{X = n}] ≤

∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]

= Dlg
X
(r)

≤ cl

As a consequence of the continuity of polynomials in k coordinates the inequality∑
n∈ [l,m]

n!

(n− l)!
P [{X = n}] ≤ cl
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holds for all m ∈ N k
0 . This yields∑

n∈ [l,∞)

n!

(n− l)!
P [{X = n}] ≤ cl

and so together with the inequality shown before we get∑
n∈ [l,∞)

n!

(n− l)!
P [{X = n}] = cl

which completes the proof. �

1.1.2 Corollary. Let X : Ω → N
k
0 be a random vector. Then

P [{X = l}] =
1

l!
Dlg

X
(0)

holds for all l ∈ N k
0 .

The name probability generating function is therewith justified. We also see that
the distribution of the random vector X is uniquely determined by its probability
generating function.

Let X : Ω → N
k
0 be a random vector and l ∈ N k

0 . Then

E

[(
X

l

)]
=

∑
n∈ [l,∞)

(
n

l

)
P [{X = n}]

is called binomial moment of order l of X. From Lemma 1.1.1 we have

E

[(
X

l

)]
= sup

r∈ [0,1)

1

l!
Dlg

X
(r)

The binomial moment of order l of X exists as an expectation of a positive random
vector but need not to be finite.

1.1.3 Lemma. Let X : Ω → N
k
0 be a random vector and l ∈ N k

0 . Then the
following are equivalent.

(a) The binomial moment of order l fulfils

E

[(
X

l

)]
< ∞

(b) The inequality

lim
r→ s

Dlg
X
|
[0,1)

(r) < ∞

holds for all s ∈ [0,1].
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If X satisfies one and hence all preceding items, then the binomial moment can be
expressed as

E

[(
X

l

)]
=

1

l!
lim
r ↑1

Dlg
X
|
[0,1)

(r)

Proof:
(a) ⇒ (b): Since (a) holds we have∑

n∈ [l,∞)

n!

(n− l)!
P [{X = n}] = l! E

[(
X

l

)]
< ∞

With the same argumentation as in the proof of 1.1.1 (2) we have for all ε > 0 the
existence of some q ≥ l such that∣∣∣∣∣∣

∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]−

∑
n∈ [l,q]

rn−l n!

(n− l)!
P [{X = n}]

∣∣∣∣∣∣
≤

∑
n∈ [l,∞)\[l,q]

n!

(n− l)!
P [{X = n}]

< ε

holds for all r ∈ [0,1]. So the power series∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]

converges uniformly on [0,1] to a continuous function. As a consequence of Lemma
1.1.1 (4)

Dlg
X
(r) =

∑
n∈ [l,∞)

rn−l n!

(n− l)!
P [{X = n}]

holds for r ∈ [0,1). Thus (b) follows.
In particular, we have

E

[(
X

l

)]
=

1

l!
lim
r ↑1

Dlg
X
|
[0,1)

(r)

(b) ⇒ (a): The assumption yields the finiteness of supr∈ [0,1) Dlg
X
(r). Thus

E

[(
X

l

)]
= sup

r∈ [0,1)

1

l!
Dlg

X
(r)

< ∞

and therefore (a) is valid. �
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Contrary to the one–dimensional case of positive discrete random variables (compare
Schmidt [2002]) the finiteness of the binomial moment of order l is not equivalent to
the finiteness of the moment of order l. Furthermore, we can not conclude if Lemma
1.1.3 (b) holds for l ∈ N k

0 , that there exists some m ∈ [0, l] with m 6= l such that (b)
holds for m. Therefore, we are not able to use the term Dlg

X
(1). The succeeding

example will illustrate the issue.
Example: We consider a bivariate random vector X satisfying

P [{X = n}] =

{
(2 c n2)−1 if n = (n, 0)′ or n = (1, n)′ with n ∈ N
0 else

with c =
∑∞

n=1 1/n2. Then we have

E
[
X(1)

(
X(1) − 1

)
X(2)

]
= 0

and on the other hand

E
[
X(1)

]
≥

∞∑
n=2

1

2 c

1

n

E
[
X(2)

]
=

∞∑
n=1

1

2 c

1

n

E
[
X(1) X(2)

]
=

∞∑
n=1

1

2 c

1

n

where the sum
∑∞

n=2(2 c n)−1 is infinite. Thus, the binomial moment of order (2, 1)′ is
finite, but no other binomial moment of order l with l ≤ (2, 1)′ is finite. Furthermore,
we have

E
[(

X(1)
)2

X(2)
]
≥ E

[
X(1) X(2)

]
and therefore the moment of order (2, 1)′ is also not finite. In terms of the probability
generating function it looks like

g
X
(r) =

∞∑
n=1

1

2 c

(r1)
n

n2
+

∞∑
n=1

1

2 c

r1 (r2)
n

n2

for r ∈ [0,1] and

De1g
X
(r) =

∞∑
n=1

1

2 c

(r1)
n−1

n
+

∞∑
n=1

1

2 c

(r2)
n

n2

De2g
X
(r) =

∞∑
n=1

1

2 c

r1 (r2)
n−1

n

De1De2g
X
(r) =

∞∑
n=1

1

2 c

(r2)
n−1

n

De1De1De2g
X
(r) = 0



1.1 Probability Generating Function 13

for r ∈ [0,1) where we can see that

lim
r ↑1

De1g
X
|
[0,1)

(r) = lim
r ↑1

De2g
X
|
[0,1)

(r) = lim
r ↑1

De1De2g
X
|
[0,1)

(r) = ∞

Therefore, we are not able to use the term Dlg
X
(1). This shows that the theory

of probability generating functions for one–dimensional random variables cannot be
carried over to the multivariate case unmodified. To get the desired equivalences we
have to strengthen the requirements. �

1.1.4 Lemma. Let X : Ω → N
k
0 be a random vector and l ∈ N k

0 . Then the
following are equivalent.

(a) For all m ≤ l the binomial moment of order m fulfils

E

[(
X

m

)]
< ∞

(b) For all m ≤ l the moment of order m fulfils

E [Xm] < ∞

(c) For all m ≤ l the inequality

lim
r→ s

Dmg
X
|
[0,1)

(r) < ∞

holds for all s ∈ [0,1].
(d) For all m ≤ l the m–th derivative of g

X
is continuous on [0,1].

If X satisfies one and hence all preceding items, then

E

[(
X

l

)]
=

1

l!
Dlg

X
(1)

holds.

Proof: The equivalence of (a) and (c) holds due to Lemma 1.1.3. The remaining
assertions are proven according to the following scheme: (a) ⇔ (b) and (a) ⇔ (d).

(a) ⇒ (b): By induction we are able to show that for all m ∈ N k
0

Xm ∈ span

{(
X

j

)
: j ∈ N k

0 , j ≤ m

}
and so all moments of order m with m ≤ l have a representation of the form

E [Xm] =
∑

j∈ [0,m]

amj E

[(
X

j

)]
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with amj ∈ R and thus

E [Xm] < ∞

holds for all m ≤ l.

(b) ⇒ (a): Since

E

[(
X

m

)]
≤ E [Xm]

holds for all m ∈ N k
0 , the assertion follows.

(a) ⇒ (d): We consider m ∈ N k
0 with m ≤ l. Due to the assumption, we can show

with the same argumentation as in the proof of 1.1.1 (2) for all ε > 0 the existence
of some q ≥ l such that∣∣∣∣∣∣

∑
n∈ [m,∞)

rn−m n!

(n−m)!
P [{X = n}] −

∑
n∈ [m,q]

rn−m n!

(n−m)!
P [{X = n}]

∣∣∣∣∣∣
≤

∑
n∈ [m,∞)\[m,q]

n!

(n−m)!
P [{X = n}]

< ε

holds for all r ∈ [0,1]. So the power series∑
n∈ [m,∞)

rn−m n!

(n−m)!
P [{X = n}]

converges uniformly on [0,1] to a continuous function we will give the name fm.
Let h ∈ {1, . . . , k} with m − eh ≥ 0. Inserting r = (r − s(h))eh + s for arbitrary
s ∈ [0,1] in fm and fm−eh

we obtain two power series fm,h and fm−eh,h in r which are
uniformly convergent on [0, 1]. The theory of one–dimensional power series yields

fm,h(r) = f ′m−eh,h(r)

for all r ∈ [0, 1]. As s was arbitrary we get

fm(r) = Dehfm−eh
(r)

for all r ∈ [0,1]. By induction, fm = Dmg
X

and the assertion follows.

(d) ⇒ (a): The continuity of the derivative and Lemma 1.1.1 (5) yield for all m ≤ l

E

[(
X

m

)]
= sup

r∈ [0,1)

1

m!
Dmg

X
(r) =

1

m!
Dmg

X
(1)

and therefore (a) holds. �
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Now we are able to give a compact form of the first two central moments of a random
vector.

1.1.5 Corollary. Let X : Ω → N
k
0 be a random vector.

(1) If X(i) ∈ L1(N0) for all i ∈ {1, . . . , k}, then

E [X] = gradg
X
(1)

(2) If X(i) ∈ L2(N0) for all i ∈ {1, . . . , k}, then

Var [X] = Hessg
X
(1)− gradg

X
(1) gradg

X
(1)′ + Diag (gradg

X
(1))

Proof:
(1): The assertion immediately follows from Lemma 1.1.4.

(2): Let i ∈ {1, . . . , k}. As a consequence of the assumption E[(X(i))2] and therewith
E[X(i)] and E[X(i) (X(i) − 1)] are finite. From the Cauchy–Schwarz inequality we
also get the finiteness of E[X(i) X(j)] for j ∈ {1, . . . , k}, j 6= i. Now, using Lemma
1.1.4 we obtain

Var
[
X(i)

]
= E

[(
X(i)

)2]− (E [X(i)
])2

= E
[
X(i)

(
X(i) − 1

)]
+ E

[
X(i)

]
−
(
E
[
X(i)

])2
= D2eig

X
(1) + Deig

X
(1)− (Deig

X
(1))2

and

Cov
[
X(i), X(j)

]
= E

[
X(i) X(j)

]
− E

[
X(i)

]
E
[
X(j)

]
= Dei+ejg

X
(1)−Deig

X
(1) Dejg

X
(1)

Combining these two identities yields the assertion. �

1.2 Moment Generating Function

In this section we introduce another auxiliary tool which can be applied to arbitrary
distributions on B(Rk).

The moment generating function MU : Rk → [0,∞] of a distribution U :
B(Rk) → [0, 1] is defined as

MU(s) :=

∫
Rk

e s′x dU(x)

The subsequent lemma and its proof is derived from the univariate setting as carried
out in Billingsley [1995].
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1.2.1 Lemma. Consider a distribution U : B(Rk) → [0, 1] and assume that MU(s)
is finite in a neighbourhood B of s ∈ Rk. Then

DnMU(s) =

∫
Rk

xn e s′x dU(x)

holds for all n ∈ N k
0 . Furthermore, the moment generating function has a Taylor

expansion around s of the kind

MU(t) =
∑

n∈N k
0

(t− s)n

n!

∫
Rk

xn e s′x dU(x)

for all t ∈ B.

Proof: First, we assume that the moment generating function MU is finite in
a neighbourhood B := (−s0, s0) of 0 with s0 > 0. Since the inequality e |t

′x| ≤
e t′x + e−t′x holds and the right hand side has a finite integral with respect to U so
has

∑∞
n=0 |t′x|n/ n! = e |t

′x|. Thus, we can apply dominated convergence (see also
Billingsley [1995] Theorem 16.7) and obtain

MU(t) =

∫
Rk

e t′x dU(x)

=

∫
Rk

∞∑
n=0

(t′x)n

n!
dU(x)

=
∞∑

n=0

∫
Rk

(t′x)n

n!
dU(x) .

for all t ∈ B.
Similar to the binomial theorem we rewrite (t′x)n = (

∑k
i=1 ti xi)

n and get a power
series representation with k coordinates for the moment generating function.

MU(t) =
∞∑

n=0

∫
Rk

∑
n∈N k

0
1′n= n

k∏
i=1

(tixi)
n(i)

n(i)!
dU(x)

=
∞∑

n=0

∑
n∈N k

0
1′n= n

tn

n!

∫
Rk

xn dU(x)

=
∑

n∈N k
0

tn

n!

∫
Rk

xn dU(x)

The Taylor expansion around 0 also yields a power series representation

MU(t) =
∑

n∈N k
0

tn

n!
DnMU(0) (+)
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By the uniqueness of powers series representation (see Dieudonné [1971] 9.1.6.) we
have for all n ∈ N k

0

DnMU(0) =

∫
Rk

xn dU(x) (∗)

Now let the moment generating function be finite in a neighbourhood B of s ∈ Rk.
Consider the distribution V : B(Rk) → [0, 1] such that

V (A) :=

∫
A

e s′x

MU(s)
dU(x)

holds for all A ∈ B(Rk). Then V has a finite moment generating function

MV (v) =

∫
Rk

e v′x dV (x)

=

∫
Rk

e (v+s)′x

MU(s)
dU(x)

=
MU(v + s)

MU(s)

for v in a neighbourhood of 0. Let n ∈ N k
0 . From (∗) we get

DnMV (0) =

∫
Rk

xn dV (x)

=

∫
Rk

xn e s′x

MU(s)
dU(x)

On the other hand DnMV (0) = DnMU(s) /MU(s) and therefore

DnMU(s) =

∫
Rk

xn e s′x dU(x)

The function MV is finite in a neighbourhood of 0 and has a Taylor expansion of
form (+). So we get for v in that neighbourhood

MU(v + s)

MU(s)
= MV (v)

=
∑

n∈N k
0

vn

n!
DnMV (0)

=
∑

n∈N k
0

vn

n!

∫
Rk

xn e s′x

MU(s)
dU(x)

With t = v + s the last formula leads to the assertion. �
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1.2.2 Lemma. Let U : B(Rk) → [0, 1] be a distribution and A : Rk → R
d be a

matrix. Then

MUA
(t) = MU(A′t)

holds for all t ∈ Rd.

Proof: As A is a measurable function and the exponential function is positive,
integration theory yields

MUA
(t) =

∫
Rd

e t′x dUA(x)

=

∫
Rk

e t′Ax dU(x)

=

∫
Rk

e (A′t)′x dU(x)

= MU(A′t)

for all t ∈ Rd. �

After introducing the moment generating function we can state a characterization
of independence for some special positive random variables in terms of this function
and in terms of some moments. Furthermore, we also will state a corresponding
result concerning conditional independence. Both results will be used in Section
5.3. In order to keep the notation simple, we use the symbol MX instead of MPX

for the moment generating function (of the distribution) of an arbitrary random
variable X.

Theorem 1.2.3 Let X : Ω → R+ be a random variable and let Y : Ω → R
k
+ be a

bounded random vector. Then the following are equivalent.

(a) X and Y are independent.
(b) The moment generating functions satisfy

M(X,Y)(t, s) = MX(t) MY(s)

for all t < 0 and all s ∈ Rk.
(c) There exists some t > 0 such that

E
[
e−X t Xn Yl

]
= E

[
e−X t Xn

]
E
[
Yl
]

holds for all n ∈ N0 and all l ∈ N k
0 .

(d) The identity

E
[
e−X t Xn e s′Y Yl

]
= E

[
e−X t Xn

]
E
[
e s′Y Yl

]
holds for all t ∈ R+ and all s ∈ Rk as well as for all n ∈ N0 and all l ∈ N k

0 .
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Proof: We prove the assertion according to the following scheme: (a) ⇒ (d) ⇒
(c) ⇒ (b) ⇒ (a).

(a) ⇒ (d): obvious

(d) ⇒ (c): obvious

(c) ⇒ (b): Since X is positive and Y is bounded there exists an open set
B = Bt × Bs such that −t ∈ Bt ⊆ (−∞, 0) and 0 ∈ Bs ⊆ R

k and that the
moment generating functions MX , MY, and M(X,Y) are finite on Bt, Bs, and B,
respectively. Now, consider arbitrary t̂ ∈ Bt and ŝ ∈ Bs. Then from Lemma 1.2.1
we obtain

M(X,Y)(t̂, ŝ) =
∑

n∈N0

∑
l∈N k

0

(t̂ + t)n

n!

ŝl

l!
E
[
e−X t Xn Yl

]
=

∑
n∈N0

∑
l∈N k

0

(t̂ + t)n

n!

ŝl

l!
E
[
e−X t Xn

]
E
[
Yl
]

=

( ∑
n∈N0

(t̂ + t)n

n!
E
[
e−X t Xn

])( ∑
l∈N k

0

ŝl

l!
E
[
Yl
])

= MX(t̂) MY(ŝ)

So the desired identity is valid on B. The analyticity of the moment generating
functions MX , MY, and M(X,Y) on (−∞, 0), Rk, and (−∞, 0) × Rk, respectively,
and the principle of analytic continuation (see Dieudonné [1971] 9.4.2) yield the
assertion.

(b) ⇒ (a): For all t < 0 and all s ∈ Rk we obtain with the help of Tonelli’s theorem∫
R1+k

e t x+s′y dP(X,Y)(x,y) = M(X,Y)(t, s)

= MX(t) MY(s)

=

∫
R

e t x dPX(x)

∫
Rk

e s′y dPY(y)

=

∫
R1+k

e t x+s′y dPX ⊗ PY(x,y)

and thus ∫
R1+k

e t x+s′y dP(X,Y)(x,y) =

∫
R1+k

e t x+s′y dPX ⊗ PY(x,y)

The last equation also is true if we choose t = 0. Then the uniqueness of the
Laplace transform of measures concentrated on R d

+ (see Kallenberg [2002] Theorem
5.3) yields P(X,Y) = PX ⊗ PY and therefore the independence of X and Y. �
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Now, we turn to the conditional independence. To prove a corresponding result to
the previous theorem we first state two preliminary results.

1.2.4 Lemma. Let X : Ω → R+ and Y : Ω → R+ be two random variables.
Additionally, let Z : Ω → N

d
0 be a random vector such that P [{Z = n}] > 0 holds

for all n ∈ N d
0 . Then the following are equivalent.

(a) The identity

E
(
X Y

∣∣Z) = E
(
X
∣∣Z) E

(
Y
∣∣Z)

is valid.
(b) The identity

E
[
X Y

∣∣ {Z = n}
]

= E
[
X
∣∣ {Z = n}

]
E
[
Y
∣∣ {Z = n}

]
holds for all n ∈ N d

0 .

Proof: By the Fourier expansion for conditional expectation we have

E
(
X Y

∣∣Z) =
∑

n∈N k
0

E
[
X Y

∣∣ {Z = n}
]

χ{Z=n}

as well as

E
(
X
∣∣Z) E

(
Y
∣∣Z)

=

 ∑
n∈N k

0

E
[
X
∣∣ {Z = n}

]
χ{Z=n}

 ∑
n∈N k

0

E
[
Y
∣∣ {Z = n}

]
χ{Z=n}


=

∑
n∈N k

0

E
[
X
∣∣ {Z = n}

]
E
[
Y
∣∣ {Z = n}

]
χ{Z=n}

which yields the assertion. �

1.2.5 Corollary. Let X : Ω → R+ a random variable and let Y : Ω → R
k
+

be a random vector. Additionally, let Z : Ω → N
d
0 be a random vector such that

P [{Z = n}] > 0 holds for all n ∈ N d
0 . Then the following are equivalent.

(a) X and Y are conditionally independent with respect to Z.
(b) The identity

P
(
{X ∈ B} ∩ {Y ∈ C}

∣∣Z) = P
(
{X ∈ B}

∣∣Z) P
(
{Y ∈ C}

∣∣Z)
holds for all B ∈ B(R) and C ∈ B(Rk).

(c) For all n ∈ N d
0 the random variable X and the random vector Y are inde-

pendent with respect to the measure P [ · |{Z = n}].
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Proof:
(a) ⇔ (b): obvious

(b) ⇔ (c): Condition (c) is valid if, and only if, for all n ∈ N d
0

P
[
{X ∈ B} ∩ {Y ∈ C}

∣∣ {Z = n}
]

= P
[
{X ∈ B}

∣∣ {Z = n}
]

P
[
{Y ∈ C}

∣∣ {Z = n}
]

holds for all B ∈ B(R) and C ∈ B(Rk). Considering the random variables χB ◦X
and χC ◦ Y for arbitrary B ∈ B(R) and C ∈ B(Rk), Lemma 1.2.4 yields now the
assertion. �

1.2.6 Corollary. Let X : Ω → R+ a random variable and let Y : Ω → R
k
+ be

a bounded random vector. Additionally, let Z : Ω → N
d
0 be a random vector such

that P [{Z = n}] > 0 holds for all n ∈ N d
0 . Then the following are equivalent.

(a) X and Y are conditionally independent with respect to Z.
(b) For all n ∈ N d

0

MP(X,Y)|{Z=n}(t, s) = MPX|{Z=n}(t) MPY|{Z=n}(s)

holds for all t < 0 and s ∈ Rk.
(c) There exists some t > 0 such that

E
(
e−X t Xn Yl

∣∣Z ) = E
(
e−X t Xn

∣∣Z ) E
(
Yl
∣∣Z )

holds for all n ∈ N0 and all l ∈ N k
0 .

(d) For all t ∈ R+ and all s ∈ Rk

E
(
e−X t Xn e s′Y Yl

∣∣Z) = E
(
e−X t Xn

∣∣Z ) E
(
e s′Y Yl

∣∣∣Z)
holds for all n ∈ N0 and all l ∈ N k

0 .

Proof: Aggregating for all n ∈ N d
0 condition (b) of Theorem 1.2.3 under the

measure P [ · |{Z = n}] gives condition (b) of this theorem. Therefore, using addi-
tionally on the one hand Corollary 1.2.5 gives the equivalence of (b) and (a) and on
the other hand Lemma 1.2.4 gives the equivalence of (b) and (c) and of (b) and (d).

�

1.3 Bernstein–Widder Theorem

For the main result in Section 3.2 we need a multivariate extension of the famous
Bernstein–Widder theorem, which states that a completely monotone function has a
representation as Laplace–transform of a distribution. The Bernstein–Widder theo-
rem possesses a lot of different proofs from various fields of mathematics. However,
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the proof of the multivariate extension is often taken for granted and therefore not
carried out (compare Bochner [1955] Theorem 4.2.1 and Berg et al. [1984] Exercise
4.6.27). So in this section we state the multivariate Bernstein–Widder theorem in a
fashion fitting our purpose and give a proof, which is based on Berg et al. [1984].

1.3.1 Theorem (Multivariate Bernstein–Widder). Let f : R k
+ → R be a

continuous function with f(0) = 1 and

(−1)1
′nDnf(t) ≥ 0

for all n ∈ N k
0 . Then there exists a distribution U on B(Rk) with U

[
R

k
+

]
= 1 such

that

f(t) =

∫
Rk

e−t′x dU(x)

holds for all t ∈ R k
+.

Proof: Every numeration used in this proof refers to Berg et al. [1984].
First, we show that f is completely monotone in the sense of Definition 4.6.1,
which states that a function has to be nonnegative and fulfils for all finite sets
{a1, . . . , an} ⊆ R

k
+ and all s ∈ R k

+ the inequality ∇a1 · · ·∇anf(s) ≥ 0 in order to
be completely monotone, where ∇a is defined by ∇af(s) := f(s)− f(s + a). Thus,
we generalize a part of the proof of Theorem 4.6.13. Consider a ∈ R k

+, then the
function ∇af is continuous on R k

+. Furthermore, we have for all n ∈ N k
0 and t > 0

with the mean value theorem (see Heuser [2003b] Section 167)

(−1)1
′nDn(∇af)(t) = (−1)1

′n∇aD
nf(t)

= (−1)1
′n
(
Dnf(t)−Dnf(t + a)

)
= (−1)1

′n+1

k∑
i=1

ai D
n+eif(ξ)

with ξ ∈ [t, t + a]. And so we have (−1)1
′nDn(∇af)(t) ≥ 0. By iteration we get

for all a1, . . . , an ∈ R k
+, n ∈ N that the function ∇a1 . . .∇anf is continuous on R k

+

and fulfils (−1)1
′nDn(∇a1 . . .∇anf)(t) ≥ 0 for all n ∈ N k

0 and t > 0. In particular,
∇a1 . . .∇anf(t) ≥ 0 for all t > 0 and by continuity ∇a1 . . .∇anf(t) ≥ 0 for all
t ≥ 0. As f is by assumption nonnegative it is completely monotone.
It follows from 4.6.5 that f is positive definite and bounded (in notation of Berg et
al. [1984] f ∈ Pb(R k

+)). Thus, the continuity of f in connection with Proposition
4.4.7. yields the existence of a finite, nonnegative measure U on B(Rk

+) with

f(t) =

∫
R k

+

e−t′x dU(x)
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for all t ∈ R k
+. Finally

U
[
R

k
+

]
=

∫
R k

+

dU(x)

= f(0)

= 1

and the assertion is shown. �

1.3.2 Corollary. Let f : R k
+ → R be a continuous function with f(0) = 1 and

(−1)1
′nDnf(t) ≥ 0 for all n ∈ N k

0 . Then there exists a distribution U on B(Rk)
with U

[
R

k
+

]
= 1 such that f(t) = MU(−t).
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Chapter 2

Multivariate Counting Processes

2.1 The Model

A stochastic process {Nt}t∈R+
is said to be a counting process (without explo-

sion) if there exists a null set N ∈ F (called the exceptional null set) such that the
following properties are satisfied for every ω ∈ Ω\N :

(i) N0(ω) = 0,
(ii) Nt(ω) ∈ N0 for all t > 0,
(iii) Nt(ω) = infs∈ (t,∞) Ns(ω) for all t ∈ R+,
(iv) sups∈ [0,t) Ns(ω) ≤ Nt(ω) ≤ sups∈ [0,t) Ns(ω) + 1 for all t ∈ R+, and
(v) supt∈R+

Nt(ω) = ∞ .

Nt can be interpreted as the number of events occurring in the interval (0, t]. The
above definition excludes the positive probability of infinitely many events occurring
in a finite time interval as well as the possibility of a finite number of events occurring
in an infinite time interval. Some results in this work are related to Schmidt [1996].
There, a counting process is allowed to explode, but here, talking about a counting
process, we always refer to a counting process without explosion.

A multivariate stochastic process {Nt}t∈R+
in k dimensions is said to be a multi-

variate counting process if every coordinate {N (i)
t }t∈R+ , i ∈ {1, . . . , k}, and the

sum {Nt}t∈R+ := {1′Nt}t∈R+ of all coordinates is a counting process. Thus, there
exists a null set M ∈ F (called the exceptional null set of the multivariate counting
process) such that for all ω ∈ Ω\M properties (i)–(v) are fulfilled by all coordinates

{N (i)
t (ω)}t∈R+ , i ∈ {1, . . . , k}, and the sum {Nt(ω)}t∈R+ of all coordinates. As a

consequence, simultaneous jumps of different coordinates are almost surely excluded.
From now on k will always be the dimension of the multivariate counting process
we are working with.

To see how multivariate counting processes can be transformed, we define different
sets of matrices. Firstly, let us consider permutation matrices, matrices which select
coordinates, and matrices which cumulate coordinates according to some rules.

25
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– Let AP be the set consisting of all A ∈ {0, 1}k×k with k ∈ N such that the
identities 1′Aej = 1 = ei

′A1 hold for all i, j ∈ {1, . . . , k}.
– Let AS be the set consisting of all A = (Id, 0) ∈ {0, 1}d×k with d, k ∈ N such

that d < k and Id is the identity matrix of dimension d.
– Let AC be the set consisting of all A ∈ {0, 1}d×k with d, k ∈ N and d ≤ k such

that there exist ki ∈ N for i ∈ {1, . . . , d} with
∑d

i=1 ki = k and A = (A1, . . . , Ad)
where Ai := (ei, . . . , ei) ∈ Rd×ki for i ∈ {1, . . . , d}.

Now the set of possible transformation matrices can be defined as the setA consisting
of all A ∈ {0, 1}d×k with d, k ∈ N and d ≤ k such that there exists some m ∈ N and
Ai ∈ AP ∪ AS ∪ AC , i ∈ {1, . . . ,m}, with A = AmAm−1 · · ·A1. Thus, A consists
of matrices which have entries of 0 or 1, at least one 1 per line, and at most one
1 per column. That A includes all such matrices is shown within the proof of the
following lemma.

2.1.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process and A ∈ Rd×k.

Then {ANt}t∈R+
is a multivariate counting process if, and only if, A ∈ A.

Proof:
Assume A ∈ A. To show that {ANt}t∈R+

is a multivariate counting process we have
to prove that a multivariate counting process is stable under every transformation
from each of the three sets AP , AS, and AC . It is obvious that {ANt}t∈R+

is a
counting process for A ∈ AP ∪AS. Now, let A ∈ AC and consider ω ∈ Ω\M . Due to
the assumption the coordinates of {Nt(ω)}t∈R+

cannot jump simultaneously. Every
coordinate of the transformed process {ANt(ω)}t∈R+

is a sum of coordinates of the
original process {Nt(ω)}t∈R+

and therefore fulfils properties (i)–(v) of a counting
process. Since {1′ANt(ω)}t∈R+

= {1′Nt(ω)}t∈R+
, the sum of all coordinates of

{ANt(ω)}t∈R+
fulfills properties (i)–(v) of a counting process, too. Thus, M serves

as an exceptional null set for the transformed process {ANt}t∈R+
which is therefore

a multivariate counting process.
Now consider A ∈ Rd×k and that {ANt}t∈R+

is a multivariate counting process and
let MA be the exceptional null set of {ANt}t∈R+

. Consider ω ∈ Ω\(M ∪MA). Since
every coordinate of {ANt(ω)}t∈R+

has jumps of height one and no simultaneous
jumps of coordinates of {Nt(ω)}t∈R+

are allowed, all entries of A are either 0 or 1.
Furthermore, every coordinate of {ANt(ω)}t∈R+

has paths which increase to infinity
and we get A1 ≥ 1. Additionally, there exist no simultaneous jumps of coordinates
of {ANt(ω)}t∈R+

and thus 1′A ≤ 1′. These three arguments yield the existence of
a matrix AP ∈ AP such that

A AP =


1 . . . 1 0

1 . . . 1 0

0
. . . 0 . . . 0

0 1 . . . 1
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where the last part (all zeros) may or may not be existent. In the first case there
exists AC ∈ R(d+1)×k and AS ∈ Rd×(d+1) with AC ∈ AC and AS ∈ AS such that
A AP = AS AC . In the second case we already have A AP ∈ AC . Since (AP )−1 ∈ AP

we obtain A ∈ A. �

Examples of useful transformations are
• A = 1′, in which case {ANt}t∈R+

= {Nt}t∈R+
is the sum of all coordinates,

• A = ei
′, in which case {ANt}t∈R+

=
{
N

(i)
t

}
t∈R+

is the i–th coordinate,

• A ∈ AS, in which case {ANt}t∈R+
consists of the first d coordinates of the

original process, and
• A ∈ AP , in which case {ANt}t∈R+

permutes the coordinates of the original
process.

For a practical use of transformation we introduce the following notation. A property
(P) of counting processes is said to be A–stable if, for each A ∈ A, the counting
process {ANt}t∈R+

has property (P) whenever {Nt}t∈R+
has property (P).

The next lemma states some properties of the one–dimensional probabilities of mul-
tivariate counting processes we need later.

2.1.2 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then

(1) The identity

lim
t ↓ s

P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}]
= P

[
k⋂

i=1

{
N (i)

si
= n(i)

}]

holds for all s ∈ R k
+ and all n ∈ N k

0 .
(2) The identity

lim
t ↓ s

P [{Nt = n}] = P [{Ns = n}]

holds for all s ∈ R+ and all n ∈ N k
0 .

(3) The identity

lim
t ↓ 0

P [{Nt = n}] =

{
1 if n = 0
0 else

holds for all n ∈ N k
0 .

(4) The identity limt ↑∞ P [{Nt = n}] = 0 holds for all n ∈ N k
0 .

(5) The identity limt ↑∞ P [{Nt ≥ n}] = 1 holds for all n ∈ N k
0 .

Proof:
(1): By definition, every coordinate of {Nt}t∈R+

is a counting process and has
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therefore almost surely right continuous and increasing paths. So we get for arbitrary
m ∈ N and nj ∈ Zk, j ∈ {1, . . . ,m},

lim
t ↓ s

P

[
m⋃

j=1

k⋂
i=1

{
N

(i)
ti ≤ n

(i)
j

}]
= sup

t∈ (s,∞)

P

[
m⋃

j=1

k⋂
i=1

{
N

(i)
ti ≤ n

(i)
j

}]

= P

 ⋃
t∈ (s,∞)

m⋃
j=1

k⋂
i=1

{
N

(i)
ti ≤ n

(i)
j

}
= P

 m⋃
j=1

⋃
t∈ (s,∞)

k⋂
i=1

{
N

(i)
ti ≤ n

(i)
j

}
= P

[
m⋃

j=1

k⋂
i=1

{
inf

ti ∈ (si,∞)
N

(i)
ti ≤ n

(i)
j

}]

= P

[
m⋃

j=1

k⋂
i=1

{
N (i)

si
≤ n

(i)
j

}]

Now, consider n ∈ Nk
0. Then we obtain with the previous identity (considering the

case m = 1 as well as m = k)

lim
t ↓ s

P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}]

= lim
t ↓ s

P

[
k⋂

i=1

{
N

(i)
ti ≤ n(i)

}∖ k⋃
j=1

k⋂
i=1

{
N

(i)
ti ≤ n(i) − δij

}]

= lim
t ↓ s

(
P

[
k⋂

i=1

{
N

(i)
ti ≤ n(i)

}]
− P

[
k⋃

j=1

k⋂
i=1

{
N

(i)
ti ≤ n(i) − δij

}])

= P

[
k⋂

i=1

{
N (i)

si
≤ n(i)

}]
− P

[
k⋃

j=1

k⋂
i=1

{
N (i)

si
≤ n(i) − δij

}]

= P

[
k⋂

i=1

{
N (i)

si
= n(i)

}]

(2): Considering only vectors s with equal coordinates, the assertion immediately
follows from (1).

