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Chapter 1

Introduction

The discipline of mathematical finance consists of two main subjects: portfolio optimi-
sation and derivative pricing. This thesis deals with an aspect of the latter: The binomial
approach to the valuation of financial derivatives. The binomial method is an important
technique for numerical option valuation, and the increasein complexity of financial
products has further expanded its fields of application. Moreover, since the very be-
ginning of derivative pricing theory, the binomial approach has been of an enormous
pedagogical use. In this introductory chapter, we briefly sketch the history of deriva-
tive pricing with a particular focus on the binomial approach and its growing fields of
application. Afterwards we give an overview of this thesis.

What is derivative pricing? Financial instruments include both primary financial in-
struments such as stocks, bonds and currencies, and derivative securities, whose value
is derived from an underlying. The underlying can be a primary financial instrument, a
reference value from the market such as interest rates and indexes, a commodity or - to
put it bluntly - in principle anything you could possibly beton or hedge against. To give
an example for an everyday (”non-banking”) derivative; from April 1 to June 7, 2008,
Deutsche Bahn offered aFan BahnCard 25at EUR 39 / EUR 19 (first / second class)
that promised a 25%-discount on train fares until June 31, 2008. In addition, Deutsche
Bahn promised that the discount card’s duration would be extended by one month for
each match that the German soccer team would win during the European Championship
in Austria/Switzerland. Clearly, at the purchasing date, the buyer did not know the num-
ber of matches that the German team finally won. Thus, this wasclearly a bet on the
competitiveness of the German soccer team.

In derivative pricing, the ”fair price” of a certain derivative contract is determined. Due
to the Fundamental Theorem of Asset Pricing, we nowadays know that, if the market
is complete and arbitrage-free, there exists a unique equivalent martingale measure un-
der which the pricep of a derivative contract on some underlyingSwith payoff g and
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maturityT is given by

p = EQ
(
e−rT g(St ;0≤ t ≤ T)

)
, (1.1)

wherer is the risk-free rate. However, it took a lot of time and effort to arrive at this
abstract form.

Pricing options with the no-arbitrage principle: The binomi al approach and its
economic interpretation Early crucial steps to abstract pricing theory were made by
R.C. Merton and by F. Black and M.S. Scholes in the early 1970s, who formulated the
following no-arbitrage principle:

”If options are correctly priced in the market, it should notbe possible to make sure
profits by creating portfolios of long and short positions inoptions and their underlying
stocks.”(F. Black, M.S. Scholes [BS73])

Based on the no-arbitrage principle, they derived a theoretical valuation formula for
European calls and puts on a log-normally distributed stockprice. From today’s point
of view, twelve years after Scholes and Merton received the Nobel prize in economic
science (Black had already died at that time), it is almost unbelievable that the Black-
Scholes paper had been rejected by two other journals beforeit was published in the
Journal of Political Economy. However, in the early 1970s, their ideas were so non-
standard and revolutionary that it was hard to believe in them.

In 1975 M. Rubinstein and W.F. Sharpe, himself Nobel Price laureate (1990), had the
following discussion on the Black-Scholes model at a conference in Ein Borek, Israel:

”With nothing to do during the breaks (except to take a dip in the sea), ..., we wondered
how it was that the then two-year-old Black-Scholes approach to valuing options could
recreate a riskless payoff using only the option and its underlying asset. It was then
that Sharpe said, I wonder if it’s really that there are only twostates of the world, but
three securities, so that any one of the securities can be replicated by the other two.”
(M. Rubinstein [Rub92])

This insight was the birth of the binomial approach. Rubinstein and Sharpe realised
that by the Central Limit Theorem, the Black-Scholes formula occurs as the limiting
form of the corresponding price in a discrete model with successive two-state up-down
movements of the underlying asset price. Subsequently, thebinomial approach to op-
tion pricing theory was presented in Sharpe’s textbook”Investments”[Sha79] and the
model was explained in detail in”Option pricing: a simplified approach”[CRR79]
by J.C. Cox, S.A. Ross and M. Rubinstein. For many economists, thebinomial ap-
proach actually justified the continuous-time modelling ofBlack and Scholes. And
even nowadays, it is of an enormous pedagogical use. Here theeconomic concepts of
arbitrage opportunities and market completeness are much easier to understand than in
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the continuous-time case.

More importantly, the binomial approach became widely usedas a numerical pricing
tool for American and exotic options when an analytic pricing formula is not available.
This is explained below.

