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1. INTRODUCTION 
 

 

1.1. Apoptosis 

 
1.1.1. Overview of apoptosis 

Programmed cell death (apoptosis) plays critical roles in development and maintenance of 

tissue homeostasis. Apoptosis is a highly conserved mechanism that has evolved to maintain 

cell numbers and cellular positioning within tissues comprised of different cell compartments. 

De-regulation of apoptosis leads to pathological disorders such as developmental defects, 

autoimmune diseases, neurodegeneration or cancer (Thompson, C.B., 1995).  

Apoptosis is defined by its morphologic features. The characteristics of the apoptotic cell 

include chromatin condensation and nuclear fragmentation (pyknosis), plasma membrane 

blebbing, and cell shrinkage. Eventually, the cell breaks into small membrane-surrounded 

fragments (apoptotic bodies), which are cleared by phagocytosis, without inciting an 

inflammatory response (Savill and Fadok, 2000). 

Intensive effort has been made to explore the molecular mechanisms of the apoptotic 

signalling pathways including the initiation, mediation, execution and regulation of apoptosis. 

In mammals, a wide array of external signals may trigger two major apoptotic pathways, 

namely the extrinsic (death receptor-initiated) or the intrinsic (mitochondria-initiated) 

pathway (Jin and El-Deiry, 2005). The two pathways converge on activation of caspase-3 and 

subsequently on other proteases and nucleases that drive the terminal events of apoptosis. 

Cellular apoptosis is tightly controlled by a complex regulatory network. Every step in the 

apoptotic cascade is monitored and controlled by certain pro-survival signals provided by 

families of anti-apoptotic molecules such as NF-κB, Akt/PKB, Bcl-2 and IAP (Vogelstein and 

Kinzler, 2004).  

Because de-regulated apoptosis is the cause of many diseases including cancer (Thompson, 

C.B., 1995), knowledge of the molecular mechanisms of apoptosis can provide new 

approaches for therapeutic intervention. 
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1.1.2. Intrinsic (mitochondria-initiated) apoptotic pathways 
 

Intrinsic apoptotic pathways are initiated inside cells. The main cellular compartment 

involved is the mitochondrion, although endoplasmic reticulum (ER) has also been shown to 

participate in intrinsic apoptosis. A pivotal event in this type of apoptosis consists of 

mitochondrial outer membrane permeabilization (MOMP), which is mainly mediated and 

controlled by members of the Bcl-2 family. Bcl-2 family proteins are critical death regulators 

that reside upstream of mitochondria and may be pro-apoptotic or anti-apoptotic (Tsujimoto 

Y., 2003). They can be divided into three main subclasses, defined in part by the homology 

shared within four conserved regions known as the Bcl-2 homology BH1–4 domains, 

corresponding to the α-helices that describe the structure and function. The first subclass 

contains anti-apoptotic members that conserve all four BH1-4 domains; members of this 

subclass include Bcl-2 (Chan and Yu, 2004), Bcl-XL (Boise et al., 1993), Mcl-1 (Zhou et al., 

1997), A1 (Chuang et al., 1998), and Bcl-W (Gibson et al., 1996). In the second subclass, the 

structure of the BH1-3 domains in Bcl-XL creates a hydrophobic pocket that can 

accommodate the BH3 domain of a pro-apoptotic member. The third subclass contains 

multidomain pro-apoptotic members such as Bax (Oltvai et al., 1993) and Bak (Chittenden et 

al., 1995) that display sequence conservation in BH1-3 domains and the BH3-only proteins 

Bid (Li et al., 1998; Luo et al., 1998), Bad (Yang et al., 1995), Bim (O’Connor et al., 1998), 

Noxa (Oda et al., 2000), and Puma (Yu et al., 2001) that display sequence conservation only 

in the amphipathic α-helical BH3 region and require Bax and Bak to mediate cell death. 

Apoptotic changes in mitochondria seem to be predominantly mediated by Bax and Bak and 

cells deficient for both Bax and Bak demonstrated resistance to all tested intrinsic death 

pathway stimuli (Wei et al., 2001). Bax migrates to mitochondria and integrates into the outer 

membrane following various death-inducing stimuli (Hsu et al., 1997; Wolter et al., 1997), 

while Bak in its inactive form is already constitutively present in mitochondrial membranes. 

BH3-only proteins, such as Bid or Bad, seem to regulate the function of Bax and Bak and a 

current model suggests that these proteins compete with binding partners of Bax or Bak in the 

cytosol or in mitochondria to free Bax or Bak and enable them to trigger apoptosis (Cory et 

al., 2003). Free Bax and Bak may oligomerize and form pores and/or may interact with the 

PTP, p53 and/or other mitochondrial proteins to trigger apoptotic changes including 

cytochrome c release and mitochondrial depolarization (Cory et al., 2003; Leu et al., 2004).  
 

MOMP results in cell death via two mechanisms: release of soluble mitochondrial 

intramembrane proteins and disruption of essential mitochondrial functions (Green and 
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Kroemer, 2004). Among the released molecules, the most important are cytochrome c and 

IAP antagonists such as Smac/DIABLO, HtrA2/Omi and GSPT1/eRF3. Cytochrome c binds 

to Apaf-1 and forms a complex called apoptosome, which, in turn, recruits procaspase-9 

leading to apoptosis via activation of executioner caspases-3, -6 and -7 (Zou et al., 1997; Li et 

al., 1997) (Figure 1.1). In vivo studies showed that the Apaf-1, caspase-9 or caspase-3 knock-

out MEFs are resistant to various apoptotic stimuli (Hakem et al., 1998; Kuida et al., 1996; 

Cecconi et al., 1998; Yoshid et al., 1998). Smac/DIABLO, HtrA2/Omi and GSPT1/eRF3 bind 

IAPs in a manner similar to caspases, therefore functioning as competitive inhibitors (Du et 

al., 2000; Suzuki et al., 2001; Hegde et al., 2003). The caspase co-activator Smac/DIABLO is 

released along with cytochrome c during apoptosis to neutralize the inhibitory activity of 

IAPs and promote cytochrome c-dependent caspase activation.  
 

Processed caspase-9, -3 and -2 are also released together with cytochrome c from 

mitochondria in vitro by disruption of ∆ψ with an uncoupler or in cell death caused by 

staurosporine. These findings imply that the mitochondrial procaspase molecules participate 

in apoptosis induction (Katoh et al., 2004).  
 

In addition to proteins that can trigger or enhance caspase activation, mitochondria also 

releases pro-apoptotic proteins unrelated to caspase activation. AIF, once released to the 

cytosol, translocates to the nucleus in response to death stimuli including pneumococcus, p53, 

UV-B and N-methyl-N-nitro-N-nitrosoguanidine, H2O2, and N-methyl-aspartate. In the 

nucleus, AIF induces peripheral chromatin condensation and large-scale DNA fragmentation. 

AIF in association with a heat-labile cytosolic factor may also permeabilize mitochondrial 

membranes. None of these AIF effects can be prevented by addition of zVAD-fmk indicating 

that they are caspase-independent, but the cell death is characterized by various apoptotic 

features including cell shrinkage, cell surface exposure of phosphatidylserine, loss of 

mitochondrial membrane potential and large-scale DNA fragmentation (Susin et al., 2000). 

Genetic evidence establishes an essential role for AIF during early mammalian development 

(Joza et al., 2001). AIF was found to be critical for the first wave of programmed cell death 

required for embryonic morphogenesis and cavitation. In response to apoptotic stimuli, 

endonuclease G is also released from the mitochondria into the cytosol where it translocates 

to the nucleus and generates oligonucleosomal DNA fragmentation. It is essential for DNA 

fragmentation, particularly during caspase-independent apoptosis (Li et al., 2001). Unlike 

caspase inhibitors, Bcl-2 effectively protects cells from both caspase-dependent and -

independent apoptosis. This is more likely through its ability to prevent mitochondrial 
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membrane permeabilization and the resultant release of potent pro-apoptotic molecules like 

endonuclease G (Donovan and Cotter, 2004). 
 

Besides the mitochondria, the endoplasmic reticulum (ER) is a second compartment 

participating in intrinsic apoptosis. In the ER, quality control mechanisms ensure that only 

properly folded proteins are passed along the secretory pathway. Stress to the ER including 

oxidative stress, chemical toxicity, treatment with Ca2+ ionophores or exposure to inhibitors of 

glycosylation can result in misfolded proteins and perturbed calcium homeostasis, which 

provokes the unfolded protein response (UPR) (Breckenridge et al., 2003). Release of 

calcium from the ER into the cytosol is in many cases required for stress-induced apoptosis. 

The ER is the major intracellular store of Ca2+ ions. Efflux of Ca2+ ions from the ER is often 

associated with uptake into the mitochondria. In staurosporine and ceramide-induced 

apoptosis, calcium acts as a messenger that coordinates the amplification loop between the 

mitochondria and the ER. A small amount of cytochrome c released from the mitochondria 

diffuses to the adjacent endoplasmic reticulum (ER) and binds to InsP3 receptors, thereby 

enhancing calcium release from the endoplasmic reticulum. The released calcium causes a 

mass exodus of cytochrome c from all mitochondria. The positive feedback finally results in 

the dramatic activation of caspases. This process may be an important event in disorders such 

as myocardial infarction, Alzheimer's disease and stroke (Rao et al., 2004). Either Bax or Bak 

is required for ER stress-induced apoptosis. Recent findings suggest that both of them localize 

and function at the ER. Bax and Bak have been implicated in maintaining homeostatic 

concentrations of Ca2+ in the ER. Release of Ca2+ from ER stores and its uptake into 

mitochondria is impaired in Bax and Bak double knockout mice, which results in reduced 

apoptosis in response to certain death stimuli (Nutt et al., 2002). So far, only caspase-12 

activation during ER-mediated apoptosis has been reported. Upon activation, caspase-12 

translocates from the ER to the cytosol, where it directly cleaves procaspase-9 to activate 

caspase-3. Caspase-12-/- mice were also found to be resistant to Aß peptide-induced apoptosis 

in an Alzheimer's disease model. However, functional caspase-12 has only been cloned from 

the mouse and rat, and the existence of a human isoform of caspase-12 remains controversial 

(Szegezdi et al., 2003). 

 

 

 

 

 



  Introduction 
 

 5

1.1.3. Extrinsic (death receptor-initiated) apoptotic pathways 
 

The extrinsic pathway is activated by ligand-bound death receptors, mainly including TNF-

TNFR1, CD95L/CD95 and TRAIL/DR4 or DR5. The TNF receptor superfamily is 

characterized by the presence of cysteine-rich domains that mediate binding between ligands 

and these transmembrane receptors. Among them, the death receptors TNFR1, CD95, DR4 

and DR5 are best characterized for induction of apoptosis (Ashkenazi and Dixit, 1998). Pre-

assembly of death receptors through a distinct region of their extracellular domain called 

PLAD (pre-ligand assembly domain) seems to be critical for ligand binding (Chan et al., 

2000). Upon binding of the ligand to the death receptors, the death-inducing signalling 

complex (DISC) is formed by association of the receptor death domains (DD) to the DD of an 

adaptor protein, such as FADD, TRADD or RIP. The adaptor proteins, in turn, have a death 

effector domain (DED) which binds to the DED of procaspase-8. Following autoproteolytic 

cleavage of procaspase-8, caspase-8 is released from the DISC and activates mainly caspase-

3, thus inducing apoptosis (Walczak and Krammer, 2000) (Figure 1.1). 
 

The initial model of death-receptor-induced apoptosis suggested that the simple trimerization 

of the receptors upon binding to their respective ligands is sufficient to initiate the apoptotic 

signal. However, recent studies demonstrated that a more massive aggregation of the 

receptors, the so called receptor clustering, is required for successful induction of apoptosis 

(see Discussion).  

 

 

1.1.4. Cross-talk between extrinsic and intrinsic pathways 
 

Based on the requirement of the intrinsic pathway for apoptosis induced by death receptors, 

cells can be divided in type I and type II cells. In type I cells, the intrinsic pathway does not 

participate at all in induction of apoptosis via the death receptors. However, in type II cells, 

only a small amount of FADD and caspase-8 are recruited to DISC, thus insufficient 

activation of caspase-8 requires involvement of mitochondria to finally induce apoptosis 

(Barnhart et al., 2003). 
 

Death receptor-mediated apoptotic signalling can activate the mitochondrial pathway through 

the BH3-only protein, Bid. Caspase-8 activated in the DISC is sufficient to cleave cytosolic 

Bid. Cleaved Bid (tBid) then translocates to the mitochondria, which leads to mitochondrial 

dysfunction and apoptosome formation through activation of Bax/Bak (Figure 1.1) (Li et al., 
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1998; Luo et al., 1998). Although the apoptotic mitochondrial events occur in both types of 

cells, only the apoptosis in type II cells is abrogated if the mitochondrial pathway is blocked 

by overexpression of Bcl-2 (Danial and Korsmeyer, 2004). It was originally believed that the 

activation of caspase-9 and -3 in the apoptosome would function as the amplification loop 

which can compensate the weak DISC formation and caspase-8 activation (Stennicke and 

Salvesen, 2000). However, the evidence that hepatocytes derived from the Apaf-1-/- and 

caspase-9-/- mice exhibit the similar sensitivity to CD95-mediated apoptosis suggests that 

other factors are required for the amplification (Yoshida et al., 1998; Zou et al., 2003). This 

controversy is reconciled by the finding that the second group of molecules including 

Smac/DIABLO, are released from the mitochondria during death receptor-mediated 

apoptosis. This protein interacts with and sequesters XIAP to remove its inhibition from 

caspase-3 and caspase-9 (Deng et al., 2002). Caspase-3 then can undergo a second proteolytic 

step to be fully activated. This portion of fully activated caspase-3 subsequently cleaves many 

proteins, such as XIAP, to facilitate the apoptotic feedback, functioning as amplification loop 

and finally resulting in irreversible apoptosis (Engels et al., 2000).  
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Figure 1.1. Schematic representation of extrinsic and intrinsic apoptosis pathways. The extrinsic pathway is 
initiated by activation of death receptors upon binding to their respective ligands. The intrinsic pathway employs 
release of various factors from the mitochondria. The two pathways can communicate via cleavage of Bid and its 
translocation to the mitochondria. 
 

 

Not only does mitochondrial dysfunction influence caspase activation in death receptor-

mediated apoptosis, but cross-talk exists between the upstream component of the extrinsic and 

the intrinsic pathways. The typical example is p53-mediated apoptosis. In response to DNA 

damage, p53 not only targets the intrinsic apoptotic molecules like Bax and Puma to activate 

the mitochondrial apoptotic pathway, but also up-regulates the extrinsic pathway genes like 

CD95L and KILLER/DR5 (Wu et al., 1997; Kasibhatla et al., 1998). It was shown that DNA 

damage-induced apoptosis can proceed through death receptor signalling (Hipfner and Cohen, 

2004). These reports would argue for a contribution of death receptor signalling to the 

intrinsic apoptotic pathway.  

 

 

 

1.2. Ceramide-enriched membrane platforms 

 
1.2.1. Plasma membrane organization 
 

The classical ‘fluid mosaic model’ of the plasma membrane suggested by Singer and 

Nicolson in 1972 has been modified by many studies in the last years (Singer and Nicolson, 

1972).  
 

Biological membranes of eukaryotic cells contain, in addition to glycerophosholipids, large 

amounts of sphingolipids and cholesterol, which predominantly localize to the outer leaflet of 

the plasma membrane. The most prevalent sphingolipid in the membrane is sphingomyelin, 

which is composed of a hydrophobic ceramide moiety and a hydrophilic phosphorylcholine 

headgroup. Sphingolipids associate with each other via hydrophilic interactions or with 

cholesterol, via hydrogen bonds and van der Waal interactions (Simons and Ikonen, 1997; 

Harder and Simons, 1997; Brown and London, 1998). This leads to a lateral separation of 

sphingolipids and cholesterol into distinct microdomains, termed membrane rafts. 

Cholesterol fills the voids between the bulky sphingolipids, thus stabilizing the rafts. The 

necessity of cholesterol for membrane rafts is demonstrated by disintegration of rafts 
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following pharmacological extraction of cholesterol from plasma membranes. The tight 

interaction between sphingolipids and cholesterol as well as their high local concentration 

result in a transition of these microdomains into a liquid-ordered or even gel-like phase, 

whereas the other domains of the plasma membrane exist in a more fluid, liquid-disordered 

phase (Simons and Ikonen, 1997; Brown and London, 1998; Kolesnick et al., 2000). 

 

 

1.2.2. Ceramide: biochemistry and synthesis 
 

Ceramide is composed of D-erythro-sphingosine and a fatty acid containing 2-28 carbon 

atoms in the acyl chain. Most physiological ceramides have C16-through C26 chains. Ceramide 

forms the backbone of complex sphingolipids such as cerebrosides, gangliosides and 

especially sphingomyelin.  
 

Ceramide can be generated via two main pathways: 

(a) de novo synthesis of ceramide from sphingosine or sphinganine by activation of 

ceramide synthase. This step occurs in the endoplasmic reticulum, after which ceramide is 

translocated to the Golgi apparatus, where it has a major function as a metabolic precursor of 

glycosphingolipids (Shimeno et al., 1995; Bionda et al., 2004). 

(b) by hydrolysis of sphingomyelin following activation of sphingomyelinases, which can 

be acid, neutral or alkaline (Samet and Barenholz, 1999) (Figure 1.2). 
 

In turn, sphingosine, sphingomyelin and glucosylceramide can be generated from ceramide by 

activation of enzymes such as sphingomyelin synthase, cerebrosidase or ceramide synthase. A 

schematic representation of reactions involving ceramide is depicted in Figure 1.3. 

Furthermore, the enzymes which mediate the key reactions of ceramide are listed in Table 1. 
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       modified after Gulbins and Li, 

Am J Physiol Regul Intergr Comp Physiol, 2006 
 

Figure 1.2. Generation of ceramide from sphingomyelin. Upon activation of sphingomyelinases, 
sphingomyelin is hydrolysed with the subsequent release of ceramide and phosphorylcholine. 
 

 

 

 

 

 
 

Figure 1.3. Schematic representation of biochemical reactions involving ceramide. Ceramide can be 
generated from sphinganine, sphingosine, sphingomyelin and glucosylceramide. The inverse reactions use 
ceramide to generate sphingosine, sphingomyelin and glucosylceramide. 
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Table 1. Overview of ceramide key reactions and of the enzymes mediating these reactions 

 

 

1.2.3. Ceramide: biophysical properties 
 

The most commonly found ceramide (with acyl chains longer than 16 carbon atoms) are 

among the least polar, most hydrophobic lipids in membranes. Their solubility in water is 

negligible, thus free ceramides cannot exist in solution in biological fluids or in cytosol. In 

addition, long chain ceramides cannot give rise to micelles or other aggregates in aqueous 

suspension (Kolesnick et al., 2000). 
 

To explain the effects of ceramide observed in vivo, many studies investigated the behaviour 

of ceramides as they occur in artificial phospholipid bilayers. One main effect observed was 

that long-chain ceramides increase the order of the acyl chains in the bilayers, thus decreasing 

fluidity. Holopainen and co-workers (1997) demonstrated that a natural ceramide increases in 

a dose-dependant manner the acyl chain order in dimyristoyl-phosphatidylcholine bilayers in 

the fluid lamellar phase (Holopainen et al., 1997). A similar effect was observed with a 

chemically defined C16-Ceramide in bilayers composed of 1-palmitoyl-2-

oleoylphosphatidylcholine (Holopainen et al., 1998). Moreover, in situ generation of 

ceramide through the action of sphingomyelinase on bilayers containing phosphatidylcholine 

and sphingomyelin also led to a decreased fluidity (Holopainen et al., 1998).  
 

Another very important behaviour of ceramides was first observed by Huang and co-workers 

(1996). The authors showed that addition of ceramide induced lateral phase separation of fluid 

phospholipid bilayers into regions of gel and liquid crystalline (fluid) phases, with ceramide 
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partitioning largely into the gel phase (Huang et al., 1996). Additional studies from 

Holopainen and colleagues (1997, 1998) detected ceramide-enriched microdomains in fluid 

phosphatidylcholine membranes (Holopainen et al., 1997; Holopainen et al., 1998), while 

Veiga et al. (1999) found lateral separation of ceramide-rich domains with as little as 5 

mole% ceramide (Veiga et al., 1999). Although the causes of domain formation by ceramides 

may be multiple, an important factor may be the high capacity of ceramides for hydrogen 

bonding. Both ceramide and sphingomyelin can act as acceptor and donor of hydrogen bonds 

through their hydroxyl and amide groups (Shah et al., 1995a, b; Holopainen et al., 1998) A 

recent study has provided evidence for hydrogen bonding between sphingomyelin and 

cholesterol as the basis for detergent insolubility of certain membrane fractions (Patra et al., 

1998). 