(3): Since all coordinates have paths which almost surely start at zero, setting s = 0
in (2) gives the assertion.
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(4): By definition, the sum {Nt}t∈R+
of all coordinates is a counting process and

has therefore paths which have no upper limit. This yields

lim
t ↑∞

P [{Nt = n}] ≤ lim
t ↑∞

P [{Nt ≤ 1′n}]

= inf
t∈ (0,∞)

P [{Nt ≤ 1′n}]

= P

 ⋂
t∈ (0,∞)

{Nt ≤ 1′n}


= P

[{
sup

t∈ (0,∞)

Nt ≤ 1′n

}]
= 0

(5): By definition, all coordinates are counting processes and have therefore paths
which increase and have no upper limit. Thus

lim
t ↑∞

P [{Nt ≥ n}] ≥ lim
t ↑∞

P
[{

N
(1)
t ≥ n(1)

}]
= sup

t∈ (0,∞)

P
[{

N
(1)
t ≥ n(1)

}]
≥ P

 ⋃
t∈ (0,∞)

{
N

(1)
t ≥ n(1)

}
= P

[{
sup

t∈ (0,∞)

N
(1)
t ≥ n(1)

}]
= 1

and the assertion follows. �

The second item seems to be the natural version regarding continuity of the prob-
ability as a function of time. But for the characterization of multivariate mixed
Poisson processes we need as many different time variables as the process has coor-
dinates. Thus, Lemma 2.1.2 (1) is also necessary and will be used in the proof of
Lemma 3.2.1.

We will also study so called posterior distributions and processes. To this end we
introduce for t ∈ R+ the incremental process {Kt,h}h∈R+

with

Kt,h := Nt+h −Nt

for all h ∈ R+. Since all trajectory properties carry over from {Nt}t∈R+
to

{Kt,h}h∈R+
, the next lemma is obvious.
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2.1.3 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then the process

{Kt,h}h∈R+
is a multivariate counting process for all t ∈ R+.

Latter, the treatment of the incremental process will require the restriction of
the probability measure. Hence, we also define for t ∈ R+ and n ∈ N

k
0 with

P [{Nt = n}] > 0 a new probability measure with

Pt,n[B] := P
[
B
∣∣ {Nt = n}

]
for B ∈ F and modify the previous lemma, such that it can be directly used in the
subsequent chapters.

2.1.4 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then for all

t ∈ R+ and all n ∈ N k
0 with P [{Nt = n}] > 0 the process {Kt,h}h∈R+

is a multi-

variate counting process on the probability space (Ω,F , Pt,n).

2.2 The Multinomial Property

In the present section we introduce several properties, which a multivariate counting
process may possess. All of them are related to the multinomial property. We start
with two properties which are just concerned with the increments.

A multivariate counting process {Nt}t∈R+
has independent increments if

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

m∏
j=1

P
[{

Ntj −Ntj−1
= nj

}]
holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.
A multivariate counting process {Nt}t∈R+

has stationary increments if

P

[
m⋂

j=1

{
Ntj+h −Ntj−1+h = nj

}]
= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

holds for all m ∈ N and t0, t1, . . . , tm, h ∈ R+ with 0 = t0 < t1 < . . . < tm and for
all nj ∈ N k

0 , j ∈ {1, . . . ,m}.

As can be seen from the next lemma, both the property of independent increments
and the property of stationary increments are stable under certain transformations.

2.2.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then
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(1) The property of having independent increments is A–stable.
(2) The property of having stationary increments is A–stable.

Proof:
(1): Consider m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and
lj ∈ N d

0 , j ∈ {1, . . . ,m}. Then we obtain

P

[
m⋂

j=1

{
ANtj − ANtj−1

= lj
}]

= P

[
m⋂

j=1

{
A
(
Ntj −Ntj−1

)
= lj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

m∏
j=1

P
[{

Ntj −Ntj−1
= nj

}]
=

m∏
j=1

∑
nj ∈A−1({lj})

P
[{

Ntj −Ntj−1
= nj

}]
=

m∏
j=1

P
[{

ANtj − ANtj−1
= lj

}]
which proves the assertion.

(2): Consider m ∈ N and t0, t1, . . . , tm, h ∈ R+ with 0 = t0 < t1 < . . . < tm and
lj ∈ N d

0 , j ∈ {1, . . . ,m}. Then we get

P

[
m⋂

j=1

{
ANtj+h − ANtj−1+h = lj

}]
= P

[
m⋂

j=1

{
A
(
Ntj+h −Ntj−1+h

)
= lj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

P

[
m⋂

j=1

{
Ntj+h −Ntj−1+h = nj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

= P

[
m⋂

j=1

{
ANtj − ANtj−1

= lj
}]

and the prove is completed. �

The next properties we introduce are dealing with inverse transition probabilities.
This means, probabilities of increments which occurred before a certain state of the
process.
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A multivariate counting process {Nt}t∈R+
has

– the multinomial property if the identity

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P

[{
Ntm =

m∑
j=1

nj

}]

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for
all nj ∈ N k

0 , j ∈ {1, . . . ,m}.
– the extended binomial property if the identity

P

[
k⋂

i=1

{
N

(i)
ti = l(i)

}
∩
{

N
(i)
t −N

(i)
ti = n(i)

}]

=

(
k∏

i=1

(
n(i) + l(i)

l(i)

) (
ti
t

)l(i) (
1− ti

t

)n(i)
)

P [{Nt = n + l}]

holds for all t ∈ R k
+, t ∈ R+ with t ∈ (0, t1) and for all l, n ∈ N k

0 .
– the binomial property if the identity

P [{Ns = l} ∩ {Nt −Ns = n}]

=

(
k∏

i=1

(
n(i) + l(i)

l(i)

) (s

t

)l(i) (
1− s

t

)n(i)
)

P [{Nt = n + l}]

holds for all s, t ∈ R+ with 0 < s < t and all l, n ∈ N k
0 .

For a multivariate counting process having the multinomial property, the finite–
dimensional distributions are completely determined by the one–dimensional distri-
butions. Furthermore, given the number of events at some time tm the partitioning of
the events into disjoint time intervals in the past is due to sampling with replacement.
As this sampling is independent for the coordinates of the process, every coordinate
could be sampled separately. The meaning of definition of the multinomial property
would stay unchanged, if we allow equal times (i.e. 0 = t0 ≤ t1 ≤ . . . ≤ tm). With-
out loss of generality consider tm = tm−1. If nm = 0 we can ignore tm and consider
m − 1 intervals. If nm 6= 0 both sides of the definition equal zero and the identity
holds as well.

The binomial property is the natural extension of its one–dimensional counterpart
in relation to the multinomial property, that means only two different times are
considered. The extended binomial property considers a different time in the past
for every coordinate. It can be seen from Lemma 2.2.7 that given the Markov
property the binomial property is equal to the extended binomial property.
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However, first we have a look at how our transformation works according to the
above properties.

2.2.2 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then

(1) The multinomial property is A–stable.
(2) The extended binomial property is A–stable.
(3) The binomial property is A–stable.

Proof:
(1) and (3): Consider m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm
and lj ∈ N d

0 , j ∈ {1, . . . ,m}.
Assume that

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

 k∏
i=1

n(i)!∏m
j=1 n

(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P

[{
Ntm =

m∑
j=1

nj

}]

holds for all nj ∈ N k
0 , j ∈ {1, . . . ,m}. We want to show that

P

[
m⋂

j=1

{
ANtj − ANtj−1

= lj
}]

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

 P [{ANtm = l}] (+)

holds for all A ∈ A with A ∈ Rd×k.
- Let A ∈ AP . Then (+) holds obviously.
- Let A ∈ AS. We obtain

P

[
m⋂

j=1

{
ANtj − ANtj−1

= lj
}]

= P

[
m⋂

j=1

{
A
(
Ntj −Ntj−1

)
= lj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j


· P

[{
Ntm =

m∑
j=1

nj

}]
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=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j


·

∑
n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

 k∏
i=d+1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j


· P

[{
Ntm =

m∑
j=1

nj

}]

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

 ∑
n∈A−1({l})

P [{Ntm = n}]

·
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})∑m
j=1 nj =n

 k∏
i=d+1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j



=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

 ∑
n∈A−1({l})

P [{Ntm = n}]

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

P [{ANtm = l}]

where the equality preceding the last one is simply the use of the multinomial dis-
tribution. So (+) holds for A ∈ AS.
- Let A ∈ AC . Setting I(i) := {h ∈ {1, . . . , k} : ei

′Aeh = 1} (the set of coordinates
cumulated in the i–th coordinate of the transformed process) we get

P

[
m⋂

j=1

{
ANtj − ANtj−1

= lj
}]

= P

[
m⋂

j=1

{
A
(
Ntj −Ntj−1

)
= lj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j


· P

[{
Ntm =

m∑
j=1

nj

}]
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=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j


·

∑
n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})

(
d∏

i=1

∏m
j=1 l

(i)
j !

(
∑m

j=1 l
(i)
j )!

)(
k∏

i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

)

· P

[{
Ntm =

m∑
j=1

nj

}]

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

 ∑
n∈A−1({l})

P [{Ntm = n}]

·
∑

n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})∑m
j=1 nj =n

(
d∏

i=1

∏m
j=1 l

(i)
j !

(
∑m

j=1 l
(i)
j )!

)(
k∏

i=1

n(i)!∏m
j=1 n

(i)
j !

)

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

 ∑
n∈A−1({l})

P [{Ntm = n}]

·

(
d∏

i=1

∏
h∈ I(i) n(h)!

(
∑m

j=1 l
(i)
j )!

) ∑
n1 ∈A−1({l1})

· · ·
∑

nm ∈A−1({lm})∑m
j=1 nj =n

d∏
i=1

m∏
j=1

l
(i)
j !∏

h∈ I(i) n
(h)
j !

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j


·

∑
n∈A−1({l})

P [{Ntm = n}]

(
d∏

i=1

∏
h∈ I(i) n(h)!

(
∑m

j=1 l
(i)
j )!

)(
d∏

i=1

(
∑m

j=1 l
(i)
j )!∏

h∈ I(i) n(h)!

)

=

 d∏
i=1

(
∑m

j=1 l
(i)
j )!∏m

j=1 l
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)l
(i)
j

P [{ANtm = l}]

where the identity previous to the last one is due to the d–fold use of the multinomial
coefficient formula, which states that for arbitrary u, v ∈ N, zj ∈ N0, j ∈ {1, . . . , u},
with z :=

∑u
j=1 zj and arbitrary x ∈ N v

0 with 1′x = z the identity(
z

x

)
=

∑
x1 ∈N v

0
1′x1 = z1

· · ·
∑

xu ∈N v
0

1′xu = zu∑u
j=1 xj =x

u∏
j=1

(
zj

xj

)

is valid. So (+) holds for A ∈ AC , too.
As m and t0, t1, . . . , tm with 0 = t0 < t1 < . . . < tm and lj, j ∈ {1, . . . ,m}, have
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been arbitrary, we have shown that the multinomial as well as the binomial property
is A–stable.
(2): Now, we assume that {Nt}t∈R+

has the extended binomial property. Consider

t ∈ R d
+, t ∈ R+ with t ∈ (0, t1) and l1, l2 ∈ N d

0 . We want to show that

P

[
d⋂

i=1

{
ei
′ANti = l

(i)
1

}
∩
{
ei
′ANt − ei

′ANti = l
(i)
2

}]

=

 d∏
i=1

(
l
(i)
1 + l

(i)
2

l
(i)
1

) (
ti
t

)l
(i)
1
(

1− ti
t

)l
(i)
2

 P [{ANt = l1 + l2}] (∗)

holds for all A ∈ A with A ∈ Rd×k.
- Let A ∈ AP . Then (∗) holds obviously.
- Let A ∈ AS. We consider s ∈ R k

+ with s ∈ (0, t1) and As = t. Then, using the
same argumentation as in part (1), we get

P

[
d⋂

i=1

{
ei
′ANti = l

(i)
1

}
∩
{
e′iANt − ei

′ANti = l
(i)
2

}]

=
∑

n1 ∈A−1({l1})

∑
n2 ∈A−1({l2})

P

[
k⋂

i=1

{
N (i)

si
= n

(i)
1

}
∩
{

N
(i)
t −N (i)

si
= n

(i)
2

}]

=
∑

n1 ∈A−1({l1})

∑
n2 ∈A−1({l2})

(
k∏

i=1

(
n

(i)
1 + n

(i)
2

n
(i)
1

) (si

t

)n
(i)
1
(
1− si

t

)n
(i)
2

)
· P [{Nt = n1 + n2}]

=

 d∏
i=1

(
l
(i)
1 + l

(i)
2

l
(i)
1

) (
ti
t

)l
(i)
1
(

1− ti
t

)l
(i)
2


·

∑
n1 ∈A−1({l1})

∑
n2 ∈A−1({l2})

(
k∏

i=d+1

(
n

(i)
1 + n

(i)
2

n
(i)
1

) (si

t

)n
(i)
1
(
1− si

t

)n
(i)
2

)
· P [{Nt = n1 + n2}]

=

 d∏
i=1

(
l
(i)
1 + l

(i)
2

l
(i)
1

) (
ti
t

)l
(i)
1
(

1− ti
t

)l
(i)
2

 ∑
n∈A−1({l1+l2})

P [{Nt = n}]

·
∑

n1 ∈A−1({l1})
n1 ∈ [0,n]

(
k∏

i=d+1

(
n(i)

n
(i)
1

) (si

t

)n
(i)
1
(
1− si

t

)n(i)−n
(i)
1

)
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=

 d∏
i=1

(
l
(i)
1 + l

(i)
2

l
(i)
1

) (
ti
t

)l
(i)
1
(

1− ti
t

)l
(i)
2

 ∑
n∈A−1({l1+l2})

P [{Nt = n}]

=

 d∏
i=1

(
l
(i)
1 + l

(i)
2

l
(i)
1

) (
ti
t

)l
(i)
1
(

1− ti
t

)l
(i)
2

P [{ANt = l1 + l2}]

where the equality preceding the last one is simply the use of binomial distribution.
So (∗) holds for A ∈ AS.
- Let A ∈ AC . Setting I(i) := {h ∈ {1, . . . , k} : ei

′Aeh = 1} and s ∈ R k
+ such that

the identity sh = ti holds for all h ∈ I(i) and i ∈ {1, . . . , d}. Then, by using the
same argumentation as in part (1), we obtain

P

[
d⋂

i=1

{
ei
′ANti = l

(i)
1

}
∩
{
ei
′ANt − ei

′ANti = l
(i)
2
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∩
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∑
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·
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P [{Nt = n}]
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·
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d∏
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1
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·
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) (
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1
(

1− ti
t

)l
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P [{ANt = l1 + l2}]

Hence, equation (∗) holds for A ∈ AS , too.
So the extended binomial property is also A–stable. �

The next lemma states an implication of the binomial property which is derived in
interaction with properties of the paths of multivariate counting processes.

2.2.3 Lemma. Let {Nt}t∈R+
be a multivariate counting process. If {Nt}t∈R+

has
the binomial property, then

P [{Nt = n}] > 0

holds for all t > 0 and all n ∈ N k
0 .

Proof: First, we assume there exists some m ∈ N k
0 such that

P [{Nt = n}] = 0

holds for all t > 0 and n ∈ N k
0 with n ≥ m. Then we have P [{Nt ≥ m}] = 0, which

is a contradiction to limt ↑∞ P [{Nt ≥ n}] = 1 for all n ∈ N k
0 (Lemma 2.1.2 (5)).

Now, consider m ∈ N k
0 . By the first part of the proof there exists some t > 0 and

some n ∈ N k
0 with n ≥ m such that

P [{Nt = n}] > 0

The binomial property leads to

P [{Ns = l}] ≥ P [{Ns = l} ∩ {Nt −Ns = n− l}]

=

(
k∏

i=1

(
n(i)

l(i)

) (s

t

)l(i) (
1− s

t

)n(i)
)

P [{Nt = n}]

and hence

P [{Ns = l}] > 0
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for all s ∈ (0, t) and all l ∈ N k
0 with l ≤ n. Moreover, for all u ∈ (t,∞) the identity∑

p≥n P [{Nu = p} | {Nt = n}] = 1 yields the existence of some p ∈ N k
0 with n ≤ p

such that

P [{Nu = p}] ≥ P [{Nu = p} ∩ {Nt = n}]
= P [{Nu = p} | {Nt = n}] P [{Nt = n}]
> 0

Replacing t and n by u and p in the preceding argument, we get

P [{Ns = l}] > 0

for all s > 0 and all l ∈ N k
0 with l ≤ n.

Since m ∈ N k
0 was arbitrary the assertion is shown. �

2.2.4 Corollary. Let {Nt}t∈R+
be a multivariate counting process. If {Nt}t∈R+

has the multinomial property, then P [{Nt = n}] > 0 holds for all t > 0 and n ∈ N k
0 .

The property of counting processes having the binomial property that all states
possess strictly positive probability will be subsequently used quite often and is of
special interest in Chapter 2.3. After studying each property alone, we state a first
relation between the properties introduced so far.

2.2.5 Lemma. If a multivariate counting process has the multinomial property,
then it has stationary increments.

Proof: Consider m ∈ N and t0, t1, . . . , tm, h ∈ R+ with 0 = t0 < t1 < . . . < tm
and nj ∈ N k

0 , j ∈ {1, . . . ,m}. Setting t−1 := −h and lm :=
∑m

j=1 nj we get

P

[
m⋂

j=1

{
Ntj+h −Ntj−1+h = nj

}]
=

∑
n0 ∈N k

0

P

[
m⋂

j=0

{
Ntj+h −Ntj−1+h = nj

}]

=
∑

n0 ∈N k
0

 k∏
i=1

(l
(i)
m + n

(i)
0 )!∏m

j=0 n
(i)
j !

m∏
j=0

(
tj − tj−1

tm + h

)n
(i)
j

 P [{Ntm+h = lm + n0}]

=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 ∑
n0 ∈N k

0

P [{Ntm+h = lm + n0}]

·

 k∏
i=1

(
l
(i)
m + n

(i)
0

l
(i)
m

)(
tm

tm + h

)l
(i)
m
(

h

tm + h

)n
(i)
0


=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j
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·
∑

n0 ∈N k
0

P [{Ntm = lm} ∩ {Ntm+h −Ntm = n0}]

=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

and the assertion is shown. �

The third and last set of properties we introduce in this section is related to transition
probabilities. That means, they are dealing with probabilities of increments which
occur after certain events of the process.

A multivariate counting process {Nt}t∈R+
has the Markov property (is a

Markov process) if the identity

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1}

]
holds for all m ∈ N and t0, t1, . . . , tm+1 ∈ R+ with 0 = t0 < t1 < . . . < tm+1 and for
all n1, . . . ,nm+1 ∈ N k

0 with lm :=
∑m

j=1 nj.

If P
[
∩m

j=1

{
Ntj −Ntj−1

= nj

}]
> 0 the previous identities are equivalent to

P

[{
Ntm+1 −Ntm = nm+1

} ∣∣∣∣ m⋂
j=1

{
Ntj −Ntj−1

= nj

}]
= P

[{
Ntm+1 −Ntm = nm+1

} ∣∣ {Ntm = lm}
]

The first identities are more useful for technical reasons whereas the second ones offer
an interpretation of the Markov property. Roughly speaking, the future increment
of a Markov process only depends on the total increment up to the present and not
on the partitioning of the increment in the past.

A multivariate counting process {Nt}t∈R+
has the Chapman–Kolmogorov pro-

perty if the identity

P [{Nt −Nr = m} | {Nr = n}]
=

∑
l∈ [0,m]

P[{Ns=n+l}] > 0

P [{Ns −Nr = l} | {Nr = n}] P [{Nt −Ns = m− l} | {Ns = n + l}]
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holds for all r, t ∈ R+ , n,m ∈ N k
0 with r ≤ t and P [Nr = n] > 0 as well as for all

s ∈ [r, t].

Since the multivariate counting process has increasing paths, strictly negative incre-
ments have probability zero. Therefore, the above identities are equivalent to

P [{Nt = m} | {Nr = n}]
=

∑
l∈N k

0
P[{Ns=l}] > 0

P [{Ns = l} | {Nr = n}] P [{Nt = m} | {Ns = l}]

These are the general Chapman–Kolmogorov equations often found in literature.
The advantage of the use of the first identities is a finite sum and the use of incre-
ments, which fits right into the definitions of the other properties.

Since in general settings of stochastic processes there exist examples of multivariate
Markov processes with coordinates having not the Markov property it seems likely
that the Markov property is not A–stable in the setting of counting processes.

2.2.6 Lemma. If a multivariate counting process is a Markov process, then it has
the Chapman–Kolmogorov property.

Proof: Consider r, t ∈ R+ , n,m ∈ N k
0 with r ≤ t and P [Nr = n] > 0 as well as

an arbitrary s ∈ [r, t]. Setting B := {Ns −Nr = l} ∩ {Nr = n} we obtain

P [{Nt −Nr = m} | {Nr = n}]
=

∑
l∈ [0,m]

P [{Nt −Ns = m− l} ∩ {Ns −Nr = l} | {Nr = n}]

=
∑

l∈ [0,m]
P[B] > 0

P [{Nt −Ns = m− l} | {Ns −Nr = l} ∩ {Nr = n}]

· P [{Ns −Nr = l} | {Nr = n}]

=
∑

l∈ [0,m]
P[B] > 0

P [{Nt −Ns = m− l} | {Ns = n + l}] P [{Ns −Nr = l} | {Nr = n}]

=
∑

l∈ [0,m]
P[{Ns=n+l}] > 0

P [{Nt −Ns = m− l} | {Ns = n + l}] P [{Ns −Nr = l} | {Nr = n}]

and thus the assertion. �

Our next aim is to show relations between properties concerning inverse transition
probabilities and properties concerning transition probabilities.

2.2.7 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then the follow-

ing are equivalent:
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(a) {Nt}t∈R+
has the multinomial property.

(b) {Nt}t∈R+
has the extended binomial property and the Markov property.

(c) {Nt}t∈R+
has the binomial property and the Markov property.

Proof: We prove the assertion according to the following scheme: (b) ⇒ (c) ⇒
(a) ⇒ (b).

(b) ⇒ (c): obvious

(c) ⇒ (a): We use the induction method for the number m of time periods in the
equation

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

 k∏
i=1

(
∑m

j=1 n
(i)
j )!∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P

[{
Ntm =

m∑
j=1

nj

}]
(∗)

for all t0, t1, . . . , tm ∈ R+, 0 = t0 < t1 < . . . < tm and all nj ∈ N k
0 , j ∈ {1, . . . ,m}.

For m = 1 (∗) is evidently satisfied.
Now, assume that (∗) holds for m ∈ N. Consider t0, t1, . . . , tm, tm+1 ∈ R+ with
0 = t0 < t1 < . . . < tm < tm+1 and nj ∈ N

k
0 , j ∈ {1, . . . ,m + 1}. Setting

lj :=
∑j

h=1 nh for j ∈ {1, . . . ,m + 1} we get

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1}

]

=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 P [{Ntm = lm}]

·

 k∏
i=1

(
l
(i)
m+1

l
(i)
m

) (
tm

tm+1

)l
(i)
m
(

tm+1 − tm
tm+1

)n
(i)
m+1

 P
[{

Ntm+1 = lm+1

}]

=

 k∏
i=1

l
(i)
m+1!∏m+1

j=1 n
(i)
j !

m+1∏
j=1

(
tj − tj−1

tm+1

)n
(i)
j

 P
[{

Ntm+1 = lm+1

}]
P [{Ntm = lm}]

Since we obtain from the binomial property P [{Ntm = lm}] > 0 (see Lemma 2.2.3),
the above identity yields that (∗) is valid for m+1 time periods. Hence, the binomial
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property and the Markov property imply the multinomial property.

(a) ⇒ (b): Consider m ∈ N and t0, t1, . . . , tm+1 ∈ R+ with 0 = t0 < t1 < . . . < tm+1

and n0,n1, . . . ,nm+1 ∈ N k
0 . Setting lj :=

∑j
h=1 nh for j ∈ {1, . . . ,m + 1} we obtain

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

=

 k∏
i=1

l
(i)
m+1!∏m+1

j=1 n
(i)
j !

m+1∏
j=1

(
tj − tj−1

tm+1

)n
(i)
j

P
[{

Ntm+1 = lm+1

}]
P [{Ntm = lm}]

=

 k∏
i=1

l
(i)
m !∏m

j=1 n
(i)
j !

m∏
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(
tj − tj−1

tm

)n
(i)
j

 P [{Ntm = lm}]

·

 k∏
i=1

(
l
(i)
m+1

l
(i)
m

) (
tm

tm+1

)l
(i)
m
(

1− tm
tm+1

)n
(i)
m+1

 P
[{

Ntm+1 = lm+1

}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1}

]
Thus, {Nt}t∈R+

has the Markov property.

Now, we turn to the extended binomial property. Consider t ∈ R k
+, t ∈ R+ with

t ∈ (0, t1) and l, n ∈ N
k
0 . Since the extended binomial property is A–stable,

thus especially stable under permutation (A ∈ AP), we can without loss of gener-
ality assume t1 ≤ t2 ≤ . . . ≤ tk < t. Furthermore, we use the multinomial prop-
erty, as mentioned before, in a way that equal times are allowed. Finally, putting
M(i) :=

{
n

(i)
j : n

(i)
j ∈ N0 , j ∈ {1, . . . , k + 1},

∑i
j=1 n

(i)
j = l(i),

∑k+1
j=i+1 n

(i)
j = n(i)

}
and tk+1 := t we get

P

[
k⋂

i=1

{
N

(i)
ti = l(i)

}
∩
{

N
(i)
t −N

(i)
ti = n(i)

}]

=
∑
M(1)

· · ·
∑
M(k)

P

[
k+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]

=
∑
M(1)

· · ·
∑
M(k)

 k∏
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(n(i) + l(i))!∏k+1
j=1 n

(i)
j !
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j=1
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)n
(i)
j

 P
[{

Ntk+1
= n + l

}]
= P [{Nt = n + l}]

k∏
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∑
M(i)

(n(i) + l(i))!∏k+1
j=1 n

(i)
j !
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(
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)n
(i)
j
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= P [{Nt = n + l}]
k∏

i=1

(n(i) + l(i))!

l(i)! n(i)!

(
1

t

)l(i)+n(i)

t l(i)

i (t− ti)
n(i)

·
∑
M(i)

 l(i)!
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n
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j !
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j


 n(i)!
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n
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j !
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(
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t− ti
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=

(
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i=1

(
n(i) + l(i)

l(i)

)(
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t

)l(i) (
1− ti

t

)n(i)
)

P [{Nt = n + l}]

So the multinomial property implies the extended binomial property. �

Having proven the equivalence, we know that the multinomial property implies the
Chapman–Kolmogorov property. Our next aim is to show that just having the
binomial property is a sufficient condition for a counting process to possess the
Chapman–Kolmogorov property.

2.2.8 Lemma. If a multivariate counting process {Nt}t∈R+
has the binomial prop-

erty, then it possesses the Chapman–Kolmogorov property.

Proof: Due to Lemma 2.2.3 we have P [{Nt = n}] > 0 for all t > 0 and all
n ∈ N k

0 .
Consider r, t ∈ R+, r ≤ t, and s ∈ [r, t] as well as n,m ∈ N k

0 with P [{Nr = n}] > 0.
For s > 0 we get∑

l∈ [0,m]
P[{Ns=n+l}] > 0

P [{Ns −Nr = l} | {Nr = n}] P [{Nt −Ns = m} | {Ns = n + l}]

=
∑

l∈ [0,m]

P [{Ns −Nr = l} ∩ {Nr = n}]
P [{Nr = n}]

P [{Nt −Ns = m} ∩ {Ns = n + l}]
P [{Ns = n + l}]

=
∑

l∈ [0,m]

(
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(
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) (r

s

)n(i) (
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)l(i)
)
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P [{Nr = n}]

·

(
k∏
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(
n(i) + m(i)

n(i) + l(i)

) (s

t

)n(i)+l(i) (
1− s

t

)m(i)−l(i)
)

P [{Nt = n + m}]
P [{Ns = n + l}]

=
P [{Nt = n + m}]

P [{Nr = n}]

(
k∏

i=1

(
n(i) + m(i)

n(i)

)
rn(i)

t−(n(i)+m(i))

)

·
∑

l∈ [0,m]

k∏
i=1

(
m(i)

l(i)

)
(s− r)l(i) (t− s)m(i)−l(i)

=
P [{Nt = n + m}]

P [{Nr = n}]
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(
n(i) + m(i)
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) (r
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)n(i) (
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)
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·
1′m∑
l=0

(
s− r

t− r

)l (
t− s

t− r

)1′m−l ∑
l∈ [0,m]

1′l= l

k∏
i=1

(
m(i)

l(i)

)

=
P [{Nt −Nr = m} ∩ {Nr = n}]

P [{Nr = n}]

1′m∑
l=0

(
s− r

t− r

)l (
t− s

t− r

)1′m−l (
1′m

l

)
= P [{Nt −Nr = m} | {Nr = n}]

The case s = 0 can only occur if r = 0 and n = 0. So then∑
l∈ [0,m]

P[{N0=n+l}] > 0

P [{N0 −Nr = l} | {Nr = n}] P [{Nt −N0 = m− l} | {N0 = n + l}]

= P [{N0 −N0 = 0} | {N0 = 0}] P [{Nt −N0 = m} | {N0 = 0}]

= P [{Nt −Nr = m} | {Nr = n}]

holds, where the right hand side, and hence the left hand side, is in fact nothing else
than P [{Nt = m}]. Thus, the proof is completed. �

The following pictures recapitulates the relations between the properties of multi-
variate counting processes stated in the last lemmas.

multinomial

binomial

Markov

Chapman–
Kolmogorov

HH
HHHHj

���
���* H

HHH
HHj

��
����*

��

On the basis of this picture we immediately see that the Chapman–Kolmogorov
property cannot imply the binomial property. If the Chapman–Kolmogorov property
implies the binomial property, then the Markov property would be identical with
the multinomial property. Since there exist Markov processes which do not have
the multinomial property, e.g. the univariate inhomogeneous Poisson process (see
Schmidt [1996]) the assumption cannot be fulfilled.

In contrast to the multinomial property the Markov property, as stated after the
definition, does not seem to be A–stable. However, with Lemma 2.2.7 we can easily
derive a corollary from Lemma 2.2.2 which provides a sufficient condition for the
stability of the Markov property.
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2.2.9 Corollary. Let {Nt}t∈R+
be a multivariate counting process having the

Markov property. If {Nt}t∈R+
has the binomial property, then {ANt}t∈R+

is a
Markov process for all A ∈ A.

We have shown so far that all considered properties, except the independent incre-
ments, are linked in a more or less direct way to the multinomial property. The
remaining gap will be filled right now.

2.2.10 Lemma. If a multivariate counting process has independent increments,
then it has the Markov property.

Proof: Consider m ∈ N and t0, t1, . . . , tm+1 ∈ R+ with 0 = t0 < t1 < . . . < tm+1

and n0,n1, . . . ,nm+1 ∈ N k
0 with lm :=

∑m
j=1 nj. Then we have

P

[
m+1⋂
j=1

{
Ntj −Ntj−1

= nj

}]
P [{Ntm = lm}]

=

(
m+1∏
j=1

P
[{

Ntj −Ntj−1
= nj

}])
P [{Ntm = lm}]

= P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
P
[
{Ntm = lm} ∩ {Ntm+1 −Ntm = nm+1

]
Therefore, {Nt}t∈R+

is a Markov process. �

So with a process with independent increments we are in a familiar setting. The
next corollary is obvious.

2.2.11 Corollary. Let {Nt}t∈R+
be a multivariate counting process with indepen-

dent increments and the binomial property. Then {Nt}t∈R+
has the multinomial

property.

In Theorem 3.2.6 we will see that a process with independent increments and the
binomial property even has independent coordinates.

2.3 Regularity

This section is devoted to transition probabilities and transition intensities of mul-
tivariate counting processes. To proceed we need a few new notations.

Let Z := {(0, 0)} ∪
(
N

k
0 × (0,∞)

)
. Then each pair (n, r) ∈ Z is called admissible.

For r, t ∈ R+ , n,m ∈ N k
0 with r ≤ t and (n, r) ∈ Z

pn,m(r, t) :=

{
P [{Nt = m} | {Nr = n}] if P [{Nr = n}] > 0
fn,m(r, t) if P [{Nr = n}] = 0
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are called transition probabilities of the multivariate counting process {Nt}t∈R+

where the functions fn,m fulfil fn,m(r, t) ≥ 0 and
∑

l∈N k
0

fn,l(r, t) ≤ 1 for all

r, t ∈ R+ , n,m ∈ N k
0 with r ≤ t and (n, r) ∈ Z.