American and exotic options: The binomial approach as a numerical pricing tool
The option pricing formula (1.1) is only valid for European-type options. European op-
tions can only be exercised at one specified dateT in the future, the maturity. However,
since the early days of trading, numerous option types traded in exchanges belong to the
class of American options. They can be exercised at any time between the purchase date
and the expiration date. Due to the widespread use of American options, it is important
to find appropriate methods to determine their fair price. However, the small concep-
tual difference between European- and American-style options causes a big difference
in pricing because the optimal exercise date 0≤ τ∗ ≤ T is not known on the date of
purchase. Rather, it depends on the random evolution of the stock price, and it is hence
itself random (mathematically,τ∗ is a stopping time with respect to the filtration gen-
erated byS). For American-style options, the pricing formula (1.1) must be modified
to

p = EQ
(
e−rτ∗g(St ;0≤ t ≤ τ∗)

)
. (1.2)

However, asτ∗ is uncertain, the formula does not readily provide a monetary value for
a specific valuation problem. In fact, the American valuation problem continues to en-
gage both researchers in academics and professionals. Ross (1987) writes in theNew
Palgrave Dictionary of Economics:

”This does not mean that there are no important gaps in the (option pricing) theory.
Perhaps of most importance, beyond numerical results, . . . ,very little is known about
most American options which expire in finite time. . .. Despite such gaps, when judged
by its ability to explain the empirical data, option pricingtheory is the most successful
theory not only in finance, but in all of economics.”

In contrast to the continuous-time American valuation problem, the American valua-
tion problem can be solved explicitly in the binomial approach. Let us explain: In the
Black-Scholes model, the stock price follows a geometric Brownian motion, an infinite
variation process. However, in the binomial approach, randomness is modelled on a
discrete grid in both time and space. This simplifies the valuation problem considerably
because there is only a finite number of possible scenarios. Therefore, we can go step by
step backwards in time and decide at each scenario whether itis optimal to exercise or
not. Weighting our decisions with respect to the risk-neutral measure leads to the price
of the American option in the binomial model. As shown by K. Amin and A. Khanna
(1994), the price estimates obtained from the binomial approach converge to the Amer-
ican option price in the Black-Scholes market [AK94]. For a sufficiently large number
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of periods, the binomial price serves as an estimate for the continuous-time price. As a
consequence, the binomial approach became important as a numerical pricing tool for
American options.

As explained above, the option price is simply the expected value of a functional of the
stock price (compare with the pricing formula (1.1) and (1.2)). In the binomial model,
the price isthe expected value of the same function of a simpler process that approx-
imates the original stock price, but that is only driven by discrete random events. In
particular, for numerical option valuation, it is irrelevant whether the sequence of price
estimates obtained from the binomial model has the economicinterpretation as option
prices in the associated discrete markets. Therefore, the transition probabilities in the
binomial model need not be risk-neutral; rather, it sufficesif the sequence of binomial
processes converges weakly to the continuous-time stock price. Early suggestions for
this kind of binomial models are made in the paper by Cox, Ross and Rubinstein and
also in”Two-state option pricing”by R.J. Rendleman and B.J. Bartter. Their paper ap-
peared around the same time as the paper by Cox, Ross and Rubinstein, but has not re-
ceived the same attention. As a main difference, for the model suggested by Rendleman
and Bartter, the probability for moving upwards and downwards is the same [RB79].

For American options, the exercise time can be chosen by the option buyer. Alterna-
tively, one could think of more complex payoff structures. Towards the end of the 1970s
and the beginning of the 1980s, standard option trading became better understood and
the trading volume exploded. Financial institutions beganto search for alternative forms
of options - called exotics, special-purpose options or customer-tailored options - meet-
ing the new requirements of the customers [Zha98]. The increase in complexity of the
options’ structure led to an increasing demand for numerical pricing algorithms, which
enhanced the scope of the binomial approach as a pricing tool. As for American op-
tions, the price in the binomial model can be determined for any desired structure of
the payoff by calculating all possible scenarios and weighting them with respect to an
appropriate measure.

Path-dependent options have been of particular interest among these second-generation
options; in the late 1990s, they became the most popular options in the OTC market
place [Zha98]. Here the payoff depends on the entire path of the underlying asset. Due
to Donsker’s Theorem, a process version of the Central Limit Theorem, the binomial
approach leads to prices for path-dependent options that converge to the option price in
the Black-Scholes model. Therefore, the binomial approach can be used a pricing tool
for path-dependent options.

Multi-asset options, i.e. options depending on several underlyings, form another impor-
tant class of exotic derivatives. In the course of increasing cross-market integration and
globalisation in financial markets, multi-asset options have become popular to hedge
cross-market and global positions [Zha98]. Consequently, since the late 1980s and
early 1990s, there have been numerous approaches to adapt the binomial method to the
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valuation of multi-asset options. Though differing in details, most suggestions are based
on a discretisation of the joint evolution of the stock priceprocess [P.P. Boyle (1988);
P.P. Boyle, J. Evnine and S. Gibbs (1989), B. Kamrad and P. Ritchken (1991),. . .]. For
multi-asset options however, the binomial approach suffers from thecurse of dimen-
sionality, i.e the computational effort grows exponentially in the number of underlying
assets. Consequently, for high-dimensional valuation problems, the binomial method is
currently not practically useful. This is an inherent drawback of the binomial approach
as a method based on the discretisation of the underlying assets. However, up to di-
mension four, let us say, the binomial approach can lead to results that are perfectly
competitive and often superior to those obtained by Monte Carlo methods.

