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Chapter 1

Introduction

The discipline of mathematical finance consists of two maljects: portfolio optimi-
sation and derivative pricing. This thesis deals with areaspf the latter: The binomial
approach to the valuation of financial derivatives. The i@ method is an important
technique for numerical option valuation, and the incraaseomplexity of financial
products has further expanded its fields of application. édweer, since the very be-
ginning of derivative pricing theory, the binomial apprbdtas been of an enormous
pedagogical use. In this introductory chapter, we briefgtsk the history of deriva-
tive pricing with a particular focus on the binomial apprband its growing fields of
application. Afterwards we give an overview of this thesis.

What is derivative pricing? Financial instruments include both primary financial in-
struments such as stocks, bonds and currencies, and derisaturities, whose value
is derived from an underlying. The underlying can be a prinfismancial instrument, a
reference value from the market such as interest rates dedes, a commodity or - to
put it bluntly - in principle anything you could possibly @t or hedge against. To give
an example for an everyday ("non-banking”) derivativenfrépril 1 to June 7, 2008,
Deutsche Bahn offered ltan BahnCard 25at EUR 39/EUR 19 (first/second class)
that promised a 25%-discount on train fares until June 30282 addition, Deutsche
Bahn promised that the discount card’s duration would benelee by one month for
each match that the German soccer team would win during trepEBan Championship
in Austria/Switzerland. Clearly, at the purchasing date dhyer did not know the num-
ber of matches that the German team finally won. Thus, thisclesly a bet on the
competitiveness of the German soccer team.

In derivative pricing, the “fair price” of a certain deriva contract is determined. Due
to the Fundamental Theorem of Asset Pricing, we nowadayw khat, if the market
is complete and arbitrage-free, there exists a unique algntmartingale measure un-
der which the pricep of a derivative contract on some underlyi8gvith payoff g and
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maturity T is given by
p=Eq(e"g(§;0<t<T)), (1.1)

wherer is the risk-free rate. However, it took a lot of time and efffiar arrive at this
abstract form.

Pricing options with the no-arbitrage principle: The binomial approach and its
economic interpretation Early crucial steps to abstract pricing theory were made by
R.C. Merton and by F. Black and M.S. Scholes in the early 1970s,famulated the
following no-arbitrage principle:

"If options are correctly priced in the market, it should nloé possible to make sure
profits by creating portfolios of long and short positionojtions and their underlying
stocks.”(F. Black, M.S. Scholes [BS73])

Based on the no-arbitrage principle, they derived a thexaetialuation formula for
European calls and puts on a log-normally distributed spoade. From today’s point

of view, twelve years after Scholes and Merton received thbd\prize in economic
science (Black had already died at that time), it is almostelietable that the Black-
Scholes paper had been rejected by two other journals bifawaes published in the
Journal of Political Economy However, in the early 1970s, their ideas were so non-
standard and revolutionary that it was hard to believe imthe

In 1975 M. Rubinstein and W.F. Sharpe, himself Nobel Pricedate (1990), had the
following discussion on the Black-Scholes model at a comiezen Ein Borek, Israel:

"With nothing to do during the breaks (except to take a diphe sea), ..., we wondered
how it was that the then two-year-old Black-Scholes approactatuing options could
recreate a riskless payoff using only the option and its uydey asset. It was then
that Sharpe said, | wonder if it's really that there are only tetates of the world, but
three securities, so that any one of the securities can bicegpd by the other two.”
(M. Rubinstein [Rub92])

This insight was the birth of the binomial approach. Rubimstsnd Sharpe realised
that by the Central Limit Theorem, the Black-Scholes formuaurs as the limiting
form of the corresponding price in a discrete model with egst/e two-state up-down
movements of the underlying asset price. Subsequenthpittwenial approach to op-
tion pricing theory was presented in Sharpe’s textbdokestments”[Sha79] and the
model was explained in detail ifOption pricing: a simplified approach”[CRR79]
by J.C. Cox, S.A. Ross and M. Rubinstein. For many economistshitiemial ap-
proach actually justified the continuous-time modellingBdé&ck and Scholes. And
even nowadays, it is of an enormous pedagogical use. Herctrmic concepts of
arbitrage opportunities and market completeness are magiré¢o understand than in



the continuous-time case.

More importantly, the binomial approach became widely use@ numerical pricing
tool for American and exotic options when an analytic pgciarmula is not available.
This is explained below.

American and exotic options: The binomial approach as a numacal pricing tool
The option pricing formula (1.1) is only valid for Europetype options. European op-
tions can only be exercised at one specified datethe future, the maturity. However,
since the early days of trading, numerous option types tradexchanges belong to the
class of American options. They can be exercised at any tetveden the purchase date
and the expiration date. Due to the widespread use of Amredp#ons, it is important
to find appropriate methods to determine their fair pricewkler, the small concep-
tual difference between European- and American-styleooptcauses a big difference
in pricing because the optimal exercise datg @. < T is not known on the date of
purchase. Rather, it depends on the random evolution of tlok price, and it is hence
itself random (mathematically,. is a stopping time with respect to the filtration gen-
erated byS). For American-style options, the pricing formula (1.1) shbe modified
to

p=Eq(e"g(§;0<t<T,)). (1.2)

However, ag, is uncertain, the formula does not readily provide a mowetalue for
a specific valuation problem. In fact, the American valuapooblem continues to en-
gage both researchers in academics and professionals. Fa&8 (vrites in theNew
Palgrave Dictionary of Economics

"This does not mean that there are no important gaps in theigoppricing) theory.
Perhaps of most importance, beyond numerical results,very little is known about
most American options which expire in finite time Despite such gaps, when judged
by its ability to explain the empirical data, option pricitigeory is the most successful
theory not only in finance, but in all of economics’”

In contrast to the continuous-time American valuation peol) the American valua-
tion problem can be solved explicitly in the binomial apprioalet us explain: In the
Black-Scholes model, the stock price follows a geometric Biiaw motion, an infinite
variation process. However, in the binomial approach, ecamiess is modelled on a
discrete grid in both time and space. This simplifies theatadun problem considerably
because there is only a finite number of possible scenarfwrefore, we can go step by
step backwards in time and decide at each scenario whetlseyptimal to exercise or
not. Weighting our decisions with respect to the risk-na@utreasure leads to the price
of the American option in the binomial model. As shown by K. itmand A. Khanna
(1994), the price estimates obtained from the binomial @ggin converge to the Amer-
ican option price in the Black-Scholes market [AK94]. For #Hisiently large number
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of periods, the binomial price serves as an estimate forah&raious-time price. As a
consequence, the binomial approach became important anerical pricing tool for
American options.

As explained above, the option price is simply the expectddevof a functional of the
stock price (compare with the pricing formula (1.1) and Y)L.2h the binomial model,
the price isthe expected value of the same function of a simpler probessapprox-
imates the original stock price, but that is only driven bgalete random eventdn
particular, for numerical option valuation, it is irrelewavhether the sequence of price
estimates obtained from the binomial model has the econon@pretation as option
prices in the associated discrete markets. Thereforerdhsition probabilities in the
binomial model need not be risk-neutral; rather, it suffitélse sequence of binomial
processes converges weakly to the continuous-time stock. pEarly suggestions for
this kind of binomial models are made in the paper by Cox, RodsRarbinstein and
also in"Two-state option pricing”’by R.J. Rendleman and B.J. Bartter. Their paper ap-
peared around the same time as the paper by Cox, Ross and Rinbinsténas not re-
ceived the same attention. As a main difference, for the fraadgested by Rendleman
and Bartter, the probability for moving upwards and downwasthe same [RB79].

For American options, the exercise time can be chosen bygtierobuyer. Alterna-
tively, one could think of more complex payoff structureswards the end of the 1970s
and the beginning of the 1980s, standard option tradingrbedzetter understood and
the trading volume exploded. Financial institutions betgesearch for alternative forms
of options - called exotics, special-purpose options otausr-tailored options - meet-
ing the new requirements of the customers [Zha98]. The as&rén complexity of the
options’ structure led to an increasing demand for numkpigeing algorithms, which
enhanced the scope of the binomial approach as a pricing &sfor American op-
tions, the price in the binomial model can be determined fyr desired structure of
the payoff by calculating all possible scenarios and wenghthem with respect to an
appropriate measure.

Path-dependent options have been of particular intereshgrtnese second-generation
options; in the late 1990s, they became the most populaompin the OTC market
place [Zha98]. Here the payoff depends on the entire patheofibhderlying asset. Due
to Donsker’s Theorem, a process version of the Central Litnéofem, the binomial
approach leads to prices for path-dependent options timaeoge to the option price in
the Black-Scholes model. Therefore, the binomial approachbe used a pricing tool
for path-dependent options.

Multi-asset options, i.e. options depending on severaétyiohgs, form another impor-
tant class of exotic derivatives. In the course of incregasnoss-market integration and
globalisation in financial markets, multi-asset optiongehbecome popular to hedge
cross-market and global positions [Zha98]. Consequenihgesthe late 1980s and
early 1990s, there have been numerous approaches to addidimial method to the



valuation of multi-asset options. Though differing in distanost suggestions are based
on a discretisation of the joint evolution of the stock pnmrecess [P.P. Boyle (1988);
P.P. Boyle, J. Evnine and S. Gibbs (1989), B. Kamrad and P. Ritcfk991),..]. For
multi-asset options however, the binomial approach ssiffierm thecurse of dimen-
sionality, i.e the computational effort grows exponentially in thenter of underlying
assets. Consequently, for high-dimensional valuationlprog, the binomial method is
currently not practically useful. This is an inherent drawk of the binomial approach
as a method based on the discretisation of the underlyirggsasslowever, up to di-
mension four, let us say, the binomial approach can leaddolteethat are perfectly
competitive and often superior to those obtained by MontéoGaethods.

Although the binomial approach is, in principle, an efficiemethod for lower dimen-
sional valuation problems, there are at least two main prablregarding its applica-
tion: Firstly, binomial methods often exhibit an irrequamvergence behaviour of the
option prices computed for an increasing number of perddsurthermore, traded op-
tions often exhibit discontinuities, so that the Berry-&ss inequality on the sequence
of binomial price estimates is in general tight; i.e. corti@ral tree methods converge
no faster than in order/4/N. Unfortunately, the fact that the payoff is non-smooth
also causes an irregular convergence behaviour that impghdeossibility to achieve
a higher of order of convergence via extrapolation methddse most prominent ex-
ample of irregular behaviour is the so-called sawtootkeetff Secondly, in multi-asset
markets conventional tree construction methods cannairensell-defined transition
probabilities for arbitrary correlation structures beéweghe assets. As a major aim of
the thesis, we present two approaches to "get binomial treeshape”;the optimal
drift model for the valuation of single-asset optioasd the decoupling approach to
multi-dimensional option pricing

The optimal drift model is presented as a new binomial schimsingle-asset option
pricing. It can lead to convergence of oragf,/N) by exploiting the specific structure
of the valuation problem under consideratiorhe optimal drift model has the poten-
tial to outperform even benchmark methaigh as the binomial scheme suggested
by D.P.J. Leisen and M. Reimer, which is widely used in practar American op-
tion pricing [LR96]. The decoupling approach is presented asnstruction method
for multi-dimensional trees. In contrast to the standanoraach to multi-dimensional
trees,the trees constructed according to the decoupling appraaehwell-defined for
an arbitrary correlation structure of the underlying assetn addition, they yield a
more regular convergence behaviour. In fact, the sawtdéhtecan even vanish com-
pletely, so that extrapolation can be applied. In contraghe optimal drift model,
the decoupling approach does not assume knowledge of thatiadiproblem under
consideration We do not claim that the decoupling approach performs kwesariy
particular type of (exotic) option. However, it shows a sggaverall convergence be-
haviour when applied to arbitrary optionghe decoupling approach is therefore an easy
and universal approach to cope with the irregular convergebehaviour in multiple
dimensionsBy contrastthe optimal drift model is based on an advanced construction
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technique that shows superior performance if adapted to aip@&aluation problem.

An overview of the thesis This thesis consists of two parts; binomial pricing in a
single-asset Black-Scholes market and its extension td-gliaiensional situations. In
Chapter 2, we give a thorough and rigorous overview of therhiabapproach to nu-
merical option valuation for a single underlying. We sumis@arorder and comment
on many results from literature. Some of these are well-knomhile others are non-
standard. In order to complete the picture of the binomiaflehowe add many pieces
of our own work. Furthermore, we introduce the optimal dmifbdel. It is defined by
optimising the allocation of probability mass in relatiarthe strike value, as suggested
by Y.S. Tian and by L.-B. Chang and K. Palmer [Tia99], [CPO07]. ldaear, while both
these models are imposed on the scheme suggested by Cox, RdRslanstein, we
optimise the drift of the underlying binomial mod@k a result, the optimal drift model
can admit convergence of ordefl/N).

In Chapters 3 and 4, we investigate the multi-asset case. &@h3dpeals with the
standard approach to binomial option pricing in a multiea®lack-Scholes market.
Standard methods are based on an approximation of the jemltigdon of the underly-
ing assets This will be explained in detail. The standard approachiustrated with
the model suggested by P.P. Boyle, J. Evnine and S. Gibbs whiobnically extends
the one-dimensional model by Cox, Ross and Rubinstein to a-gioiensional situa-
tion [BEG89]. In addition, we consider a multi-dimensionatiant of the model sug-
gested by Rendleman and Bartter. In order to obtain an appte@pproximation to the
multi-asset Black-Scholes model under consideration, theelation structure among
the assets has to be matched. Consequently, the number oinhimiaiehing conditions
grows quadratically in the dimension. As a resifltye follow the standard approach
to multi-dimensional trees, setting up an appropriate lboma model soon gets tedious,
and it is sometimes even impossibf@én top of that, conventional multi-dimensional
tree construction methods inherit the irregular convetgdrehaviour observed for the
one-dimensional situation.

In Chapter 4, the decoupling approach is introduced as amatiee to binomial pricing

of multi-asset optionsThe basic idea of the decoupling approach is to transform the
multi-dimensional (log-normal) asset price process to & peocess with independent
components before setting up a discrete modibe model we suggest contains the 2D
example by J. Hull as a special case [Hul06]. Decoupling isasy approach to over-
come the main problems in applications of the standard agprto multi-dimensional
trees.

Chapter 4 is essentially based on the pdfdre decoupling approach to binomial
pricing of multi-asset options’published in theJournal of Computational Finance
[KMO09a]. Short extracts from both parts of the thesis aréectéd in the papéiGetting
multi-dimensional trees into a new shape&Vhich has recently appeared in théimott
Journal[KMO09b]. Both papers are joint work with Ralf Korn.



Chapter 2

Binomial Pricing for Single-Asset
Options

We consider a one-dimensional Black-Scholes model withkgboice dynamics under
the risk-neutral measure given by

dSt) = S(t)(rdt + odw), S(0) =5 >0, (2.1)

for some volatility parameteo > 0. Herer is the risk-free interest rate, andl is a
one-dimensional Brownian motion with respect to the risktred measur®). We fix a
time horizonT > 0.

2.1 Introduction

This chapter deals with binomial pricing of single-assdiays. The underlying stock
is assumed to follow the Black-Scholes dynamics defined abBvem a theoretical
perspective, we therefore investigate two-state Markairchpproximations to a geo-
metric Brownian motion. To apply the binomial approach to eucal option pricing,
we want the approximating models to ensure weak convergertbe stock price pro-
cess in the Black-Scholes setting. Under this conditionctreesponding sequence of
binomial price estimates converges to the exact optioregac most common payoff
structures. However, as discussed in the introductoryaeatonventional binomial
schemes suffer from serious problems in practical appdicat The convergence be-
haviour of the corresponding price estimates is non-moresémd oscillatory. Further-
more, if the payoff exhibits discontinuities, the Berry-&ss bound on the convergence
rate of the pricing error is in general tight. We thereforeu® on the construction of
binomial approximations that can exploit the structurehaf valuation problem under
consideration.

Let us briefly outline the contents of this chapter: We firstdss alternative binomial
models for the approximation of the stock price process. drtigular, we consider
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the schemes suggested by Cox, Ross and Rubinstein (1979) ¢ior 8iRR) and by
Rendleman and Bartter (1979) (for short: RB). All schemes undaesideration are
defined so as to asymptotically match the first two momenth®fiagreturns of the
stock price. It is well-known that by asymptotic moment nmatg, the approximating
models converge weakly to the stock price process as theigiem the discrete model
tends to zero. This is discussed in detail. Afterwards, westigate the asymptotic be-
haviour of the discretisation error. We demonstrate thatémventional schemes, the
Berry-Esg&en bound is tight and the discretisation error convergassnwoothly. This
motivates to control the error term, as is done in many add@neodels. In particular,
we discuss a generalised variant of the advanced modelgstegigoy Tian (1999) and
by Chang and Palmer (2007). The latter leads to the new optnfamodel. We will
verify that the optimal drift model can admit a superior cergence rate of the dis-
cretion error. In Section 2.3, we focus on the applicatiothef binomial approach to
numerical option pricing. We see that due to weak convergethe binomial method
can be applied to numerical valuation of most common typdsunbpean and Ameri-
can options. The corresponding valuation algorithm iseckditree procedurdecause
the possible realisations of the binomial process can b#iftesl with a tree structure.
The implementation of binomial option pricing is discusgedetail in Section 2.4. Fi-
nally, we analyse the convergence behaviour of binomiaktfer the two most common
payoff structures; for payoffs that are constant in the teatvalueS(T) (i.e. cash-or-
nothing options) and for payoffs that are linearS{T) (i.e. plain vanilla options). We
see that amongst the methods under consideration, the shdpetree constructed by
the optimal drift model best exploits the structure of thiigtion problem. This results
in a superior rate of convergence of the correspondingrarierror.

2.2 Discretisation of the Stock Price and Weak Conver-
gence

In the following, we discuss alternative binomial schenwglie approximation of the
stock price process. In the context of numerical optionipgicwe want the approxi-
mating models to ensure weak convergence to the stock pocessS. That is,

Definition 1 (Weak Convergence).et M be a metric space and let\P, 1 <N < o,

and P be probability measures ¢M, %#(M)), where we write2(M) for the Borelo-
field of M; i.e. the smallestr-field containing all open subsets of M. Then we say that
the sequence of probability measuf@\) )y converges weakly t&, denoted by

pN) =wP,
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if for any bounded, continuous function M — R, we have

N—oo

lim [ £(x) PO () = / £(x) P(cx).
M M

Further, let XN), 1 < N < o, and X be random variables with state space M defined on
probability spacegQN),.ZMN) pP(N)y and(Q,.Z, P), respectively. Then we say that the
sequence of random variabl(ax(N))N converges weakly t&X, denoted by

XN =, X,
if for any bounded, continuous function M — R, we have,

lim Epow (F(XM)) = Ep(f(X))

N—oo

(compare e.g. [Bil68]).

Remark 1. Of course, weak convergence of random variables is the sameascon-
vergence of their distributions. In particular, the randeariables under consideration
need not to be defined on the same probability space, as ishesew.

2.2.1 Binomial Models

Let N € N denote the number of periods in the discrete model. A binbapgroxi-
mation to the stock price allows for two possible scenarmsperiod, so that the path
space is naturally given by

EN = fw:{1,...,N} — {1,-1}}

endowed with the produat-field

FN) .= %}9({1, “1)i=0 (z&N) ‘ ke N) .
k=1

Here Z(.) denotes the power set aﬁﬂ\‘) : &N) — {1, —1} is the coordinate mapping
z(@) = .

Starting at the initial value of the continuous-time pracgs we define a binomial
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process orf&eN) | .7 N)) py

N) = gV MABVAZY k0, N-1, 2.2)
for some constanf > 0 and some constant(N) depending on the number of periods
N. HereAt := T /N is the grid size of the discrete-time model. In order to ashigeak
convergence to the continuous-time price process, we ehtthessequencgx (N))n,
the constang > 0 and the sequence of probability meas8))y on (&N, 7Ny
such that the following conditions are satisfied:

1. For allN € N, the random variableaiN), k=1,...,N, (for short: RV) are inde-
pendently and identically distributed (for short: i.i.d.)

2. The first two moments of the one-period logreturnsSoare asymptotically
matched, i.e. we have that

HN): = & Epwy ('n (sﬁ_%) ' §(<N)>

= a(N)+B/ 2 Epm (zﬁﬂ)l) (2.3)
o o o5 )
—  B?Varyy, (zm) (2.4)
are such that ad — oo
H(N) —r—30° (2.5)
and
o%(N) — o2 (2.6)

Under these conditions, it follows from Donsker’s InvagarPrinciple (compare e.qg.
[Bil68], Theorem 10.1) that the linear interpolation 8f¥) (suitably scaled in time)
converges weakly to the stock price process. Of course,tetindition is satisfied if
and only ifP(N) is a product measure of the form

N
p(N) — |§1 p(LN) (2.7)
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for some probability measu®N) on ({1, -1}, 2({1,—1})). Then one-step transi-
tions are independent and they are the same for each perioch we assume from
now on. In particularSN) is a Markov process.

Introducing the notationgy(N) := PAN)({1}) and pg(N) := PAN) ({—1}), the char-
acteristics of the discrete-time modelN) ando?(N) write as

H(N) =a(N)+ B4/ 4 (2pu(N) — 1) (2.8)
and

0?(N) =4Bpu(N) (1~ pu(N)). (2.9)

Further,py(N) is determined byg(N) = 1— py(N). Apparently, we can choose among
an infinite number of possible discretisation schemes thaure the moment matching
conditions (2.5) and (2.6). Let us remark that the drift pagters(a (N))y are allowed
to be non-constant iN. This will provide some additional flexibility to adapt thenb-
mial scheme to the payoff structure of interest (compare[€ig99]); more on that to
come later. We impose the following condition:

Assumption 1. The sequencéex (N))y is assumed to be bounded; i.e. it is assumed to
be of order @1).

In the following, we investigate some widely used binomighames. Firstly, we
consider transition probabilities that are given by th&-nieutral measure associated
with the discrete market consisting of a stock with dynani@cg) and a bond

Bi,1 = B, k=0,...,.N—1; Bo = 1. (2.10)

Herer is the interest rate in the continuous-time model. Let ugcgatte that under
the risk-neutral measure, the moment matching conditidriy @nd (2.6) are satisfied
if and only if B = 0. By contrast, the drift of the discrete-time model is irrelei
As explained in the introductory chapter, this approachuies an economic insight
on option pricing in the Black-Scholes model. When we appratéan option on the
continuous-time stock price by evaluating a payoff funadibalong the sequence of
binomial models, the resulting price estimates are therasebption prices in the ap-
proximating binomial model.

Secondly, we analyse the discretisation schemes suggms®B and by CRR. Here

1The binomial approach suggested by CRR is motivated by ismauic insight. However, they
also introduce a binomial model with transition probalastthat are only asymptotically identical with
the risk-neutral transition probabilities [CRR79]. Ineliature, the term CRR model appears both for
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the binomial model serves as a plain numerical pricing tiha;binomial estimates for
an option on the stock pricedo not admit an economic interpretation. In particular,
they do not coincide with the corresponding option pricethenbinomial model. Hav-
ing clarified this conceptual difference to risk-neutradatetisation schemes, we will
use the term "binomial prices” loosely.

Throughout the thesis, we typically distinguish betweendiscretisation schemes pre-
sented above. Below we additionally investigate advancedmses that allow for a
better performance in numerical option valuation.

Discretisation Schemes with Risk-neutral Transition Profabilities In the follow-
ing, we consider the discrete-time market consisting of rrdbwith one-period return
&2t (compare (2.10)) and the sto&) with dynamics (2.2). The possible one-period
returns of the stock price are denoted by

U(N) 1= eNAHBVAL  ang  d(N) 1= e? (N A-BVAL

By our convention3 > 0, u(N) can be interpreted as the one-period return given that
"the economy is in the good state 1", addN) is the realised one-period return if
"the economy is in the bad statel”. Then there is the following well-known result
(compare e.g. [Rj04], Section 2 and Section 3):

Proposition 1. We have absence of arbitrage opportunities (for short: AADhe
discrete market if and only if

d(N) < &2 < u(N). (2.11)

In this case, the discrete market is also complete and ttkengutral probability mea-

N
sure is given by @ = @ QN where
k=1

. erAti
QN (1) = FS- (2.12)

Note that (AAO) implies in particular that the meas@@") is well-defined.
If we write the condition (2.11) in terms @f(N) and, we have (AAO) if and only if

Ir—a(N)|/T/N <.

the discretisation scheme with risk-neutral transitioobabilities and for the discretisation scheme with

transition probabilities defined by,(N) = 1/2+ 1/2(%\/T/N). In the thesis, we use the term
CRR model for the latter variant.
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By Assumption 1, there is some constdht> 0 such thata(N)| < M for all N € N.
Thus, we can formulate the following result:

Corollary 1. Provided that the grid size is sufficiently small, the disemnarket is
arbitrage-free and complete. It suffices to let

2
N>(rlg"#.

By Corollary 1, we may agree on the assumption that the gridisiaévays suf-
ficiently small to ensure that risk-neutral transition pblities are well-defined and
unique.

As we will see in the following, when we define transition pabbities in accordance
with the risk-neutral measure, weak convergence to tharaomis-time stock pric&

is already ensured if we s@t= o; i.e. it suffices to ensure that the discrete-time stock
price is exposed to shocks of appropriate size. Yet thisitonds also necessary. By
contrast, the drift is irrelevant.

Proposition 2. Assume that the transition probabilities are determinedoading to

the risk-neutral measure @); i.e. we have @ = @ _; QN with QN defined in

(2.12). Then the moment matching conditions (2.5) and @eyatisfied if and only if
B=o.

In particular, convergence to the first two moments of the jpe@ad logreturns in the
continuous-time model is of order

2 1
!

Hgm(N) (1303 =O() ~ and |2
Q

WhereuQ<N) (N) and aé(N) (N) are computed with respect td®) according to (2.3) and
(2.4), respectively.

Proof. By Assumption 1, it follows from a Taylor expansion that

uN) = 148 (D)% + (a(N)+182) L+ (

(3a2(N) + 362 (N) + 8% (7)*+0 (%) (2.13)
dN) = 1-B(5)"+ (aN) +362) T -
(3a2(N)+ 3p2a (N) + 5°) (%)2+0($)7 @14
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which implies thagy(N) := Q:N)(1) is of the form

Qu(N) = 3+ ca(N) (}) 2+ alN) (1) V0 (3 (2.15)
where
alN) = 7 (r—a(N)-3p9)

ca(N) = 35 (3(aN) =) +3B2(a(N)—1)+ 4B

(compare also [CP0O7], p. 97/98). Note tlzatN) andcz(N) are of orderO(1). We
obtain

How (N) = a(N)+8 ()2 (20u(N) — 1) =1 — 3%+ 2Bca(N) | +0(3)

2.9
02 (N) 2 B240,(N) (1 au(N)) = B2 — 4B%GF(N)  +0(3)
Hence, the moment matching conditions (2.5) and (2.6) atisfied if and only if
B = o. Moreover, we see from the above equations that the assemiahe order

of convergence holds true, which completes the proof. n

Remark 2. Let us stress that the moment matching conditions are satigidepen-
dently of the particular choice of the sequericgN) ).

Further, equation (2.15) implies the following result oe #symptotic behaviour of
the risk-neutral measure:

Corollary 2. As the number of periods N tends to infinity,

o]
=
S
Z
N—
|
NI=

The Discretisation Scheme suggested by RBRB suggest to set
a(N)=a:=r-302, B=o
and

pu(N) = pa(N) = 3. (2.16)
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Apparently, for this choice the transition probabilities ot depend on the number of
periodsN. As required, the model satisfies the moment matching dondi{2.5) and
(2.6). In fact, moments are not only matched asymptoticélly for any number of
periodsN; i.e.

p(N)=r—302 and 0?(N)=02

The Discretisation Scheme suggested by CRRCRR define an appropriate binomial
model via

and

Pu(N)=3+3 (#) \/E (2.17)

In contrast to the RB model, the transition probabilitiesyMarthe number of periods
N. In particular, the corresponding probability measie$ is only well-defined if the
grid size is sufficiently small, which we assume throughadig thesis. To be precise,
we need

N> L (r—102)°T. (2.18)

ag

Simple calculations show that the moment matching conast{@.5) and (2.6) are satis-
fied. In fact, if the model is well-defined for any number ofipdsN, the first moment
of the logreturns is matched exactly. By contrast, the seocumdent is matched asymp-
totically only. We have

02(N) = 0% — (r— 102)* T, (2.19)

which yields

F5-1 =0 (2.20)

Note that as the grid size tends to zero, the one-step ti@mgitobabilities in the CRR

model converge to the corresponding one-step transitiobatnilities in the RB model.
In particular,

PERRN) = pER(N) +0 ()
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Further, neither in the CRR model nor in the RB model, the treammsfirobabilities are
risk-neutral. However as readily observed from (2.15)ghethe following asymptotic
relationship betweepy(N) andqy(N):

Proposition 3. For the discretisation scheme suggested by RB and by CRR)¢hstep
transition probability p(N), defined in (2.16) and in (2.17), respectively, coincidek wit
the associated risk-neutral probabilitydN) up to a term of ordel /N%/2. We have that
for the RB model

o) = 5+40% (1) +0(3a)

In particular, Proposition 3 implies the following result:

Corollary 3. Both for the models suggested by CRR and by RB, there is som@&IN
such that

qu(N) > pu(N) for all N > N.

In words: For a sufficiently large number of periods N, the @rogrobability for an
up-movement @N) is smaller than the corresponding risk-neutral probalyilif,(N).

Let us stress that while for the discretisation scheme sigdeby RB, the drift
enters transition states, it enters transition probaslitor the CRR model. As a conse-
guence, the latter implies that the logarithm of the bindiacess is symmetric around
the starting value. By contrast, the discretisation schamgested by RB prefers to
have equal weights, which is paid for by a non-symmetric fofine binomial process.

Finally, let us anticipate some aspects of the applicatioim® two models to numer-
ical option pricing. Firstly, we wish to stress that compgtbinomial price estimates
is cheaper for the RB model because every path has exacthathe grobability. For
the CRR model, we have to multiply each payment withsgiscificprobability of oc-

currence. Secondly, the application of the CRR model sufiens fthe fact that the
requirement (2.18) sets a lower bound on the number of peNodn particular, if the

volatility is small, the transition probabilities are onkell-defined for a relative large
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number of periods. To illustrate this, let us consider thputrparameters=0.1, T =1
and o = 0.01. Then the number of periods$ is bounded from below by 100. For
o = 0.001, the required number of periods is already bounded b9§@.00

Time-scaling In the following, we map the binomial proceS&" onto a continuous-
time proces§©N) that appropriately approximates the stock price pro8esy0, T] so
that weak convergence is ensured. By moment matching, itrenfyains to scale time
appropriately; that is, we apply the transformation: kAt. By linear interpolation, we
set

SEN)(t) = exp(([% +1-Jt)In (%El)t]) +(Ft—[Ft])In (%’;)I]H)) , (2.21)

where|x] denotes the greatest integer less or equal to x.

Then fort = kat, SN (t) has the same distribution 88" and fort € (kAt, (k+1)At),

In(SSN)(t)) is obtained by linear interpolation betweelﬁﬂﬁ\‘)) and Ir(Sgi)l). To moti-
vate the time-scaling applied, note that §o£ kAt andt = (k+1)At, i.e.t —s=At, the
log-increment IRSSN) (1) /SEN)(s)) (asymptotically) matches the first two moments of
the log-returns of the stock price process over a periodraftleAt.