 

 

1.2.4. Acid sphingomyelinase (ASM) and ceramide-enriched membrane platforms 

Acid sphingomyelinase (ASM) is the first described and the best characterized 

sphingomyelinase (Samet and Barenholz, 1999). It catalyzes the degradation of 

sphingomyelin, a major lipid constituent of the extracellular side of eukaryotic plasma 

membranes, to ceramide and phosphorylcholine (Figure 1.2). Enzyme deficiency due to 

mutations in the ASM gene leads to Niemann–Pick disease, an autosomal recessive 

sphingolipidosis. The infantile type A of Niemann–Pick disease manifests itself in rapid 

neurodegeneration and patients die within three years, whereas Niemann–Pick disease type B 

patients suffer from a non-neurological visceral progression of this disorder (Schuchman and 

Miranda, 1997).  

The enzyme was purified from urine (Quintern et al., 1987) and the full-length cDNA 

encoding ASM was isolated (Quintern et al., 1989; Schuchman et al., 1991). The enzyme was 

shown to be a monomeric 72 kDa glycoprotein containing a protein core of 61 kDa. The full-

length ASM-cDNA contains an open reading frame of 1890 bp encoding 629 amino acids. 

Biosynthesis studies in human fibroblasts revealed stepwise proteolytic processing of a 75-

kDa ASM precursor to form the mature protein. Mature ASM possesses six potential N-

glycosylation sites as was recently shown by N-terminal sequencing (Lansmann et al., 1996) 

(Figure 1.4). Site-directed mutagenesis of the potential glycosylation sites and subsequent 

expression of mutated cDNA constructs indicated that at least five of them are used in vivo 

(Ferlinz et al., 1997). ASM contans 17 cysteines and MALDI analysis revealed that 16 of the 
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cysteines are paired, forming eight disulfide bonds (Lansmann et al., 2003) (Figure 4). Based 

on a process of elimination, the analysis shows that the C-terminal cysteine (Cys629) is the 

unbridged free cysteine (Figure 1.4). Cys629 has been recently shown to be involved in the 

activation mechanism of the ASM via an oxidation reaction (Qiu et al., 2003) (see 

Discussion). 

 

 
modified after Lansmann et al., Eur J. Biochem, 2003 

 

Figure 1.4. Schematic representation of ASM domain structure and disulfide bond pattern. The N-
glycosylation sites are indicated. The disulfide bond pattern shows the presence of three bonds in the activator 
domain and five others in the catalytic domain. The terminal cysteine (Cys629) is free. 
 

 

In particular, generation of ceramide via activation of the ASM has been involved in stress 

responses and apoptosis. ASM induces hydrolysis of the sphingomyelin from membrane rafts 

and releases ceramide. Ceramide molecules dramatically change the biophysical properties of 

rafts because they self-associate (Nurminen et al., 2002) and form small ceramide-enriched 

membrane domains (see chapter 1.2.3.), which spontaneously fuse and lead to formation of 

one or more large ceramide-enriched membrane platforms.  
 

Stimuli which were shown to induce the activation of the ASM and/or a release of ceramide 

and/or formation of ceramide-enriched membrane platforms include CD95 (Cifone et al., 

1994; Cremesti et al., 2001; Grassme et al., 2001a; Kirschnek et al., 2000; Paris et al., 

2001b), CD40 (Grassme et al., 2002), CD20 (Bezombes et al., 2004), TNF (Garcia-Ruiz et 

al., 2003; Schutze et al., 1994; Zhang et al., 2002), FcγRII (Abdel-Shakor et al., 2004), CD5 

(Simarro et al., 1999), CD28 (Boucher et al., 1995), IL-1 receptor (Mathias et al., 1993), PAF 
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receptor (Goggel et al., 2004), P. aeruginosa (Grassme et al., 2003a), S. aureus (Esen et al., 

2001), N. gonorrhoeae (Grassme et al., 1997), Sindbis virus (Jan et al., 2000), Rhinovirus 

(Grassme et al., 2005), γ-irradiation (Paris et al., 2001a; Santana et al., 1996), UV-light 

(Rotolo et al., 2005; Charruyer et al., 2005; Zhang, Y. et al., 2001), or chemotherapeutic 

drugs (Morita et al., 2000; Lacour et al., 2004; Delmas et al., 2004; Yabu et al., 2005).  
 

In general, ceramide-enriched membrane platforms seem to serve for re-organization and 

clustering of receptor molecules, such as CD95 (Grassme et al., 2001 a, b), CD40 (Grassme et 

al., 2002b), FcγRII (Abdel-Shakor et al., 2004) and CD20 (Bezombes et al., 2004). Receptor 

clustering leads to a high receptor density that seems to be required for effective transmission 

of the signal into cells (Figure 1.5). This is supported by the finding that ceramide-enriched 

membrane platforms amplify the signalling via CD95 approximately 100-fold (Grassme et al., 

2003b). 

 

 
modified after Gulbins and Li, 

Am J Physiol Regul Intergr Comp Physiol, 2006 
 

Figure 1.5. Schematic representation of receptor clustering in ceramide-enriched membrane platforms. 
Upon stimulation of cells with the respective stimuli, ASM is activated and induces generation of ceramide from 
sphingomyelin. Ceramide accumulates in platforms on the cell surface and traps the receptors leading to a 
massive aggregation of these receptors within the platforms. 
 

 

Ceramide may also ‘flip’ to the inner side of the cell membrane, although biophysical studies 

suggest that a spontaneous flip of ceramide through the membrane would occur slowly 

(Contreras et al., 2005). However, intracellular ceramide might interact with phospholipase 

A2 (PLA2) (Huwiler et al., 2001), kinase suppressor of Ras (KSR) (Zhang et al., 1997), 



  Introduction 
 

 14

protein phosphatase A2 (PPA2) (Dobrowsky et al., 1993a, b; Dobrowsky and Hannun, 1993), 

protein kinase C (PKC) isoforms (Muller et al., 1995), and/or c-Raf-1 (Yao et al., 1995). 

Ceramide has been described to activate these proteins, resulting in regulation of cellular 

transcription, proliferation, and survival. Furthermore, the TNF receptor was shown to be 

rapidly internalized on activation, and most of the ceramide was released by the acid 

sphingomyelinase within the endosomes (Schneider-Brachert et al., 2004). Endosomal 

ceramide binds to and activates cathepsin D (Heinrich et al., 1999; Schneider-Brachert et al., 

2004), which is released from endosomes into the cytoplasm to trigger apoptosis.  
 

Another target of ceramide and ceramide-enriched membrane platforms, respectively, has 

been recently identified as ion channels. In particular, it was demonstrated that ceramide 

inhibits the potassium channel Kv1.3 and calcium release activated calcium channels (CRAC) 

in lymphocytes (Gulbins et al., 1997; Church et al., 2005; Lepple-Wienhues et al., 1999; 

Szabo et al., 1996). Both channels are central for activation, differentiation, proliferation, and 

regulation of apoptosis; however, at present, the exact mechanism how ceramide blocks these 

channels is not known.  
 

Finally, recent studies indicated an important function of ceramide in infectious biology. 

Bacteria, such as N. gonorrhoeae, and P.aeruginosa (Grassme et al., 2003a; Grassme et al., 

1997) or viruses, such as Rhinovirus and Sindbis virus (Grassme et al., 2005; Jan et al., 

2000), require formation of ceramide-enriched membrane platforms for infection of host cells. 

For N. gonorrhoeae, ceramide platforms seem to cluster receptors of the CEACAM-family 

that function as receptors for Opa proteins of the bacteria, suggesting that ceramide-enriched 

membrane platforms are required for the reorganization of N. gonorrhoeae receptors and 

intracellular signalling molecules that mediate internalization of the pathogens (Grassme et 

al., 1997; Hauck et al., 2000). Studies on P. aeruginosa showed that inhibition of the 

formation of ceramide-enriched membrane platforms prevented the induction of apoptosis of 

infected cells and internalization of the bacteria. Fluorescence microscopy studies revealed 

that ceramide-enriched membrane platforms serve to cluster at least two receptors that have 

been implied in infection with P. aeruginosa, namely CFTR and the CD95 receptor. The 

aggregation of CD95 in ceramide-enriched membrane platforms might be involved in the 

induction of apoptosis by P. aeruginosa (Grassme et al., 2000). The function of CFTR 

clustering in ceramide-enriched membrane domains is less clear, but it might be involved in 

internalization of the bacteria and/or upregulation of CD95 on the cell surface of infected cells 

(Cannon et al., 2003; Pier et al., 1996). Rhinovirus infections resulted in rapid activation of 
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the ASM and formation of ceramide platforms which seem to be involved in the uptake of the 

viruses (Grassme et al., 2005), while Sindbis virus- induced ASM and ceramide is required 

for induction of apoptosis in infected neurons (Jan et al., 2000). 

 

 

 

1.3. TNF-related apoptosis-inducing ligand (TRAIL) 

 
1.3.1. Overview of TRAIL 
 

Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also designated as 

Apo2L, is a type II transmembrane protein of about 33-35 kDa (Liabakk et al., 2002), which 

was originally identified on the basis of sequence homology to CD95 ligand (CD95L) and 

TNF (Wiley et al., 1995; Pitti et al., 1996). Like other TNF family members, TRAIL forms a 

homotrimer, which cross-links three receptor molecules on the surface of target cells 

(Hymowitz et al., 2000; Pan et al., 1997). 
 

While TRAIL mRNA is constitutively expressed in a wide variety of normal tissues, the 

expression of functional TRAIL protein appears to be rather restricted to immune cells, 

including T cells, NK cells, monocytes, dendritic cells (DCs) and neutrophils (Cretney et al., 

2002; Kayagaki et al., 1999). Although the physiological role of TRAIL is not yet fully 

understood, genetically engineered TRAIL-deficient mice do not show gross abnormality, 

except for impaired tumour immunosurveillance (Zerafa et al., 2005) and higher sensitivity to 

experimental autoimmune diseases, such as collagen-induced arthritis (CIA) (Lamhamedi-

Cherradi, 2003a), streptozotocin-induced diabetes (Lamhamedi-Cherradi, 2003a, b), and 

experimental autoimmune encephalomyelitis (EAE) (Cretney et al., 2005), suggesting that the 

main physiological role of TRAIL is in the immune system. 

 

 

1.3.2. TRAIL receptors 
 

Five distinct TRAIL receptor have been identified thus far: DR4 (TRAIL-R1) (Pan et al., 

1997), KILLER/DR5 (TRAIL-R2, TRICK2) (Sheridan et al., 1997; Walczak et al., 1997), 

DcR1 (TRAIL-R3, TRID) (Sheridan et al., 1997; Degli-Esposti et al., 1997a), DcR2 (TRAIL-

R4, TRUNDD) (Degli-Esposti et al., 1997b) and osteoprotegerin (OPG) (Emery et al., 1998) 
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(Figure 1.6). Although all receptors have high sequence homology in their extracellular 

domains, the intracellular domains differ. Based on that, TRAIL receptors are divided into 

two categories: death receptors and decoy receptors. 
 

Both DR4 and DR5 contain a C-terminal death domain that signals downstream caspase 

activation to mediate TRAIL-induced apoptosis. DR4 is a 468 amino acid type I trans-

membrane protein that contains a 23 amino acid signal sequence, a 226 amino acid extra-

cellular region, a 19 amino acid trans-membrane segment and a 220 amino acid cytoplasmic 

domain. There are two cysteine-rich domains (Chaudhary et al., 1997; MacFarlane et al., 

1997). DR5 is also a type I trans-membrane protein of 411 amino acids, with a very large (51 

amino acid) signal sequence, a 132 amino acid extra-cellular region, a 22 amino acid trans-

membrane domain and a 206 amino acid cytoplasmic domain. Like DR4, DR5 also has two 

cysteine-rich domains (MacFarlane et al., 1997). In contrast to humans, mice do not express a 

receptor homologue of DR4 and the mouse DR5-homologue seems to be the only death-

inducing receptor of TRAIL (Wu et al., 1999b).  
 

TRAIL-R3 is a 299 amino acid protein with a 23 amino acid signal sequence, a 217 amino 

acid extra-cellular region and a 19 amino acid trans-membrane domain. Lacking a 

cytoplasmic segment, TRAIL-R3 is bound by a GPI linker and seems to act mainly as a 

‘decoy receptor’ and compete with death receptors DR4 and DR5 for TRAIL binding. 

TRAIL-R4 is similar in function to TRAIL-R3. Although TRAIL-R4 has a trans-membrane 

domain, it contains a truncated death domain which renders it unable to induce apoptosis.  
 

The fifth TRAIL receptor, osteoprotegerin (OPG) is a soluble member of the TNF receptor 

family for which the best described action is the inhibition of RANKL-stimulated osteoclast 

formation. OPG can bind to RANKL and prevent interaction with its cognate receptor RANK 

(receptor activator of NF-κB). However, OPG can also interact with TRAIL. A role for OPG 

as a decoy receptor for TRAIL under physiological conditions remains unclear, because the 

affinity of OPG for TRAIL is rather weak compared to the other TRAIL receptors (Truneh et 

al., 2000). 
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Figure 1.6. Schematic representation of TRAIL and its receptors TRAIL homotrimers cross-link one of the 
five receptors on the target cells: the two death receptors DR4 and DR5, two decoy receptors DcR1 and DcR2 or 
the soluble protein OPG. 
 

 

1.3.3. TRAIL-induced signalling pathways 
 
The current model of TRAIL-induced apoptotic pathway suggests that binding of the ligand 

to DR4 or DR5 receptors results in the recruitment of the adaptor protein FADD, which is 

also crucially involved in triggering apoptotic signals initiated by stimulation of death 

receptors such as CD95 or TNF-R1. However, unlike stimulation via TNF-R1, which leads to 

the recruitment of other adaptor proteins, such as TRADD and RIP, FADD seems to be the 

main adaptor protein involved in signalling via TRAIL death receptors. FADD recruits 

proteins downstream in the pathway that actually effect apoptosis, such as procaspase-8 and 

forms what is known as the Apo2L/TRAIL-DISC (Figure 1.7). In this signalling complex, 

procaspase-8 undergoes auto-proteolytic activation. The formation of the DISC complex is 

pivotal in Apo2L/TRAIL-induced apoptosis. Mice or cell lines deficient in these molecules 

are completely protected from the apoptotic action of Apo2L/TRAIL (Kuang et al., 2000). A 

recently identified adaptor molecule termed death-associated protein-3 (DAP-3) was found to 

directly bind the death domain of the Apo2L/TRAIL death receptors (Miyazaki and Reed, 

2001). DAP-3 also associates with pro-caspase-8 and FADD, and functions to link FADD to 

TRAIL-R1 and TRAIL-R2 (Berger and Kretzler, 2002). However, the exact role of DAP-3 
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remains controversial, since it was demonstrated that DAP-3 is a ribosomal protein localised 

to the mitochondrial matrix and that it remains there during apoptosis (Green, D.R., 2000). In 

type I cells DR4 and DR5 stimulate caspase-8 processing to an extent, which is sufficient to 

activate the effector caspase, caspase-3. Alternatively, in cells where death receptor-induced, 

caspase-8-mediated activation of caspase-3 is limited (type II cells), small quantities of active 

caspase-8 are sufficient to trigger the mitochondria-mediated apoptotic signal.  
 

Apoptosis initiated through the activation of the death receptors depends on cell-extrinsic 

signals. That is, engagement of death ligands that result in the formation and activation of 

DISC, which leads to the proteolytic activation of caspase-3 by caspase 8. On the other hand, 

cell intrinsic apoptosis is usually dependent on cues such as DNA damage or UV irradiation 

to induce apoptosis through the mitochondrial pathway. When this pathway is stimulated, the 

Bcl-2 family member Bax translocates to the mitochondria, the mitochondrial trans-

membrane potential is reduced, and cytochrome c is released into the cytosol, activating 

caspase-9 and subsequently the effector caspases (Green D.R., 2000) (Figure 1.7).  
 
Pro-apoptotic members of the Bcl-2 family such as Bax (or its homologue Bak) are 

counteracted by the anti-apoptotic members of the Bcl-2 family, such as Bcl- 2 or Bcl-XL 

(Bouillet and Strasser, 2002). Proteins such as Bim, Bid, Puma and Noxa, contain only one of 

the four Bcl-2 homology domains (BH3) which are common to the rest of the Bcl-2 family 

and function only to augment the activity of the pro-apoptotic Bcl-2 family members (Bouillet 

and Strasser, 2002). When cleaved by caspase-8, Bid translocates to the mitochondria and 

activates Bax and Bak, providing a mechanism for crosstalk between the death receptors and 

the intrinsic pathway (Li et al., 1998; Luo et al., 1998) (Figure 1.7).  
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Bouralexis et al., Apoptosis, 2005 

 

Figure 1.7. Schematic representation of TRAIL-induced apoptosis pathways. Upon binding of TRAIL to 
either DR4 or DR5, two types of apoptosis can occur: in type I cells the extrinsic apoptosis pathway is sufficient 
to kill the cells, while in type II cells, also the intrinsic pathway is employed for successful induction of 
apoptosis. 
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In addition to the proteolytic caspase cascade, caspase activity is further regulated by 

inhibitors of apoptosis (IAPs). The best characterized IAP is XIAP, which inhibits caspase-9 

and caspase-3 by binding to their intermediate and fully cleaved forms (Deveraux and Reed, 

1999). In cells that are undergoing apoptosis, caspases are liberated from IAP inhibition, by a 

process that is made possible by Smac/DIABLO (Du et al., 2000; Verhagen et al., 2000). 

Smac/DIABLO is released from the mitochondria of apoptotic cells and accelerates cell death 

activation by displacing XIAP from the caspases (Du et al., 2000; Verhagen et al., 2000) 

(Figure 1.7).  

 

 

1.3.4. TRAIL and cancer therapy 
 

Death ligands have been widely investigated in part due to their potential in cancer therapy. 

Unlike many conventional chemotherapeutic drugs, they stimulate cell death in tumour cells 

independently of the p53 tumour suppressor gene, which is often found inactivated in human 

cancers (Sigal and Rotter, 2000). However, clinical application of the prototypic death ligands 

CD95L and TNF has been hampered by toxicity to normal tissues. Intravenous TNF 

administration causes hypotension and a systemic inflammatory syndrome that resembles 

septic shock due to a strong activation of pro-inflammatory NF-κB. Injection of CD95L 

induces hepatocyte apoptosis and lethal liver failure in mice (Nagata S., 1997). Therefore, 

when TRAIL was shown to have relatively little toxicity towards many types of normal cells, 

it became a very promising cancer therapeutic agent (Ashkenazi et al., 1999). 
 

TRAIL appears to induce apoptosis predominantly in transformed cells (Wiley et al., 1995; 

Pan et al., 1997; Sheridan et al., 1997), with the exception of some normal cells, such as 

stimulated splenocytes, memory- or dendritic cells (Hayakawa et al., 2004; Janssen et al., 

2005; Ursini-Siegel et al., 2002; Zhang, L. et al., 2002). Initially, the high expression of 

decoy receptors in normal cells, but not tumour cells was proposed to be the major 

mechanism resulting in differential sensitivity to TRAIL (Ashkenazi and Dixit 1998). 

However, in most cancer cell lines, DR4 and/or DR5 are expressed, whereas decoy receptors 

expression is less frequent and does not correlate with resistance to TRAIL (Evdokiou et al., 

2002; Petak et al., 2000; Nimmanapalli et al., 2001). Thus, there are probably additional 

determinants of sensitivity besides decoy receptor expression.  
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Either DR4 or DR5 must be present on the cell surface to transduce the TRAIL signal. 

Deficiency or mutation of death receptors confers tumour cell resistance to TRAIL-induced 

apoptosis (Kim et al., 2000; Lee et al., 1999; McDonald et al., 2001; Fisher et al., 2001). 

Transport of TRAIL receptors to the cell membrane seems also very important to determine 

TRAIL sensitivity. Tumour cells may become resistant to TRAIL through regulation of the 

death receptor cell surface transport (Jin, Z. et al., 2004). 
 

Caspase expression and function appears to be frequently impaired by epigenetic mechanisms 

in cancer cells (Baylin and Bestor, 2000). Caspase-8 expression was found to be inactivated 

by hypermethylation of regulatory sequences of the caspase-8 gene in a number of different 

tumour cells derived from neuroblastoma, malignant brain tumours, Ewing tumour and small 

lung cell carcinoma and also in primary tumour samples. Importantly, restoration of caspase-8 

expression by gene transfer or by de-methylation treatment sensitized resistant tumour cells 

for death receptor- or drug-induced apoptosis (Philchenkov et al., 2004).  
 