Although the binomial approach is, in principle, an efficient method for lower dimen-
sional valuation problems, there are at least two main problems regarding its applica-
tion: Firstly, binomial methods often exhibit an irregularconvergence behaviour of the
option prices computed for an increasing number of periodsN. Furthermore, traded op-
tions often exhibit discontinuities, so that the Berry-Esséen inequality on the sequence
of binomial price estimates is in general tight; i.e. conventional tree methods converge
no faster than in order 1/

√
N. Unfortunately, the fact that the payoff is non-smooth

also causes an irregular convergence behaviour that impedes the possibility to achieve
a higher of order of convergence via extrapolation methods.The most prominent ex-
ample of irregular behaviour is the so-called sawtooth-effect. Secondly, in multi-asset
markets conventional tree construction methods cannot ensure well-defined transition
probabilities for arbitrary correlation structures between the assets. As a major aim of
the thesis, we present two approaches to ”get binomial treesinto shape”;the optimal
drift model for the valuation of single-asset optionsand the decoupling approach to
multi-dimensional option pricing.

The optimal drift model is presented as a new binomial schemefor single-asset option
pricing. It can lead to convergence of ordero(1/N) by exploiting the specific structure
of the valuation problem under consideration.The optimal drift model has the poten-
tial to outperform even benchmark methodssuch as the binomial scheme suggested
by D.P.J. Leisen and M. Reimer, which is widely used in practice for American op-
tion pricing [LR96]. The decoupling approach is presented asa construction method
for multi-dimensional trees. In contrast to the standard approach to multi-dimensional
trees,the trees constructed according to the decoupling approachare well-defined for
an arbitrary correlation structure of the underlying assets. In addition, they yield a
more regular convergence behaviour. In fact, the sawtooth effect can even vanish com-
pletely, so that extrapolation can be applied. In contrast to the optimal drift model,
the decoupling approach does not assume knowledge of the valuation problem under
consideration. We do not claim that the decoupling approach performs best for any
particular type of (exotic) option. However, it shows a strong overall convergence be-
haviour when applied to arbitrary options.The decoupling approach is therefore an easy
and universal approach to cope with the irregular convergence behaviour in multiple
dimensions. By contrast,the optimal drift model is based on an advanced construction
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technique that shows superior performance if adapted to a specific valuation problem.

An overview of the thesis This thesis consists of two parts; binomial pricing in a
single-asset Black-Scholes market and its extension to multi-dimensional situations. In
Chapter 2, we give a thorough and rigorous overview of the binomial approach to nu-
merical option valuation for a single underlying. We summarise, order and comment
on many results from literature. Some of these are well-known, while others are non-
standard. In order to complete the picture of the binomial model, we add many pieces
of our own work. Furthermore, we introduce the optimal driftmodel. It is defined by
optimising the allocation of probability mass in relation to the strike value, as suggested
by Y.S. Tian and by L.-B. Chang and K. Palmer [Tia99], [CP07]. However, while both
these models are imposed on the scheme suggested by Cox, Ross and Rubinstein, we
optimise the drift of the underlying binomial model. As a result, the optimal drift model
can admit convergence of ordero(1/N).

In Chapters 3 and 4, we investigate the multi-asset case. Chapter 3 deals with the
standard approach to binomial option pricing in a multi-asset Black-Scholes market.
Standard methods are based on an approximation of the joint evolution of the underly-
ing assets. This will be explained in detail. The standard approach is illustrated with
the model suggested by P.P. Boyle, J. Evnine and S. Gibbs whichcanonically extends
the one-dimensional model by Cox, Ross and Rubinstein to a multi-dimensional situa-
tion [BEG89]. In addition, we consider a multi-dimensional variant of the model sug-
gested by Rendleman and Bartter. In order to obtain an appropriate approximation to the
multi-asset Black-Scholes model under consideration, the correlation structure among
the assets has to be matched. Consequently, the number of moment matching conditions
grows quadratically in the dimension. As a result,if we follow the standard approach
to multi-dimensional trees, setting up an appropriate binomial model soon gets tedious,
and it is sometimes even impossible.On top of that, conventional multi-dimensional
tree construction methods inherit the irregular convergence behaviour observed for the
one-dimensional situation.