Weak convergence Due to the Central Limit Theorem, the fact that the pro-
cessSN) is based on the binomial distribution becomes negligiblethie limit,
so that for all timest e [0,T], SSN)(t) converges in distribution to the time-
t value of the stock price§. Moreover, fors = kAt and t = (k + 1)At,

the log-increment I(8SN)(t)/SSN)(s)) = a(N)At +BZ|£T)1JA_t is independent of

o(SN(u);0<u<s) = o(ZiN), e ,Z&N)). Hence, together with the moment matching
conditions, we anticipate that the following result holds:

Proposition 4. The sequence of approximating proceg&%V))y converges weakly to
the geometric Brownian motion S; for short we write

geN) =, S

Proposition 4 is a key result in the theory of numerical appeoicing. Itis a simple
consequence of Donsker’s Invariance Principle that pesvia process version of the
Central Limit Theorem. This is discussed in the following.t Wee assertion is not at
all non-trivial because all bits of hard work, in particufaoving tightness, are hidden
in the invariance principle.

Since the RVlegN), k=1,...,N, are i.i.d. for fixedN only, we need a special variant of
Donsker’s Theorem that considers triangular schemes:
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Theorem 1 (The Invariance Principle for Triangular Schemelsgt &g, . . kaN be
i.i.d. with mean0 and varlanceO < 08y < w; put i = Y|_q&n1, %,l = i0f,,
and § = - Let X be the random function that is linear on each interval

[2.i_1/5%,Si/k] and has values R(s;/s}) = Sui/sv at the grid points. Then,
XMN) converges weakly to a Brownian motion (compare e.g. [Bil6Bibfem 1, p. 77).

Remark 3. Note in particular that the above variant of the invariancengiple is
applicable to the binomial model suggested by CRR, for whielotte-step transition
probabilities depend on the number of periods N.

In our application,S¢N) is a continuous function of the embedded proc¥&¥
defined above. But weak convergence is preserved under gooSmmappings. In
addition, it is known by Slutsky’s Theorem that an asympgtotiatching of moments
suffices:

Theorem 2 (Continuous Mapping Principlel.et M and M be metric spaces. Let X
and XV, 1 <N < «, be M-valued RVs and let:M — M’ be continuous. Then, if
X(N) =, X, it holds that b X(N) =, ho X (compare e.g. [Bil68], Theorem 5.1).

Theorem 3 (Slutsky’s Theorem)Let (M, d) be a metric space. LQD( N)

a sequence oM x M)-valued RVs defined on a probability spaeN), .7
Suppose thatlgw =w X1 for some M-valued RVXIf for all € > 0,

Nbe

xV)
2
(N) p(N)y,

p(N) (d(fo),xéN)) > e) .0,

then )éN) =w X1 (compare e.g. [EK86], Corollary 3.3.3.).

Proof of Proposition 4. In order to re-write the dynamics of the proc&$&N) in terms
of normalised RVs, we define

Y= —2— (2" - B (@), (2.22)

Var,, (")

so that Ew) (Yk(N)) =0 and Vapn) (Yk(N)) =1. Then

N - simexp(a(N)AtJrB\/EtEP(N)(zlﬁﬂ)l)+/3 Varo) (zﬂi)ﬂvﬁ})
= gV exp(H(N)At+|o(N)| VALY, ).
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which implies that the proce&“N) writes as

SEN) () = gt NHIMNIVTYEN (L) - ¢ 1 7], (2.23)
with
Y““NQ——J;<WQYW) (Ns [NQ) ) se [0,1] (2.24)
=N kzl k Nq+1 ik :

Let us define

XN (t) = (r — 302 t+ oy/T YEN) (L)
and

XN ) = In (S) = HNH O VTYEN (5).
Then

Hxl(c,N) _Xz(c,N)Hoo = sup ’(r — 102~ u(N)t+ (0 —|a(N)) /T YEN) (L) ’

measures "the impact of an asymptotic matching of moment&rims of the sup-norm,
.. |[f]lo = SURco 1) T (1) Lete > 0. Apparently,

W (e ==V > ) < PN (Ju(N) - (r - 30?)[ T > §) +

N>(H(o—ya( VT YEN) ( H >35). (225)

[oe]

For a sufficiently large number of periodl§ the first term on the right-hand side of
equation (2.25) is zero by asymptotic moment matching. ritai@s to investigate the
second term. Clearly,

(el

Nl ™

.....
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where the discrete procebEN) is defined by

M = YN 1<k<N, MV :=o. (2.26)

5
1Mz

i=1

As MM is a discrete martingale, it follows from Doob’s martingeiequality (compare
e.g. [Dur05], Theorem 4.4.2) that

IN

Pt (!0— o(N)[[ VT, max )M.EN)( > %) (0 —|a(N))2T Epmy ((M,&m‘z)

(0 —|o(N)|)?T. (2.27)

s

|
e

By the moment matching conditions, the right-hand side ofjuradity (2.27) tends to
zero asN tends to infinity, which implies that

o ] o

Consequently, according to Slutsky’s Theorem it sufficeottser the proce@Sl(C’N)
instead ofx*"V.

Further, the invariance principle for triangular schemggplias to the sequence
(Y(C’N))N; i.e.

{YEN(9)}sc o1y =w {B(9) }se 0.1} (2.28)

where {Bs,ﬁs;o < s < 1} is a Brownian motion. Define the time-change
t:[0,1] — [0, T] by

t:s—Ts
and the filtration. % = f/:t/T indexed according to the "new time”. Then by
the time-scaling property of Brownian paths (compare [K$S9Bgmma 2.9.4),
{W,Z;0<t < T} with
W:=+VTBt/T) 0<t<T

is again a Brownian motion. Consequently, according to théimoous mapping prin-
ciple, (2.28) implies that

SHexp (X{C’N)> =wS
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which proves the assertion. [

2.2.2 Distributional Fit

In the following, we investigate how well the proce3&N) fits the stock price process
Sfor a fixed timet € [0, T|; i.e. we are interested in the distance

dM(t,x) == PV (§°Y <x) ~Q(s =x)|.

The Minimal Convergence Rate

The Berry-Esgen inequality suggests that the distad€® (t,x) converges to zero in
order /+/N uniformly in x € R. Yet in our application, the moments are only asymp-
totically matched. We see in the following that if the monsetitemselves converge in
order 1/+/N, the Berry-Esgen bound is maintained.

Theorem 4 (Berry-Es&en inequality) Let X;,..., Xy be independent RVs such that
EXj =0, E|Xj|2 <o (j=1,...,N). We write

0?=EX?,  By=y of F<N>(x):P< 2 p xJ<x>
and
LN =B %2 Z E[X;[3.
Then,

suplFN) (x) — d(x)| < AL,
X

where®(x) denotes the standard normal distribution function and Aadisis positive
constant (compare e.g. [Pet75], Theorem 5.3).

Proposition 5. Suppose that®) is the binomial process (2.2) with

g 1‘ o(%) (2.29)

uN)—p[=0(f)  and
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for some constantg,v € R, v > 0. Then for all times te [0, T},

sup
X

p(N) (S“’N)(t) < x) —® (ln(S‘f’\)/f_“t) ' =0 (ﬁ) : (2.30)

Remark 4. For u =r —1/202 andv = o, the condition (2.29) is a sharpening of the
moment matching conditions (2.5) and (2.6). It additiopaéquires a minimal order
of convergence.

Proof of Proposition 5. Note that
() (&)1 N )
¢<_HWW_>:¢< Wi & t& (2.31)

wheresi(N) (i =1,2) are the correction terms

B (N) _ (u—p(N))t
& =y ad &=

that appear because the constagntand v are only asymptotically matched. By the
triangular inequality,

X

megwa<x)—¢Cﬂ%%ﬂ>‘g
p(N) (gc,N)(t) < x> o (M)

NV
In(i>—u(N)t In<i>—ut
¢< &mm)‘¢<;%rdy

Using definition of the correction terméN) andeéN), we further observe that

(o))

¢<W%>wém+ém>_¢<ﬁé)“

vyt

sup
X

_|_

sup
X

<

sup
X

sup
X

sup
X

X
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Thus, in total,

N) (S(c,N)(t) - x) P (In(%\)ﬁ—ut)

N) [ qc.N) In(5) -
(SMW <x) @ | S

® (x+e") - CD(X)‘ + sup‘cb (xe™) - d)(x)‘ (2.32)

sup| P( <
X

sup| P! i
X

In the following, we investigate each term on the right-haia of the inequality above.
The first term can be written as

" (s <) o ) -

N (SEN(t) < et IOV )| =

v (1 (T NTY v (N)
VIN/T z Y ( _[tT])Y[tN/TH—l <X _CD(X>

whereYk(N) are the normalised RVs defined in (2.22). Hence, we obseate th
N) (geN) In(&)-un
( N () <x> e e e e
[tN/T
(N) 1 tN_
P ( /—tN/T< VAR ‘YtN/T]-i—l’) <X> P(x)| ,

wil o (v
PV | s jzlv ~ NNl ) <x) -

Note from applying the Berry-Eégn inequality to both arguments on the right-hand
side of the inequality above that

) (5<ch>(0 < x> —® (%) | -0 (ﬁ) . (2.33)

sup| P!
X

sup|P
X

sup| P!
X

max{ sup
X

sup
X

sup|P(N
X
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It remains to consider the last two terms on the right-hadd ef inequality (2.32) that

are due to the presence of the correction tesfH%andséN). By assumption (2.29), we
have

<££N)>2: 1+h(N),

where for sufficiently largé\,

Ih(N)| <

Zlo

for some constart > 0. Consequently, we obtain by the Binomial Series Theorem that

‘ei“’ —1) - o(\%). (2.34)
Further,
o] < 5 o o( ).

By the Mean-Value Theorem, there is soﬁ)@l [0,1] such that

<x+ @>(<',\|1) (siN) - 1) x) x‘ ‘eiN) - 1‘

® (xeiN)> — q)(x)’ <

< / X (N) _ .
< S)l(1p|CD (X) sup x1oY (El(_m_l)x € 1’
As @'(x)x is bounded, it follows from (2.34) that
@ (xey") —dJ(x)‘ -o(k). (2.36)

Similarly, there ise)((';) € [0,1] such that

() (x+ séN)) — CD(X)‘ <

<x+ 9)(('7\'2) eéN)) ‘ ‘eéN)’ .

Hence, by boundedness ®f(x), (2.35) implies that

cb(x+e§'\')) —CD(X)‘ :o(ﬁ). (2.37)
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Finally, the assertion follows by combining the result88), (2.37) and (2.36). [

Letu =r —1/202 andv = 0. As discussed previously, for the RB model the mo-
ment matching conditions (2.5) and (2.6) are satisfied &xaat. they hold for any
number of periodN. By contrast, for the CRR model the volatility is asymptotigall
matched only. Her@?/g?(N) converges to one in order/l. Further according to
Proposition 2, if we use risk-neutral transition probdies, the corresponding charac-
teristicsy(N) anda?(N) of the discrete-time model converge in ordgNiif and only
if B = 0. Hence by Proposition 5, for the models under considerattonvergence
to the limiting moments is sufficiently fast to maintain thenimal convergence rate
1/+v/N suggested by the Berry-Es=n inequality:

Corollary 4. Let SN be the process suggested by CRR, the process suggested by RB or
any binomial process (2.2) witB = o and risk-neutral transition probabilities. Then
for any time te [0, T],

sup
X

PV (5N (1) < x) —Q(S(t) < )| = O (%) (2.38)

Remark 5. The Berry-Esgen inequality sets a lower bound on the convergence rate
of the discretisation error in the approximation to the $#tquice. It depends on the
specific distribution of the discrete-time model whethes thinimal convergence rate
is attained. Of course, the convergence rate of the disaBtin error can also be faster.

For the RB model, it is easy to observe that the BerryeErssnequality is tight:
Proposition 6. Let é\,N) be the terminal value of the RB model. Then the distributiona

fit at the median of the continuous-time modek x0e™~2/29%)T is of the following
order:

’p(N) (S,QN) - Soe(r—l/zoz)T) _ %’ —0 forN odd

and

‘P(N) (é\‘N) < Soe(rfl/Zoz)T> B %‘

’\Ilim 1 vN = 1.
—00 —_
N even V21T

Proof. The RB model is tilted in such a way that

p(N) (S<\1N) < Soe(r—l/ZUZ)T> —P(X < %)’
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whereX is a Bin(N,1/2)-RV on some probability spad&,.c7,P). Further, it follows
from symmetry that

PIX<Y) = $a-P(X=}))

_ { ; (1_ (N’\/IZ)E}V> N even

N odd

NI=

Finally, by Stirling’s formula (compare e.g. [AS72], Fortal6.1.38), we have

(NN/2)§1N %% +o (%) ’

which yields the assertion. ]

We see that the RB model leads to a terminal vd@'é for which the Berry-Essen
bound is tight in the sense that

(S <x)-o ('”<

Iimsup{‘P (é\‘N < spel~1/20%) > ‘\/_} —=>0.

N—oo

&<

Ilmsup{sup

N—oo

In the general case, it is more involved to decide whetheBtrey-Es&en inequality
is tight. In the next paragraph, we investigate the asyntjmdyehaviour of the dis-
cretisation error for a fairly general class of binomial ggsses. We will essentially
follow Chang and Palmer (2007). However, while they restdaisk-neutral transition
probabilities, we take a more general approach, so thatesults also apply to the
models suggested by CRR and by RB. In particular, we will find theBerry-Esgen
inequality is tight for the models under consideration.

The Asymptotic Behaviour of the Discretisation Error

For simplicity, we limit the following analysis of the disgtisation error to the terminal
distribution of the stock price. For the Black-Scholes motted distribution at maturity
is given by

Q(Sr > X) = ®(d2),
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where

_ 2
lp 1= p(x) 1= M/ 1/20%T

Let us assume that the drift in the discrete-time model is@ont inN; i.e.a(N) = a.
As we see in the following, even in this case there is no asgtigpexpansion of

pN) <§VN) > x) aroundQ(Sr > x) = ®(dp) in the conventional sense. That is, a func-

tion f (&) has an asymptotic expansion in powerg afp to orderk with constant coef-
ficients(Gi)io,.. k, if foranym=0,... .k,

lim sm(f(s)— E cisi) =0.
e—07" i=0

However, as suggested by Diener and Diener [DD04], the astrofehaviour of the
discretisation error can be described with an appropriextehded asymptotic calcu-
lus”. Let us explain: Apparently, the distribution of thenbmial process at maturity

p(N) (%N) > x) writes as

P (N 20) = 5 ()l N =N

wherel (N) is the smallest integdr such thatsou(N)'d(N)N~" > x. If a(N) is con-
stant inN, it follows from a Taylor expansion tha(N) andd(N) admit an asymptotic
expansion in powers of /A/N up to an arbitrary ordek in the conventional sense.
Consequently, we might be tempted to suppose thai(il) admits an asymptotic ex-
pansion in powers of /N in the conventional sense (which is in particular valid for
the models under consideration), the distributi(N) will do so, too. However, there
are problems arising fro{N): Let us introduce

L —NInd(N I —aT
a(N) := st — IN —”<X2/§0>ﬁ“ N, (2.39)

which is the solution t@u(N)2d(N)N-2 = x. Then,
IIN)=T[a(N)]+1=a(N)+1—{a(N)} =a(N)+{—a(N)}, (2.40)

where{.} denotes the fractional part. Note that whiéN) is a polynomial iny/N
(compare (2.39)), this is not the case for the intdgln because the latter involves the
fractional part{ —a(N)}. In particular,{—a(N)} has no limit as\ tends to infinity; but
it is known to be bounded between 0 and 1. Therefore, DiereeDagner introduce the
following extended asymptotic calculus (compare [DDO4gfiDition 2.1):
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Definition 2. Let (fi)i_o__x bebounded functionsof € > 0; we shall say that a func-
tion f(g) has an asymptotic expansion in powerssaip to order k with coefficients
(fi)izo, xifforanym=0,... Kk,

lim sm(f(e)— E fi(s)£i> =0

e—0t i=0

The term {i(¢)&' is called the term of order i of the expansion.

Remark 6. Obviously, there is no uniqueness for the expansion with dedircoeffi-
cients of a given function. Moreover, it is clear that, if thequence fi)_o  is a
sequence of constant functionsanthe function f has an asymptotic expansion up to
order k (in the conventional sense).

We now formulate the key result of this section which dessithe asymptotics
of the discretisation error in the approximation to the teahstock priceSr for a
fairly general class of binomial processes. As motivatexvapthe extended asymptotic
calculus introduced by Diener and Diener is suitable fag thirpose.

Proposition 7. Let SN) be the process (2.2) with = o and a(N) = a constant in
N. Assume further that the one-step transition probabjtyN) admits an asymptotic
expansion up to order  3in powers ofL/+/N in the conventional sense with constant
c1=1/(20)(r—a—1/20%) and @ =0, i.e.

pulN) =3+ 25 (r—a—30%) (1) "*+es (1) +0(E)  241)

for some constantsc Then, PN <S<NN) > x) admits anasymptotic expansion with
(

bounded coefficientaround QSr > x) = ®(dy) up to order k= 2 in powers ofL/v/N.
It can be written as

_142
p(N) (3(\"\') > x) = ®(dp) + e\/%: b(N)\% (%)1/2+

B (g (5 )-SR Eod). a2
where

9i= 50 (r — a — 30%)%dy + 2c3V/'T
with

b(N) :=1—2{—a(N)}. (2.43)
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Remark 7. Proposition 7 is a generalisation of the main result in Chamgl &almer
([CPO7], p. 93/94). They consider the caBe= o, as we do above. However, their
analysis is limited to risk-neutral transition probabiét. Yet in fact, the result extends
to arbitrary transition probabilities p(N) of the form (2.41). As a consequence, the
assumption of Proposition 7 covers the RB model and the CRRImaehich are not
considered by Chang and Palmer.

In the following, we give a proof to Proposition 7. It is sianilto that of Chang and
Palmer in large parts. They suggest to apply the followingreoted version of results
by J.V. Uspensky (compare [Usp37], Chapter 7) on the appratam of the normal
distribution to the binomial distribution ([CPQO7], Lemma 1)

Lemma 1. Provided that g(N) — 1/2 as N— o, and0 < |(N) < N+ 1 for N suffi-
ciently large,

N &2(N)
KINY(1— py(N)ON-K=_L [ e 3Pdu+
kzlzN (i) PK(N) (2= pu(N)) m&‘(fm
1-20u(%) _E2(N))e 3EEIN) (1 g2(N))e 262N
6+/2mN py(N)(1—py(N)) <(1 &5 (N))e 2% (1-£&57(N))e 21 )_|_

iz (E2(N)e 3EN(EZN) — 1) — Eu(N)e 2 EN (E2N) ~ 1)) +o(F).
where

[(N)-Npu(N)-1/2 _  N-Npu(N)+1/2
aN) = Nam a2 &N = T

Proof of Proposition 7. We assume thatN is sufficiently large to ensure that
0< pu(N) <1land 0<I(N) <N+ 1. Note from (2.39) that fof = o

a(N) = §N+ PR ET VN,

and hence
~2a(N) N+ 2NGy (§)7F = OSSR aN (3 (-0 - 30%) (1)
= VNt
It follows from the asymptotic expansion (2.41) mf(N) that

C2A(N)+2Npu(N)+1 = —2a(N) + 2N pu(N) +b(N)
= VN +b(N)+26sT (§)"*+0(dz) . (244)
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Further, we have

PulN) (1= pu(N)) =  — i +O (2 ). (2.45)

Hence, it follows from the the Binomial Series Theorem that

1 = 1 _ 2T 1
2PN L-pN) 14T +0( 35 =1+2oy +O<N3/2> (2.46)

Combining the results (2.44) and (2.46), we get

—&(N) =

2N 1 i N))(—ZI(N)+2Npu(N)+1):

b+ b(N) i (§)"*+2 (el + 6oV T) +o () =

do+b(N) L (1) + ol +0(4). (247)

_|

We now analyse the terms in Lemma 1 one by one. Here

&(N) o
CH = | e
&1(N) &1(N)

NH—‘

(7 e 3 du= I3 (N) — I2(N).

Note that
11(N) = v/2r®(dy) + h(—&1(N)), (2.48)

whereh(x) = [g eY"/2du. Next we apply a third-order Taylor expansionhgt-&; (N))
about the pointly: Sinceh” is bounded, the expansion (2.47)&fN) implies that

1d2

h(—&1(N)) = e 2Eb(N) - (1)"*+e 2% (g— $02N)#) T +o(})

(a detailed Taylor expansion argument can be found in [CP(BY) (2.48), we then
obtain that

11(N) = V27(dp) + & 3%b(N) & (1) /% e (g_ d—22b2(N)%> T4o(d).
(2.49)
Note next that sincg@y(N) — 1/2 asN — o, it follows thaté&(N)/v/N — 1. Conse-
quently, the integralh(N) does not contribute to the terms of ordgiNt i.e.

I2(N) =o(&) (2.50)
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(compare [CPQ7] for details). Regarding the second term inrharnt, note that by
(2.45),

e — (o0 (et)) (-2 (RO ()

Since—£&1(N) — dz and&>(N) — o asN — o, we now obtain that

1-2py(N) - <(1_522(N))e—%522<l\l)_(1_512(N))e—%ff(N>> -

61/2N pu(N) (1—pu(N

2 e 3
s (1-dd)e BT 1o(k), (250

Further, we observe that the third term in Lemma 1 admitsdhm® f

2

Wﬁ (Ez(N)e*%E%(N)(EZZ(N) —1)— gl(N)ef%El(N)(ng(N) _ 1)) _

Finally, combining the results (2.49) to (2.52) yields tlssextion. ]

Next we wish to interpret the previous result on the asynpto¢haviour of the
discretisation error. Apparently, the factofN) = 1— 2{—a(N)} enters both the co-
efficient of the term of order /4/N and that of the term of order/N. Sinceb(N)
is non-constant i, the discretisation error converges non-smoothly, afghayN),
d(N) andpy(N) admit an asymptotic expansion in the conventional sense.

However, ash(N) is bounded by 1 and-1, we obtain the following bounds on the
oscillations of the leading error term:

Corollary 5. The leading term of the discretisation error is bounded by

3d3(x) 1 3d3(x) 1 ~3d500 4
—ezz’ g2z b(N)—= < —€ —-.
TVem VT & V2m VT 2 VT

Clearly, the coefficient of the leading error term can also tmenldled uniformly in
xe R:

Corollary 6. We have

_142(x
0< ej%)b(N)\% g‘\/ﬁﬁ forall N € N and for all xe RR.
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Note that ¥+/27Tis the maximum value of Av/2m)e~Y/2%X) which is attained at
X = e ~1/20%)T  the median of the continuous-time model. This matchesrttutive
idea that by error accumulation, the discretisation emdhe approximation to the dis-
tribution function should be largest at the median.

Let us now investigate the discretisation error for the bired models under consid-
eration. First, we consider binomial schemes with risktraduransition probabilities.
Then by (2.15) the assumptigh= o implies that the corresponding transition proba-
bility qu(N) is of the form (2.41) with

2
%z%(%(a—r) +%02(a—r)+2—1404>.

Consequently, the asymptotics of the discretisation eanibe determined from Propo-
sition 7:

Corollary 7. Let SN be the binomial process (2.2) with= o anda (N) = o constant
in N. If the transition probabilities are defined accordirgthe risk-neutral measure,
we have

N)<§\‘N)ZX>: d2)+;7z\sz( )( )1/2+

142 2—didp—d? d3-+didZ+2dp—4dy  d
e = (202d1( Q)2+ S T (- a) o+ l—ﬁbz(N)> +0(R):

where d := dy(X) := da(X) + o/T (compare [CP07]).

Let us recall that according to Proposition 2, for risk-malischemes, the assump-
tion B = o is necessary and sufficient to ensure that the moments angpasycally
matched. Consequently, the above result is valid for thersebdhat are of relevance
for numerical option pricing.

Next we analyse the discretisation error for the models ssiggl by RB and by CRR.
Clearly, both models satisfy the assumption of Propositidn particular, the transition
probabilities are of the form (2.41). Hence, we can fornaitae following results:

Corollary 8. Let SNV be the binomial process suggested by RB. Then,

142

— =d - 3—
V(S0 > x) = () + G2 bON) (1) 2+ € 22 (%t — 17N ) T+ ).

where in this case

b(N) = 1—2{—3N+ 3d>v/N}.
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Corollary 9. Let SN be the binomial process suggested by CRR. Then,

PV (S > x) = o(dy) + S22 b(N) (1) +

395 1-02 B-dp d
e 22 (Ghatal(r — 3097+ 2% (r - 307 + %572 - HP(N)) T +o(4).

where in this case

b(N) = 1 2{— 3N+ D0 /N}.

As we anticipate from the results observed for risk-neutaaisition probabilities,
there is a relationship between moment matching and theffatthe transition proba-
bility py(N) is of the form (2.41). In fact, we have the following:

Proposition 8. Let SN be the binomial process (2.2) wih= o and a(N) = a con-
stantin N.

1. If py(N) is of the form (2.41), the corresponding first two moments efaie-
period logreturns converge in order

_o*
02( N)

|Hpoy (N) = (r—30%)[ =0O(g))  and (
p(N)

—1':o(ﬁ).

2. Assume that the moment matching condition (2.5) on thecéipon of the logre-
turns is satisfied with

|Hpoo (N) = (r —1/20%)| = O(g) »
then p(N) is of the form (2.41).

Proof. The first part of the assertion follows directly by computthg corresponding
characteristics of the discrete-time mogsgi) (N) ando2 /(N). For the second part of

the assertion note from (2.8) thaf i) (N) — (r—1/20 )]_ ( ), we have

a+0,/¥(@pu(N) - 1)~ (r - 30?)

It then follows by re-arranging terms that

pulN) = (3+ 35 (r—a—30%) /T )| = O ().
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which proves the assertion. [

We see from the result above that if the assumption of Proposi is satisfied, the
Berry-Es&en inequality is applicable (compare Proposition 5), Wiyields

o (4 2)-0ism 28] ~0( )

i.e. the discretisation error converges to zero in orgerl. Due to Proposition 7, the
Berry-Es&en bound is now known to be tight: Clearly, foralk R and alla, o € R,
there is some subsequen@é)xen € N for which b(Nx) # 0. Hence, according to
Proposition 7, we have

limsup|P(N (S,(\IN > x) (dz(x))‘ VvN>0, forallxcR,

N—oo

which implies the following result:

Corollary 10. With the assumption of Proposition 7, we have

P (S0 > x) - o(ca(x)| m} -0

Ilmsup{

N—oo

We wish to stress that Proposition 7 readily extends to tke wederex (N) is non-
constant, but bounded M as required by Assumption 1. This will allow to investigate
the order of convergence for advanced binomial schemes.

Proposition 9. Let SV be the process (2.2) wif = 0. Assume further that the transi-
tion probability p,(N) admits an asymptotic expansion with bounded coefficients up t
order k= 3in powers ofl//N with ¢,(N) = 1/(20)(r —a(N) —1/20?) and @(N) =0,

i.e.

P (" > x) = o) +j£"}b( N) ()72 +

2
e2d

_ _ 2
@ 2% (g + (U126 (1 a) - SrN)E) Tro(d).
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where
9(N) := 555 (r — a(N) — 302)%d, + 2c3(N)V/T.

For the special case that the transition probabilities areem by the risk-neutral mea-
sure (compare also [CP07]), we have

(é“N >X> dz”F}b( ) (% )l/2+ef*nz (zgzdl( (N))2> R

142 3 2
3 2—dydp—d? dy+d;d5+-2d,—4d d T 1
= Tnz ( 6;\% L(r—a(N))+ = - §4T — _2%b2<N)) N O(N)'

In the next section, we investigate advanced models for twtiie asymptotic be-
haviour of the discretisation error is improved. In par@uwe present the optimal drift
model which can lead to convergence of ordet/N); i.e. in this case, the discretisa-
tion error convergestrictly faster than in ordef.,/N. To the best of our knowledge, the
optimal drift model is new.

2.2.3 Advanced Binomial Models

As discussed above, for conventional tree methods @) = a constant), the
error in the approximation to the distribution of the teralirstock price converges
non-smoothly; i.e.P(N)(S(NN) > X) in general only admits an asymptotic expansion
with bounded, but non-constant coefficients. The osadietiof the coefficients are
described by the quantitig(N) defined in (2.43). This suggests that the asymptotic
behaviour of the discretisation error can be improved bytretling b(N). Firstly,
controllingb(N) can lead to smooth convergence of the leading error termorfsig

it can even help to improve the order of convergence.

There is a vast number of articles on the control of the lep@imor term, amongst
which are Leisen and Reimer (1995), Leisen (1998), Tian (129& Chang and

Palmer (2007). Leisen and Reimer use an odd number of stepghwittree centred
around the strike [LR96]. Leisen uses an even number of stépstive central node

placed exactly at the strike [Lei98]. These methods canirequoving the centre of

the tree a long distance. By contrast, for the model suggdstéldan and by Chang

and Palmer, the nodes in the tree are moved only a small destsm that the strike
falls onto a neighbouring node or onto the geometric avecdglee two neighbouring

nodes, respectively. A different approach to improve thavecgence behaviour of the
discretisation error can be found in Rogers and Stapletod8)1[®RS98].

As shown by Chang and Palmer, the discretisation error ingpeoximation suggested
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by Tian converges smootHyin order 1/+/N, while their approach even achieves
convergence of order/N. We will explain the basic idea behind these models.
Afterwards, we introduce the optimal drift model that fuethmproves the asymptotic
behaviour of the discretisation error.

Let us first follow Chang and Palmer and interpret the quarity) we wish to
control in order to "get binomial schemes into shape”. Assuhatl is the integer
value for which

su (1= 1) = sou “HN)AN LN < x < souf (N) N (N) = 50 (1),

then it follows from (2.39) that

s/
g — AN+ (2.54)

which implies by (2.40) that

B R IE WO
{=alN)} = In(sq” (1)/sy" (1-1))

Consequently, the quantity—a(N)} admits the following interpretation: It measures
the position of x on the log-scale in relation to the two adjgderminal values of the
binomial procesgcompare [CP07]). In particulaf—a(N)} is strictly decreasing on

(S0 (1 —1),5y" (1)] with

{ a<N>}{ e (2.55)
1 forx=/sMsV - 1),
and {—a(N)} converges to 1 asx tends to S&N)(I —1). Consequently,
b(N) =1—2{—a(N)} is strictly increasing or@sf\,N)(l - 1),5,,(\,N)(I)] with
b(N) = 1 forx:g(\,N)(l) 2.56)
0 forx=1/sN sV (1 - 1), |

andb(N) converges te-1 asx tends tog(\lN)(l —1).

2In the original article by Tian, the author illustrates srifboonvergence with numerical examples,
while a mathematical proof is given by Chang and Palmer.
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According to Proposition 2, if we choose risk-neutral tios probabilities, the
asymptotic moment matching conditions are automaticallysted for = 0. By
contrast, the sequence of drift paramet@rgN)),, can be chosen freely. In princi-
ple, the advanced models by Tian and by Chang and Palmer, smthal optimal drift
model we suggest, exploit the flexibility of the drift paraerao modify the allocation

of probability mass, so th&tN) is controlled. Note that the preferred drift depends on
the number of periods. Hence, practical relevance of these advanced models mlie
the fact that weak convergence to the stock price can alsosged for the case that
(a(N))n is non-constant ifN.