The caspase activation inhibitor FLIP acts as important negative regulator of TRAIL-induced 

apoptosis. Overexpression of FLIP protects cells from TRAIL-induced apoptosis (Kim et al., 

2003), and suppression of FLIP by RNAi sensitizes cells to TRAIL-induced apoptosis (Ricci 

et al., 2004). A genetic screen in human placental cDNA retroviral library isolated c-FLIP(S) 

as a suppressor of TRAIL signalling in TRAIL-resistant clones (Burns and El-Deiry, 2001). 

Correlations between FLIP levels and TRAIL resistance have also been observed (Griffith et 

al., 1998). Degradation of FLIP following exposure to a PPAR selective ligand apparently 

sensitizes tumour cells to Apo2L/TRAIL-induced apoptosis (Kim et al., 2002). However, 

other studies failed to find such a correlation (Zhang et al., 1999). Moreover, recent work 

suggests that FLIP can actually promote caspase-8 activation in response to death ligand 

(Micheau et al., 2002; Zhang et al., 1999). Thus more work is needed to further analyze the 

role of FLIP in the TRAIL resistance. 
 

IAPs can inhibit TRAIL-induced apoptosis by modulating caspase activity (Suliman et al., 

2001), and transfection of Smac/DIABLO, an inhibitor of IAPs, overcomes the resistance to 

TRAIL-induced apoptosis (Deng et al., 2002). A comparison of Apo2L/TRAIL-sensitive and 

-resistant melanoma cell lines showed a strong correlation between binding of XIAP to 

cleaved caspase-3 and TRAIL sensitivity. More Smac/DIABLO is released to the cytosol in 

TRAIL-sensitive cell lines (Zhang, X.D. et al 2001). Smac/DIABLO agonists sensitize human 

acute leukaemia Jurkat T cells for apoptosis induction by Apo2L/TRAIL and induces 
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regression of malignant glioma in vivo (Fulda et al., 2002). A small molecule mimic of Smac 

strongly sensitizes both TNF and TRAIL-induced caspase activation and apoptosis (Li et al., 

2004). 
 

Although TRAIL can activate the mitochondrial pathway, the importance of the 

mitochondrial pathway in TRAIL-induced apoptosis is still controversial. Overexpression of 

Bcl-2 or Bcl-XL does not block TRAIL-induced apoptosis in lymphoid cells (Keogh et al., 

2000). In contrast, overexpression of Bcl-2 or Bcl-XL inhibits TRAIL-induced apoptosis in 

human lung or prostate cancer cells (Munshi et al., 2001). Thus, involvement of the 

mitochondria in TRAIL-induced apoptosis may depend on cell type, like type I and type II 

cells in CD95-induced apoptosis (Ozoren et al., 2002). In cells requiring mitochondrial 

involvement, blockade of the mitochondrial pathway may change TRAIL sensitivity. For 

example, Bax-null HCT-116 cells are completely resistant to TRAIL-induced apoptosis. 
 

Other cell signalling pathways may also be involved in the regulation of TRAIL sensitivity, 

including the Akt/PBK, Myc, NF-κB or p53 pathways. Constitutive activation of Akt/PBK in 

several cancer cells has been shown to confer resistance to TRAIL (Shankar and Srivastava, 

2004; Martelli et al., 2003). In contrast, Myc seems to be a positive regulator of TRAIL 

sensitivity (Tewari and Vidal, 2003). Myc has been shown to up-regulate expression of 

TRAIL receptors in some tumour cells (Wang et al., 2004) c-Myc can enhance the apoptotic 

activity of death receptor signalling proteins by engaging the mitochondrial apoptotic 

pathway (Klefstrom et al., 2002). p53 is another important regulator of TRAIL sensitivity. 

KILLER/DR5 was originally discovered as DNA damage-inducible, p53-regulated gene (Wu 

et al., 1997). p53 may also regulate the expression of DR4 in a limited number of tumours 

(Liu et al., 2004). TRAIL can activate NF-κB weakly both in vivo and in vitro. Although most 

studies have shown that NF-κB acts as an inhibitor of TRAIL-induced apoptosis (Eid et al., 

2002; Luo et al., 2004), its role as an activator has also been reported (Shetty et al., 2002).  
 

Selective cytotoxicity to tumour cells by TRAIL makes it a promising death ligand for clinical 

application. However, many cancer cells are resistant to TRAIL-induced apoptosis. 

Application of TRAIL alone may not be effective in these cancers. Intensive effort has been 

made to sensitize TRAIL-resistant tumour cells. Various means have been found to act 

synergistically with TRAIL: chemotherapeutic drugs, such as doxorubicin, irradiation, histone 

deacetylase inhibitors, stress inducers, proteasome inhibitors, interferon, small molecules like 

peptide mimicking Smac and Bax, or molecules like retinoid or cyclooxygenase-2 inhibitors 
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(Shankar and Srivastava, 2004). The mechanisms underlying these synergies vary between 

therapies but all appear to be related to the TRAIL signalling pathway or regulatory 

mechanisms of TRAIL signalling. Many of these treatments have been applied in clinical 

cancer therapy, but toxicity is still a problem. Sub-toxic doses of some agents listed above 

combined with TRAIL may provide a way to efficiently kill tumour cells with less toxicity to 

normal cells.  

 

 

 

1.4. Doxorubicin 

 
1.4.1. Overview of doxorubicin 
 

Doxorubicin (adriamycin or hydroxyldaunorubicin) belongs to the group of anthracyclines, 

which are a class of chemotherapeutic agents based upon daunosamine and tetra-hydro-

naphthacene-dione (Figure 1.8). Anthracyclines, which include also daunorubicin, epirubicin 

and idarubicin, rank among the most effective anti-cancer drugs ever developed, and they are 

used to treat a wide range of cancers, including leukemias, lymphomas, breast, uterine, 

ovarian, and lung cancers (Weiss R.B., 1992). The major limitation in clinical use of 

anthracyclines consists in development of resistance in tumour cells as well as toxicity in 

healthy tissues (especially the heart). To avoid the latter, the maximum recommended 

cumulative doses of daunorubicin and doxorubicin were tentatively set at 500 and 450-600 

mg/m2, respectively. 

 

Figure 1.8. Structure of doxorubicin. The chemical structure of doxorubicin consists of a tetracyclic ring, with 
the sugar daunosamine attached by a glycosidic linkage. Structurally, doxorubicin is related to daunomycin 
(daunorubicin) and differs only in hydroxyl group substitution (instead of hydrogen) at the alkyl side chain at 
position '9' of the 'A' ring.  
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1.4.2. Signalling pathways activated by doxorubicin 
 

Due to its wide use in cancer treatment, doxorubicin has been the object of intense basic 

research to identify the signalling pathways induced by this drug. The main mechanism of 

doxorubicin-induced apoptosis is DNA-damage. Binding of anthracyclines to DNA increases 

Tm of DNA melting point by 30°C as saturation of the potential binding sites is reached 

(Chaires et al., 1982). Increase in Tm values of DNA is due to stabilization of DNA double 

helix resulting from the intercalation of the drug and can be used to explain DNA and RNA 

synthesis inhibition, as well as the effects of these drugs.  
 

Although most of the interaction of the anthracycline antibiotics involves intercalation 

between the bases in DNA, these drugs can also alter the structure and function of this 

molecule (and hence chromatin) in many different ways. These structural changes may 

ultimately contribute to the apoptotic process induced by anthracyclines in cancer cells (Hale 

et al., 1996). One such change involves the covalent modification of DNA (Purewal and 

Liehr, 1993). The formation of anthracycline-DNA adducts has been observed to occur both 

in vitro and in vivo (Purewal and Liehr, 1993) through a mechanism that involves the iron-

complex of the drug (Parker et al., 1999) The formaldehyde production resulting from the 

oxidative stress induced by the drug-metal complex produces a covalent attachment to the G-

bases of DNA that functions as a virtual interstrand cross-linker (Parker et al., 1999; Taatjes 

et al., 1999). Such DNA cross-linking could participate in the chromatin aggregation process 

occurring during apoptosis.  
 

The chelation of ions by anthracyclines can also result in the generation of reactive oxygen 

species (ROS), which is responsible for the free radical cytotoxicity of these drugs (Muller et 

al., 1998). As it occurs with other quinines, these antibiotics can be enzymatically reduced to 

semiquinone radicals, which, in the presence of oxygen and iron, can result in the production 

of highly DNA-damaging oxygen radicals (Muller et al., 1998). 
 

The intercalation process itself results in a distortion of the DNA conformation that causes the 

inhibition of Topoisomerase II (Tewey et al., 1984). The effects of anthracyclines on this 

enzyme have been extensively studied (Kellner et al., 2002). In this instance, the mechanism 

of action involves the binding of the drug to the Topoisomerase II-DNA complexes forming a 

ternary complex (Binaschi et al., 2001). Such binding interferes with the re-ligation step of 

the Topoisomerase resulting in double-stranded DNA breaks (Kellner et al., 2002). 
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Recent studies suggest, however, that doxorubicin and anthracyclines in general can induce 

apoptosis regardless of DNA damage. Thus far, doxorubicin has been shown to induce 

apoptosis by direct release of cytochrome c from mitochondria (Clementi et al., 2003), JNK 

activation (Yu et al., 1996; Koyama et al., 2006), p38 MAPK activation, which inhibited in 

turn the pro-survival factor Akt and Bad phosphorylation (Grethe et al., 2006), PKC/JNK/Bak 

pathway stimulation (Panaretakis et al., 2005) or induction/up-regulation of CD95L/CD95 

system (Friesen et al., 1999). Recently, it was shown that doxorubicin induces ceramide 

production; however, the pathway of ceramide generation remains controversial (Morita et 

al., 2000; Andrieu-Abadie et al., 1999; Gouaze et al., 2001; Mercier et al., 2003). 

 

 

 

1.5. Aims of the study 
 

Our group has demonstrated that activation of the ASM, the subsequent ceramide release and 

accumulation in platforms on the cell surface are crucial events for apoptosis induced by 

TNF-family member CD95. Generation of ceramide platforms served to trap and cluster the 

CD95 receptors, leading to the successful induction of apoptosis. 
 

The present study will investigate whether stimulation of cells with TRAIL results in the 

activation of ASM, formation of ceramide-enriched membrane platforms and clustering of 

DR5 receptors at the plasma membrane. The importance of ASM and ceramide platforms for 

DR5 clustering and TRAIL-induced apoptosis will be tested by employing ASM-deficient 

cells. 
 

Furthermore, the mechanism of ASM activation will be addressed. It will be investigated 

whether stimulation with TRAIL induces free radical oxygen production which might mediate 

activation of the ASM.  
 

The last part of the study will focus on the mechanism of amplification of TRAIL-induced 

apoptosis by the chemostatic drug doxorubicin. It will be tested whether doxorubicin-induced 

ceramide release is able to sensitize cells to low doses of TRAIL. Moreover, the pathway of 

ceramide generation will be addressed. 
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2. MATERIALS 
 

 

2.1. Chemicals 
 

Acetic acid (C2H4O2)  Merck, Darmstadt 
 

Adenosine Tri-Phosphate (ATP)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

C16-Ceramide  Biomol, PA, USA 
 

Calcium chloride (CaCl2)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Cardiolipin  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Chloroform (CHCl3)  Ridel-de Haen, Seelze 
 

Cytohrome c  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

DABCO (1,4-Diazabicyclo(2,2,2)octane)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Deoxycholic acid (C24H40O4)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Diethylenetriaminepentaacetic Acid 
(DETAPAC)  
 
Dimethylsulfoxid (DMSO) 

Sigma-Aldrich Chemie GmbH, 
Steinheim 
 
 
Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Dithiothreitol (DTT)  Carl-Roth GmbH & Co, Karlsruhe  
 

Doxorubicin hydrochloride (Adriblastin)  
 
Ethanol (C2H5OH) 

Pharmacia GmbH, Erlangen 
 
Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Ethylenediamine Tetraacetic Acid (EDTA)  Serva Electrophoresis GmbH, 
Heidelberg 
 

FITC-Annexin Fluos  Roche Molecular Biochemicals, 
Penzberg 



Materials 
 

 27

Glucose  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Glycerol  Fluka Chemie GmbH, Buchs 
 

Hepes  Carl-Roth GmbH & Co, Karlsruhe 
 

Histopaque (Ficoll)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Hydrochloric acid (HCl)  Sigma-Aldrich Chemie GmbH, 
Steinheim  

Imidazole (C3H4N2)  Sigma-Aldrich Chemie GmbH, 
Steinheim  

Interleukin-2 (IL-2)  Roche Molecular Biochemicals, 
Penzberg 
 

Magnesium chloride (MgCl2)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Magnesium sulphate (MgSO4)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Methanol (CH3OH)  Fluka Chemie GmbH, Buchs  
 

Mineral oil  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Mowiol  Kuraray Specialities Europe GmbH, 
Frankfurt 
 

N-acetylcysteine (NAC)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

N-octylglucopyranoside  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Paraformaldehide (PFA)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Phytohemagglutinin (PHA)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Potassium chloride (KCl)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Potassium dihydrogenphosphate (KH2PO4)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Propidium Iodide (PI)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
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Scintillation Cocktail  Beckman Coulter, Fullerton, CA, USA 
 

Sodium acetate (CH3COONa)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Sodium chloride (NaCl)  Carl-Roth GmbH & Co, Karlsruhe 
 

Sodium dodecyl sulphate (SDS)  Serva Electrophoresis GmbH, 
Heidelberg  
 

Sodium fluoride (NaF)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Sodium hydroxide (NaOH)  Sigma-Aldrich Chemie GmbH, 
Steinheim 
 

Sodium phosphate (Na2HPO4)  Merck, Darmstadt 
 

Sodium pyrophosphate (Na4P2O7)  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Tiron  Fluka Chemie GmbH, Buchs 
 

Tris  Carl-Roth GmbH & Co, Karlsruhe 
 

Triton X-100  Sigma-Aldrich Chemie GmbH, 
Steinheim  
 

Trypan Blue Sigma-Aldrich Chemie GmbH, 
Steinheim  

 

 

 

2.2. Tissue culture materials 
 

RPMI-1640  Gibco/Invitrogen, Karlsruhe 

MEM (EAGLE)  Gibco/Invitrogen, Karlsruhe 

L-Glutamine  Gibco/Invitrogen, Karlsruhe 

Sodium pyruvate  Gibco/Invitrogen, Karlsruhe 

Peniccilin/Streptomycin  Gibco/Invitrogen, Karlsruhe 

MEM non-essential aminoacids  Gibco/Invitrogen, Karlsruhe 
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Fetal Calf Serum (FCS)  Gibco/Invitrogen, Karlsruhe 

Trypsin  Gibco/Invitrogen, Karlsruhe 

Cell dissociation buffer enzyme-free   Gibco/Invitrogen, Karlsruhe 

Tissue culture test plates  TPP, Trasadingen, Switzerland 

Tissue culture flasks 75cm2  TPP, Trasadingen, Switzerland 

 

 

 

2.3. Antibodies and ligands 
 

recombinant TRAIL/TNFSF10  R&D Systems 
 

anti-DR5/TRAIL-R2  R&D Systems 
rabbit IgG 
 

 

anti-ceramide (clone 15B4)  Sigma 
mouse IgM 
 

 

anti-CD3ε  BD-Pharmingen, San Diego, CA, USA 
hamster IgG 
 

 

anti-6 x Histidine  Qiagen 
mouse IgG 
 

 

FITC-goat anti-mouse IgM  Jackson Immunoresearch, West Grove, 
PA, USA 
 

Cy3-goat anti-armenian hamster IgG  Jackson Immunoresearch, West Grove, 
PA, USA 
 

Cy3-donkey anti-rabbit IgG  Jackson Immunoresearch, West Grove, 
PA, USA 
 

Cy5-donkey anti-rabbit IgG  Jackson Immunoresearch, West Grove, 
PA, USA 
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2.4. PCR primers 
 

ASM-PA 1-2 Hermann GbR, Freiburg 

5’ –CGA GAC TGT TGC CAG ACA TC- 3’ 

 

 

ASM-PA 2-2 Hermann GbR, Freiburg 

5’ –GGC TAC CCG TGA TAT TGC TG- 3’ 

 

 

ASM-PS-2 Hermann GbR, Freiburg 

5’ –AGC CGT GTC CTC TTC CTT AC- 3’ 

 

 

Myco P1 Hölle & Hüttner AG, Germany 

5’ –GTG CCA GCA GCC GCG GTA ATA C- 3’ 

 

 

Myco P4 Hölle & Hüttner AG, Germany 

5’ –TAC CTT GTT ACG ACT TCA CCC CA- 3’  

 

 

 

2.5. Cell lines  
 

BJAB  established human Burkitt B-lymphoma 
cell line; gift from Dr. Verena 
Jendrossek (University of Tübingen) 

  
A549  established human lung carcinoma cell 

line; American Type Culture Collection 
(ATCC), Manassas, USA 

  
L929  established murine fibrosarccoma cell 

line; American Type Culture Collection 
(ATCC), Manassas, USA 

 

All cell lines were tested monthly by PCR to exclude mycoplasma contamination. 
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2.6. Animals 
 

ASM-deficient mice (on a C57Bl/6 background) were kindly provided by Dr. R. Kolesnick 

(Memorial Sloan-Kettering Cancer Center, NY, USA). Syngenic wild-type (WT) mice from 

the same heterozygous breeding were used as control.  

ASM WT and ASM-deficient mice were propagated in the Animal Facility of the 

Uniklinikum Essen. Homozygocity of ASM WT and ASM-deficient mice was verified by 

PCR analysis. 

Mice were housed in pathogen-free conditions under diurnal lighting alternated with a dark 

phase between 18.00 – 6.00, allowed daily food “Zuchthaltungsfutter Maus-Ratte 10 H 10” 

(Eggersmann) and water ad libitum. 

All experiments have been approved by the state animal welfare board. 