The set of transition probabilities of a multivariate counting process need not to
be unique. However, all subsequent results are independent of the choice of the
functions fn,m.

Before we go deeper into the matter we want to provide the link between transition
probabilities and the incremental process. It is easy to see that for r, t ∈ R+ and
n, m ∈ N k

0 with r ≤ t, n ≤ m, and P [{Nr = n}] > 0 the identity

pn,m(r, t) = Pr,n [{Kr,t−r = m− n}]

is valid.

In order to formulate some results in a more uncomplicated style we extend the
Chapman–Kolmogorov property to the set of transition probabilities. A set of tran-
sitions probabilities has the Chapman–Kolmogorov property if

pn,m(r, t) =
∑

l∈ [n,m]
(l,s)∈Z

pn,l(r, s) p l,m(s, t)

holds for all r, t ∈ R+ , n,m ∈ N k
0 with r ≤ t, n ≤ m, and (n, r) ∈ Z as well as for

all s ∈ [r, t].

It is obvious that if a set of transition probabilities has the Chapman–Kolmogorov
property, then so has the underlying process. On the other hand, if the process
has the Chapman–Kolmogorov property, then we obtain by setting all occurring
fn,m ≡ 0 a set of transition probabilities which has the Chapman–Kolmogorov
property. If P [{Nr = n}] > 0 holds for all (n, r) ∈ Z, then both definitions are
equivalent.

Before we turn to the property called regularity we state a few lemmas concerning
transition probabilities.

2.3.1 Lemma. Let pn,m(r, t) be a set of transition probabilities of a multivariate
counting process {Nt}t∈R+

. If pn,m(r, t) has the Chapman–Kolmogorov property,
then

(1) The inequality ∣∣pn,m(r, t)− pn,m(s, t)
∣∣ ≤ 1− pn,n(r, s)

holds for all r, s, t ∈ R+ , n,m ∈ N k
0 with r ≤ s ≤ t, n ≤ m, and (n, r) ∈ Z .
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(2) The inequality∣∣pn,m(r, t)− pn,m(r, s)
∣∣ ≤

∑
l∈ [n,m]
(l,s)∈Z

(1− p l,l(s, t))

holds for all r, s, t ∈ R+ , n,m ∈ N k
0 with r ≤ s ≤ t, n ≤ m as well as

(n, r) ∈ Z and (m, s) ∈ Z.

Proof:
(1): Consider r, s, t ∈ R+ , n,m ∈ N k

0 with r ≤ s ≤ t, n ≤ m, and (n, r) ∈ Z. With
(n, r) ∈ Z and r ≤ s the relation (n, s) ∈ Z follows. Thus, all occurring transition
probabilities are well defined and we have

pn,m(r, t)− pn,m(s, t) ≤
∑

l∈ [n,m]
(l,s)∈Z

pn,l(r, s) p l,m(s, t)− pn,n(r, s) pn,m(s, t)

=
∑

l∈ [n,m]\{n}
(l,s)∈Z

pn,l(r, s) p l,m(s, t)

≤
∑

l∈ [n,m]\{n}
(l,s)∈Z

pn,l(r, s)

≤ 1− pn,n(r, s)

as well as

pn,m(r, t)− pn,m(s, t) =
∑

l∈ [n,m]
(l,s)∈Z

pn,l(r, s) p l,m(s, t)− pn,m(s, t)

=
∑

l∈ [n,m]\{m}
(l,s)∈Z

pn,l(r, s) p l,m(s, t) + (pn,n(r, s)− 1) pn,m(s, t)

≥ (pn,n(r, s)− 1) pn,m(s, t)

≥ − (1− pn,n(r, s))

(2): Consider r, s, t ∈ R+ , n,m ∈ N k
0 with r ≤ s ≤ t, n ≤ m as well as (n, r) ∈ Z

and (m, s) ∈ Z. Then we obtain

pn,m(r, t)− pn,m(r, s) ≤
∑

l∈ [n,m]
(l,s)∈Z

pn,l(r, s) p l,m(s, t)

≤
∑

l∈ [n,m]
(l,s)∈Z

p l,m(s, t)

≤
∑

l∈ [n,m]
(l,s)∈Z

(1− p l,l(s, t))
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and

pn,m(r, t)− pn,m(r, s) =
∑

l∈ [n,m]
(l,s)∈Z

pn,l(r, s) p l,m(s, t)− pn,m(r, s)

=
∑

l∈ [n,m]\{m}
(l,s)∈Z

pn,l(r, s) p l,m(s, t) + pn,m(r, s) (pm,m(s, t)− 1)

≥ −pn,m(r, s) (1− pm,m(s, t))

≥ − (1− pm,m(s, t))

≥ −
∑

l∈ [n,m]
(l,s)∈Z

(1− p l,l(s, t))

Hence, the proof is completed. �

2.3.2 Lemma. Let {Nt}t∈R+
be a multivariate counting process and let (n, r) ∈ Z

and m ∈ N k
0 . If P [{Nr = n}] > 0, then the function pn,m(r, ·) : [r,∞) → R+ is

right continuous.

Proof: We divide the proof into two parts. First, assume n 6≤ m. In this case we
get

pn,m(r, t) = P [{Nt = m} | {Nr = n}]
= 0

for all t ∈ [r,∞) and pn,m(r, ·) even is continuous.
Now, assume n ≤ m. As a consequence of

pn,m(r, t) = Pr,n [{Kr,t−r = m− n}]

Lemma 2.1.4 and Lemma 2.1.2 (2) yield the right continuity of pn,m(r, t) in t on
[r,∞). �

2.3.3 Corollary. Let {Nt}t∈R+
be a multivariate counting process having the

Chapman–Kolmogorov property and let P [{Nr = n}] > 0 for all (n, r) ∈ Z. Then
the following are equivalent.

(a) The functions
– p0,m(·, t) : [0, t] → R+ with m ∈ N k

0 , t > 0,
– pn,m(·, t) : (0, t] → R+ with n ∈ N k

0 \{0}, m ∈ N k
0 , t > 0, and

– pn,m(r, ·) : [r,∞) → R+ with (n, r) ∈ Z, m ∈ N k
0

are continuous.
(b) The identity

lim
h ↓ 0

pn,n(t− h, t) = 1

holds for all t > 0 and n ∈ N k
0 .
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Proof:
(a) ⇒ (b): obvious

(b) ⇒ (a): We obtain from the assumption

lim
h ↓ 0

pn,n(t− h, t) = 1 = pn,n(t, t)

for n ∈ N k
0 and t > 0 as well as from Lemma 2.3.2

lim
h ↓ 0

pn,n(t, t + h) = pn,n(t, t) = 1

for all (n, t) ∈ Z.
Now, Lemma 2.3.1 yields the asserted continuity of the functions pn,m(·, t) and
pn,m(r, ·) for n ≤ m. Since for r ≤ t the transition probabilities satisfy pn,m(r, t) = 0
whenever n 6≤ m, the assertion follows. �

Now, we introduce the concept of regularity, which differs a little bit from the concept
used in Schmidt [1996], but still permits a characterization in terms of the systems
of Kolmogorov differential equations.

A counting process {Nt}t∈R+
is called regular if there exists a family {κn}n∈N k

0
of

continuous functions with κ0 : R+ → (0, ∞) and κn : (0,∞) → (0, ∞) for n 6= 0
such that

(i) for all t > 0 and n ∈ N k
0 the inequality

P [{Nt = n}] > 0

is valid,
(ii) the functions

– p0,m(·, t) : [0, t] → R+ with m ∈ N k
0 , t > 0,

– pn,m(·, t) : (0, t] → R+ with n ∈ N k
0 \{0}, m ∈ N k

0 , t > 0, and
– pn,m(r, ·) : [r,∞) → R+ with (n, r) ∈ Z, m ∈ N k

0

are continuous, and
(iii) for all t > 0 and n ∈ N k

0 all limits used below exist and the identities

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
= lim

h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
=

k∑
j=1

κ(j)
n (t)

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = lim
h ↓ 0

1

h
pn,n+ei

(t, t + h) = κ(i)
n (t)

are fulfilled for all i ∈ {1, . . . , k}, whereas κ
(i)
n is the i–th coordinate of κn.

As a consequence of (i) the transition probabilities of a regular process are unique.
The functions κn are called (transition) intensities of the counting process.



2.3 Regularity 51

They show the tendency of the counting process, being in state n, to have had a
jump of height one at the corresponding coordinate in an infinitesimal time interval
previous to time t as well as the tendency to have a jump of height one at the
corresponding coordinate in an infinitesimal time interval after time t. Condition
(iii) further means, that in any state the tendency of a jump of height one at an
arbitrary coordinate is equal to the tendency of any jump.

Characterization of Regularity

The definition of regularity handles both relevant times occurring in the transition
probabilities equally. Under the Chapman–Kolmogorov property it is sufficient to
concentrate on one side.

2.3.4 Theorem (Characterization of regularity I). Let {Nt}t∈R+
be a

multivariate counting process having the Chapman–Kolmogorov property and let
{κn}n∈N k

0
be a family of continuous functions with κ0 : R+ → (0, ∞) and

κn : (0,∞) → (0, ∞) for n 6= 0. Then the following are equivalent.

(a) {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
.

(b) For all t > 0 and n ∈ N k
0

(i) the inequality P [{Nt = n}] > 0 is valid,
(ii) limh ↓ 0 pn,n(t− h, t) = 1 holds, and
(iii) all limits used below exist and the identities

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
=

k∑
j=1

κ(j)
n (t)

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = κ(i)
n (t)

are fulfilled for all i ∈ {1, . . . , k}.
(c) For all t > 0 and n ∈ N k

0

(i) the inequality P [{Nt = n}] > 0 is valid,
(ii) the function pn,n(r, ·) : [r,∞) → R+ with (n, r) ∈ Z is left continuous,

and
(iii) all limits used below exist and the identities

lim
h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
=

k∑
j=1

κ(j)
n (t)

lim
h ↓ 0

1

h
pn,n+ei

(t, t + h) = κ(i)
n (t)

are fulfilled for all i ∈ {1, . . . , k}.
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The conditions (bii) and (cii) are not quite symmetric. The aim is to get the conti-
nuity of the transition probabilities pn,m(r, t) in r and in t, respectively. Due to the
right continuity of the paths of a counting process and the upper bounds in Lemma
2.3.1, there are different assumptions which lead to the desired continuity in r and
in t. The precise argumentation can be seen in the proof, which will be carried out
after the two other characterizations of regularity.

The concept of regularity is closely linked with the Kolmogorov systems of differ-
ential equations. There are two systems, the backward and the forward system.
As we will see, the existence of each of the systems is adjoint to the existence of a
system of integral equations and is also necessary and sufficient for regularity if the
process has the Chapman–Kolmogorov property. For a compact notation we define
the index set I(n,m) :=

{
i ∈ {1, . . . , k} : n(i) < m(i)

}
.

2.3.5 Theorem (Characterization of regularity II). Let {Nt}t∈R+
be a

multivariate counting process having the Chapman–Kolmogorov property and let
{κn}n∈N k

0
be a family of continuous functions with κ0 : R+ → (0, ∞) and

κn : (0,∞) → (0, ∞) for n 6= 0. Then the following are equivalent.
(a) {Nt}t∈R+

is regular with intensities {κn}n∈N k
0
.

(b) (backward differential equations) There exists a set of transition prob-
abilities of the process {Nt}t∈R+

such that for all t > 0, n,m ∈ N k
0 with

n ≤ m the differential equation

d

dr
pn,m(r, t) = pn,m(r, t)

k∑
i=1

κ(i)
n (r)−

∑
i∈ I(n,m)

κ(i)
n (r) pn+ei,m(r, t)

with the final conditions

pn,m(t, t) =

{
1 if n = m
0 if n 6= m

holds for r ∈ [0, t] if n = m = 0 and r ∈ (0, t] otherwise.
(c) (backward integral equations) There exists a set of transition probabilities

of the process {Nt}t∈R+
such that for all t > 0, n,m ∈ N k

0 with n ≤ m the
integral equation

pn,m(r, t) =


e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds if n = m∫ t

r

pn,n(r, s)

( ∑
i∈ I(n,m)

κ
(i)
n (s) pn+ei,m(s, t)

)
ds if n 6= m

holds for r ∈ [0, t] if n = m = 0 and r ∈ (0, t] otherwise.

2.3.6 Theorem (Characterization of regularity III). Let {Nt}t∈R+
be a

multivariate counting process having the Chapman–Kolmogorov property and let
{κn}n∈N k

0
be a family of continuous functions with κ0 : R+ → (0, ∞) and

κn : (0,∞) → (0, ∞) for n 6= 0. Then the following are equivalent.
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(a) {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
.

(b) (forward differential equations) There exists a set of transition probabili-
ties of the process {Nt}t∈R+

such that for all r ∈ R+, n,m ∈ N k
0 with n ≤ m

if r > 0 and n = m = 0 if r = 0 the differential equation

d

dt
pn,m(r, t) =

∑
i∈ I(n,m)

pn,m−ei
(r, t) κ

(i)
m−ei

(t)− pn,m(r, t)
k∑

i=1

κ(i)
m (t)

with the initial conditions

pn,m(r, r) =

{
1 if n = m
0 if n 6= m

holds for t ∈ [r,∞).
(c) (forward integral equations) There exists a set of transition probabilities

of the process {Nt}t∈R+
such that for all r ∈ R+, n,m ∈ N k

0 with n ≤ m if
r > 0 and n = m = 0 if r = 0 the integral equation

pn,m(r, t) =


e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds if n = m∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s)κ

(i)
m−ei

(s)

)
pm,m(s, t)ds if n 6= m

holds for t ∈ [r,∞).

The backward and the forward integral equations show that, for a regular process
which has the Chapman–Kolmogorov property, the intensities do uniquely define
the transition probabilities and therefore the one–dimensional distributions of the
process. We will go a little bit deeper into this point after the proof. Before the
proof we state a lemma we need therein.

2.3.7 Lemma. Let a, b ∈ R and let f : [a, b] → R be continuous.

(1) If the right derivative of f is continuous at x ∈ (a, b) then the derivative of f
at x exists and is continuous as well.

(2) Let the right derivative of f exist for all x ∈ (a, b). Furthermore, let the limit
of the right derivative of f for x ↑ b exist and let its value be c. Then the left
derivative of f exists at x = b and its value is c.

Proof:
(1): see Kannan and Krueger [1996] Theorem 3.4.6
(2): see Bourbaki [2003] p.18 Proposition 6 �

Proof: (Theorem 2.3.4, 2.3.5, and 2.3.6)
The assertions 2.3.4 (a), 2.3.5 (a), and 2.3.6 (a) are identical. So we can prove the
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theorems simultaneously according to the following scheme: 2.3.4 (a) ⇒ 2.3.4 (c)
⇒ 2.3.6 (b) ⇒ 2.3.6 (c) ⇒ 2.3.4 (b) ⇒ 2.3.5 (b) ⇒ 2.3.5 (c) ⇒ 2.3.4 (a).

2.3.4 (a) ⇒ 2.3.4 (c): obvious

2.3.4 (c) ⇒ 2.3.6 (b): Let n ∈ N k
0 and r ∈ R+ if n = 0 and r > 0 otherwise as well

as t > 0 with t ≥ r.
By the Chapman–Kolmogorov property we get with h > 0

pn,n(r, t + h)− pn,n(r, t) = pn,n(r, t)pn,n(t, t + h)− pn,n(r, t)

= − pn,n(r, t) (1− pn,n(t, t + h))

and therefore

lim
h ↓ 0

1

h

(
pn,n(r, t + h)− pn,n(r, t)

)
= − pn,n(r, t) lim

h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
= − pn,n(r, t)

k∑
i=1

κ(i)
n (t)

It follows from (ci) and Lemma 2.3.2 that pn,n(r, ·) is right continuous and as a con-
sequence of (cii) it is left continuous, too. Hence, pn,n(r, ·) is a continuous function
on [r,∞) ∩ (0,∞) with a continuous right derivative thereon. Thus, the derivative
of pn,n(r, ·) exists (see Lemma 2.3.7) and satisfies the differential equation

d

dt
pn,n(r, t) = − pn,n(r, t)

k∑
i=1

κ(i)
n (t)

with initial condition pn,n(r, r) = 1.
Since the functions p0,0(0, ·) and κ0 are continuous on [0,∞) the limit for t ↓ 0 of
d
dt

p0,0(0, t) exists. With Lemma 2.3.7 we obtain

d

dt
p0,0(0, t)

∣∣
t=0

= lim
t ↓ 0

d

dt
p0,0(0, t)

= lim
t ↓ 0

(
− p0,0(0, t)

k∑
i=1

κ
(i)
0 (t)

)

= − p0,0(0, 0)
k∑

i=1

κ(i)
n (0)

= −
k∑

i=1

κ(i)
n (0)

This proves the assertion for n = 0. In particular, we have

pn,n(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds

> 0
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Now, consider r > 0 and n,m ∈ N k
0 with n ≤ m as well as t ∈ [r,∞).

Assume h > 0. For all l ≤ m with 1′m− 1′l ≥ 2 we have

p l,m(t, t + h) ≤ 1− p l,l(t, t + h)−
k∑

i=1

p l,l+ei
(t, t + h)

which leads together with the assumption to

lim
h ↓ 0

1

h
p l,m(t, t + h) = 0

Using the Chapman–Kolmogorov property we get

pn,m(r, t + h)− pn,m(r, t) =
∑

l∈ [n,m]

pn,l(r, t) p l,m(t, t + h)− pn,m(r, t)

= − pn,m(r, t) (1− pm,m(t, t + h)) +
∑

i∈ I(n,m)

pn,m−ei
(r, t) pm−ei,m(t, t + h)

+
∑

l∈ [n,m]

1′m−1′l≥ 2

pn,l(r, t) p l,m(t, t + h)

Thus

lim
h ↓ 0

1

h
(pn,m(r, t + h)− pn,m(r, t)) = − pn,m(r, t) lim

h ↓ 0

1

h
(1− pm,m(t, t + h))

+
∑

i∈ I(n,m)

pn,m−ei
(r, t) lim

h ↓ 0

1

h
pm−ei,m(t, t + h)

+
∑

l∈ [n,m]

1′m−1′l≥ 2

pn,l(r, t) lim
h ↓ 0

1

h
p l,m(t, t + h)

= − pn,m(r, t)
k∑

i=1

κ(i)
m (t) +

∑
i∈ I(n,m)

pn,m−ei
(r, t)κ

(i)
m−ei

(t)

Hence, the right derivative of pn,m(r, ·) exists on [r,∞) and it follows that the
function pn,m(r, ·) is right continuous thereon. Furthermore, for s ∈ [r, t] Lemma
2.3.1 and the strict positivity of pn,n(r, t) for all n ∈ N k

0 and r, t > 0 with r ≤ t
together with the Chapman–Kolmogorov property yield∣∣pn,m(r, t)− pn,m(r, s)

∣∣ ≤
∑

l∈ [n,m]

(1− p l,l(s, t))

=
∑

l∈ [n,m]

(
1− p l,l(r, t)

p l,l(r, s)

)
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and thus

lim
s ↑ t

∣∣pn,m(r, t)− pn,m(r, s)
∣∣ = 0

So the function pn,m(r, ·) is also left continuous on (r,∞) and therefore continuous
on [r,∞). Since we can assume that the functions pn,m−ei

(r, ·) are continuous for
i ∈ I(n,m) (which is possible since pn,n(r, ·) is continuous and we can go up in-
ductively by looking first at m ∈ N k

0 with 1′m − 1′n = 1, then at m ∈ N k
0 with

1′m− 1′n = 2 etc.), the representation of the right derivative of pn,m(r, ·) yields its
continuity and as consequence of Lemma 2.3.7 the derivative exist and satisfies the
differential equation

d

dt
pn,m(r, t) =

∑
i∈ I(n,m)

pn,m−ei
(r, t)κ

(i)
m−ei

(t)− pn,m(r, t)
k∑

i=1

κ(i)
m (t)

with initial condition pn,m(r, r) = 0.

2.3.6 (b) ⇒ 2.3.6 (c): Let r ∈ R+ and n,m ∈ N k
0 with n ≤ m.

Firstly, we notice that pn,n(r, ·) with n = 0 if r = 0 satisfies the differential equation

d

dt
pn,n(r, t) = −pn,n(r, t)

k∑
i=1

κ(i)
n (t)

with initial condition pn,n(r, r) = 1 for t ∈ [r,∞). This differential equation has the
unique solution

pn,n(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds

for t ∈ [r,∞).
If n 6= m and r > 0, then the function pn,m(r, ·) with pn,m(r, t) = 0 for all t ∈ [r,∞)
is the unique solution of the homogeneous differential equation

d

dt
pn,m(r, t) = −pn,m(r, t)

k∑
i=1

κ(i)
m (t)

for t ∈ [r,∞) with initial condition pn,m(r, r) = 0. This implies that the inhomoge-
neous differential equation

d

dt
pn,m(r, t) =

∑
i∈ I(n,m)

pn,m−ei
(r, t)κ

(i)
m−ei

(t)− pn,m(r, t)
k∑

i=1

κ(i)
m (t)

for t ∈ [r,∞) with initial condition pn,m(r, r) = 0 has at most one solution.
We assume that the functions pn,m−ei

(r, ·), fulfilling the inhomogeneous differential
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equations, are already known for i ∈ I(n,m) (which is possible since pn,n(r, ·) is
known and we can go up inductively with the succeeding argument by looking first
at m ∈ N k

0 with 1′m − 1′n = 1, then at m ∈ N k
0 with 1′m − 1′n = 2 etc.). We

define for t ∈ [r,∞)

p̂n,m(r, t) :=

∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t)ds

and obtain

d

dt
p̂n,m(r, t) =

∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s) κ

(i)
m−ei

(s)

)
d

dt
pm,m(s, t)ds

+
∑

i∈ I(n,m)

pn,m−ei
(r, t) κ

(i)
m−ei

(t)

=

∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s) κ

(i)
m−ei

(s)

)(
− pn,m(s, t)

k∑
i=1

κ(i)
m (t)

)
ds

+
∑

i∈ I(n,m)

pn,m−ei
(r, t) κ

(i)
m−ei

(t)

= − p̂n,m(r, t)
k∑

i=1

κ(i)
m (t) +

∑
i∈ I(n,m)

pn,m−ei
(r, t)κ

(i)
m−ei

(t)

as well as p̂n,m(r, r) = 0. Thus, the function p̂n,m(r, ·) is the unique solution of the
preceding inhomogeneous differential equation and so

pn,m(r, t) =

∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t)ds

holds for all t ∈ [r,∞).

2.3.6 (c) ⇒ 2.3.4 (b): For r, t ∈ R+ with r ≤ t we have

p0,0(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
0 (s) ds

Thus, the function p0,0(r, ·) : [r,∞) → [0, 1] is continuous. Additionally, we obtain

P [{Nt = 0}] = p0,0(0, t) > 0

for t ∈ R+. So P [{Nt = 0}] > 0 holds for all t ∈ R+.
Now, let r, s, t ∈ R+ with r ≤ s ≤ t and m ∈ N k

0 . From Lemma 2.3.1 (1) we get∣∣p0,m(r, t)− p0,m(s, t)
∣∣ ≤ 1− p0,0(r, s)
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and thus the right continuity of the function p0,m(·, t) : [0, t) → [0, 1].
The next item is to show that pn,m(r, t) > 0 holds for all r, t > 0, n,m ∈ N k

0 with
r < t and n ≤ m. Firstly, we consider t > 0. Then

pn,n(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds > 0

holds for all r ∈ (0, t) and n ∈ N k
0 . Now, additionally choose n ∈ N k

0 and assume
that pn,m−ei

(r, t) > 0 already holds for i ∈ I(n,m) and r ∈ (0, t) (which is possible
since pn,n(r, t) > 0 holds for all r ∈ (0, t) and we can go up inductively with the
succeeding argument by looking first at m ∈ N

k
0 with 1′m − 1′n = 1, then at

m ∈ N k
0 with 1′m− 1′n = 2 etc.). This yields

pn,m(r, t) =

∫ t

r

( ∑
i∈ I(n,m)

pn,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t)ds > 0

for all r ∈ (0, t). As t and n have been arbitrary, pn,m(r, t) > 0 holds for all
r, t > 0, n,m ∈ N k

0 with r < t and n ≤ m.
Now, consider r, t > 0, m ∈ N k

0 with r < t and m 6= 0. Then( ∑
i∈ I(0,m)

p0,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t) > 0

holds for all s ∈ (r, t). So the function p0,m(·, t) : [0, t) → [0, 1] with

p0,m(r, t) =

∫ t

r

( ∑
i∈ I(0,m)

p0,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t)ds

for r > 0 is strictly positive and decreasing on the interval (0, t). Thus, we get as a
result of the shown right continuity of this function

P [{Nt = m}] = p0,m(0, t)

= lim
r ↓ 0

p0,m(r, t)

= lim
r ↓ 0

∫ t

r

( ∑
i∈ I(0,m)

p0,m−ei
(r, s) κ

(i)
m−ei

(s)

)
pm,m(s, t)ds

> 0

Hence, the process fulfils (bi).
Consider t > 0 and n ∈ N k

0 . Then the integral representation yields

pn,n(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds
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for r ∈ (0, t]. Therefore, the function is continuous in r and (bii) is fulfilled.
Now, consider t > 0 and n ∈ N k

0 . Then we have

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
= lim

h ↓ 0

1

h

(
1− e

−
∫ t

t−h

∑k
i=1 κ

(i)
n (s) ds

)
=

k∑
i=1

κ(i)
n (t)

and as a consequence of

pn,n+ei
(t− h, t) =

t∫
t−h

pn,n(t− h, s) κ(i)
n (s) pn+ei,n+ei

(s, t) ds

=

t∫
t−h

e
−
∫ s

t−h

∑k
i=1 κ

(i)
n (u) du

κ(i)
n (s) e−

∫ t

s

∑k
i=1 κ

(i)
n+ei

(u) du ds

= e
−
∫ t

t−h

∑k
i=1 κ

(i)
n du

t∫
t−h

e

∫ t

s

∑k
i=1

(
κ

(i)
n (u)− κ

(i)
n+ei

(u)
)

du
κ(i)

n (s) ds

for h > 0 with t− h > 0 we additionally obtain

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = e0 e0 κ(i)
n (t)

= κ(i)
n (t)

Thus, the process fulfils (biii).

2.3.4 (b) ⇒ 2.3.5 (b): Let t > 0, n,m ∈ N k
0 with n ≤ m and r ∈ (0, t].

Now consider h > 0. For all l ≥ n with 1′l− 1′n ≥ 2 we have

pn,l(r − h, r) ≤ 1− pn,n(r − h, r)−
k∑

i=1

pn,n+ei
(r − h, r)

which leads together with the assumption to

lim
h ↓ 0

1

h
pn,l(r − h, r) = 0

Using the Chapman–Kolmogorov property we get

pn,m(r, t)− pn,m(r − h, t) = pn,m(r, t)−
∑

l∈ [n,m]

pn,l(r − h, r) p l,m(r, t)

= pn,m(r, t) (1− pn,n(r − h, r))−
∑

i∈ I(n,m)

pn,n+ei
(r − h, r) pn+ei,m(r, t)

−
∑

l∈ [n,m]

1′l−1′n≥ 2

pn,l(r − h, r) p l,m(r, t)
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Thus

lim
h ↓ 0

1

h
(pn,m(r, t)− pn,m(r − h, t)) = pn,m(r, t) lim

h ↓ 0

1

h
(1− pn,n(r − h, r))

−
∑

i∈ I(n,m)

lim
h ↓ 0

1

h
pn,n+ei

(r − h, r) pn+ei,m(r, t)

−
∑

l∈ [n,m]

1′l−1′n≥ 2

lim
h ↓ 0

1

h
pn,l(r − h, r) p l,m(r, t)

= pn,m(r, t)
k∑

i=1

κ(i)
n (r)−

∑
i∈ I(n,m)

κ(i)
n (r)pn+ei,m(r, t)

The assumption also yields the continuity of pu,v(·, t) (see Corollary 2.3.3) for any
u,v ∈ N k

0 . So pn,m(·, t) is a continuous function on (0, t] with a continuous left
derivative thereon. Thus, the derivative of pn,m(·, t) exists (see Lemma 2.3.7) and
satisfies the differential equation

d

dr
pn,m(r, t) = pn,m(r, t)

k∑
i=1

κ(i)
n (r)−

∑
i∈ I(n,m)

κ(i)
n (r)pn+ei,m(r, t)

with the final condition

pn,m(t, t) =

{
1 if n = m
0 if n 6= m

As the functions p0,0(·, t) and κ0 are continuous on [0, t], the limit of d
dr

p0,0(r, t) for
r ↓ 0 exists. With Lemma 2.3.7 we obtain

d

dr
p0,0(r, t)

∣∣
r=0

= lim
r ↓ 0

d

dr
p0,0(r, t)

= lim
r ↓ 0

p0,0(r, t)
k∑

i=1

κ
(i)
0 (r)

= p0,0(0, t)
k∑

i=1

κ
(i)
0 (0)

This proves the assertion for n = m = 0.

2.3.5 (b) ⇒ 2.3.5 (c): Let t > 0 and n,m ∈ N k
0 with n ≤ m.

Firstly, we notice that pm,m(·, t) satisfies the differential equation

d

dr
pm,m(r, t) = pm,m(r, t)

k∑
i=1

κ(i)
m (r)
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for r ∈ [0, t] if m = 0 and r ∈ (0, t] otherwise with final condition pm,m(t, t) = 1.
This differential equation has a unique solution and we get

pm,m(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
m (s) ds

for r ∈ [0, t] if m = 0 and r ∈ (0, t] otherwise.
If n 6= m, then the function pn,m(·, t) with pn,m(r, t) = 0 for all r ∈ (0, t] is the
unique solution of the homogeneous differential equation

d

dr
pn,m(r, t) = pn,m(r, t)

k∑
i=1

κ(i)
n (r)

for r ∈ (0, t] with final condition pn,m(t, t) = 0. This implies that the inhomogeneous
differential equation

d

dr
pn,m(r, t) = pn,m(r, t)

k∑
i=1

κ(i)
n (r)−

∑
i∈ I(n,m)

κ(i)
n (r)pn+ei,m(r, t)

for r ∈ (0, t] with final condition pn,m(t, t) = 0 has at most one solution.
We assume that the functions pn+ei,m(·, t), fulfilling the inhomogeneous differential
equations, are already known for i ∈ I(n,m) (which is possible since pm,m(·, t) is
known and we can go down inductively with the succeeding argument by looking
first at n ∈ N k

0 with 1′m− 1′n = 1, then at n ∈ N k
0 with 1′m− 1′n = 2 etc.). We

define for r ∈ (0, t]

p̂n,m(r, t) :=

∫ t

r

pn,n(r, s)

( ∑
i∈ I(n,m)

κ(i)
n (s) pn+ei,m(s, t)

)
ds

and get

d

dr
p̂n,m(r, t) =

∫ t

r

d

dr
pn,n(r, s)

( ∑
i∈ I(n,m)

κ(i)
n (s) pn+ei,m(s, t)

)
ds

−
∑

i∈ I(n,m)

κ(i)
n (r) pn+ei,m(r, t)

=

∫ t

r

pn,n(r, s)
k∑

i=1

κ(i)
n (r)

( ∑
i∈ I(n,m)

κ(i)
n (s) pn+ei,m(s, t)

)
ds

−
∑

i∈ I(n,m)

κ(i)
n (r) pn+ei,m(r, t)

= p̂n,m(r, t)
k∑

i=1

κ(i)
n (r)−

∑
i∈ I(n,m)

κ(i)
n (r)pn+ei,m(r, t)
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as well as p̂n,m(t, t) = 0. Thus, the function p̂n,m(·, t) is the unique solution of the
preceding inhomogeneous differential equation and so

pn,m(r, t) =

∫ t

r

pn,n(r, s)

( ∑
i∈ I(n,m)

κ(i)
n (s) pn+ei,m(s, t)

)
ds

holds for r ∈ (0, t].