The Tian Model

Let x € R be arbitrary. For binomial option valuation, the poitvill be the strike
value.

The basic idea behind the Tian model is that for any numbeenbgdsN, the terminal
distribution of the corresponding binomial model admitsealisation that is placed
exactly at the poink. To be precise: We start with the binomial proc%@ of the
form (2.2) with3 = o anda(N) = a constant inN. For eachN € N, there is some
integerl ¢ (N) for whichx € (s (I (N) — 1), 0" (1 (N))]. In generalx # s\ (14 (N)).
Then the corresponding equatisgu(N)2d(N)N-2 = x is solved by some valua, (N)
with 14 (N) — 1 < ag(N) < l4(N) (compare (2.39)). Given the sequeritgN))n, we
define a sequend@ (N))n with

G(N) = In(x/swf(zla(TN)fN)a\/W_ (2.57)
This will become the sequence of drift parameters for the Tieodef; i.e. for any
number of periodsl, the corresponding Tian modsg\‘(,)\l) is defined as the process (2.2)
with B = o and drifta (N). Note in particular that the new sequence of drift paranseter
is non-constant itN. The processé,'\('l)\l) is defined such that the corresponding equation
sou(N)ad(N)N-2 = x is solved by

ag(n)(N) 1= 3N + —In(x/z(g\—/g(N)T VN =la(N),
where the last equality follows from definition @{N) (compare (2.57)). Consequently,
in contrast to the quantitg, (N) obtained for the original model, the corresponding
quantityag ) (N) obtained for the superimposed Tian model is integer-valttzhce,

3In the original article by Tian, the author chooses eitlgN) or I, (N) — 1 depending on which is
closer toay (N) [Tia99].
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as we can observe from (2.54),
S (la(N)) =x  forall N. (2.58)

In words: For any number of periods N, the terminal distribution of ttegresponding
Tian model allocates probability mass to the poinfs.a consequence, the correspond-
ing quantityb(N) does not depend aX; rather,b(N) = 1 for all N.

It remains to show that the new sequence of drift paramesgréN)),, is bounded in

N. Then the moment matching conditions will be satisfied ferribk-neutral transition
probabilities, so that the Tian model will ensure weak cogeace to the stock price
process by Proposition 4. In essence, the assumption ordbduoass is valid due to
the fact that the mass points are only moved a small distamogared to the original
model: This can be observed by writing the new diiffN) in terms of the original drift

a. By (2.39), we get

G(N) = 2% (@a(N) ~la(N)) +a. (2.59)

E

which implies that

—20 ~
ﬁm+a§a(N)<a.

We observe that the new drifit(N) in the Tian model differs from the original drift by
a(N)=a+o(1). (2.60)

In particular, the new drift satisfies Assumption 1, 6gN) = O(1), so that we can
formulate the following result:

Proposition 10. The sequence of process(éz.éc(’m)N defined from the Tian model by

linear interpolation and an appropriate time-scaling (cpate (2.21)) converges weakly
to the stock price process S.

Compared to conventional binomial methods with constaiffit drithe Tian model
shows an improved convergence behaviour of the discrietisatror in the approxima-
tion of the terminal stock price, which is due to the fact tberesponding quantitiy(N)
is constant ifN. By Proposition 9, we obtain the following result on the asyotip be-
haviour of the discretisation error in the Tian model:

Proposition 11.[The Tian Model] Let = R. Let é,N) be the binomial process (2.2) with
B =oanda(N)=a constantin N. If we superimpose the Tian mo%k?(associated
with the given point x), the new transition states and the@ased risk-neutral measure
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(denoted by (g)\(‘N)) are such that (§\('N) (Sg(N) (N) > x) admits an asymptotic expansion
(in the conventional sense) in powerslgk/N up to order k= 2. We have

2

_1d 1/2
Qéfl\(?\l) <Sg\8\|)(N) ZX) = P(dyp) + 22 (%) / N

V2T
_ 142 2 3 2
e 272 1 2 Z*dldzfdl dl+d1d2+2d2—4d1 d \ T 1
_¢2n<ﬁdl(f—a) L= Ul 24T —2f ) nto(q)-

Proof. According to Proposition 9, we have

142

N N -2 1/2
Qé{(?\l) (Sfa(?\.)('\') > X) = ®d(dp) + %\Zﬁ ()7 +

142 . _ 2
e 22 < 1 dl(r—a(N))2+2 dhdp—df

~ di+didi+2dr—4dy  dp\ T 1
7o (a2 e = a(N)) + LGS - R ) Fo(3),

which yields the assertion by (2.60). n

Hence for the Tian model, the discretisation error in ther@pmation to the distri-
bution of the terminal stock price converges smoothly ireorty /N, where here and
in the rest of Chapter 2, the term "smooth” is used if the coefficof the leading error
term is constant and if oscillations of higher order ternesraggligible. Thus compared
to conventional methods, the discretisation error coreesgnoothly, but the order of
convergence is not improved. The Berry-&ss8 bound remains tight in the sense that

sup|Qfy (Shi (M) = x) ~ @(a) [ Vi > 0

lim sup{
xeR

N—oo

Remark 8. In this thesis, the definition of the Tian model (and also ef @hang-
Palmer model discussed below) is more general than in theraligapers by Tian and
by Chang and Palmer. These authors limit their analysis tcaaded models that are
superimposed on the CRR model; i.e. they consider only theeacas0. By contrast,
we allow the drift of the original model to be an arbitray coanst. As we see below, this
increases flexibility to further improve the convergende i@ the discretisation error.

Next we investigate the model suggested by Chang and Palmesltfort: CP
model). In contrast to the Tian model, the discretisatigonren the CP model admits a
higher order of convergence.



40 Chapter 2. Binomial Pricing for Single-Asset Options

The Chang-Palmer Model

Let x € R. As observed by Chang and Palmer, the analysis of the qudnihty sug-
gests that the original driftr should be replaced by some sequence of drift param-

eters(a(N))n for which x coincides with the geometric average ﬁ')(l(N)) and
s,(\,N)(I(N) —1) (compare (2.56)). As a consequence, the discretisatian el ex-
hibit a higher order of convergence. This is the basic iddarioethe CP model ("the
centered binomial model”). In more detail: L‘éf') be the binomial process (2.2) with
B = o anda(N) = a constant irN. As before,(N) denotes the corresponding inte-
gers for whichx € (s,(\lN)(Ia(N) - 1),s§\,N)(Ia(N))]. Then we determine the sequence of
new drift parameterga (N))y by

Q(N) _ In(x/so)—(ZIa(N_I)_—N—l)a\/T/N‘ (2.61)

For any number of period¥, the superimposed CP mocﬁg\‘ is defined as the pro-

cess (2.2) with3 = o and drifta(N). By (2.61), the CP model is defined such that the
equationsou(N)2d(N)N-2 = x is solved by

Ly
E
I
NI
Z
_|_

<
ig’
_|
l\)ll—\

(St 1 (NS

(la(N)— 1)) —x forallN. (2.62)

In words: For any number of periods N, the terminal distribution of tweresponding
CP model is such that the point x is at the geometric average@heighbouring mass
points. As a result, the corresponding quantityN) is equal to zero for alN, which
will improve the order of convergence of the discretisatoror in the approximation
to d(d2(X)).

Next we show thatr (N) = a +0(1). This is again a direct consequence of the fact that
the probability mass is only moved a small distance. Sinidldhe above results, it can
be seen that

a(N) = 2% (aa(N) ~la(N) + 3) +a, (2.63)

whereag (N) is again the solution to the equatiesu(N)2d(N)N—2 = x in the original
model. We then get from (2.63) that
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Consequently, we obtain the following results. Firstly, weow that the CP model
ensures weak convergences to stock price process:

Proposition 12. The sequence of processéﬁc(m;) defined from the CP model by

linear interpolation and an appropriate time- scallng cenges weakly to the stock price
process S.

Secondly, according to Proposition 9, the asymptotic biglawf the discretisation
error is not only superior to that of conventional methods, dso to that of the Tian
model:

Proposition 13. [The Chang-Palmer Model ("The Centered Binomial Model”)] Let
x € R. Let %N) be the binomial process (2.2) with= o and a(N) = a constant in
N. If we superimpose the CP modé'f'(é (associated with the given point x), the new

transition states and the associated risk-neutral meagieaoted by @8\])) are such

that Q(N ( N > x) admits an asymptotic expansion (in the conventional sense)
in powers ofl/N up to order k= 1. We have

<N>N) (sﬁﬁq)(m > x) — d(dp)+

142 3 2
3 1 2—dydp—d? dy+dids+2d,—4d; \ T 1
e s (Wdl(r—a) + e (T a) + 1) L+0(5)-

According to Proposition 13, the CP model leads to a disa&bis error with a
higher order of convergence: Compared to the methods coesdidefore, the rate of
convergence is improved frony N to 1/N. We have

msup{slQzt (S 0 2) ~otes| i} -0
and
Ileol:p{f:ﬂg Qﬁ (S(N ) — CD(dz(X))‘ N} >0,

which shows in particular, that the binomial process is defined according to the CP
model, the Berry-E€®n bound ceases to be tiglh addition, the leading term of the
discretisation error converges monotonically; yet it isclear whether the convergence
behaviour of the discretisation error is affected by oatiths of higher order. We give
a numerical example for binomial valuation of cash-or-najloptions below. For the
example, the oscillations of higher order are not neglaibl



42 Chapter 2. Binomial Pricing for Single-Asset Options

Remark 9. As for the Tian model, the definition of the Chang-Palmer maggein
above is more general than in the original paper. While théhats fixa = 0, we
allow the drift of the embedded binomial model to be an aajtrconstant. Though
straightforward, the generalisation we suggest is the keyltés introduce the optimal
drift model. Here we optimise the drift of the original pros@sto further improve the
rate of convergence of the discretisation error.

The Optimal Drift Model

Before we introduce the optimal drift model, let us stress the generalisation of the
CP model we suggested above has the following impact on themstic behaviour

of the discretisation error: In the original paper by Chand Balmer, the coefficient of
the leading error term is constant; i.e. it only depends eniput parameters and on
the given poinix € R. By contrast, for the variant of the CP model we introduced, the
coefficient of the leading error term is a quadratic functibthe drift of the embedded

binomial proces§£,N); that is,

_142 2 3 2
e 272 1 2 2—dydy—d d?+d,ds5+-2dy—4dy
fola) = €57 (poathulr — o) + 25 (r - a) + -

This suggests that we can optimise the free paranteten thatf,(a) is minimal in
absolute values. In particular, i§(a) intercepts thex-axis, i.e.

D:=—df+0ovTd—d?(1+0%T) +50VTdi+2>0,
we chooseaxg such that
f2(ao) = 0. (2.64)
In this case, the leading term in the discretisation errocebs out, so that the rate of

convergence of the error is further improved compared taClRenodel. The discreti-
sation error exhibits the rat#1/N); i.e. we have

Iirl\rlgl:p Qg\é?\l) <S(Q'\3\|)(N) > x) — CD(dz(x))‘ N =0, for x € R with D(x) > 0.

If fo(ar) does not intercept the-axis (i.e.D < 0), we choose the parameteyg for
which fa(ap) is the vertex of the parabola, i.e. the coefficient of the ileg@rror term
is set to

_ 142
fa(0) = €22 ggkgr (0 + dZcZ + Sy — 4d? — 2 — o)
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In this case, the discretisation error continues to comv@rgrder YN, but the coeffi-
cient of its leading error term is always smaller than thaawied by the CP model. In
essence, for the original paper by Chang and Palmer, theecticieO results in some
uncontrolled value on the parabdiga).

Proposition 14 (The Optimal Drift Model) Let xe R. Assume thatig is such that
f2(ap) is minimal in absolute values and Ieg;% be the binomial process (2.2) with
B =oanda(N) = ap. The OD model %2,\') is an alternative to the original CP model

that is superimposed orﬁﬁ. Consequently, ifof ag) = 0, the new transition states and
the associated risk-neutral measure (denoted ﬁ\é)(@) are such that

(410 23) =160 o)

If (0o, f2(p)) is the vertex of the parabola, the new transition states &edssociated
risk-neutral measure are such thaIN)™N) (SQO(N)(N)(N) > x> admits an asymp-

totic expansion (in the conventional sense) in power&/df up to order k= 1; we
have

Qg (St (V) = %) = () +

@j sera (07 +dfdZ 4 5d1dz — 4dZ — 2 — d3dy) § +0()-

Since the OD model is a variant of the CP model, we know from &sibjon 12 that
it ensures weak convergence to the stock price:

Proposition 15. The sequence of process(éarc(’)'(\',\)]))N defined from the OD model by

linear interpolation and an appropriate time-scaling cenges weakly to the stock price
process S.

To summarise, the OD model can further improve the order nfe&mence of the
discretisation error to(1/N). In any case, the coefficient of the error term of ordéx 1
is smaller than that obtained by the original CP modeH0).

Remark 10. Essentially, the optimal drift model admits the ratelN) if dq1(X) is
sufficiently small in absolute values. As we see below thisrsaaost cases of practical
relevance in numerical option pricing.

In Section 2.5, we investigate the convergence behaviouniradmial prices for
common types of options. We will consider the schemes by CRRRB@&nd also
the advanced schemes discussed above. In particular, Wanallyse the impacts of



44 Chapter 2. Binomial Pricing for Single-Asset Options

the above results. We will see that for the options underidenstion, the OD model
achieves a convergence behaviour superior to that obtéipede methods from the
literature.

Before, we wish to justify the application of the binomial apgch to numerical option
valuation. As discussed previously, the binomial processeler consideration ensure
that the corresponding sequence of proce(ﬁé@‘))N (obtained by linear interpolation
and time-scaling) converges weakly to the stock price me8eAs we see in the next
section, the above property provides the theoretical bask@nomial option valuation.

2.3 Convergence of Binomial Option Prices

This section deals with the application of binomial modelsi\umerical option valu-
ation. Assume that the corresponding sequence of apprﬁngnprocesse(;S(CvN))N
converges weakly to the stock price proc&ssvhich is in particular satisfied for the
conventional and the advanced binomial models we considamviously. To apply
the binomial model to option valuation, we evaluate the fffalymctional g along the
sequence of approximating proces§¥sV). By definition of weak convergence, the
resulting sequence of binomial prices converges to thetg@xae provided the payoff
functional is bounded and continuous.

We see in the following that the assumption of weak convergdn the stock price
process leads to much stronger consequences than the asaNvean bounded and
continuous payoff functions. In particular, according ko®hod’s Theorem, weak
convergence can be identified with almost sure convergen@@ppropriate proba-
bility space:

Theorem 5(Skohorod) Let XN, 1 < N < o, and X be random random variables that
take values in a separable metric space M such th&b %, X. Then there exists a
probability spacegQ,.7, P) together with some random element8Y1 < N < o and
Y, such that ¥V and Y have the same distribution a§¥Xand X, respectively, (for
short: YN ~ X(N) 'Y ~ X) and the sequend® (V) converges almost surely to Y, for
short we write

YN Y as.

(compare e.g. [Kal01], Theorem 4.30).

Concerning practical applications, we show ttie# sequence of binomial option
prices converges to the exact price for most common EuropednAmerican types
of options This justifies the application of the binomial approach tonerical option
valuation.
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2.3.1 European-Type Options

In this section, we consider the binomial approach to theimgi of European-type
options. In the next section, we will briefly discuss the madifferences to the
American case.

Let g: C[0,T] — [0,) be the payoff function that describes the future payment at
maturity T. The exact option price in the Black-Scholes model is obtheethe dis-
counted expected value of the future payment with respetttetoisk-neutral measure
Q; that is, the price is given bE:Q(e*rTg(S)). Similarly, we obtain the corresponding
"binomial price” EP(N)(e*rTg(S(CvN))) if we evaluate the payoff function along the
processS®N). To avoid misunderstandings, let us stress again that wéncento use
the term "binomial price” in a loose sense.

In the following, we investigate the relationship betweédr texact option price
Eo(e "M g(S)) and the sequence of binomial option pri¢&sn (e g(SSN)))n. In
particular, we discuss convergence conditions. But befagedemonstrate that for
continuous payoff functions, the limes inferior of the bimal prices is an upper bound
for the option price.

An Upper Bound on the Option Price

As we anticipate from Fatou’s Lemma, the option price is lamehfrom above by the
limes inferior of the corresponding binomial prices if theem payoff functional is
continuous almost everywhere. To be precise on the abowverangg, let us first recall
the following technical fact:

Lemma 2. Let M and M be metric spaces, and le#(M) and #(M’) denote the cor-
responding Boreb-fields. Then for any function:fM — M’, the set of discontinuities
of f

Dt :={xe M| f notcontinuous at xC M

is (M )-measurable (compare e.g. [Bil68], p. 225).

Let g be the payoff function. By the above lemma, the set of disooiittesDg is
#(C[0, T])-measurable and we can hence determine the probabilityeafdtDg with
respect to the law of the stock price proc&senoted byQo 31(Dg).

We can now formulate the following result on the limes inderof the sequence of
binomial option prices:

Proposition 16. Let SN) be any binomial process (2.2) that (asymptotically) satsfi
the moment matching conditions (2.5) and (2.6), so that)S=, S. Assume that the
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given payoff functional g is continuous almost everywheeeg;Qo §1(Dg) =0. Then
we have

Eq(eMg(9) < liminf Eg) (e*rTg(S@vN))).

Proof. According to Skorohod’s Theorem, there is a probabilitycep@, .7, P) to-
gether with random variableg™), 1 < N < e« andY such thatY™) ~ SN v ~ S
andY(N) — Y a.s. Consequently, @pis continuous almost everywhere, we have that
g(YN)) — g(Y) a.s. Thus, ag > 0 Fatou’s Lemma yields

—rT i —rT (N)
Ep(e " g(Y)) < Imgf Ep (e r g<Y )),
which proves the assertion. ]

We see that if the payoff functional is continuous almostrgwbere and the se-
guence of corresponding binomial prices converges to sonite the exact option price
is never below this limitWe next discuss conditions that ensure convergence to the ex
act option price.

Convergence Conditions

By definition of weak convergence, the sequence of binomiakprconverges to the
exact price if the payoff functional is bounded and contumio Yet with respect to

practical applications this result is clearly unsatisbagt Many traded options have an
unbounded payoff function, the plain vanilla call being &rious example. Further, for
many traded options the payoff functional is discontinuwuthe stock price process.
A prominent example are barrier options for which the righéxercise either appears
or disappears on certain regions of the path spa& of

As we show now, the continuity assumption can actually bekemeed to the assumption
that the set of discontinuities of the payoff function haozarobability with respect to
the law of S This is a direct consequence of the following variant of ¢bhatinuous
mapping principle:

Lemma 3 (Continuous Mapping Principle ll)Let M and M be metric spaces and
let X, (X(N))y be M-valued RVs defined on probability spa¢€s™N),. 7N p(N))
and (Q,.7,P), respectively. Further, let hM — M’ be Borel measurable with
PoX~1(N,) = 0, where Po X~ is the distribution of X and Nis the set of disconti-
nuities of h. Then, if X =, X, it holds that KXN)) =, h(X) (compare e.g. [Bil68],
Theorem 5.1).

Furthermore, the boundedness assumption on the payoffeareakened to uni-
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form integrability (for short: Ul) of the sequence of Ryg SSN)))y; that is,

tm, (spen (Jo(5)[1yjpsem 1) ) ) =0

This a consequence of the following well-known result:

Theorem 6. Let M be a metric space. LeéK(N))N and X be M-valued RVs defined
on probability spacesQN),.ZMN) p(N)) and (Q,.7Z,P), respectively. Assume that
X(N) =, X. Then, if the sequen¢X (V) is U,

lim Epn) (X(N) = Ep(X).

N—oo

(compare e.g. [Bil68], Theorem 5.4.)

Combining the new assumptions, we obtain the following tesuiconvergence of
binomial option prices to the exact price:

Proposition 17. Let SN) be any binomial process (2.2) which (asymptotically) sassfi
the moment matching conditions (2.5) and (2.6), so tifa{/S=, S. We assume that

* the payoff functional g is continuous almost everywherd, an

« the sequencéy(SN)))y is UL.
Then the corresponding sequence of binomial option prioagerges to the exact price;
i.e.

Epmv <e"Tg (S<C=N)>> — Eq (e g(9) as N— oo,

Proof. According to the above variant of the continuous mappinggpie, it follows
from weak convergence &°N) to the stock pric&that

g(SN) =, g(S).

Theorem 6 then yields the assertion. n

Remark 11. If the payoff function satisfies the assumption of Propasifi7, the bi-
nomial price Ew (67T g(SN))) provides an estimate of the exact price if the corre-
sponding number of periods N is sufficiently large. Thisifiestthe application of the
binomial method as a numerical pricing technique.

In certain situations, it may turn out to be difficult to estsio uniform integrability.
However, the following criterion by de la V&lé-Poussin is often useful in this context:
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Lemma 4 (De la Vallee-Poussin criterion)Let (X(N))\ be a sequence of integrable RVs
each defined on a probability spac@™),.Z(N) P(N))Assume that f [0,0) — [0, )
is an increasing function which is such that

lim £ —

t—oo t
and Exn (f(|XMN)))) is uniformly bounded, i.e.

SUpEp) (F(IXMN[)) < oo
NelN

Then the sequengXN))y is Ul (compare e.g.$88], Lemma 6.3).

In the following we discuss the assumption of Proposition ¥We will see that
the requirements are satisfied for most common types of mgtid-irst, we consider
two special cases; namely, barrier options and plain \&aoiiitions. Afterwards, we
show that Proposition 17 actually applies to every payaitfional that is polynomially
bounded and continuous almost everywhere.

Barrier options In this section, we show that the binomial approach can bé&eapp
to the valuation of barrier options. We consider only basrighat are constant in the
stock price. One distinguishes between four basic fodogin-and-ouytdown-and-in
up-and-oubr up-and-in which indicates whether the right to exercise originai@sdr
expires fut) on the barrier and whether the barrier is set abayg ¢r below @down)
the spot price. Note that by arbitrage arguments, barrigog are cheaper than the
corresponding plain vanilla option. As a consequencejdrasptions are widely used
both as hedging and as speculative instruments.

We illustrate the application of the binomial approach téiaps with constant barri-
ers by considering a cash-or-nothing option with an up-amnidbarrier. We have the
following result:

Proposition 18. Let SN) be any binomial process (2.2) that (asymptotically) satssfi
the moment matching conditions (2.5) and (2.6), so th&t)S=, S. Let B> 50 and
consider the payoff

9(S) = Lig <Bvte[oT)}- (2.65)

Then the corresponding sequence of binomial option prioegerges to the exact price;
i.e.

Epm) <e—rTg (S<°7N)>> —Eq(eg(9)  asN— o,
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Proof. Note first that payoff functiorg given in (2.65) is bounded. Due to Propo-
sition 17, it therefore suffices to show thgtis continuous almost everywhere; i.e.
QoS 1(Dy) = 0. Note that its set of discontinuitid3y contains exactly those func-
tionsw € C[0, T] that hit the barrieB at some timé < T, but do not cross it; i.e.

1 _ _
QoS *(Dg) =Q (mtgxs = B)
We can now write

{max§ =B} = {max§ = B}

where
S=(L-1ot+Ww and B:=1linB/s.

We know from the reflection principle of Brownian motions (queme e.g.
[KS98], Proposition 2.6.19) that maxrW is continuously distributed; thus,
Q(max<tW = I§) = 0. Consequently, it remains to discuss whether the preséiice o
drift (r/o — %o) causes any difficulties. But, in fact this is not the case beeas we
know from the Girsanov-Cameron-Martin Theorem (compare[K§98], Proposition
3.5.1), the law ofSis absolutely continuous with respect to the law of the Brani
motionW. As a result, we see that

QoS (Dg) = Q(max<7S =B) =0,

which completes the proof. n

Remark 12. According to the above result, binomial option valuatiom e applied to
barrier options. However, as we will show below, the correspagdinomial prices ex-
hibit an irregular convergence behaviour. Binomial prides cash-or-nothing options
suffer from similar difficulties. Cash-or-nothing optioneaonstant in the terminal
stock price, so that they have a single point of discontynaitthe strike value. Let us
anticipate at this point that the advanced models descrgrediously can significantly
improve the convergence behaviour of the correspondingrbial prices in this case.

Plain vanillacalls For plain vanilla puts, convergence of binomial prices tBfack-
Scholes price follows directly from the definition of weakwergence. By contrast, the
definition of weak convergence does not apply to plain varmélls because the corre-
sponding payoff function is unbounded in the terminal stpgke. In this section, we
show that by Proposition 17, binomial option valuation carmapplied to plain vanilla
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calls.

Since the payoff function of a plain vanilla call is contiusan the terminal stock price,
it suffices to show that the corresponding sequei¢8®N)))y is Ul. This requires to

distinguish between the particular discretisation schanmder consideration. We will
first consider a binomial processV) with risk-neutral transition probabilities. In this

case, we can use the fact tlﬁ'i‘)e*r”/ Nis a discrete martingale.

Proposition 19. Let SN) be the binomial process (2.2) with risk-neutral transitiontp
abilities. Suppose that®¥) =, S (i.e. we havg8 = o). We consider a plain vanilla
call; i.e.

9(9) = (Sr—K)*

for some strike value K 0. Then the corresponding sequence of binomial option prices
converges to the exact price; i.e.

Epn (e al (S<CN )) — Eq (e g(9) as N— oo,

Proof. We use the de la Valke-Poussin criterion witli(t) =t°, § > 1. That is, we
need to show theE (g(SN)))? is uniformly bounded. Note first that

con (0(5°) <€ (87" - (41)°

Under the risk-neutral measué:,\')e—m/N is a discrete martingale, which implies that

SUPEqn (S&N)> =

NeN

Ford > 1, we obtain that

sup Eqm) (Sﬁh>6 = SupEqgn) ( (NT+o/T/NSR, 2 )

NeN NeN
B SUD{SO TN E Gy (Soe“<N>52T+0 5§TszlziN>)}

NeN

NeN

where the last equality above follows from the martingalepprty 01‘55< e 'KT/N
together with a re-scaling of time by? (for the re-scaling argument compare also
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[AK94]). It then follows from boundedness 6ft (N))y that

o
SUpEqu (év“')) < oo, (2.66)

and thus
supEqu (9(8)) <=

The assertion then follows from Proposition 17 togethehlie de la Vake-Poussin
criterion. O

Note in particular that the above result justifies binoméallation of a plain vanilla
call with the advanced models considered previously. Yedrtains to discuss the ap-
plication of the methods suggested by CRR and by RB, respectivefythese models,
the transition probabilities are not chosen according éaigk-neutral measure, so that
the corresponding procesg\‘)e*rkT/N is no longer a martingale. However, as observed
in Corollary 3, if the number of periodd is sufficiently large, the probability for an
up-movemenipy(N) is smaller than the corresponding risk-neutral probabdif(N).
This suggests that the corresponding sequéBge, (g(SV))%)y, & > 1, is uniformly
bounded because this condition is already satisfied foriskeneutral case.

Proposition 20. Let SN be the binomial process (2.2) suggested by CRR or by RB,
respectively. We consider a plain vanilla call with strikexkD; i.e. g(S) = (St — K) ™.
Then the corresponding sequence of binomial option prioagerges to the exact price;
i.e.

Epmv <e‘rTg (SCvN)>> — Eq (e g(9) as N— oo,

Proof. As before, we use the de la \éi-Poussin criterion witfi(t) =t%, 6 > 1. We
know from Corollary 3 that for both the CRR model and the RB modwedre exists
someNp € N such that

qu(N) > pu(N)  forall N > No.
We hence obtain that fod > Np,

Eo <§rc,N)>5 _ B (é\‘N))é
= H CEpiy (e“‘s\/mZ&N)>
k=1
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= OV (puN)EPOVTIN 1 (1 py(N))e ooV TN

< O (NP V TN+ (1 gy(N))e ooV TN
= Eqm) <5§\1N)>6,

whereC = 5e°°T with a = 0 for the CRR model and =r — 1/202 for the RB model.

By (2.66), the family(é\IN))N is Ul with respect to the risk-neutral measu@¥). Thus,
we have

o) o)
s (40)' < g () <0 oo

We see that the familyg(SSN)))y is Ul with respect to the chosen probability mea-
sureP(N), which completes the proof by Proposition 17 and the de l&¥aPoussin
criterion. ]

Remark 13. Clearly, in practical applications the binomial method istused for the

valuation of a plain vanilla call because its price is regddvailable from the Black-
Scholes formula. However as we show in the next section, theeayguments can be
used to generalise the convergence result.

Polynomially bounded payoff functionals In this section, we show that for the mod-
els under consideration the above results on the applicafibinomial option valuation
to plain vanilla calls can be generalised to any type of optow which the payoff func-
tional is polynomially bounded and continuous almost ewéigre.

For the special case that the binomial model exhibits risltral transition probabili-
ties, the above result is shown in Amin and Khanna (1994) QAKSection 5). In fact,
the result extends to any binomial process (2.2) that (asytoplly) satisfies the mo-
ment matching conditions. As a consequence, the assungitProposition 21 covers,
in particular, the schemes suggested by CRR and by RB, which amnsidered by
Amin and Khanna. As before, the essential difference is filvathese methods, the

corresponding proce%'\')e‘r”/N is not a martingale.

Proposition 21. Let SN) be any binomial process (2.2) that (asymptotically) satssfi
the moment matching conditions (2.5) and (2.6), so th&)S=,, S. We consider any
type of option whose payoff functional is continuous almuastyavhere and bounded
above by a polynomial; i.e. there are constants-© and p> 1 such that

P
g(S <C <1+sup\$\) ; SeC[0,T].
t<T



2.3 Convergence of Binomial Option Prices 53

Then the corresponding sequence of binomial option prioagerges to the exact price;
ie.

= <e al <S<CN )) —Eq(eg(9)  asN— o,

Proof. As before, letd > 1. By the assumption og,

1) y
o (Q <S(C,N))> < B (C(s (1 +?:Tp§c7m) )
y
cozy (1+ Epn) (supsé‘:"“)> ) ,
t<T

wherey:= dp > 1. Let us re-writeSN) in terms of the normalised R\)%;fm

IN

SeN(t) = et (WHIMIVTYEN(R) -t ¢ [0,7],

where
Y(©eN)(s) = <Z Y + (Ns—[Ng)Y, Ns]+1) s e [0,1].