In Chapter 4, the decoupling approach is introduced as an alternative to binomial pricing
of multi-asset options.The basic idea of the decoupling approach is to transform the
multi-dimensional (log-normal) asset price process to a new process with independent
components before setting up a discrete model. The model we suggest contains the 2D
example by J. Hull as a special case [Hul06]. Decoupling is aneasy approach to over-
come the main problems in applications of the standard approach to multi-dimensional
trees.

Chapter 4 is essentially based on the paper”The decoupling approach to binomial
pricing of multi-asset options”published in theJournal of Computational Finance
[KM09a]. Short extracts from both parts of the thesis are collected in the paper”Getting
multi-dimensional trees into a new shape”, which has recently appeared in theWilmott
Journal[KM09b]. Both papers are joint work with Ralf Korn.



Chapter 2

Binomial Pricing for Single-Asset
Options

We consider a one-dimensional Black-Scholes model with stock price dynamics under
the risk-neutral measure given by

dS(t) = S(t)(rdt +σdWt), S(0) = s0 > 0, (2.1)

for some volatility parameterσ > 0. Herer is the risk-free interest rate, andW is a
one-dimensional Brownian motion with respect to the risk-neutral measureQ. We fix a
time horizonT > 0.

2.1 Introduction

This chapter deals with binomial pricing of single-asset options. The underlying stock
is assumed to follow the Black-Scholes dynamics defined above. From a theoretical
perspective, we therefore investigate two-state Markov chain approximations to a geo-
metric Brownian motion. To apply the binomial approach to numerical option pricing,
we want the approximating models to ensure weak convergenceto the stock price pro-
cess in the Black-Scholes setting. Under this condition, thecorresponding sequence of
binomial price estimates converges to the exact option price for most common payoff
structures. However, as discussed in the introductory section, conventional binomial
schemes suffer from serious problems in practical applications. The convergence be-
haviour of the corresponding price estimates is non-monotone and oscillatory. Further-
more, if the payoff exhibits discontinuities, the Berry-Esséen bound on the convergence
rate of the pricing error is in general tight. We therefore focus on the construction of
binomial approximations that can exploit the structure of the valuation problem under
consideration.

Let us briefly outline the contents of this chapter: We first discuss alternative binomial
models for the approximation of the stock price process. In particular, we consider
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the schemes suggested by Cox, Ross and Rubinstein (1979) (for short: CRR) and by
Rendleman and Bartter (1979) (for short: RB). All schemes under consideration are
defined so as to asymptotically match the first two moments of the logreturns of the
stock price. It is well-known that by asymptotic moment matching, the approximating
models converge weakly to the stock price process as the stepsize in the discrete model
tends to zero. This is discussed in detail. Afterwards, we investigate the asymptotic be-
haviour of the discretisation error. We demonstrate that for conventional schemes, the
Berry-Esśeen bound is tight and the discretisation error converges non-smoothly. This
motivates to control the error term, as is done in many advanced models. In particular,
we discuss a generalised variant of the advanced models suggested by Tian (1999) and
by Chang and Palmer (2007). The latter leads to the new optimaldrift model. We will
verify that the optimal drift model can admit a superior convergence rate of the dis-
cretion error. In Section 2.3, we focus on the application ofthe binomial approach to
numerical option pricing. We see that due to weak convergence, the binomial method
can be applied to numerical valuation of most common types ofEuropean and Ameri-
can options. The corresponding valuation algorithm is called atree procedurebecause
the possible realisations of the binomial process can be identified with a tree structure.
The implementation of binomial option pricing is discussedin detail in Section 2.4. Fi-
nally, we analyse the convergence behaviour of binomial trees for the two most common
payoff structures; for payoffs that are constant in the terminal valueS(T) (i.e. cash-or-
nothing options) and for payoffs that are linear inS(T) (i.e. plain vanilla options). We
see that amongst the methods under consideration, the shapeof the tree constructed by
the optimal drift model best exploits the structure of the valuation problem. This results
in a superior rate of convergence of the corresponding pricing error.

2.2 Discretisation of the Stock Price and Weak Conver-
gence

In the following, we discuss alternative binomial schemes for the approximation of the
stock price process. In the context of numerical option pricing, we want the approxi-
mating models to ensure weak convergence to the stock price processS. That is,

Definition 1 (Weak Convergence). Let M be a metric space and let P(N), 1≤ N < ∞,
and P be probability measures on(M,B(M)), where we writeB(M) for the Borelσ -
field of M; i.e. the smallestσ -field containing all open subsets of M. Then we say that
the sequence of probability measures(P(N))N converges weakly toP, denoted by

P(N) ⇒w P,
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if for any bounded, continuous function f: M →R, we have

lim
N→∞

∫

M

f (x)P(N)(dx) =
∫

M

f (x)P(dx).