2.3.5 (c) ⇒ 2.3.4 (a): Consider r, t ∈ R+ with r ≤ t. We have p0,0(r, r) = 1 and
with the integral equation

p0,0(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
0 (s) ds

holds for t > r. Thus, the function p0,0(r, ·) : [r,∞) → [0, 1] is continuous.
Additionally, we obtain

P [{Nt = 0}] = p0,0(0, t) > 0

for t > 0. So P [{Nt = 0}] > 0 holds for all t ∈ R+.
Now, let r, s, t ∈ R+ with r ≤ s ≤ t and m ∈ N k

0 . From Lemma 2.3.1 (1) we get∣∣p0,m(r, t)− p0,m(s, t)
∣∣ ≤ 1− p0,0(r, s)

and thus the right continuity of the function p0,m(·, t) : [0, t) → [0, 1].
The next item is to show that pn,m(r, t) > 0 holds for all r, t > 0, n,m ∈ N k

0 with
r < t and n ≤ m. Firstly, we consider t > 0. Then

pm,m(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
m (s) ds > 0

holds for all r ∈ (0, t) and m ∈ N k
0 . Now, additionally choose m ∈ N k

0 and assume
that pn+ei,m(r, t) > 0 already holds for i ∈ I(n,m) and r ∈ (0, t) (which is possible
since pm,m(r, t) > 0 holds for all r ∈ (0, t) and we can go down inductively with
the succeeding argument by looking first at n ∈ N k

0 with 1′m − 1′n = 1, then at
n ∈ N k

0 with 1′m− 1′n = 2 etc.). This yields

pn,m(r, t) =

∫ t

r

pn,n(r, s)

( ∑
i∈ I(n,m)

κ(i)
n (s) pn+ei,m(s, t)

)
ds > 0

for all r ∈ (0, t). As t and m have been arbitrary, pn,m(r, t) > 0 holds for all
r, t > 0, n,m ∈ N k

0 with r < t and n ≤ m.
Now, consider r, t > 0, m ∈ N k

0 with r < t and m 6= 0. Then

p0,0(r, s)

( ∑
i∈ I(0,m)

κ
(i)
0 (s) p ei,m(s, t)

)
> 0
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holds for all s ∈ [r, t). So the function p0,m(·, t) : [0, t) → [0, 1] with

p0,m(r, t) =

∫ t

r

p0,0(r, s)

( ∑
i∈ I(0,m)

κ
(i)
0 (s) p ei,m(s, t)

)
ds

for r > 0 is strictly positive and decreasing on the interval (0, t). Thus, we get as a
result of the shown right continuity of this function

P [{Nt = m}] = p0,m(0, t)

= lim
r ↓ 0

p0,m(r, t)

= lim
r ↓ 0

∫ t

r

p0,0(r, s)

( ∑
i∈ I(0,m)

κ
(i)
0 (s) p ei,m(s, t)

)
ds

> 0

Therefore, the process fulfils condition (i) of regularity.
Consider t > 0 and n ∈ N k

0 . Then by the integral representation

pn,n(r, t) = e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds

holds for r ∈ [0, t] if n = 0 and r ∈ (0, t] otherwise. This function is continuous in r
and Corollary 2.3.3 yields condition (ii) of regularity.
Now, consider t > 0 and n ∈ N k

0 . Then we have

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
= lim

h ↓ 0

1

h

(
1− e

−
∫ t

t−h

∑k
i=1 κ

(i)
n (s) ds

)
=

k∑
i=1

κ(i)
n (t)

as well as

lim
h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
= lim

h ↓ 0

1

h

(
1− e−

∫ t+h

t

∑k
i=1 κ

(i)
n (s) ds

)
=

k∑
i=1

κ(i)
n (t)

Due to

pn,n+ei
(t− h, t) =

t∫
t−h

pn,n(t− h, s) κ(i)
n (s) pn+ei,n+ei

(s, t) ds

=

t∫
t−h

e
−
∫ s

t−h

∑k
i=1 κ

(i)
n (u) du

κ(i)
n (s) e−

∫ t

s

∑k
i=1 κ

(i)
n+ei

(u) du ds

= e
−
∫ t

t−h

∑k
i=1 κ

(i)
n du

t∫
t−h

e

∫ t

s

∑k
i=1

(
κ

(i)
n (u)− κ

(i)
n+ei

(u)
)

du
κ(i)

n (s) ds
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for h > 0 we additionally obtain

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = e0 e0 κ(i)
n (t)

= κ(i)
n (t)

On the other hand

pn,n+ei
(t, t + h) =

t+h∫
t

pn,n(t, s) κ(i)
n (s) pn+ei,n+ei

(s, t + h) ds

=

t+h∫
t

e−
∫ s

t

∑k
i=1 κ

(i)
n (u) du κ(i)

n (s) e−
∫ t+h

s

∑k
i=1 κ

(i)
n+ei

(u) du ds

= e−
∫ t+h

t

∑k
i=1 κ

(i)
n+ei

du
t+h∫
t

e
−
∫ s

t

∑k
i=1

(
κ

(i)
n (u)− κ

(i)
n+ei

(u)
)

du
κ(i)

n (s) ds

for h > 0 gives

lim
h ↓ 0

1

h
pn,n+ei

(t, t + h) = e0 e0 κ(i)
n (t)

= κ(i)
n (t)

This proves condition (iii) of regularity. �

The one–dimensional probabilities P [{Nt = n}] = p0,n(0, t) of a regular process
which has the Chapman–Kolmogorov property do also satisfy (forward) differential
equations. However, they are not necessary in the characterization of regularity and
also have not for sure a counterpart considering proper integral equations. Therefore,
they are stated in a corollary after the characterization.

2.3.8 Corollary. Let {Nt}t∈R+
be a multivariate counting process having the

Chapman–Kolmogorov property. If the process is regular with intensities {κn}n∈N k
0
,

then the differential equation

d

dt
P [{Nt = n}] =

k∑
i=1

P [{Nt = n− ei}] κ
(i)
n−ei

(t)− P [{Nt = n}]
k∑

i=1

κ(i)
n (t)

holds for all t > 0 and n ∈ N k
0 .

Proof: Let n ∈ N k
0 and t > 0.

Assume h > 0 such that t− h > 0. For all l with 1′n− 1′l ≥ 2 we have

p l,n(t− h, t) ≤ 1− p l,l(t− h, t)−
k∑

i=1

p l,l+ei
(t− h, t)
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which leads together with the regularity to

lim
h ↓ 0

1

h
p l,n(t− h, t) = 0

Using the Chapman–Kolmogorov property we get

p0,n(0, t)− p0,n(0, t− h) =
∑

l∈ [0,n]

p0,l(0, t− h) p l,n(t− h, t)− p0,n(0, t− h)

= − p0,n(0, t− h) (1− pn,n(t− h, t))

+
∑

i∈ I(0,n)

p0,n−ei
(0, t− h) pn−ei,n(t− h, t)

+
∑

l∈ [0,n]

1′n−1′l≥ 2

p0,l(0, t− h) p l,n(t− h, t)

Thus

lim
h ↓ 0

1

h
(p0,n(0, t)− p0,n(0, t− h)) = − lim

h ↓ 0
p0,n(0, t− h)

1

h
(1− pn,n(t− h, t))

+
∑

i∈ I(0,n)

lim
h ↓ 0

p0,n−ei
(0, t− h)

1

h
pn−ei,n(t− h, t)

+
∑

l∈ [0,n]

1′n−1′l≥ 2

lim
h ↓ 0

p0,l(0, t− h)
1

h
p l,n(t− h, t)

= − p0,n(0, t)
k∑

i=1

κ(i)
n (t) +

∑
i∈ I(0,n)

p0,n−ei
(0, t)κ

(i)
n−ei

(t)

Hence, the left derivative of p0,n(0, ·) exists on (0,∞). Under the assumption of the
corollary the function p0,m(0, ·), m ∈ N k

0 , is continuous on (0,∞), hence the left
derivative of p0,n(0, ·) is continuous thereon, and therefore (see Lemma 2.3.7) the
derivative exist and satisfies the differential equation

d

dt
P [{Nt = n}] =

d

dt
p0,n(0, t)

=
∑

i∈ I(0,n)

p0,n−ei
(0, t)κ

(i)
n−ei

(t)− p0,n(0, t)
k∑

i=1

κ(i)
n (t)

=
k∑

i=1

P [{Nt = n− ei}] κ
(i)
n−ei

(t)− P [{Nt = n}]
k∑

i=1

κ(i)
n (t)

where the first sum can be extended since P [{Nt = n}] = 0 whenever n 6≥ 0. �

The integral equations are of some interest as they allow the inductive determination
of the transition probabilities from the intensities. The direction of the recursion
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illustrates why the systems are called backward and forward. In both systems the
transition probabilities pn,n(r, t) are solely given by the intensities. Using the back-
ward system we choose m ∈ N k

0 and t > 0 and evaluate pm,m(r, t) for all r ∈ (0, t].
Then it is possible to evaluate the function pm−ei,m(·, t) for i ∈ {1, . . . , k} just in
terms of the intensities and pm,m. Thus, by reducing the first number of events in
one coordinate we can inductively obtain the transition probabilities pn,m(r, t) for
all n ≤ m. This means, going backward from the chosen number of events.

Naturally, the forward system offers another way of obtaining the transition proba-
bilities from the intensities. There we choose n ∈ N k

0 and r > 0 and first evaluate
pn,n(r, t) for t ∈ [r,∞). The next step is to compute the functions pn,n+ei

(r, ·) for
i ∈ {1, . . . , k}. Following this way we can inductively evaluate the transition proba-
bilities pn,m(r, t) just with the help of the intensities for all m ≥ n by going forward
from the chosen number of events through increasing the second number of events
in one coordinate.

Since the transition probabilities of a regular process are continuous, we also can
obtain with the help of P [{Nt = n}] = p0,n(0, t) the one–dimensional distributions
of the process just in terms of the intensities. However, the iteration necessary for
that purpose does not provide a short explicit representation of these probabilities.

Using the same ideas for a regular Markov process yields the following result.

2.3.9 Corollary. Let {Nt}t∈R+
be a multivariate counting process which is a

regular Markov process. Then the intensities {κn}n∈N k
0

do uniquely determine the
finite–dimensional probabilities of the process.

Proof: Every regular Markov process has the Chapman–Kolmogorov property and
thus {Nt}t∈R+

fulfils the Kolmogorov systems of differential equations. Therefore,
the intensities do uniquely determine the transition probabilities, in particular the
one–dimensional distributions of the process. With the help of the Markov property
we have for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and all
n0,n1, . . . ,nm ∈ N k

0 with lj :=
∑j

h=1 nh

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

m∏
j=1

P
[{

Ntj −Ntj−1
= nj

} ∣∣ {Ntj−1
= lj−1

}]
= P [{Nt1 = n1}]

m∏
j=2

p lj−1,lj(tj−1, tj)

and hence the intensities do uniquely determine the finite–dimensional distributions
of the process. �

The specified iteration for the transition probabilities also allows to check that every
transition probability of a regular process which has the Chapman–Kolmogorov
property is strictly positive.
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2.3.10 Corollary. Let {Nt}t∈R+
be a multivariate counting process which has

the Chapman–Kolmogorov property and which is regular with intensities {κn}n∈N k
0
.

Then

pn,m(r, t) > 0

holds for all r, t ∈ R+ , n,m ∈ N k
0 with r < t, n ≤ m and (n, r) ∈ Z.

2.3.11 Corollary. Let {Nt}t∈R+
be a multivariate counting process which has

the Chapman–Kolmogorov property and which is regular with intensities {κn}n∈N k
0
.

Then

lim
t ↑∞

∫ t

r

k∑
i=1

κ(i)
n (s) ds = ∞

holds for all (n, r) ∈ Z.

Proof: Let (n, r) ∈ Z and t ∈ (r,∞). Due to pn,n(r, t) = Pr,n [{Kr,t−r = 0}]
as well as Lemma 2.1.4 (the incremental process is a multivariate counting process,
too) and Lemma 2.1.2 (4) we obtain

lim
t ↑∞

pn,n(r, t) = 0

Since the transition probabilities fulfil under the assumption of the corollary the
integral equations linked to the Kolmogorov systems of differential equations, we
get

0 = lim
t ↑∞

pn,n(r, t) = lim
t ↑∞

e−
∫ t

r

∑k
i=1 κ

(i)
n (s) ds

which leads to the assertion. �

The definition of regularity contains relations between the intensities and the tran-
sition probabilities. For t > 0 every intensity κ

(i)
n (t) is defined as derivative of the

transition probability pn,n+ei
(r, t). But no relation to the transition probabilities is

specified for κ0(0). From the integral equation we get

k∑
i=1

κ
(i)
0 (0) = lim

h ↓ 0

1

h

(
1− p0,0(0, h)

)
However, to specify a relation for κ

(i)
0 (0) an additional assumption is necessary.
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2.3.12 Lemma. Let {Nt}t∈R+
be a multivariate counting process which has the

Chapman–Kolmogorov property and which is regular with intensities {κn}n∈N k
0
. Let

i ∈ {1, . . . , k}. If the limit limt ↓ 0 κei
(t) is finite, then

κ
(i)
0 (0) = lim

h ↓ 0

1

h
p0,ei

(0, h)

is valid.

Proof: Let i ∈ {1, . . . , k}. Since {Nt}t∈R+
is a counting process, the identity

p0,ei
(0, 0) = 0 is valid. Furthermore, the assumptions assure that all limits used

below exist and are finite and so the forward differential equations in connection
with Lemma 2.3.7 yield

κ
(i)
0 (0) = lim

t ↓ 0

(
p0,0(0, t) κ

(i)
0 (t)− p0,ei

(0, t)
k∑

i=1

κ(i)
ei

(t)

)

= lim
t ↓ 0

d

dt
p0,ei

(0, t)

= lim
h ↓ 0

1

h

(
p0,ei

(0, h)− p0,ei
(0, 0)

)
= lim

h ↓ 0

1

h
p0,ei

(0, h)

which proves the assertion. �

Some aspects of regularity

Our next aim is to look whether the property of being a regular process is A–stable.
Therefore, we introduce some additional notation. The transition probabilities of
the transformed process will be denoted by Ap l,u(r, t) whereas the intensities of the
transformed process (in the case of their existence) will be denoted by {Aκl}l∈N d

0
.

Before we state the appropriate theorem just a necessary lemma.

2.3.13 Lemma. Let {Nt}t∈R+
be a multivariate counting process which fulfils

condition (i) and (ii) of regularity and let A ∈ A. Then the inequality

P [{ANt = l}] > 0

holds for all t > 0 and l ∈ N d
0 and the functions

– Ap0,u(·, t) : [0, t] → R+ with u ∈ N d
0 , t > 0,

– Ap l,u(·, t) : (0, t] → R+ with l ∈ N d
0 \{0}, u ∈ N d

0 , t > 0, and
– Ap l,u(r, ·) : [r,∞) → R+ with (l, r) ∈ Z, u ∈ N d

0

are continuous. This means, that the property of fulfilling condition (i) and (ii) of
regularity is A–stable.
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Furthermore, the transition probabilities of the transformed process can be expressed
as convex combinations of sums of the original transition probabilities such that

Ap l,u(r, t) =
∑

n∈A−1({l})

P [{Nr = n}]∑
v∈A−1({l})

P [{Nr = v}]

∑
m∈A−1({u})

pn,m(r, t)

holds for all r, t ∈ R+, l,u ∈ N d
0 with (l, r) ∈ Z and r ≤ t.

Proof: Firstly, we notice that by condition (i) of regularity the inequality

P [{ANt = l}] =
∑

n∈A−1({l})

P [{Nt = n}] > 0

holds for all t > 0 and l ∈ N d
0 . Thus, {ANt}t∈R+

fulfils condition (i) of regularity.

Now let (l, r) ∈ Z, u ∈ N d
0 , and t ≥ r. Then

Ap l,u(r, t) =
P [{ANr = l} ∩ {ANt − ANr = u− l}]

P [{ANr = l}]

=
∑

n∈A−1({l})

∑
m∈A−1({u})

P [{Nr = n} ∩ {Nt −Nr = m− n}] 1

P [{ANr = l}]

=
∑

n∈A−1({l})

∑
m∈A−1({u})

P [{Nr = n}] pn,m(r, t)
1

P [{ANr = l}]

=
∑

n∈A−1({l})

P [{Nr = n}]∑
v∈A−1({l})

P [{Nr = v}]

∑
m∈A−1({u})

pn,m(r, t)

holds.
If A ∈ AP ∪ AC , then the transition probabilities Ap l,u(r, t) are finite compositions
of continuous functions regarding r as well as t and therefore {ANt}t∈R+

fulfils
condition (ii) of regularity.
If A ∈ AS, then we have to sum infinite many functions. For each t ∈ R+ and each
ε > 0 there exists n∗ ∈ N k

0 such that
∑

n∈ [n∗,∞) P [{Nt = n}] < ε. Thus, with the

almost surely increasing paths of a counting process we obtain for all s ∈ [0, t]∑
n∈ [n∗,∞)

P [{Ns = n}] = P [{Ns ≥ n∗}]

≤ P [{Nt ≥ n∗}]

< ε

Hence
∑

n∈N k
0

P [{Ns = n}] and therewith
∑

n∈A−1({l}) P [{Ns = n}] for all l ∈ N d
0

converge uniformly on [0, t]. Using condition (ii) of regularity for {Nt}t∈R+
we get
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the continuity of

P [{ANt = l}] =
∑

n∈A−1({l})

P [{Nt = n}]

for all t ∈ R+.
Now consider (l, r) ∈ Z and u ∈ N d

0 . For each r ∈ R+ and each ε > 0 there exists
n∗ ∈ N k

0 such that
∑

n∈ [n∗,∞) P [{Nr = n}] < ε. Hence∑
n∈A−1({l})
n∈ [n∗,∞)

∑
m∈A−1({u})

P [{Nr = n} ∩ {Nt = m}]

=
∑

n∈A−1({l})
n∈ [n∗,∞)

P [{Nr = n} ∩ {ANt = u}]

≤
∑

n∈A−1({l})
n∈ [n∗,∞)

P [{Nr = n}]

≤
∑

n∈ [n∗,∞)

P [{Nr = n}]

< ε

holds for all t ∈ [r,∞). Thus
∑

n∈A−1({l})
∑

m∈A−1({u}) P [{Nr = n} ∩ {Nt = m}]
converges uniformly for t ∈ [r,∞). A similar argument yields the uniform conver-
gence for r ∈ [0, t]. Using condition (ii) again for {Nt}t∈R+

gives the continuity
of

P [{ANr = l} ∩ {ANt = u}] =
∑

n∈A−1({l})

∑
m∈A−1({u})

P [{Nr = n} ∩ {Nt = m}]

=
∑

n∈A−1({l})

∑
m∈A−1({u})

P [{Nr = n}] pn,m(r, t)

regarding r and t. Altogether

Ap l,u(r, t) =
P [{ANr = l} ∩ {ANt = u}]

P [{ANt = l}]
has the desired continuity and {ANt}t∈R+

fulfils condition (ii). �

2.3.14 Theorem. Let {Nt}t∈R+
be a multivariate counting process which is reg-

ular with intensities {κn}n∈N k
0

and let A ∈ A.
(1) If A ∈ AP ∪ AC, then the process {ANt}t∈R+

is regular.

(2) If A ∈ AS and for all l ∈ N d
0∑

n∈A−1({l})

P [{Nt = n}]
d∑

j=1

κ(j)
n (t)

converges uniformly for t ∈ R+, then the process {ANt}t∈R+
is regular.
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In the case of their existence the intensities of the transformed process also have a
representation as convex combination of sums of the original intensities such that

Aκ
(i)
l (t) =

∑
n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (t)

holds for all (l, t) ∈ Z and i ∈ {1, . . . , d}.

Proof: Due to Lemma 2.3.13 {ANt}t∈R+
fulfils condition (i) and (ii) of regularity.

(1): Consider t > 0. As a consequence of the regularity, we have for all m ≥ n
with 1′m− 1′n ≥ 2 as well as for all m 6≥ n

pn,m(t, t + h) ≤ 1− pn,n(t, t + h)−
k∑

i=1

pn,n+ei
(t, t + h)

for all h > 0 and

pn,m(t− h, t) ≤ 1− pn,n(t− h, t)−
k∑

i=1

pn,n+ei
(t− h, t)

for all h > 0 with t− h > 0 and hence

lim
h ↓ 0

1

h
pn,m(t, t + h) = lim

h ↓ 0

1

h
pn,m(t− h, t) = 0 (+)

So Lemma 2.3.13 and regularity give

lim
h ↓ 0

1

h
Ap l,l+ei

(t, t + h)

= lim
h ↓ 0

1

h

∑
n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
m∈A−1({l+ei})

pn,m(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
m∈A−1({l+ei})

lim
h ↓ 0

1

h
pn,m(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

lim
h ↓ 0

1

h
pn,n+ej

(t− h, t)

=
∑

n∈A−1({l})

limh ↓ 0 P [{Nt−h = n}]∑
v∈A−1({l})

limh ↓ 0 P [{Nt−h = v}]

∑
m∈A−1({l+ei})

lim
h ↓ 0

1

h
pn,m(t− h, t)
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= lim
h ↓ 0

1

h

∑
n∈A−1({l})

P [{Nt−h = n}]∑
v∈A−1({l})

P [{Nt−h = v}]

∑
m∈A−1({l+ei})

pn,m(t− h, t)

= lim
h ↓ 0

1

h
Ap l,l+ei

(t− h, t)

for all t > 0, l ∈ N d
0 and i ∈ {1, . . . , d}, since there are only sums with finite many

elements. Therefore, we get

Aκ
(i)
l (t) = lim

h ↓ 0

1

h
Ap l,l+ei

(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (t)

and thus the continuity of Aκ
(i)
l on (0,∞). This identity also provides the existence

and finiteness of limt↓0 Aκ
(i)
0 (t) since we have

lim
t ↓ 0

Aκ
(i)
0 (t) = lim

t ↓ 0

∑
n∈A−1({0})

P [{Nt = n}]∑
v∈A−1({0})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (t)

= lim
t ↓ 0

P [{Nt = 0}]
P [{Nt = 0}]

∑
j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (t)

=
∑

j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (0)

All intensities are also finite since each sum has only finite many summands.
Again Lemma 2.3.13 and regularity, keeping also pn,m(t, t + h) = 0 for m 6≥ n and
h > 0 in mind, gives

d∑
i=1

Aκ
(i)
l (t) =

d∑
i=1

∑
n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
j ∈{1,...,k}
ei
′Aej = 1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

d∑
i=1

∑
j ∈{1,...,k}
ei
′Aej = 1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

k∑
j=1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]
lim
h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
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=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]
lim
h ↓ 0

1

h

(
1−

∑
m∈A−1({l})

pn,m(t, t + h)

)

= lim
h ↓ 0

1

h

(
1−

∑
n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]

∑
m∈A−1({l})

pn,m(t, t + h)

)

= lim
h ↓ 0

1

h

(
1− Ap l,l(t, t + h)

)
as well as

lim
h ↓ 0

1

h

(
1− Ap l,l(t− h, t)

)
= lim

h ↓ 0

1

h

(
1−

∑
n∈A−1({l})

P [{Nt−h = n}]∑
v∈A−1({l})

P [{Nt−h = v}]

∑
m∈A−1({l})

pn,m(t− h, t)

)

=
∑

n∈A−1({l})

limh ↓ 0 P [{Nt−h = n}]∑
v∈A−1({l})

limh ↓ 0 P [{Nt−h = v}]
lim
h ↓ 0

1

h

(
1−

∑
m∈A−1({l})

pn,m(t− h, t)

)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]
lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)

=
∑

n∈A−1({l})

P [{Nt = n}]∑
v∈A−1({l})

P [{Nt = v}]
lim
h ↓ 0

1

h

(
1− pn,n(t, t + h)

)

= lim
h ↓ 0

1

h

(
1− Ap l,l(t, t + h)

)
for all t > 0 and l ∈ N d

0 . Thus, {ANt}t∈R+
fulfils condition (iii) of regularity.

(2): Firstly, we notice that

d∑
i=1

∑
j ∈{1,...,k}
ei
′Aej = 1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h) =
d∑

i=1

lim
h ↓ 0

1

h
pn,n+ei

(t, t + h)

= lim
h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
−

k∑
j=d+1

lim
h ↓ 0

1

h
pn,n+ej

(t, t + h)

= lim
h ↓ 0

1

h

(
1−

∑
m∈A−1({l})

pn,m(t, t + h)

)

holds for all n ∈ A−1({l}) and t > 0 (remember (+)). Furthermore, consider l ∈ N d
0
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and i ∈ {1, . . . , d}. By assumption

∑
n∈A−1({l})

P [{Nt = n}]
d∑

j=1

κ(j)
n (t)

and ∑
n∈A−1({l})

P [{Nt = n}]
∑

j ∈{1,...,k}
ei
′Aej = 1

κ(j)
n (t) =

∑
n∈A−1({l})

P [{Nt = n}] κ(i)
n (t)

converge uniformly for t ∈ R+.
Thus, the calculation in the first part of the proof, including the permutation of
limits, can be transferred to the case A ∈ AS. �

Introducing the concept of regularity immediately raises the question which kind of
processes are regular. And without much surprise we find regular processes among
the processes already considered.

2.3.15 Lemma. Let {Nt}t∈R+
be a multivariate counting process having the

binomial property. Then there exists a family {κn}n∈N k
0

of continuous functions

with κn : (0,∞) → (0, ∞) for all n ∈ N k
0 such that for all t > 0 and n ∈ N k

0 the
following is valid.

(1) P [{Nt = n}] > 0 ,
(2) limh ↓ 0 pn,n(t− h, t) = 1, and
(3) all limits used below exist and the identities

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
=

k∑
j=1

κ(j)
n (t)

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = κ(i)
n (t)

are fulfilled for all i ∈ {1, . . . , k}.

Furthermore, the family {κn}n∈N k
0

fulfils

κ(i)
n (t) =

n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

Proof:
(1): The assertion is due to Lemma 2.2.3.
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(2): Consider r, t > 0, n,m ∈ N k
0 with r < t. Using the binomial property gives for

n ≤ m

pn,m(r, t) =

(
k∏

i=1

(
m(i)

n(i)

) (r

t

)n(i) (
1− r

t

)m(i)−n(i)
)

P [{Nt = m}]
P [{Nr = n}]

We immediately get

lim
h ↓ 0

pn,m(t− h, t) P [{Nt−h = n}]

= lim
h ↓ 0

(
k∏

i=1

(
m(i)

n(i)

) (
t− h

t

)n(i) (
h

t

)m(i)−n(i)
)

P [{Nt = m}]

=

{
P [{Nt = n}] if m = n
0 else

By Fatou’s lemma and the monotony of the paths of a counting process, this yields

P [{Nt ≥ n}] =
∑

m∈ [n,∞)

P [{Nt = m}]

=
∑

m∈ [n,∞)

lim inf
h ↓ 0

pm,m(t− h, t) P [{Nt−h = m}]

≤
∑

m∈ [n,∞)

lim inf
h ↓ 0

P [{Nt−h = m}]

≤ lim inf
h ↓ 0

∑
m∈ [n,∞)

P [{Nt−h = m}]

≤ lim inf
h ↓ 0

P [{Nt−h ≥ n}]

≤ lim sup
h ↓ 0

P [{Nt−h ≥ n}]

≤ lim sup
h ↓ 0

P [{Nt ≥ n}]

= P [{Nt ≥ n}]

Thus

P [{Nt ≥ n}] = lim
h ↓ 0

P [{Nt−h ≥ n}]

As n was arbitrary we obtain by the use of the inclusion–exclusion principle

P [{Nt = n}] = lim
h ↓ 0

P [{Nt−h = n}]

for all n ∈ N k
0 . And hence with the first part of the proof

lim
h ↓ 0

pn,n(t− h, t) = 1
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(3): Consider t > 0, n ∈ N k
0 and i ∈ {1, . . . , k}. With (1), (2), and Corollary 2.3.3

P [{Nr = l}] is continuous in r on [0,∞) for all l ∈ N k
0 . Therewith

lim
h ↓ 0

1

h
pn,n+ei

(t− h, t) = lim
h ↓ 0

1

h

((
n(i) + 1

)(t− h

t

)1′n
h

t

)
P [{Nt = n + ei}]
P [{Nt−h = n}]

=
n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

yields the existence of a set {κn}n∈N k
0

of strictly positive, finite, and continuous

functions on (0,∞) with

κ(i)
n (t) = lim

h ↓ 0

1

h
pn,n+ei

(t− h, t)

Taking an arbitrary n ∈ N k
0 , we define for m ≥ n and h > 0

fm(h) :=
1

h

(
k∏

i=1

(
m(i)

n(i)

)(
t− h

t

)n(i) (
h

t

)m(i)−n(i)
)

=
1

t

(
t− h

t

)1′n(
h

t

)1′(m−n)−1 k∏
i=1

(
m(i)

n(i)

)
Firstly, we observe that limh ↓ 0 fm(h) = 0 holds for all m with 1′m − 1′n ≥ 2.
Secondly, for every j ∈ {1, . . . , k}

fm(h)− fm+ej
(h)

=

[(
m(j)

n(j)

)
− h

t

(
m(j) + 1

n(j)

)]
1

t

(
t− h

t

)1′n(
h

t

)1′(m−n)−1∏
i6=j

(
m(i)

n(i)

)

=

[
m(j)! (m(j) + 1− n(j))! t− h (m(j) + 1)! (m(j) − n(j))!

n(j)! (m(j) − n(j))! (m(j) + 1− n(j))! t

]
· 1
t

(
t− h

t

)1′n(
h

t

)1′(m−n)−1∏
i6=j

(
m(i)

n(i)

)
≥ 0

if

h ≤ t
m(j) + 1− n(j)

m(j) + 1

This means together with the first argument, that there exists some ĥ > 0 such that

fm(h) ≤ 1
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holds for all h ∈ (0, ĥ) and all m ≥ n with 1′m− 1′n ≥ 2. So we have∑
m∈ [n,∞)

1′m−1′n≥ 2

1

h
pn,m(t− h, t)

=
∑

m∈ [n,∞)

1′m−1′n≥ 2

1

h

(
k∏

i=1

(
m(i)

n(i)

)(
t− h

t

)n(i) (
h

t

)m(i)−n(i)
)

P [{Nt = m}]
P [{Nt−h = n}]

≤ 1

t P [{Nt−h = n}]
∑

m∈ [n,∞)

1′m−1′n≥ 2

P [{Nt = m}]

≤ 1

t P [{Nt−h = n}]

for all h ∈ (0, ĥ), which means we can use dominated convergence for

lim
h ↓ 0

∑
m∈ [n,∞)\{n}

1

h
pn,m(t− h, t)

Considering m ∈ N k
0 with m ≥ n and 1′m − 1′n ≥ 2 the binomial property also

yields

lim
h ↓ 0

1

h
pn,m(t− h, t) = 0

Hence

lim
h ↓ 0

1

h

(
1− pn,n(t− h, t)

)
= lim

h ↓ 0

∑
m∈ [n,∞)\{n}

1

h
pn,m(t− h, t)

=
∑

m∈ [n,∞)\{n}

lim
h ↓ 0

1

h
pn,m(t− h, t)

=
k∑

i=1

κ(i)
n (t)

Thus (3) is shown.

For the representation of κ
(i)
n (t) see the proof of (3). �

2.3.16 Theorem. Let {Nt}t∈R+
be a multivariate counting process having the

binomial property. Then the following are equivalent.

(a) {Nt}t∈R+
is a regular process with intensities {κn}n∈N k

0
.

(b) limt ↓ 0 t−1P[{Nt = ei}] is finite for all i ∈ {1, . . . , k}.
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If {Nt}t∈R+
satisfies one and hence all preceding items, then

κ(i)
n (t) =

n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

holds for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k}.

Proof:
(a) ⇒ (b): If {Nt}t∈R+

is regular, then the intensities are with Lemma 2.3.15 (3)
of the form

κ(i)
n (t) =

n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k}. The right continuity of κ0 at 0 together

with 2.1.2 (3) yields that

lim
t ↓ 0

t−1P[{Nt = ei}] = lim
t ↓ 0

(
κ

(i)
0 (t) P [{Nt = 0}]

)
= lim

t ↓ 0
κ

(i)
0 (t) · lim

t ↓ 0
P [{Nt = 0}]

= lim
t ↓ 0

κ
(i)
0 (t)

= κ
(i)
0 (0)

is finite for all i ∈ {1, . . . , k} .

(b) ⇒ (a): If {Nt}t∈R+
has the binomial property, then it possesses the Chapman–

Kolmogorov property, too (compare Lemma 2.2.8). So to show regularity we can use
Theorem 2.3.4 and prove assertion (b). Lemma 2.3.15 yields all necessary properties
except that κ0 is only defined on (0,∞) instead ofR+. To extend κ0 continuously we

need the existence and the finiteness of the limit limt ↓ 0 κ
(i)
0 (t) for all i ∈ {1, . . . , k}.

The assumption in connection with Lemma 2.3.15 and 2.1.2 (3) yields

lim
t ↓ 0

κ
(i)
0 (t) = lim

t ↓ 0

1

t

P [{Nt = ei}]
P [{Nt = 0}]

= lim
t ↓ 0

P [{Nt = ei}]
t

· lim
t ↓ 0

1

P [{Nt = 0}]

= lim
t ↓ 0

P [{Nt = ei}]
t

< ∞

and the proof is completed. �

In Section 3.4 we will see that there exist multivariate counting processes which do
and which do not fulfil the assumption that limt ↓ 0 t−1P[{Nt = ei}] is finite for all
i ∈ {1, . . . , k}.
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Since a multivariate counting process which has the binomial property also has
the Chapman–Kolmogorov property, it fulfils the backward differential and integral
equations of Theorem 2.3.5 as well as the forward differential and integral equations
of Theorem 2.3.6 whenever limt ↓ 0 t−1P[{Nt = ei}] is finite for all i ∈ {1, . . . , k}.
Thus, for a multivariate counting process which has the binomial property and
which fulfils the additional assumption on P[{Nt = ei}], the intensities uniquely
define the transition probabilities and therefore the one–dimensional distributions
of the process.

This, of course, is also true for a process having the multinomial property. Fur-
thermore, the multinomial property assures that the intensities uniquely define the
finite–dimensional distributions of the process. So a regular process with the multi-
nomial property is defined by its intensities (compare Corollary 2.3.9).