 

 

 

2.7. Radioactive substances 
 

[32P] gamma-ATP  Hartmann Analytic, Braunschweig 

[14C] Sphingomyelin  Perkin Elmer, Boston, MA, USA 

 

 

 

2.8. Other materials 
 

ADEFO X-Ray Developer Concentrate  Adefo Chemie GmbH, Dietzenbach 
 

ADEFO X-Ray Fixer Concentrate  Adefo Chemie GmbH, Dietzenbach 
 

anti-MHC Class II Microbeads  Miltenyi Biotec, Bergisch Gladbach 
 

Cover slips 12 mm diameter Carl-Roth GmbH & Co, Karlsruhe 
 

Cryo 1C Freezing container Nalgene, USA 
 

Cryovials Carl-Roth GmbH & Co, Karlsruhe  
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Cuvettes 10 x 4 x 45 mm Sarstedt, Nümbrecht 
 

FACS Polystyrene Round-Bottom Tubes  Beckton Dickinson Labware, Le Point 
de Claix, France 
 

MACS LD Separation Columns  Miltenyi Biotec, Bergisch Gladbach 
 

Microscopy glass slides 76 x 26 mm Engelbrecht, Edermünde 
 

Minisart syringe filters  
 
Neubauer chamber 0.1 mm 
 
Parafilm 

Vivascience AG, Hannover 
 
Marienfeld, Germany 
 
Peckiney, Chicago, IL, USA 
 

Polyethylene vials 20 ml Packard, USA 
 

PP-test tubes  Greine Bio-one GmbH, Frickenhausen 
 

Silica G60 TLC plates Merck, Darmstadt 
 

sn-1,2-Diacylglycerol (DAG) Biotrak Assay 
Reagents System  
 

Amersham Biosciences, Freiburg 
 

Steritop Vacuum-driven disposable top filters  
 

Millipore, Billerica, MA, USA 

Whatman filter paper Whatman, Maidstone, UK 
 

X-Ray films  Amersham Biosciences, 
Buckinghamshire, UK 

 

 

 

2.9. Special laboratory equipment 
 

Portable Datalogging Spectrophotometer  Bachofer, Reutlingen, Germany 
 

BD FACSCalibur flow cytometer  BD Biosciences, San Jose, CA, USA 
 

Leica DMIRE 2 microscope with TSP2 module 
  

Leica Microsystems, Germany 

TriCarb Liquid scintillation Analyzer  Perkin Elmer, USA 
 

SpeedVac (Vacuum Concentrator) Bachofer, Reutlingen, Germany 
 

Sonorex bath sonicator Bandelin electronic, Berlin, Germany 
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2.10. Buffers and Solutions 
 

Annexin-binding buffer  10 mM Hepes pH 7.4  
140 mM NaCl  
5 mM CaCl2 
 

ASM lysis buffer  0.1% Triton X-100  
50 mM sodium acetate pH 5.0 
 

C16-Ceramide stock solution  1 mM C16-ceramide  
10% N-octylglucopyranoside 
 

Complete MEM (EAGLE)  500 ml MEM (EAGLE)  
10% FCS  
10 mM Hepes pH 7.4  
2 mM L-Glutamine  
1 mM sodium pyruvate  
100 µM non-essential amino acids  
100 Units/ml penicillin  
100 µg/ml streptomycin 
 

Complete RPMI-1640  500 ml RPMI-1640  
10% FCS  
10 mM Hepes pH 7.4  
2 mM L-Glutamine  
1 mM sodium pyruvate  
100 µM non-essential amino acids  
100 Units/ml penicillin  
100 µg/ml streptomycin 
 

DAG-assay Buffered Saline Solution  135 mM NaCl  
1.5 mM CaCl2  
0.5 mM MgCl2  
5.6 mM Glucose  
10 mM Hepes pH 7.2 
 

DAG-assay detergent solution  
 
 
 
DAG-kinase diluent 

7.5% N-octylglucopyranoside  
5 mM cardiolipin  
1mM DETAPAC 
 
1 mM DETAPAC (pH 6.6) 
0.01 M imidazole/HCl 
 

DAG-kinase reaction buffer  100 mM imidazole/HCl pH 6.6  
100 mM NaCl  
25 mM MgCl2  
2 mM EDTA  
2.8 mM DTT  
5 µM ATP  
10 µCi [32P] gamma-ATP 



Materials 
 

 34

Doxorubicin stock solution  3.4 mM Doxorubicin  
Ethanol 
 

FACS buffer  Hepes/Saline pH 7.4  
1% FCS 
 

Hepes/Saline  132 mM NaCl  
20 mM Hepes pH 7.4  
5 mM KCl  
1 mM CaCl2 
0.7 mM MgCl2  
0.8 mM MgSO4  
 

MACS buffer  PBS pH 7.2 
0.5% BSA  
2 mM EDTA 
 

Moviol  6 g Glycerol  
2.4 g Mowiol  
6 ml H2O  
12 ml 0.2 M Tris pH 8.5  
0.1% DABCO 
 

PFA stock solution  8% PFA  
PBS 
 

Phosphate Buffered Saline (PBS)  4 mM MgSO4  
7mM CaCl2  
1.4 mM KH2PO4  
137 mM NaCl  
2.7 mM KCl  
6.5 mM Na2HPO4 
 

SDS-lysis buffer  0.1% SDS  
0.5% deoxycholic acid  
1% Triton X-100  
10 mM EDTA  
25 mM Hepes pH 7.3  
10mM sodium pyrophosphate  
10 mM NaF  
125 mM NaCl 
 

Trypsin  0.25% Trypsin  
5 mM Glucose  
1.3 mM EDTA 
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3. METHODS 
 

 

3.1. Tissue culture techniques 

 

3.1.1. Culture of established cell lines 

 

3.1.1.1. Culture and passage of cells 

BJAB lymphoma cells were maintained in complete RPMI-1640 medium; L929 and A549 

cells were maintained in complete MEM (EAGLE) medium (see Materials) at 37°C in a 5% 

CO2 atmosphere. For the adherent cells (L929 and A549) passage of cells was achieved by 

incubation with trypsin solution to dislodge the cells from the flask wall. Prior to that, the 

cultures were examined using a light microscope, to assess the degree of confluence. Media, 

PBS and trypsin were pre-warmed at 25°C. The cell monolayer was washed with PBS and 

trypsin was added. Detachment of cells was assessed by light microscopy. Cells were then re-

suspended in medium, transferred to fresh flasks and kept incubated at 37°C. 

 

3.1.1.2. Freezing and thawing of cells 

The basic principle of successful cryo-preservation is a slow freeze and a quick thaw of cells. 

For the freezing step, DMSO was used to protect cells from ice crystal formation, which 

causes cell rupture. The freezing medium (see Materials) was prepared in advance and kept at 

4°C. Cells were collected, counted with a Neubauer chamber and re-suspended at a 

concentration of 1 x 106 cells/ml in freezing medium. The cell suspension was transferred in 

cryo-protective vials which were placed at -80°C in a Cryo 1C Freezing Container overnight. 

For long-term storage, cells were placed in a liquid nitrogen storage vessel. 
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To thaw the cells, the vials from liquid nitrogen storage were transferred to a water bath at 

37°C. After thawing, cells were washed with medium to dilute the DMSO, re-suspended in 

fresh medium, transferred to culture flasks and incubated at 37°C. 

 

 

3.1.2. Culture of T splenocytes 

 

3.1.2.1.Obtaining single-cell suspensions 

For the studies employing murine splenic T cells, it was necessary to obtain initially a single 

cell suspension. To this purpose, spleens were collected under sterile conditions and 

mechanically disrupted between two sterile glass slides. Further passaging through 20 G 

needles ensured disruption of loose clumps. Finally, the cell suspension was left at rest for 5 

minutes to allow settling of cell-clumps on the bottom of the plate. The supernatant was 

collected and used for further processing. 

 

3.1.2.2. Separation of mononuclear cells 

Separation of mononuclear cells (T and B splenocytes) was achieved by Histopaque (Ficoll) 

gradient centrifugation. The procedure was carried out in PP-tubes, by slowly pipeting the 

spleen-cells suspension over the pre-warmed (25°C) Histopaque (2:1 v/v). The samples were 

centrifuged at 800 x g for 20 min at room temperature, resulting in the accumulation of 

lymphocytes at the interface Histopaque/medium. After removing the upper layer, the 

lymphocyte layer was transferred in fresh PP-tubes and washed two times with RPMI-1640 at 

450 x g, 5 min each. 
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3.1.2.3. Isolation of T cells by MACS 

To obtain a pure T cell population, magnetic cell sorting (MACS) was used. To this purpose, 

splenic lymphocytes were counted with a Neubauer chamber, pelleted by centrifugation at 

300 x g for 10 min, after which the pellet was re-suspended in 90 µl MACS buffer plus 10µl 

anti-MHC Class II microbeads per 107 cells and incubated for 15 min at 4°C. The anti-MHC 

Class II microbeads bind to MHC Class II-positive cells, therefore, they are appropriate for 

isolation of untouched T cells from a certain population (negative selection). After incubation 

with the microbeads, cells were washed with MACS buffer at 300 x g for 10 min and re-

suspended in 500 µl MACS buffer (for up to 108 cells). Magnetic separation was performed 

by running the samples through LD depletion columns. The effluent representing the 

unlabeled T cells was collected. 

 

3.1.2.4.Cultivation and stimulation of isolated T cells 

After MACS separation, splenic T cells were washed two times with RPMI-1640 at 450 x g, 5 

min each and cultured in complete RPMI-1640. To induce expression of DR5 receptors, T 

splenocytes were stimulated for 48-72 hrs with 10 µg/ml phytohemagglutinine (PHA) and 5 

Units/ml murine interleukin-2 (IL-2). 

 

 

3.1.3. Viability control by Trypan-blue exclusion 

 

The Trypan Blue Dye exclusion is a screening test for cell mortality under in vitro conditions. 

Cells were taken in suspension, gently mixed with 0.4% Trypan Blue solution and counted 

after 3 min staining using a Neubauer chamber. The numbers of viable cells (seen as bright 

cells) and non-viable cells (stained blue) were evaluated using a light microscope with 20-fold 

magnification. 
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3.2. Cytometry techniques 

 

3.2.1. Flow cytometry 

 

Fluorescence Activated Cell Sorting (FACS) allows the analysis and sorting of cell 

populations based on their morphology and fluorescence after staining with different 

fluorochrome-conjugated antibodies. 

 

3.2.1.1. Staining for surface molecules 

To assess DR5 expression or release of ceramide on the plasma membrane, cells were treated 

as indicated, washed once in HEPES/Saline (see Materials) and fixed in 2% 

paraformaldehyde (PFA) in PBS (pH 7.4) for 15 min at room temperature. Cells were washed 

once in FACS buffer (see Materials) and incubated with the indicated primary antibodies for 

45 min at room temperature. Anti-DR5 antibodies were diluted 1:100, anti-ceramide-

antibodies were diluted 1:50 in FACS buffer. The samples were washed again and incubated 

with the respective fluorescent secondary antibodies for 30 min at room temperature, in the 

dark. Cy3-coupled antibodies were diluted 1:1000, while FITC-coupled antibodies were 

diluted 1:500 in FACS buffer. Cells were finally washed two times, re-suspended in 300 µl 

FACS buffer and transferred into FACS polystirene tubes.  

When adherent cells (L929 and A549) were analysed for DR5 expression, particular care was 

taken when detaching cells from the flask/plate bottom. Since trypsin treatment can destroy 

surface molecules such as receptors, a non-enzymatic method (Cell Dissociation Buffer) was 

used to this purpose. 
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3.2.1.2. Detection of apoptotic cells 

Detection of apoptotic cells was performed mainly by FITC-Annexin V staining. During early 

apoptotic cell death, phosphatidylserine is translocated to the outer leaflet of the plasma 

membrane and becomes available for Annexin, which is a calcium-dependant phospholipids-

binding protein with high affinity for phosphatidylserine. After stimulation, 2 x 105 

cells/sample were washed once in Annexin-binding buffer (see Materials) and incubated with 

FITC-Annexin V diluted 1:50 in Annexin-binding buffer for 15 min, at room temperature, in 

the dark. Cells were washed two more times, re-suspended in 300 µl Annexin-binding buffer 

and analysed by FACS. 

To differentiate between apoptosis and necrosis, a FITC-Annexin V/Propidium iodide (PI) 

staining was performed. Apoptotic cells, with the exception of late apoptotic, become 

Annexin V-positive without becoming permeable to PI. PI is a nucleic acid dye, which emits 

red fluorescence when intercalated in nucleic acids. The dye enters the non-viable cells but 

does not penetrate the intact membrane of viable cells. This technique allows the 

differentiation of living cells (FITC-Annexin- PI-), early apoptotic (FITC-Annexin+ PI-), late 

apoptotic (FITC-Annexin+ PI+) or necrotic cells (FITC-Annexin- PI+). To this purpose, 

stimulated cells were incubated with FITC-Annexin and PI, both diluted 20 µl/ml in Annexin-

binding buffer. After 15 min incubation at room temperature, samples were washed two times 

and analysed by FACS. 

 

 

3.2.2. Immunofluorescence 

 

To analyse DR5 and ceramide by fluorescence/confocal microscopy, cells were fixed and 

stained as described above (3.2.1.1.). In contrast to T splenocytes or BJAB cells, adherent 

cells (L929 and A549) were grown directly on cover-slips and the subsequent staining steps 
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were performed by placing the cover-slips face-down over drops of diluted antibodies on a 

piece of Parafilm. After staining, samples were embedded in Moviol (see Materials), and 

sealed with nail-polish 1 h later.  

 

 

3.3. C16-Ceramide reconstitution 

 

ASM-deficient splenocytes and tumor cells were incubated with 1 or 2 µM C16-ceramide (see 

Materials), respectively, for 10 min prior to TRAIL treatment. C16-ceramide stock solution (1 

mM) was prepared in 10% n-octylglucopyranoside and sonicated 10 min on ice prior to use. 

TRAIL was added at the indicated concentration and cell viability was determined by Trypan 

Blue exclusion and FACS analysis. 

 

 

3.4. Acid sphingomyelinase (ASM) activity assay 

 

The activity of the ASM was measured as the consumption of radioactive sphingomyelin to 

ceramide and phophorylcholine. To this purpose, activated splenic T-cells or tumor cells were 

incubated with 5 ng/ml and 100 ng/ml TRAIL, respectively, for the indicated times. Cells 

were centrifuged at 450 x g for 5 min at 4°C, lysed in 300 µl/sample ice cold ASM-lysis 

buffer (see Materials), followed by each three freeze/thawing and sonication cycles. The 

adherent cells (A549 and L929) were directly scraped into this buffer. Cell lysates were 

incubated with 0.05 μCi per sample [14C]-labeled sphingomyelin (2 GBq/mmol) for 30 min at 

37°C on a thermomixer. Since [14C]-sphingomyelin is insoluble in water, it was first dried by 

SpeedVac centrifugation and solubilized into micelles in ASM-lysis buffer, using a bath 

sonicator for 10 min. Lipids were extracted by addition of 1 ml/sample chloroform:methanol 
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(2:1, v/v), followed by vigorous vortexing for 30 sec and centrifugation at 800 x g for 10 min. 

This results in separation of phosphorylcholine in the upper (aqueous) phase and ceramide in 

the lower (organic) phase. An aliquot (350 µl) of the upper phase was carefully collected and 

transferred in 20 ml polyethylene vials filled with 3.5 ml Scintillation Cocktail, followed by 

quantification by liquid scintillation counting. 

 

 

3.5. Ceramide quantification by DAG-kinase assay 

 

3.5.1. Lipid extraction and enzymatic reaction 

 

The principle of DAG-kinase assay consists in conversion of ceramide to a quantifiable 

product (ceramide-1-phosphate) by the transfer of [32P]phosphate from [32P]gamma ATP to 

ceramide. To this purpose, stimulated cells were first extracted in CHCl3:CH3OH:1N HCl 

(100:100:1). The resulting biphasic mixture is composed of a lower lipid-containing organic 

phase, and an upper aqueous phase. The upper phase and any resulting precipitate at the 

interface were removed and the resulting lipids in the organic phase were concentrated by 

evaporation of the chloroform in a SpeedVac. Lipids were solubilized in 20 μl of a detergent 

solution (see Materials) and formation of micelles was achieved by sonication of the samples 

for 10 min in a bath sonicator. To start the reaction 60 μl of DAG-kinase reaction buffer was 

added to 10 µl of diluted enzyme (dilution 1:1 v/v in DAG-kinase diluent) and the samples 

were incubated for 30 min at room temperature on a thermomixer. The kinase reaction was 

stopped by extraction of the samples with 1 ml/sample CHCl3:CH3OH:1N HCl (100:100:1), 

170 μl/sample Buffered Saline Solution (see Materials) and 30 μl of a 100 mM EDTA-

solution, followed by vortexing. The resulting upper phase was removed, and the lower 
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organic phase was again concentrated by SpeedVac centrifugation. The dried lipids were 

dissolved in 20 µl/sample CHCl3:CH3OH (1:1 v/v).  

 

 

3.5.2. Separation of lipids by Thin Layer Chromatography (TLC) 

 

Lipids were separated on a Silica G60 TLC plate. A solvent system of 

CHCl3:CH3OH:CH3COOH (65:15:5 v/v), was added to the TLC chamber, and was allowed to 

saturate the atmosphere for 1 h by using a sheet of Whatman filter paper. The silica plates 

were loaded with the solubilized lipids, placed into the TLC chamber and the solvent front 

was allowed to migrate to the top of the plate. The plate was then removed, air dried for 45 

min and exposed to X-ray films for 24-72 hrs. Ceramide-spots were identified by co-

migration with a C16-ceramide 1-phosphate standard, scrapped from the plate into 20 ml 

polyethylene vials and quantified by liquid scintillation counting using the Cerenkov protocol. 

 

 

3.6. Quantification of free radical oxygen (ROS) release 

 

The reduction of ferricytochrome c to ferrocytochrome c has been used to measure rates of 

formation of oxygen radicals (ROS) by numerous enzymes. To this purpose, cells were 

stimulated with TRAIL or left untreated in the presence or absence of anti-oxidants. Cells 

were lysed with a SDS-containing buffer (see Materials) in which 1 mg/ml cytochrome c was 

dissolved. Samples were immediately transferred to 10 x 4 x 45 mm cuvettes, covered with 

mineral oil and absorbance at 550 nm was determined. 
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3.7. DNA techniques 

 

3.7.1. DNA isolation 

 

3.7.1.1. DNA isolation from mouse tails 

For genotyping of ASM-WT and ASM-deficient mice, app. 1-2 mm of mouse tail was cut and 

placed into 80 µl Tissue Lysis Buffer (TLB) (see Materials). The samples were incubated at 

56°C overnight and the volumes were raised to 800 µl with autoclaved ddH2O. 

 

3.7.1.2. DNA isolation from cell lines 

To test cultured cell lines for the presence of Mycoplasma, 5 x 105 cells/sample were pelleted 

and re-suspended into 50 µl TLB. The samples were incubated at 56°C for 3 h followed by 

boiling at 95°C for 10 min. The volumes were then raised to 100 µl with autoclaved ddH20. 

 

 

3.7.2. Polymerase Chain Reaction (PCR) 

 

3.7.2.1. ASM PCR 

For the identification of ASM-WT, ASM heterozygotes or ASM-deficient mice by PCR, 1 µl 

of overnight tail digest (see 3.7.1.1.) was added to 1.2 µl 10 x PCR Buffer, 2.5. mM MgCl2, 1 

µl dNTP mix 5 units/ml Taq Polymerase and 0.1 µl each of primers ASM-PA1-2, ASM-PA2-

2 an ASM-PS-2 in 0.2 ml PCR tubes. The temperature of the lid of the PCR machine was 

raised to 104°C and the temperature of the PCR block was raised to 96°C for 17 min, after 

which the following cycle was carried out 35 times: 

Denaturation: 95°C for 1 min 

Annealing: 58°C for 1 min 

Elongation: 72°C for 1 min 45 sec 
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After the last cycle, the PCR block remained at 72°C for 5 min, after which the samples were 

placed at 4°C. 

 

3.7.2.2. Mycoplasma PCR 

For the identification of mycoplasma by PCR, 1 µl of cell digest (see 3.7.1.2.) was added to 

2.5 µl 10 x PCR Buffer, 4.1 mM MgCl2, 0.5 µl dNTP mix 1.25 units/ml Taq Polymerase and 

0.25 each of primers P1 and P4 in 0.2 ml PCR tubes. The temperature of the lid of the PCR 

machine was raised to 104°C and the temperature of the PCR block was raised to 96°C for 17 

min, after which the following cycle was carried out 25 times: 

Denaturation: 95°C for 1 min 

Annealing: 60°C for 1 min 

Elongation: 72°C for 1 min 30 sec 

After the last cycle, the PCR block remained at 72°C for 7 min, after which the samples were 

placed at 4°C. 

 

 

3.7.3. Agarose gel electrophoresis 

 

To analyse the products of the PCR, a 1% agarose gel was poured in TBE buffer (see 

Materials) that contained 0.01 µg/ml ethidium bromide. The samples (15 µl) were loaded on 

the gel along with 0.1 µg/µl of a 100-bp-standard. The gel was run under 5 V/cm current. 

Visualization of the DNA fragments was performed under UV-light. 
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4. RESULTS 
 

 

4.1. Role of Acid Sphingomyelinase (ASM) in TRAIL-induced apoptosis 
 

4.1.1. ASM is necessary for TRAIL – induced apoptosis 
 

To define the role of ASM for TRAIL-induced apoptosis ASM wild-type and ASM-deficient 

T splenocytes were employed in parallel. The splenocytes were activated by 

phytohemagglutinin (PHA) and IL-2 for 72 h to induce expression of DR5. Subsequent 

incubation with TRAIL resulted in a dose-dependant induction of apoptosis in ASM wild-type 

splenocytes, while deficiency of the ASM prevented TRAIL-induced apoptosis (Figure 4.1) 

 

     
 

Figure 4.1. ASM is required for TRAIL – induced apoptosis.  
Stimulation of wild-type splenocytes for 8 h with TRAIL results in a dose-dependent induction of apoptosis, 
while ASM-deficient cells are resistant to TRAIL-triggered apoptosis. Cellular apoptosis was determined by 
FACS analysis following FITC-Annexin V staining. The data show the mean ± S.D. of 3 independent 
experiments. 
Significant differences (p≤ 0.05, t-test) between stimulated and unstimulated samples or between ASM-positive 
and ASM-deficient cells are indicated by an asterisk* or a delta Δ, respectively. 
 

 

Control experiments were performed to exclude the possibility that the difference in apoptosis 

is due to a different expression of DR5 between ASM wild-type and ASM-deficient cells. 