(compare (2.23)). First, we consider the case 1/202) > 0. Then by the asymptotic
moment matching condition (2.5) on the logreturns, therstesomeNy € N such that
1(N) >0 for N > No. It follows that forN > Np,

supS SN < soetN)T gupe dMNIVTYEN (1),
t<T t<T

We hence obtain that fa¥ > N,

Y y
(N) (Supéc’N)) < sgeVN(N)TEP(m (Supeo(N)lﬁY(CaN)G))

t<T t<T

y
max e K
SO p(N) (k 1 )

whereM™) is the discrete martingale defined in (2.26); ist{") fz,

1< k<N, andM{™ = 0. In particular, the discrete process definedelfj™) ‘\FM
0 < k < N is a submartingale. Hence, it follows from Doolh’8 inequality (compare
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e.g. [Dur05], Theorem 4.4.3)) that

EP(N) (SUpéC,N))y < (yTyl>Vs())/eyu(N)TEP(N) (eO(N)ﬁMf\]N))y
t<T
- (FV1>VEP<N> (%N))y- (2.68)

It remains to consider the caée—1/202) < 0. By the (asymptotic) moment matching
condition, there exists son) € N such that

2(r—1/20%) < u(N) <0 for N > No. (2.69)
Then forN > N, the drift 1(N) is negative, which implies that

supSeN) < spsupe@MIVTYEN (§) for N > No.
t<T t<T

Then by similar arguments as above, we have

(supS<°N ) (Tl) Ve (%N ) for N > Np.

t<T

Further by (2.69), the facta Y*(N)T on the right-hand side of the above inequality can
be bounded bg~2(=1/20%)T 'which implies

p(N) (Sups(cN ) <_1>Ve_2yr 1/20? TEon (SI(VN ) (2.70)

t<T

Combining the results in (2.68) and in (2.70) for- 1/20?) > 0 and(r — 1/20?) < 0,
respectively, shows that there is always some congtan® such that

5 y
sup Epn) <g <5<C,N)>> <Co2 <1+ sup Epn) (sup5<°v’\')> ) <
N>Ng N>Np t<T

cooy (1+ <VTV1) "k SUpEqy (%N)) y) .
—INOQ

As the family (Epn (SfVN))V)N, y > 1, has already been shown to be uniformly bounded
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(compare 2.67), the above result implies that

SUpEpn) (g <§C7N)>>6 < 0.

NeN

Consequently, the assertion follows again from Propositibttogether with the de la
Vallée-Poussin criterion. O

Remark 14. With respect to practical applications, binomial optionlwation is thus
justified for most common types of options.

A counterexample In principle, we can of course think of payoff functionals fo
which the binomial option prices do not converge to the exaitte. For example,
consider the payoff function

(S)—{l Sre{Soexp<(r 02)T+o-& )!NEN N<k<N}
I 0 else

Then for any number of perioddN, the RB model suggests the price
Ep (e Mg(seN) )) = e T, while the exact price is given blq (e g(S)) = 0.
In thls case, the binomial prices do not converge to the ogirace. Note that in accor-

dance with Proposition 16, the limét"T obtained along the sequence of RB models is
greater than the correct price.

Apparently, the above example is artificial as the payoftfiom is constructed in ac-
cordance with the specific distribution of the RB model. Hogrethe example shall
serve as a warning to stress that weak convergence to themstioe procesS does not
always imply convergence to the expected value of someifuratof S However, as
discussed above, in practical applications the binomipi@gch can be applied to most
common valuation problems.

2.3.2 American-Type Options

The above results focus on European options. For Ameritda-gptions, similar re-
sults are not readily available because the American optauration problem involves
a non-trivial timing decision. We briefly sketch the mainade

For a given payoff functiorg, the exact price of the corresponding American op-
tion is Eg(e™"™Plg(S(Tep))), Where Top is the optimal stopping time for the val-
uation problem under consideration. Similarly, the binalmprice is given by

EP(N)(e‘”iN)g(S(CvN)(Tim))), WhereriN) is the optimal stopping time associated with
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the binomial valuation problem.

If SCN) converges weakly t6, the sequences©N), TV is tight inC[0, T] x [0, T].
Thus due to Prohorov’s Theorem (compare e.g. [KS98], Thedel.7), any subse-

quence(S<°ka), riN ))Nk has a further subsequen(ﬁéC Ng) iNk'))NkI that converges to

some weak limit. LetS 1) be the limit of one such subsequence. Tis4s the origi-

nal stock price. However, depends on the particular subsequence chosen. Further, it
is not clear whether is a stopping with respect to the filtration generatedsbyf his
makes the analysis of binomial option valuation more cooapéid than in the case of
European-style options.

In order to obtain an upper bound for the binomial option gsjove next follow Amin
and Khanna (1994). For detailed arguments we refer to [AK®hin and Khanna
show thatt can be identified, in "some appropriate sense”, with a legite stop-
ping time with respect to the filtration generated®yTheir arguments are essentially
based on the result by Kushner (1977) that there is a suitidtieleed probability space
(Q,#,.%,P) and a pai(Y, ty) defined on((Q,.#, P)) such thal is a geometric Brow-
nian motion with respect t&, (Y, Ty) ~ (S, T) andty is a stopping time with respect to
Z4 (compare [Kus77], Theorem 8.2.4). Amin and Khanna then ghetvif the payoff
satisfies the assumptions of continuity and uniform intedjtg, then

fim g (e - (S<C e ))) < Eq (e7"™*P'g(S(Topy))) -
As the subsequend& M T,EN"))Nk is chosen arbitrarily, it follows that

imsupEpn (e (SN (1) ) < Eole PY(S T).  (271)

N—oo

The reverse implicatich

liminf Eg (e*”’EN)g <S<°’N)>> > Eq (7Pl (S(Topy)) ) (2.72)

N—oo

follows from the above argument and a direct extension op&sition 16. The result
in (2.71) then implies that the assertion of Proposition f&mds to American-type
options.

4Amin and Khanna refer to a convergence result of Kushnerfjl@vestablish (2.72).
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2.4 Tree Procedures

As discussed in the previous section, the binomial methadeaapplied to numerical
valuation of most common types of European and Americaroopti The correspond-
ing algorithm is called &ree procedurdecause the possible realisations of the binomial
processSN) can be identified with a tree structure: The initial vasyés designated the
root of the tree, the terminal values 8f¥) can be identified with the leaves of the tree
and each node in the interior is connected to two successi®sno

In Section 2.4.1 we describe the tree algorithm in detail. S&fe that for many stan-
dard types of options, computational effort is of or@iN?); and thus, in particular
polynomial inN. In Section 2.4.2 we focus on numerical valuation of pattependent
options. We find a conceptual link between binomial tree itigmns and explicit finite
difference approximations to the Black-Scholes pricing PBB&th the method sug-
gested by CRR and by RB can be identified with an explicit finiteed#ince approxi-
mation to the appropriately transformed Black-Scholes RDfteourse, the above result
on numerical valuation techniques appears as a conseqoktheenatural link between
the martingale approach and the PDE approach to contintimessption pricing.

Before we consider the tree algorithm in detail, we wish tessrthat in practical appli-
cations, binomial option valuation is of course only apg/ig an analytic formula for
the exact price is not readily available. Then the error anltimomial option price is
not known; one may only have an intuition. Hence, how to ckdbs number of peri-
ods such that the pricing error in the corresponding binbmadel is sufficiently small
for the valuation problem of interest? In fact, in practiapplications, an appropriate
number of periods is often determined by computing binomigles on gradually finer
gridsuntil subsequent estimates vary less than some threshold

2.4.1 Variants of the Tree Algorithm

Binomial option valuation allows only for a finite number ofgsible payoff scenarios.

In principle, there can beMdistinct scenarios, one for each path through the tree.
In this case, the computational effort required to compiie éxpected payoff is
non-polynomial inN. However, for many types of options different paths caniseal
the same payoff. This is due the re-combining structure of the tre€lThat is, by
definition of SN, paths with the same number of up- and down-movements ehe at t
same node, independently of the order in which the up- anchdaavements have
occurred.

The recombining structure of binomial trees is illustrate&igure 2.1. In the example,
the red and the green path end at the same node, but diffee iortler of the up- and
down-movements.
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Fig. 2.1: A five-period binomial tree

For path-independent options, the re-combining structdirdne tree implies that
there areN + 1 distinct payoff scenarios only, each belonging to a teainimode of
the tree. Computational effort is therefore only of or@¥N?). For path-dependent
options, however, it depends on the specific payoff funetiarhether the re-combining
structure of the tree can be used to reduce computatiorat.efin contrast to path-
independent options, the realised payoff can depend onrtlex of the up-and down-
movements. A prominent example are options on the averdge wéthe stock price
process over time; that ig(S) = g(1/T fOT Sat).

However, for many types of path-dependent options comiputait effort can still be
reduced to orde®(N?). This will be verified for barrier options and for American
options. We will first set up the tree algorithm for the valaatof path-independent
options. Afterwards we will discuss how to adapt the aldnitto the path-dependent
case.

Path-independent options For path-independent options, it suffices to compute the
expectation of possible terminal values. Due to the Markmperty of the binomial
processSN), we can compute the expected terminal payoff by "steppingkiards
through the time layers of the re-combining tree”, whiclosrially based on the equal-

ity
Epm (g(SfVN))> = Epm) (Epm) (---Ep(m (9(31(\1'\]))’ §1\1le) ‘ §1N)>>

Hence, we obtain the following recursion: We start at thel fiimae by assigning the
payoff scenarios to the terminal nodes. We then step baclethrough the time layers
of the tree by computing the weighted sum of the values asdiga the successor
nodes. The algorithm is given in pseudo-code (compare Ahguorl).
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Algorithm 1: Binomial tree for path-independent European options

Input: stock price parameters, risk-neutral ratpayoff functiong
Return: price estimate=V [0] x exp(—r x T)

1. Forward Step

{initialise asset prices at maturjty
Set SNOJ := spd"
for k=1toN do
SN[K] := SN[k—1] x (u/d)
end for

{initialise option values at maturity
for k=0toN do

SetV [K] :=g(SN[K])
end for

2. Backward Induction

{step backwards through the tiee
for k=N-—1to 0do
for | =0tokdo
VIl]:=puxVI[l+1]+pdx V]

{or under the RB schene
V[I]:=05x(V]I+1]+V]l])
end for
end for

In Algorithm 1, pu:= py(N), pd:= pq(N), u:=u(N), d := d(N) are constants to
be determined in advance. As for standard tree implementtive "do not span the
tree”; i.e. we do not allocate memory for each node in the. ttastead, the memory
already reserved is overwritten at each step of the backreardsion in order to reduce
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the memory allocation required. Regarding computatiorfatgfve have the following
result:

Proposition 22. Computational effort for Algorithm 1 is in gener@2N? + O(N). For
the discretisation scheme suggested by RB, computatitioal educes to R+ O(N),
which is optimal for the rate of growth of the tree (i.e. for thember of the successor
nodes n= 2).

Proof. In the backward step, the arithmetic mean has to be computsch node of
the tree, i.e. we have to considg}';!(i + 1) = N(N+1)/2 nodes. This implies that
computational effort for backward induction igB\? + O(N) because it requires three
operations in general (two multiplications and one addijtim compute the arithmetic
mean. The forward step is negligible because the correspgpredmputational effort is
only of orderO(N). With respect to the second part of the assertion, note thétie
distributive law computing the arithmetic means is chebfmee multiplication and one
addition) for the cas@y(N) = pg(N) = 1/2. O

Remark 15. For the numerical examples on binomial valuation of sing$set options
considered in Section 2.5, the above result does not leadsigraficant difference in
computing time. However, for our examples on multi-dimeradivaluation problems
analysed in Chapter 3 and in Chapter 4, computing time will beiced significantly if
the transition probabilities are chosen to be equal.

For path-dependent options, it depends on the specific paywitional whether
there exists a suitable modification of the above tree dlgori Next we show how
barriers which are constant in the stock price can be incatpd into Algorithm 1.

Barrier options To apply the binomial approach to barrier options, we haveige
tinguish between knock-in and knock-out barriers. In theetacase, we are interested

in events of the fornA := {SS\') <BVk=1,...,N} with a barrier leveB > s, for up-

and-out options and in events of the foAn= {S(1<N) > BVk=1,...,N} with a barrier
level B < sy for down-and-out options. Let us first consider up-and-guitoms. Then
the equality

1{sﬁN><B vk=1,.N} 1{§1N)<B}1{$N)<B} - 1{§VN><B} (2.73)

and the Markovian structure &V yield

N
Epn (9(5(\1 ))1{5£N><B vkzl,...,N}) -
Eon (o (o (9821 _gy [ V) L

+))
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As a result, the backward induction step of Algorithm 1 calhls¢ applied (compare
Algorithm 2). Yet in addition to path-independent optiorszero option value is
assigned to the nodes above the barrier level. Similarly,dfisvn-and-out options
a zero option value is assigned to the nodes below the baexiel. This means in
particular that, while stepping backwards through the tiayers of the tree, the array
of transition states needs to be adjusted to the current firhe forward step remains
unchanged. Clearly, the modified tree algorithm still reggiicomputational effort of
orderO(N?).

For knock-in options, we are interested in events of the form
A:= {3k € {1,...,N} : SNV (ko) > B} with a barrier levelB > sy for up-and-in
options and in events of the forl := {3kg € {1,...,N} : SN (kg) < B} with a
barrier levelB < 55 for down-and-in options. In contrast to the knock-out case
(compare (2.73)), the event A cannot be written as a simpléymioof one-step events.
Consequently, we cannot simply decide on the occurrencee@tbntA while stepping
backwards through the tree. However, we have

p(N) (Elkoe {1,....N}: SN (ko) > B) -
1-pMN) <S<N)(k) <B Vke {1,...,N}>.

Hence, the binomial price of a knock-in option can be obi@iagthe difference of the
binomial price for the corresponding path-independentoopand the corresponding
knock-out option; i.e.

N
EN (Q(S(N ))1{3k06{1,...,N}2S(N)(ko)ZB}> -

EMN) (9@\1’\'))) —EM (9(5§\|N))1{5<N)(k)<5 VKe{l,...,N}}> :

Using Algorithm 1 for the first term on the right-hand side bétabove equality and
Algorithm 2 for the second term leads to a total efforgiN?).
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Algorithm 2: Binomial tree for European options with a knock-out barrier

Input: stock price parameters, risk-neutral ratpayoff functiong,
barrier levelB > 5 (B < 59) for up-and-out option (down-and-out)

Return: price estimate=V [0] x exp(—r x T)
1. Forward Step

{remains unchangéd

2. Backward Induction

{step backwards through the tree checking whether the basgeossed
for k=N —1to Odo

for | =0tokdo
{adjust the state array to the current time $tep
SNII] := SNJl}/d

{check whether the barrier level is cros$ed
if SN[I] > B (SN[l] < B) then {up-and-out (down-and-out)
{assign current option valje

VI]:=0
else
VIl]:=(puxV[+1+pdxV]])
end if
end for
end for

We next show that Algorithm 1 can also be adapted to Americdnation prob-
lems. In principle, this is due to the theorem on the Snelktpe of a discrete pro-
cess. Compared to alternative techniques for numericaatialuof American options,
the resulting tree algorithm is both conceptually easy dficient, which explains the
widespread use of the binomial approach to American optiming in practical appli-

cations.
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American Options For the valuation of American options, the backward indurcti
step of Algorithm 1 has to be modified so as to allow for earlgreise at each node of
the tree. That s, the values assigned to the nodes in tireekay N are the realisations
of the RV

Vi := max{ Epum ( —fT/vaH‘é(N) "} (2.74)
with

=g

If Vk(N) = Epwy) (e*rT/NVéfﬂS(kN)) the option is not exercised, whi&" = g(S) cor-
responds to early exercise. The modified backward inductiqrstified by the Markov
property of the binomial proces$N) together with the following proposition on the
Snell envelopef a discrete process:

Proposition 23. Let %, k=0,...,N, be an adapted process on a filtered probability
space(Q,.#,.%,P) and assume thatXs integrable for all k=0,...,N. Define an
Z (.)-adapted processiZk =0,...,N, by backward induction, letting

ZN ZXN, Zk::max{xkvE(ZkJrﬂyk)}vkzoa"'7N_1'
Then Z is anZ (.)-supermartingale with Z> Xy a.s. for all k=0,...,N. Moreover,
T, :=min{k € {0,...,N} : Zx =X}

is a discreteZ (.)-stopping time such that &, is an.#(.)-martingale. In particular,
T, solves the optimal stopping problem for the process X; i.e.

E(X(1.)) = sup E(X(1)),

TEZQN
whereZg y is the class of# (.)-stopping times taking values {19,...,N} (compare e.g.
[CRS71], Theorem 3.2).

In our context, we choos§, ;= elT—%r S(kN k=0,...,N,withty =KT/N, which
implies thatyV) = e~ T~z AsV{") = e T 7y, it follows that witht,; = TT /N,

VéN) —e T sup Epn ( Ttorg(sY) ) = sup Epn (e_trrg(s(rN))> :

TEZQN TEZO,N
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This argument justifies the modified backward induction ssted in (2.74). The tree
procedure is attached in pseudo-code (compare Algorithm 3)

Algorithm 3: Binomial tree for American options

Input: stock price parameters, risk-neutral ratpayoff functiong
Return: price estimate-V [0

Pre-step

{incorporate the discount factor into transition probaiet}
Setdpu:= pux exp(—r x T/N)
Setdpd:= pd x exp(—r x T/N)

1. Forward Step

{remains unchanged

2. Backward Induction

{step backwards through the tree applying the early execoisdition}
for k=N—1to 0do

for | =0tokdo
{adjust the state array to the current time $tep
SNII] := SNJl}/d

{assign current option valje
VIl :=(dpuxV [l +1]+dpdxV])
{apply the early exercise conditipn
V[I]:=max(V[l],g(SN[I]))
end for
end for

Let us add some remarks concerning implementation: We séditmomial pric-
ing of American options results in a tree algorithm based backward induction step
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that requires computational effort of ord®fN?). As for barrier options, the array of
transition states needs to be adjusted to the current tiges taf the tree. However,
discounting must not be delayed to the end of tree procedatieer, the option value
has to be discounted while stepping backwards through #ee tin order to improve
efficiency, the transition probabilities can be pre-muikig by the one-period discount
factor exg—r x T/N). This saves one multiplication at every node of the tree.

For American knock-out options, we can combine Algorithrm@ Algorithm 3 (com-
pare Algorithm 4). Let us illustrate this with an up-and-option. The values assigned
to the nodes in time laydr< N are the realisations of the RV

Vi = max{Ep (€T SY) g8 N} L gy (2.75)
with

= oS gy

The suggested backward induction (2.75) can again be gty Proposition 23 on
the Snell envelope. Here we choose

(Tt N) _
X, = el |<)rg<§(< )1{§<N)<BVI:1,...,k}’ fork=0,...,N
which implies that
Vk(N) = e (T-Wrz, on {S(N) <B,vVI=1,... k—1},

where, as befordy, = kT /N. Trivially, VO(N) = e Zp, which implies that the backward
induction (2.75) leads to

ViV = e Tz = sup Eqn (e_rt’9(5<rN))1{§<N><BV|_17...J}) '

TGZOA’N
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Algorithm 4: Binomial tree for American knock-out options

Input: stock price parameters, risk-neutral ratpayoff functiong
Return: price estimate-V [0

Pre-step

{remains unchanged (as in Algorithm}3)

1. Forward Step

{remains unchangéd
2. Backward Induction
{step backwards through the tree checking whether the bisrie

crossed and applying the early exercise condjtion
for k=N—1to 0do

for | =0tokdo
{adjust the state array to the current time $tep
SN[I] := SNJl}/d

{check whether the barrier level is cros$ed

if SN[I] > B (SN[l] < B) then {up-and-out (down-and-out)
VI[l]:=0

else
VIl]:=(dpuxV[[+1]+dpdxVl])

{apply the early exercise conditipn

V(1] := max(V [I],9(SN[I]))

end if

end for
end for

Binomial valuation of American knock-in options is more ihwed than for
European-type options because the sum of the American kincakd knock-out price
does not equal the price of the corresponding standard Agareoption. This is due
to the fact that the options differ in the optimal exercisedi As a consequence, for
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American options we can no longer value a knock-in optionheydifference between
the standard option price and the knock-out price. To appdykdinomial method to
American knock-in options, AitSahlia, Imhof and Lai (20®&tiggest an approach that
involves the first passage density of a Brownian motion, wiigmown explicitly. They
use the following representation of the prigg of an American knock-in put option:

Vig = Jo € MV (t,B) fs(t) dt,

whereV (t,B) is the time-t price of the corresponding standard Amerigatioa if the
time-t stock price is§ = B. Further,fsis the first passage density of the stock pisce
associated with the barrier lev8l Approximating the integral by a Riemann sum over
M equally spaced time intervalg, tx, 1| leads to

M
Vi ~T/M 5 et V™, B)fs(t™), (2.76)
k=1

where tIEM) = kT/M. Consequently, the price of an American knock-in op-
tion can be approximated by computing the binomial pricesresponding to
V(th),B)w..,V( &M%B). This requiresM calls to Algorithm 3. However, by an ap-
propriate choice of the grid, i.e. an appropriate choicehef hinomial proces§™,
computational effort can be reduced to a single run of anapte backward induc-
tion algorithm. For details we refer to [AILO4].

In the above, we have discussed how to adapt the binomiahtgesithm to the val-
uation of specific types of options. Next we focus on numéneduation of path-
independent options. We wish to demonstrate an importanteqiual property of the
tree algorithm: its connection to explicit finite differenmethods (for short: explicit
FDMSs).

2.4.2 Connection to Explicit Finite Difference Methods

This section deals with the connection between tree algustand explicit finite dif-
ference schemes for numerical valuation of path-indepanalgtions, which was first
observed by Brennan and Schwartz (1978) [BS78]. Of courseglibee relation can
be anticipated from the fact that in the Black-Scholes sgttine martingale approach
is naturally linked to the PDE approach via the Feynman-Kiaeofem. Hence, we first
wish to recall some main results on the connection betweesethwo approaches to
option pricing in a Black-Scholes market. Afterwards, wansfar results to binomial
option pricing.
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The martingale approach and the PDE approach We consider a path-independent
option with payoff g: (0,00) — [0,0). Let us defing/ : [0,T] x (0,00) — R by

V(t,S) == E5° (e_r(T_t)g(ST)> ~ Eq (e—r<T—t)g(sT) ‘ S— s)

= Eo (e—r(T—t)g (Se(rfl/ZJZ)(T*t)JrJert)) . (2.77)

ThenV (t,S) is the time t-price of the option if the stock tradesSaat timet. As a
fundamental result in mathematical finand&t,S) is the solution to an appropriate
Cauchy problerf:

Proposition 24. Assume that g is polynomially bounded, i.e.
99 <C (1+) for all S € (0,e0),

where C 3 are positive constants.
Then\Mt,S) € C**([0,T) x (0,00)) NC([0, T] x (0,00)) and V(t,S) is the unique poly-
nomially bounded solution to the Cauchy problem

Vi + 302Vss+ SV — 1V =0, (t,9) € [0,T) x (0, )

V(T,9) =9(S Se (0,0). (2.78)

For completeness, we give a proof of Proposition 24 below. villlerefer to the
following result:

Lemma5. Let X and Y be independent RVs. lidbe a function with E¢ (X,Y)| < o
and letdx) :=E (¢ (x,Y)). Then

E(¢(X,Y)[X)=g(X)

(compare e.g. [Dur05], Example 4.1.5).

SNote that in contrast to previous notations, the domapluds been changed (0, ) as we consider
only path-independent options.

8In this thesis, we assume the martingale representatioheobption price to be given (compare
(2.77)) and we derive a pricing PDE (compare (2.78)) fromdtoehastic representation of the price.
Let us emphasise that in the history of option pricing, the approaches appeared in opposite order. In
the groundbreaking work of Black and Scholes and Merton 3L %he risk-neutral valuation principle
was introduced. Based on this principle, they identifiedvleation problem with a Cauchy problem.
Their ansatz is often referred to as the "delta-hedging @ggh”. The "martingale approach” to option
pricing was later suggested by Harrison and Kreps (1979)Hardson and Pliska (1981) who showed
that option pricing is naturally linked with martingale tirg [HK79], [HP81]. Since then, the martingale
approach has played a dominating role.
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Proof of Proposition 24. Note first that
V(t,S) — g(S) astT.
As we will see, smoothness of the option price directly f@drom smoothness of the

Gauss kernel. In order to prove existence of the partialdgves with respect t§, we
hence consider the following representation\¢t, S):

_1(y_ e )2
V(t,S) — \/LZTTe—r(T—t) /e 2 (y (ﬁ/ﬁ) g (e(r—l/ZUZ)(T_t)+a\/ﬁy> dy
R

As g is polynomially bounded, it follows from the Differentiati Lemma (compare e.g.
[Bau92], Lemma 16.2) that for anye N,

P (e—% (y— J'D%)j ' 9 (e(r71/202)(T7t)+o\/ﬁy) dy

< C/e_%<y_al%i—t) [Po(SY)] (1+eﬁffﬂy> dy
(2.79)

for some positive constan® and 3. For S fixed, Py(S,.) is a polynomial. As the

kernel decreases essentially 6&”2 the integral on the right-hand side of inequality
(2.79) exists, which shows th¥f(t,S) is infinitely often differentiable with respect to
S Similarly, we can use the representation

(v-(—1/202) T 0))?

e f(T-He 202(T-1) g(Se)dy

_ 1
VS = [
R

in order to show tha¥ (t, S) is infinitely often differentiable with respect tdort < T.
ThusV(t,S) € C*> ([0, T) x (0,00)) NC ([0, T] x (0,0)). Let us now show that (t,S)
solves the Cauchy problem (2.78). Note first that the termmoaldition is trivially
satisfied. For the dynamics, we use standard tools on stilchascesses: Let us define
the process

M :=Eq (9(Sr) |- #°)
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where.Z>:= g (S;;0 < s<t). Then by the Markov property @&,
MF:EQ<g<SeU*UﬁﬂﬂT4HUWW4M»’3>_
Applying Lemma 5 withX = §, Y =Wy —W and
® (S, Wr W) =g (el /27Tt

shows thaMy = € (T-UV(t,S). AsV(t,S) € C1?, Ito’s Formula leads to the following
dynamics forvi:

dvy = €T (i (1, 9) + 30°FVss(t, §) +ISVs(t,S) — 1V (1,S)) dt
+dTVosVs(t,S)dW (2.80)

Define
h(t) =V (t,S) + 302FVss(t, S) +rSVs(t,S) -1V (1,S) 0<t<T.
Recalling that every continuous local martingale of finitéaion is a.s. constant (com-

pare e.g. [Kal01], Proposition 17.2, p. 330), we see fror@(Rthat

/h(s)ds: 0 as forallt € [0,T).
0

As his continuous, applying the Fundamental Theorem of Calczhasvs that

h=0 a.s.

Now it follows again by continuity of and the fact that the distribution 6, 0 <t < T,
has support0, «) that

Vi +30%Vss+ 1SV —1V =0,  (t,S) € [0,T) x (0,).
It remains to show uniqueness: Sirgis assumed to be polynomially bounded, we see

from the definition oV that it is polynomially bounded with respect &uniformly in
t €[0,T] ie.

max V(1,8 < C (1+ 38) forall S € (0,) (2.81)
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for some positive constan@andf. Consequently, it follows from the Feynman-Kac
Theorem (compare e.g. [KS98], Theorem 5.7.6) E‘@(e*r(ﬁt)g(sr)) is the unique

solution to the PDE (2.78) within the class of functions tkatisfy the polynomial
growth condition (2.81). n

We now present the implications of the above result to biboption pricing. As
shown e.g. in Heston and Zhou (2000), there exists a suitedodsformation of vari-
ables so that the tree algorithm associated with the RB madebe identified with
an explicit finite difference approximation to the transh@d Cauchy problem [HZ0O].
We follow the approach of Heston and Zhou, but we keep notatiyeneral so that the
result additionally covers the CRR model. Clearly, the vagatdnsform then depends
on the particular choice of the dridt.

As suggested by the form of the binomial schemes, we usedhsfarmation of vari-
ables

S— Soeat+Ux

with a =r — 1/20? for the RB scheme and = 0 for the CRR scheme. Further, we
introduce the functions

u(t,x) :=&T-Uv(t,9) (2.82)
and

§(x) := g (s T+%). (2.83)

If the payoff functiong is polynomially bounded, it follows from Proposition 24 tha
is of clasC™* ([0, T) x (0,0)) N C([0, T] x (0,)). Moreover, it is straightforward to
verify thatu solves the transformed Cauchy probfem

_ 2_
Ut + rl/z#Ux"‘%UxX: 0 (t,X) € [07T) X (_oo,oo)

u(T,x) =§(x) X € (—00,00).

(2.84)

By means of the transformed Cauchy problem (2.84), we can mbwttie binomial tree
algorithm to an explicit FDM.

The binomial approach and the explicit FDM The link between the martingale ap-
proach and the PDE approach leads to the following resuluomenical option pricing

’In the original paper by Heston and Zhou, the chaice r — 1/202 results in the heat equation.
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techniques:

Proposition 25. Let SN) be the binomial process suggested by RB or by CRR, respec-
tively. Then the corresponding tree algorithm for the vailoa of path-independent
options can be identified with an explicit FDM that approxiesthe solution to the
transformed Cauchy problem (2.84). Here we use finite diftexerof first order in t

and second order in Xx.

Proof. Note first that if we replace the derivatives in (2.84) by #@ntifferences of first
orderintand second order in x, and neglect the error termsbiain the approximation

B <u(t,x)—u(t—At,x)> __ —1/20°—a (u(t,x—i—Ax)—u(t,x—AX))
At ~ o 21X

1 [ u(t,x+Ax)—2u(t,x)-+u(t x—Ax)
+3( s ). (285)

whereAt > 0 andAx > 0 are the increments in the time and in the space domain, re-

spectively. In order to identify the binomial method withexplicit FDM based on the
approximation above, we have to fix the following grid:

(tj, %) = (j At,iAx) j=0,...,N; i=—j,—j+2...,j
with grid size
At = (AX)? =T/N. (2.86)
Then (2.85) leads to an explicit FDM that approximates tle®tatical solution to the

Cauchy problem(2.84) at the grid points specified above. That is, starting from the
terminal values

aN,i:gQ\/E), fori=—N,—(N-2),....N,

we assign an appropriate value to each grid point by theviatigp backward recursion:

Forallj=N,...,1andforalli=—j+1,—j+3,...,j—1, we set
Oj-1i = Puljica+ pedji-1, (2.87)
where
N = 34 (- d07-a)
pN) = -4 (-302-a)\/{
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Here uj; approximates the theoretical solutionat the grid point(tj,x) In particu-
lar, Voo —e 'y Uo,o is the finite difference approximation to the option pri¢g, sp).
As we note by inspection, the backward recursion (2.87)inbtafrom finite differ-
ences is identical to that specified by the binomial algarithn particular, we have

Pu(N) = p1(N) andpg(N) = p2(N). [

Remark 16. If we consider the above binomial schemes under the risk-alenéasure,
there is only an asymptotic equivalence between the backwartdsion (2.87) and the
backward recursion specified by the binomial method in theesémat

qu(N) = pN)+O(idz)  aalN) = p2(N) +O (k)

(compare Proposition 3).

To conclude, the tree procedure suggested by CRR or by RB camibiied with
an explicit finite difference approximation to the Cauchylpeon (2.84). The corre-
sponding explicit finite difference scheme is special in $kase thait incorporates
distributional information that specifies the underlyingdy By contrast, for a pure
PDE approach, it is necessary to specify the underlying exajenously, i.e. one has
to decide how to truncate tf&domain, how to choose grid points, how to relate the grid
sizes in the time and in the space domain, etc. For the bindremalgorithm, these
issues are settled endogenously by definition of the diseneidel, which is of course
advantageous for practical applications.

2.5 The Convergence Behaviour of Binomial Option
Prices

This section deals with the convergence behaviour of biaboption prices for the
different discretisation schemes considered previously.we will demonstrate both
theoretically and by many numerical examples, the optimélmiodel shows superior
performance compared to the alternative methods.