A further consequence of Theorem 2.3.16 is a straightforward recursion of the one–
dimensional probabilities in terms of the intensities. So adding the binomial prop-
erty to an arbitrary regular multivariate counting process changes the complicated
recursion into a simple one.

Theorem 2.3.17 Let {Nt}t∈R+
be a multivariate counting process having the bino-

mial property. If {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
, then the recursion

P [{Nt = n + ei}] =
t

n(i) + 1
κ(i)

n (t) P [{Nt = n}]

with n ∈ N k
0 and i ∈ {1, . . . , k} and the starting value

P [{Nt = 0}] = e−
∫ t

0

∑k
i=1 κ

(i)
0 (s) ds

holds for all t ∈ R+.

Proof: As every process which has the binomial property has the Chapman–
Kolmogorov property (see Lemma 2.2.8), {Nt}t∈R+

fulfils the Kolmogorov systems
of differential equations (Theorems 2.3.5 and 2.3.6). This yields the starting value
of the recursion. For t > 0 the recursion itself immediately follows from Theorem
2.3.16. Since the identity P [{N0 = n}] = 0 holds for all n ∈ N k

0 \{0}, the recursion
is valid for t = 0 as well. �

Choosing t > 0 and n ∈ N k
0 and executing two steps of the recursion, we get on the

one hand

P [{Nt = n + ei + ej}] =
t

n(i) + 1
κ

(i)
n+ej

(t) P [{Nt = n + ej}]

=
t2

(n(i) + 1) (n(j) + 1)
κ

(i)
n+ej

(t) κ(j)
n (t) P [{Nt = n}]
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and on the other hand

P [{Nt = n + ei + ej}] =
t

n(j) + 1
κ

(j)
n+ei

(t) P [{Nt = n + ei}]

=
t2

(n(j) + 1) (n(i) + 1)
κ

(j)
n+ei

(t) κ(i)
n (t) P [{Nt = n}]

Since P [{Nt = n}] > 0 holds for all t > 0 and n ∈ N k
0 for multivariate counting

processes having the binomial property (see Lemma 2.2.3), we get

κ
(i)
n+ej

(t) κ(j)
n (t) = κ

(j)
n+ei

(t) κ(i)
n (t)

Illustrating this in a picture

n

n + ej

n + ei

n + ei + ej

-

-

6 6

κ
(j)
n (t)

κ
(i)
n (t)

κ
(j)
n+ei

(t)

κ
(i)
n+ej

(t)

we see that the product of the intensities along a path between two states is inde-
pendent of the choice of the path. This also remains true for any two states which
differ more than two steps from each other.

Furthermore, Theorem 2.3.16 yields a representation in terms of the intensities for
the expectation of the process at some time t. This representation suggests a possible
interpretation of the intensities of a certain class of multivariate counting processes
(the details will become clearer in Section 4.4).

2.3.18 Corollary. Let {Nt}t∈R+
be a multivariate counting process which has the

binomial property and which is regular. Then

E
[
N

(i)
t

]
= t

∑
n∈N k

0

P [{Nt = n}] κ(i)
n (t)

holds for all t > 0 and i ∈ {1, . . . , k}.

Proof: From Theorem 2.3.16 we get for arbitrary t > 0 and i ∈ {1, . . . , k}

t
∑

n∈N k
0

P [{Nt = n}] κ(i)
n (t) = t

∑
n∈N k

0

P [{Nt = n}] n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

=
∑

n∈N k
0

(
n(i) + 1

)
P [{Nt = n + ei}]

= E
[
N

(i)
t

]
and the assertion is shown. �
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Considering a univariate counting process with intensities which do not depend on
the state (thus κ

(i)
n (t) = κ(t)) Theorem 2.3.17 and Corollary 2.3.18 give a hint of

the class of processes the binomial property is closely linked to. On one hand we
get the recursion

P [{Nt = n + 1}] =
t κ(t)

n + 1
P [{Nt = n}]

and on the other hand the representation of the expected value

E [Nt] = t κ(t)

Both formulas call to mind the Poisson process.

As a last conclusion of Theorem 2.3.16, we also obtain differential equations for
the one–dimensional probabilities and the intensities were only one–dimensional
probabilities and intensities, respectively, occur.

2.3.19 Theorem. Let {Nt}t∈R+
be a multivariate counting process which has the

binomial property and which is regular. Then

d

dt
P [{Nt = n}] =

1′n

t
P [{Nt = n}]−

k∑
j=1

n(j) + 1

t
P [{Nt = n + ej}]

and

d

dt
κ(i)

n (t) = κ(i)
n (t)

(
k∑

j=1

κ(j)
n (t)− κ

(j)
n+ei

(t)

)

hold for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k}.

Proof: Consider n ∈ N k
0 and t > 0.

From Theorem 2.3.16 and the differential equation from Corollary 2.3.8 we get

d

dt
P [{Nt = n}] =

k∑
j=1

P [{Nt = n− ej}] κ
(j)
n−ej

(t)− P [{Nt = n}]
k∑

j=1

κ(j)
n (t)

=
k∑

j=1

n(j)

t
P [{Nt = n}]−

k∑
j=1

n(j) + 1

t
P [{Nt = n + ej}]

=
1′n

t
P [{Nt = n}]−

k∑
j=1

n(j) + 1

t
P [{Nt = n + ej}]
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which proves the first identity.
Again by the differential equation from Corollary 2.3.8 and Theorem 2.3.16 we obtain

d

dt
ln
(
P [{Nt = n}]

)
=

1

P [{Nt = n}]
d

dt
P [{Nt = n}]

=
k∑

j=1

P [{Nt = n− ei}]
P [{Nt = n}]

κ
(j)
n−ei

(t)−
k∑

j=1

κ(j)
n (t)

=
k∑

j=1

n(j)

t
−

k∑
j=1

κ(j)
n (t)

=
1′n

t
−

k∑
j=1

κ(j)
n (t) (∗)

Now, additionally consider i ∈ {1, . . . , k}. Then Theorem 2.3.16 yields for the
logarithmic derivative of the intensity

d

dt
ln
(
κ(i)

n (t)
)

=
d

dt
ln
(
P [{Nt = n + ei}]

)
− d

dt
ln
(
P [{Nt = n}]

)
− 1

t

Inserting (∗) in the previous formula we get

d

dt
ln
(
κ(i)

n (t)
)

=
1′(n + ei)

t
−

k∑
j=1

κ
(j)
n+ei

(t)− 1′n

t
+

k∑
j=1

κ(j)
n (t)− 1

t

=
k∑

j=1

(
κ(j)

n (t)− κ
(j)
n+ei

(t)
)

which proves the second identity. �



Chapter 3

Multivariate Mixed Poisson
Processes

3.1 The Model

In this section we will introduce multivariate mixed Poisson processes within the
class of counting processes and furthermore discuss some properties of these pro-
cesses.

A multivariate counting process {Nt}t∈R+
is said to be a multivariate mixed

Poisson process with mixing distribution U : B(Rk) → [0, 1] if U [(0, ∞)] = 1
and if

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

∫
Rk

m∏
j=1

e−1′λ (tj−tj−1) (λ (tj − tj−1))
nj

nj !
dU(λ)

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.

A short discussion about the support of the mixing distribution can be found at the
end of this section.

Before we have our usual look at stability we connect multivariate mixed Poisson
processes with the discussion in Section 2.2 by showing that multivariate mixed
Poisson processes have the multinomial property.

3.1.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Furthermore,

let U : B(Rk) → [0, 1] be a distribution with U [(0, ∞)] = 1. Then the following are
equivalent.

83
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(a) {Nt}t∈R+
is a multivariate mixed Poisson process with mixing distribution U .

(b) {Nt}t∈R+
has the multinomial property and

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

holds for all t ∈ R+ and n ∈ N k
0 .

Proof: Since∫
Rk

m∏
j=1

e−1′λ (tj−tj−1) (λ (tj − tj−1))
nj

nj !
dU(λ)

=

 k∏
i=1

n(i)!∏m
j=1 n

(i)
j !

m∏
j=1

(
tj − tj−1

tm

)n
(i)
j

 ∫
Rk

e−1′λ tm
(λ tm)n

n!
dU(λ)

for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m} with
∑m

j=1 nj = n the assertion immediately is due to the
definition of multivariate mixed Poisson processes. �

In Section 3.2 we will see that the above characterization of multivariate mixed Pois-
son processes can be fundamentally improved. But now we use this lemma to show
with the help of Section 2.2 some properties of multivariate mixed Poisson processes.
Incidentally, the first two items can also be proven right from the definition.

3.1.2 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process. Then

(1) the inequality P [{Nt = n}] > 0 holds for all t > 0 and n ∈ N k
0 ,

(2) {Nt}t∈R+
has stationary increments, and

(3) {Nt}t∈R+
is a Markov process.

3.1.3 Lemma. Let {Nt}t∈R+
be a multivariate counting process. Then

being a mixed Poisson process is A–stable. Furthermore, the mixing distribution
of {ANt}t∈R+

is given by UA.

Proof: As a consequence of Lemma 3.1.1 and Lemma 2.2.2 (the multinomial
property is A–stable) we just have to show the stability of the one–dimensional
distributions. Thus, we consider t ∈ R+ and l ∈ N d

0 and prove

P [ {ANt = l}] =

∫
Rd

e−1′λ∗t (λ∗ t)l

l!
dUA(λ∗)

=

∫
Rk

e−1′Aλ t (Aλ t)l

l!
dU(λ) (+)
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for all A ∈ A with A ∈ Rd×k.
- Let A ∈ AP . Then (+) holds obviously.
- Let A ∈ AS. Then we have with the help of monotone convergence

P [{ANt = l}] =
∑

n∈A−1({l})

P [{Nt = n}]

=
∑

n∈A−1({l})

∫
Rk

k∏
i=1

e−λi t (λi t)
n(i)

n(i)!
dU(λ)

=

∫
Rk

∑
n∈A−1({l})

k∏
i=1

e−λi t (λi t)
n(i)

n(i)!
dU(λ)

=

∫
Rk

(
d∏

i=1

e−λi t (λi t)
l(i)

l(i)!

) ∑
n∈A−1({l})

k∏
i=d+1

e−λi t (λi t)
n(i)

n(i)!
dU(λ)

=

∫
Rk

e−1′Aλ t (Aλ t)l

l!
dU(λ)

So (+) holds for A ∈ AS.
- Let A ∈ AC . Setting I(i) := {h ∈ {1, . . . , k} : ei

′Aeh = 1} (the set of coordinates
cumulated in the i–th coordinate of the transformed process) we have

∑
h∈ I(i) λh =

ei
′Aλ for all i ∈ {1, . . . , d}. Thus with the same formula manipulation at the

beginning as before, we get

P [{ANt = l}] =

∫
Rk

∑
n∈A−1({l})

k∏
i=1

e−λi t (λi t)
n(i)

n(i)!
dU(λ)

=

∫
Rk

(
d∏

i=1

e−ei
′Aλ t (ei

′Aλ t)l(i)

l(i)!

)

·
∑

n∈A−1({l})

d∏
i=1

l(i)!∏
h∈ I(i) n(h)!

∏
h∈ I(i)

(
λh

ei
′Aλ

)n(h)

dU(λ)

=

∫
Rk

e−1′Aλ t (Aλ t)l

l!
dU(λ)

Therewith (+) holds for A ∈ AC as well.
Furthermore, we have with A ∈ A (and hence A ∈ Rd×k)

1 ≥ UA [(0, ∞)] = U
[
A−1((0, ∞))

]
≥ U [(0, ∞)] = 1

So UA [(0, ∞)] = 1 holds as well and the assertion is shown. �

The product of Poisson probabilities under the integral sign raises the question of
independence of the coordinates of a multivariate mixed Poisson process. An answer
is given in the next theorem, which was inspired by Hofmann [1955].
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3.1.4 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U . Then the following are equivalent.

(a) The coordinates of {Nt}t∈R+
are independent.

(b) The identity U =
⊗k

i=1 Uei
′ is valid.

Proof:
(b)⇒ (a): We get for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm
and for all nj ∈ N k

0 , j ∈ {1, . . . ,m},

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=

∫
Rk

k∏
i=1

m∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

dU(λ)

=

∫
Rk

k∏
i=1

m∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

d(
k⊗

i=1

Uei
′) (λ)

=
k∏

i=1

∫
R

m∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

dUei
′(λi)

=
k∏

i=1

P

[
m⋂

j=1

{
N

(i)
tj −N

(i)
tj−1

= n
(i)
j

}]
Recall that ei

′ ∈ A, so the last identity is true due to Lemma 3.1.3. Thus, the
coordinates are independent.

(a) ⇒ (b): We look at certain probabilities of the process for which we treat time as
a variable. For all t0, t1 . . . , tk ∈ R+ such that 0 = t0 < t1 < . . . < tk, independence
of the coordinates yields

P

[
k⋂

i=1

{
N

(i)
ti −N

(i)
ti−1

= 0
}]

=
k∏

i=1

P
[{

N
(i)
ti −N

(i)
ti−1

= 0
}]

=
k∏

i=1

∫
R

e−λi (ti − ti−1) dUei
′(λi)

=

∫
Rk

e
−
∑k

j=1 λj (tj − tj−1) d(
k⊗

i=1

Uei
′) (λ)

and on the other hand we obtain (where e1
′−1({0}) indeed stands for the inverse

image of the set {0} under e1
′)

P

[
k⋂

i=1

{
N

(i)
ti −N

(i)
ti−1

= 0
}]
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=
∑

n1 ∈ e1
′−1({0})

· · ·
∑

nk ∈ ek
′−1({0})

P

[
k⋂

j=1

{
Ntj −Ntj−1

= nj

}]

=
∑

n1 ∈ e1
′−1({0})

· · ·
∑

nk ∈ ek
′−1({0})

∫
Rk

k∏
i=1

k∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

dU(λ)

=

∫
Rk

∑
n1 ∈ e1

′−1({0})

· · ·
∑

nk ∈ ek
′−1({0})

k∏
i=1

k∏
j=1

e−λi (tj−tj−1) (λi (tj − tj−1))
n

(i)
j

n
(i)
j !

dU(λ)

=

∫
Rk

k∏
i=1

e−λi (ti − ti−1) dU(λ)

=

∫
Rk

e
−
∑k

j=1 λj (tj − tj−1) dU(λ)

Combining these two identities we get∫
Rk

e−z′λ dU(λ) =

∫
Rk

e−z′λ d(
k⊗

i=1

Uei
′) (λ)

for all z ∈ (0, ∞). This is an identity for Laplace transforms. The uniqueness of
the Laplace transform (Kallenberg [2002] Theorem 5.3) implies U =

⊗k
i=1Uei

′ . �

The above theorem is a justification for the use of multivariate mixed Poisson
processes. Only in the case of a mixing distribution being a product of its one–
dimensional marginal distributions the coordinates are independent. Under such a
condition the theory of one–dimensional mixed Poisson processes is sufficient. In all
other situations the multivariate setting becomes necessary.

For using posterior distributions of a multivariate mixed Poisson process with mixing
distribution the next theorem provides all necessary information. For univariate
mixed Poisson processes the assertion has been stated in similar form for example
by Willmot and Sundt [1989]. To obtain a compact notation we introduce the
distribution Ut,n : B(Rk) → [0, 1] such that

Ut,n[B] :=

∫
B

e−1′λ t λn dU(λ)∫
Rk e−1′λ t λn dU(λ)

for arbitrary n ∈ N k
0 , t > 0 and a given distribution U : B(Rk) → [0, 1] with

U [R k
+] = 1. In accordance with the preceding definition we additionally define

U0,0 := U .

3.1.5 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

mixing distribution U . Then for all n ∈ N
k
0 and t > 0 the incremental process

{Kt,h}h∈R+
is a multivariate mixed Poisson process with mixing distribution Ut,n on
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the probability space (Ω,F , Pt,n).

Proof: Consider m ∈ N and h0, h1, . . . , hm ∈ R+ with 0 = h0 < h1 < . . . < hm

and nj ∈ N k
0 , j ∈ {1, . . . ,m}, as well as t > 0 and n ∈ N k

0 .
From the definition of multivariate mixed Poisson processes we get P [{Nt = n}] > 0.
Then we have

Pt,n

[
m⋂

j=1

{
Kt,hj

−Kt,hj−1
= nj

}]

= P

[
m⋂

j=1

{
(Nt+hj

−Nt)− (Nt+hj−1
−Nt) = nj

} ∣∣∣∣ {Nt = n}

]

=
P
[⋂m

j=1

{
Nt+hj

−Nt+hj−1
= nj

}
∩ {Nt = n}

]
P [{Nt = n}]

=

∫
Rk

(
m∏

j=1

e−1′λ (hj−hj−1) (λ (hj − hj−1))
nj

nj !

)
e−1′λ t (λ t)n

n!
dU(λ)

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

=

∫
Rk

m∏
j=1

e−1′λ (hj−hj−1) (λ (hj − hj−1))
nj

nj !
dUt,n(λ)

which yields the assertion. �

The above theorem does not only provide a representation of the posterior proba-
bilities, but also states that the model of multivariate mixed Poisson processes with
mixing distribution remains valid despite dependent increments regardless at which
time we start to observe the process.

Now, we turn towards the announced discussion concerning the support of the mix-
ing distribution of a multivariate mixed Poisson process. To this purpose we consider
stochastic processes which fulfil

P [ {Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

for all t ∈ R+ and n ∈ N k
0 and where U : B(Rk) → [0, 1] is a distribution with

U
[
R

k
+

]
= 1. In comparison with mixed Poisson processes we extend the support of

the mixing distribution from (0, ∞) to R k
+. The next two lemmas contain properties

of the considered processes.
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3.1.6 Lemma. Let {Nt}t∈R+
be a stochastic process in k dimensions which fulfils

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

for all t ∈ R+ and n ∈ N k
0 with U

[
R

k
+

]
= 1. Then for all A ∈ A

P [{ANt = l}] =

∫
Rd

e−1′λ t (λ t)l

l!
dUA(λ)

holds for all t ∈ R+ and l ∈ N d
0 where the mixing distribution UA : B(Rd) → [0, 1]

fulfils UA

[
R

d
+

]
= 1.

Proof: The proof of the identity for the one–dimensional distributions is com-
pletely equal to the proof of Lemma 3.1.3.
Furthermore, with A ∈ A we have

1 ≥ UA

[
R

d
+

]
= U

[
A−1(R d

+)
]
≥ U

[
R

k
+

]
= 1

Thus UA

[
R

d
+

]
= 1 holds as well. �

3.1.7 Lemma. Let {Nt}t∈R+
be a stochastic process in k dimensions which fulfils

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

for all t ∈ R+ and n ∈ N k
0 with U

[
R

k
+

]
= 1.

Then the probabilities have limits of the form

lim
t ↑∞

P [{Nt = n}] =

{
U [{0}] if n = 0

0 if n ∈ N k
0 \ {0}

Proof: Firstly, let us consider the function f : (0,∞) → R with f(λ) := e−λ t(λ t)n

with t > 0 and n ≥ 1. Then we have

f ′(λ) = e−λ tλn−1 tn (n− λ t)

f ′′(λ) = e−λ tλn−2 tn
(
(n− λ t)2 − n

)
and λ∗ := n/t is maximizer with f(λ∗) = e−n nn.
Therefore e−λ t(λ t)n ≤ e−n nn and

e−1′λ t (λ t)n

n!
=

k∏
i=1

e−λi t (λi t)
n(i)

n(i)!
≤

k∏
i=1

e−n(i) (
n(i)
)n(i)
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holds for all λ ∈ R k
+, t > 0, and n ∈ N k

0 . By dominated convergence we get

lim
t ↑∞

P [{Nt = n}] = lim
t ↑∞

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

= U [{0}] 0n

n!
+ lim

t ↑∞

∫
R k

+\{0}
e−1′λ t (λ t)n

n!
dU(λ)

= U [{0}] 0n

n!
+

∫
R k

+\{0}
lim
t ↑∞

e−1′λ t (λ t)n

n!
dU(λ)

= U [{0}] 0n

n!

which yields the assertion. �

Adding now the properties of the paths of a multivariate counting process gives the
following result.

3.1.8 Lemma. Let {Nt}t∈R+
be a multivariate counting process which fulfils

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

for all t ∈ R+ and n ∈ N k
0 with U

[
R

k
+

]
= 1. Then U [(0, ∞)] = 1 is valid.

Proof: The previous lemma in addition with Lemma 2.1.2 (4) yields the identity
U [{0}] = limt ↑∞ P [{Nt = 0}] = 0. Since for every A ∈ A the transformed process
{ANt}t∈R+

is a counting process (Lemma 2.1.1) and has mixed Poisson distributions
(Lemma 3.1.6), too, we obtain UA [{0}] = 0.
For every i ∈ {1, . . . , k} the transformation A := ei

′ satisfies A ∈ A and so we get

0 = Uei
′ [{0}] = U

[
ei
′−1

({0})
]

= U
[
×k

j=1Bj

]
with Bj :=

{
{0} j = i
R else

Therewith U
[
R

k
+ \ (0, ∞)

]
= 0 and the assertion is shown. �

Therefore, the restriction of the mixing distribution in the definition of multivariate
mixed Poisson processes has no effect at all. The paths, which almost surely increase
to infinity, do not allow the mixing distribution to have positive mass at zero in any
coordinate. When omitting this property of the paths in the definition of counting
processes we would have to add another property, like the paths which increase to
infinity have at least strictly positive probability, to assure for example that the
binomial property leads to strictly positive probabilities for all numbers of events
(P [{Nt = n}] > 0 for all t > 0 and all n ∈ N k

0 ; compare Lemma 2.2.3).
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3.2 A Characterization

In this section we will characterize multivariate mixed Poisson processes in the class
of multivariate counting processes. The preliminary lemma reads easier with a new
notation. For all n ∈ N k

0 we set

Πn(t) := P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}]

with t ∈ R k
+.

3.2.1 Lemma. Let {Nt}t∈R+
be a multivariate counting process having the ex-

tended binomial property.
Then

P [{Nt = n}] =
(−t)1

′n

n!
DnΠ0(t1)

holds for all t > 0 and n ∈ N
k
0 . Furthermore, there exists a distribution with

U [(0, ∞)] = 1 such that

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

holds for all t ∈ R+ and n ∈ N k
0 .

Proof: Consider t ∈ R k
+, t ∈ R+ with t ∈ (0, t1) and n ∈ N k

0 . The extended
binomial property yields

Πn(t) =
∑

l∈ [n,∞)

P

[
k⋂

i=1

{
N

(i)
ti = n(i)

}
∩
{

N
(i)
t −N

(i)
ti = l(i) − n(i)

}]

=
∑

l∈ [n,∞)

(
k∏

i=1

(
l(i)

n(i)

) (
ti
t

)n(i) (
1− ti

t

)l(i)−n(i)
)

Πl(t1)

In particular, we have

Π0(t) =
∑

l∈N k
0

(
k∏

i=1

(
1− ti

t

)l(i)
)

Πl(t1)

=
∑

l∈N k
0

(
k∏

i=1

(ti − t)l(i)

)
Πl(t1)

t1′l

The power series Π0(t) in k coordinates is absolutely bounded for t ∈ (0, 2t1) by∑
l∈N k

0
Πl(t1) = 1 and therefore absolutely convergent. Thus, Π0 is continuous on
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(0, 2t1) and the power series can infinitely often be differentiated in this open set
(see Dieudonné [1971] Chapter 9, especially Theorem 9.3.6.).

DnΠ0(t) =
∑

l∈ [n,∞)

(
k∏

i=1

l(i)!

(l(i) − n(i))!

(
1− ti

t

)l(i)−n(i) (
−1

t

)n(i)
)

Πl(t1)

=
n!

(−t)n

∑
l∈ [n,∞)

(
k∏

i=1

(
l(i)

n(i)

)(
ti
t

)n(i) (
1− ti

t

)l(i)−n(i)
)

Πl(t1)

and hence

Πn(t) =
(−t)n

n!
DnΠ0(t)

for all t ∈ (0, 2t1). Since t was arbitrary, the inequality

(−1)1
′n DnΠ0(t) ≥ 0

holds for all t ∈ (0, ∞) and Π0 is continuous on (0, ∞). From Lemma 2.1.2 (1) it
follows that Π0 is right continuous on R k

+ and so Π0 is continuous on R k
+.

Last but not least, we have Π0(0) = 1 since {Nt}t∈R+
is a multivariate counting

process. Therewith Π0 fulfils all conditions of the Multivariate Bernstein–Widder
theorem (1.3.1) which yields the existence of a distribution U : B(Rk) → [0, 1] with
U
[
R

k
+

]
= 1 such that

Π0(t) =

∫
Rk

e−t′λ dU(λ)

holds for all t ∈ R k
+. So we obtain Π0(t) = MU(−t) where MU is the moment

generating function of U . Since MU is finite on (−∞,0] we can use Lemma 1.2.1
to differentiate Π0 on (0, ∞). Thus, we get

Πn(t) =
(−t)n

n!
DnΠ0(t)

=
(−t)n

n!

∫
Rk

(−λ)n e−t′λ dU(λ)

=

∫
Rk

e−t′λ tn λn

n!
dU(λ)

Using P [{Nt = n}] = Πn(t1), we immediately get that

P [{Nt = n}] =
(−t)1

′n

n!
DnΠ0(t1)

and

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)
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hold for all t > 0 and n ∈ N k
0 . The last identities are also valid for t = 0 as all

path almost surely start at 0. Furthermore, Lemma 3.1.8 gives U [(0, ∞)] = 1 which
completes the proof. �

Since in the preceding proof we need as many different time variables as the pro-
cess has coordinates, it is not possible to replace the extended binomial property
by the binomial property. However, as the binomial property carries over to the
transformed process and the extended binomial property and the binomial property
are identical for a univariate counting process, we have the following corollary.

3.2.2 Corollary. Let {Nt}t∈R+
be a multivariate counting process which has the

binomial property. Let A ∈ A with A ∈ R1×k. Then there exists a distribution
U : B(R) → [0, 1] with U [(0,∞)] = 1 such that

P [{ANt = n}] =

∫
R

e−λ t (λ t)n

n!
dU(λ)

holds for all t ∈ R+ and n ∈ N0.

In particular, this applies to all coordinates {N (i)
t }t∈R+ , i ∈ {1, . . . , k}, and the sum

{1′Nt}t∈R+
of all coordinates of the multivariate counting process.

By Lemma 3.2.1, the following characterization of multivariate mixed Poisson pro-
cesses is rather obvious. In the univariate case compare Schmidt and Zocher [2003]
or for similar results Nawrotzki [1955], Lundberg [1964], and Albrecht [1981].

3.2.3 Theorem (Characterization). Let {Nt}t∈R+
be a multivariate counting

process. Then the following are equivalent

(a) {Nt}t∈R+
is a multivariate mixed Poisson process.

(b) {Nt}t∈R+
has the multinomial property.

(c) {Nt}t∈R+
has the extended binomial property and the Markov property.

(d) {Nt}t∈R+
has the binomial property and the Markov property.

Proof: The equivalence of (b), (c), and (d) is already known from Lemma 2.2.7.
Furthermore, Lemma 3.1.1 yields (a) ⇒ (b). Thus, only one implication remains to
be shown.

(c) ⇒ (a): By Lemma 3.2.1, there exists a distribution U satisfying U [(0, ∞)] = 1
such that

P [{Nt = n}] =

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

holds for all t ∈ R+ and n ∈ N k
0 . The multinomial property, which we know is

equivalent to (c), in connection with Lemma 3.1.1 yields the assertion. �
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So with a multivariate mixed Poisson process with mixing distribution we are in a
comfortable situation. Not only that due to the multinomial property we just have
to look at the one–dimensional distributions instead of the finite–dimensional distri-
butions, but also the one–dimensional distribution can be reduced to one function
which is the moment generating function of the mixing distribution.

3.2.4 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

mixing distribution U . Then

P [{Nt = n}] =
t1

′n

n!
DnMU(−t1)

holds for all t > 0 and all n ∈ N k
0 .

Proof: Since Π0(t) = MU(−t), we get with Lemma 3.2.1

P [{Nt = n}] =
(−t)1

′n

n!
DnΠ0(t1)

=
(−t)1

′n

n!

∂1′nMU(−x)

∂nx

∣∣∣∣
x = t1

=
t1

′n

n!
DnMU(−t1)

and the assertion is shown. �

Given a multivariate mixed Poisson process the function Π0, which can be expressed
by the moment generating function of the mixing distribution, provides all necessary
information for the finite–dimensional distributions. Additionally, we can also derive
binomial moments of the process from this moment generating function, as can be
seen in Section 3.3. Not only Π0 as a function of time provides all the information of
a multivariate mixed Poisson process, but also the distribution of Nt for any t > 0 is
sufficient to determine the finite–dimensional distributions of the process. We state
the next lemma to see how this works.

3.2.5 Lemma. Let U and V be two distributions with U [(0, ∞)] = V [(0, ∞)] = 1.
Let t > 0 and let∫

Rk

e−1′λ t (λ t)n

n!
dU(λ) =

∫
Rk

e−1′λ t (λ t)n

n!
dV (λ)

hold for all n ∈ N k
0 .

Then U = V .

Proof: The moment generating functions MU and MV are both finite for all s < 0.
Using Lemma 1.2.1 we see that there exists for all s < 0 a Taylor expansion around
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s and thus the moment generating functions are analytic for s < 0. Examining the
Taylor expansion in the neighbourhood B of −t1 we get for all s ∈ B

MU(s) =
∑

n∈N k
0

(s + t1)n

n!

∫
Rk

e−1′λ t λn dU(λ)

=
∑

n∈N k
0

(
1

t
(s + t1)

)n ∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

=
∑

n∈N k
0

(
1

t
(s + t1)

)n ∫
Rk

e−1′λ t (λ t)n

n!
dV (λ)

= MV (s)

Thus, MU(s) = MV (s) for all s ∈ B and the principal of analytic continuation
(see Dieudonné [1971] 9.4.2) yields MU(s) = MV (s) for all s < 0. Since U and V
have only mass on the positive cone of Rk as well as MU and MV are continuous
on (−∞,0] the identity MU(s) = MV (s) holds for all s ≤ 0, which is equivalent
to LU = LV under the assumptions of the lemma, where LU and LV denote the
Laplace transform of the measure U and V , respectively. The uniqueness of the
Laplace transform (see Kallenberg [2002] Theorem 5.3) now gives U = V . �

Now it is obvious that the mixing distribution U is determined by the distribution of
a single random vector Nt, regardless which t > 0 is taken. In the univariate setting
certain proofs can be found (see e.g. Teicher [1961] or Grandell [1976] Theorem 1.1)
that a mixing distribution is uniquely determined by the mixed Poisson distribution
received.

Since a multivariate counting process which has the binomial property and indepen-
dent increments possesses the multinomial property (see Corollary 2.2.11), it is a
multivariate mixed Poisson process with mixing distribution, too. However, to be
more precise it is a somewhat special multivariate mixed Poisson process. To make
the meaning of the word special plain we give the following definition.

A multivariate counting process {Nt}t∈R+
is said to be a multivariate Poisson

process if it is a multivariate mixed Poisson process with mixing distribution U
and there exists some x ∈ (0, ∞) such that U [{x}] = 1.

In other words, a multivariate Poisson process is a multivariate mixed Poisson pro-
cess with degenerated mixing distribution. Thus

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}]
=

k∏
i=1

m∏
j=1

e−xi (tj−tj−1) (xi (tj − tj−1))
n

(i)
j

n
(i)
j !

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for
all nj ∈ N k

0 , j ∈ {1, . . . ,m}. It is easy to see that this process has independent
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coordinates, which are univariate Poisson processes in the usual sense. Therefore,
such a process is not really a multivariate process. However, the preceding definition
shall just serve as a benchmark, for example in the next theorem.

3.2.6 Theorem. Let {Nt}t∈R+
be a multivariate counting process. Then the fol-

lowing are equivalent.

(a) {Nt}t∈R+
is a multivariate Poisson process.

(b) {Nt}t∈R+
has the binomial property and independent increments.

(c) {Nt}t∈R+
has independent coordinates and each coordinate is a Poisson

process.

Proof:
(c) ⇔ (a): The representation of the finite–dimensional distributions immediately
yields the assertion.

(a) ⇒ (b): As every multivariate Poisson process is a multivariate mixed Poisson
process, it has the binomial property. The independent increments are evident from
the representation of the finite–dimensional distributions.

(b) ⇒ (a): By Corollary 2.2.11 and Theorem 3.2.3 {Nt}t∈R+
is a multivariate

mixed Poisson process with mixing distribution U . Furthermore, the transformed
process {ANt}t∈R+

with A ∈ A also has, as a consequence of Lemma 2.2.2 and
2.2.1, the binomial property and independent increments. In particular, this holds
with A = ei

′ for every coordinate {N(i)
t }t∈R+ , i ∈ {1, . . . , k}. By Schmidt and

Zocher [2003] Theorem 3.2 every coordinate is a Poisson process then and thus for

all i ∈ {1, . . . , k} there exists some xi ∈ (0,∞) such that {N(i)
t }t∈R+ is a mixed

Poisson process with mixing distribution δxi
. Therefore

U = δx =
k⊗

i=1

δxi

is the only distribution with Uei
′ = δxi

for all i ∈ {1, . . . , k}. Hence, {Nt}t∈R+
is a

multivariate Poisson process. �

With the above theorem we can answer the question whether a multivariate mixed
Poisson process can have independent increments.