Expression of the receptor was confirmed by FACS analysis and did not significantly differ 

between the two cell types (Figure 4.2). 
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Figure 4.2. DR5 expression is similar in ASM wild type and ASM- deficient T splenocytes.  
T splenocytes from ASM wild-type (+/+) and ASM- deficient (-/-) mice were stimulated with 10 µg/ml PHA and 
5 units/ml IL-2 to express DR5. Similar expression levels of DR5 in ASM+/+ and ASM-/- cells compared to 
background (secondary antibody only) were confirmed by FACS analysis. DR5 staining was performed using a 
Cy3-coupled anti-DR5 antibody. The results are representative for 3 similar studies. 
 

 

To confirm induction of apoptosis and exclude necrosis following TRAIL treatment, BJAB 

cells were incubated with 20 ng/ml or 100 ng/ml TRAIL for the indicated times, and a 

propidium iodide (PI)/FITC-Annexin V double staining was performed. The FACS analysis 

show a dose-dependent induction of apoptosis by TRAIL, while no significant necrosis was 

observed (Figure 4.3). 
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Figure 4.3. TRAIL induces apoptosis and not necrosis.  
Induction of apoptosis in BJAB cells upon treatment with TRAIL was confirmed by staining with FITC-Annexin 
V and propidium iodide (PI). Viable cells appear in the lower left quadrant, apoptotic cells in the lower right 
quadrant and necrotic cells in the upper quadrants. FACS analysis was performed on 10.000 cells each; the 
percent distribution is given for each quadrant. The results are representative for 3 similar studies. 
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4.1.2. TRAIL activates ASM 
 

To test whether TRAIL activates ASM, wild-type T splenocytes were incubated with 5 ng/ml 

TRAIL for the indicated times. This resulted in a rapid activation of the ASM peaking 

approximately 10 min post treatment and declining thereafter (Figure 4.4a). Additionally, 

three other cell types (BJAB, L929 and A549 cells) were tested to determine whether TRAIL-

induced ASM activation is a general phenomenon. Following incubation with 100 ng/ml 

TRAIL, the kinetics of ASM activation showed a similar pattern in these cells, with a peak at 

10 min (for BJAB cells ) (Figure 4.4b) and 20-30 min (for L929 and A549) (Figure 4.4c-d), 

after which it rapidly decreased. 

 

 
 

Figure 4.4. TRAIL activates ASM.  
Stimulation of wild-type T splenocytes (a), BJAB (b), A549 (c) or L929 (d) cells with TRAIL results in rapid 
activation of the ASM. The activity of the ASM was determined by degradation of 14C-labeled sphingomyelin to 
14C-labeled phosphorylcholine upon addition of the cell lysates from TRAIL -stimulated or -unstimulated cells. 
The data are the mean ± S.D. of 3 independent experiments.  
Significant differences (p≤0.05, t-test) between stimulated and unstimulated cells are indicated by an asterisk*. 
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4.1.3. TRAIL induces ceramide production/platforms via the ASM 
 

Activation of ASM correlated with a release of ceramide in BJAB, A549, L929 cells and 

ASM wild-type T splenocytes, while ASM- deficient cells failed to respond to TRAIL with an 

increase of ceramide (Figure 4.5a-c). Splenocytes were stimulated for 10 min with 5 ng/ml 

TRAIL. BJAB cells were stimulated for 10 min with 100 ng/ml TRAIL, while L929 and 

A549 cells were stimulated for 20 min with 100 ng/ml TRAIL. Cellular ceramide was 

determined by FACS analysis (Figure 4.5a) employing monoclonal anti-ceramide antibodies 

to detect ceramide on the cell surface. Total cellular ceramide was assessed by DAG-kinase 

assay (Figure 4.5b). Finally, confocal microscopy studies confirmed the release of ceramide 

in ASM-positive, but not ASM-deficient T splenocytes following TRAIL treatment (Figure 

4.5c).The confocal microscopy studies also revealed that ceramide accumulates in platforms 

onto the cell surface of the ASM wild type cells, while the ASM deficient splenocytes did not 

exhibit such platforms (Figure 4.5c). 

a 

     
b 
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c 

 
 

Figure 4.5. TRAIL induces ceramide release via the ASM.  
(a) Stimulation of ASM wild type T splenocytes with TRAIL, induced a release of ceramide, while ASM- 
deficient cells failed to release ceramide upon TRAIL stimulation. Ceramide was determined by FACS analysis 
after staining with FITC-coupled anti-ceramide antibodies (clone 15B4). The data are the mean ± S.D. of 3 
independent experiments.  
(b) ASM-positive or -negative splenocytes, as well as BJAB, L929 and A549 cells were stimulated with TRAIL 
and cellular ceramide was determined by DAG-kinase assay (b). The DAG-kinase assay determines the cellular 
concentration of ceramide by phosphorylation of ceramide to ceramide-1-phosphate in the presence of 
[32P]γATP. The data are the mean ± S.D. of 3 independent experiments.  
(c) ASM-positive or -negative splenocytes were stimulated with TRAIL and surface ceramide was determined 
by confocal microscopy analysis after staining with FITC-coupled anti-ceramide antibodies (clone 15B4). The 
confocal microscopy studies display a typical result of 4 independent experiments with analysis of at least each 
200 cells/sample.  
Significant differences (p≤0.05, t-test) between stimulated and unstimulated or ASM- positive and -negative 
samples are indicated by an asterisk * or a delta Δ, respectively.  
 

 

 

4.1.4. TRAIL induces an ASM-dependant DR5 clustering within the ceramide 

platforms 
 

Previous studies indicated that ceramide-enriched membrane platforms serve to reorganize 

activated receptor molecules in the plasma membrane (Grassme et al., 2001a, b; Grassme et 

al., 2002; Grassme et al., 2003; Cremesti et al., 2001; Abdel-Shakor et al., 2004). To 

investigate whether DR5 clusters in ceramide platforms following TRAIL stimulation, ASM 

wild-type T splenocytes were incubated with 5 ng/ml TRAIL for 10 min, fixed in PFA and 

stained for ceramide and DR5 (Figure 4.6a). The results show a rapid formation of DR5 

cluster that localized within the ceramide platforms, while no clustering was observed in 

untreated cells (Figure 4.6a). Very similar results were obtained for BJAB, A549 and L929 
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cells (Figure 4.6b-d) after stimulation with 100 ng/ml TRAIL. BJAB cells were stimulated for 

10 min while L929 and A549 were incubated with TRAIL for 20 min. 

 

 

a 

 
 

 

 

 

b 
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c 

 
 

 

d 

 
 
Figure 4.6. TRAIL induces DR5 clustering in ceramide-enriched membrane platforms.  
(a) Stimulation of ASM wild-type T splenocytes with TRAIL results in clustering of DR5 within ceramide 
platforms. Cells were stained with FITC-coupled anti-ceramide antibodies (clone 15B4) and Cy5-coupled anti-
DR5 antibodies. Staining of the cells with Cy3- labeled anti-CD3 antibodies served to exclude any non-T cells. 
The results are representative for 4 studies with analysis of each 200 cells/sample. 
(b-d) Stimulation of BJAB, L929 and A549 cells with TRAIL results in clustering of DR5 within ceramide 
platforms. Cells were stained with FITC-coupled anti-ceramide antibodies (clone 15B4) and Cy3- coupled anti-
DR5 antibodies. The results are representative for 3 studies with analysis of each 200 cells/sample. 
 

 

To determine the importance of ASM for TRAIL-induced DR5 clustering, ASM wild-type 

and ASM-deficient T splenocytes were incubated with different concentrations of TRAIL 

ranging from 0.5 to 25 ng/ml for 10 min. Quantitative analysis of DR5 clustering was 

performed by confocal microscopy and showed a complete dependence of clustering on the 

expression of the ASM (Figure 4.7). 
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Figure 4.7. TRAIL-induced DR5 clustering is ASM- dependent.  
Quantification of DR5 cluster in ASM wild-type and ASM- deficient T cells reveals that expression of ASM is 
required for DR5 clustering. Cells were stained with Cy3- coupled anti-DR5 antibodies and analysis was 
performed by confocal microscopy by counting DR5 cluster for at least 200 cells/sample. The data show the 
mean ± S.D. of 3 independent studies.  
Significant differences (p≤0.05, t-test) between stimulated and unstimulated or ASM- positive and -negative 
samples are indicated by an asterisk * or a delta Δ, respectively.  
 

 

Control experiments showed that TRAIL did not alter the total expression of DR5 as 

determined by FACS analysis (Figure 4.8), and the increase of the DR5 signal in the confocal 

microscopy studies is most likely caused by a massive reorganization and concentration of 

DR5 in the platform. 

 

      
 

Figure 4.8. TRAIL does not alter the expression of DR5.  
FACS analysis of 50.000 cells/sample indicated that TRAIL treatment does not increase DR5 expression on cell 
surface. Levels of DR5 were determined using Cy3-coupled anti-DR5 antibodies compared to background 
(secondary antibody only). The results are representative for 2 similar studies.  
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4.2. Mechanism of TRAIL- induced ASM activation 
 

4.2.1. TRAIL induces Reactive Oxygen Species (ROS) production 
 

Previous studies demonstrated a role of reactive oxygen species (ROS) in the induction of 

apoptosis by CD95 (Gulbins et al., 1996; Liu et al., 1996; Um et al., 1996; Reinehr et al., 

2005). To test the hypothesis that the ASM is regulated by a redox mechanism, the release of 

reactive oxygen species (ROS) was determined upon stimulation of BJAB cells or ASM wild-

type T splenocytes with TRAIL for 1 min. The results indicate a very rapid release of ROS 

upon TRAIL treatment, which was prevented by preincubation with the anti-oxidants Tiron 

and N-acetylcysteine (NAC) (Figure 4.9a). 
 

Control experiments were performed to exclude the possibility that treatment with anti-

oxidants prevents binding of TRAIL to the DR5 receptors, thus blocking TRAIL-induced 

signaling (Figure 4.9b). To this end, BJAB cells were stimulated for 10 min with TRAIL in 

the presence or absence of Tiron and NAC, respectively. The recombinant TRAIL used in our 

studies contains a 6 x Histidine domain, therefore, Cy3-coupled anti-6 x His antibodies were 

used to detect TRAIL bound to the BJAB cells. The FACS analysis shows no significant 

difference in TRAIL binding when cells were pre-treated with anti-oxidants (Figure 4.9b). 

 
 
a 
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b 

 
 
Figure 4.9. TRAIL induces Reactive Oxygen Species (ROS) production 
(a) Stimulation of BJAB cells or T splenocytes with 100 ng/ml or 5 ng/ml TRAIL, respectively, for 1 min results 
in the release of ROS that are neutralized by pre-incubation with the anti-oxidants Tiron or N-acetylcysteine 
(NAC). Cells were lysed in a buffer containing cytochrome c and the change of absorption at 550 nm served as a 
measurement for the release of ROS. The data show the mean ± S.D. of 4 independent studies. 
(b) BJAB cells were incubated or not with Tiron and NAC, respectively for 20 min. After stimulation with 
TRAIL for 10 min, cells were fixed, stained with Cy3-coupled anti-6 x His antibodies and analysed by FACS. 
The data are representative for 2 similar studies. 
Significant differences (p≤0.05, t-test) between stimulated and unstimulated or TRAIL-treated and anti- 
oxidants/TRAIL-treated samples are indicated by an asterisk * or a delta Δ, respectively. 
 

 

 

4.2.2. TRAIL – induced ASM activation is ROS – dependent 
 

To determine the relevance of TRAIL- induced ROS release for ASM activation, BJAB and 

ASM wild-type T splenocytes were incubated with Tiron and NAC prior to TRAIL treatment. 

This resulted in an inhibition of TRAIL-induced ASM activation, which demonstrates the 

importance of ROS regarding ASM activation mechanism (Figure 4.10). 
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Figure 4.10. Anti-oxidants prevent TRAIL-induced ASM activation 
BJAB cells and ASM wild-type T splenocytes were incubated with 100 ng/ml TRAIL and 5 ng/ml TRAIL, 
respectively, for 10 min in the presence or absence of anti-oxidants. ASM activity was determined by 
consumption of [14C]sphingomyelin. The mean ± SD of 3 independent studies is displayed.  
Significant differences (p≤0.05, t-test) between stimulated and unstimulated or TRAIL-treated and anti-
oxidants/TRAIL- treated samples are indicated by an asterisk * or a delta Δ, respectively.  
 

 

 

4.2.3. ROS inhibition blocks ASM-mediated ceramide/DR5 clustering and apoptosis 
 

Inhibition of ASM by Tiron and NAC treatment, respectively, correlated with an inhibition of 

TRAIL- induced ceramide platforms and DR5 cluster formation (Figure 4.11a) as well as 

prevention of apoptosis following TRAIL treatment (Figure 4.11b) 

a 

 
 
 
b 

 
 

Figure 4.11. Anti-oxidants prevent TRAIL-induced ceramide/DR5 clustering and apoptosis 
BJAB cells and ASM wild-type T splenocytes were incubated with NAC and Tiron 20 min prior to stimulation 
with 100 ng/ml TRAIL and 5 ng/ml TRAIL, respectively.  
(a) Cells were fixed 10 min after TRAIL treatment and clustering of DR5 in ceramide-enriched membrane 
platforms was measured in at least 200 cells/sample by fluorescence microscopy analysis. The mean ± S.D. of 2 
independent studies is displayed.  
(b) Apoptosis was measured by FITC-Annexin V staining 24 h following TRAIL treatment. The mean ± S.D. of 
3 independent studies is displayed.  
Significant differences (p≤0.05, t-test) between stimulated and unstimulated or TRAIL-treated and anti-
oxidants/TRAIL- treated samples are indicated by an asterisk * or a delta Δ, respectively.  
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4.3. Role of ceramide and DR5 clustering for TRAIL – induced apoptosis 
 

4.3.1. Ceramide reconstitution rescues apoptosis in ASM-deficient cells 
 

To determine the significance of ceramide-enriched membrane platforms for TRAIL-induced 

apoptosis, it was tested if the addition of natural C16-ceramide to ASM-deficient splenocytes 

that are unable to release ceramide in response to TRAIL treatment, converts the resistance of 

these cells to TRAIL-induced apoptosis. As demonstrated in Figure 4.12a, small amounts of 

natural C16-ceramide were sufficient to restore sensitivity of ASM-deficient splenic T cells to 

TRAIL-induced apoptosis, although the cells lack ASM activity. Incubation with increasing 

doses of C16-ceramide was performed to establish the dose of C16-ceramide which is not lethal 

by itself, but is able to sensitize cells to TRAIL treatment (Figure 4.12b). The data suggest a 

dose response effect with 0.1 µM C16-ceramide already able to restore some apoptosis 

triggered by TRAIL, while 0.5 µM C16-ceramide are sufficient to fully restore TRAIL-

triggered apoptosis in ASM-deficient cells (Figure 4.12b). Control experiments confirmed the 

formation of ceramide-enriched membrane platforms after addition of exogenous C16-

ceramide (Figure 4.12c) 

 

 

a 
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c 

 
 

 

Figure 4.12. Natural C16-ceramide restores TRAIL-induced apoptosis in ASM-deficient T splenocytes.  
(a) Addition of 1 µM C16-ceramide to ASM-deficient T cells restores TRAIL-induced apoptosis in these cells. 
The mean ± S.D. of 3 independent studies is displayed. 
(b) ASM-deficient cells were incubated with increasing concentrations of C16-ceramide, alone or in combination 
with TRAIL. Apoptosis was determined by FACS analysis 8 h after stimulation using FITC-Annexin V staining. 
The mean ± S.D. of 3 independent studies is displayed. 
(c) Cells were incubated with 1 µM C16-ceramide, fixed with PFA, stained with FITC-coupled anti-ceramide 
15B4 antibodies and analysed by fluorescence microscopy. The results are representative for 2 studies with 
analysis of each 200 cells/sample.  
Significant differences (p≤0.05, t-test) between untreated and C16-ceramide- treated or C16-ceramide/TRAIL- 
treated samples are labelled by an asterisk *, or a delta ∆, respectively. 
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4.3.2. Forced DR5 clustering overcomes ASM deficiency 
 

To determine whether clustering of DR5 alone is sufficient to induce apoptosis in ASM-

deficient cells, ASM-deficient splenocytes were stimulated with low physiological and very 

high doses of aggregated TRAIL-ligand, respectively. While ASM-deficient splenic T cells 

were resistant to doses up to 100 ng/ml of TRAIL, they died by apoptosis after treatment with 

high doses of aggregated TRAIL (Figure 4.13a) indicating that forced clustering of DR5 in 

ASM-deficient cells is sufficient to overcome the genetic defect of the ASM. Fluorescence 

microscopy analysis of ASM-deficient splenocytes treated with high doses of TRAIL 

confirmed the formation of DR5 clusters in these cells (Figure 4.13b). 

a 

 
 
 

b 
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Figure 4.13. Forced clustering of DR5 restore TRAIL- induced apoptosis in ASM-deficient T cells. 
(a) ASM-deficient splenocytes were treated with increasing doses of TRAIL. Apoptosis was determined by 
FITC- Annexin V staining 8 h after stimulation. The mean ± S.D. of 3 independent studies is displayed.  
(b) ASM-deficient splenocytes were incubated with 100 ng/ml TRAIL for 10 min. Cells were fixed, stained with 
Cy3-labeled anti-DR5 antibodies and analysed by fluorescence microscopy. The results are representative for 3 
similar studies. 
Significant differences (p≤0.05, t-test) between stimulated and unstimulated cells are indicated by an asterisk*. 

 

 

 

4.3.3.  Addition of ceramide amplifies the killing potential of low doses of TRAIL 
 

The data displayed in Figures 4.12 and 4.13, showing that C16-ceramide addition or forced 

clustering of DR5, respectively, restore TRAIL-induced apoptosis in ASM-deficient cells 

indicate that an interaction of TRAIL with DR5-trimers is not sufficient to trigger death. 

These data suggest that clustering of receptor molecules is critical to initiate apoptosis. 

However, very low doses of TRAIL are unable to induce activation of the ASM and 

formation of ceramide-enriched membrane platforms, although the ligand binds to DR5 and 

transforms the receptor into the active DR5-ligand complex. This suggests that below a 

certain threshold-dose TRAIL is unable to stimulate cells. We therefore hypothesized that a 

pharmacological induction of ceramide-enriched membrane platforms might be sufficient to 

amplify the effect of very low concentrations of TRAIL binding to DR5. To test this concept, 

a panel of tumour cells was treated with 10–100 ng/ml TRAIL to establish non-lethal doses of 

TRAIL for each cell line (Figure 4.14a). Next, cells were treated with 2 µM C16-ceramide 

alone or in combination with the non-lethal does of TRAIL (Figure 4.14b). C16-ceramide 

addition resulted in the formation of ceramide-enriched membrane platforms, but neither low 

doses (10–25 ng/ml) TRAIL nor 2 µM C16-ceramide alone had any apoptotic effect on the 

tumour cells after 24 h incubation (Figure 4.14b). In contrast, the combination of 2 µM C16-

ceramide and low doses TRAIL killed the tumour cells as efficient as high doses of TRAIL 

(Figure 4.14b). This concept suggests that any drug or treatment inducing ceramide-enriched 

membrane platforms amplifies the effects of TRAIL on tumour cells and may permit the 

usage of a TRAIL dose in vivo that is without biological effect per se. 

 

 

 

 

 

 



  Results 
 

 61

a 
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Figure 4.14. Amplification of TRAIL-induced apoptosis in tumour cells by ceramide-enriched membrane 
platforms 
(a) Treatment of L929, BJAB and A549 tumour cells with increasing doses of TRAIL indicates that doses higher 
than 50 ng/ml are required to induce significant apoptosis in these cells. Apoptosis was determined by FACS 
analysis 24 h after stimulation. The mean ± S.D. of 3 independent studies is displayed. 
(b) Addition of 2 µM M C16-ceramide to the tumour cells greatly sensitizes the cells to TRAIL-induced 
apoptosis. The addition of C16-ceramide facilitates high rates of apoptosis in the tumour cells at doses of TRAIL 
that are without significant effect if applied without C16-ceramide. The mean ± S.D. of 3 independent studies is 
displayed. 
Significant differences (p≤0.05, t-test) between stimulated and unstimulated cells are indicated by an asterisk *. 
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4.4. Doxorubicin-mediated amplification of TRAIL-induced apoptosis 
 

The data described above demonstrate that ceramide plays a crucial role for TRAIL-induced 

apoptosis and that addition of C16-ceramide sensitizes cells to apoptosis induced by very low 

doses of TRAIL. The next part of the study was designed to test this concept at a more 

physiological level using subtoxic doses of doxorubicin, a chemotherapeutic drug that has 

been previously shown to induce ceramide (Morita et al., 2000; Andrieu-Abadie et al., 1999; 

Gouaze et al., 2001; Mercier et al., 2003). To this end, it was investigated whether 

doxorubicin-induced ceramide release is sufficient to cluster DR5 and trigger apoptosis after 

stimulation with doses of TRAIL that are too low to activate the ASM, release ceramide, 

cluster DR5 and induce apoptosis by themselves.  