Further, let X(N), 1≤ N < ∞, and X be random variables with state space M defined on
probability spaces(Ω(N),F (N),P(N)) and(Ω,F ,P), respectively. Then we say that the
sequence of random variables(X(N))N converges weakly toX, denoted by

X(N) ⇒w X,

if for any bounded, continuous function f: M →R, we have,

lim
N→∞

EP(N)( f (X(N))) = EP( f (X))

(compare e.g. [Bil68]).

Remark 1. Of course, weak convergence of random variables is the same asweak con-
vergence of their distributions. In particular, the randomvariables under consideration
need not to be defined on the same probability space, as is usedbelow.

2.2.1 Binomial Models

Let N ∈ IN denote the number of periods in the discrete model. A binomial approxi-
mation to the stock price allows for two possible scenarios per period, so that the path
space is naturally given by

E (N) := {ω : {1, . . . ,N} → {1,−1}}

endowed with the productσ -field

F (N) :=
N⊗

k=1

P({1,−1}) := σ
(

Z(N)
k

∣
∣
∣ k ∈ N

)

.

HereP(.) denotes the power set andZ(N)
k : E (N) → {1,−1} is the coordinate mapping

Z(N)
k (ω) = ωk.

Starting at the initial value of the continuous-time process s0, we define a binomial
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process on(E (N),F (N)) by

S(N)
k+1 := S(N)

k eα(N)∆t+β
√

∆t Z(N)
k+1 ∀k = 0, . . . ,N−1, (2.2)

for some constantβ > 0 and some constantα(N) depending on the number of periods
N. Here∆t := T/N is the grid size of the discrete-time model. In order to achieve weak
convergence to the continuous-time price process, we choose the sequence(α(N))N,
the constantβ > 0 and the sequence of probability measures(P(N))N on (E (N),F (N))N

such that the following conditions are satisfied:

1. For allN ∈ IN, the random variablesZ(N)
k , k = 1, . . . ,N, (for short: RV) are inde-

pendently and identically distributed (for short: i.i.d.).

2. The first two moments of the one-period logreturns ofS are asymptotically
matched, i.e. we have that

µ(N) : = 1
∆t EP(N)

(

ln

(
S(N)

k+1

S(N)
k

)∣
∣
∣
∣
S(N)

k

)

= α(N)+β
√

1
∆t EP(N)

(

Z(N)
k+1

)

(2.3)

σ2(N) := 1
∆t VarP(N)

(

ln

(
S(N)

k+1

S(N)
k

)∣
∣
∣
∣
S(N)

k

)

= β 2VarP(N)

(

Z(N)
k+1

)

(2.4)

are such that asN → ∞

µ(N) → r − 1
2σ2 (2.5)

and

σ2(N) → σ2. (2.6)

Under these conditions, it follows from Donsker’s Invariance Principle (compare e.g.
[Bil68], Theorem 10.1) that the linear interpolation ofS(N) (suitably scaled in time)
converges weakly to the stock price process. Of course, the first condition is satisfied if
and only ifP(N) is a product measure of the form

P(N) =
N⊗

k=1
P(1,N) (2.7)
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for some probability measureP(1,N) on ({1,−1},P({1,−1})). Then one-step transi-
tions are independent and they are the same for each period, which we assume from
now on. In particular,S(N) is a Markov process.

Introducing the notationspu(N) := P(1,N)({1}) and pd(N) := P(1,N)({−1}), the char-
acteristics of the discrete-time modelµ(N) andσ2(N) write as

µ(N) =α(N)+β
√

1
∆t (2pu(N)−1) (2.8)

and

σ2(N) =4β 2pu(N)(1− pu(N)). (2.9)

Further,pd(N) is determined bypd(N) = 1− pu(N). Apparently, we can choose among
an infinite number of possible discretisation schemes that ensure the moment matching
conditions (2.5) and (2.6). Let us remark that the drift parameters(α(N))N are allowed
to be non-constant inN. This will provide some additional flexibility to adapt the bino-
mial scheme to the payoff structure of interest (compare e.g. [Tia99]); more on that to
come later. We impose the following condition:

Assumption 1. The sequence(α(N))N is assumed to be bounded; i.e. it is assumed to
be of order O(1).

In the following, we investigate some widely used binomial schemes. Firstly, we
consider transition probabilities that are given by the risk-neutral measure associated
with the discrete market consisting of a stock with dynamics(2.2) and a bond

Bk+1 = Bker∆t , k = 0, . . . ,N−1; B0 = 1. (2.10)

Here r is the interest rate in the continuous-time model. Let us anticipate that under
the risk-neutral measure, the moment matching conditions (2.5) and (2.6) are satisfied
if and only if β = σ . By contrast, the drift of the discrete-time model is irrelevant.
As explained in the introductory chapter, this approach features an economic insight
on option pricing in the Black-Scholes model. When we approximate an option on the
continuous-time stock price by evaluating a payoff functional along the sequence of
binomial models, the resulting price estimates are themselves option prices in the ap-
proximating binomial model.