3.2.7 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U . Then the following are equivalent.

(a) {Nt}t∈R+
has independent increments.

(b) {Nt}t∈R+
is a multivariate Poisson process.
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3.3 Moments

This section will provide some properties of binomial moments, moments around
the origin, and central moments of the random vectors Nt , t ∈ R+. And again,
the moment generating function of the mixing distribution will play a leading role.
Additionally, the probability generating function will also help a lot to analyze the
moments of random vectors. The according theory has been stated in Section 1.1.

3.3.1 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

mixing distribution U . Then

g
Nt

(r) = MU(t(r− 1))

holds for all r ∈ [0,1] and t ∈ R+.

Proof: Consider r ∈ [0,1] and t ∈ R+. Then

g
Nt

(r) =
∑

n∈N k
0

rn P [{Nt = n}]

=
∑

n∈N k
0

rn

∫
Rk

e−1′λ t (λ t)n

n!
dU(λ)

=

∫
Rk

∑
n∈N k

0

e−1′λ t (λ t)n rn

n!
dU(λ)

=

∫
Rk

e−1′λ t

k∏
i=1

∑
n(i) ∈N0

(λi t ri)
n(i)

n(i)!
dU(λ)

=

∫
Rk

e−1′λ t e r′λ t dU(λ)

= MU(t(r− 1))

and the assertion is shown. �

3.3.2 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U and let A ∈ A. Then
(1) g

ANt
(r) = g

Nt
(A′r) if A ∈ AP ∪ AC.

(2) g
ANt

(r) = g
Nt

(A′r + 1− A′1) if A ∈ AS.

Proof: For arbitrary A ∈ A we get

g
ANt

(r) = MUA
(t(r− 1))

= MU(A′t(r− 1))

= MU(t(A′r− A′1))

= MU(t(A′r− A′1 + 1− 1))

= g
Nt

(A′r + 1− A′1)
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and thus (2). Since A′1 = 1 holds for A ∈ AP ∪ AC (1) follows.
Remark: Of course, in the case A′1 = 1 and aij ∈ {0, 1} the assertion can also be
proven directly from the definition of the probability generating function by using
power laws. �

Theorem 3.3.1 shows that the moment generating function of the mixing distribution
also contains information regarding the binomial moments of the multivariate mixed
Poisson process. This enables us to formulate conditions for the finiteness of such
moments we will write down in the next two theorems. But before that we state a
short lemma.

3.3.3 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mixing

distribution U . Then

E

[(
Nt

l

)]
=

t1
′l

l!

∫
Rk

λl dU(λ)

holds for all l ∈ N k
0 and t ∈ R+.

Proof: Let l ∈ N k
0 and t > 0. From Lemma 1.1.1, Theorem 3.3.1, Lemma 1.2.1,

and the monotone convergence theorem we get

E

[(
Nt

l

)]
= sup

r∈ [0,1)

1

l!
Dlg

Nt
(r)

= sup
r∈ [0,1)

1

l!

∂1′lMU(t(x− 1))

∂lx

∣∣∣∣
x=r

= sup
s∈ [−t1,0)

t1
′l

l!
DlMU(s)

=
t1

′l

l!
sup

s∈ [−t1,0)

∫
Rk

λl e s′λ dU(λ)

=
t1

′l

l!

∫
Rk

sup
s∈ [−t1,0)

λl e s′λ dU(λ)

=
t1

′l

l!

∫
Rk

λl dU(λ)

Since N0 = 0 almost surely, the assertion holds for t = 0, too. �

3.3.4 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U and l ∈ N k
0 . Then the following are equivalent.

(a) There exists a some t > 0 such that

E

[(
Nt

l

)]
< ∞

holds.



3.3 Moments 99

(b) The inequality

E

[(
Nt

l

)]
< ∞

holds for all t ∈ R+.
(c) The mixing distribution satisfies∫

Rk

λl dU(λ) < ∞

(d) For all s ∈ (−∞,0] the inequality

lim
r→ s

DlMU |(−∞,0)(r) < ∞

is valid.

If {Nt}t∈R+
satisfies one and hence all preceding items, then

E

[(
Nt

l

)]
=

t1
′l

l!
lim
r ↑0

DlMU |(−∞,0)(r)

holds for t ∈ R+.

Proof: The equivalence of (a), (b), and (c) is due to Lemma 3.3.3.

(a) ⇔ (d): With Theorem 3.3.1 g
Nt

(r) = MU(t(r − 1)) holds for r ∈ [0,1] and
t > 0. Thus, the assertion immediately follows from Lemma 1.1.3.

Moreover, we have

E

[(
Nt

l

)]
=

1

l!
lim
r ↑1

Dlg
Nt
|
[0,1)

(r)

=
1

l!
lim
r ↑ 1

r∈ [0,1)

∂1′lMU(t(x− 1))

∂lx

∣∣∣∣
x=r

=
t1

′l

l!
lim
r ↑0

DlMU |(−∞,0)(r)

for all t > 0. Since N0 = 0 almost surely, the assertion holds for t = 0, too. �

3.3.5 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U and l ∈ N k
0 . Then the following are equivalent.

(a) For all m ≤ l there exists some t > 0 such that

E
[ (

Nt

)m ]
< ∞

holds.
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(b) For all m ≤ l the inequality

E
[ (

Nt

)m ]
< ∞

holds for all t ∈ R+.
(c) For all m ≤ l the mixing distribution fulfils∫

Rk

λm dU(λ) < ∞

(d) For all m ≤ l the m–th derivative of MU |(−∞,0] is continuous on (−∞,0].

If {Nt}t∈R+
satisfies one and hence all preceding items, then

E

[(
Nt

l

)]
=

t1
′l

l!
DlMU |(−∞,0](0)

holds for t ∈ R+.

Proof: Due to Lemma 1.1.4 the equivalence of (a), (b), and (c) follows from
Theorem 3.3.4.

(b) ⇔ (d): With Theorem 3.3.1 g
Nt

(r) = MU(t(r− 1)) holds for all r ∈ [0,1] and
t > 0. Thus, Lemma 1.1.4 yields the assertion.

Since condition (c) of Theorem 3.3.4 (
∫
Rk λm dU(λ) < ∞) is fulfilled, we additionally

get with the continuity of the l–th derivative of MU

E

[(
Nt

l

)]
=

t1
′l

l!
lim
r ↑0

DlMU |(−∞,0)(r)

=
t1

′l

l!
DlMU |(−∞,0](0)

which completes the proof. �

As a consequence of Lemma 3.3.3 and the equivalence of (c) and (d) in Theorem
3.3.4 we have

lim
r ↑0

DlMU |(−∞,0)(r) =

∫
Rk

λl dU(λ)

in the case one of the terms is finite. We do not, as in Lemma 1.2.1, require the
finiteness of the moment generating function MU in a neighbourhood of 0. Under
this condition all derivatives of MU at 0 would exist and therefore all moments of
Nt would be finite. With a detour about the probability generating function of a
multivariate mixed Poisson process with mixing distribution at some time t we were
able to refine results for the moment generating function.
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With the properties derived so far, we can deduce conditions for the finiteness of
the first and second central moment of the process at some time t, which will be
illustrated in the next corollary.

3.3.6 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U and let i, j ∈ {1, . . . , k} with i 6= j.
(1) If

∫
Rk λi dU(λ) < ∞, then E[N

(i)
t ] < ∞ and

E
[
N

(i)
t

]
= t

∫
Rk

λi dU(λ)

hold for all t ∈ R+.

(2) If
∫
Rk(λi)

2 dU(λ) < ∞, then E[(N
(i)
t )2] < ∞ and

Var
[
N

(i)
t

]
= t2

∫
Rk

(
λi −

∫
Rk

xi dU(x)

)2

dU(λ) + t

∫
Rk

λi dU(λ)

hold for all t ∈ R+.
(3) If max

{∫
Rk λi λj dU(λ),

∫
Rk λi dU(λ),

∫
Rk λj dU(λ)

}
< ∞, then

E[N
(i)
t N

(j)
t ] < ∞, E[N

(i)
t ] < ∞ as well as E[N

(j)
t ] < ∞ and

Cov
[
N

(i)
t , N

(j)
t

]
= t2

∫
Rk

(
λi −

∫
Rk

xi dU(x)

)(
λj −

∫
Rk

xj dU(x)

)
dU(λ)

hold for all t ∈ R+.

Proof: Since N0 = 0 almost surely, the assertion holds for t = 0. For t > 0 we
can prove the assertions using Lemma 3.3.3 and transformation between binomial
and central moments (compare proof of Corollary 1.1.5). �

The above corollary shows a significant difference between multivariate Poisson pro-
cesses and multivariate mixed Poisson processes with a non–degenerate mixing dis-
tribution. If U is a degenerate distribution then, and only then,

Var
[
N

(i)
t

]
= t

∫
Rk

λi dU(λ) = E
[
N

(i)
t

]
for all i ∈ {1, . . . , k}. If U is degenerated we also have Cov[N

(i)
t , N

(j)
t ] = 0 for i 6= j,

which is entirely clear since the coordinates of the process are independent.

To draw a conclusion of this section we remark that the moment generating function
MU of the mixing distribution does not only determine the one–dimensional distri-
butions of the process, but also the moments of Nt with t ∈ R+. The transformed
processes {ANt}t∈R+

with A ∈ A are multivariate mixed Poisson processes with
mixing distribution UA. As a consequence of

MUA
(t) = MU(A′t)

(see Lemma 1.2.2) the function MU also contains information about one–dimensional
distributions and moments of the transformed processes.
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3.4 Regularity

We start the section by giving a representation of the transition probabilities.

3.4.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mixing

distribution U . Then

pn,m(r, t) =
(t− r)1

′(m−n)

(m− n)!

∫
Rk e−1′λ t λm dU(λ)∫
Rk e−1′λ r λn dU(λ)

=

∫
Rk

e−1′λ (t−r) (λ (t− r))m−n

(m− n)!
dUr,n(λ)

holds for all (n, r) ∈ Z and m ∈ N k
0 , t ∈ R+ with n ≤ m and r ≤ t.

Proof: Recalling pn,m(r, t) = Pr,n [{Kr,t−r = m− n}], we immediately obtain
from Theorem 3.1.5

pn,m(r, t) =

∫
Rk

e−1′λ (t−r) (λ (t− r))m−n

(m− n)!
dUr,n(λ)

=

∫
Rk

e−1′λ (t−r) (λ (t− r))m−n

(m− n)!
e−1′λ r λn dU(λ)∫

Rk

e−1′λ r λn dU(λ)

=
(t− r)1

′(m−n)

(m− n)!

∫
Rk e−1′λ t λm dU(λ)∫
Rk e−1′λ r λn dU(λ)

which yields the assertion. �

The next aim is to characterize regular processes among multivariate mixed Poisson
processes in a similar way it was done with regular processes among processes having
the binomial property.

3.4.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with mix-

ing distribution U . Then the following are equivalent.

(a) {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
.

(b) The inequality
∫
Rk 1′λ dU(λ) < ∞ is valid.

If {Nt}t∈R+
satisfies one and hence all preceding items, then

κ(i)
n (t) =

∫
Rk e−1′λ t λn+ei dU(λ)∫
Rk e−1′λ t λn dU(λ)

=

∫
Rk

λi dUt,n(λ)

holds for all (n, t) ∈ Z and i ∈ {1, . . . , k}.
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Proof: Since a multivariate mixed Poisson process has the binomial property
(Theorem 3.2.3), the assumptions of Theorem 2.3.16 are fulfilled. Thus, we can
prove the equivalence of (a) and (b) by showing that

∫
Rk 1′λ dU(λ) < ∞ if, and

only if, limt ↓ 0 t−1P[{Nt = ei}] < ∞ for all i ∈ {1, . . . , k}. By monotone convergence
we obtain for i ∈ {1, . . . , k}

lim
t ↓ 0

1

t
P [{Nt = ei}] = lim

t ↓ 0

1

t

∫
Rk

e−1′λ t λi t dU(λ)

=

∫
Rk

lim
t ↓ 0

e−1′λ t λi dU(λ)

=

∫
Rk

λi dU(λ)

and with

k∑
i=1

∫
Rk

λi dU(λ) =

∫
Rk

1′λ dU(λ)

the equivalence of (a) and (b) is proven.
Consider t > 0, n ∈ N k

0 , and i ∈ {1, . . . , k}. Using again Theorem 2.3.16 we get
under the assumption of regularity

κ(i)
n (t) =

n(i) + 1

t

P [{Nt = n + ei}]
P [{Nt = n}]

=
n(i) + 1

t

∫
Rk e−1′λ t (λ t)n+ei/(n + ei)! dU(λ)∫

Rk e−1′λ t (λ t)n/n! dU(λ)

=

∫
Rk e−1′λ t λn+ei dU(λ)∫
Rk e−1′λ t λn dU(λ)

=

∫
Rk

λi dUt,n(λ)

and additionally with monotone convergence

κ
(i)
0 (0) = lim

t ↓ 0
κ

(i)
0 (t)

= lim
t ↓ 0

∫
Rk e−1′λ t λi dU(λ)∫
Rk e−1′λ t dU(λ)

=

(∫
Rk

λi dU(λ)

)(∫
Rk

1 dU(λ)

)−1

=

∫
Rk

λi dU(λ)

and hence the representation of the intensities. �
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Thus, a multivariate mixed Poisson process with mixing distribution is regular if,
and only if, the mixing distribution and therewith the random vectors Nt , t > 0,
(see Theorem 3.3.5) have finite moments of first order. In Schmidt [1996] regularity
requires the existence of intensities on the closed positive half line and therefore a
univariate mixed Poisson process {Nt}t∈R+ has to have moments of any order to be
regular. In this study the concept of regularity is chosen in a way that regularity
is still equivalent to the Kolmogorov system of backward and forward differential
equations under the assumption of the Chapman–Kolmogorov property, but a regu-
lar multivariate mixed Poisson process may have infinite moments of order higher
than one.

A multivariate mixed Poisson process has the Chapman–Kolmogorov property and
hence fulfils the Kolmogorov system of backward and forward differential equations
whenever the process is regular.

In the univariate setting the differential equations for the intensities from Theorem
2.3.19 characterize mixed Poisson processes among regular Markov processes (see
Grandell [1997] Theorem 6.1). The proof is done via the (univariate) Bernstein–
Widder theorem. For a similar result considering multivariate counting processes it
is necessary to use the multivariate Bernstein–Widder theorem. Consequently, we
need a function depending on k time variables (remember the extended binomial
property), which is not given by the introduced intensities. It is of course possible
to define intensity functions for a multivariate process which depend on multiple
variables. However, the interpretation and the usefulness of such a definition is
doubtful so that we abstain from introducing it. Nevertheless, we are able to give
a characterization of multivariate mixed Poisson processes with mixing distribution
among regular Markov processes.

3.4.3 Theorem. Let {Nt}t∈R+
be a multivariate counting process which is a regu-

lar Markov process with intensities {κn}n∈N k
0
. Furthermore, let U : B(Rk) → [0, 1]

be a distribution with U [(0, ∞)] = 1. Then the following are equivalent.

(a) {Nt}t∈R+
is a multivariate mixed Poisson process with mixing distribution U .

(b) The transition probabilities fulfil

pn,n+ei
(t, t + h) =

∫
Rk

e−1′λ h λih dUt,n(λ)

for all t > 0, n ∈ N k
0 and all h ∈ R+.

(c) The intensities fulfil

κ(i)
n (t) =

∫
Rk

λi dUt,n(λ)

for all t > 0 and all n ∈ N k
0 .
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Proof: We prove the assertion according to the following scheme: (a) ⇒ (b) ⇒
(c) ⇒ (a).

(a) ⇒ (b): Lemma 3.4.1 yields the assertion.

(b) ⇒ (c): From the definition of the intensities we get for all t > 0 and all n ∈ N k
0

with the help of the monotone convergence theorem

κ(i)
n (t) = lim

h ↓ 0

1

h
pn,n+ei

(t, t + h)

= lim
h ↓ 0

1

h

∫
Rk

e−1′λ h λi h dUt,n(λ)

=

∫
Rk

lim
h ↓ 0

e−1′λ h λi dUt,n(λ)

=

∫
Rk

λi dUt,n(λ)

(c) ⇒ (a): The intensities of a regular Markov process do uniquely determine the
finite–dimensional distributions of the process (see Corollary 2.3.9). As intensities

fulfilling κ
(i)
n (t) =

∫
Rk λi dUt,n(λ) belong with Theorem 3.4.2 to a multivariate mixed

Poisson process with mixing distribution U the assertion follows. �

As an outcome of the claimed continuity of the intensity κ
(i)
0 and the transition prob-

abilities p0,m(·, h) at zero under regularity, we do not have to require any properties
for t = 0 in (b) and (c). Furthermore,

∫
Rk 1′λ dU(λ) is finite in any item of the

above theorem.

Without surprise we are able to express the intensities of a multivariate mixed Pois-
son process with mixing distribution in terms of the moment generating function.
This enables us to derive with ease some properties of the intensities.

3.4.4 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with mixing distribution U . Then

κ(i)
n (t) =

Dn+eiMU(−t1)

DnMU(−t1)

holds for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k}.

Proof: The assertion follows directly from Theorem 3.4.2 and Lemma 1.2.1. �

3.4.5 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with mixing distribution U . Then the intensities {κn}n∈N k
0

have the following prop-
erties.

(1) The intensities are infinitely often differentiable on (0,∞).
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(2) For all i ∈ {1, . . . , k} and all t > 0 the intensity κ
(i)
n (t) is increasing in n(i).

(3) Let i ∈ {1, . . . , k}, n ∈ N k
0 and let

∫
Rk λn+ei dU(λ) be finite. Then the limit

limt ↓ 0 κ
(i)
n (t) is finite and

lim
t ↓ 0

κ(i)
n (t) =

∫
Rk λn+ei dU(λ)∫
Rk λn dU(λ)

holds.

Proof:
(1): For t ∈ (0,∞) the intensities are a quotient of derivatives of the moment gen-
erating function MU with arguments −t1 < 0 (see Theorem 3.4.4). As the moment
generating function MU is analytic on (−∞,0), it is infinitely often differentiable
thereon. And so are the intensities on (0,∞).

(2): Assume t > 0. Setting

c := e−1′λ t λn

we get for all i ∈ {1, . . . , k} by the representation of the intensities (Theorem 3.4.2)

κ
(i)
n+ei

(t)− κ(i)
n (t) =

∫
Rk e−1′λ t λn+2ei dU(λ)∫
Rk e−1′λ t λn+ei dU(λ)

−
∫
Rk e−1′λ t λn+ei dU(λ)∫
Rk e−1′λ t λn dU(λ)

=

∫
Rk(λi)

2 c dU(λ)
∫
Rk c dU(λ)−

(∫
Rk λi c dU(λ)

)2∫
Rk λi c dU(λ)

∫
Rk c dU(λ)

Using the Cauchy–Schwarz inequality for λi

√
c and

√
c we obtain∫

Rk

(λi)
2 c dU(λ)

∫
Rk

c dU(λ)−
(∫

Rk

λi c dU(λ)

)2

≥ 0

and therefore κ
(i)
n (t) increases in n(i) for all t > 0.

(3): Since U [(0, ∞)] = 1 holds, we get for all n ∈ N k
0∫

Rk

λn dU(λ) > 0

Now, taking the limit of the intensity yields

lim
t ↓ 0

κ(i)
n (t) = lim

t ↓ 0

∫
Rk e−1′λ t λn+ei dU(λ)∫
Rk e−1′λ t λn dU(λ)

=

∫
Rk λn+ei dU(λ)∫
Rk λn dU(λ)

which is finite by assumption. �
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Considering the monotony in t, we have from Grandell [1997] that the intensities
of a univariate mixed Poisson process are decreasing in t. This assertion cannot be
carried over to the multivariate setting since there exist intensities which are strictly
increasing in t.
Example: We consider the bivariate case and set

c := e−1′λ t λn

Then we obtain from Theorem 2.3.19 and the representation of intensities

d

dt
κ(1)

n (t) = κ(1)
n (t)

(
2∑

j=1

κ(j)
n (t)− κ

(j)
n+e1

(t)

)

=

∫
R2 λ1 c dU(λ)∫
R2 c dU(λ)

(
2∑

j=1

∫
R2 λj c dU(λ)∫
R2 c dU(λ)

−
∫
R2 λj λ1 c dU(λ)∫
R2 λ1 c dU(λ)

)

=

∫
R2 λ1 c dU(λ)∫
R2 c dU(λ)

(∫
R2(λ1 + λ2) c dU(λ)∫

R2 c dU(λ)
−
∫
R2(λ1 + λ2) λ1 c dU(λ)∫

R2 λ1 c dU(λ)

)
=

∫
R2 λ1 c dU(λ)

∫
R2(λ1 + λ2) c dU(λ)−

∫
R2(λ1 + λ2) λ1 c dU(λ)

∫
R2 c dU(λ)(∫

R2 c dU(λ)
)2

Furthermore, we consider the set A := {x ∈ R2 : x1 = 0.5 (
√

(x2)2 + 8 − x2),
x2 ∈ (0,∞)} and a distribution U with U(A) = 1. This means, that the mass of U
is concentrated on the set where the equation x1 = 2/(x1 + x2) is fulfilled. Together
with this assumption we get

d

dt
κ(i)

n (t) = 2

(∫
R2(λ1 + λ2)

−1 c dU(λ)
∫
R2(λ1 + λ2) c dU(λ)−

(∫
R2 c dU(λ)

)2(∫
R2 c dU(λ)

)2
)

> 0

by the use of the Cauchy–Schwarz inequality for
√

(λ1 + λ2)−1 c and
√

(λ1 + λ2) c
which are not almost surely linear dependent. �

Our next aim is to rewrite Corollary 2.3.18 for multivariate mixed Poisson pro-
cesses. This result can be used to obtain a bound for the absolute alteration of the
probabilities P [{Nt = n}] in an infinitesimal time interval.

3.4.6 Lemma. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process with

mixing distribution U . Then∫
Rk

λi dU(λ) =
∑

n∈N k
0

P [{Nt = n}] κ(i)
n (t)

holds for all t ∈ R+ and i ∈ {1, . . . , k}.



108 Chapter 3. Multivariate Mixed Poisson Processes

Proof: The assertion follow from Corollary 2.3.18 and Corollary 3.3.6. �

3.4.7 Corollary. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with mixing distribution U . Then∣∣∣∣ d

dt
P [{Nt = n}]

∣∣∣∣ ≤
∫
Rk

1′λ dU(λ)

holds for all t > 0 and all n ∈ N k
0 .

Proof: Let t > 0 and n ∈ N k
0 .

Under the assumption of the corollary {Nt}t∈R+
has the Chapman–Kolmogorov

property and we can use Corollary 2.3.8 to obtain

d

dt
P [{Nt = n}] =

k∑
i=1

P [{Nt = n− ei}] κ
(i)
n−ei

(t)− P [{Nt = n}]
k∑

i=1

κ(i)
n (t)

By Lemma 3.4.6, this yields

d

dt
P [{Nt = n}] ≤

k∑
i=1

P [{Nt = n− ei}] κ
(i)
n−ei

(t)

≤
k∑

i=1

∫
Rk

λi dU(λ)

=

∫
Rk

1′λ dU(λ)

and

d

dt
P [{Nt = n}] ≥ −

k∑
i=1

P [{Nt = n}] κ(i)
n (t)

≥ −
k∑

i=1

∫
Rk

λi dU(λ)

= −
∫
Rk

1′λ dU(λ)

Thus, the assertion holds. �

In the next lines the concept of martingales will take the leading role. Thereto, using
the word martingale we will always refer to a martingale adapted to the natural
filtration of the underlying process {Nt}t∈R+

.
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3.4.8 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with mixing distribution U . Then
(1) {κ Nt(t)}t∈R+ is a martingale.
(2) {Nt − tκ Nt(t)}t∈R+ is a martingale.

Proof: Before we prove the two assertions we derive an equation we will need in
both proofs.
Consider s, t ∈ R+ with 0 < s ≤ t and i ∈ {1, . . . , k}. From Theorem 3.4.2 we see
that

∫
Rk λi dUt,n(λ) is finite and as a consequence of Theorem 3.1.5 (the incremental

process is a multivariate mixed Poisson process) and Corollary 3.3.6 (representation
of moments) we get

E
(
N

(i)
t −N (i)

s

∣∣Ns

)
=

∑
n∈N k

0

E
[
K

(i)
s,t−s

∣∣ {Ns = n}
]

χ{Ns =n}

=
∑

n∈N k
0

(t− s)

∫
Rk

λi dUs,n(λ) χ{Ns =n}

=
∑

n∈N k
0

(t− s) κ(i)
n (s) χ{Ns =n}

= (t− s) κ
(i)
Ns

(s) (+)

By Theorem 3.4.2 and Corollary 3.3.6 the equation is valid for s = 0, too.

(1): Now consider (n, s) ∈ Z and i ∈ {1, . . . , k}. Then by the representation of
transition probabilities and intensities for multivariate mixed Poisson processes we
have for all t > s

E
[
κ

(i)
Nt

(t)
∣∣ {Ns = n}

]
=

∑
l∈N k

0

pn,n+l(s, t) κ
(i)
n+l(t)

=
∑

l∈N k
0

(t− s)1
′l

l!

∫
Rk e−1′λ t λn+l dU(λ)∫
Rk e−1′λ s λn dU(λ)

∫
Rk e−1′λ t λn+l+ei dU(λ)∫
Rk e−1′λ t λn+l dU(λ)

=
∑

l∈N k
0

l(i) + 1

t− s

(t− s)1
′(l+ei)

(l + ei)!

∫
Rk e−1′λ t λn+l+ei dU(λ)∫
Rk e−1′λ s λn dU(λ)

=
∑

l∈N k
0

l(i) + 1

t− s
pn,n+l+ei

(s, t)

=
1

t− s
E
[
N

(i)
t −N (i)

s

∣∣ {Ns = n}
]

= κ(i)
n (s)

Thus, for all t ≥ s

E
(
κ

(i)
Nt

(t)
∣∣Ns

)
= κ

(i)
Ns

(s)
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and together with the Markov property the assertion is shown.

(2): Consider s, t ∈ R+ with s ≤ t. Then (1) and the equation shown before yield

E
(
Nt − tκNt(t)

∣∣Ns

)
= E

(
Nt −Ns

∣∣Ns

)
+ Ns − t E

(
κNt(t)

∣∣Ns

)
= (t− s) κNs(s) + Ns − tκNs(s)

= Ns − s κNs(s)

and the proof is completed. �

The first property generalizes a well known property for univariate mixed Poisson
processes (see Lundberg [1964] and Grandell [1997]) to the multivariate setting.

The second property deserves a short discussion we will restrict to the univariate
case. There are various ways of deriving a centred process which is a martingale
out of a mixed Poisson process. One of them is to use the compensator, that means
subtracting a process which has to be predictable and increasing in t from {Nt}t∈R+

.
It is well known that the compensator is unique (see e.g. Liptser and Shiryayev
[1978]). For a Poisson process {Nt}t∈R+

, where the intensities are independent
of the state and the time, the process {t κNt(t)}t∈R+ used in Theorem 3.4.8 (2)
coincides with the compensator for mixed Poisson processes derived by Grigelionis
[1998]. A general coincidence does not exist, since the process {t κNt(t)}t∈R+ does
not always fulfil the requirements of a compensator which will be illustrated within
the next lines.
Example: Using Theorems 2.3.19 and 3.4.2 we obtain

d tκn(t)

dt
= κn(t) + t κn(t) (κn(t)− κn+1(t))

= κn(t) + t (κn(t))2 − t κn(t) κn+1(t)

=

∫
R

λ dUt,n(λ) + t

(∫
R

λ dUt,n(λ)

)2

− t

∫
R

λ dUt,n(λ)

∫
R

λ dUt,n+1(λ)

=

∫
R

λ dUt,n(λ) + t

(∫
R

λ dUt,n(λ)

)2

− t

∫
R

λ2 dUt,n(λ)

Assuming U [{1}] = U [{5}] = 0.5 we get for n = 4 and t = 2

Ut,n [B] =
(
e−2 · 14 · 0.5 + e−10 · 54 · 0.5

)−1
∑

λ∈B ∩{1,5}

e−2 λ λ4 · 0.5

and thus

d tκ4(t)

dt

∣∣∣∣
t=2

≈ −2.9

and the process {t κNt(t)}t∈R+ is not increasing for all t ∈ (0,∞). �
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At the end of this section we will consider the remark after Theorem 2.3.17. For a
multivariate mixed Poisson process with mixing distribution we have

κ
(j)
n+ei

(t) κ(i)
n (t) =

∫
Rk e−1′λ t λn+ei+ej dU(λ)∫
Rk e−1′λ t λn+ei dU(λ)

∫
Rk e−1′λ t λn+ei dU(λ)∫
Rk e−1′λ t λn dU(λ)

=

∫
Rk e−1′λ t λn+ei+ej dU(λ)∫

Rk e−1′λ t λn dU(λ)

=

∫
Rk

λi λj dUt,n(λ)

Interpreting the intensity κ
(i)
n (t) as tendency to jump at time t from state n into

state n+ ei we see that the moments around the origin of the posterior distribution
Ut,n represent the tendency to jump at time t from state n into the according state.
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Chapter 4

Multivariate Mixed Poisson
Processes with Random Parameter

4.1 The Model

A mixed Poisson process can be seen as the outcome of a two–step model. First a
parameter according to the mixing distribution is chosen and then the occurrence of
the events under consideration in the unit time interval is Poisson distributed where
the expectation is exactly the chosen parameter. We can now specify the model
of multivariate mixed Poisson processes with mixing distribution by assuming that
the parameter is a realization of a random vector and additionally considering the
conditional probabilities of the process with respect to the existing random vector.
Altogether we are in the following setting.

A multivariate counting process {Nt}t∈R+
is said to be a multivariate mixed

Poisson process with parameter Λ if Λ is a random vector with PΛ[(0, ∞)] = 1
such that

P

(
m⋂

j=1

{
Ntj −Ntj−1

= nj

} ∣∣∣∣Λ
)

=
m∏

j=1

e−1′Λ (tj−tj−1) (Λ (tj − tj−1))
nj

nj !

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.

This definition is dealing with conditional probabilities, in the sense of conditional
expectation, of the finite–dimensional increments of the process. As in the case of
a univariate mixed Poisson process (see Schmidt [1996]), there exists an equivalent
definition using other properties of stochastic processes. Therefore, we introduce
the concept of conditionally independent and conditionally stationary increments.

113
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Let {Nt}t∈R+
be a multivariate counting process and Λ a random vector.

{Nt}t∈R+
is said to have conditionally independent increments with respect

to Λ if

P

(
m⋂

j=1

{
Ntj −Ntj−1

= nj

} ∣∣∣∣Λ
)

=
m∏

j=1

P
({

Ntj −Ntj−1
= nj

} ∣∣∣Λ)
holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}.
{Nt}t∈R+

is said to have conditionally stationary increments with respect to
Λ if

P

(
m⋂

j=1

{
Ntj+h −Ntj−1+h = nj

} ∣∣∣∣Λ
)

= P

(
m⋂

j=1

{
Ntj −Ntj−1

= nj

} ∣∣∣Λ)

holds for all m ∈ N and t0, t1, . . . , tm, h ∈ R+ with 0 = t0 < t1 < . . . < tm and for
all nj ∈ N k

0 , j ∈ {1, . . . ,m}.

4.1.1 Theorem. Let {Nt}t∈R+
be a multivariate counting process and Λ a random

vector. Then the following are equivalent.

(a) {Nt}t∈R+
is a multivariate mixed Poisson process with parameter Λ.

(b) {Nt}t∈R+
has conditionally independent and conditionally stationary incre-

ments with respect to Λ and

P
(
{Nt = n}

∣∣Λ) = e−1′Λ t (Λ t)n

n!

holds for all t ∈ R+ and all n ∈ N k
0 .

Proof:
(a) ⇒ (b): obvious

(b) ⇒ (a): Let m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and
nj ∈ N k

0 , j ∈ {1, . . . ,m}. Then

P

(
m⋂

j=1

{
Ntj −Ntj−1

= nj

} ∣∣∣∣Λ
)

=
m∏

j=1

P
({

Ntj −Ntj−1
= nj

} ∣∣∣Λ)
=

m∏
j=1

P
({

Ntj−tj−1
= nj

} ∣∣∣Λ)
=

m∏
j=1

e−1′Λ (tj−tj−1) (Λ (tj − tj−1))
nj

nj !

which yields the assertion. �
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In contrast with the definition of multivariate mixed Poisson processes with mixing
distribution the definition of multivariate mixed Poisson processes with parameter
uses conditional probabilities. Considering the unconditional probabilities, the next
corollary is obvious.

4.1.2 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ. Then {Nt}t∈R+
is a multivariate mixed Poisson process with mixing

distribution PΛ.