 

4.4.1. Non-lethal doses of doxorubicin and TRAIL have a synergistic apoptotic effect 
 

Preliminary experiments were performed on BJAB lymphocytes, which were treated with 

increasing concentrations of doxorubicin to establish the subtoxic dose of the drug. The FACS 

analysis performed 24 h later indicated that a dose of 10 nM doxorubicin has no effect on 

these cells (Figure 4.15a). Next BJAB lymphocytes were incubated with subtoxic doses of 

doxorubicin and TRAIL and apoptosis was determined after 24 h. The results demonstrate 

that separate treatment with neither drug at such low doses triggered apoptosis, while the 

combined treatment was able to induce significant apoptosis of these cells (Figure 4.15b). 

 

a 
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Figure 4.15. Doxorubicin enhances TRAIL-induced apoptosis 
(a) BJAB cells were incubated with increasing doses of doxorubicin. After 24 h, cells were stained with FITC-
Annexin V and analysed by FACS. The results are representative for 2 similar studies. 
(b) BJAB cells were treated with either 10 ng/ml TRAIL, 10 nM doxorubicin, or both. Apoptosis was 
determined 24 h later by FACS after staining with FITC-Annexin V. Quantitative analysis indicates an increase 
of apoptosis in samples treated with both TRAIL and doxorubicin, while no apoptosis was observed for 
treatment with either drug alone. The data depict the mean ± S.D. of 5 independent experiments.  
Significant differences (p ≤ 0.05, t-test) between stimulated and unstimulated cells are indicated by an asterisk*.  
 

 

 

4.4.2. Doxorubicin treatment does not up-regulate DR5 expression 
 

Previous studies indicated an increase of DR5 expression after treatment with cytostatic 

drugs, including doxorubicin (Sheikh et al., 1998; Gibson et al., 2000; Shankar et al., 2005). 

To exclude that the synergistic effect of low doses of doxorubicin and TRAIL is due to 

doxorubicin-induced up-regulation of DR5 receptors expression, BJAB cells were incubated 

with 10 nM doxorubicin for 1 h and DR5 expression was analyzed by FACS (Figure 4.16). 

The results indicate that stimulation with such low doses of doxorubicin did not induce an up-

regulation of the DR5 receptors (Figure 4.16). 
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Figure 4.16. Low doses of doxorubicin do not increase the expression of DR5 receptors 
BJAB cells were incubated with 10 nM doxorubicin for 1 h. After fixation and staining with Cy3-coupled anti-
DR5 antibodies, cells were analysed by FACS. The results are representative for 3 similar studies. 
 

 

 

4.4.3. Doxorubicin treatment induces ceramide release and platforms formation 
 

To define the amplification mechanism mediating the synergy of doxorubicin and TRAIL to 

trigger apoptosis, it was tested whether doxorubicin at such low doses induces a release of 

ceramide. To this purpose, BJAB lymphocytes were stimulated with low doses of doxorubicin 

and ceramide on the cell surface was detected by employing monoclonal anti-ceramide 

antibodies (clone 15B4). Fluorescence microscopy studies showed a release of ceramide as 

well as the formation of ceramide-enriched membrane-platforms upon doxorubicin treatment 

(Figure 4.17).  
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Figure 4.17. Doxorubicin treatment induces ceramide-enriched membrane platforms formation 
Stimulation of BJAB lymphocytes with 10 nM doxorubicin for 30 min results in ceramide release and the 
formation of ceramide-enriched membrane platforms. Ceramide was determined by fluorescence microscopy 
after staining with FITC-coupled anti-ceramide 15B4 antibodies. The results are representative for 2 studies with 
analysis of each 200 cells/sample.  
 

 

 

4.4.4. Doxorubicin-induced ceramide generation is ASM-dependant 
 

Next, the pathway of doxorubicin-induced ceramide production was addressed. It was tested 

whether doxorubicin-induced ceramide production is mediated via the acid sphingomyelinase 

(ASM). For this purpose, ASM-positive and ASM-deficient T-splenocytes were employed. 

The subtoxic doses of doxorubicin were established by incubating ASM wild-type cells with 

increasing concentrations of the drug. The results indicate that a dose of 1 nM doxorubicin is 

not lethal for these cells, while at 5 nM doxorubicin, the splenocytes started to die (Figure 

4.18a). The ASM wild-type and ASM-deficient splenocytes were then treated with these low 

doses of doxorubicin for different time intervals. The results reveal a rapid increase of 

ceramide in ASM-positive cells, while ASM-deficient splenocytes did not respond with an 
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increase of ceramide to doxorubicin stimulation (Figure 4.18b), indicating that doxorubicin 

triggers the release of ceramide via the ASM, at least in stimulated peripheral T-splenocytes. 
 

The involvement of ASM in ceramide generation was confirmed by studies, which assessed 

the activity of the enzyme in cell lysates after doxorubicin treatment. Incubation of ASM-

wild-type T-splenocytes and BJAB-lymphocytes with low doses of doxorubicin resulted in a 

rapid activation of the ASM, which correlated with the release of ceramide in these cells 

(Figure 4.18c). 

a 
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Figure 4.18. Doxorubicin treatment induces an ASM-dependent ceramide release 
(a) ASM wild-type splenocytes were incubated with increasing doses of doxorubicin for 8 h. FACS analysis was 
performed after staining with FITC-Annexin V. The results are representative for 2 similar experiments.  
(b) ASM wild-type and ASM-deficient splenocytes were treated with 1 nM doxorubicin and ceramide levels 
were assessed by DAG-assay. The data reflect the mean ± S.D. of 3 independent experiments. 
(c) ASM wild-type T-splenocytes and BJAB cells were incubated with 1 nM or 10 nM doxorubicin, respectively, 
and activation of ASM was determined in both cell types. The data are the mean ± S.D. of 3 independent 
experiments.  
Significant differences (p ≤ 0.05, t-test) between stimulated and unstimulated cells or between ASM-positive and 
-negative cells are indicated by an asterisk* or a delta Δ, respectively. 
 

 

 

4.4.5. ASM mediates clustering of DR5 upon treatment with doxorubicin 

 

Previous studies indicated that ceramide-enriched membrane platforms serve to re-organize 

and cluster activated receptor molecules in the plasma membrane, which is pre-requisite for 

efficient signaling via these receptors (Grassme et al., 2001a, b; Grassme et al., 2002b; 

Grassme et al., 2003b; Cremesti et al., 2001; Abdel-Shakor et al., 2004).). In this part of the 

study it was investigated whether doxorubicin-induced ceramide release is able to mediate 

DR5 clustering in cells treated with doses of TRAIL that are too low to induce ceramide 

release and DR5-clustering by themselves. The results confirm this hypothesis and show 

clustering of DR5 within ceramide-enriched membrane platforms after combined stimulation 

with low doses of doxorubicin and TRAIL, while single stimulations were without effect 

(Figure 4.19a-b). ASM-deficiency prevented the release of ceramide upon treatment with 

doxorubicin and, consequently, also the clustering of DR5 after combined treatment with 
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doxorubicin/TRAIL (Figure 4.19a-b). Control experiments confirmed that low doses of 

TRAIL were insufficient to release ceramide (Figure 4.20).  
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Figure 4.19. ASM mediates clustering of TRAIL upon treatment with doxorubicin 
(a) ASM wild-type and ASM-deficient T-splenocytes were stimulated with 1 ng/ml TRAIL or 1 nM doxorubicin 
separately or in combination. Fluorescence microscopy analysis was performed using FITC-coupled anti-
ceramide antibodies 15B4 and Cy3-coupled anti-DR5 antibodies. The results are representative for 3 
independent experiments. 
(b) Quantitative analysis of ASM wild-type and ASM-deficient splenocytes presenting ceramide platforms 
and/or DR5 clusters after stimulation with 1 ng/ml TRAIL and/or 1 nM doxorubicin. 
Significant differences (p ≤ 0.05, t-test) between unstimulated cells and cells presenting ceramide platforms or 
ceramide/DR5 cluster are indicated by an asterisk* or a delta ∆, respectively. 
 

 

 
 

Figure 4.20. Low doses of TRAIL do not induce ceramide release. 
ASM-positive splenocytes and BJAB cells were treated with different concentrations of TRAIL and ceramide 
levels were assessed by DAG-assay. The data show the mean ± S.D. of 3 independent experiments.  
Significant differences (p ≤ 0.05, t-test) between stimulated and unstimulated cells are indicated by an asterisk*. 
 

 

 

4.4.6. ASM mediates the amplification of TRAIL-induced apoptosis by doxorubicin 
 

The data described above show that receptor clustering is a crucial step for induction of 

apoptosis via TRAIL/DR5. Next, it was determined whether doxorubicin-induced release of 

ceramide and clustering of DR5 is also sufficient to convert very low doses of TRAIL into a 

potent apoptotic stimulus. The results show that neither low doses of doxorubicin nor of 

TRAIL applied as single reagents were sufficient to induce apoptosis in splenocytes, while the 

combination of both triggered apoptosis in 43 ± 7% of the cells, already at 8 h after 

stimulation (Figure 4.21). Deficiency of the ASM prevented apoptosis following treatment 

with doxorubicin and TRAIL (Figure 4.21), indicating that the ASM and ceramide are central 

for the amplification of TRAIL induced cell death by doxorubicin. 
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Figure 4.21. ASM mediates the amplification of TRAIL signalling by doxorubicin 
ASM wild-type and ASM-deficient splenocytes were treated with either 1 ng/ml TRAIL, 1 nM doxorubicin, or 
both. Cells were stained with FITC-Annexin V 8 h post treatment and apoptosis was determined by FACS. The 
results show that ASM-positive, but not ASM-negative splenocytes are sensitive to combined treatment with 
TRAIL and doxorubicin. The data depict the mean ± S.D. of 4 independent experiments.  
Significant differences (p ≤ 0.05, t-test) between stimulated and unstimulated cells or between ASM-positive and 
-negative cells are indicated by an asterisk* or a delta Δ, respectively. 
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5. DISCUSSION 
 

 

5.1. Discussion of the Methods 

 
5.1.1. Ceramide reconstitution by addition of exogenous C16-Ceramide 
 

In the present study, C16-Ceramide was used to reconstitute ceramide in ASM-deficient cells 

or tumour cells treated with very low doses of TRAIL that were unable to induce ceramide 

release by themselves. C16-Ceramide (N-hexadecanoylsphingosine) mimics natural ceramide, 

since most physiological ceramides display C16-through C26 chains. Moreover, mass 

spectrometry (MS) analysis identified C16:0 fatty acid as the predominant molecular species 

of ceramide generated upon early CD95 activation with lesser elevations of ceramides 

containing C24:0 saturated and C24:1 mono-unsaturated fatty acids compared to the control 

group (Kolesnick and co-workers, personal communication). Since natural, long-chain 

ceramide is not water-soluble and is difficult to insert from outside into a phospholipid 

bilayer, synthetic short-chain ceramides, particularly C2-Ceramide (N-acetylsphingosine) and 

C6-Ceramide (N-hexanoylsphingosine), which are water soluble (form micelles) and 

membrane-permeable, are widely used as experimental tools (Venkataraman et al., 2000; 

Kolesnick et al., 2000). However, use of these exogenous short chain ceramide analogues led 

to much of the current confusion in the literature on the role of ceramide in cellular signalling 

due to the fact that effects of short-chain ceramide cannot be extrapolated to natural ceramide 

species.  
 

The main difference between C2-Ceramide and natural ceramides refers to the different 

partitioning and behaviour in bio-membranes. C2-Ceramide, similar to DAG, tends to form 

and to promote a hexagonal, non-bilayer, inverted micellar structure. It disorders (fluidizes) 

the membrane and causes lipid-packing defects in the bilayer (Simon et al., 1998). This 

contrasts with natural long-chain ceramides, which have an ordering/packing (rigidizing) 

effect on the phospholipids in the membrane and stabilizes the gel phase (Veiga et al., 1999; 

Holopainen et al., 1997). Solely for this reason, C2-Ceramide is suspected to have a different 

lateral distribution in the membrane, and is also likely to differ with regard to its 

distribution/partitioning into microdomains such as rafts and caveolae. Also important is the 

fact that natural ceramide stays relatively tightly bound to the membrane where it is generated 
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(Venkataraman et al., 2000; Chatelut et al., 1998) and any possible interaction with a target 

protein must occur in this membrane or in a membrane vesicle derived directly (by fission) 

from this membrane. C2-Ceramide, on the other hand, due to its amphiphilic nature, can leave 

the (plasma) membrane and translocate, via the cytosol, to other membranes inside the cell.  
 

C2-Ceramide has also a pro-apoptotic effect that may be related to its facile intracellular 

diffusion. For example, exogenously applied C2-Ceramide can reach the endoplasmic 

reticulum, where it inhibits the CDP-choline pathways for the biosynthesis of 

phosphatidylcholine (PC) and phosphatidylethanolamine (Allan. D, 2000; Bladergroen et al., 

1999; Ramos et al., 2000; Ramos et al., 2002). The blockade of phospholipid 

synthesis/turnover by C2-Ceramide may severely impede intracellular vesicular trafficking 

(McMaster C.R., 2001) and is a direct cause of apoptosis in at least some cell types, since 

supplementation of, for example, PC by other means (such as acylation of lyso-PC) rescues 

the cells  from apoptosis induction (Ramos et al., 2000; van der Luit et al., 2002). Other pro-

apoptotic effects of short-chain ceramide that may depend on its easy intracellular diffusion 

are seen in mitochondria, on the translocation and activation of protein kinase C zeta (PKCζ) 

(Calcerrada et al., 2002), and on the stimulation of formation of endogenous, long-chain 

ceramide.  
 

Taken together, these data point out the importance of using C16-Ceramide or other long-chain 

ceramides when the physiological effects of the natural ceramides are to be mimicked, as 

performed in the present study. 

 

 

 

5.1.2. Ceramide measurement by DAG-kinase assay 
 

The crucial role of ceramide in numerous cellular processes and particularly stress responses, 

has led to the necessity of developing rapid and quantitative assays for ceramide 

determination. Several methods have been developed for quantifying ceramide, among which 

normal phase HPLC analysis after derivatization with a fluorescent tag (Iwamori et al., 1979; 

Previati et al., 1996; Yano et al., 1998; Couch et al., 1997) or by evaporative light-scattering 

detection (McNabb et al., 1999), HPTLC analysis (Motta et al., 1994), or cell labelling with 

radioactive precursors (Tepper et al., 2000; Allan D., 2000). Ceramide molecular species can 

be determined following hydrolysis and analysis of the liberated and derivatized sphingoid 
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bases by means of HPLC (Smith and Merril, 1995; Nishimura and Nakamura, 1985) and fatty 

acids by means of GC/MS (Samuelsson and Samuelsson, 1970). New quantitative analyses of 

ceramide molecular species have been developed and are based on HPLC or RP-HPLC 

separation of their fluorescent analogs prepared after derivatization with anthroyl cyanide 

(Yano et al., 1998), benzoyl chloride (Couch et al., 1997), or benzoic anhydride (Iwamori et 

al., 1979). Moreover, mass spectrometry methodologies have been developed for the 

detection of ceramide molecular species (Watts et al., 1999; Couch et al., 1997; Allan D., 

2000; Kalhorn and Zager, 1999; Mano et al., 1997; Gu et al., 1997; Liebisch et al., 1999; 

Karlsson et al., 1998). However, most of these methods require lengthy periods of processing 

and/or analysis. 
 

The DAG-kinase assay (or DG kinase assay) has become the most common method for the 

quantification of ceramide. The primary advantages of the DAG kinase assay are the 

measurement of total mass levels of ceramide; the use of crude lipid extracts in the assay; and 

the ability to process a large number of samples in a rapid manner. DAG kinase activity was 

originally reported by Hokin and Hokin (1959). The enzyme was validated as an analytical 

tool in measuring diglyceride levels by the demonstration of a linear relationship between the 

amount of diglyceride added to an in vitro assay and the amount of product (phosphatidic 

acid) formed. Ceramides share structural similarities with diglycerides, and Schneider and 

Kennedy reported that bacterial DAG kinase can utilize ceramide as a substrate with a Km 

nearly five times greater than that for diglyceride (Schneider and Kennedy, 1973). Early 

attempts to use DAG kinase to quantify ceramide revealed a linear but non-quantitative 

relationship between substrate added and product formed. Further modification of the assay 

demonstrated that DAG kinase could also be used for quantitative conversion of ceramide to 

ceramide-1-phosphate over a range of 25 pmol to 2 nmol (van Veldhoven et al., 1995). These 

refinements have required special emphasis on the protocol of lipid extraction, purity of the 

reagents used for the preparation of the mixed micelles and on the development of high levels 

of recombinant DAG kinase (see below).  
 

The nonpolar properties of ceramide require that it be extracted from cells in organic solvents. 

This is accomplished by lysing the cells in a solution containing chloroform and methanol. 

Acidification of the lysate by using hydrochloric acid helps to extract also shorter acyl chain 

ceramide-1-phosphates or hydroxylated ceramides, thus being important to gain optimal 

usage of the exogenously added ceramides or internal standards. In the DAG kinase reaction, 

presentation of the substrate in a soluble form to the enzyme is critical for its optimal 
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conversion to product. Mixed micelles containing a non-ionic detergent, such as n-octyl-ß-D-

glucopyranoside, and a phospholipid, such as cardiolipin, are utilized for this purpose. Of 

particular importance is the level of ceramide conversion to ceramide-1-phosphate. For the 

DAG kinase assay to yield reliable quantitative results, the reaction must go to completion 

with total conversion of DAG and ceramide. Otherwise, the results become sensitive to the 

effects of the efficiency of the reaction (Km and Vmax consideration of the DAG kinase) and to 

possible ‘competition’ between DAG and ceramide as substrates. In the present study, an 

excess of enzyme and ATP was used which allowed linear and quantitative conversion and 

was sufficient for the phosphorylation of cellular ceramides as well as exogenously added 

ceramide.  

 

 

 

5.1.3. Determination of acid sphingomyelinase (ASM) activity in cell lysates 

In determining sphingomyelinase enzymatic activity two different situations must be 

distinguished: assays of pure enzyme and assays of cell extracts. When purified enzyme 

preparations are available, no labelled substrate is required. Natural or synthetic 

sphingomyelin is prepared, pure or mixed with other lipids, in the form of extruded large 

unilamellar vesicles (LUV) cca. 100 nm in diameter (Richards et al., 1986). When LUV are 

assayed with sphingomyelinase, ceramide production in the bilayers leads to vesicle 

aggregation, which in turn produces an increase in turbidity or light scattering in the 

suspension. Thus the reaction can be followed in real time just by measuring the increase in 

turbidity (absorbance at 500 nm) or in light scattering (e.g. with a fluorometer with both the 

excitation and emission monochromators adjusted at 500 nm).  

Assaying sphingomyelinase activity in cell lysates requires that sphingomyelin be labelled, 

radioactively, fluorescently or otherwise. In the present study, the enzymatic activity was 

measured as the degradation of radioactive [14C]sphingomyelin to ceramide and 

phosphorylcholine. Since the choline group is soluble in water and contains the radioactive 

label, released radioactivity can be easily separated from the substrate, which partitions into 

the organic phase following extraction. Sphingomyelin can serve as substrate for three forms 

of sphingomyelinases that manifest acid, neutral or basic pH optima for maximal enzyme 

activity (Hannun Y.A., 1996). In the present study acid sphingomyelinase (ASM) activity was 

discriminated from the neutral or basic sphingomyelinase activity by performing the assay at 
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pH 5.0. Because of the difficulty in bringing together the enzyme and substrate molecules in 

the presence of cell homogenates, a suitable detergent, such as Triton X-100 was used. It 

should be noted that, apart from emulsifying the substrate, the detergents bind and modify the 

enzyme activity, thus detergent concentration and initial detergent:substrate ratio was kept 

constant for reproducibility of assays. Finally, it has been suggested that the ASM may be 

located in detergent-resistant/insoluble fractions; thus, for determination of ASM activity in 

whole-cell lysates, no centrifugation step was performed after lysis and sonication of the cells 

to prevent pelleting and loss of the ASM. 