Secondly, we analyse the discretisation schemes suggestedby RB and by CRR1. Here

1The binomial approach suggested by CRR is motivated by its economic insight. However, they
also introduce a binomial model with transition probabilities that are only asymptotically identical with
the risk-neutral transition probabilities [CRR79]. In literature, the term CRR model appears both for
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the binomial model serves as a plain numerical pricing tool;the binomial estimates for
an option on the stock priceS do not admit an economic interpretation. In particular,
they do not coincide with the corresponding option prices inthe binomial model. Hav-
ing clarified this conceptual difference to risk-neutral discretisation schemes, we will
use the term ”binomial prices” loosely.

Throughout the thesis, we typically distinguish between the discretisation schemes pre-
sented above. Below we additionally investigate advanced schemes that allow for a
better performance in numerical option valuation.

Discretisation Schemes with Risk-neutral Transition Probabilities In the follow-
ing, we consider the discrete-time market consisting of a bond with one-period return
er∆t (compare (2.10)) and the stockS(N) with dynamics (2.2). The possible one-period
returns of the stock price are denoted by

u(N) := eα(N)∆t+β
√

∆t and d(N) := eα(N)∆t−β
√

∆t .

By our conventionβ > 0, u(N) can be interpreted as the one-period return given that
”the economy is in the good state 1”, andd(N) is the realised one-period return if
”the economy is in the bad state−1”. Then there is the following well-known result
(compare e.g. [Bj̈o04], Section 2 and Section 3):

Proposition 1. We have absence of arbitrage opportunities (for short: AAO)in the
discrete market if and only if

d(N) < er∆t < u(N). (2.11)

In this case, the discrete market is also complete and the risk-neutral probability mea-

sure is given by Q(N) =
N⊗

k=1
Q(1,N), where

Q(1,N)(1) := er∆t−d(N)
u(N)−d(N) . (2.12)

Note that (AAO) implies in particular that the measureQ(N) is well-defined.

If we write the condition (2.11) in terms ofα(N) andβ , we have (AAO) if and only if

|r −α(N)|
√

T/N < β .

the discretisation scheme with risk-neutral transition probabilities and for the discretisation scheme with

transition probabilities defined bypu(N) = 1/2+ 1/2( r−1/2σ2

σ
√

T/N). In the thesis, we use the term
CRR model for the latter variant.
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By Assumption 1, there is some constantM ≥ 0 such that|α(N)| ≤ M for all N ∈ IN.
Thus, we can formulate the following result:

Corollary 1. Provided that the grid size is sufficiently small, the discrete market is
arbitrage-free and complete. It suffices to let

N > (r+M)2T
β 2 .

By Corollary 1, we may agree on the assumption that the grid sizeis always suf-
ficiently small to ensure that risk-neutral transition probabilities are well-defined and
unique.

As we will see in the following, when we define transition probabilities in accordance
with the risk-neutral measure, weak convergence to the continuous-time stock priceS
is already ensured if we setβ = σ ; i.e. it suffices to ensure that the discrete-time stock
price is exposed to shocks of appropriate size. Yet this condition is also necessary. By
contrast, the drift is irrelevant.

Proposition 2. Assume that the transition probabilities are determined according to
the risk-neutral measure Q(N); i.e. we have Q(N) =

⊗N
k=1Q(1,N) with Q(1,N) defined in

(2.12). Then the moment matching conditions (2.5) and (2.6)are satisfied if and only if
β = σ .
In particular, convergence to the first two moments of the one-period logreturns in the
continuous-time model is of order

∣
∣
∣µQ(N)(N)− (r − 1

2σ2)
∣
∣
∣= O( 1

N) and

∣
∣
∣
∣

σ2

σ2
Q(N)

(N)
−1

∣
∣
∣
∣
= O( 1

N),

whereµQ(N)(N) andσ2
Q(N)(N) are computed with respect to Q(N) according to (2.3) and

(2.4), respectively.

Proof. By Assumption 1, it follows from a Taylor expansion that

u(N) = 1+β
(

T
N

)1/2
+
(
α(N)+ 1

2β 2
)

T
N +

(1
6β 3 +α(N)β

)(
T
N

)3/2
+

(1
2α2(N)+ 1

2β 2α(N)+ 1
24β 4

)(
T
N

)2
+o
(

1
N 2

)

(2.13)

d(N) = 1−β
(

T
N

)1/2
+
(
α(N)+ 1

2β 2
)

T
N −

(1
6β 3 +α(N)β

)(
T
N

)3/2
+

(1
2α2(N)+ 1

2β 2α(N)+ 1
24β 4

)(
T
N

)2
+o
(

1
N 2

)