Let us first stress that the convergence behaviour of birlaptaon prices depends cru-
cially on the valuation problem under consideration, angarticular on the specific
payoff function. Hence, we analyse the convergence betiawibbinomial trees sep-
arately for the two most common payoff structures; first,gayoffs that are constant
in the terminal valueS(T) (i.e. cash-or-nothing options); and second, for payofé th
are linear in§(T) (i.e. plain vanilla options). For the European case, thasple types

of options admit an explicit pricing formula. Hence, in pieal applications numeri-

cal option pricing would not be applied to these options. Ewesv, their simple payoff

structure allows to derive an asymptotic expansion of ti@may error around the Black-
Scholes value, so that the convergence behaviour of thesmonding binomial prices
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can be analysed theoretically. Importantlye convergence behaviour observed often
carries over to related, but more complex types of optionsviach an explicit pricing
formula is not knownHence regarding practical applications, one can benefitfeoim
analysing these simple payoff structures. This is illusttdor American plain vanilla
puts. In this case, the convergence behaviour of binomiegpican be (partially) antic-
ipated from the asymptotic expansion of the pricing erratafeuropean counterpart.

As for any discrete model, the rate of convergence is a dgmioperty of the conver-
gence behaviour of binomial option prices. It measuresdhlgniptotic) speed/accuracy
trade-off of a numerical method. Regarding practical apgilbns, it is important to
know the order of convergence [HZ0O0]: Firstly, the rate ofwergence helps to rank
competing numerical methods. Almost any method can giveif@scurate results,
and, given enough computing time, many methods can givearity accurate results.
Knowing the order of convergence helps to decide which ofabmpeting models
should be preferred. Secondly, the rate of convergenceates whether extrapola-
tion is useful. That is, extrapolation techniques can iasesaccuracy, but they are only
applicable provided convergence is smooth; i.e. if the cht®onvergence is known, if
the coefficient of the leading error term is a fixed constaudtidoscillations of higher
order terms are known to be negligible. Consequently, ouysiseon the convergence
behaviour of binomial prices is mainly focused on the rateafvergence achieved for
the different schemes.

For cash-or-nothing options, the convergence behaviobimaimial prices can be de-
duced directly from our results on the fit of the binomial disition to the lognormal
distribution (compare section 2.2.2). Hence, the binomprades obtained from con-
ventional schemes converge in general no faster tiiafN] as suggested by the Berry-
Es€en inequality (compare Corollary 10). For plain vanillaiops, the payoff function
exhibits a kink in the terminal stock price, i.e. a discoutin in the first derivative. As
shown by Diener and Diener and by Chang and Palmer, this payoffture leads to
cancellation effects in the asymptotic expansion of theipgi error. We will see that in
this case conventional schemes admit convergence of oftienthich is in particular
above the Berry-E&®n bound.

As mentioned above, the order of convergence can be inctdgsextrapolation pro-
vided convergence is smooth. However, as discussed indét®.2 the discretisation
error in conventional binomial schemes converges non-¢nfipwoAs a consequence,
for non-smooth payoff functionals, the convergence belawaf the corresponding se-
guence of binomial option prices is also oscillatory and fmonotone. Thus, there
is low-frequency shrinking according to the rate of coneaige, but in addition, there
are high-frequency oscillations. In principle, the preseaof oscillations can be traced
back to the fact that when grid size changes, the positiorodés in the tree varies in
relation to some fixed discontinuity or kink in the payoff. Aominent example is the
so-calledsawtooth effectvhich was first observed for barrier options by Boyle and Lau
(1994) [BL94]. In the following, we analyse the non-monot@e@vergence behaviour
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of conventional schemes both theoretically and in pralcticamples.

The irregular convergence behaviour of conventional s&sama serious issue for their
application to option valuation. Obvious problems causgddzillations are the facts
that a finer discretisation does not necessarily provideti@mbestimate, and that the
option price cannot be obtained by extrapolation methods.

There are many advanced schemes in the literature thateeialty designed and op-
timised to a specific valuation problem in order to improve tonvergence behaviour
of the pricing error. In Section 2.2.3, we presented advaibagomial schemes that can
be adapted to a given poixtso that the discretisation error arouvnexhibits a superior
asymptotic behaviour. That is, they establish smooth ageree or they even increase
the rate of convergence. This suggests that these schemeshantageous for the
practical application of binomial option valuation. In tfedlowing, this is discussed in
detail. We will see that the Tian model and the Chang and Paimeel can be adapted
to the strike value of interest so as to improve the convergéehaviour for both cash-
or-nothing options and plain vanilla options. In particulkextrapolation methods can
be applied to increase the order of convergence. Howewehimal drift model we
suggest can admit convergence of ordét/N) without extrapolation for both types
of options. We will demonstrate thay virtue of its superior rate of convergence, the
optimal drift model is advantageous compared to the comveakt schemes and to the
advanced schemes presented

2.5.1 Constant Payoff Structures (Cash-or-Nothing Options)

This paragraph deals with the convergence behaviour ofniadgorices for cash-or-
nothing options, i.e. options that pay a constant amount @fey. In this case, the
convergence behaviour of binomial prices is only affectgdh® discontinuity in the
payoff function.

A cash-or-nothing call (put) with striki€ > 0 pays a cash amou@t > 0 if the terminal
value lies abov& (belowK); i.e.

9(S) =Clis>k;  (9(S) =Gl k})-

With VeasK ) denoting the Black-Scholes price avith) 2K ) denoting the binomial
price, we have

Vcash(K> _V(N),casI*(K>’ _Ge'T ’P(N) (é\lN) > K> —Q(Sr > K)|.

Consequently, the pricing error is readily available froma thstributional fit of the
binomial model to a Brownian motion (compare Section 2.ar2particular, according
to the Berry-Es&en inequality, the sequence of price estimates convergedér 1//N
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(compare Corollary 4):

Proposition 26. Let SN be the process suggested by CRR, the process suggested by RB
or any binomial process (2.2) wiif = o and with risk-neutral transition probabilities.
Then

sup|Veash(K) — v N)eash( )| = O ( -k 2.88
upVeE=(K) (k)| =0 (%) (2.88)

Remark 17. Note that if the payoff function is piecewise constant with afinumber
of discontinuities, the corresponding binomial prices\cenge also in ordef./+/N.

We first discuss the convergence behaviour of conventiaames; i.e. binomial
schemes with constant dritt. This will be illustrated with the schemes suggested
by RB and by CRR. For conventional schemes, the Berrg&ssnequality is tight.
Furthermore, these schemes suffer heavily from an irregadavergence behaviour.
This will be discussed in detail. Afterwards, we demonsttae superior convergence
behaviour of the advanced methods discussed in Sectidh 2.2.

Conventional Binomial Models

According to Proposition 7, the Berry-Esn bound (2.88) is tight for the conventional
models; to be precise, we have

Proposition 27. Let SN) be the process suggested by CRR, the process suggested by
RB or any binomial process (2.2) wifh = o, a(N) = a constant in N and with
risk-neutral transition probabilities. Then with®&"(K) (P K)) denoting the Black-
Scholes price for the cash-or-noting call (put) and'@s(K) (P(N)-cashK))) denoting

the corresponding binomial price,

_ 142
W) - (k) + Ge T S by ()2 o (4)

V2nT
and
NSk ) = Prash(K) — Ge T €22 b(N) ()2 + 0 ()
with

b(N) = 1-2{~a(N)} = 1 - 2{~ N + ML N}, (2.89)

where, as before|.} denotes the fractional part.
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Remark 18. Note that the point x at which the binomial distribution fuoatis eval-
uated throughout Section 2.2.2 and Section 2.2.3 is nowprgted as the strike value
of the option. In particular, the advanced schemes will ldteroptimised according to
strike value of the specific valuation problem.

According to our previous analysis, we see from ProposRidthat convergence is
non-smooth because the oscillating fadid¥) enters the coefficient of the leading error
term. As explained above, this has undesirable consegsiémceractical applications.
We will see next that the irregular convergence behaviouc&sh-or-nothing options
suffers from two main effectshe sawtooth effe@ndthe even-odd problem

Before, we wish to add that asl < b(N) < 1, the oscillations of the leading error term
are bounded by

~Ge g (dp) g < ca(N) 5 < Ge " d(dz) . (2.90)
where¢(.) is the lognormal density (compare Corollary 5). We can hepcendilate
the following result on the amplitude of the oscillations:

Corollary 11. The smaller & ¢ (dy), the tighter the bounds on the leading error term,
i.e. the smaller the amplitude of the oscillations.

The sawtooth effect In this section, we analyse the convergence behaviour @ bin
mial prices along values d that are of the same parity. The general case is analysed
in the next paragraph on the even-odd problem.

Figure 2.2 shows the binomial prices for a cash-or-nothalbabtained from the CRR
tree and from the RB tree, respectively. The estimates ar@uatad for even values of
N; that is,N = 10 : 2 : 4000. The dashed red lines indicate the bounds on dicknig
error term observed in (2.90).
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Fig. 2.2: Convergence pattern for a cash-or-nothing ca#é\@h)
5 =95,0=0.25,r=0.1,T =1,G = 100, strikeK =100
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As we see in Figure 2.2, the binomial prices are neither stersily greater nor
less than the Black-Scholes price; rather, they alternaigdas over- and underesti-
mation with some highly accurate values in between. Thewbehaobserved is called
the sawtooth effectLet us remark that we will see a similar pattern if we restie
sequence of price estimates to odd valuedof\We next explain this pattern by the
asymptotics of the pricing error derived in Proposititon Earther, these rigorous re-
sults are illustrated with intuitive arguments on the spedllocation of probability
mass in the binomial model under consideration; i.e. thatlon of terminal nodes in
the corresponding tree.

For any number of periodd, there is some integé(N) such that the strike valulé
falls between the terminal node corresponding(d) — 1 up-movements and that cor-
responding td(N) up-movements; i.e.

su (1 = 1) = sou "L(N)dN (N < K < sou (N)IN(N) = s (1),

Assume first that the strike vald€is close tos,(\lN)(I); that is, there is a terminal node
in the corresponding binomial tree which is just above thiest Intuitively, in this
case the probability to end up in the money is expected todaigh compared to the
continuous-time model, which results in an overestimatiithe exact price. In fact, the
above argument can be verified from the asymptotics of treatisation error because
if Kis close tcs,(\,N)(I), we have thab(N) ~ 1 (compare (2.56)). Consequently, the lead-
ing error term is close to its upper bou@d " ¢ (d,)/+/N. By contrast, in case th#t

is close tog(\,N)(I —1), we have thab(N) ~ —1, so that the leading error term is close to

its lower bound-Ge~"T ¢ (dz)/+/N. Hence, in the latter case the asymptotic expansion
of the discretisation error indicates that the binomial slaghderestimates the exact
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price. This, too, is coherent with intuition: F&rclose tog(\,N)(l —1), we anticipate that
the likelihood to end up in the money is too low compared tociainuous-time situa-
tion, which then implies that the option price is undereatied. Let us finally consider
the caseK = (s,(\,N)(I - 1)s§\,N)(I))1/2. Then according to (2.56), the leading term in the
asymptotic expansion of the pricing error is equal to zerend¢, this situation leads
to a highly accurate price estimate. In this case, the stalkae falls on the geometric
average between the two neighbouring nodes.

In the above, we have considered the number of pehbidsbe fixed.If we now assume
that the step size changes, the position of nodes in treevarirelation to the strike
value. This leads to the observed oscillations in the cayersse patternin particular,
the above situations occur as the three extreme casess thia price estimate touches
the upper bound, it is highly accurate or it touches the Idvaemd.

To further illustrate the above effect, let us defimeas the effective number of up-
movements, i.e.

m= fup-movements- down-movements.

In our example, the CRR model witkh = 94 periods has a terminal node at 1IXB.
Hence, the strike valuek(= 100) falls just below that node. The node corresponds
to the paths with an effective number of up-movements givemb= 2 (I = 48). If

the number of periods is increasedNo= 96, the distance between adjacent possible
realisations shrinks. Here a path with= 2 (I = 49) effective up-movements ends at
99.9738, which is now below the strike vallle Consequently, the location of nodes
is such that the risk-neutral probability to end up in the By(5278) is overestimated
for N =94 (5677), but it is underestimated fbdr= 96 (4904). We therefore observe a
sudden drop in the corresponding binomial prices fron7@04 £ to 443732 £.

The specific oscillations observed in our example can begraeed as follows: As the
step size increases, the CRR model leads to price estimatemthease in absolute
value until a sudden downward drop. This is again followecbyncrease in absolute
value in successive discretisation steps. By contrast,ribe pstimates obtained from
the RB tree decrease in absolute value until an abrupt ridaid gtress thahe specific
form of the sawtooth pattern observed for our example is no¢ge; rather, it depends
on the parameter settingrhis is easy to see: Note first that for even valueblpéach
terminal node corresponds to an even number of effectivemopements. Let be the
effective number of up-movements and supposeFRtiat) > 0 is such that

exp(mo\/%> — SOTKHT‘ (2.91)

In our example, the input parameters are such thatsy > 1, while
K/s0el"Y20%)T ~ 1. Hence, we see from (2.91) that for the CRR model (i.e.



80 Chapter 2. Binomial Pricing for Single-Asset Options

a = 0), the strike always lies between two nodes that exhibgoaitive effective
number of up-movements. By contrast, for the RB model @.e= r — 1/20?), the
strike always lies between two nodes that exhibihepative effective number of
up-movements. The specific form of the sawtooth effect aleskfor our example can
now be explained by the fact that while

e|m\aw/T/N+2 < e|m|ow/T/N7
we have
g Imoy/T/N < g Imoy/T/N+2

Consequently, ifN approachesF(|m|) (along the sequence of even integers),
s0eM9VT/N  approachesK from above.  Yet, if N approachesF(—|m|),

soel"1/20%)Tg-Imo/T/N gpproache& from below. This explains why in our exam-
ple, the binomial prices obtained from the CRR model are piemeimcreasing, while
those obtained from the RB model are piecewise decreasihbrises abové (|m|) or
F(—|m|), respectively, the sequence of price estimates faces asutiivnward drop
or an abrupt rise. We observe from (2.91) that

2
F(=Im)) = F(m)) = m? (peler )

This shows that in our example the oscillation frequency ighér for

the CRR model than for RB model because/T/|In(K/s)| ~ 4.9, while

oVT/|In(K/sp) — (r —1/20°T)| ~ 14.3.

In general, the above arguments imply that the specific fdrthe sawtooth effect is
determined according to the following result:

Proposition 28. Suppose we limit the sequence of price estimates to valudeeof t
same parity (either even or odd). Then the leading error tésrpiecewise increas-
ing if 9”7 < K and piecewise decreasing foge§ " > K. Moreover, the greater
0V T/|In(K/sp) — aT|, the lower the frequency of the oscillations.

Remark 19. Clearly, the above result can alternatively be deduced froenformula
(2.89) for KN).

Corollary 12. If the stock price parameters are fixed, the frequency oflaions de-
pends on the strike value only. Then, the smaller the distaetween K ancys®', the
lower the frequency of the oscillations.

We anticipate from Corollary 12 that the conventional scheadmit smooth con-
vergence for the limit cask = spe?T. This will be verified later. Before, we wish
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to demonstrate a second main effect of irregular conveyerbaviour other than the
sawtooth-effect: the even-odd effect.

The even-odd problem In the above, we have limited our analysis to valuesNof
that are of the same parity. We next investigate the conmeggbehaviour of binomial
prices along integers of alternating parity. We will sed thdhis case, the convergence
pattern exhibitamicro oscillationsbetween even and odd valuesf This effect is
often called the even-odd problem. The micro oscillatiores superimposed on the
marco oscillationgnvestigated previously; i.e. they are superimposed orséwgooth
pattern along the even integers and the sawtooth pattemng &e odd integers. This is
illustrated forN = 150 : 1 : 300 in Figure 2.3.

Fig. 2.3: Convergence pattern for a cash-or-nothing caitré/oscillations
S =95,0=0.25r=0.1,T =1,G =100, strikeK =100
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The presence of micro oscillations can be deduced from fhatetic expansion of
the pricing error becaud®N) involves the fractional part of 1/2N (compare (2.89)).
To give an intuitive argument on the presence of micro aawahs, let us recall from
(2.39) that the root ofu(N)2d(N)N-2 = K is of the form

a(N) = IN+cyN

for some appropriate constamtHence for reasonable large valued\bfthe roota(N)
increases approximately accordinga + 1) ~ a(N) +1/2. However, in the discrete
model an increase by/2 is not possible. As a consequence, the relative number of
terminal nodes in the in-the-money region is approximatie¢ysame folN andN + 2,
while it is significantly different folN -+ 1. This difference affects the probability mass
assigned to the in-the-money region and hence causes theddegoroblem (compare
Table 2.1).
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Table 2.1: The even-odd problem for the RB tree
5 =95,0=0.25,r=0.1,T =1,G = 100, strikeK =100

N 200 201 202 | BSvalue
a(N) 99.5062| 100.0050] 100.5038] —
b(N) 0.0125| -0.9900 | 0.0075 | —
I(N) 100 101 101 —

Nodes in the money/ total nodes 0.50249| 0.50000 | 0.50246 —
Probability to end up in the money 0.5282 | 0.5000 | 0.5280 | 0.5278
Binomial price 47.7912| 45.2419 | 47.7786 | 47.7604

It remains to consider the convergence behaviour of castoething calls for the
border cas& = se?". As discussed above, we expect that in this situation, thearo
tional schemes behave differently than in the general dagearticular, we anticipate
that convergence is smooth. This is demonstrated next.

The border case K= 5e®T  Note first that the border case associated with the CRR
model occurs for the at-the-money situation; Ke= sy (for an analysis of this case
compare also [DD04]). By contrast, the border case assdargth the RB model cor-
responds to the situatidf = spelr~1/20)T,

We first investigate the corresponding binomial prices glemen integers. In this
case, as we observe from the asymptotic expansion of theetigation error, we have
b(N) = 1, so that the coefficient of the leading error term alwaysicidies with its
upper bound. Consequently, the price estimates convergetsiyaccording to

_ 142
CN)casiy g0 T — Coash(5peT) + GeT f/% (%)1/2+O(ﬁ) ’ N even,

whered, is evaluated agye?".

Smooth convergence is illustrated for the CRR tree in Figude Zhe plot shows the
convergence pattern for an at-the-money cash-or-nothatigvith N = 10 : 2 : 4000.
Except for the strike value, the parameters are kept asdefor
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Fig. 2.4: Convergence pattern for an at-the-money castotiing call(N even)
$=95,0=025r=0.1,T =1,G=100,strike K =95
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As in the above, we wish to add an intuitive argument on smootivergence in the
border case by means of the specific allocation of probglmidss. Since we limit our
analysis to even values b, it follows from symmetry that the terminal no&) (N /2)
corresponding to zero effective up-movements (i.e. thereesf tree) coincides with
K = 5¢e°T; that is,K = SN(N/2). As a result, the centred node always contributes to
the probability mass assigned to the in-the-money regioms€guently, for any even
number of period§, the binomial price overestimates the exact price to theimamx
extent. Let us emphasise that the benefits due to smoothrgemee overcompensate
the fact that the price estimates are at the maximal distanite exact price. In partic-
ular, smooth convergence allows for extrapolation methods

Let us now consider the border case for any odd valug.dfhen the striké = soe? T

is again located at the centre of the tree; yet\as odd, the tree is centred around the
geometric average of the terminal no®¥ (M) andSN) (M1) corresponding to the
effective number of up-movemens= 1 andm= —1, respectively. Hence, we have

K= (M (N2 -2y 5™ (342)) 7. (2.92)

Consequently, the strike value is always optimally locateiation to its neighbouring
nodes, so that we expect a higher order of convergence. Ty tleg above conjecture
by the asymptotic expansion of the pricing error, note thabeding to (2.92)b(N) =0
for any odd value ofN. As a result, the first error term cancels out, so that theahte
convergence is now/N. Further, it is clear from previous results that the leadargn
in the discretisation error converges monotonically (carepgCorollary 8 and Corollary
9).

Figure 2.5 illustrates the price estimates obtained fromm RR tree along
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N =9:2:3999. Convergence is obviously faster than in the ptesvaase (note that
the scaling of the y-axis is not the same as in Figure 2.4).afgmqtly, convergence is
smooth.

Fig. 2.5: Convergence pattern for an at-the-money castotiing call(N odd)
$=95,0=0.25r=0.1T=1,G=100,strike K =95
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To conclude, we have seen that for the conventional schenggested by RB and
by CRR, the binomial prices of cash-or-nothing options coreénggeneral no faster
than in order 1\/N. Further, convergence is hon-smooth; it suffers from tivet@ath
effect and from the even-odd problem. The only exceptiohéssituationk = s,e?".
In this case, both schemes admit smooth convergence alteggens of the same parity.
In particular, if the binomial prices are evaluated alongl @dlues ofN, we achieve
convergence of order/N.

Let us stress that we obtain superior convergence propeftie the border case
K = s,€T because the corresponding valuation problem matchesidentallywith
the definition of the binomial model under consideration. Wegt illustrate the con-
vergence behaviour of cash-or-nothing prices obtainenh fiee advanced binomial
schemes presented in Section 2.2.3; that is, the modelestagpoy Tian and by Chang
and Palmer as well as the optimal drift model we suggest. & hezxdels are advan-
tageous for the practical application of binomial optiofciolg because they can be
adapted to the strike value of interest. For cash-or-ngtbptions, they achieve smooth
convergence or increase the rate of convergémcany specific strike value

Advanced Binomial Models from Literature

The advanced binomial schemes presented in Section 2.2.Becadapted to a given
pointx so that the discretisation error arouexhibits a superior asymptotic behaviour.
In principle, this is based on the following idea: We staoinfrsome binomial process
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with constant drifta (N) = a andf3 = o. For any number of periods, the drift is then
individually corrected for in order to improve the positiohthe pointx in relation to
its neighbouring nodes. Clearly, the resulting model doenger exhibit a constant
drift; yet, it achieves a superior asymptotic behaviourhaf discretisation error around
X. For application to numerical option pricingsge simply identify the point x with the
strike value of interestThis is illustrated in the following.

The Tian model Let S(GN) be the binomial process (2.2) wih= o anda(N) = a
constant inN. Further, letl,(N) denote the number of up-movements such that the

strike valueX lies between the node$lN)(la(N) -1) andsﬁ,N)(la(N)). According to
the results from Section 2.2.3, the Tian model can be adaptdide strike value of
interest so that the strike always falls onto the neighlmautipper nodeﬁ(\,N)(Ia(N))
(compare (2.58)). The Tian model hence achiéy@s) = 1 for any number of periods
N, so that the leading error term always admits its upper boAsd consequence, the
pricing error converges smoothly (compare Proposition 11)

Proposition 29. For the Tian model, the binomial price of a cash-or-nothiadl admits
the following asymptotic behaviour:

12
C(N),cash(K) = Ceash(K) + Ge T % (%)1/2_’_0(%) .

Remark 20. Note that the original driftr does not enter the leading term of the pricing
error.

Figure 2.6 illustrates smooth convergence of the Tian wedlf= 10: 1:4000. As
in the original paper, the Tian tree is superimposed on the C&R(Lte.a = 0); yet as
mentioned above, the drift does not significantly influer@edonvergence pattern.

Fig. 2.6: Convergence pattern for a cash-or-nothing cdé Tian tree
s=95,0=0.25,r=0.1,T =1,G = 100, strikeK = 100
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Due to smooth convergence, extrapolation methods can beedpp the Tian
model. This is illustrated next. Before, let us give a shomirgler on Richardson
extrapolation: Suppose th&N) converges smoothly to the Black-Scholes pGse,
i.e. there are some ordeand some constaat such that

C(N) =Cas+arsr +O(f5) » S>T.
Then the error ratio is of the form

_ C(N)-Cgs _ 1
P(2N) = cony s =2 +O(5s) -

It hence converges to = 2". Extrapolating the observed values (2-point Richardson

extrapolation) leads to the aggregated price estimate

C(2N) := —PC<2§:1C<N>,

which admits a pricing error of ordéd(1/N®). This means that the aggregated price
estimate is ohigher orderof accuracy than the original price estimates (for details o
Richardson extrapolation see [Tia99]).

According to Proposition 11, applying Richardson extrapoiteto the Tian model leads
to aggregated estimates of the form

C(2N)7casHK> — Ceash(K)) 4 \fé:i al% +o0 (%) , (2.93)
where
T e 39 2—dydp—d? d3+d; d2+2d,—4d
ap=Ge T e\/;nz (%zdl(r_a)2+6;—2ﬁ1(r_a)+ P+di %ZT > 1_3_%)

The aggregated estimates hence converge in ordér However, as we illustrate next,
convergence is no longer smooth. The leading error termexgeg monotonically; yet
the fluctuations of orden(1/N) are not negligible. Consequently, a further extrapola-
tion step cannot be applied.

Figure 2.7 illustrates the sequence of aggregated es&réaml). Recall that in our
numerical example, the Tian tree is superimposed on the CRRInficel a = 0). In
contrast to the original estimates, for the aggregatedhastis the particular choice of

a enters the coefficient of the leading error term. The left pliows the aggregated
estimates along even valuesNf i.e. 2N = 200 : 4 : 4000 N = 100 : 2 : 2000). The
plot on the right-hand side illustrates the aggregatednaséis along odd values bF,

i.e. 2N=202:4:3998K =101:2:1999). Apparently, the aggregated estimates are
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exposed to an even-odd effect.

Fig. 2.7: Convergence pattern for a cash-or-nothing cdlé Tian tree with 2-point Richardson extrapo-
lation (superimposed on CRR)
$=95,0=0.25,r=0.1,T =1,G = 100, strikeK = 100
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The dashed red curve illustrates the leading error termdefrdl/ N. The aggregated
price estimates oscillate around that curve in o@@y/N). The oscillations observed
involve the difference between the constant dwifand the modified drifer(N). With
the notations from Section 2.2.3, we have

&(N) _ 20 TT/N(

aor(N) —|a(N))+a

(compare (2.59)). In particular, due to the facigfN) — 14 (N), we anticipate an even-
odd effect.

We next consider the convergence behaviour of cash-oingpttalls for the model
suggested by Chang and Palmer. The CP model can be adaptedstakberalue of
interest so that convergence of ord¢NLlis achieved without extrapolation.

The Chang-Palmer model As in the above, IeS(aN) be the binomial process (2.2)
with B = 0 anda(N) = a constant inN. Further, letl;(N) denote the number of
up-movements for whickK € (51(\,N)(IG(N) - 1),5.,(\,N)(IG(N))]. According to previous

results, the CP model can be adapted to the strike value oésttso that the strike al-
ways falls onto the geometric average of the two neighbgumodes (compare (2.62)).
Consequently, for any number of periods we haveb(N) = 0. This implies that the

first error term in the asymptotic expansion of the pricingpecancels out (compare
Proposition 13):
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Proposition 30. Let SN) be any binomial process (2.2) with(N) = a constant and
B = o. For the superimposed CP model, the binomial price of a castething call
admits the following asymptotic expansion:

C(N)JeashK) = CeasN(K) +

142 2 3 2
—rT e 29 1 2 2—d1d2—dl dl+d1d2+2d274d1 T 1
Ge — <Wd1(r—a) +W(r—a)+ SaT y+o(5)-

Remark 21. As for the extrapolated Tian model, convergence of cashetiing prices
obtained from the CP model is of ord&fN. However, for the CP model, this order is
achieved without extrapolation.

Figure 2.8 Iillustrates the convergence behaviour of the e tior even
(N =200 : 2 :4000) and for odd values df (N = 201 : 2 :3999). As in the orig-
inal paper by Chang and Palmer, the CP tree is superimposecc0@RR tree (i.e.
a =0).

Fig. 2.8: Convergence pattern for a cash-or-nothing cdle TP tree (superimposed on CRR)
$=95,0=0.25,r=0.1,T =1,G = 100, strikeK = 100
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Apparently, we observe oscillations and an even-odd eff@stin the above, we
anticipate the presence of oscillations from the fact tmatlistance between the original
drift a and the modified driftr(N) varies inN. With the notations from Section 2.2.3,
we have

20 T/N(

a(N) = = (ag(N) —lg(N) +3) +a

(compare (2.63)).
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We next investigate the convergence behaviour of castoitiing call prices obtained
from the OD model we suggest. If we adapt the OD tree to thkestralue of interest,
we can achieve convergence of ordét/N).

The Optimal Drift Model

Let S((,N) be the binomial process (2.2) wifh= o anda(N) = a constant inN. As
explained previously, the optimal drift model is based om @P model. In contrast
to the CP model, the driftr of the embedded proce%'\') is adapted to the valuation
problem under consideration. This further improves thezeagence behaviour of cash-
or-nothing call prices. In particular, the OD model can aghkiconvergence of order
0(1/N) (compare Proposition 14):

Proposition 31. For the optimal drift model, the binomial price of a cash+wthing
call admits the following asymptotic behaviour: If

D(K) = —d}(K) + ovTd(K) — d? (1+ 02T) + 50Ty (K) +2 >0,
we have

C(N),cash(K) — CcaSh(K) + 0(

);

Zl~

otherwise, we have

C(N),cash(K) — Ccash(K) +

142

Ge e 22 oL (df +d20Z + 5didp — 402 — 2 — d¥dp) & +0(2).

N

Remark 22. The OD tree converges in ordefXyN) if d1(K) is reasonably small in
absolute value. In essence, this condition excludes de#peirmoney and deep-out-of-
the money situations only. Further, even if the convergeats cannot be improved,
the OD tree is still advantageous compared to the CP model.hirdase, the OD
model always exhibits a smaller constant of the leading eleom: Recall that in our
generalisation of the Chang and Palmer model, the coeffiaktite leading error term

is a quadratic function irr. In the OD model, the constant of leading error term is
defined as the vertex of the corresponding parabola.

Figure 2.9 illustrates the convergence behaviour of the @&e tfor even
(N =200:2:4000) and for odd values bf (N = 201 : 2 : 3999). For our numerical
example, the strike value is close to the present stock;praresequently, convergence
of the OD tree is of ordeo(1/N). While the estimates obtained from the CP tree os-
cillate around a monotonically decreasing function of ortéN, those obtained from
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the OD tree oscillate around the Black-Scholes value. Corsglyyamongst the com-
peting models, the OD tree is clearly the preferred one hyeiof its superior rate of
convergence (compare Table 2.2).