 

 

 

5.1.4. Analysis of aggregated molecules and co-localized signals 
 

Of particular importance for the present study was the detection of clustered DR5 receptors 

and /or ceramide platforms on the surface of stimulated cells. This was achieved by 

fluorescent microscopical analysis of receptor and ceramide molecules after staining with the 

respective fluorochrome-labeled antibodies. The major problem in detection of aggregated 

molecules onto the plasma membrane is the possibility of superposition of two or more 

membranes within the microscopical field of interest. This would lead to an amplification of 

the fluorescent signal and a false-positive result. To avoid this artefact, single-cell suspensions 

were obtained and cell clumps were disregarded during counting of cells. 
 

Many of the present experiments involved, however, analysis of clustered DR5 receptors 

which co-localized with ceramide platforms. When two or more stainings are performed 

simultaneously, the fluorescence signals might be recorded in one detection channel and 

might no longer be separated in the images. This is called ‘cross-talk’ or ‘bleeding-through’ 

of the fluorescence signals. Apart from preparing single-stained specimens as controls, 

‘sequential image analysis’ of the respective samples by confocal microscopy was employed 

to rule out these false-positive data. The advantage of sequential analysis regarding multiple 

stainings lies in the ability to record a certain optical section using an instrument parameter 

settings (detection channel and excitation wavelength) adapted to one fluorochrome, before 

the system switches to different instrument parameter settings adapted for another 

fluorochrome. Therefore, this method is particularly useful to exclude the cross-talk between 

multiple fluorescent signals. 
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5.1.5. ASM-deficient animals 
 

To determine the importance of ASM in the present study, splenocytes from ASM-deficient 

mice were used. The ASM knock-out mouse was originally generated in the laboratory of Dr. 

Kolesnick (Memorial Sloan-Kettering Cancer Center, NY, USA) and has proven to be a 

valuable tool in investigating the role of ASM in different cellular processes. However a study 

from Nix and Stoffel (2000) reported marked biochemical alterations and membrane 

dysfunction in cells derived from their line of ASM knock-out mice such as: increase of 

sphingomyelin and gycosphingolipids in the plasma membrane of hepatocytes, reduction of 

caveolin levels in embryonic fibroblasts, reduced signalling through tyrosine kinases in T 

lymphocytes, lymphopenia, the absence of proliferation of T cells in response to anti-CD3, 

reduced expression of the anti-apoptotic adapter FLIP, and a paradoxical increase in apoptosis 

of anti-CD3 pre-treated splenocytes upon activation of CD95 (Nix and Stoffel, 2000). 

Therefore, the authors concluded that the previously reported apoptotic abnormalities in 

ASM-deficient cells and tissues (Santana et al., 1996; Zundel and Giaccia, 1998; Zundel et 

al., 2000; Cifone et al., 1995; Lin et al., 2000; Pena et al., 2000; Perez et al., 1997; Morita 

and Tilly, 2000) did not result merely from ASM deficiency, but rather were impacted by 

disruption of membrane microdomains in response to altered sphingolipid metabolism (Nix 

and Stoffel, 2000).  
 

However, Lozano and co-workers pointed out that the phenotype of ASM- deficient mouse 

line used in the study of Nix and Stoffel was different from the mouse line generated in the 

laboratory of Dr. Kolesnick, which displayed, up to a certain age (12-16 weeks), only a 

minimal increase in sphingomyelin content, unchanged levels of caveolin-1, normal MAP-

kinase signalling and tyrosine phosphorylation patterns, no lymphopenia, normal T cells 

proliferation and no decrease in FLIP levels (Lozano et al., 2001). Furthermore, the life 

expectancy of around 9-10 months (Santana et al., 1996; Pena et al., 2000) was in contrast 

with that of the mice generated by Stoffel and co-workers, who reported that the life span of 

their ASM- deficient mice was maximally 4 months, with mice succumbing to advanced 

Niemann-Pick disease type A (Otterbach and Stoffel, 1995).  
 

The mice used in the present study show the earliest clinical manifestation of Niemann-Pick 

disease type A between 12-16 weeks of age; therefore, all the experiments involving cells 

from ASM-deficient mice were carried out with animals younger than 12 weeks of age, 

before any biochemical, histological or clinical manifestations of Niemann-Pick disease type 
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A were apparent. This excluded that the effects observed in the ASM-deficient cells were due 

to altered cellular processes (as described above) but instead, were completely dependent on 

the lack of ASM. 

 

 

 

 

 

5.2. Discussion of the Results 

 
5.2.1. The TRAIL/DR5 system 
 

In the present study new key events in TRAIL-induced apoptotic pathway upon binding of the 

ligand to the DR5 receptors are characterized. Although TRAIL can induce apoptosis also 

upon binding to DR4 receptors, the interaction of TRAIL with the DR5 receptors seems to 

play the most important role for TRAIL-induced apoptosis. Studies which investigated the 

affinity of TRAIL for its receptors showed that although DR4 and DR5 have similar affinities 

for TRAIL at 4°C, the affinities are substantially different at physiological temperature 

(37°C), with DR5 having the highest affinity (KD ≤ 2 nM), while DR4 has a much lower 

affinity (KD ≤ 70 nM) (Truneh et al., 2000). Recently, Kelley et al. (2005) generated death 

receptor-selective TRAIL variants using a novel approach that enables phage display of 

mutated trimeric proteins. The results showed a markedly reduced ability of DR4-selective 

TRAIL variants to trigger apoptosis, whereas the DR5-selective variants had minimally 

decreased or slightly increased apoptosis-inducing activity, suggesting that DR5 may 

contribute more than DR4 to TRAIL-induced apoptosis in cells expressing both death 

receptors. Another recent study, by Lee and co-workers (2005), proposed that TRAIL 

receptors (both death and decoy receptors) are assembled in homomeric and heteromeric 

complexes prior to TRAIL binding. Interestingly, their study showed that TRAIL decoy 

receptors are able to form complexes with DR4, but not with DR5 and the authors suggested 

that in contrast to homomeric complexes of death receptors, heteromeric complexes of DR4-

decoy receptors might not induce apoptosis due to incomplete interactions of the intracellular 

death domains necessary for the formation of the DISC. This finding supports the hypothesis 

of DR5 being a more efficient death-inducing receptor than DR4 at least in cells that also 

express decoy receptors. 
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An additional reason for investigating the TRAIL/DR5 system in this study was the necessity 

of using murine cells, which express only one TRAIL death receptor that is homologous with 

human DR5 (Wu et al., 1999b).  

 

 

 

5.2.2. Role of ASM and ceramide for TRAIL-induced apoptosis 
 

The data presented here indicate that ASM is a novel key molecule for the induction of 

apoptosis by TRAIL/DR5. The results show that TRAIL very rapidly induces a stimulation of 

the ASM to release ceramide that forms large ceramide-enriched membrane domains serving 

to trap and cluster DR5. The reorganization of DR5 in the cell membrane into ceramide-

enriched membrane domains seems to be required for the induction of apoptosis by DR5, as 

cells lacking ASM and, thus, unable to release ceramide after stimulation, are resistant to 

TRAIL/DR5-induced apoptosis, while addition of natural ceramide restored apoptosis. 

Furthermore, very low doses of TRAIL that are insufficient to trigger cell death by 

themselves are converted into potent inducers of apoptosis upon formation of ceramide-

enriched membrane platforms after treatment of normal or tumour cells with C16-Ceramide. 

Because sphingomyelin constitutes 10 to 15% of total plasma membrane phospholipids, it 

serves as a critical modulator of membrane fluidity (Barenholz and Thompson, 1980), and it 

was suggested that depletion of sphingomyelin via activation of sphingomyelinases can 

directly increase cell damage by fluidization of the plasma membrane (Zager et al., 2000). 

However, the experiments employing ceramide reconstitution in the absence of ASM-induced 

sphingomyelin hydrolysis indicate that the release of ceramide and not just the consumption 

of sphingomyelin is required for TRAIL/DR5-induced apoptosis. 
 

It is interesting to note that although the activity of the ASM and the release of ceramide were 

lower in T splenocytes than in the tested cell lines, the number of cells presenting ceramide-

enriched membrane platforms and DR5 cluster induced by TRAIL were very similar. This 

suggests that a threshold of ceramide in the plasma membrane is sufficient to mediate DR5 

clustering and apoptosis. The present data indicate that the central function of ASM and 

ceramide for the initiation of apoptosis is not restricted to CD95 and TNF, but is also required 

for death by DR5 and, very likely, other pro-apoptotic members of the TNF/NGF-factor 

receptor family. This suggests that the formation of ceramide-enriched membrane platforms 
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upon ASM activation is a general mechanism to initiate signalling of the TNF/NGF-factor 

receptor family.  
 

Recent data by Voelkel-Johnson and co-workers (2005) confirmed the notion that ceramide is 

involved in TRAIL-induced death. However, these studies on colon cancer cells revealed a 

later increase of ceramide by TRAIL, which is consistent with a reduced sensitivity and a 

delayed time course of apoptosis (only 20% apoptosis 24 h after stimulation with 10 ng/ml 

TRAIL) in these cells compared to lymphocytes (Voelkel-Johnson et al., 2005).  
 

The experiments further suggest that clustering of DR5 receptors in ceramide-enriched 

membrane platforms is required for induction of apoptosis by TRAIL/DR5. This concept is 

consistent with findings on CD95 that demonstrated an activation of the ASM and the 

formation of ceramide-enriched membrane platforms before formation of the DISC and 

execution of apoptosis (Grassme et al., 2003b). 

 

 

 

5.2.3. Mechanism of TRAIL-induced ASM activation 
 

In the present study, a new molecular mechanism of ASM activation in vivo is characterized, 

which involves a direct or indirect regulation of the enzyme via a redox mechanism. The 

results suggest that release of free radical oxygens (ROS) mediate activation of the ASM upon 

stimulation via death receptors. This notion is consistent with a previous biochemical study 

(Qiu et al., 2003) indicating that oxidation of purified recombinant ASM (rhASM) results in 

activation of the enzyme via dimerization. The authors demonstrate a critical role for the C-

terminal cysteine (Cys629) in the enzymatic activity of rhASM. Particularly, it appears that any 

change that causes a loss of the free sulfhydryl group on this amino acid also results in 

activation of the enzyme, i.e. copper-promoted dimerization of rhASM via the C-terminal 

cysteine, thiol-specific chemical modification of this cysteine to form a mixed disulfide bond 

or a sulphur-carbon linkage, deletion of this cysteine by carboxypeptidase or recombinant 

DNA technology, and site-specific mutation to change the cysteine to a serine residue. 
 

Based on the fact that zinc is required for the activity of the ASM, the authors proposed a 

model which explains the effect of C-terminal cysteine modification regarding the activation 

of the ASM. In the low activity form, the free C-terminal cysteine is involved in the active site 

zinc coordination, either by competing with a water molecule for coordination with zinc or by 
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forming a non-optimal five-ligand coordination structure (Figure 5.1). This decreases the 

ability of zinc to ionize water for the nucleophilic attack and leads to decreasing enzymatic 

activity. As thiol is a better zinc ligand than water, the non-optimal structure may be 

energetically favourable as long as the cysteine is freely available. In the high activity form of 

rhASM, however, the free cysteine is lost by either chemical modification or deletion and is 

no longer available for coordination. As a result, zinc coordinates with a water molecule, 

resulting in an optimal structure for catalysis (Figure 5.1). This model is essentially identical 

to the "cysteine switch" activation mechanism described previously for the matrix 

metalloproteinase family (van Wart and Birkeda-Hansen, 1990).  

 

 

Qiu et al., J Biol Chem, 2003 

Figure 5.1. Proposed model for rhASM activation through availability of the C-terminal cysteine residue 

 

 

In the present study we show that stimulation of cells with TRAIL induces a rapid ROS 

release which mediates ASM activation, since neutralization of ROS inhibits TRAIL-induced 

ASM activation and subsequent events. However, whether the dimerization and/or further 

molecular events are required for stimulation of the ASM in vivo, needs to be addressed in 

future studies. It should be mentioned that although Tiron and N-acetylcysteine did not 

completely block ASM activation and TRAIL-induced apoptosis, this is most likely caused by 

an incomplete neutralization of ROS that immediately act with biomolecules in the very close 

vicinity.  
 

Recently, experiments on hepatocytes demonstrated that an inhibitor of the ASM blocks the 

release of ROS suggesting that ROS functions downstream of the ASM (Reinehr et al., 2006). 
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However, this is not necessarily in contrast to the present data. It has been recently shown for 

CD95, which releases and requires ROS for induction of apoptosis (Gulbins et al., 1996; Um 

et al., 1996, Reinehr et al., 2006), that ligation of the receptor primarily induces a very weak 

recruitment of FADD and stimulation of caspase 8, which reaches approximately 1% of the 

levels that are observed for maximal activation of caspase 8. This weak activation of caspase 

8 is even observed in ASM-deficient cells, but it is not sufficient to trigger apoptosis. 

However, the low activity of caspase 8 is sufficient to trigger the translocation and activation 

of the ASM within seconds, with the subsequent formation of ceramide-enriched membrane 

platforms that cluster CD95 (Grassme et al., 2003b). Receptor clustering leads to DISC 

formation and full caspase 8 activation. Thus, the ASM functions in a feed forward loop to 

amplify signalling via death receptors and a blockade of this forward loop by inhibition of the 

ASM would also prevent the release of ROS. 

 

 

 

5.2.4. Generation and function of ceramide-enriched membrane platforms. 
 

Several studies in the last years linked the formation of ceramide-enriched membrane 

platforms to the induction of cell death. For instance, apoptosis triggered by cisplatin or 

doxorubicin requires functional expression of the ASM, the release of ceramide and the 

formation of ceramide-enriched membrane platforms (Andrieu-Abadie et al., 1999; Delpy et 

al., 1999; Morita et al., 2000; Lacour et al., 2004). Very similar results were described for 

induction of apoptosis by CD95 as shown by many groups employing a variety of different 

cells (Cremesti et al., 2001; Grassme et al., 2001a, b, 2003; Fanzo et al., 2003). Furthermore, 

developmental apoptosis of oocytes and neutrophils is delayed by deficiency of the ASM 

(Morita et al., 2000; Scheel-Toellner et al., 2002, 2004a, b) and the formation of ceramide-

enriched membrane platforms constitutes one of the earliest events linked to the induction of 

apoptosis in these cells. It has been shown that infection of mammalian epithelial and 

endothelial cells or fibroblasts with S. aureus or P. aeruginosa, respectively, induces 

apoptosis of the host cells via formation of ceramide-enriched membrane platforms that may 

serve to reorganize cellular receptors and signalling molecules involved in the induction of 

apoptosis by the pathogens (Grassme et al., 1997, 2003a; Esen et al., 2001).  
 

Most of these studies suggested that the formation of ceramide-enriched membrane platforms 

is initiated within small cholesterol- and sphingolipid-enriched membrane rafts. The notion 
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that rafts are important for the induction of apoptosis is supported by several recent studies 

demonstrating that destruction of these membrane rafts prevents CD95 clustering, recruitment 

of FADD and caspase 8 and apoptosis by CD95 (Cremesti et al., 2001; Grassme et al., 2001b; 

Hueber et al., 2002; Scheel-Toellner et al., 2002). Recent studies on CD95 and CD40 

demonstrated some insights into the role of lipids in receptor clustering (Grassme et al., 

2002a, b; Grassme et al., 2001a, b): stimulation of lymphocytes via CD95 or CD40 using the 

cognate ligand or stimulatory antibodies induced a translocation of the ASM onto the 

extracellular leaflet of the cell membrane (Figure 5.2) that was detected by fluorescence 

microscopy and biochemical techniques. The surface translocation of the ASM occurred 

within seconds to minutes, suggesting that this process might be involved in the generation of 

the signal via the cognate receptor (Grassme et al., 2002; Grassme et al., 2001a, b). A surface 

localization of the ASM is consistent with previous findings on signalling of IL-1 (Liu and 

Anderson, 1995) and p75 NGF receptors (Bilderback et al., 1997) that demonstrated a release 

of ceramide in distinct membrane domains. The directed transport of the ASM onto the 

extracellular leaflet of sphingolipid-enriched rafts results in close proximity of the enzyme to 

cellular sphingomyelin, which is contained predominantly within the outer leaflet of the 

plasma membrane. Consumption of sphingomyelin in rafts by the ASM was shown to trigger 

a release of ceramide in the outer leaflet of the cell membrane and an accumulation of 

ceramide in rafts (Figure 5.2) (Grassme et al., 2002a, b; Grassme et al., 2001a. b). These 

studies employed monoclonal anti-ceramide antibodies to detect ceramide in the cell 

membrane by fluorescence microscopy. Probably due to ceramide tendency to self-associate 

(Nurminen et al., 2002), generation of ceramide in rafts resulted in the formation of large 

ceramide-enriched membrane domains that were visualized in fluorescence microscopy 

studies as ceramide-enriched membrane platforms (Grassme et al., 2002a, b; Grassme et al., 

2001a, b). These platforms were already detected seconds to minutes after stimulation of 

CD95 and CD40 using monoclonal anti-ceramide-antibodies and fluorescence microscopy 

methods to analyze the cells. Staining of cells with fluorescently labelled cholera toxin (B-

subunit), a typical raft marker, revealed a co-localization of cholera toxin and ceramide within 

the membrane platforms after stimulation via CD95 or CD40 (Grassme et al., 2002a, b; 

Grassme et al., 2001a, b), suggesting that membrane rafts and ceramide-enriched membrane 

platforms share at least some molecules (Figure 5.2). Furthermore, ASM on the cell surface 

also co-localized with ceramide and cholera toxin supporting a role of the ASM in the 

formation of ceramide-enriched membrane platforms. The central role of the ASM in 

ceramide-enriched platforms formation was finally shown in cells lacking the ASM that fail 
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to form cholera toxin- and ceramide-positive membrane platforms after CD95 or CD40 

stimulation (Grassme et al., 2002; Grassme et al., 2001a, b). The function of these platforms 

was indicated by the finding that stimulation via CD95 or CD40 resulted in rapid clustering of 

these receptors in ceramide-enriched membrane platforms (Figure 5.2) (Grassme et al., 2002a, 

b; Grassme et al., 2001a, b), an observation that was recently confirmed by six independent 

groups studying CD95 clustering in a variety of cell types (Fanzo et al., 2003). Cells lacking 

the ASM failed to cluster the receptor, to initiate signalling via CD95 or CD40 in vitro and in 

vivo (Grassme et al., 2002; Grassme et al., 2001a, b; Kirschneck et al., 2002) and were 

defective in the induction of apoptosis via CD95 or the initiation of CD40 signalling. 

Artificial, forced cross-linking of the receptor molecules by addition of very high 

concentrations of stimulatory antibodies restored at least partially the signalling initiated by 

these receptors even in cells lacking the ASM (Grassme et al., 2002b; Grassme et al., 2001a, 

b; Kirschneck et al., 2002) indicating that the cross-linking event functions as a requirement 

for signal initiation by these receptors (Figure 5.2). Very similar results were obtained with 

reagents that destroy sphingolipid-enriched rafts (Grassme et al., 2002a, b; Grassme et al., 

2001a, b; Kirschneck et al., 2002). This certainly does not exclude that other receptors 

employ different mechanisms to cluster and/or transform rafts into a larger membrane 

platform.  

 

 
Gulbins and Grassme, Biochim Biophys Acta, 2002 

 

Figure 5.2. Model of ASM and ceramide-mediated receptor clustering in membrane platforms 
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5.2.5. Mechanism of death receptors clustering in ceramide-enriched membrane 

platforms. 
 

Although many receptors have been shown to cluster in detergent-resistant membrane 

domains, molecular mechanisms mediating the preferential partitioning of receptors, 

including DR5, in those domains require definition. Recently, Bock and Gulbins (2003) 

proposed a mechanism of clustering for CD40, which might explain also the ability of DR5 to 

cluster in ceramide-enriched membrane platforms upon TRAIL ligation. These studies 

employed chimeric proteins that consisted of the extra- and intracellular domain of CD40 and 

the trans-membranous domain of CD45. CD45 is known to localize outside the rafts, at least 

under most circumstances. The results identified the trans-membranous domain of CD40 as 

an important element of the receptor to interact with sphingolipid-enriched rafts and to cluster 

in membrane platforms upon stimulation, since CD40 receptors with mutated trans-

membranous domain (CD40/CD45 mutants) failed to cluster. According to this model, the 

failure of the CD40/45 mutant to cluster was caused by neither inactivity of the mutant 

protein, nor a large difference in the length of the trans-membranous domains of CD40 and 

CD45. Although the individual amino acid residues composition of the respective domains 

(i.e. number and/or location of the hydrophilic amino acids) might mediate the different 

abilities of the receptor molecules to cluster within lipid rafts, the authors also suggested that 

the release of ceramide in rafts not only triggers fusion of those rafts to larger platforms, and 

alters the hydrophobicity of the membrane domain, but may also alter the diameter of the cell 

membrane in the platform area. Binding of the ligand may change the conformation of the 

receptor to fit into a ceramide-enriched membrane domain, while the presence in membrane 

parts with other diameters might be energetically unfavourable for the ligand-receptor 

complex.  
 