Thus, a multivariate mixed Poisson process with parameter possesses all properties
which a multivariate mixed Poisson with mixing distribution has. The opposite
implication does not seem to be true, as it is in general not possible to construct
the conditional probabilities from the unconditional ones. Therefore, the characteri-
zations of multivariate mixed Poisson processes with mixing distribution in terms
of the multinomial property (Theorem 3.2.3) cannot be carried over to multivariate
mixed Poisson processes with parameter. First, we are not able to make sure the
existence of a random vector with the distribution originating from the Bernstein–
Widder theorem on the given probability space. On the other hand, assuming
there exists such a random vector it is in general not possible to construct the
conditional probabilities in the definition of the multivariate mixed Poisson process
with parameter from the unconditional ones.

Furthermore, the characterization of multivariate mixed Poisson processes by the
multinomial property and the one–dimensional distributions (Lemma 3.1.1) does
not apply to multivariate mixed Poisson processes with parameter. Hence, to show
that the property of being a mixed Poisson process with parameter is A–stable, we
cannot employ the proof of Lemma 3.1.3. However, by applying this time Theorem
4.1.1 we still only have to use the one–dimensional distributions. Therefore first the
following lemma.

4.1.3 Lemma. Let {Nt}t∈R+
be a multivariate counting process and Λ a random

vector. Then

(1) The property of having conditionally independent increments with respect to
Λ is A–stable.

(2) The property of having conditionally stationary increments with respect to Λ
is A–stable.

Proof: The assertion can be proven by exactly the same transformations as in the
proof of Lemma 2.2.1, with the sole difference that we use conditional probabilities
instead of unconditional probabilities. �

4.1.4 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ and let A ∈ A. Then
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(1) The process {ANt}t∈R+
is a multivariate mixed Poisson process with para-

meter AΛ. This means, being a multivariate mixed Poisson process with
parameter is A–stable.

(2) The identity

P
(
{ANt = l}

∣∣AΛ
)

= P
(
{ANt = l}

∣∣Λ)
holds for all t ∈ R+ and l ∈ N d

0 .

Proof: Consider t ∈ R+ and l ∈ N d
0 .

Firstly, we prove that

E
(
χ{ANt = l}

∣∣Λ) = e−1′AΛ t (AΛ t)l

l!
(+)

holds for all A ∈ A with A ∈ Rd×k.
- Let A ∈ AP . Then (+) holds obviously.
- Let A ∈ AS. Then we have with the help of monotone convergence for conditional
expectation

E
(
χ{ANt = l}

∣∣Λ) = E

 ∑
n∈A−1({l})

χ{Nt =n}

∣∣∣∣Λ


=
∑

n∈A−1({l})

P
(
{Nt = n}

∣∣Λ)
=

∑
n∈A−1({l})

k∏
i=1

e−Λi t (Λi t)
n(i)

n(i)!

=

(
d∏

i=1

e−Λi t (Λi t)
l(i)

l(i)!

) ∑
n∈A−1({l})

k∏
i=d+1

e−Λi t (Λi t)
n(i)

n(i)!

= e−1′AΛ t (AΛ t)l

l!

So (+) holds for A ∈ AS.
- Let A ∈ AC . Setting I(i) := {h ∈ {1, . . . , k} : ei

′Aeh = 1} (the set of co-
ordinates cumulated in the i–th coordinate of the transformed process) we have∑

h∈ I(i) λh = ei
′Aλ for all i ∈ {1, . . . , d}. Thus, with the same formula manipula-

tion at the beginning as before, we get

E
(
χ{ANt = l}

∣∣Λ) =
∑

n∈A−1({l})

k∏
i=1

e−Λi t (Λi t)
n(i)

n(i)!

=

(
d∏

i=1

e−ei
′AΛ t (ei

′AΛ t)l(i)

l(i)!

)
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·
∑

n∈A−1({l})

d∏
i=1

l(i)!∏
h∈ I(i) n(h)!

∏
h∈ I(i)

(
Λh

ei
′AΛ

)n(h)

= e−1′AΛ t (AΛ t)l

l!

Therefore, (+) holds for all A ∈ A. We are now going to prove the assertions.

(1): Equation (+) gives

P
(
{ANt = l}

∣∣AΛ
)

= E
(
E
(
χ{ANt = l}

∣∣Λ) ∣∣∣AΛ
)

= E

(
e−1′AΛ t (AΛ t)l

l!

∣∣∣AΛ

)
= e−1′AΛ t (AΛ t)l

l!

Now, Theorem 4.1.1 in connection with Lemma 4.1.3 yields the assertion.

(2): Using equation (+) and (1) we get

P
(
{ANt = l}

∣∣AΛ
)

= e−1′AΛ t (AΛ t)l

l!

= E
(
χ{ANt = l}

∣∣Λ)
= P

(
{ANt = l}

∣∣Λ)
and the assertion is shown. �

In short terms, the lemma states that the parameter of the transformed process is
the transformed parameter. For example {N (i)

t }t∈R+ is a univariate mixed Pois-
son process with parameter Λi. In addition, conditioning of a transformed process
with respect to the parameter is equal to conditioning with respect to transformed
parameter.

Since a multivariate mixed Poisson process with parameter is a multivariate mixed
Poisson process with mixing distribution we transfer some results of Chapter 3. We
can of course use PΛ instead of U and so the results will probable be easier to
remember. The first assertion under consideration is Theorem 3.1.4.

4.1.5 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ. Then the coordinates of {Nt}t∈R+
are independent if, and only if, the

coordinates of Λ are independent.

A proof, which refers to multivariate mixed Poisson processes with parameter, of
the preceding theorem can be found in Zocher [2003]. The following theorem is
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stated in this reference, too. It considers conditional independence with respect to
the parameter which is now possible because of the parameter Λ introduced in the
model.

4.1.6 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ. Then the coordinates of {Nt}t∈R+
are conditionally independent with

respect to Λ.

Proof: Using the transformation A = ei
′ with AΛ = Λi and Lemma 4.1.4 we get

P

(
m⋂

j=1

{
Ntj −Ntj−1

= nj

} ∣∣∣Λ) =
k∏

i=1

m∏
j=1

e−Λi (tj−tj−1) (Λi (tj − tj−1))
n

(i)
j

n
(i)
j !

=
k∏

i=1

P

(
m⋂

j=1

{
N

(i)
tj −N

(i)
tj−1

= n
(i)
j

} ∣∣∣Λi

)

=
k∏

i=1

P

(
m⋂

j=1

{
N

(i)
tj −N

(i)
tj−1

= n
(i)
j

} ∣∣∣Λ)

for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and for all
nj ∈ N k

0 , j ∈ {1, . . . ,m}. �

As in Chapter 3, the moment generating function plays a leading role. In order to
keep the notation simple we use the symbol MΛ instead of MPΛ

for the moment
generating function (of the distribution) of the random vector Λ. From the results
of Chapter 3 we have

P [{Nt = n}] =
t1

′n

n!
DnMΛ(−t1)

for n ∈ N k
0 and t > 0 as well as MAΛ(t) = MΛ(A′t) for t ∈ Rd. So the one–

dimensional probabilities, which are the relevant ones because of the multinomial
property, are determined by the moment generating function of Λ. In addition, the
one–dimensional probabilities of the transformed processes are also determined by
the moment generating function MΛ. The application of this function with regard
to the moments of the process is discussed in the succeeding section.

4.2 Moments

In Section 3.3 we have derived necessary and sufficient conditions for the finiteness
of the binomial moments, moments around the origin, and central moments of the
multivariate mixed Poisson process with mixing distribution. An important tool
was the probability generating function. In the case of a multivariate mixed Poisson
process with parameter the results look as follows.
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4.2.1 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

parameter Λ. Then

g
Nt

(r) = MΛ(t(r− 1))

holds for all r ∈ [0,1] and t ∈ R+. The binomial moment of Nt fulfils

E

[(
Nt

l

)]
=

t1
′l

l!
E
[
Λl
]

for all l ∈ N k
0 and t ∈ R+.

4.2.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ and l ∈ N k
0 . Then the following are equivalent.

(a) There exists some t > 0 such that

E

[(
Nt

l

)]
< ∞

holds.
(b) The inequality

E

[(
Nt

l

)]
< ∞

holds for all t ∈ R+.
(c) The parameter satisfies

E
[
Λl
]

< ∞

(d) For all s ∈ (−∞,0] the inequality

lim
r→ s

DlMΛ|(−∞,0)(r) < ∞

is valid.

If {Nt}t∈R+
satisfies one and hence all preceding items, then

E

[(
Nt

l

)]
=

t1
′l

l!
lim
r ↑0

DlMΛ|(−∞,0)(r)

holds for t ∈ R+.

4.2.3 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ and l ∈ N k
0 . Then the following are equivalent.
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(a) For all m ≤ l there exists some t > 0 such that

E
[ (

Nt

)m ]
< ∞

holds.
(b) For all m ≤ l the inequality

E
[ (

Nt

)m ]
< ∞

holds for all t ∈ R+.
(c) For all m ≤ l the parameter fulfils

E
[
Λl
]

< ∞

(d) For all m ≤ l the m–th derivative of MΛ|(−∞,0] is continuous on (−∞,0].

If {Nt}t∈R+
satisfies one and hence all preceding items, then

E

[(
Nt

l

)]
=

t1
′l

l!
DlMΛ|(−∞,0](0)

holds for t ∈ R+.

As an outcome of this theorems it is possible to formulate explicit formulas for the
first and second central moment of Nt as in Corollary 3.3.6. However, this results
can also be obtained in compact manner by the use of conditional expectation. This
approach enables us to specify the covariance of Nt and Nt+h additionally (compare
also Zocher [2003]).

4.2.4 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ.

(1) If Λ has a finite moment of first order, then

E [Nt] = t E [Λ]

holds for all t ∈ R+.
(2) If Λ has a finite moment of second order, then

Cov [Nt,Nt+h] = t Diag (E [Λ]) + t (t + h) Var [Λ]

holds for all t, h ∈ R+.
(3) If Λ has a finite moment of second order and Var[Λi] > 0 and Var[Λl] > 0 for

i, l ∈ {1, . . . , k} with i 6= l, then

lim
t ↑∞

%
(
N

(i)
t , N

(l)
t

)
= % (Λi, Λl)

holds. The absolute value of the coefficient of correlation % (N
(i)
t , N

(l)
t ) is in-

creasing on (0,∞) additionally.
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Proof: Before we prove the assertions, we make some preliminary remarks. With
Lemma 4.1.4 we have (Λ is almost surely finite) E(N

(i)
t |Λ) = E(N

(i)
t |Λi) = tΛi and

Var(N
(i)
t |Λ) = Var(N

(i)
t |Λi) = tΛi for all t ∈ R+. Conditional independence of the

coordinates with respect to Λ (Theorem 4.1.6) yields Cov(N
(i)
t , N

(l)
t |Λ) = 0 for i 6= l.

Altogether, we have

E
(
Nt

∣∣Λ) = tΛ Var
(
Nt

∣∣Λ) = t Diag (Λ)

(1): With Λ also Nt has a finite moment of first order for all t ∈ R+ (Theorem
4.2.3), so the theory of conditional expectation yields

E [Nt] = E
[
E
(
Nt

∣∣Λ)] = E [tΛ] = t E [Λ]

(2): If Λ has a finite moment of second order, then it has a finite moment of first
order, too. Thus, Nt has finite moments of first and second order for all t ∈ R+

(Theorem 4.2.3) and so covariance decomposition yields

Cov [Nt,Nt+h] = E
[
Cov

(
Nt,Nt+h

∣∣Λ)]+ Cov
[
E
(
Nt

∣∣Λ) , E
(
Nt+h

∣∣Λ)]
= E

[
Cov

(
Nt,Nt+h −Nt

∣∣Λ)]+ E
[
Var

(
Nt

∣∣Λ)]+ Cov [tΛ, (t + h)Λ]

= E [ t Diag (Λ)] + t (t + h) Var [Λ]

= t Diag (E [Λ]) + t (t + h) Var [Λ]

where Cov
(
Nt,Nt+h −Nt

∣∣Λ) = 0 since {Nt}t∈R+
has conditionally independent

increments with respect to Λ.

(3): Since

%
(
N

(i)
t , N

(l)
t

)
=

Cov
[
N

(i)
t , N

(l)
t

]
√

Var
[
N

(i)
t

]
Var

[
N

(l)
t

]
=

t2 Cov [Λi, Λl]√
t4 Var [Λi] Var [Λl] + t3 (Var [Λi] E [Λl] + E [Λi] Var [Λl]) + t2 E [Λi] E [Λl]

=
Cov [Λi, Λl]√

Var [Λi] Var [Λl] + t−1 (Var [Λi] E [Λl] + E [Λi] Var [Λl]) + t−2 E [Λi] E [Λl]

we have

lim
t ↑∞

%
(
N

(i)
t , N

(l)
t

)
= % (Λi, Λl)

and the absolute value of the correlation coefficient is increasing on (0,∞). �
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The above theorem gives an easy way to check the correlation of two coordinates of
the process. For i 6= l we have

Cov[N (i)
s , N

(l)
t ] = s t Cov[Λi , Λl]

for all s, t > 0. Therefore, it is only necessary to check the correlation between
two coordinates for one time pair to get the correlation of the coordinates of the
parameter, which is significant for the correlation of the coordinates for all time
pairs. Let us also have a look at the correlation of two increments of the process.

4.2.5 Corollary. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

parameter Λ. If Λ has a finite moment of second order, then

Cov [Nt2 −Nt1 ,Nt4 −Nt3 ] = (t2 − t1) (t4 − t3) Var [Λ]

+
(
(t2 − t3)

+ − (t2 − t4)
+
)
Diag (E [Λ])

holds for all t1, t2, t3, t4 ∈ R+ with t1 < t2 , t3 < t4 and t1 ≤ t3.

Proof: Consider t1, t2, t3, t4 ∈ R+ with t1 < t2 , t3 < t4 and t1 ≤ t3. From
Theorem 4.2.4 (2) we get

Cov [Nt2 −Nt1 ,Nt4 −Nt3 ]

= Cov [Nt2 ,Nt4 ]− Cov [Nt2 ,Nt3 ]− Cov [Nt1 ,Nt4 ] + Cov [Nt1 ,Nt3 ]

= min{t2, t4}Diag (E [Λ]) + t2 t4 Var [Λ]

− min{t2, t3}Diag (E [Λ])− t2 t3 Var [Λ]

− min{t1, t4}Diag (E [Λ])− t1 t4 Var [Λ]

+ min{t1, t3}Diag (E [Λ]) + t1 t3 Var [Λ]

= Var [Λ] (t2 t4 − t2 t3 − t1 t4 + t1 t3)

+ Diag (E [Λ]) (min{t2, t4} −min{t2, t3} −min{t1, t4}+ min{t1, t3})

= Var [Λ] (t2 − t1) (t4 − t3)

+ Diag (E [Λ]) (min{0, t4 − t2} −min{0, t3 − t2})

= Var [Λ] (t2 − t1) (t4 − t3)

+ Diag (E [Λ])
(
(t2 − t3)

+ − (t2 − t4)
+
)

and the assertion is shown. �

Only in the case when the two intervals are not disjoint the term (t2−t3)
+−(t2−t4)

+

does not vanish. Then it takes the value of the length of the common interval.
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4.3 Posterior Distributions

Introducing the random parameter in the model of multivariate mixed Poisson pro-
cesses in this chapter offers the possibility to study the conditional distribution of
the parameter with respect to the process at some time t. Since the roles of the
random vectors are permuted regarding the definition of the process we can speak
of posterior distributions. The consideration of posterior distributions is linked to
the question of stability of the model over time, which is also answered in this sec-
tion. To avoid double execution, we first determine the common distribution of the
finite–dimensional increments and the parameter.

4.3.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ. Then

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}
∩ {Λ ∈ B}

]

=

∫
Ω

χ {Λ∈B}

m∏
j=1

e−1′Λ (tj−tj−1) (Λ (tj − tj−1))
nj

nj !
dP

holds for all m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and
nj ∈ N k

0 , j ∈ {1, . . . ,m}, and all B ∈ B(Rk).

Proof: Consider m ∈ N and t0, t1, . . . , tm ∈ R+ with 0 = t0 < t1 < . . . < tm and
nj ∈ N k

0 , j ∈ {1, . . . ,m}, as well as B ∈ B(Rk). Then we obtain

P

[
m⋂

j=1

{
Ntj −Ntj−1

= nj

}
∩ {Λ ∈ B}

]

=

∫
Ω

χ∩m
j=1{Ntj−Ntj−1 =nj}∩ {Λ∈B} dP

=

∫
Ω

E
(
χ∩m

j=1{Ntj−Ntj−1 =nj}∩ {Λ∈B}

∣∣∣Λ) dP

=

∫
Ω

χ {Λ∈B} E
(
χ∩m

j=1{Ntj−Ntj−1 =nj}

∣∣∣Λ) dP

=

∫
Ω

χ {Λ∈B}

m∏
j=1

e−1′Λ (tj−tj−1) (Λ (tj − tj−1))
nj

nj !
dP

which yields the assertion. �

4.3.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ. Then for all t > 0 and all n ∈ N k
0 the process {Kt,h}h∈R+

is a multivariate

mixed Poisson process with parameter Λ on the probability space (Ω,F , Pt,n).
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Proof: Consider t > 0 and n ∈ N k
0 .

Our first aim is to show that the identity∫
Ω

(f ◦Λ) dPt,n =

∫
Ω

(f ◦Λ)
(
e−1′Λ t (Λ t)n/n!

)
dP

P [{Nt = n}]

holds for all measurable functions f : Rk → R+. Therefore, we consider B ∈ B(Rk)
and f := χB. Then f ◦Λ = χΛ−1(B) and Lemma 4.3.1 yield∫

Ω

(f ◦Λ) dPt,n =

∫
Ω

χΛ−1(B) dPt,n

= Pt,n

[
Λ−1(B)

]
=

P [Λ−1(B) ∩ {Nt = n}]
P [{Nt = n}]

=

∫
Ω

χΛ−1(B)

(
e−1′Λ t (Λ t)n/n!

)
dP

P [{Nt = n}]

=

∫
Ω

(f ◦Λ)
(
e−1′Λ t (Λ t)n/n!

)
dP

P [{Nt = n}]

Now, the representation of positive measurable functions in terms of simple functions
and the monotone convergence theorem gives the desired identity.
For the rest of the proof we additionally consider m ∈ N and h0, h1, . . . , hm ∈ R+

with 0 = h0 < h1 < . . . < hm and nj ∈ N k
0 , j ∈ {1, . . . ,m} as well as an arbitrary

C ∈ σ(Λ). Lemma 4.3.1 and the previous identity yield∫
C

χ∩m
j=1{Kt,hj

−Kt,hj−1
=nj} dPt,n

=

∫
Ω

χ∩m
j=1{Nt+hj

−Nt+hj−1
=nj}∩C dPt,n

= Pt,n

[
m⋂

j=1

{
Nt+hj

−Nt+hj−1
= nj

}
∩ C

]

=
P
[⋂m

j=1

{
Nt+hj

−Nt+hj−1
= nj

}
∩ {Nt = n} ∩ C

]
P [{Nt = n}]

=

∫
Ω

χC

(
m∏

j=1

e−1′Λ (hj−hj−1) (Λ (hj − hj−1))
nj

nj !

)
e−1′Λ t (Λ t)n

n!
dP

P [{Nt = n}]

=

∫
Ω

χC

m∏
j=1

e−1′Λ (hj−hj−1) (Λ (hj − hj−1))
nj

nj !
dPt,n
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=

∫
C

m∏
j=1

e−1′Λ (hj−hj−1) (Λ (hj − hj−1))
nj

nj !
dPt,n

Thus, we have

Pt,n

(
m⋂

j=1

{
Kt,hj

−Kt,hj−1
= nj

} ∣∣∣Λ) =
m∏

j=1

e−1′Λ (hj−hj−1) (Λ (hj − hj−1))
nj

nj !

which proves the assertion. �

Hence, introducing the parameter in the model of multivariate mixed Poisson pro-
cesses does not change the stability of the model over time in the sense that it is
not important at which time we start to observe the process. While the model stays
unchanged the distribution alters of course. Thus, the next theorem is concerned
with the conditional distribution of the parameter with respect to the process at
some time t.

4.3.3 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

parameter Λ. Then

PΛ |Nt(B) =

∫
B

e−1′λ t λNt dPΛ(λ)∫
Rk e−1′λ t λNt dPΛ(λ)

holds for all t > 0 and all B ∈ B(Rk).

Proof: We consider t > 0 and B ∈ B(Rk) as well as n ∈ N k
0 . By Lemma 4.3.1

we have

P ({Λ ∈ B} ∩ {Nt = n}) =

∫
Ω

χ {Λ∈B} e−1′Λ t (Λ t)n

n!
dP

=

∫
Λ−1(B)

e−1′Λ t (Λ t)n

n!
dP

=

∫
B

e−1′λ t (λ t)n

n!
dPΛ(λ)

and therefore

PΛ |Nt=n[B] = P
[
{Λ ∈ B}

∣∣ {Nt = n}
]

=

∫
B

e−1′λ t (λ t)n/n! dPΛ(λ)∫
Rk e−1′λ t (λ t)n/n! dPΛ(λ)

and hence

PΛ |Nt(B) =
∑

n∈N k
0

PΛ |Nt=n[B] χ{Nt=n}
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=
∑

n∈N k
0

∫
B

e−1′λ t λn dPΛ(λ)∫
Rk e−1′λ t λn dPΛ(λ)

χ{Nt=n}

=
∑

n∈N k
0

∫
B

e−1′λ t λNt dPΛ(λ)∫
Rk e−1′λ t λNt dPΛ(λ)

χ{Nt=n}

=

∫
B

e−1′λ t λNt dPΛ(λ)∫
Rk e−1′λ t λNt dPΛ(λ)

which completes the proof. �

4.4 Regularity

As in the sections before, we will use the fact that a multivariate mixed Poisson
process with parameter Λ is a multivariate mixed Poisson process with mixing dis-
tribution PΛ and thus most of the results of Section 3.4 are valid for the process
considered in this chapter. Nevertheless, we carry over some results where the in-
troduction of the parameter shortens the presentation or makes the essential point
of the assertion more obvious.

4.4.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ. Then

pn,m(r, t) =
(t− r)1

′(m−n)

(m− n)!

∫
Rk e−1′λ t λm dPΛ(λ)∫
Rk e−1′λ r λn dPΛ(λ)

= E

[
e−1′Λ (t−r) (Λ (t− r))m−n

(m− n)!

∣∣∣ {Nt = n}
]

holds for all (n, r) ∈ Z and m ∈ N k
0 , t ∈ R+ with n ≤ m and r ≤ t.

4.4.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ. Then the following are equivalent.

(a) {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
.

(b) The condition E [Λ] < ∞ is valid.

If {Nt}t∈R+
satisfies one and hence all preceding items, then

κ(i)
n (t) =

∫
Rk e−1′λ t λn+ei dPΛ(λ)∫
Rk e−1′λ t λn dPΛ(λ)

= E
[
Λi

∣∣ {Nt = n}
]

holds for all (n, t) ∈ Z and i ∈ {1, . . . , k}.
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We can see that a multivariate mixed Poisson process with parameter is regular
if, and only if, the parameter has a finite first order moment. The identity of the
fraction of integrals with the conditional expected value holds due to Theorem 4.3.3.
In combination with the characterization of regularity we get the following somewhat
strange looking identity.

4.4.3 Corollary. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with parameter Λ. Then the identity

E
[
e−1′Λh

∣∣ {Nt = n}
]

= e−
∫ t+h

t
E
[
1′Λ

∣∣ {Ns = n}
]

ds

holds for all (n, t) ∈ Z and h ∈ R+.

Proof: Consider (n, t) ∈ Z and h ∈ R+. Then we obtain with the help of
Theorem 2.3.6

E
[
e−1′Λh

∣∣ {Nt = n}
]

= pn,n(t, t + h)

= e−
∫ t+h

t

∑k
i=1 κ

(i)
n (s) ds

= e−
∫ t+h

t

∑k
i=1 E

[
Λi

∣∣ {Nt = n}
]

ds

= e−
∫ t+h

t
E
[
1′Λ

∣∣ {Ns = n}
]

ds

which yields the assertion. �

Similar to the characterization in terms of the multinomial property (Theorem 3.2.3),
the definition of multivariate mixed Poisson processes by means of conditional prob-
abilities does not seem to allow to carry over the characterization in terms of the
representation of transition probabilities and intensities (Theorem 3.4.3) from the
setting with mixing distribution to the setting with parameter. Therefore, we turn
to the properties of the intensities.

4.4.4 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with parameter Λ. Then the intensities {κn}n∈N k
0

have the following properties.
(1) The identity

κ(i)
n (t) =

Dn+eiMΛ(−t1)

DnMΛ(−t1)

holds for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k}.

(2) Let i ∈ {1, . . . , k}, n ∈ N k
0 and let E

[
Λn+ei

]
be finite. Then limt ↓ 0 κ

(i)
n (t) is

finite and

lim
t ↓ 0

κ(i)
n (t) =

E
[
Λn+ei

]
E [Λn]

is valid.
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4.4.5 Corollary. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with parameter Λ. Then the inequality∣∣∣∣ d

dt
P [{Nt = n}]

∣∣∣∣ ≤ E [1′Λ]

holds for all t > 0 and all n ∈ N k
0 .

The transfer of Lemma 3.4.6 into the setting of mixed Poisson processes with para-
meter would have brought up a meaningless equation. The intensities are conditional
expected values of coordinates of the parameter and thus the product of the inten-
sities with the probabilities is in fact the expected value of the coordinates of the
parameter.



Chapter 5

Multivariate Mixed Poisson
Processes with Special Parameter

5.1 The Model

As we have seen in the previous chapter, the multivariate mixed Poisson process with
parameter Λ is determined by the moment generating function MΛ of the parameter.
So the distribution of the random vector Λ ∈ (0, ∞) controls the process. To make
the parameter more practical we introduce a new assumption. Therefore, we define
two new random vectors, where one of them is indeed a random variable.

Λ := 1′Λ is the sum of all coordinates of the parameter. Since 1′ ∈ A Lemma
4.1.4 says that Λ is the parameter of the mixed Poisson process {Nt}t∈R+

with
Nt := 1′Nt , t ∈ R+. Furthermore we have Λ ∈ (0,∞).

Θ := (1′Λ)−1Λ is the vector of the proportions of the coordinates of the parameter
with respect to the sum of all coordinates. Defining ∆k := {x ∈ Rk : x > 0, 1′x = 1}
as the strictly positive boundary of the k–dimensional unit simplex we have Θ ∈ ∆k.
It is obvious that Λ = ΛΘ holds. Hence, the assumption we will study in this chapter
is as follows.

A multivariate mixed Poisson process fulfils the independence assumption (I)
if Λ and Θ are independent.

There are various reasons for studying this assumption. First, it seems easier to
handle two random vectors with support (0,∞) and ∆k than the whole parameter
with support (0, ∞). Second, Λ is the parameter of the process which is the sum
of all coordinates. So assuming one has applied a univariate mixed Poisson process
with parameter and now wants to divide the events of interest in certain sub–events
one can still use the information about Λ which is already available. In this case
one just has to concentrate on the random vector Θ and its properties. This will
become clearer later in this chapter, but a first hint is given by Theorem 5.1.2. Last

129
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but not least, the independence assumption, which also can be transferred to the
setting of multivariate mixed Poisson processes with mixing distribution, is valid in
most of models of multivariate mixed Poisson distributions and multivariate mixed
Poisson processes discussed in literature so far, as in Bates and Neyman [1952],
Picard [1976], Nelson [1984], and Walhin and Paris [2001], to name a few.

For a possible choice of distributions for Λ and Θ and the therewith following con-
sequences for the multivariate mixed Poisson process see Zocher [2002] and Zocher
[2005].

Naturally, we first look at how the transformation works according to the indepen-
dence assumption

5.1.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I) and let A ∈ AP ∪AC. Then {ANt}t∈R+
is a multivariate

mixed Poisson process with parameter AΛ which fulfils (I).

Proof: Due to Lemma 4.1.4 (1) the transformed process is again a multivariate
mixed Poisson process which has parameter AΛ =: Λ∗. Since 1′A = 1′ holds for
A ∈ AP ∪ AC we get

Λ∗ := 1′Λ∗ = 1′AΛ = 1′Λ = Λ

as well as

Θ∗ := (1′Λ∗)
−1

Λ∗ = Λ−1 AΛΘ = AΘ

A is measurable and thus the independence of Λ∗ and Θ∗ follows. �

For A ∈ AS the transformed process {ANt}t∈R+
need not to fulfil the independence

assumption whenever {Nt}t∈R+
fulfills (I).

Example: Consider a three–dimensional random vector Λ taking values according
to the subsequent table. The derived variables Λ and Θ are listed, too.

Λ1 Λ2 Λ3 Λ Θ1 Θ2 Θ3 P

1 1 2 4 1/4 1/4 1/2 0.2
1 2 1 4 1/4 1/2 1/4 0.2
2 1 1 4 1/2 1/4 1/4 0.6

We can see that Λ is constant and thus Λ and Θ are independent. Considering
furthermore A ∈ AS with

A :=

(
1 0 0
0 1 0

)
and denoting Λ∗ := AΛ we obtain
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Λ∗
1 Λ∗

2 Λ∗ Θ∗
1 Θ∗

2 P

1 1 2 1/2 1/2 0.2
1 2 3 1/3 2/3 0.2
2 1 3 2/3 1/3 0.6

and therefore

P [{Λ∗ = 3} ∩ {Θ∗
1 = 2/3}] = 0.6 6= 0.48 = P [{Λ∗ = 3}] P [{Θ∗

1 = 2/3}]

Hence, Λ∗ and Θ∗ are not independent. �

A multivariate mixed Poisson process with parameter has the multinomial property,
so that just the one–dimensional distributions are relevant.

5.1.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

parameter Λ which fulfils (I). Then

P [{Nt = n}] =

∫
R

e−λ t (λ t)1
′n

(1′n)!
dPΛ(λ)

∫
Rk

(
1′n

n

)
θn dPΘ(θ)

holds for all t ∈ R+ and all n ∈ N k
0 . Furthermore

P [{Nt = n}] =

∫
R

e−λ t (λ t)n

n!
dPΛ(λ)

P
[
{Nt = n}

∣∣ {Nt = n}
]

=

∫
Rk

(
n

n

)
θn dPΘ(θ)

hold for all n ∈ N0 and n ∈ N k
0 with 1′n = n.

Proof: Consider t ∈ R+ and n ∈ N k
0 . Then we have

P [{Nt = n}] = E

[
e−1′Λ t (Λ t)n

n!

]
= E

[
e−1′ΛΘ t (ΛΘ t)n

n!

]
= E

[
e−Λ t (Λ t)1

′n Θn

n!

]
= E

[
e−Λ t (Λ t)1

′n

(1′n)!

]
E

[(
1′n

n

)
Θn

]
=

∫
R

e−λ t (λ t)1
′n

(1′n)!
dPΛ(λ)

∫
Rk

(
1′n

n

)
θn dPΘ(θ)

Since 1′ ∈ A, the process {Nt}t∈R+
is a univariate mixed Poisson process with

parameter Λ (see Lemma 4.1.4) and

P [{Nt = n}] =

∫
R

e−λ t (λ t)n

n!
dPΛ(λ)
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is valid for all n ∈ N0. As a result of the decomposition

P [{Nt = n}] = P [{Nt = n}] P
[
{Nt = n}

∣∣ {Nt = n}
]

for n ∈ N0 and n ∈ N k
0 with 1′n = n, the last equation follows immediately. �

Theorem 5.1.2 shows the different influence of the two random vectors Λ and Θ. The
parameter Λ drives the process of the sum of all coordinates and determines how
many events occur in a certain time interval, whereas PΘ is the mixing distribution
of a mixed multinomial distribution which divides the events into the given classes
(coordinates). It is very remarkable that this distribution is independent of time
t. So we can in fact think of a three step model. First, the mixed Poisson process
{Nt}t∈R+

determines the number of events that occur until a certain time t. By
the mixed multinomial distribution the events are then divided onto the coordinates.
And as the last step, the multinomial property provides the distribution of the events
into the past periods. The first step depends on Λ, the second one is influenced by
Θ, whereas the last step is independent of the parameter.

5.2 Moments

Keeping in mind that the moment generating function MΛ does not only determine
the one–dimensional distributions of the multivariate mixed Poisson process, but
also the binomial moments, it would be desirable if this function can be decomposed
under the independence assumption (I) into the moment generating functions of Λ
and Θ. As a consequence of (I) we have (see also Theorem 1.2.3)

M(Λ,Θ)(t, s) = MΛ(t) MΘ(s)

with t ∈ R+ and s ∈ Rk. However, to replace the moment generating function
M(Λ,Θ) of the common distribution of Λ and Θ by the moment generating function
MΛ is not possible because MΛ is defined on Rk and not on Rk+1.

Nevertheless, there exists a factorization of MΛ for certain arguments.

5.2.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I). Then

DnMΛ(−t1) = DnMΛ(−t)

(
n

n

)−1

P
[
{Nt = n}

∣∣ {Nt = n}
]

= DnMΛ(−t) E [Θn]

holds for all t > 0 and all n ∈ N k
0 where n := 1′n.
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Proof: Since {Nt}t∈R+
is a mixed Poisson process with parameter Λ we get for

all n ∈ N k
0 with the help of Corollary 3.2.4

tn

n!
DnMΛ(−t1) = P [{Nt = n}]

= P [{Nt = n}] P
[
{Nt = n}

∣∣ {Nt = n}
]

=
tn

n!
DnMΛ(−t) P

[
{Nt = n}

∣∣ {Nt = n}
]

which yields the first equation. By

P
[
{Nt = n}

∣∣ {Nt = n}
]

= E

[(
n

n

)
Θn

]
the second equation directly follows from the first one. �

So under the assumption (I) the moment generating function MΛ and the conditional
probabilities of Nt with respect to {Nt = n}, which are nothing else than the
moments around the origin of Θ, take over the role of MΛ in determining the one–
dimensional distributions of the process. This is also true for the binomial moments
of Nt, as can be seen in the next lines.