, (2.14)
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which implies thatqu(N) := Q(1,N)(1) is of the form

qu(N) = 1
2 +c1(N)

(
T
N

)1/2
+c3(N)

(
T
N

)3/2
+o
(

1
N 3/2

)

, (2.15)

where

c1(N) = 1
2β
(
r −α(N)− 1

2β 2
)

c3(N) = 1
2β

(
1
2 (α(N)− r)2 + 1

6β 2(α(N)− r)+ 1
24β 4

)

(compare also [CP07], p. 97/98). Note thatc1(N) andc3(N) are of orderO(1). We
obtain

µQ(N) (N)
(2.8)
= α(N)+β

(
N
T

)1/2
(2qu(N)−1) = r − 1

2β 2 +2βc3(N)T
N +o

( 1
N

)

and

σ2
Q(N) (N)

(2.9)
= β 24qu(N)(1−qu(N)) = β 2−4β 2c2

1(N)T
N +o

( 1
N

)
.

Hence, the moment matching conditions (2.5) and (2.6) are satisfied if and only if
β = σ . Moreover, we see from the above equations that the assertion on the order
of convergence holds true, which completes the proof.

Remark 2. Let us stress that the moment matching conditions are satisfied indepen-
dently of the particular choice of the sequence(α(N))N.

Further, equation (2.15) implies the following result on the asymptotic behaviour of
the risk-neutral measure:

Corollary 2. As the number of periods N tends to infinity,

qu(N) → 1
2.

The Discretisation Scheme suggested by RBRB suggest to set

α(N) = α := r − 1
2σ2, β = σ

and

pu(N) = pd(N) = 1
2. (2.16)



2.2 Discretisation of the Stock Price and Weak Convergence 15

Apparently, for this choice the transition probabilities do not depend on the number of
periodsN. As required, the model satisfies the moment matching conditions (2.5) and
(2.6). In fact, moments are not only matched asymptotically, but for any number of
periodsN; i.e.

µ (N) = r − 1
2σ2 and σ2(N) = σ2.

The Discretisation Scheme suggested by CRRCRR define an appropriate binomial
model via

α(N) = α := 0, β = σ

and

pu(N) = 1
2 + 1

2

(

r− 1
2σ2

σ

)√
T
N . (2.17)

In contrast to the RB model, the transition probabilities vary in the number of periods
N. In particular, the corresponding probability measuresP(N) is only well-defined if the
grid size is sufficiently small, which we assume throughout this thesis. To be precise,
we need

N ≥ 1
σ2

(
r − 1

2σ2
)2

T. (2.18)

Simple calculations show that the moment matching conditions (2.5) and (2.6) are satis-
fied. In fact, if the model is well-defined for any number of periodsN, the first moment
of the logreturns is matched exactly. By contrast, the secondmoment is matched asymp-
totically only. We have

σ2(N) = σ2−
(
r − 1

2σ2
)2 T

N , (2.19)

which yields

∣
∣
∣

σ2

σ2(N)
−1
∣
∣
∣= O

( 1
N

)
. (2.20)

Note that as the grid size tends to zero, the one-step transition probabilities in the CRR
model converge to the corresponding one-step transition probabilities in the RB model.
In particular,

pCRR
u (N) = pRB

u (N)+O
(

1√
N

)

.
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Further, neither in the CRR model nor in the RB model, the transition probabilities are
risk-neutral. However as readily observed from (2.15), there is the following asymptotic
relationship betweenpu(N) andqu(N):

Proposition 3. For the discretisation scheme suggested by RB and by CRR, the one-step
transition probability pu(N), defined in (2.16) and in (2.17), respectively, coincides with
the associated risk-neutral probability qu(N) up to a term of order1/N3/2. We have that
for the RB model

qRB
u (N) = 1

2 + 1
24 σ3

(
T
N

)3/2
+o
(

1
N3/2

)

= pRB
u (N)+ 1

24 σ3
(

T
N

)3/2
+o
(

1
N3/2

)

and for the CRR model

qCRR
u (N) = 1

2 + 1
2σ
(
r − 1

2σ2
)

T
N + 1

4σ
(
(r − 1

6σ2)2 + 1
18 σ4

)(
T
N

)3/2
+o
(

1
N3/2

)

= pCRR
u (N)+ 1

4σ
(
(r − 1

6σ2)2 + 1
18 σ4

)(
T
N

)3/2
+o
(

1
N3/2

)

.

In particular, Proposition 3 implies the following result:

Corollary 3. Both for the models suggested by CRR and by RB, there is some N0 ∈ IN
such that

qu(N) ≥ pu(N) for all N ≥ N0.

In words: For a sufficiently large number of periods N, the chosen probability for an
up-movement pu(N) is smaller than the corresponding risk-neutral probability qu(N).