Clustering of receptor molecules within ceramide-enriched membrane platforms might have 

several functions: Receptor clustering in ceramide-enriched signalling platforms might 

function to induce a close proximity of many receptor molecules. The high receptor density 

may greatly facilitate trans-activation of signalling molecules associating or interacting with a 

receptor and, thus, permitting specific signalling of the activated receptor. This density model 

is reminiscent to blood coagulation that is initiated in a small area by the concentration of pro-

coagulatory enzymes and the concomitant exclusion of inhibitory enzymes. In addition to 

induction of a high receptor density, ceramide-enriched platforms might also facilitate the 

contact between a receptor and intracellular signalling molecules, which are constitutively 
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present in rafts, e.g. small G proteins or Src-like tyrosine kinases (Field et al., 1995). Further, 

the presence of receptors in and the interaction with ceramide may alter the conformation of a 

receptor to increase the affinity/avidity of the receptor for its ligand and, thus, stabilize the 

receptor/ligand interaction. Finally, raft-ceramide might directly activate intracellular 

signalling molecules and, thus, further modify the signalling of an activated receptor. Those 

signals might be generated directly by ceramide or upon metabolism of ceramide. For 

instance, it has been recently demonstrated that ceramide is involved in the recruitment of 

caveolin 1 to the cell membrane upon cellular stimulation (Zundel et al., 2000). In addition, 

ceramide in rafts might be metabolized to secondary messengers that alter the activity of 

enzymes or organelles involved in cellular signalling of the specific receptor. In this context, 

De Maria et al. (1998) demonstrated synthesis of GD3 from ceramide upon CD95 stimulation 

that was transported to and acts in mitochondria to induce apoptosis. 

 

 

 

5.2.6. Possible additional roles of ceramide as activator of intracellular molecules for 

TRAIL-induced apoptosis 

Ceramide has been commonly stated to be also second messenger in apoptotic signalling. 

Several direct or indirect intracellular targets for ceramide have been proposed, such as JNK 

(Westwick et al., 1995; Brenner et al., 1997), PKC (Bourbon et al., 2000; Lozano et al., 1994; 

Muller et al., 1995; Procyk et al., 2000), KSR (Joseph et al., 1993; Liu et al., 1994; Mathias 

et al., 1991; Zhang et al., 1997), cathepsin D (Heinrich et al., 1999) or PP2A (Dobrowski et 

al., 1993; Law et al., 1995). Ceramide can activate JNK via Rac-1 (Brenner et al., 1997), 

PKC ζ (Boubon et al., 2000; Lozano et al., 1994), or TAK-1 (Shirakabe et al., 1997). The 

exact role for JNK in ceramide-induced cell death pathways is still unclear; however, the 

identification of novel targets for JNK including c-jun (Jarvis et al., 1996; Basu et al., 1998b; 

Verheij et al., 1996), Bcl-2 (Ruvolo et al., 1999; Ruvolo et al., 2002), and the transcription 

factors AP-1 and GADD153 (Basu et al., 1998b; Brenner et al., 1997; Sawai et al., 1995) 

suggest possible mechanisms how ceramide activation of JNK may promote cell death. 

Interestingly, Bcl-2 has been shown to be a negative regulator of TRAIL-induced intrinsic 

apoptotic pathway (Wen et al., 2000; Burns and El-Deiry, 2001) and inactivation of Bcl-2 by 

JNK (Maundrell et al., 1997; Yamamoto et al., 1999) could promote TRAIL-induced 

apoptosis at least in type II cells.  
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Ceramide has also been shown to regulate apoptosis via PKCs. In particular, ceramide-

induced PKC ζ activation (Bourbon et al., 2000; Lozano et al., 1994; Muller et al., 1995; 

Procyk et al., 2000) can modulate apoptosis through multiple pathways. PKC ζ has been 

shown to inhibit Akt/PKB (Doornbos et al., 1999), which is another negative regulator of 

TRAIL-induced apoptosis (Beresford et al., 2001; Nesterov et al., 2001). Ceramide activation 

of PKC ζ appears to be essential also for SAPK/JNK pathways in some cell types since a 

dominant negative PKC ζ protein can block SAPK activation and inhibit anti-proliferative 

responses when cells are treated with ceramide (Bourbon et al., 2000). Ceramide appears to 

directly activate PKC ζ, perhaps by binding to the putative ceramide-binding region of the 

protein, the cysteine-rich domain (Bourbon et al., 2000; Hurley et al., 1997). Since PKC ζ is a 

direct target of ceramide but is unable to act on Rac-1 directly (Uberall et al., 1999), it is very 

possible that ceramide-mediated SAPK signalling cascades involving PKC ζ are distinct from 

pathways initiated by Rac-1.  

Ceramide has been reported to stimulate the activity of the guanine nucleotide-exchange 

factor Vav in a protein kinase independent manner (Gulbins et al., 1994). Vav activation of 

the small GTPases appears to have a role in ceramide-mediated apoptosis (Esteve et al., 

1998). It is possible that this mechanism may involve also the activation of Rac-1-mediated 

signalling cascades since introduction of dominant-negative N17Rac-1 into Jurkat cells 

prevents SAPK activation and suppresses apoptosis (Brenner et al., 1997). 

Phosphatase A2 (PPA2) is a major protein serine/threonine phosphatase that regulates many 

signalling pathways in mammalian cells (Mumby and Walter, 1993). PPA2can negatively 

regulate pro-growth kinases such as Akt/PKB (Schubert et al., 2000; Salinas et al., 2000) or 

anti-apoptotic molecules such as Bcl-2 (Ruvolo et al., 1999; Ruvolo et al., 2002). Since 

ceramide is a potent apoptotic agent and, in general, is antagonistic to pro-growth signalling 

pathways (Smyth et al., 1997; Hannun YA., 1996; Ruvolo PP., 2001) it is not surprising that 

ceramide has been found to activate PPA2 (Dobrowsky et al., 1992; Dobrowsky et al., 1993a, 

b; Ruvolo et al., 1999). Ceramide promotes PPA2 de-phosphorylation of Bcl-2 resulting in the 

loss of Bcl-2 anti-apoptotic function (Ruvolo et al., 1999). Since expression of S70E Bcl-2, a 

non-phosphorylable, activated form of Bcl-2, can protect cells from ceramide-induced 

apoptosis, one likely mechanism by which ceramide induces cell death is by functionally 

inactivating Bcl-2 via de-phosphorylation (Ruvolo et al., 1999).  
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The kinase suppressor of Ras (KSR) was one of the first non-SAPK enzymes to be identified 

as a ceramide-activated protein kinase (CAPK) (Joseph et al., 1993; Liu et al., 1994; Mathias 

et al., 1991; Zhang et al., 1997). Experiments using dominant-negative mutants suggest that 

KSR is required in both TNF alpha and ceramide induced ERK1/ERK2 pathway and involves 

the activation of Raf-1 (Yan and Polk, 2001). Ceramide has been shown to activate Raf 

through Ras (Salinas et al., 2000; Huwiler et al., 1996). Although in many systems activation 

of the Ras, Raf-1 and MAPK pathway is mitogenic and anti-apoptotic (Xia et al., 1995; 

Cuvillier et al., 1996), recent studies demonstrated that ceramide can induce apoptosis via 

KSR, Ras, and Raf-1 when the pro-apoptotic Bcl-2 family member, BAD, is present (Basu et 

al., 1998a). The KSR/Ras/Raf-1 pathway linked to BAD de-phosphorylation by prolonged 

inactivation of Akt/PKB (Basu et al., 1998a). Since TRAIL-induced apoptosis has been 

shown to be inhibited by serum via an Akt-dependant BAD phosphorylation (Kang et al., 

2004) and ceramide can block the Akt/PKB pathway (Basu et al., 1998a; Zhou et al., 1998, 

Summers et al., 1998), it is not excluded that ceramide might regulate TRAIL-induced 

apoptosis via BAD de-phosphorylation.  

Ceramide has been shown to signal an increase in the levels of cytosolic phospholipase A2 

(cPLA2) (Hayakawa et al., 1996). A recent study by Klapisz and co-workers (2000) 

demonstrated by in situ and in vivo experimental approaches that membrane microdomains 

enriched in sphingomyelin and cholesterol modulate the activity of cPLA2 via ceramide, since 

conversion of sphingomyelin to ceramide by S. aureus sphingomyelinase enhanced cPLA2 

activation and arachidonic acid production (Klapisz et al., 2000). cPLA2 catalyzes the 

hydrolysis of the sn-2 position of glycerophospholipids to release free arachidonic acid, which 

in turn is metabolized to prostaglandins by the cyclooxygenase pathway and to leukotrienes 

by the 5-lipoxygenase pathway (Shimizu and Wolfe, 1990). Although cPLA2 and/or 

arachidonic acid have been linked to induction of apoptosis (Rizzo et al., 1999; Monjazeb et 

al., 2006; Kirschnek and Gulbins, 2006), the mechanisms mediating induction of apoptosis 

are not completely clear. It has been suggested that arachidonic acid may induce apoptosis via 

reactive oxygen species (Kwon et al., 2005; Wie et al., 1999) or activation of transcription 

factor c-jun (Monjazeb et al., 2006). Whether these mechanisms may play a role in TRAIL-

induced apoptosis remains to be determined. 

A novel intracellular target for ceramide has been identified as the aspartic protease cathepsin 

D (Heinrich et al., 1999). The authors show that an ASM-derived ceramide specifically binds 

to and induces cathepsin D proteolytic activity in endolysosomal compartments, since ASM-
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deficient cells derived from Niemann-Pick patients show decreased cathepsin D activity 

(Heinrich et al., 1999). Recently, the same group demonstrated also a TNF-induced activation 

of cathepsin D via the ASM (Heinrich et al., 2004). The authors propose a model of TNF 

signalling which involves receptor internalization and caspase-8-dependant activation of the 

ASM in endolysosomal compartments. Ceramide generated by the ASM, in turn, activates 

cathepsin D which translocates to the cytosol and cleaves Bid. The resulting tBid induces 

cytochrome c release from mitochondria and activation of caspase-9 and-3, leading to 

apoptotic cell death by the intrinsic pathway. 

The studies summarized above indicate that ceramide could potentially regulate TRAIL 

signalling at different levels of the apoptotic pathway. However, most of these mechanisms 

seem to involve the intrinsic apoptotic pathway, which was shown to play a relevant role only 

in some cell types that need the mitochondria-initiated pathway for successful induction of 

apoptosis (type II cells). Furthermore, the experiments employing forced cross-linking of 

DR5 receptors in the absence of ceramide support the crucial role of receptor clustering for 

TRAIL-induced apoptosis. 

 

 

 

5.2.7. Clinical relevance of ceramide-mediated TRAIL-induced apoptosis 
 

The present study suggests a novel mechanism how the pro-apoptotic potential of TRAIL 

might be employed to kill tumour cells without affecting normal cells. The results show that 

neither low doses of TRAIL nor of C16-Ceramide are able to kill tumour cells or ex vivo 

stimulated T splenocytes. In contrast, the combination of both stimuli was able to kill a panel 

of tumour cells with extremely high efficiency and almost all tumour cells were killed within 

24 h after combined treatment. The transfer of this concept to a clinical situation predicts that 

very low doses of TRAIL and an inducer of local ceramide are sufficient to kill tumour cells, 

while TRAIL at this dose will be without effect in other organs. Candidates for local 

production of ceramide are ionizing radiation, UV-light, locally applied cytostatic drugs or 

heat.  
 

The potential of the cytostatic drug doxorubicin to sensitize cells to non-lethal doses of 

TRAIL via the formation of ceramide-enriched membrane platforms was investigated in the 

last part of this study. The data demonstrate that treatment of BJAB lymphoma cells and T-



Discussion 
 

 89

splenocytes with subtherapeutic doses of doxorubicin triggers release of ceramide, thus, 

permitting the induction of apoptosis by non-lethal doses of TRAIL that are by themselves 

also too low to release ceramide and kill the cells. The results presented earlier showed that, 

with the exception of using very high doses of aggregated ligand, successful induction of 

apoptosis by TRAIL requires clustering of DR5 receptors mediated by ceramide-enriched 

membrane platforms, a mechanism described for other receptors, such as CD95 (Cremesti et 

al., 2001; Grassme et al., 2001a, b) or CD40 (Grassme et al., 2002a, b). The present data 

demonstrates that ceramide generated after treatment with subtoxic doses of doxorubicin 

accumulates in large ceramide-enriched membrane domains serving to trap and aggregate 

DR5 receptors when activated by low doses of TRAIL.  
 

Many studies indicated ceramide release in response to different stress-inducing stimuli 

including chemotherapeutic drugs (Lacour et al., 2004; Modrak et al., 2004; Lovat et al., 

2004). Although there seems to be an agreement regarding an increase in ceramide levels 

after doxorubicin treatment, the pathway of ceramide generation remains controversial 

(Morita et al., 2000; Andrieu-Abadie et al., 1999; Gouaze et al., 2001; Mercier et al., 2003). 

In the present study, we demonstrate the involvement of the ASM in ceramide release after 

treatment with low doses of doxorubicin. The mechanism by which doxorubicin activates 

ASM is presently not known. The present study demonstrates the involvement of oxidative 

reactions in ASM activation, a mechanism that is supported also by the studies of Qiu and co-

workers (2003) and Reinehr and co-workers (2006). It is tempting to speculate that 

doxorubicin, previously shown to induce free radical oxygen species (Sinha et al., 1989; 

Ubezio and Civoli, 1994; Cervantes et al., 1988), may activate the ASM via this mechanism. 

Interestingly, Andrieu-Abadie and co-workers, showed that doxorubicin-induced 

ASM/ceramide pathway is inhibited upon treatment with L-carnitine (Andrieu-Abadie et al., 

1999). L-carnitine is known to have anti-oxidant properties (Arockia and Panneerselvam, 

2001; Izgut-Uysal et al., 2001; Luo et al., 1999; Packer et al., 1991; Sener et al., 2004), 

therefore, this study may provide an indirect proof of doxorubicin-induced ROS involvement 

in ASM/ceramide pathway (Andrieu-Abadie et al., 1999). 

Several recent reports described the ability of subtoxic concentrations of chemotherapeutic 

drugs to sensitize tumour cells that are resistant to TRAIL (Gibson et al., 2000; Keane et al., 

1999; Bonavida et al, 1999; Ciusani et al., 2005; Shankar et al., 2005). The synergistic 

cytotoxic effect of genotoxic drugs and TRAIL, was proposed to be mediated by an up-

regulation of TRAIL death receptors after pretreatment with cytotoxic drugs for several hours 
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(Sheikh et al., 1998; Gibson et al.,  2000; Shankar et al., 2005) and to be p53 dependent (Wu 

et al., 1997; Wu et al., 1999a). Up-regulation of the death receptors has been studied either at 

the mRNA level (Sheikh et al., 1998; Gibson et al., 2000; Wu et al., 1997; Wu et al., 1999a) 

or by immunoblotting (Gibson et al., 2000). This drug-induced receptor up-regulation was not 

confirmed in the present study in which the expression of DR5 was analyzed at the plasma 

membrane by flow cytometry and the exposure to doxorubicin was much shorter. This is 

consistent with the study of Lacour and co-workers (2001), who showed, in addition, that lack 

of modulation of TRAIL receptor membrane expression upon exposure to DNA-damaging 

agents did not depend on p53 status because it was observed in both p53 wild-type and p53-

mutated cell lines (Lacour et al., 2001). The concentration of cytotoxic drugs used to sensitize 

tumour cells to TRAIL-induced cell death could account for the discrepancies observed with 

other studies. High concentrations of etoposide that are not clinically relevant were shown to 

up-regulate DR4 and DR5 mRNA and protein levels in breast cancer cell lines  (Gibson et al.,  

2000), whereas lower, more clinically relevant concentrations of doxorubicin had no effect on 

the expression of the studied receptors in these cell lines (Keane et al., 1999). Thus, it cannot 

be ruled out that higher concentrations of doxorubicin could have enhanced the expression of 

TRAIL receptors at the surface of the tested cells. Discrepancies between studies could also 

depend on the choice of the cytotoxic drug because low concentrations of doxorubicin were 

shown to sensitize breast cancer cells to TRAIL, whereas high concentrations of 5-

fluorouracil were required for obtaining this effect (Keane et al., 1999). 

Here, a novel mechanism mediating the synergistic effect of subtoxic doses of doxorubicin 

and TRAIL, respectively, is presented. This mechanism consists in trapping and clustering of 

activated DR5 receptors within ceramide-enriched membrane platforms induced by low doses 

of doxorubicin. At present it can not be excluded that doxorubicin treatment has also other 

effects amplifying TRAIL-induced signalling and apoptosis; however, the data on ASM-

deficient cells demonstrate that these effects would also have to be mediated by ASM and 

ceramide.  
 

Consistent with the present data, TRAIL or DR5-antibodies showed only modest effects on 

experimental tumours, while recent studies combining TRAIL with radiation or 

chemotherapeutic drugs, e.g. alkylphosphocholines or DNA-damaging agents (Jendrossek et 

al., 2003; Jin et al., 2004; Shankar et al., 2005; Marini et al., 2005; Straughn et al., 2006; 

Marini et al., 2006) revealed a very effective induction of apoptosis and suggest that TRAIL 
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or anti-DR5 antibodies should be used in combination with chemotherapeutic drugs and/or 

irradiation. 
 

The concept of amplifying apoptosis induced by low doses of TRAIL via ceramide increase 

could have clinical relevance by combining application of a locally active stimulus that 

generates ceramide in the tumour, for instance irradiation or antibody-coupled activators of 

ASM, and low doses of TRAIL injected systemically, that by themselves have no effects (to 

both malignant and non-malignant cells and tissues, respectively), but in the tumour they will 

be converted into a potent apoptotic stimulus by locally induced/released ceramide. A timely 

and locally coordinated production of ceramide in the tumour tissues with the application of 

very low doses of systemic TRAIL may permit an efficient treatment of at least some human 

malignancies. 
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6. SUMMARY 

 

 
The pro-apoptotic TNF-family ligand TRAIL is currently one of the most promising novel 

anti-cancer agents. Although TRAIL has been intensively studied in the past decade, the 

signalling cascades which lead to and regulate TRAIL-induced apoptosis are still not 

completely elucidated. Furthermore, since in vivo treatment with TRAIL alone did not reveal 

very spectacular outcomes, particular importance is given to characterizing mechanisms that 

may amplify TRAIL-induced apoptosis. 
 

The present study investigated the role of acid sphingomyelinase (ASM) and ceramide-

enriched membrane platforms for the apoptotic pathway triggered by TRAIL upon ligation of 

DR5 receptors. The major findings of the study are: 
 

• ASM is activated by TRAIL and plays a crucial role in apoptosis induced by 

physiological doses of TRAIL. 

• TRAIL activates the ASM via a direct or indirect redox mechanism. 

• TRAIL-induced ASM activation leads to generation of ceramide-enriched membrane 

platforms on the outer leaflet of the plasma membrane. 

• Ceramide-yenriched membrane platforms are essential for TRAIL-induced apoptosis. 

• Ceramide-enriched membrane platforms serve to trap ligated DR5 receptors leading to 

a massive aggregation of the receptors (receptor clustering). 

• Receptor clustering is essential for successful induction of apoptosis by TRAIL via 

amplification of the primary signal. 

 

Therefore, the following signalling pathway is proposed: 
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Furthermore, the present study identifies a novel mechanism of amplification of TRAIL-

induced apoptosis via ceramide-enriched membrane platforms. Since ceramide platforms are 

able to amplify the killing potential of very low doses of TRAIL, this mechanism may prove 

of relevance for the in vivo treatment with TRAIL. The results demonstrate: 

• Non-lethal doses of doxorubicin and TRAIL have a synergistic apoptotic effect. 

• Non-lethal doses of doxorubicin are able to induce ceramide-enriched membrane 

platforms. 

• Doxorubicin-induced ceramide platforms are generated via activation of the ASM. 

• Doxorubicin-induced ceramide platforms trap and cluster the ligated DR5 receptors 

leading to successful induction of apoptosis. 

 

Therefore, the following mechanism of amplification is proposed: 
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