Fig. 2.9: Convergence pattern for a cash-or-nothing cdle ©D tree
S =95,0=0.25r=0.1,T =1,G = 100, strikeK =100
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Table 2.2: Cash-or-nothing call prices under conventianal advanced binomial schemes:

S =95,0=0.25r=0.1,T =1,G =100, strikeK = 100

N CRRtree | RBtree| Tian CP tree| OD tree . Tian .
with extrapolation
200 47.5257 | 47.7912| 50.3228| 47.7798| 47.7596 47.6913
300 48.9204 | 47.3242| 49.8476| 47.7713| 47.760391 47.7253
400 46.1524 | 47.0456| 49.5701| 47.7717| 47.7607 47.7529
500 47.1027 | 46.8554| 49.3772| 47.7685| 47.7607 47.7556
640 48.0365 | 46.6682| 49.1881| 47.7661| 47.7608 47.7574
820 48.8635 | 46.5021| 49.0207| 47.7644| 47.7608 47.7484
1000 47.1805 | 48.6610| 48.9022| 47.7644| 47.7608 47.7555
2000 47.9034 | 47.6615| 48.5669| 47.7623| 47.760355 47.7574
3000 47,9178 | 47.2180| 48.4187| 47.7617| 47.760428 47.7596
4000 A47.7477 | 48.0926| 48.3304| 47.7614| 47.760450 47.7594
5000 47.5104 | 47.7922| 48.2702| 47.7612| 47.760384 47.7594
10000 47.5869 | 47.7666| 48.1208| 47.7608| 47.760427 47.7601
15000 47.7984 | 47.8921| 48.0546| 47.7607| 47.760418 47.7602
BS value|| 47.760425

S9911d uondo [elwouig Jo Inoireyag aousbianuod ayl G2
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2.5.2 Linear Payoff Structures (Plain Vanilla Options)

In the following, we consider the convergence behaviourinbimial prices for plain
vanilla options; i.e. in case of a call (put), we have

9(S) = (Sr—K)* (9(S) = (K=Sr)")

with strike valueK. While cash-or-nothing options exhibit a discontinuity tze strike
value, plain vanilla options exhibit a kink; i.e. a discontity in the first derivative with
respect to the terminal stock pri€€T ). In the following, we will demonstrate how the
specific structure of a plain vanilla option influences thgngstotic behaviour of the
discretisation error in the corresponding binomial prices

Our theroretical analysis of the pricing error will be lienk to the risk-neutral case. In
this case (and only in this case), the binomial price of anplanilla option can be rep-
resented as the weighted difference of two binomial distitim functions. As a result,
the Berry-Esgen inequality remains applicable. This will be explainediétail. Yet,
the two binomial distribution functions representing thie@ of a plain vanilla option
are related to one another, so that cancellation effectsrodss analysed by Chang
and Palmer and by Diener and Diener, the leading term in tleengrerror cancels
out. Consequenthany risk-neutral binomial model admits convergence of oajéN.

In particular, in contrast to cash-or-nothing options, Begry-Es€en inequality is no
longer tight for a constant dritt. However, conventional methods still suffer from an
irregular convergence behaviour.

We will further see that the advanced schemes from liteeamain superior to conven-
tional methods: For plain vanilla options, they do not ims®e the rate of convergence,
but they can achieve smooth convergence by adapting théottbe strike value of in-
terest. This will be explained in detail.

In contrast to the advanced schemes suggested by Tian andamg@nhd Palmer, the
optimal drift model improves the rate of convergence. We @émonstrate thahe op-
timal drift model can again admit convergence of ordé€t N). Further, we will briefly
discuss the application of the OD model to the American dasean American put, an
explicit pricing formula is not available. The above residuggest that the OD model
will be of great practical value for American option valwatiby virtue of its superior
rate of convergence. This issue will be illustrated nunadiyc

The Pricing Error for Risk-Neutral Transition Probabilities

In the following, we restrict our attention to binomial mdslevith risk-neutral transition

probabilities. Thus, in this case, the binomial call prie@ e written as the weighted
sum of two binomial distribution functions. Consequenthye tpricing error can be
analysed using previous results.
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Recall first that according to the Black-Scholes formula, #iegrice in the continuous-
time setting is of the form

C(K) = eMEq(Srlg>k}) —Ke M Q(Sr > K)

B In(so/K)+(r+1/20%)T T In(so/K)+(r—1/20%)T
_SO(D( ot )—Kercb( v

(compare e.g. [KKO01], p. 101) or equivalently
C(K) =Q(Sr > K) —Ke T Q(Sr > K),

whereQ is the unique equivalent martingale measure if prices goeessed in units of
S (compare e.g. [KKO1], Theorem I11.38 on numeraire invac@n It is well-known
that we have a similar result for the call price in the bindmiadef: The binomial call
price is given by

CN (K) = e TEqu (s&N)l{évN)ZK}) ~Ke T QM (5 > k). (2.94)

There exists a suitable probability meas@®) under which the first term on the right-
hand side of equation (2.94) can be determined from theitalision of SN evaluated

at the strikeK. Similarly as in the continuous-time situation, the reqdichange-
of-measure involves introducin§™) as the numeraire. To be precise on the above
arguments, note that

e '’ EQ(N) <S<\IN)1{§\IN)2K}> =
e 3 (N (1N souN) AN =

9 3 () (@une ™) (@-an)ane ™)

where as before(N) is the risk-neutral probability for an up-movement, i)
is the smallest integdrsuch thatsou(N)'dN-'(N) > K (compare [CRR79]). We now
observe that

e TEqu (éVN)l{%N)ZK}) — 50N <5<NN> > K) , (2.95)

8In the above, we have agreed to use the term binomial prica limse sense”. Yet in this section,
we have to be more precise using this term.
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whereQN) := @N | QN with
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SN (1) ; (2.96)

and

QUNI(—1) :=Gy(N) == (1~ aqu(N))eT/Nd(N).

Note thatgy(N) + Gq(N) = 1. Further, we have absence of arbitrage opportunities for
N sufficiently large (compare Corollary 1). By (AAO), we haweN) < €T/N < u(N),
which implies that 0< §y(N) < 1. Consequently, if the number of periodNsis suffi-
ciently large,Q!N) is a well-defined probability measure. The binomial caltprcan
hence be represented as the weighted difference of two ahdistribution functions;
that is,

N (K) = QM (5" > K) —Ke TQM (8" > k). (2.97)

Remark 23. Let us stress that the above representation of the binomalépcice de-
pends crucially on the assumption of risk-neutrality. Foiner probability measures
P(N) different from the risk-neutral measure), we cannot give an analogue to the
representation (2.97) because the definitions

PLN)(1) := Bu(N) := pu(N)e T/Nu(N) (2.98)
and
PN (—1) := Ba(N) := (1— pu(N)) e "T/Nd(N)

do not result in a well-defined probability measieY) := QR ; PN, We always
havepy(N) + Pa(N) # 1.

The above result suggests in particular that the Berng&sbound remains appli-
cable for plain vanilla options in the risk-neutral case; binomial prices converge in

orderO(1/v/N):

Proposition 32. Let SN) be any binomial process (2.2) with = o and with risk-
neutral transition probabilities. Then for any strike vall, the binomial price of a

9For plain vanilla options, the minimal convergence ratefisaurse not uniform in the strike value.
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plain vanilla call converges in ordet/+/N; i.e.

‘C(K) —cV) (K)’ - o(ﬁ) .

Proof. The following proof is based on the representation (2.97}He binomial call
price. We consider the two terms in the above representagparately. Clearly, the

second terniKe™"T Q(N)(Sf\,N) > K) is the binomial price of a cash-or-nothing call with
strikeK and promised cash amouft Hence, for any strike value,

ke s )0 (8 2)| =04

To deal with the first term on the right-hand side of equat®7), we show that if the
measure is changed fro@N) to QIN), the assertion of Proposition 5 is satisfied with
U= (r + 1/202) (instead ofu =r — 1/20?). Consequently, we need to show that

Ham (N) = (r+1/202)| = O (L (2.99)
N
and
oé(ch_)z(N) _ 1‘ to(L) (2.100)

where the characteristiqssw (N) and a(%m)(N) are computed with respect Q)

following (2.8) and (2.9), respectively. Note from the agyotic expansion o€, (N)
(see (2.15)) that

Gu(N) = 3+ 55 (= a(N) +1/20%) (§)"*+0 (2 )

(compare also [DD04], Prop. 3.3). Consequently,

(28)

g (N) = a(N) o (§)

(26u(N) = 1) = (r + 30°) +O(§)
and

(29)

g (N) = 40%8u(N) (1—Gu(N)) = 0?+O(§) ,

which shows that the requirements (2.99) and (2.100) arsfisat Hence, it follows
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from Proposition 5 that

sup| QM (51 2 K) oo (PREIEZIT ) |
~ N) i i
S}l{po(N)<§\| ZK>_Q(ST>K)’—O(%N>7
which completes the proof. )

Remark 24. It is clear that Proposition 32 generalises to any piecewisedr payoff
structure and in particular to plain vanilla puts.

As discussed previously, the above result follows esdgnfieom the fact that
the binomial call price can be written as a weighted sum of tvwomial dis-
tribution functions both evaluated &N), which is the smallest integer such that
sou(N)'d(N)N-! > K. The corresponding success probabilities are relateccto@taer
according to definition (2.96). We expect this relationgiigause cancellation effects
if we expand the discretisation error of the two distribatfanctions. In fact, as shown
by Diener and Diener and by Chang and Palmer, in total thergadrm of the pricing
error cancels out. As a result, binomial prices of plain Namiptions converge in order
1/N (compare [DD04] Thm. 2.1., [CP07], p. 93):

Proposition 33. Let SN) be any binomial process (2.2) wifh = o and risk-neutral
transition probabilities. Then the binomial price of a ptaranilla option (call or put)
admits the following asymptotic behaviour:

VIN(K) =V(K) + 225 (1(N) — 1202 (P(N) — 1)) | +0(3)

where
f(N) =—12T(r —a(N))?+4(d? - d?) (r —a(N)) — 02 (6+d? +d3) .

Conventional Schemes

According to Proposition 33, binomial prices of plain vémibptions converge faster
than suggested by the Berry-Ess inequality. Note that the above result also applies
to binomial prices obtained from conventional schemesfareschemes with constant
drift a. By contrast, we have seen that for cash-or-nothing optemrsjergence of order
1/N can only be achieved if the drift is non-constant and adapted to the valuation
problem of interest, as is done in the advanced models cemesidoreviously. On the
other hand, Proposition 33 also indicates that if the drifs constant, binomial prices
of plain vanilla options still suffer from non-monotone e@ngence and the presence of
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an even-odd effect.

Let us stress that the above result does not cover the sclseiggssted by CRR and by
RB because these schemes do not assume risk-neutral trlamsibabilities (compare
Remark 23). However, numerical results suggest that thegponding sequence of
price estimates converges also non-smoothly in ordisr(tompare Figure 2.10).

Fig. 2.10: Convergence pattern for a plain vanilla put: TiRRQree and the RB tree
$=95,0=0.25,r=0.1,T =1, strikeK = 100
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Apparently, in contrast to cash-or-nothings options, ateath pattern is not
present. Rather, the CRR and RB price estimates oscillate indbswallops. In fact,
the presence of scallops suggests that the sequ¥Ngeenters the leading error term
guadratically, so that the price estimates oscillate in form of parabdNte that this
observation matches with the asymptotic expansion of ti@ngrerror obtained for
the risk-neutral case. By contrast, for cash-or-nothingoogt the sawtooth effect is
due to the fact that(N) enters the leading term of the pricing ertioearly.

Advanced Schemes from Literature

For the advanced schemes suggested by Tian and by Chang aret,FRioposition 33
leads to the following asymptotic expansion of the pricinge

Proposition 34. Let SN) be any binomial process (2.2) with(N) = a constant and
B = o. For the superimposed Tian model, the binomial price of anplanilla option
admits the following asymptotic expansion:

142
VIN(K) =V(K) + 5252 f § +0(5)
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with
f=—12T(r—a)?+4(d?—d?) (r —a) — 0 (6+d?+d3).

For the superimposed CP model, we have

,ldz -
VIV(K) =V(K) + 525 == f § +o(g),

wheref = f + 1202

Remark 25. The above result is a generalisation of the results in Chand) Radmer
for the casex # 0 (compare [CPQ7], Corollary 1 and 2). Hence, Proposition 34alk
to apply the optimal drift model to the valuation of plain Wenoptions by optimising
the drift a of the embedded binomial process.

According to Proposition 34, the Tian model and the CP modeiatdiffer quali-
tatively when applied to plain vanilla options. For both rats] the rate of convergence
is not improved compared to conventional schemes, i.e.ateeaf convergence is in

general no faster than/lN. However, the leading term of the pricing error converges

monotonically.

Figure 2.11 illustrates the put prices obtained from the taadels for our example
(N =10:2:4000). We see that higher order oscillations are ésdigmegligible,
so that Richardson extrapolation can be applied. Figure shd@/s the corresponding
aggregated estimates faN2= 300 : 4 : 4000.

Fig. 2.11: Convergence pattern for a plain vanilla put: T Tree (superimposed on CRR)
S =95,0=0.25r=0.1,T =1, strikeK = 100
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Fig. 2.12: Convergence pattern for a plain vanilla put: Tiret@e (superimposed on CRR)
$=95,0=0.25-r=0.1,T =1, strikeK = 100
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The Optimal Drift Model

As discussed in the above, the OD model is based on the CP nind=intrast to the
latter, it optimises the drift of the embedded binomial modiefollows from Proposi-
tion 34 that the OD model can be adapted to the valuation af pfnilla options so
that the convergence rate is improvedi{d/N):

Proposition 35. For the optimal drift model, we have

VN (K) =V(K) +o(§)

D(K) =9—d2(K)+0av/Td(K) > 0.
Otherwise, we have
VIN(K) =V (K) + 202 (9—d?(K) + ovVTh(K)) k+0(d).

According to Proposition 35, when applied to the valuatibplain vanilla options,
the OD model admits a superior rate of convergence comparéoth conventional
schemes and the advanced schemes suggested Tian and by Gti&adraer.

Remark 26.

1. Note that the condition on convergence of ordet/®) is even weaker than for
cash-or-nothing options. In fact, we may say that with respeptactical appli-
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cations, the condition is satisfied for most interestingesasn our example with
parameters g= 95, 0 = 0.25, r = 0.1, T = 1, the condition only excludes the
cases K< 49and K> 222

2. For plain vanilla options, the OD model could in principé¢so be based on the
Tian model. However, in this case, the resulting model woutdinlzonvergence
of order 1/N) only if Drian(K) = —9—d?(K) + 0v/T th(K) > 0.

Figure 2.13 illustrates the put price obtained from the ODdet@long even and
odd values oN for our example. According to the above remark, the rate of/en
gence is known to be faster thapiN as the strike value is set # = 100. In fact, as
we observe from the plot, the pricing error is approximatdlyhe same magnitude as
that obtained from extrapolation of the CP or the Tian modekeler, for these meth-
ods, the application of Richardson extrapolation clearjunees additional computing
time. Consequently, the OD tree is again the most advantaggmice amongst the
competing methods; it possesses the best time/accura®afa This is illustrated in
Table 2.13. Here in each row, computing time for the binortrizé algorithms is set
to 100% and computing time for the two methods involving &atiation is given as a
percentage.

Fig. 2.13: Convergence pattern for a plain vanilla put: Th2t@e
s =95,0=0.25r=0.1,T =1, strikeK = 100
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Table 2.3: Plain vanilla put prices under conventional ashchaced binomial schemes:
$=95,0=025r=0.1,T =1,G =100, strikeK = 100

N CRRtree | RBtree| Tian CP tree| OD tree . Tian (CP) .
with extrapolation

200 7.15025 | 7.15222| 7.12590| 7.14961| 7.13902 | 7.14608 (7.14414) -
300 7.14268 | 7.14787| 7.13157| 7.14715| 7.14219 | 7.14344 (7.14255) -
400 7.13674 | 7.14491| 7.13333| 7.14504| 7.14146 | 7.14077 (7.14047) -
500 7.14332 | 7.14272| 7.13512| 7.14443| 7.14100 | 7.14088 (7.14068) -
640 7.14375 | 7.14045| 7.13660| 7.14382| 7.14090 | 7.14095 (7.14083) -
820 7.13916 | 7.13832| 7.13769| 7.14330| 7.14094 | 7.14182 (7.14163) -
1000 7.14179 | 7.14049| 7.13816| 7.14277| 7.14092 | 7.14120 (7.14111) -
2000 7.14196 | 7.14217| 7.13967| 7.14196| 7.14114 | 7.14119 (7.14115) 125%
3000 7.14163 | 7.14081| 7.14015| 7.14167| 7.14111 | 7.141066 (7.14105) 118 %
4000 7.14156 | 7.14126| 7.14039| 7.14152| 7.141074| 7.14110 (7.14109) 128 %
5000 7.14125 | 7.14153| 7.14052| 7.14143| 7.14109 | 7.14111 (7.14110) 126%
10000 7.14117 | 7.14131| 7.14081| 7.14126| 7.14109 | 7.14110 (7.14109) 124 %
15000 7.14121 | 7.14118| 7.14091| 7.14121| 7.14109| 7.14109 (7.14109) 124 %
BS Value| 7.141079564

S9911d uondo [elwouig Jo Inoireyag aousbianuod ayl G2

TOT
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American Put Prices A basic approach to the valuation of American options is the
decomposition technique proposed by MacMillan (1986) andBaAdesi and Wha-
ley (1987). Here the American option price is divided intattbf a similar European op-
tion plus the early exercise premium [Mac86], [BAWS87]. Theadmposition approach
suggests that the methods preferred for the European caseftaa be advantageous
for the valuation of the corresponding American option. @ouently, we anticipate
that the OD model will also admit strong performance prapsnivhen applied to the
valuation of American puts.

To confirm the above conjecture by means of our numerical pigniable 2.4 shows
the corresponding binomial put prices obtained from thehot under consideration.
In fact, as for the European case, the OD tree is the prefeheide amongst the com-
peting binomial methods. Only the methods that includeagdlation lead to a compa-
rable discretisation error, but they require additionahpating time.

Let us remark that the Leisen-Reimer tree is currently anmtahgsnost efficient meth-
ods for American option pricing (compare e.g. [Sta04], (Six We wish to stress that
for our numerical example, the OD tree also outperforms fRéree® (compare Figure
2.14).

Fig. 2.14: Convergence pattern for an American plain vamilit: The OD tree vs the LR tree
$=95,0=0.25,r=0.1,T =1, strikeK = 100
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To conclude, due to the widespread use of the binomial apprio@American option
pricing, the above numerical results promise a great paieot the OD model for
practical applications. A profound analysis of this issaikeft for future research.

10Here (as in Table 2.4), results from the LR tree are obtairigftthe Preizer-Pratt method 2 inversion
[LR96].



Table 2.4: American plain vanilla put prices under convamdl and advanced binomial schemes:
$=95,0=025r=0.1,T =1,G =100, strikeK =100

N CRRtree | RBtree| Tian CP tree| OD tree . Tian (CP) .
with extrapolation
200 8.77498 | 8.77567| 8.76571| 8.77438| 8.76929 | 8.77330 (8.77139)
300 8.77133 | 8.77406| 8.76782| 8.77350| 8.77152 | 8.77190 (8.77152)
400 8.77016 | 8.77297| 8.76866| 8.77309| 8.77119| 8.77162 (8.77180)
500 8.77247 | 8.77115| 8.76918| 8.77264| 8.77099 | 8.77136 (8.77139)
640 8.77235 | 8.77079| 8.76973| 8.77240| 8.77100| 8.77125 (8.77107)
820 8.77048 | 8.76971| 8.77010| 8.77217| 8.77107 | 8.77146(8.77134)
1000 8.77176 | 8.77050| 8.77030| 8.77202| 8.77109 | 8.77143(8.77140)
2000 8.77167 | 8.77165| 8.77081| 8.77167| 8.771277| 8.77132 (8.77131)
3000 8.77153 | 8.77110| 8.77098| 8.77154| 8.771277| 8.771294 (8.771290)
4000 8.77151 | 8.77131| 8.77106| 8.77148| 8.77126 | 8.77130 (8.77130)
5000 8.77139 | 8.77143| 8.77110| 8.77145| 8.771275| 8.77131 (8.77130)
10000 8.77134 | 8.77136| 8.77120| 8.77137| 8.771289| 8.77130 (8.77130)
15000 8.77135 | 8.77132| 8.77123| 8.77135| 8.771288| 8.771294 (8.771294)
LR tree
(N=100.001) 8.771281982

S9911d uondo [elwouig Jo Inoireyag aousbianuod ayl G2
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2.6 Conclusion

To conclude, we finally wish to summarise the main aspectseobptimal drift model:

* In the OD modelthe transition probabilities are defined with respect to thsk+
neutral measure

» The OD model can be adapted to the strike value of inter@stohtrast to the
Tian model and to the Chang and Palmer model, we optimise ifteolithe
embedded binomial process. Consequently, the shape ofthednstructed by
the OD model further exploits the structure of the valuapooblem of interest.
This leads to asuperior convergence behaviour of the corresponding biabm
option prices.

» Both for cash-or-nothing options and for plain vanilla ops, the prices obtained
from the optimal drift model can exhibit convergence of ordel/N). For these
two common payoff structureshe superior convergence rate of the OD model
has been verified rigorously.

* We anticipate that the OD model will also show strong perfance for the valua-
tion of American options. As a major use of binomial methadis ithe valuation
of American options, we wish to strefge significance of the strong performance
of the OD method for practical applications.



Chapter 3

The Standard Approach to
Multi-Dimensional Trees

We consider am-dimensional Black-Scholes model with stock price dynamiader
the risk-neutral measur@ given by

dS(t) =S(t)(rdt + gidW), S(0)=s0>0  fori=1,...,m (3.1)

for Brownian motiondV' andW/ with correlationpj for i # j. Then the instantaneous
returns of stock and j satisfy
ds (t) dSJ(t)} —
Corr[ S S0 | = Pi dt.
The correlations are assumed to be such that the corresygpvatiance-covariance ma-
trix is positive-definite.

In the last two chapters of this thesis, we focus on binomi@iqg of multi-asset op-
tions. The underlying stocks are assumed to followrthdimensional Black-Scholes
dynamics defined above.

3.1 Introduction

This chapter deals with the standard approach to valuingmmgpbnm correlated (log-
normally distributed) stocks by multivariate binomialgse In principle, this approach
works as follows: One approximates tf@nt evolutionof the m stocks by anm
dimensional Markov chain appropriate in the sense thatatssition states and proba-
bilities (asymptotically) match the drifts, variances ammrelations of the increments
of the price processes.

In addition to the one-dimensional (for short: 1D) settitigg entire correlation struc-
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ture of the continuous-time model has to be matched. Thendéads to difficulties in
the construction of thenr-dimensional tree, and it is sometimes even impossible.eMor
precisely, the main drawbacks of standard multi-dimereaditnree procedures are as fol-
lows:

 Since the number of moment matching conditions grows cuiadily in the di-
mension, setting up an appropriate binomial model soontgdisus.

» To ensure that the correlation structure between the stscknatched, correla-
tion parameters typically enter the transition probaiksit This has the effect that
transition probabilities can become negative for certandeh parameters. Theo-
retically, application of the tree procedure cannot bafjasttin this situation.

» Research on 1D trees is not directly applicable.

Although there is a vast amount of literature on 1D treeggtieenot so much literature
on the standard approach to multi-dimensional trees; alywkieown example in 2D
is Boyle (1988) (see [Boy88]). Boyle, Evnine and Gibbs (1986j) ¢éhort: BEG) sug-
gest an approximation of am-dimensional geometric Brownian motion by &-8tep
Markov chain that can be seen as the canonical extensiore ADICRR tree [BEG89].
However, the transition probabilities in the BEG model arenezessarily well-defined,
and in contrast to the 1D CRR model, this problem cannot alweaysbd by choosing
a sufficiently large number of periods. Kamrad and Ritchk&®{) hence modify the
BEG model by introducing horizontal jumps [KR91]. This leadsih additional degree
of freedom that can be used to ensure non-negative tramgitmbabilities, but it also
increases complexity of the model.

In Chapter 4, we suggest the decoupling method as an alteregiproach to multi-
dimensional trees that does not suffer from the drawbasksdiabove. Let us stress
that this approach is conceptually different to the advedrnoelti-dimensional model
suggested by Kamrad and Ritchken. The decoupling approaahigén well-defined
multi-dimensional trees by separation of the correlattaucture from the tree structure.
As a consequence, the correlation structure enters ti@mstates rather than transition
probabilities. In particular, this approach does not iaseethe number of degrees of
freedom.

In the following, we illustrate the standard approach to tirdimensional trees with
multi-dimensional variants of both the CRR tree and the RB Wémalso highlight the
main drawbacks of these models when applied in a multi-dgioel setting.

3.2 Discretisation of the Stock Price

The basic idea of the BEG model is that transition states adeerop of components,
each of which describes the possible evolution of a compookthe discretisedn
dimensional stock price process. The joint distributiorthe m-dimensional discrete
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process is such that projecting onto a component resulteifhi® discretisation scheme
suggested by CRR [BEG89]. As we see in the following, this coesisn technique
can also be used to extend the 1D RB tree toredimensional framework. We next
present the resultingrdimensional variant of the RB tree and compare it to the BEG
model.

To guarantee weak convergence to the continuous-time prazess, the first two mo-
ments of the log-returns must be (asymptotically) matchedthe approximating pro-
cessSV) has to be defined on some probability spa@&V),.#MN) p(N)) so that as grid
size tends to zero,

ui(N)'zAi[E <|n<SﬁNl,>‘§kNl')}_)r_%qz fori=1,....m (3.2

g2(N) := {Varp <In (S(kNll) ‘ iNll)} —g? fori=1,....m  (3.3)

and

Gj(N):= 4 |:COVP ( <s<i£NNll) I (jﬁhﬁ:]) ‘ a@llsﬁ)ljﬂ — 6.0ip

fori=1....m j<i. (3.4)

Thei component process coincides with the RB model if

S

SS\-'): §(<N1I (r—302)0t+0, VAL with prob.% (3.5)
5{(’\'“ (r—=307)At-0 VAt with prob. .

It coincides with the CRR model if

S =%

S‘(<N ) eanf with prob.% (1+ (r _ %O-IZ) #>
_1|e oVt with prob. (1— (r—3o?) @)

As we recall from Section 2.2, for both models the discretemponents (asymptoti-
cally) satisfy the moment matching conditions (3.2) an@).3.These conditions are
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satisfied exactly for the RB model. For the CRR model, the vagasonly matched
when ignoring some term of ord&t (compare (2.19)).

If we take a simple product of the embedded 1D trees, the latioe condition (3.4)
will in general not be satisfied. Rather, we have to define gpate one-step transi-
tions that take into account the correlation structure efdbntinuous-time model. This
is discussed next.

Let us consider some peridd< N. Since each component can either increase or de-
crease, we introduce the set of all possilghedown-scenarigs.e.

Ee={w=(x1,....axm) | i € {-1,1} Vi=1,...,m}.

To obtain appropriate transitions in therdimensional RB model, we define
R: & — R by

P(wy) = 5w | 1+ | ]Z:lpijéj (W) | (3.6)
where
. _ 1if ai = @ j
dJ (Qk) - { —1if Qki 7& (q(: (3-7)

m
> Y pijGj(w) =0 (3.8)
(A)kegk”:_l
and hence,
(3.6) m (3.8)
R = 5 RA(w) =1+ S Y pjdj(w) = L
Wy € Sk wy €8 =1

i<j

Apparently, as the sef is finite, B can be extended to a probability measure on the
corresponding discrete probability space if the corretastructure is such tha is
non-negative.

While R is always non-negative in dimensiom= 1 andm = 2, there are restrictions
on the correlation structure in higher dimensions. As amgte, consider an option on
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three underlying$,;, S, S3 with p1o = —0.7, po3 = 0.1 andpi3 = —0.5; then

Rc(w1 =2 =3 =—1) = —0.0125< 0.

Clearly,for these model parameters the construction technique cloiagsult in a well-
defined discrete model.

It is known from BEG that we obtain appropriate transitiong im-dimensional CRR
model if we set

P(wy) =z [ 1+ 2 Pij Gij (wk)+\/_ Z & (W) — (3.9)

i,j=1
i<j

with §;j(.) defined as in (3.7) and (wy) := 1 (—1) if a; is an up-scenario (down-
scenario). As in the 1D setting, the transition probalesitthosen depend on the grid
size. As the grid size tends to zero, each transition prdibabonverges to the corre-
sponding transition probability in the multi-dimensiowariant of the RB tree, i.e.

PSR (wi) — RE® (wy) Yoy € &k
Consequently, the two models will be applicable under theesesstrictions on the

model parameters, but on top of this, the BEG tree requiredfizisntly small grid
size.

In the following, we assume that the model parameters atethath, can be extended
to a well-defined probability measure. Let us introduce theegic elemento describ-
ing the up-down-behaviour of a path of the multi-dimenslathiscrete asset price

= (W11, e, WLy ey N1y - ONm) € E1 X ... X EN
and let us introduce the coordinate mappings
Zi(w) = axj, fork=1,..,N,i=1..m

Then we can define the one-step transition imthdimensional variant of the RB model
by

S(kN) §(<N elr—302)At+Z101v/At
1 1,1

4=

S,((N) S(<N el - At+Zk mOmV/At
,m 1, m
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Finally, we equip the path spae¢ewith the probability measure

under whichz; andz j are independent fok # |. In particular,SN) is a Markov
process.

By summing over all possible combinations with; fixed, it follows from symmetry
arguments that

o () =ttt 0, )

o0 () = o eP- | ) =

Hence, as desired, each component coincides with the epetsinsition in the RB
model (compare to (3.5)).

NI NI

It remains to show that the covariance of the log-returnsaschred undeP™): When
we sum over the relevant elements4f it follows again by symmetry that

PN(Zi =12, =1) =PN(Z;=-1,2=-1) = 3(1+pj)
PN(Zi=1,2=-1) =PN(Z;=-1,Z=1) = }(1-pj)
which gives us
Covern) (Ziis Zij) = Pij.-
Figure 3.1 illustrates the one-step transitions for the 2DtiRB.
Fig. 3.1: One-step transition for the 2D RB model
P1 (ug,uz)
2,() (ug,dp) U = elr~0507)AttaiVAt
%34 (d1,Up) ¢ = elr-050")M-avat
(d1,d2)
p1=pa=§(1+p); P2=ps=3(1-p)
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For the BEG model, one-step transitions are defined as

N
S(K_)l’leZk.lal\/A»t

=

" :
i_)l’mezk‘mom\/ﬁ

As for the variances, the BEG model matches the correlationctsire of the
continuous-time model only asymptotically when ignorimgne term of ordeit; to
be precise,

Gj(N) = gigipij — (r — 367) (r _ %0,2) T.

Figure 3.2 shows one-step transitions for the 2D CRR model.

Fig. 3.2: One-step transition for the 2D CRR model (=2D BEG)

P1 (ug,up)

2. (ug,d) u = eV

?)3;1 (dg,up) d = e VA
(dlvdZ)

Clearly, for the BEG tree and for the suggestedariant of the RB tree, each node
has 2" successor nodes. The log-BEG tree inherits symmetry ardwnstarting value
from its 1D components, while the multi-dimensional vatiahthe RB tree possesses
symmetry properties with respect to the transition proliads. As a consequence, for
the latter the number of distinct weights is reducedo’2

Remark 27 (Incompleteness of the discrete marketgt us stress that the discrete mar-

ket model associated with the binomial process(igés . §nN) defined as above and a
bond with one-period return'® is not complete (compare e.g. [#}4], Section 3).
Consequently, in the discrete model there is no unique opime. However, in the
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context of binomial option pricing, there is no impact of tmedel being complete
or incomplete on convergence to the exact price. For an appration of the multi-
dimensional Black-Scholes model by a complete multinomadel, we refer to He
(1990) (see [He90])).

To conclude, we have seen that as one-step transition ghtieabare not simply
products of marginal probabilities, it is tedious to definkewa of the discrete process
that suitably approximates the joint distribution of thenttouous-time process. The
correlation structure of the continuous-time model entieesone-step transition prob-
abilities (compare (3.6), (3.9)). This implies that eachafemodel parameters leads
to a particular specification of the meast@), which is not always well-defined in
dimensionsn > 3.