5.2.2 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I). The binomial moment of Nt fulfils

E

[(
Nt

l

)]
= E

[(
Nt

l

)]
P
[
{Nt = l}

∣∣ {Nt = l}
]

for all t ∈ R+ and l ∈ N k
0 where l := 1′l.

Proof: Theorem 4.2.1 twice and (I) yield

E

[(
Nt

l

)]
=

tl

l!
E
[
Λl
]

=
tl

l!
E
[
(ΛΘ)l

]
=

tl

l!
E
[
Λl
]

E

[(
l

l

)
Θl

]
= E

[(
Nt

l

)]
P
[
{Nt = l}

∣∣ {Nt = l}
]

which proves the assertion. �

5.2.3 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ which fulfils (I). For l ∈ N0 the following are equivalent.
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(a) There exists some t > 0 and some l ∈ N k
0 with 1′l = l such that

E

[(
Nt

l

)]
< ∞

holds.
(b) The identity

E

[(
Nt

m

)]
< ∞

holds for all t ∈ R+ and all m ∈ N k
0 with 1′m ≤ l.

(c) There exists some t > 0 and some l ∈ N k
0 with 1′l = l such that

E
[
(Nt)

l
]

< ∞

holds.
(d) The identity

E [(Nt)
m] < ∞

holds for all t ∈ R+ and all m ∈ N k
0 with 1′m ≤ l.

(e) There exists some t > 0 such that

E
[
(Nt)

l
]

< ∞

holds.
(f) The identity

E [(Nt)
m] < ∞

holds for all t ∈ R+ and all m ∈ N with m ≤ l.
(g) The parameter of the sum process fulfils

E
[
Λl
]

< ∞

(h) For all m ≤ l the m–th derivative of MΛ|(−∞,0] is continuous on (∞, 0].

If {Nt}t∈R+
satisfies one and hence all preceding items, then

E

[(
Nt

l

)]
=

tl

l!
DlMΛ|(−∞,0](0) P

[
{Nt = l}

∣∣ {Nt = l}
]

holds for all t ∈ R+ and all l ∈ N k
0 with 1′l = l.

Proof: The condition t = 0 in whatever assertion in this theorem is not signifi-
cant since a multivariate mixed Poisson process always starts in 0 and therefore all
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moments of N0 are finite.
As {Nt}t∈R+

is a univariate mixed Poisson process with parameter Λ, the equiva-
lence of (e), (f), (g), and (h) is due to Theorem 4.2.3. This theorem also yields in
connection with Lemma 5.2.2

E

[(
Nt

l

)]
=

tl

l!
DlMΛ|(−∞,0](0) P

[
{Nt = l}

∣∣ {Nt = l}
]

for all t > 0. Therefore, to prove the theorem it is sufficient to show (g) ⇒ (b) ⇒
(d) ⇒ (c) ⇒ (a) ⇒ (e).

(g) ⇒ (b): This follows from Lemma 5.2.2 and Theorem 4.2.1.

(b) ⇒ (d): This follows from Lemma 1.1.4.

(d) ⇒ (c): obvious

(c) ⇒ (a): Since for all t > 0 and all l ∈ N k
0

E

[(
Nt

l

)]
≤ E

[
(Nt)

l
]

the assumptions follows immediately.

(a) ⇒ (e): Using Lemma 5.2.2 and the fact that for a positive one–dimensional
discrete random variable the binomial moment of order l is finite if, and only if, the
moment of order l is finite (see Schmidt [2002]), we obtain the assertion. �

Under assumption (I) the finiteness of the moments of Nt depends only on the finite-
ness of the moments of Nt, which can be verified through the moment generating
function of Λ. As before, we want to give explicit formulas for the first and second
central moments of the process in the case they are finite. Although the next lemma
contains only identities for two independent random variables, it is formulated in
terms of the process {Nt}t∈R+

to stay in the familiar notation.

5.2.4 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I). The moments of Λ can be decomposed in the succeeding
manner.

(1) E [Λ] = E [Λ] E [Θ]
(2) If Λ has a finite first moment, then

Var [Λ] = Var [Λ] Var [Θ] + (E [Λ])2 Var [Θ] + Var [Λ] E [Θ] E [Θ]′

is valid.
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Proof:
(1): The independence assumption (I) directly yields

E [Λ] = E [ΛΘ] = E [Λ] E [Θ]

(2): If Λ a has finite first moment, then so has Λ. Hence, we get

Var [Λ] = E [ΛΛ′]− E [Λ] E [Λ]′

= E
[
Λ2ΘΘ′]− E [ΛΘ] E [ΛΘ]′

= E
[
Λ2
]

E [ΘΘ′]− (E [Λ])2 E [Θ] E [Θ]′

= Var [Λ] E [ΘΘ′] + (E [Λ])2 E [ΘΘ′]− (E [Λ])2 E [Θ] E [Θ]′

= Var [Λ] Var [Θ] + (E [Λ])2 Var [Θ] + Var [Λ] E [Θ] E [Θ]′

which completes the proof. �

5.2.5 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ which fulfils (I). Then the following is valid.

(1) If Λ has a finite moment of first order, then

E [Nt] = t E [Λ] E [Θ]

holds for all t ∈ R+.
(2) If Λ has a finite moment of second order, then

Cov [Nt,Nt+h] = t E [Λ] Diag (E [Θ])

+ t (t + h)
(
Var [Λ] Var [Θ] + (E [Λ])2 Var [Θ] + Var [Λ] E [Θ] E [Θ]′

)
holds for all t, h ∈ R+.

Proof: This theorem immediately follows from Theorem 4.2.4 and Lemma 5.2.4,
since the finiteness of the moment of order l of Λ is equivalent to the finiteness of
all moments of order l with 1′l = l of Λ (compare Theorem 5.2.3 and 4.2.3). �

The above theorem shows that still a wide range of correlation structures are possible
under the independence assumption. For example if Λ is degenerated, then the
correlation structure assumed for Θ carries over to the correlation structure of the
multivariate mixed Poisson process.

5.3 Posterior Distributions

As in Section 4.3, we will study conditional distributions and the question of stability
of the model over time. We start with the conditional distribution of Λ and Θ with
respect to the process at some time t.
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5.3.1 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with

parameter Λ which fulfils (I). Then the identities

PΛ |Nt = PΛ |Nt

PΘ |Nt (B) =

∫
B

θNt dPΘ(θ)∫
Rk θNt dPΘ(θ)

hold for all t > 0 and B ∈ B(Rk).

Proof: The proof uses the same ideas as the proofs of Lemma 4.3.1 and Theorem
4.3.3. Therefore, it is a bit shortened.
Starting with the second identity, we consider t > 0 and B ∈ B(Rk) as well as
n ∈ N k

0 and set n := 1′n. Then we have

P ({Θ ∈ B} ∩ {Nt = n}) = E
[
E
(
χ {Θ∈B}∩ {Nt =n}

∣∣Λ)]
= E

[
χ {Θ∈B} E

(
χ {Nt =n}

∣∣Λ)]
= E

[
χ {Θ∈B} e−1′Λ t (Λ t)n

n!

]
= E

[
e−Λ t (Λ t)n

n!

]
E

[
χ {Θ∈B}

(
n

n

)
Θn

]
=

∫
Ω

e−Λ t (Λ t)n

n!
dP

∫
Θ−1(B)

(
n

n

)
Θn dP

=

∫
R

e−λ t (λ t)n

n!
dPΛ(λ)

∫
B

(
n

n

)
θn dPΘ(θ)

and thus from Theorem 5.1.2

PΘ |Nt=n[B] = P
[
{Θ ∈ B}

∣∣ {Nt = n}
]

=
P [{Θ ∈ B} ∩ {Nt = n}]

P [{Nt = n}]

=

∫
R

e−λ t (λ t)n

n!
dPΛ(λ)

∫
B

(
n

n

)
θn dPΘ(θ)∫

R

e−λ t (λ t)n

n!
dPΛ(λ)

∫
Rk

(
n

n

)
θn dPΘ(θ)

=

∫
B

θn dPΘ(θ)∫
Rk θn dPΘ(θ)

which proves the second identity.
Now, we turn to the first identity. Let t > 0 and B ∈ B(R) as well as n ∈ N k

0 and
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set n := 1′n. This gives

P ({Λ ∈ B} ∩ {Nt = n}) = E
[
E
(
χ {Λ∈B}∩ {Nt =n}

∣∣Λ)]
= E

[
χ {Λ∈B} e−1′Λ t (Λ t)n

n!

]
= E

[
χ {Λ∈B} e−Λ t (Λ t)n

n!

]
E

[(
n

n

)
Θn

]
=

∫
Λ−1(B)

e−Λ t (Λ t)n

n!
dP

∫
Ω

(
n

n

)
Θn dP

=

∫
B

e−λ t (λ t)n

n!
dPΛ(λ)

∫
Rk

(
n

n

)
θn dPΘ(θ)

and thus using again Theorem 5.1.2

PΛ |Nt=n[B] = P
[
{Λ ∈ B}

∣∣ {Nt = n}
]

=

∫
B

e−λ t (λ t)n

n!
dPΛ(λ)

∫
Rk

(
n

n

)
θn dPΘ(θ)∫

R

e−λ t (λ t)n

n!
dPΛ(λ)

∫
Rk

(
n

n

)
θn dPΘ(θ)

=

∫
B

e−λ t λn dPΛ(λ)∫
R

e−λ t λn dPΛ(λ)

Hence

PΛ |Nt(B) =

∫
B

e−λ t λNt dPΛ(λ)∫
R

e−λ t λNt dPΛ(λ)

Since {Nt}t∈R+
is a univariate mixed Poisson process with parameter Λ, it follows

from Theorem 4.3.3 that PΛ |Nt = PΛ |Nt . �

We have pointed out, that the distribution which divides the events into the given
classes (coordinates) and which was a mixed multinomial distribution with para-
meter Θ was independent of time t. This property goes over to the conditional
distribution of Θ with respect to the process at some time t, as can be seen from
the preceding theorem.

A natural question to ask is whether Λ and Θ are conditionally independent with
respect to the process at some time t. To answer this question we use the results of
Section 1.2.
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Theorem 5.3.2 Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ. Then the following are equivalent.

(a) Λ and Θ are independent.
(b) Λ and Θ are conditionally independent with respect to Nt for some t > 0.
(c) Λ and Θ are conditionally independent with respect to Nt for all t ∈ R+.

Proof: We prove the assertion according to the following scheme: (a) ⇒ (c) ⇒
(b) ⇒ (a).

(a) ⇒ (c): Consider t > 0. By the representation of conditional expectation in
terms of integrals with respect to the conditional distribution for random vectors (see
Hess [1997] 4.2.1) and the conditional distributions calculated so far (see Theorems
4.3.3 and 5.3.1), we obtain for arbitrary h > 0 and for all n ∈ N0 and l ∈ N k

0

E
(
e−Λ h Λn Θl

∣∣Nt

)
=

∫
Rk

e−λ h λn θl dPΛ |Nt(λ)

=

∫
Rk e−λ h λn θl e−λ t λNt dPΛ(λ)∫

Rk e−λ t λNt dPΛ(λ)

=
∑

m∈N k
0

E
[
e−Λ (t+h) Λ(n+1′m) Θl+m

]
E [e−Λ t Λ1′m Θm]

χ{Nt =m}

=
∑

m∈N k
0

E
[
e−Λ (t+h) Λ(n+1′m)

]
E
[
Θl+m

]
E [e−Λ t Λ1′m] E [Θm]

χ{Nt =m}

=

∫
R

e−λ (t+h) λ(n+Nt) dPΛ(λ)
∫
Rk θl+Nt dPΘ(θ)∫

R
e−λ t λNt dPΛ(λ)

∫
Rk θNt dPΘ(θ)

= E
(
e−Λ h Λn

∣∣Nt

)
E
(
Θl
∣∣Nt

)
Now, Corollary 1.2.6 yields the conditionally independence of Λ and Θ with respect
to Nt for arbitrary t > 0.
Consider t = 0. Since σ(N0) contains only sets which have either probability mass
zero or one, the conditional independence of Λ and Θ with respect to N0 is due to
the independence of Λ and Θ. Thus, the assertion is shown.

(c) ⇒ (b): obvious

(b) ⇒ (a): Using again Hess [1997] 4.2.1 and Theorems 4.3.3 and 5.3.1 we get for
all n ∈ N0 and l ∈ N k

0∫
Rk λn θl e−λ t λNt dPΛ(λ)∫
Rk e−λ t λNt dPΛ(λ)

= E
(
Λn Θl

∣∣Nt

)
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= E
(
Λn
∣∣Nt

)
E
(
Θl
∣∣Nt

)
=

∫
R

e−λ t λ(n+Nt) dPΛ(λ)
∫
Rk θl+Nt dPΘ(θ)∫

R
e−λ t λNt dPΛ(λ)

∫
Rk θNt dPΘ(θ)

Considering the event {Nt = 0} which has positive probability we obtain

E
[
e−Λ t Λn Θl

]
=

∫
Rk

e−λ t λn θl dPΛ(λ)

=

∫
R

e−λ t λn dPΛ(λ)

∫
Rk

θl dPΘ(θ)

= E
[
e−Λ t Λn

]
E
[
Θl
]

and thus from Theorem 1.2.3 the assertion follows. �

Using the previous theorem and Theorem 4.3.2, the next result is rather obvious.

5.3.3 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I). Then for all t > 0 and all n ∈ N k
0 the process {Kt,h}h∈R+

is a multivariate mixed Poisson process on the probability space (Ω,F , Pt,n) with
parameter Λ which fulfils (I).

This means, to accept the model treated in this chapter it is not crucial to know when
the process started, since the model for the incremental process remains unchanged
for different starting times. The change just affects the underlying probability dis-
tributions.

5.4 Regularity

After decomposing probabilities and moments of a multivariate mixed Poisson pro-
cess with parameter which fulfils (I) we turn to transition probabilities and in-
tensities. With the possible decomposition we will regain some properties of the
intensities, which are valid in the univariate case but not have been valid in the
general multivariate setting. But first, let us turn to the transition probabilities.

5.4.1 Lemma. Let {Nt}t∈R+
be a multivariate mixed Poisson process with para-

meter Λ which fulfils (I). Then

pn,m(r, t) = 1′pn,m(r, t) E

[(
m− n

m− n

)
Θm−n

∣∣∣ {Nt = n}
]

holds for all (n, r) ∈ Z and m ∈ N k
0 , t ∈ R+ with n ≤ m and r ≤ t where n := 1′n

and m := 1′m.



5.4 Regularity 141

Proof: Consider (n, r) ∈ Z and m ∈ N k
0 , t ∈ R+ with n ≤ m and r ≤ t. Using

first Lemma 4.4.1 and then Theorem 5.3.3 and Theorem 5.3.1 in connection with the
same formula manipulation as in the proof of the decomposition of the unconditional
probabilities (Theorem 5.1.2) we get

pn,m(r, t) = E

[
e−1′Λ (t−r) (Λ (t− r))m−n

(m− n)!

∣∣∣ {Nt = n}
]

= E

[
e−Λ (t−r) (Λ (t− r))m−n

(m− n)!

∣∣∣ {Nt = n}
]

E

[(
m− n

m− n

)
Θm−n

∣∣∣ {Nt = n}
]

= E

[
e−Λ (t−r) (Λ (t− r))m−n

(m− n)!

∣∣∣ {Nt = n}
]

E

[(
m− n

m− n

)
Θm−n

∣∣∣ {Nt = n}
]

= 1′pn,m(r, t) E

[(
m− n

m− n

)
Θm−n

∣∣∣ {Nt = n}
]

since {Nt}t∈R+
is a mixed Poisson process with parameter Λ (see Lemma 4.1.4). �

5.4.2 Theorem. Let {Nt}t∈R+
be a multivariate mixed Poisson process with pa-

rameter Λ which fulfils (I). Then the following are equivalent.

(a) {Nt}t∈R+
is regular with intensities {κn}n∈N k

0
.

(b) The condition E [Λ] < ∞ is valid.

If {Nt}t∈R+
satisfies one and hence all preceding items, then

κ(i)
n (t) = 1′κn(t) E

[
Θi

∣∣ {Nt = n}
]

holds for all (n, t) ∈ Z and i ∈ {1, . . . , k} where n := 1′n.

Proof: The equivalence of (a) and (b) follows immediately from Theorem 4.4.2.
For (n, t) ∈ Z and i ∈ {1, . . . , k} we additionally get from Theorem 5.3.2 and
Theorem 5.3.1

κ(i)
n (t) = E

[
Λi

∣∣ {Nt = n}
]

= E
[
Λ
∣∣ {Nt = n}

]
E
[
Θi

∣∣ {Nt = n}
]

= E
[
Λ
∣∣ {Nt = n}

]
E
[
Θi

∣∣ {Nt = n}
]

= 1′κn(t) E
[
Θi

∣∣ {Nt = n}
]

since {Nt}t∈R+
is a mixed Poisson process with parameter Λ (see Lemma 4.1.4). �

Thus, the intensities are driven by intensities generated from a univariate mixed
Poisson process. This leads to the following theorem.

5.4.3 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with parameter Λ which fulfils (I). Then the intensities {κn}n∈N k
0

have the follow-
ing properties.
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(1) The identity

κ(i)
n (t) =

Dn+1MΛ(−t)

DnMΛ(−t)
E
[
Θi

∣∣ {Nt = n}
]

holds for all t > 0, n ∈ N k
0 , and i ∈ {1, . . . , k} where n := 1′n.

(2) For all n ∈ N k
0 and all i ∈ {1, . . . , k} the intensity κ

(i)
n is decreasing.

(3) Let n ∈ N
k
0 , n := 1′n, i ∈ {1, . . . , k}, and let E [Λn+1] be finite. Then

limt ↓ 0 κ
(i)
n (t) is finite and

lim
t ↓ 0

κ(i)
n (t) =

E [Λn+1]

E [Λn]
E
[
Θi

∣∣ {Nt = n}
]

is valid.

Proof:
(1): By the fact that {Nt}t∈R+

is a mixed Poisson process with parameter Λ, the
assertion follows from Theorem 4.4.4 and Theorem 5.4.2.

(2): As the conditional expected value E [Θi | {Nt = n}] does not dependent on
time t and the intensities of a univariate mixed Poisson process are decreasing (see
Grandell [1997]), the assertion follows from Theorem 5.4.2.

(3): Since E [Θi | {Nt = n}] is finite and independent of t for all n ∈ N
k
0 and

i ∈ {1, . . . , k}, the assertion follows from 4.4.4 (2). �

The next theorem contains a list of equivalent properties of multivariate mixed Pois-
son processes with parameter. These properties are fulfilled if the process possesses
(I). Thus, they are necessary conditions for the validity of (I) and can be used for
rejecting the hypothesis ’The process fulfils (I)’.

5.4.4 Theorem. Let {Nt}t∈R+
be a regular multivariate mixed Poisson process

with parameter Λ. Then the following are equivalent.

(a) For all i, j ∈ {1, . . . , k} and n ∈ N k
0 there exists a constant c

(i,j)
n ∈ R+ such

that

κ(i)
n (t) = c(i,j)

n κ(j)
n (t)

holds for all t > 0.
(b) The identity

k∑
i=1

κ(i)
n (t) = 1′κn(t)

holds for all t > 0 and n ∈ N k
0 where n := 1′n.
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(c) The identity

E
[
Λ
∣∣ {Nt = n}

]
= E

[
Λ
∣∣ {Nt = n}

]
holds for all t > 0 and n ∈ N k

0 where n := 1′n.
(d) The identity

PΛ |{Nt=n} = PΛ |{Nt=n}

holds for all t > 0 and n ∈ N k
0 where n := 1′n.

(e) The identity

pn,n(t, t + h) = 1′pn,n(t, t + h)

holds for all t > 0, n ∈ N k
0 where n := 1′n and all h ∈ R+.

(f) The identity

P
[
{Nt+h = n}

∣∣ {Nt+h = n}
]

= P
[
{Nt = n}

∣∣ {Nt = n}
]

holds for all t > 0, n ∈ N k
0 where n := 1′n and all h ∈ R+.

(g) The identity

P [{Nt+h = n} ∩ {Nt = n}]
= P

[
{Nt = n}

∣∣ {Nt = n}
]

P [{Nt+h = n} ∩ {Nt = n}]

holds for all t > 0, n ∈ N k
0 where n := 1′n and all h ∈ R+.

If {Nt}t∈R+
fulfils (I), then the process possesses property (a) - (g).

Proof: We prove the assertion according to the following scheme: (a) ⇔ (b),
(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (b), (e) ⇔ (f), and (e) ⇔ (g).

(a) ⇒ (b): Consider n ∈ N
k
0 , t > 0, and i, j ∈ {1, . . . , k}. The assumption

immediately yields

d
dt

κ
(i)
n (t)

κ
(i)
n (t)

=
d
dt

κ
(j)
n (t)

κ
(j)
n (t)

Now, using the differential equation for the intensities (see Theorem 2.3.19) we
obtain

k∑
l=1

κ
(l)
n+ei

(t) = −
d
dt

κ
(i)
n (t)

κ
(i)
n (t)

+
k∑

l=1

κ(l)
n (t)

= −
d
dt

κ
(j)
n (t)

κ
(j)
n (t)

+
k∑

l=1

κ(l)
n (t)

=
k∑

l=1

κ
(l)
n+ej

(t)
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Since n was arbitrary we obtain for all n, m ∈ N k
0 with 1′n = 1′m

k∑
i=1

κ(i)
n (t) =

k∑
i=1

κ(i)
m (t)

and thus Theorem 2.3.14 yields with A = 1′ ∈ AC

k∑
i=1

κ(i)
n (t) =

∑
m∈N k

0
1′m= n

P [{Nt = m}]

∑
v∈N k

0
1′v = n

P [{Nt = v}]

k∑
i=1

κ(i)
n (t)

=
∑

m∈N k
0

1′m= n

P [{Nt = m}]∑
v∈N k

0
1′v = n

P [{Nt = v}]

k∑
i=1

κ(i)
m (t)

= 1′κn(t)

(b) ⇒ (a): Consider n ∈ N k
0 and i, j ∈ {1, . . . , k}. Using again Theorem 2.3.19 we

get

d
dt

κ
(i)
n (t)

κ
(i)
n (t)

=
k∑

j=1

(
κ(j)

n (t)− κ
(j)
n+ei

(t)
)

= 1′κn(t)− 1′κn+1(t)

for all t > 0. Since the right hand side does not depend on i, the identity

d
dt

κ
(i)
n (t)

κ
(i)
n (t)

=
d
dt

κ
(j)
n (t)

κ
(j)
n (t)

holds for all t > 0. This means, that the logarithmic derivatives and thus we get
the existence of a constant c

(i,j)
n ∈ R+ such that

κ(i)
n (t) = c(i,j)

n κ(j)
n (t)

holds for all t > 0.

(b) ⇒ (c): As a consequence of the representation of the intensities (Theorem
4.4.2), we get for all n ∈ N k

0 and all t > 0

E
[
Λ
∣∣ {Nt = n}

]
=

k∑
i=1

E
[
Λi

∣∣ {Nt = n}
]

=
k∑

i=1

κ(i)
n (t)

= 1′κn(t)

= E
[
Λ
∣∣ {Nt = n}

]
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(c) ⇒ (d): Consider n ∈ N
k
0 and t > 0. By the representation of the condi-

tional distribution of the parameter with respect to the mixed Poisson process (see
Theorems 4.3.3), we obtain for all h > 0

D MPΛ|{Nt =n}(−h)

MPΛ|{Nt =n}(−h)
=

∫
R

λ e−λ h dPΛ|{Nt =n}(λ)∫
R

e−λ h dPΛ|{Nt =n}(λ)

=
E
[
Λ e−Λ (t+h) Λn

]
E [e−Λ t Λn]

E
[
e−Λ t Λn

]
E [e−Λ (t+h) Λn]

= E
[
Λ
∣∣ {Nt+h = n}

]
= E

[
Λ
∣∣ {Nt+h = n}

]
=

∫
R

λ e−λ h dPΛ|{Nt = n}(λ)∫
R

e−λ h dPΛ|{Nt = n}(λ)

=
D MPΛ|{Nt = n}(−h)

MPΛ|{Nt = n}(−h)

Since the moment generating function is positive, the equivalence of the logarithmic
derivatives yields the existence of a constant c ∈ R+ such that

MPΛ|{Nt =n}(−h) = c MPΛ|{Nt = n}(−h)

holds for all h > 0. Furthermore the continuity of the moment generating functions
on (−∞, 0] and

MPΛ|{Nt =n}(0) = 1 = MPΛ|{Nt = n}(0)

yield c = 1. Now the identity of the moment generating functions for all h ≤ 0 gives
the equivalence of the distributions. (see Billingsley [1995] Theorem 22.2).

(d) ⇒ (e): The representation of the transition probabilities of a mixed Poisson
process immediately yields

pn,n(t, t + h) = E
[
e−Λ h

∣∣ {Nt = n}
]

= E
[
e−Λ h

∣∣ {Nt = n}
]

= 1′pn,n(t, t + h)

for all n ∈ N k
0 , t > 0 and all h ∈ R+.

(e) ⇒ (b): The regularity of the processes {Nt}t∈R+
and {Nt}t∈R+

gives

k∑
i=1

κ(i)
n (t) = lim

h ↓ 0

1

h

(
1− pn,n(t, t + h)

)
= lim

h ↓ 0

1

h

(
1− 1′pn,n(t, t + h)

)
= 1′κn(t)
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for all n ∈ N k
0 and all t > 0.

(e) ⇔ (f) : Using the binomial property we have for all n ∈ N k
0 , t > 0 and all

h ∈ R+

pn,n(t, t + h) =

(
t

t + h

)n
P [{Nt+h = n}]
P [{Nt = n}]

=

(
t

t + h

)n
P [{Nt+h = n}]
P [{Nt = n}]

P
[
{Nt+h = n}

∣∣ {Nt+h = n}
]

P
[
{Nt = n}

∣∣ {Nt = n}
]

as well as

1′pn,n(t, t + h) =

(
t

t + h

)n
P [{Nt+h = n}]
P [{Nt = n}]

Since P [{Ns = n}] > 0 for all s > 0 the assertion follows.

(e) ⇔ (g): Consider n ∈ N k
0 , t > 0, and h ∈ R+. Multiplying

1′pn,n(t, t + h) P [{Nt = n}] = P [{Nt+h = n} ∩ {Nt = n}]

on both sides with P [{Nt = n}] (P [{Nt = n}])−1 yields

1′pn,n(t, t + h) P [{Nt = n}]
= P

[
{Nt = n}

∣∣ {Nt = n}
]

P [{Nt+h = n} ∩ {Nt = n}]

where we can see that pn,n(t, t + h) = 1′pn,n(t, t + h) is a necessary and sufficient
condition for

P [{Nt+h = n} ∩ {Nt = n}]
= P

[
{Nt = n}

∣∣ {Nt = n}
]

P [{Nt+h = n} ∩ {Nt = n}]

to be valid.

From Theorem 5.3.1 we see that a multivariate mixed Poisson process with para-
meter which fulfils (I) satisfies (d) and hence the proof is completed. �

The above theorem contains in fact equivalences between conditional expected val-
ues of Λ with respect to events of the multivariate mixed Poisson process {Nt}t∈R+

and conditional expected values of Λ with respect to events of the transformed pro-
cess {Nt}t∈R+

. The crucial point thereto is step (c) ⇒ (d). Since the conditional
expected values are identical for all t > 0 the equality can be carried over to the
distribution. The effect can be illustrated on the basis of the equivalence of (b) and
(e). While the first identity deals with the equality of limits of the transition prob-
abilities the second one shows that even the corresponding transition probabilities
are identical.



5.4 Regularity 147

The following lines will contain an example which shows that the conditions in
Theorem 5.4.4 are not necessarily fulfilled by arbitrary multivariate mixed Poisson
processes.
Example: We consider the bivariate case. Then the equation in 5.4.4 (e) is
equivalent to

E
[
e−Λ (t+h) (Λ1)

n(1)
(Λ2)

n(2)
]

E
[
e−Λ t (Λ1)n(1) (Λ2)n(2)

] =
E
[
e−Λ (t+h) Λn

]
E [e−Λ t Λn]

Now, Consider Λ1 = 0.5 · (
√

(Λ2)2 + 8 − Λ2) and Λ2 ∈ (0,∞), which implies that

Λ1 + Λ2 = Λ >
√

2 as well as that Λ1 is the positive solution of Λ1 = 2/(Λ1 + Λ2).
Furthermore, assume n(1) = n, n(2) = 0. Multiplying both side with the denomina-
tors we obtain

E
[
e−Λ t Λn

]
E
[
e−Λ (t+h) 2n Λ−n

]
= E

[
e−Λ (t+h) Λn

]
E
[
e−Λ t 2n Λ−n

]
Adding the further assumption that Λ has probability mass p1 at l1 and 1− p1 at l2
with l1, l2 >

√
2, l1 6= l2, and 0 < p1 < 1 the previous equation transforms into(

e−l1 t l1
n p1 + e−l2 t l2

n (1− p1)
) (

e−l1 (t+h) l1
−n p1 + e−l2 (t+h) l2

−n (1− p1)
)

=
(
e−l1 (t+h) l1

n p1 + e−l2 (t+h) l2
n (1− p1)

) (
e−l1 t l1

−n p1 + e−l2 t l2
−n (1− p1)

)
Thus

0 = e−l1 t−l2 t−l2 h l1
n l2

−n p1 (1− p1) + e−l1 t−l2 t−l1 h l1
−n l2

n p1 (1− p1)

−
(
e−l1 t−l2 t−l1 h l1

n l2
−n p1 (1− p1) + e−l1 t−l2 t−l2 h l1

−n l2
n p1 (1− p1)

)
= p1 (1− p1)

(
e−l1 t−l2 t−l2 h − e−l1 t−l2 t−l1 h

) (
l1

n l2
−n − l1

−n l2
n
)

This equation can only be satisfied for all n ∈ N and all h > 0 if l1 = l2 which is a
contradiction to the assumption of a two point distribution. Therefore 5.4.4 (e) is
not fulfilled by all multivariate mixed Poisson processes. �
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List of Symbols

N the set {1, 2, . . . }
N0 the set {0, 1, 2, . . . }
N

k
0 k–fold cartesian product of N0

Z the integers
Z

k k–fold cartesian product of Z
R the real numbers
R+ the real numbers in the interval [0,∞)
R

k k–dimensional Euclidian space
R

k
+ the elements of [0, ∞)

B(Rk) the σ–algebra of Borel–sets in Rk

0 vector with all elements being equal to 0
1 vector with all elements being equal to 1
∞ vector with all elements being equal to ∞
ei the i–th unit vector
Diag(x) diagonal matrix of elements of the vector x
x ≤ y x ≤ y iff x(i) ≤ y(i) for all i
x < y x < y iff x(i) < y(i) for all i
[x,y] z ∈ [x,y] iff x ≤ z ≤ y
(x,y) z ∈ (x,y) iff x < z < y

xy xy :=
∏k

i=1(x
(i))y(i)

n! n! :=
∏k

i=1 n(i)!(
1′n
n

) (
1′n
n

)
:= (1′n)!/n!(

n
l

) (
n
l

)
:=
∏k

i=1

(
n(i)

l(i)

)
,
(
n
l

)
= n!

l! (n−l)!
if l ∈ [0,n]

I(n,m) I(n,m) :=
{
i ∈ {1, . . . , k} : n(i) < m(i)

}
gradf gradient of f
Hessf Hessian matrix of f
Dn differential operator

Nt stochastic process at time t
Kt,h incremental process with respect to t at time h
Πn(t) Πn(t) := P [{Nt = n}]
Pt,n Pt,n[B] := P

[
B
∣∣ {Nt = n}

]
pn,m(r, t) transition probability

Apn,m(r, t) transition probability of transformed process
κn transition intensity

Aκn transition intensity of transformed process
Z the set of admissible pairs Z := {(0, 0)} ∪

(
N

k
0 × (0,∞)

)
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U distribution
UA transformed distribution of U under A
Ut,n posterior distribution of U
MU moment generating function of U
LU Laplace–transform of U
gX probability generating function of the random vector X

Λ parameter of the multivariate mixed Poisson process
Λ Λ := 1′Λ
Θ Θ := (1′Λ)−1Λ
(I) independence assumption of Λ and Θ
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Die vorgelegte Dissertation wurde am Institut für Mathematische Stochastik der
Technischen Universität Dresden unter der wissenschaftlichen Betreuung von Herrn
Prof. Dr. sc. math. habil. Klaus D. Schmidt angefertigt.

Ich erkenne die Promotionsordnung der Fakultät Mathematik und Naturwissen-
schaften der TU Dresden vom 20. März 2000 an.

Dresden, den 20.06.2005 gez. Mathias Zocher