3.3 Option Valuation with Standard Multi-Dimensional
Trees

As seen in the above, provided the BEG tree and the suggestaedimensional vari-
ant of the RB tree are well-defined, they (asymptoticallyisfathe moment matching
conditions (3.2)-(3.4). As a consequence, due to DonsKérrem, the continuous
process obtained frorSN) by linear interpolation and appropriate time-scaling con-
verges weakly to the stock price process imadimensional Black-Scholes setting. As
explained previously, this provides the theoretical bamisiumerical option valuation.
Using a loose terminology (compare Remark 27), the resuéistgnates for the exact
option price are again referred to as "binomial prices”.

In Section 3.3.1, we briefly discuss the main aspects of theesponding tree algo-
rithm for numerical option valuation. In Section 3.3.2, weastigate the convergence
behaviour of binomial prices obtained from the standardtiraiinensional schemes
considered above. Our analysis is focused on payoff fungtibat exhibit disconti-
nuities. We will see that the multi-dimensional binomiahemes inherit the irregular
convergence behaviour observed for their 1D variants.

3.3.1 The Tree Algorithm

For the standard multi-dimensional schemes consideredealize corresponding tree
algorithm is conceptually the same as for the 1D case: Riestassign possible payoff
scenarios to the terminal nodes. Afterwards, we step badsatarough the tree, as
suggested by the Markov property of the procg88. The tree algorithm for the valu-
ation of path-independent options with two underlyings barfound below (compare
Algorithm 5). In accordance with Figures 3.1 and 32 ,denotes the weight assigned
to state(up,uy), p2 denotes the weight assigned to staig d»), etc. The weights are
determined in advance. For path-dependent options, itrdkspagain on the specific
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Algorithm 5:  The standard approach to binomial trees for a path-
independent European option with two underlyings

Input: stock price parameters, risk-neutral ratpayoff functiong
Return: price estimate-V [0][0] x exp(—r x T)

1. Forward Step

{initialise asset prices at maturjty
Set SNO|[1] := sp1d}
Set SNOJ[2] := s0,2d
for k=1toN do
SN[K[1] := SN[k — 1][1] x (uy /dly)
SN[K][2] := SN[k —1][2] x (up/d>)
end for

{initialise option values at maturity
for kk =0toN do
for k, =0toN do
SetV [ki][k] := g(SNki][1], SN[k2][2])
end for
end for

2. Backward Induction

{step backwards through the tiee
for k=N-—1to 0do
for 1 =0tokdo
for o, =0tokdo

V[|1][|2] =P XV[|1+1][|2—|—1]+ p2 xV [|1—|—1][|2]—|—
P3 x V [l][l24 1] + pa x V [la][l2]

{or under the 2D RB scherhe
V{l1][l2] == pex (V [la+ 1[I+ 2] +V [I4][I2])+
P2 x V [l1+1][I2] +V [l1][l2+1])
end for
end for
end for
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payoff functional whether there exists a suitable modifocaof the above algorithm.

As for the 1D case, computational effort required for Algmm 5 can essentially be
attributed to the backward induction step. We have the\iotig result:

Proposition 36. In the general m-dimensional situation, Algorithm 5 regsicompu-
tational effort of order @N™1). The leading constant is in gener%}[%. For the

m-dimensional RB tree, the leading constant is reducegé%hénli.

Proof. Excluding the terminal layer, we have to consiggl  (k+1)™ nodes. Hence,
the number of relevant nodes is of ord@(N™?) with constant ¥(m+1). In the
backward step, the arithmetic mean is computed at eachsd timdes, which in general
requires 21 — 1 operation counts per node{2nultiplications and ? — 1 addition).
However, as seen above, for timeedimensional RB tree, the number of distinct weights
is reduced to 21, It follows from the distributive law that the number of option
counts per node is reduced%ﬁm —1. n

Remark 28.

» According to Proposition 36, computational effort growgpesentially in the
number of the underlying stocks. Therefore, the above +dmitensional tree
algorithm is currently not practically useful for high-densional valuation prob-
lems.

* We have seen that the tree algorithm associated with tha-diniensional vari-
ant of the RB tree requires less computational effort tha #ssociated with the
BEG tree. As we illustrate below, the difference in operationnts is reflected in
computing time. Note that by contrast, for the one-dimeraiexamples consid-
ered previously, the tree algorithms do not differ signifittain computing time.
Nevertheless, computational effort required by the muitieshsional RB tree is
still suboptimal for the rate of growth of the tree.

3.3.2 The Convergence Behaviour of Binomial Option Prices

As observed in the above, the standard approach to mulesmbional trees suffers
from several conceptual drawbacks: the construction @fstie tedious, its applica-
tion is restricted by model parameters, etc. These dravaaek specific to the multi-
dimensional situation. On top of that, the irregular cogesice behaviour of conven-
tional 1D schemes is inherited to their multi-dimensionaétvariants. This is illustrated
next.

We investigate the convergence behaviour of the above shéon payoff functions
that exhibit discontinuities; first, for cash-or-nothingtions; and second, for barrier
options. For the examples considered below, an expliaiimyiformula is known. As
discussed previously, such simples examples will give antian on the convergence
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behaviour of similar types of options for which an expliaitging formula is not known.
Note in this context that the pricing formula we will use foranalytic valuation of bar-
rier options is only valid under restrictions on the cortiela structure.

Cash-or-Nothing Options We consider a two-asset cash-or-nothing call; i.e.

9(S1, %) = Clig(1)>k; , S,(T)>Ko}

with strike valuex; > 0 andK; > 0 and with a promised cash-amout> 0. Figure
3.3 illustrates the convergence pattern obtained for th&Bree and for the BEG tree
for N=100:2:1000.

Fig. 3.3: Convergence pattern for a two-asset cash-orimptiall;
S1(0) =120,%(0)=120,01=0.2,0,=0.25,0=0.5,T =1.0r =0.1,K; = 17.0,K», = 20.0,G= 100
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For our numerical example, both methods suffer heavily feonirregular conver-
gence behaviour. As for cash-or-nothing options with alsinmderlying, the price
estimates are neither consistently greater nor less tleaexéct price; rather, they alter-
nate in a sawtooth pattern between over- and underestimatib some highly accurate
values in between (compare Figure 2.2). In contrast to thedd®, the amplitude of the
oscillations does not decrease monotonically in the nurobperiodsN.

Similar to the 1D situation, the sawtooth effect can be wlduack to the fact that when
grid sizes changes, the position of nodes in the tree variedation to the strike values
K1 andKy. As a consequence, there is typically either too much priibainass in the
in-the-money or in the out-of-the money area, respectivatys is illustrated next.
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Fig. 3.4: 2D RB tree: Realisations (8", S");
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As we see from Figure 3.4, the terminal values of the two-disienal proces§™N)
form a rectangular grid. This is due to the fact that the fteorsstates are defined as a
Cartesian product of the two components. The rectanguldistucture of the terminal
nodes is illustrated above for the 2D RB tree, but we will obsex similar pattern for
the BEG tree. The coloured rectangle illustrates the inrtlogey region. Its border-
lines are given by the strike valu&s = 17 andK, = 20. Due to the rectangular grid
structure, there are "columns” and "rows” parallel to thedwslines of the in-the-money

area. FoN = 18, there is a columrﬁﬂ\g =17.2489) and a row$(\1'\"% = 20.5953) right
abovethe borderlines. In contrast, ftf = 22 there is a columrd\,'\"i = 16.7894) and a

row (%N% = 19.689) rightbelowthe borderlines. Consequently, if we count the nodes

in the coloured rectangle and weight them with respe&tb, the risk-neutral proba-
bility to end up in-the-money (4819%) is heavily overestimated fbr= 18 (2.1433
%) and it is heavily underestimated fdr= 22 (0.9354 %). As a result, the option price
(1.34087 £) is heavily overpriced in the first case9@932 £) and heavily underpriced
in the second case @634 £).

For the number of periodd in the above example, both components simultaneously
lead to an over- or underestimation of the probability masthe-money region. Yet
this is not necessarily the case. Rather, for many valubk tife likelihood of the event
that the first stock ends up in-the-money is overestimatédevthe likelihood of the
event that the second stock ends up in-the-money is undeegstl, or vice versa. This

is due to the fact that the corresponding 1D cash-or-nothptgon on the first asset
oscillates in general with a different frequency than thathee second asset. Due to the
superposition of oscillations with different frequencitge amplitude of the oscillation
observed for a multi-asset cash-or-nothing option ce@sdedrease monotonically.
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As illustrated in the above, for cash-or-nothing options tonvergence pattern ob-
served for the multi-dimensional variant of the RB tree doetsdiffer significantly
from that observed for the BEG model. However, there is a Bagmit difference in
computing time. In fact, in the above examptemputing time required by the multi-
dimensional RB tree is reduced to approximatelya@tf that required by the BEG tree
Let us stress that we also observe a reduction in computimg fior other types of op-
tions. Note that by contrast, for our examples on option& wisingle underlying, the
different tree algorithms do not differ significantly in cpoting time (a difference in
computing time is observed only if an additonal extrapolastep is used).

Barrier Options  In the following, we deal with the convergence behaviour arfrier
options, as a special type of path-dependent options. Tampbes will be presented.
The first example is a barrier option with two knock-out bensi In the second example,
we consider two barriers of different type, a knock-in baron stock 1 and a knock-
out barrier on stock 2. For both cases, the barriers are a&sbtonbe constant in the
underlying stocks. As for the cash-or-nothing option cdesed above, both examples
are such that the option promises a cash amou@t of0 paid at maturity.

Example 1 Let us consider a knock-out barrier option on two stocks wakioff

9(S1,S2) = Glyg (t)<B, vt [0.T], Sy(t)>B, Vte [0.T]}-

Figure 3.5 shows the convergence pattern of the methodsr wwtesideration for
N =10:2:1000. For the parameter setting given, the Black-®shedlue can be
calculated explicitly as suggested in He et al. (1998)

1The explicit formula suggested is applicable if the cotielais of the formp = cogM/n) with
n=3,4,.... Otherwise (in particular for a negative correlation!) rénés only a semi-analytical formula
involving an infinite sum of Bessel functions [HKR98].
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Fig. 3.5: Convergence pattern for a barrier option with arang-out barrier on stock 1 and a down-and-
out barrier on stock 2;

S1(0) = 20.0, $(0) =30.0,01 =0.2,0, =0.25,T =1.0r =0.1, B; =330, B, = 150, G = 100 and
correlation p = 0.5
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Apparently, both methods overestimate the exact pricethEtmore, convergence
of binomial prices is again exposed to oscillations. ForB#S model, fluctuations
exhibit a sawtooth pattern with some cusp points that aeadir reasonably accurate
for small values oiN. For the 2D RB tree, there are no optimal choices for the grid
size. However, the oscillations are of lower amplitude. Ppa#erns observed will be
analysed next. Before, let us stress that for the above exatg 2D RB tree is again
advantageous with respect to computing time: For fixed dgze, she computing time
is reduced to approximately 90% of that required by the BE®. tiépparently, time
reduction is not as good as for the previous example. Thisestd the knock-out fea-
ture, so that a zero value is assigned to the nodes abowe/tieda@orresponding barrier.
For these nodes, neither the RB tree nor the BEG tree requiyesoamputional effort.
Consequently, compared to path-independent options, thad@Bsaves computional
effort only for the nodes for which the option is not knocked.o

We wish to add that the above patterns are generic for anykkootoption with barri-
ers constant in the underlying; in particular, we obserrelar patterns for the 1D case.

Let us first consider the pattern observed for the BEG treeaRgmumber of periods
N, the specified barriers will in general lie between two hamital layers of nodes in
the corresponding tree. To be precise, the up-and-ouehamistock 1 lies between the
corresponding binomial process after 1 effective up jumps and the binomial process
afterm effective up jumps, i.e.

—1
Sp1UfT T < By < s91U7,

whereu; = e?VT/N denotes the corresponding upward jump size in the BEG model.
Consequently, the binomial tree first "feels” the effect &f Harrier atsp 17", which is
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therefore referred to as the effective barrier (comparegBEB5]). Clearlythe effective
barrier is larger than the specified barrier;B

Figure 3.6 illustrates the possible transition states effitst component of the BEG
tree forN = 20 and the corresponding effective barrier. In the exantpke effective
barrier corresponds tm = 12 effective up-movements.

Fig. 3.6: The BEG tree: The specified up-and-out baBieand the effective barrier induced by the first
con1ponenE§N%
$1(0)=200,01 =02, T=10r=0.1,B; =330
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Similarly, the down-and-out barrier on stock 2 lies betwtencorresponding bino-
mial process aftek effective down jumps and aftér— 1 effective down jumps, i.e.

020571 > By > 50,00,

whered, = e 2V T/N denotes the corresponding downward jump size. Hence, the ef
fective barrier is given by »dk, which is in particulabelow the specified barrier B

The location of the effective barriers in relation to thesfied barriers indicates that
the binomial treeunderestimates the risk of being knocked out. As a reswtirde
tends to overestimate the exact price of a knock-out option

Furthermore, the oscillations observed are due to the liatthe distance between the
effective barriers and the specified barriers varies wiith gjze. In particular, if the grid
size is such that the effective barriers are both close teah@sponding specified bar-
rier, the BEG tree leads to accurate estimates. For the finsponent, the up-and-out
barrierB; is just below a layer of horizontal nodes in the tredliis the largest integer
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smaller than

. mPoiT o
Fi(m) := W, m=12,...

Similarly, for the second component, the down-and-outibaB; is just above a layer
of horizontal nodes in the treeM is the largest integer smaller than

k22T

Fa(k) := (In(s02/82))°

—1,2,...

(compare [BL94]). Consequently, we obtain an accurate esirhéhe corresponding
number of periodd is such that there is sorme=1,2,... and som& = 1,2, ... with

N = [Fo(m)] = [F2(K)].

For our numerical exampldy = 500 is a preferred choice for the number of periods
in the discrete model. Then the up-and-out barBer= 33 is just below the corre-
sponding effective barrier (38034) and the down-out-barriBp = 15 is just above the
corresponding effective barrier (B995). In the example, the effective barriers corre-
spond tom = 28 effective up-movements of the first component &nrd 31 effective
down-movements of the second component. In the aboveisitdhe binomial price
obtained for the BEG model (84211 £) is already close to the exact price.@@B2 £).

We now discuss the difference in the convergence behaviosgreed for the 2D RB
tree. By definition, the log-component processes are no fos\gametric around the
corresponding starting value. Rather, they are tilted ugsvar downwards (depend-
ing on the sign of —1/20?). As the tilt increases in the number of performed tran-
sitions, the corresponding effective barrier is non-canstlong the discretised asset
path, while the specified barrier is. For our numerical examipigure 3.7 illustrates
the effective barrier for the first component of the 2D RB treeN = 20. Apparently,
the effective barrier is non-constant. The fact that theative barrier is non-constant
implies, on the one hand, that there are no specific smalesadfiN for which we get
accurate estimates; on the other hand, it also results illabsns that are of lower
amplitude than those obtained for the BEG tree. Howeverapgtation methods can
be used neither for the BEG tree nor for the RB tree.



3.3 Option Valuation with Standard Multi-Dimensional Trees

121

Fig. 3.7: The (2D)-RB tree: The specified up-and-out baBieand the effective barrier induced by the

first componens(lN);
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Example 2 We next consider a barrier option with a knock-in barrier totk 1 and
a knock-out barrier on stock 2; i.e. the payoff is given by

9(S1,S2) = GL{g;(ty)=B; for someto € [0.T] , SH(t)>B, Vt € [0.T]}

Figure 3.8 shows the binomial prices obtained for the two@tbrN = 10 : 2 : 1000.
Parameters are kept unchanged, excepBfcr 25.

Fig. 3.8: Convergence pattern for a cash-or-nothing optittih an up-and-in barrieB; on stock 1 and a
down-and-out barrieB, on stock 2;
S1(0) = 20.0, $(0) =300, 01 =0.2, 0, =0.25,T =1.0r =0.1, B; = 25.0, B, = 15.0, G = 100 and

correlation p =0.5
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Apparently, the 2D RB tree again leads to a more regular cgevnee behaviour
than the BEG tree. However, convergence remains non-moaotémlike the binomial
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price estimates obtained for a pure knock-out option, tieegstimates obtained in the
second example are typically smaller than the Black-Schmies. Let us explain this
in decomposing the option priééin the following way:

V ("Uplin barrierB; on S’ Down/out barrierB, on Sy’ ) =
V ('Down/out barrierB; on S’ ) — V ("Uplout barrierB; on S, Down/out barrierB; onS,’)  (3.10)

Note that the options appearing on the right-hand side o&timyu (3.10) both exhibit
pure knock-out features. Consequently, according to theltsegh the above, the
two tree methods tend to overestimate each term. In to@lptite estimates for the
option on the left-hand side are typically smaller than thacBiScholes price because
mispricing is largely due to the second term. This is illastd in Figure 3.9, in which
the total error in the BEG price is decomposed according t]3.

Fig. 3.9: Convergence pattern for a cash-or-nothing optitin an up-and-in barrieB; on stock 1 and a
down-and-out barrieB, on stock 2: Decomposition of the total error
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To summarise our numerical results, both for cash-or-ngtloiptions and for the
barrier options considered, the BEG tree and the multi-dgiogral variant of the RB
tree exhibit an irregular convergence behaviour. For thterlathe oscillations are of
lower amplitude, yet extrapolation methods cannot be agpli

In the last chapter, we present the decoupling approach attexnative to the stan-
dard approach to multi-dimensional trees investigated@b®he decoupling approach
is based on a transformation method that results in muttiedisional binomial trees
which are well-defined for an arbitrary correlation struetof the multi-dimensional

Black-Scholes model. In addition, it will often yield supmrperformance of the cor-
responding trees. In particular, the convergence behaisamore regular, which can
even make the oscillations vanish so that extrapolatiommatkst can be applied.



Chapter 4

The Decoupling Approach to
Multi-Dimensional Trees

4.1 Introduction

In this section, we introduce thezcoupling approacko binomial option pricing in an
m-dimensional Black-Scholes setting. The model we suggegaots the 2D example
by Hull as a special case [Hul06]. The main idea is to tramsfibre original stock price
processSto a proces¥ with independent component procesbeforethe approximat-
ing binomial tree is constructed. This allows to defaxmulti-dimensional tree that is
in principle a product of 1D trees.

The specific advantages of the decoupling approach arelaw$ol

» Due to the separation of the correlation structure frontrée structure, it is easy
to guarantee non-negative transition probabilities.

» Easy construction of the tree (in particular, we presepiegisl product form that
easily allows the enlargement of the tree by a further stoitk full use of the
tree already constructed).

* The decoupling approach can be combined with any 1D diset&in scheme for
the individual stocks. This implies that we can make fulus® of results obtained
for 1D trees.

» Excellent numerical performance.

In the context of option pricing, decoupling of correlatedgesses goes back to Hull
and White (1990). They consider the 2D log-asset pgiee (¢, @) with dynamics

dg = aidt + oidw  fori=1,2,
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whereW?! W? are Brownian motions with correlation. Hull and White suggest to
transform the original procegsto a new procesg with independent components via

. (02 01
wi- (02 _01)9.

In Hull and White (1990), this transformation is applied imdamnation with finite dif-
ference methods [HW9O0]. It is presented prior to 2D tree mtaces in Hull's textbook
"Options, Futures and Other DerivativegHul06]. An extension to higher dimensions
is not given.

Clewlow and Strickland (1998) present a transformation oethased on the Spectral
Theorem; i.e. they gain independence of the component gseseby multiplication
with a rotation matrix. The appropriate angle is determibgd spectral decomposi-
tion of the variance-covariance matrix [CS98]. Clearly, thesformation can easily
be extended to arbitrary dimensions. Clewlow and Stricklaselthe transformation in
combination with finite difference schemes. Natcheva (2@@plies their idea to tree
procedures. She analyses the impact of a rotation prior teadriqnomial tree method
for pricing contingent claims on the interest rate in a taotbr setting. The interest
rates are modelled as Ornstein-Uhlenbeck processes [Nat®déhis case, the trans-
formed component processes are driven by independent Baownotions, but they
are not mutually independent because they are still coup&ethe drift vector. Amin
(1991) suggests a discretisation schemenfiocorrelated assets, where each asset is
driven by a vector of independent Brownian motions [Ami91].

In the following, we present a general decoupling methodfon-dimensional Black-
Scholes model. The transformations suggested by Hull andeVehd by Clewlow and
Strickland appear as special cases of our general methodH2.

4.2 A General Decoupling Method

Let us consider then-dimensional stock price proceSdollowing the Black-Scholes
dynamics (3.1). In this section, we focus on how to transftimenm correlated ge-
ometric Brownian motions to independent Brownian motiongstRve remove state
dependence in the diffusion coefficient via a log-transtation, i.e. we define a pro-
cessX by X := (In(F),...,In(S)T. Its dynamics unde® are given by

dXi(t) = (r— 302 dt+ g dW, X(0)=In(s,)  fori=1,...,m
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Then we decompose the variance-covariance matrix via

of P1m010m

> = = GDG’ (4.1)
P1mO10m ... o3
with G € R™*MandD € RM™*™M diagonal. AsX is assumed to be positive-definite, it
is in particular invertible. Thus andD are invertible, and the diagonal element$of

are non-zero. By symmetry, (4.1) is a system}nf(er 1) equations and it re-writes
elementwise as

m
0i0jpij = kzlgikdkkgjk fori,j=1,....m (4.2)

As there araer? 4+ m free parameters, we have an infinite number of solutions lans! t
also an infinite number of possible decompositions. In paldr, spectral decompostion
as well as Cholesky decomposition can be used.

Proposition 37. With the notation G* := ( gi_l))m:lwm we introduce Y:= G 1X,
i.e.

Vi) =3m g Xt forj=1...m (4.3)
Its dynamics are given by
dYj(t) = ajdt+ /dj; W, Y(0) =G IX(0) forj=1,....m (4.4)

whereW = (W,...,W™T is a vector of independent Brownian motions. The drift
vectora is given by

a=G*(r1-30%)
with 02 := (02,...,02)T.

Proof. Applying Itd’'s Formula to (4.3) yield¥ (0) = G~1X(0) and



126 Chapter 4. The Decoupling Approach to Multi-Dimensional Tees

Forallj =1,...,mwe calculate the quadratic variation process:

t
¢ oY g awi _ 99 4t
(&, [atoow )~ 33 [a
2

t
m

— [ 35 ¢i g Vaiopras
Olflrzl

42) m m
= 22 95. 1)gjr Z Oik OkkOrk t
i=1r=1 k=1
m m m
= 2 (Z gﬁ. )glk> > gﬁr 1)grk) Okt
k=1 \i=1 r=1
m
= 3 Ondt=djjt

Thus, by Levy’s Characterisation Theorem for Brownian motion (compage [&KS98],
Theorem 3.3.16)

t
—. m 1 .
w = —_}j“ igl/gﬁi g
)

is a one-dimensional Brownian motion. As fp# i, we have

N Wi mmo(-1) (-1
<W 7W >t d"d” z z gk ng O-ko-rpkrt
(4.2) m m 1 m
- d..d” 2 Zlgk gjl‘ IZ Ot gr t
\/m Z O 0 dit =0,
Lévy’s Theorem also yields independence of the components. O

Note that the Hull and White transformation can easily be afdbd into our frame-

work by
11
G1_-(%2 01 N G_ (22 22 |
o, —01 1 1
207 207
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Hence, we obtain the decompositiin= GDG' with

b_ (2(1+p)ofas 0
- 0 2(1-p)oiaz)”

Decoupling with the spectral decomposition By the Spectral Theorem there is an
orthogonal matrbG € R™*™M with

Y =GDG',

whereD € R™*Mis diagonal and each elemetjj =: A; is an eigenvalue at. The j
column ofG is given by the corresponding normalised eigenvectorZ Assymmetric
and positive-definite, the eigenvalues are real and pesit8y orthogonality we have
G1=GT. According to Proposition 37, the dynamics of the transfedmrocess are

dYj(t) = ajdt+,/A;dW  forj=1,....m

m
aj = 3 Gi (r—309)

with Y (0) = G"X(0). Note that the new diffusion coefficients are the roots oftigen-
values of the variance-covariance matrix.

Spectral decomposition is not uniquB. can obviously be forced to be unique by ar-
ranging the eigenvalues in a certain order, e.g. in a noreasing manner, which we
assume from now on. Howevés,is still not unique because we can choose an arbitrary
orthonormal basis of each eigenspace. Given that the eages/are distinct, only the
sign of each drift component is not uniquely determined.

In dimension two, there is a simple formula for the eigengalwf the variance-
covariance matrix an is simply a rotation matrix. Consequently, the dynamics of
the transformed process are given explicitly in terms ofvila@ances and the correla-
tion (compare [Nat06]). By contrast, determining the eigdmes is more involved for
higher dimensions. In particular, if the dimension is higtan four, there is in general
no closed-form solution for the eigenvaldeshe eigenvalues have to be determined by
aniterativealgorithm instead. The QR algorithm is an efficient methoddtermineall
eigenvalues and eigenvectors at offee61], [Fra62].

Decoupling with the Cholesky decomposition Since the variance-covariance matrix
is symmetric and positive-definite, it admits a unique CHotdactorisation; i.e. it can

1Generally, the roots of polynomial equations higher thamtfodegree cannot be written in terms of
finite number of operations of addition, subtraction, nplitiation, division and root extraction (Abel's
Theorem (1826)).
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be decomposed by
T =GG',

whereG € R™*Mis a lower triangular matrix with positive diagonal entriéscontrast
to the general decomposition rule (4.1), the transformatiatrix is sparse, and the
triangular structure will lead to further advantages. kimlSpectral decomposition,
Cholesky factorisation is a direct procedure for any dimamsif the problem; i.e. it
terminates after a finite number of steps.

By Proposition 37, the proce¥shas dynamics
j — j
dYi(t) = 5 gi (1 =30%) dt+ W, Yi(0) = 3 gplin(Si(0)  (45)

for j =1,...,m. Hence, all diffusion coefficients are equal to 1. Moreotle, sums in
the drift component and in the starting value run up to themament’s index only.

Observe that Cholesky factorisation is distributive andeneental in the following
sense. IA € R™Mis symmetric and positive-definite aAd= LLT denotes its Cholesky
factorisation, then

J .
aj = 3 liljk fori>j.
k=1
As the diagonal elements are required to be positive,

li = y/ai— 3512
As presented e.g. in Hanke-Bourgeois, the originaligimensional problem can be
split into two lower-dimensional problems: the problem afiing the Cholesky decom-
position of anlm— 1) x (m— 1) matrix, plus that of finding the Cholesky decomposition
of a positive scalar (compare [HB06], Theorem 5.4). As we sdevl) Cholesky fac-
torisation is in fact distributive for any dimensign< m.

Lemma 6. Let Ac R™™ be symmetric and positive-definite, le p < m and let A
be split into the following blocks

A — <A11 AlZ) Ip
Ao1 Agz) tm—p

~— =~
p m—p
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Then A1 is symmetric and positive-definite. Moreover,
Si= Agp— AptArfArp € RIMP)X(M=p)

is well defined and it is also symmetric and positive-definjtempare e.g. [HB06],
Lemmab5.1).

Proposition 38. According to Lemma 6, the matriceg;Aand S can be decomposed by
Cholesky factorisation, which will be denoted by A LpL|, and S= Lm_pLf, - Then
for the mx m matrix

M:= Lpl' -1 0 )
A2]_(Lp) mep

we have L= M.

Proof. M is obviously lower triangular anMMT™ = A. By positivity of the diagonal
elements inLp and inLy_p, the diagonal elements &1 are positive, too. Thus, the
assertion follows from uniqueness of the Cholesky decomipasi n

According to Proposition 38, determining the Cholesky deoosition of a size
m x mmatrix can be split into two subproblems: to determine thel€ky decompo-
sition of a siz§m— p) x (m— p) matrix, and to determine the Cholesky decomposition
of a sizep x p matrix.

Corollary 13. The matrix Ly in Proposition 38 is the leading g p submatrix of L.

Corollary 13 implies that the distributive structure goesdien-hand with incre-
mentality of the Cholesky algorithm, i.e. the solution of fh®blem in dimensiomm
already contains the solutions of the problem in dimengieGam. Regarding our ap-
plication, we note that incrementality is inherited to thensformed process:

Proposition 39. Consider an m-dimensional Black-Scholes model. When using
Cholesky factorisation for decoupling, the first<pm components of the decoupled
process coincide with the decoupled process correspondirgBlack-Scholes model
consisting of the first p stocks only.

Proof. LetX;1= GpGg denote the Cholesky factorisation of the leading p subma-
trix of the variance-covariance matrix. It follows from Pasition 38 thang1 is the
leadingp x p submatrix ofG~1. However,Gg1 is also the transformation matrix in a
Black-Scholes world consisting of the figgstocks only. Combining these observations
with formula (4.5) for the dynamics of the decoupled procgssws that the assertion
holds true. L

2Sis called the Schur complement Afwith respect toAy.
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Corollary 14. Consider an m-dimensional Black-Scholes model. Each coempafiof
the transformed model involves original variances and elations with indices up to i
only.

Note that under decoupling via spectral decompositiontriresformation matrix is
not triangular. Hence, there is no analogue to Proposit8n/@& analyse the resulting
impact on tree methods below.

4.3 Discretisation of the Decoupled Process and Back-
transformation

In the following, we suggest a discretisation scheme fodaeoupled process
Y =G X

given in equation (4.3). We demonstrate that if we apply &transformation to the
corresponding tree, we obtain an approximation to the maigstock price process, so
weak convergence is ensured.

A discrete approximation of the decoupled process In principle, the decoupled
process is approximated as follows: After having estabtisindependence, each 1D

component proces$ can be approximated separately by a 1D Markov ch(é'm that
matches the mean and the variance of the log-returks tfwe take the product of the
measures induced b&{N),..., N we get a law foiy ) := (Yl(N),..., NIT which
approximates the distribution of. In particular, the correlation structure need not be
considered. By moment matching, there is weak convergeneadio component pro-
cessy;. Furthermore, there is also weak convergence toritemensional process,
which we can infer from the following theorem:

Theorem 7. Let M!, M? be separable metrisable topological spaces andmgin, P,
(P3)n, P? be probability measures ofM*, #(M1)) and (M?, %(M?)), respectively.
Then we have

Py ® P =w Pl®P?
if and only if

Pi=wP! and R=,P?

(compare e.g. [Bil68], Theorem 3.2.).
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We will see below that as the backtransformation is contisuave will also obtain
weak convergence to the original stock price pro&ss

Of course, we can use any 1D discretisation scheme for th@xipation of the com-
ponent processes, and the schemes can even differ compsentn the following,
we suggest approximating each component by a 1D RB schemigislcase, all paths
of the resultingn-dimensional process are equally likely. Let us anticiphte compu-
tational effort for backward induction will therefore betwpal for the rate of growth of
the tree.

As in Section 3.2,

&G={w=(x1,....,0m) | i € {~1,1} Vi=1,...,m}
denotes the set of all possible up-down-scenarios for gé&rio N and

W= (W11,...., WMy N1, -, WONm) € E1X ... XEN=:E&

denotes the path space. Furtizgr : & — {1,—1} is the coordinate mapping. Ac-
cording to the discretisation scheme suggested by RB, we badefine a probability
measure®N) on & such that

Yk(’—\?.,l + a1 At + Zk71\/ dll\/E
vV = : YV =Y(0) =y (4.6)
YN 1t OmAt + Ziemy/Dnmy/A

matches the first two moments of the increm¥rikAt) —Y ((k—1)At). Below we
denote the one-period transitions of compondiyt

W =u'(N)=aist+/divAat  and  dY =dY(N) = aiAt — /dij VAL

Note that there is no correlation structure that needs to &dehed because we have
already decoupled the originally correlated Brownian muity the transformation
which definesy. As a consequence, moment matching has to be done compasentw
only! We defineR (and thus the joint distribution of th&;, i = 1,...,m) as the measure
determined by

Re({w}) =27 Vay € &
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Then in accordance with the RB discretisation, we have

2 11 with prob. 1/2
W1 with prob. 1/2.

Finally, we define the probability measup&Y) on the path spacé as the product of
the measureB, k= 1,...,N. Note that undePN), the 1-step transition probabilities
all are equal tq1/2)™ and each path has probability/2)N™.

If the transformation matri—1 is obtained by Cholesky decomposition, we have the
following analogue to Proposition 39 for the discrete model

Proposition 40. Suppose the transformation matrix &is obtained by Cholesky de-
composition. Then the firstgom components of the discrete proce§¥oincide with
the discrete process approximating the decoupled prodessned in a Black-Scholes
world consisting of the first p stocks only.

In order to use the machinery of weak convergence of stochasicesses, we map
the discrete proces6™) to a continuous proce®$¢N) on [0, T] via

Yi(c"N)(t) ::Yk(fii + t_(kA_tl)At (Yk(ji\') —Ylf_Nii> fori=1,....m

fort € [(k—1)At, kAt]. Note that the componen{s’i(c’N)}i:L_“,m remain independent.
Since moment matching is ensured for each component pragesbtain the following
result from Donsker’s Theorem:

Proposition 41. We have

Y(CvN)

i =w Y] fori=1,....m.

Finally, as the family{Yi(C’N)}i=1,.,_7m is independent and each procefég'\') con-
verges weakly to its continuous counterpart, we can applynBgley’s Theorem on
weak convergence of product measures, which yields thewoig result:

Corollary 15. We have
YEN =Y.

Apparently, proving weak convergence nmdimensions is just a 1D task under
decoupling.

Backtransformation Corollary 15 justifies the approximation of the transformea p
cessY by a binomial tree based on the discretisation scheme (Mef)since the option
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payments are defined in terms of the original asset priceegsS;we have to apply the
inverse of the decoupling rule to each node of the tree. Mareigely, leth: R™ — R™
denote the inverse of the decoupling rule, i.e.

h(x) := (e®1%, ... emX)T (4.7)

whereG;, € R™™M is thei™ row of G. Then{h() }tc|o.1] coincides with the original
processS. The nodes of the tree are mapped to

§<N) ::h(Yk(N)> fork=0,...,N, (4.8)

and the stochastic proceS§N) defined as
SeN(t) :=h(YCEN(t))  fort € [0,T]

yields an approximation to the stock price. As the backf@nsation is continuous,
weak convergence is preserved, i.e. the following resuttsho

Proposition 42. We have
S<C7N) :>W S.

Hence, according to Proposition 42, the above model can pleeddor numerical
option valuation.

Remark 29. Let us stress that for the decoupling approach, the con@testructure of
the continuous-time model enters the discrete model vigrdinsformation map. It af-
fects transition states and consequently possible pageffagios. By contrast, we have
seen that for the standard tree procedures described ind@e8f the correlations enter
transition probabilities. The possible payoff scenariesiain unaltered. The structural
difference between the competing methods leads to effefegaar of decoupled trees
regarding numerical performance; this is described below.

4.4 Binomial Option Valuation via the Decoupling Ap-
proach

The following section deals with the application of the dguiing approach to numer-
ical option valuation. In Section 4.4.1, we discuss the naaipects of the correspond-
ing tree algorithm. Section 4.4.2 deals with numerical genfance of the decoupling
approach to multi-dimensional option valuation. The staddnethods considered in
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Chapter 3 serve as benchmarks. We consider both decouplihgh&ispectral decom-
position (for short: orthogonal tree) and decoupling wite Cholesky decomposition
(for short: Cholesky tree).

4.4.1 The Tree Algorithm

Binomial option pricing via the decoupling approach corssist the following basic
steps:

Basic Steps: Decoupled Tree Option Pricing

Input: payoff functiong; relevant model parameters (in particular, the variance-
covariance matrixx); number of period$l

1. Decompose the variance-covariance matrix asGDG' as in (4.1).

2. Transform the stock pricginto a new process as in (4.3). The new component
processes are independent Brownian motions with drift.

3. Setup am-dimensional RB tree with independent components usingitoeate
processY(N) defined in (4.6).

4. Apply the backtransformation (4.7) éach node of the tregs in (4.8).

5. Evaluate the payoff functional along the transformedesodsing backward in-
duction. Exploit the fact that all scenarios are equallgliyk

Path-independent options For path-independent options, step 4 collapses to

4'. Apply the transformation (4.7) to therminal nodes of the treenly; i.e. compute
S () =h (W (@) Vay € b

The tree algorithm for the valuation of path-independertiomg with two underlyings
is given below (compare Algorithm 6). Note that by storingermediate calculation
results, the number of multiplications required by baaksfarmation is reduced from
orderm?(N 4+ 1)™ to orderm?(N + 1).
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If we use decoupling with Cholesky factorisation, we havespecial form
) m-1 N om g M\ T
%N) = (egllYN,l’_“,ezi—l Om-1i N @2i=19miVN; ) (4.9)

asG is triangular. Note that in this casé\,N depends on the random varlabk#\‘
with indices 1< j <i only. Consequently, performing backtransformation |se‘atttan
in the general case (compare Algorithm 6 for details). Meeggdby Proposition 40 and
Corollary 13, we can state the following result:

Proposition 43. Consider an m-dimensional Black-Scholes model. If we use €kle
factorisation for decoupling, the first 4§ m components of the decoupled tree coincide
with the decoupled tree corresponding to a Black-Scholesehmmhsisting only of the
first p stocks. In particular, the underlying 1D trees are lsubat the component i
involves variances and correlations with indices up to i only

Remark 30. Let us stress that according to Proposition 43, we can re-tsettee
already constructed if additional assets enter the marked.(when the set of assets
underlying a basket option is enlarged).

As for the methods described in Section 3, the rate of growthie decoupled
tree procedure iSN + 1)™. However, the above tree algorithm prices path-independen
options more quickly; i.e. it requires less operation cedat a fixed tree size. In fact,
computational effort is optimal for the rate of growth of tinee:

Proposition 44. In the general m-dimensional situation, Algorithm 6 regsicompu-
tational effort of order QN™1). The leading constant lﬁ—

Proof. Computing the arithmetic mean at each node of the tree reg#iteperation
counts per node (2— 1 additions and ainglemultiplication.) Consequently, the total
effort for backward induction is of orde®(N™1) with constantmi—ml. Of course, the
decoupled tree requires additional operation counts foktbansformation. However
for path-independent options, the additional effort doesaontribute to the leading
term of the total effort. O

Recall that by contrast, for the methods described in ChaptenBputational effort
is also of ordelO(N™1), but with constant2™* — 1) /(m+ 1) for the BEG tree and
with constant(3/2 x 2™ — 1) /(m+ 1) for the m-dimensional RB tree. Note that the
difference in operation counts grows in the dimension oftftublem. This is illustrated
in the following example: We consider the product option

g(S(T)) = ((ﬁlsm) K>+.

3=
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Algorithm 6:  The decoupling approach to binomial trees for a path-
independent European option with two underlyings

Input: stock price parameters, risk-neutral ret@ayoff functiong
Return:  price estimate=V [0][0] x exp(—r x T)

1. Decomposition of the Variance-Covariance Matrix

Choose a decomposition of the variance-covariance matrix
Y =GDG' asin (4.1).

2. Decoupling

Transform the stock pric8into a new procesy as in (4.3).

3. Forward Step

{initialise possible scenarios ¥fN) at maturity:
Set YN[O][1] :=Yp1+ N x df
Set YN[O] [2] ‘=Yo2+ N x d;
for k=1toN do
YN [K[1] := YN [k—1][1] +u} —df
YN [K[2] := YN [k—1][2] +u} —d¥
end for

{store intermediate calculation resylts
for k=0toN do

temp[1] [1][K] := g12 x YN [K][1]
temp[1][2][K] := g12x YN [K][2]
temp[2][1][K] := ga1 > YN [K][1]
temp[2][2][K] := g2z x YN [K][2]
{or under Cholesky factorisati¢n
temp1][1] k] := g11 x YN [K][1]
temp[2] [1][K] := gz1 > YN [K][1]
temp[2] [2][K] := g22 < YN [K][2]

end for
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4. Backtransformation at Maturity and Forward Step Continued

for kk =0toN do
for kx =0toN do

{backtransformation of possible scenario¥8¥) at maturity}
SNlky] [k2][1] := exp(temp(1][1][k1] + temp[1]}[2] [k2])
SNika] [k2][2] := exp(temp(2][1][k1] + temp[2][2] [k2])

{initialise option values at maturity
SetV [ka][ka] := g(SNIki][kz][1], SN[ky][k2][2])
end for
end for

{or under Cholesky factorisatin
for ks =0toN do
SN[k1][1] := exp(temp[1][1][K1])
for k, =0toN do
SNiki][k][2] := exp(temp[2] 1] [ki] + temp[2][2] [kz])

SetV [ky]kz) := g (SN(k][1], SN[k [kz] [2])
end for
end for

5. Backward Induction

{step backwards through the tiee
for k=N-—1to 0do
for 1 =0tokdo
for o =0tokdo

V[l1][l2] :=0.25x (V [l1 + 1[I+ 1] +V [l1 + 1][I2]+
VIl + 2]+ V [l][12])
end for
end for
end for




138 Chapter 4. The Decoupling Approach to Multi-Dimensional Tees

Tables 4.1 and 4.2 show the price estimates obtained footn@eting methods and the
corresponding computing times. In each row of the tablesypding time required by
the BEG tree is set to 100 % and computing time required by ther obethods is given
as a percentage. Note that, in fact, the option is a singletagption whose drift rate,
initial value and variance are compounded values of the hquatameters. Clearly, it
admits an explicit valuation formula in the Black-Scholetisg, which allows us to
compare the binomial price estimates with the exact value.therefore considered as
a simple test case.

Table 4.1: Product optiom{= 2): Accuracy and computing time;
T=1r=01,01=02,0,=025p=05,5(0) =22,5(0) = 20 andK = 20

N BEG tree| 2D RBtree Orth tree Chol tree
10 3.26143 | 3.26926 - | 3.25587 - | 3.26747 -
30 3.2606 | 3.26369 - | 3.26469 - 13.26323 -
50 3.26151 | 3.26323 - 13.26332 - | 3.26241 -
100 3.26181 | 3.26271 809% 3.26278 80 % 3.26256 40 %
200 3.26197 | 3.26243 81 9% 3.26246 65 % 3.26223 65 %
300 3.26203 | 3.26232 799% 3.26235 63 % 3.26231 57 %
400 3.26204 | 3.26227 80 % 3.26229 63 % 3.26227 62 %
500 3.26207 | 3.26225 80 9% 3.26227 62 % 3.26221 61 %
1000 3.26210 | 3.26219 799% 3.26220 63 % 3.26219 61 %
BS Value| 3.26214
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Table 4.2: Product optiom{= 3): Time/accuracy trade-off;
T=1,r=0.1, g0 =02, 0o =0.25, g3 = 0.15, P12 = 0.5, P13 = -0.2, P23 = —-0.4, S_L(O) = 22,
$(0) =20,%(0) =25 andK = 20

N BEG tree 3D RB tree Orth tree Chol tree

10 3.89311 | 3.90280 - 3.90251 - 3.90264 -

30 3.90065 | 3.90379 100 9% 3.90375 1009% 3.90381 50 %
50 3.90210 | 3.90398 86 %| 3.90396 68 %/| 3.90400 46 %
75 3.90282 | 3.90406 57 %| 3.90406 47 %| 3.90409 36 %
100 3.90317 | 3.90412 68 %] 3.90411 50%/| 3.90413 42 %
125 3.90340 | 3.90414 659%]| 3.90414 46 %| 3.90416 39 %
150 3.90353 | 3.90416 67 %| 3.90416 44 %)| 3.90418 43 %
175 3.90364 | 3.90418 67 %| 3.90418 43 %| 3.90419 43 %
200 3.90371| 3.90419 67 %| 3.90419 42 %| 3.90420 37 %

BS Value| 3.90427

For the above example, the alternative methods do not diffgrificantly in the
magnitude of the discretisation error. Yet, as we antieifiadm previous results, there
is a significant difference in computing time. Apparentlye imulti-dimensional RB
tree achieves a better time/accuracy trade-off than the B&& tHowever, in accor-
dance with Proposition 44, computing time is further redlog using decoupled trees.
In dimensionm = 2, the decoupled trees need approximately 60% - 65% of the tim
required by the BEG tree. In dimensiom= 3, the computing time is reduced to ap-
proximately 40% - 45%. Furthermore, we note that the Cholésey is slightly faster
than the orthogonal tree, which is due to the fact that it ireguess operation counts
for the backtransformation of terminal nodes.

While for product options convergence is quite smooth fonathods under consid-
eration, this is not the case for multi-dimensional optiaith strike levels/barriers on
each of the underlying assets. Let us stress that for thpss tf options, the methods
typically differ significantly in the discretisation erroiVe have seen that for two-asset
cash-or-nothing options, the standard tree methods dudtarily from the sawtooth ef-
fect. However for the decoupled tree methods, oscillatiarthe convergence pattern
are dampened. This is explained below.

Path-dependent/American options For path-dependent options, the backtransfor-
mation has to be applied to all time-layers in the tree thatratevant for the spe-
cific payoff function of interest. In particular, for Amedn options every time-layer
of the tree has to be transformed. Consequently, by contrabetvaluation of path-
independent options, the computational effort requiredbfcktransformation is typi-
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Algorithm 7:  The decoupling approach to binomial trees for a Euopean
knock-out option with two underlyings

Input: stock price parameters, risk-neutral ratpayoff functiong
Return: price estimate-V [0][0] x exp(—r x T)

1. Decomposition of the Variance-covariance Matrix
- 4. Backtransformation at Maturity and Forward Step

{remains unchanged

5. Backward Induction
{step backwards through the tiee
for k=N-—1to Odo

for | =0tokdo
{adjust the YN-array to the current time sjep
YNI][1] == YN [I][1] —df
YNI][2] := YN [I][1] —d}

{store intermediate calculation resglts

temp[1}[1][1] := g11 x YN [I][1]

temp[1}[2][l] := g12 x YN [I][2]

temp[2][1][l] := g21 x YN [I][1]

temp[2][2][l] := g22 x YN [I][2]
end for

for [{ =0tokdo
for I, =0tokdo

{backtransformation of possible scenario¥8Y) at
the current time stelp

SN[l1][12][1] := exp(temp[1][1][l] +temp[1][2][I2])
SNI1][12][2] := exp(temp[2][1][1] + temp[2][2][I2])
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{check whether barrier levels are crospged
if SN[I1][l2][1] < By and SN[I1][I2][2] < B, then {up-and-ou}
{assign current option valye

V[Ig][l2) := 0.25x (V [ly+ 1l + 1] +V [l + 1] [Io] +
V{2 + 1]+ V[l][l2])

else
Vlh][lz] :=0
end if
end
end
end
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cally not negligible. Thus, the total effort is no longer iopdl for the rate of growth of
the tree. However, as we see below, the fact that decouged are relatively costly
in the valuation of path-dependent options can be overcosgied for by advanced
performance properties. In particular, for barrier opsione can exploit benefits due to
monotonicity of convergence.

As an example, the tree algorithm for a European knock-otiboopvith two underly-
ings can be found below (compare Algorithm 7).

High-dimensional options As discussed previously, tree methods are currently not
suitable for the valuation of high-dimensional options.t ¥ee decoupling approach

is perfectly suited to restrict these valuation problemgh®”important dimensions”,
which may provide a fast first guess on the option price. Teat of the decoupling
approach is sketched in the following.

Filtering out important factors or important dimensionsagrincipal component anal-
ysis (for short: PCA) is a well-known method in statistics othigh-dimensional nu-
merical integration. We anticipate that it may also be fulito apply such a method
to numerical valuation of multi-asset options. Of courbe, main motivation is a high
correlation between certain stocks or submarkets. Moredkie dynamics of stock
markets (or interest rate markets) can often be explaineal fgyatively small number
of random factors (i.e. by the dimension of the underlyingvrian motion) that is
less than the number of traded stocks. In such a situatisegeiins reasonable to value
an option on a big basket of assets by a tree of lower dimertbem the number of
assets entering it. Since the orthogonal tree is based oectralpdecomposition of the
variance-covariance matrix, it is especially suited td fharpose. It essentially con-
siders the underlying independent risk factors (rathem tha stocks) as the important
ingredients. Moreover, it already incorporates PCA in anlicitpvay.

Let us recall that under decoupling with spectral decontjposithe dynamics of the
transformed procesé are

dvj(t) = ajdt+ A0 forj=1,....m
Y(0) = G'X(0)

with Aj, j = 1,...,m, the eigenvalues of the variance-covariance matrix. Asstimat
the variance-covariance matrix is nearly singular. Thesrehare volatilities that are
close to zero; sa¥m_r+1,---,Am- Hence, when we represent the origimatlimensional
random object (the stock pri&@ with respect to its basic driving random factors that are
orthogonal to each other, there remain essentrallyr relevant random factors only.
Assuming the other factors to be deterministic, the tramséal proces¥ is replaced
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by some process with dynamics

dvj(t) = ajdt + /A W forj=1,....r,
dYj(t) =ajdt forj=m-r+1,....m

Consequently, if we approximate the dynamics of the pro¥elsg an appropriate bi-
nomial scheme, the number of possible scenarios at matwiitybe reduced from
(N+1)Mto (N+1)™". As a result, computational effort decreasgponentially in
the number of "non-relevant” stochastic factorslote that this approach works inde-
pendently of the particular type of option. Moreover, as PGAlready incorporated
implicitly in the orthogonal tree procedure, we do not needpend any extra effort;
we just check for non-relevant stochastic factors.

Although the reduction in computational effort is impressiwe should keep in mind
that fixing some factors as deterministic leads to less ateuesults; in particular, the
sequence of price estimates no longer converges to the pxaet However, if the
number of relevant stochastic factors is small, the apprean give dast first guess
on high dimensional valuation problem8Ve hence wish to stress the significance of
this application for practical purposes. We suggest toyaeathis issue for options on
prominent indices; this is left for further research.

4.4.2 The Convergence Behaviour of Binomial Option Prices

This section deals with the convergence behaviour of ddedupees. As in the previ-

ous chapter, our analysis is focused on multi-asset opti@i€xhibit discontinuities in

the underlyings. The results obtained for standard mittiethsional trees will serve as
benchmarks. We will demonstrate that the decoupling agpbréeads to a more regu-
lar convergence behaviour of the corresponding trees. riicphar, for barrier options,

convergence can be (approximately) monotone, so thatpotaton methods can be
applied.

Cash-or-nothing options We first investigate the convergence behaviour of decou-
pling trees for cash-or-nothing options. This illustratgdh our example from the
previous chapter (parameters are kept unchanged). Figushdws the corresponding
price estimates obtained for the orthogonal treeNfet 100 : 2 : 1000. The 2D RB tree

is used as a benchmark. The Cholesky tree is considered below.
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Fig. 4.1: The orthogonal tree: Convergence pattern for agsset cash-or-nothing call
$(0)=120,%(0)=120,01=0.2,00,=0.25,0=05,T =1.0r =0.1,K; =17.0,K, = 20.0,G= 100
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Apparently, the amplitude of the oscillations is signifitameduced by decoupling.
Let us explain: As discussed in the above, the correlatiarcttre of the continuous-
time model affects the position of terminal nodes in the agthnal tree (compare Re-
mark 29). In the backtransformatidm the nodes are dislocated in such a way that the
rectangular grid structure is destroyed; i.e. in contrassttndard multi-dimensional
trees, there are no longer "columns” and "rows” that are Ifgreo the strike values
(compare Figure 4.2). Consequently, the fraction of nod#sdin-the-money region is
more stable iflN than under standard methods, so tihatorthogonal tree is automati-
cally "in shape”. As a result, oscillations in the convergence pattern anepéaed.

Fig. 4.2: The orthogonal tree: Realisations(BﬁM,QN));
S1(0) =12.0,%(0) = 120,01, =0.2,0,=0.25,p=0.5,T = 1.0r = 0.1,K3 = 17.0, Ko = 20.0, G = 100
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Figure 4.3 shows the price estimates obtained for the Chpldaske for
N =100:2:1000. Apparently, the performance of the Cholesky isebetter than
that of the 2D RB tree, but it is not as good as that of the orthabtee. In particular,
the sawtooth pattern is still present; yet with a lower atade of the oscillations.

Fig. 4.3: The Cholesky tree: Convergence pattern for a tegetacash-or-nothing call
S=(1212)7,01=0.2,0, =0.25,p = 0.5,r = 0.1,K = (17,20)" andG = 100
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For the Cholesky tree, the backtransformatiodislocates the terminal nodes in
such a way that the rectangular grid structure is only diriigestroyed: By backtrans-

formation, the second component of the terminal véi@% depends on boﬂﬁ,\(l',\ll) and
Yr\(|',\|2)’ while the first component of the terminal vaI&%,? depends exclusively o‘r}f,'?'l)
(compare equation (4.9)). Consequently, when we fix a passéalisation oﬁ(\z\g,

there areN + 1 possible realisations d\"\g but not the other way around. As a result,
we obtain a "columnwise grid”, i.e. the brobability massnseared relative to the strike
on stockS,, but it is concentrated in bunches Mf+ 1 nodes relative to the strike on
stockS; (compare Figure 4.4). Hence, the structure of the Cholegleyhias features
of both the multi-dimensional RB tree and the orthogonal.t@kearly, for a cash-or-
nothing option with a single strike on sto8k, the convergence pattern of the Cholesky
tree will be similar to that of the 2D RB tree, while it will bensilar to that of the
orthogonal tree for an option with a single strike on st8gk
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Fig. 4.4: The Cholesky tree: Realisations(sf\')7§?'\'>);
$1(0)=120,$(0)=120,01=0.2,0,=0.25,0=0.5,T=1.0r=0.1,K; =17.0,K> = 20.0,G= 100
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Table 4.3 illustrates accuracy and computing time for tHeatson of the two-asset
cash-or-nothing option with the alternative methods. We tbat the decoupling ap-
proach leads to better results in less time. In accordantte thve results above, the
orthogonal tree performs best.

Table 4.3: Two-asset cash-or-nothing option: Accuracyardputing time;
$(0)=120,%(0)=120,01=0.2,00,=0.25,0=05,T =1.0r =0.1,K; =17.0,K, = 20.0,G= 100

N BEG tree| 2D RB tree Orth tree Chol tree

50 1.02019 | 1.27041 - |1 1.38673 - | 1.41077 -
100 1.25755 | 1.57154 759% 1.31009 759% 1.35354 50 %
200 1.27876 | 1.33817 839% 1.31146 66 % 1.33912 62 %
300 1.31285| 1.31208 82 9% 1.34208 64 % 1.35734 63 %
400 1.31009 | 1.36935 789% 1.33433 639% 1.32219 62 %
500 1.40518 | 1.46723 819% 1.34317 639% 1.39960 62 %
700 1.21216 | 1.35047 82 9% 1.34315 63 % 1.36423 62 %
1000 1.31603 | 1.37889 829% 1.33373 62% 1.31235 62 %

BS Value| 1.34087
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Barrier options  This paragraph deals with the convergence behaviour ofujged
trees for barrier options. This is again illustrated withr esamples from the previous
chapter. As seen in Chapter 3, the corresponding pricesnelotdor standard multi-
dimensional tree methods suffer heavily from an irregutavergence behaviour. For
the decoupling approach, the valuation of these optionsires| applying the back-
transformation (4.7) to every time-layer of the tree. THfs&s, on the one hand, that
computing time is increased, but, on the other hand, thegtibty mass is smeared for
every period of the discrete-time model. This inducesagraging effecon the effec-
tive barriers. As a result, the decoupling approach cantieadonotone convergence.
As we explain next, the additional computational effortver@ompensated for by the
benefits due to monotonicity of convergence.

Figure 4.5 shows the price estimates obtained for the ootalg tree for
N =10:2:1000. Apparently, convergence is (approximatelyhatone, so that ex-
trapolation methods can be applied. Let us remark that assked for cash-or-nothing
options, the smoothing effect will be weaker for the Choleskg.

Fig. 4.5: Convergence pattern for a barrier option with athwein up-and-out barrié8; on stock 1 and
a down-and-out barrieB, on stock 2 (left) / up-and-in barrié3; on stock 1 and a down-and-out barrier
B, on stock 2 (right)

S1(0) = 20.0, $(0) =300, 01 =0.2,00p=0.25,T =1.0r =0.1, B; =330 /B; = 250, B, = 150,

G = 100 and correlatiop = 0.5
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In accordance with the Berry-Essn inequality, Figure 4.5 suggests that the se-
quence of price estimates obtained by the orthogonal treeecges in order Ay/N.
Then Richardson extrapolation leads to a sequence of adgdegace estimates given

by

C(2N) = VLR,

Figure 4.6 shows the sequence of aggregated price estifoa@d = 20 : 20 : 1000.
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Fig. 4.6: Convergence pattern for a barrier option with athwin up-and-out barrié8; on stock 1 and
a down-and-out barriéB, on stock 2 (left) / up-and-in barrié3; on stock 1 and a down-and-out barrier
B, on stock 2 (right): Aggregated Estimates
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We see that the improvement in accuracy is enormous. Yetotakeffort has mul-
tiplied compared to standard procedures (compare Tablleantl 4.5). However, the
results indicate that the aggregated estimates achievpaigutime/accuracy trade-
off: The estimates obtained by the 2D RB tree are consistéatiabove/below the
exact price. FolN = 2500, the prices obtained for 2D RB tree ared®7 £ for the
first example (exact price=8¥192 £) and 38717 £ for the second example (exact
price=3575 £). This corresponds to a relative efrof 0.09% and 106%, respectively.
By contrast, the aggregated estimate obtained for the asttaddree already achieves a
relative error of 0009% and (L1%, respectively, foN = 500. Note that computing the
aggregated estimate fof = 500 requires less than 20 s, while it takes approximately
5min to run the 2D RB tree withl = 2500. Hence, the orthogonal tree clearly outper-
forms the 2D RB tree.

As discussed in the previous chapter, the BEG tree leads Iidytagcurate results if the
grid size is optimally located in relation to the barriers.the first examplelN = 500

is a preferred choice for the number of periods in the discnrebdel. However, the
preferred grid size always depends both on the payoff strecnd on the model pa-
rameters. By contrast, decoupliegnsistently leads to small relative errors without
assuming knowledge of the problem under consideration.

Remark 31.

1. The results observed rely on the assumption that thedyardre constant in the
underlying stocks. In principle, we could think of a payaffisture, for which dis-
locating nodes by the transformation h leads to more odwmles. However, this
is rather a theoretical objection as for traded options treariers are typically
constant in the underlyings.

3The relative error computes &Brice Estimate- BS Valug /BS Valuex 100.



Table 4.4: Barrier option with an with an up-and-out barBemon stock 1 and a down-and-out barrron stock 2: Timé* /accuracy trade-off

&

N

©

>

(@)

3.

QL

O

"C_i'_

g.

N BEG tree 2D RB tree Orth tree . Orth tree . §
with extrapolation S

100 88.0402 87.8670 100 9% 87.8486 650 9% 87.5334 750 % =
200 87.7317 87.5988 86 %| 87.7267 476 % 87.4326 538 % 2
300 87.7021 87.6300 91 %| 87.6718 500 % 87.4365 564 % E'
400 87.7647 87.6450 90 % | 87.6399 5059% 87.4304 571 % =3
500 87.4211 87.6133 90 %| 87.6167 5189% 87.4273 (16s) 583 % g
700 87.6407 87.5315 90 % | 87.5874 522 9% 87.4280 592 9% 9
1000 87.6007 87.5292 89 9%/ 87.5605 529 9% 87.4247 597 % =
1500 87.4416 87.5043 90 %| 87.5353 547 9% 87.4247 612 % 5
2000 87.4225 87.5161 92 % | 87.5202 554 % 623 % ‘i
2500 87.5344 (336s) 87.4970 (305s) 91% | 87.5098 5529% 87.4217 621 % S
BS Value 87.4192 §
>

“4platform=Toshiba Satellite notebook; machine=Intel @aotDuo processor, 1.6 GHz, 1.0 GB RAM;
operating system=Linux; source=C++; compiler=g++-4.0.1

&1



Table 4.5: Barrier option with an with an up-and-in barigron stock 1 and a down-and-out barrxron stock 2: Time* /accuracy trade-off

N BEG tree 2D RB tree Orth tree . Orth tree .
with extrapolation
100 32.4044 33.7137 100 % 33.2753 700 9% 35.2636 800 %
200 35.2165 34.1574 95 %| 33.9422 595 9% 35.5523 653 %
300 34.1478 34.5878 89 % | 34.2597 583 9% 35.6879 673 %
400 34.2484 34.7124 90 % | 34.4525 607 % 35.6845 684 %
500 35.6530 34.6848 91 %/ 34.5847 631% 35.7098 (195s) 696 %
700 34.9990 34.9840 89 %| 34.7586 640 % 35.7047 700 %
1000 34.7874 35.1509 90 %| 34.9177 632 9% 35.7219 710 %
1500 34.8805 35.2693 90 %| 35.0680 637 % 35.7312 718 %
2000 35.6708 35.2334 91 %| 35.1600 647 % 35.7450 729 %
2500 35.5809 (329s) 35.3717 (298s) 91 % | 35.2225 646 % 35.7455 728 %
BS Value 35.7500

0ST
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2. In contrast to the optimal drift model suggested for a Eragset option, the de-
coupling approach does not require adjusting the locatibnaxles to the param-
eter setting or to the option type of interest. We therefdaencthat decoupling
is an easy and universal recipe to cope with the sawtooth dffetiultiple di-
mensions. Of course, we do not claim that the correspondaestperform best
for every particular type of (exotic) option; but in conttas more complicated
multi-dimensional models as that suggested by Kamrad arthliih, decoupled
trees show superior performance compared to standard rdstiwithout increas-
ing the complexity of the model.

4.5 Conclusion

To conclude, let us summarise the major advantages of tteugkeg approach:

* Non-negativity of transition probabilities can be ensumedependently of the
correlation structure. Hence, there is no restriction andbplicability of the
method regarding the parameter setting. Thus, decouped trave d&roader
range of application

» Decoupling can be used to construct a tree in wtegkry path has the same
probability.

* If the payoff functional exhibits discontinuities in thederlyings, oscillations
in the sequence of price estimates can be dampened sigtiifibgrdecoupling.
Thus, decoupled trees often exhiaiimore regular convergence behaviour

* Due to the decoupling of the components, one can use differederlying 1D
trees for individual components of a decoupled tree. As dreme case, one
can use a constant (!) for those components that show neastgnmation. Thus,
decoupled trees offéhe possibility to give a fast first guess on high-dimendiona
valuation problems

* When applying decoupling with the Cholesky decompositibis, possible to re-
use the original tree if additional assets enter the markietis, decoupled trees
aremore flexible
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