Let us stress that while for the discretisation scheme suggested by RB, the drift
enters transition states, it enters transition probabilities for the CRR model. As a conse-
quence, the latter implies that the logarithm of the binomial process is symmetric around
the starting value. By contrast, the discretisation scheme suggested by RB prefers to
have equal weights, which is paid for by a non-symmetric formof the binomial process.

Finally, let us anticipate some aspects of the application of the two models to numer-
ical option pricing. Firstly, we wish to stress that computing binomial price estimates
is cheaper for the RB model because every path has exactly the same probability. For
the CRR model, we have to multiply each payment with itsspecificprobability of oc-
currence. Secondly, the application of the CRR model suffers from the fact that the
requirement (2.18) sets a lower bound on the number of periods N. In particular, if the
volatility is small, the transition probabilities are onlywell-defined for a relative large
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number of periods. To illustrate this, let us consider the input parametersr = 0.1, T = 1
and σ = 0.01. Then the number of periodsN is bounded from below by 100. For
σ = 0.001, the required number of periods is already bounded by 10000.

Time-scaling In the following, we map the binomial processS(N) onto a continuous-
time processS(c,N) that appropriately approximates the stock price processSon [0,T] so
that weak convergence is ensured. By moment matching, it onlyremains to scale time
appropriately; that is, we apply the transformationk 7→ k∆t. By linear interpolation, we
set

S(c,N)(t) := exp

(
([

N
T t
]
+1− N

T t
)

ln

(

S(N)

[N
T t]

)

+
(

N
T t −

[
N
T t
])

ln

(

S(N)

[N
T t]+1

))

, (2.21)

where[x] denotes the greatest integer less or equal to x.

Then fort = k∆t, S(c,N)(t) has the same distribution asS(N)
k and fort ∈ (k∆t,(k+1)∆t),

ln(S(c,N)(t)) is obtained by linear interpolation between ln(S(N)
k ) and ln(S(N)

k+1). To moti-
vate the time-scaling applied, note that fors= k∆t andt = (k+1)∆t, i.e.t −s= ∆t, the
log-increment ln(S(c,N)(t)/S(c,N)(s)) (asymptotically) matches the first two moments of
the log-returns of the stock price process over a period of length∆t.

Weak convergence Due to the Central Limit Theorem, the fact that the pro-
cessS(c,N) is based on the binomial distribution becomes negligible inthe limit,
so that for all timest ∈ [0,T], S(c,N)(t) converges in distribution to the time-
t value of the stock priceSt . Moreover, for s = k∆t and t = (k + 1)∆t,

the log-increment ln(S(c,N)(t)/S(c,N)(s)) = α(N)∆t + βZ(N)
k+1

√
∆t is independent of

σ(S(c,N)(u);0≤ u≤ s) = σ(Z(N)
1 , . . . ,Z(N)

k ). Hence, together with the moment matching
conditions, we anticipate that the following result holds:

Proposition 4. The sequence of approximating processes(S(c,N))N converges weakly to
the geometric Brownian motion S; for short we write

S(c,N) ⇒w S.

Proposition 4 is a key result in the theory of numerical option pricing. It is a simple
consequence of Donsker’s Invariance Principle that provides a process version of the
Central Limit Theorem. This is discussed in the following. Yet the assertion is not at
all non-trivial because all bits of hard work, in particularproving tightness, are hidden
in the invariance principle.

Since the RVsZ(N)
k , k = 1, . . . ,N, are i.i.d. for fixedN only, we need a special variant of

Donsker’s Theorem that considers triangular schemes:
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Theorem 1 (The Invariance Principle for Triangular Schemes). Let ξN1, . . . ,ξNkN be
i.i.d. with mean0 and variance0 < σ2

N1 < ∞; put SNi = ∑i
l=1ξNl, s2

Ni = iσ2
N1,

and s2N = s2
NkN

. Let X(N) be the random function that is linear on each interval

[s2
N,i−1/s2

N,s2
Ni/s2

N] and has values X(N)(s2
Ni/s2

N) = SNi/sN at the grid points. Then,

X(N) converges weakly to a Brownian motion (compare e.g. [Bil68], problem 1, p. 77).

Remark 3. Note in particular that the above variant of the invariance principle is
applicable to the binomial model suggested by CRR, for which the one-step transition
probabilities depend on the number of periods N.

In our application,S(c,N) is a continuous function of the embedded processX(N)

defined above. But weak convergence is preserved under continuous mappings. In
addition, it is known by Slutsky’s Theorem that an asymptotic matching of moments
suffices:

Theorem 2 (Continuous Mapping Principle). Let M and M′ be metric spaces. Let X
and X(N), 1 ≤ N < ∞, be M-valued RVs and let h: M → M′ be continuous. Then, if
X(N) ⇒w X, it holds that h◦X(N) ⇒w h◦X (compare e.g. [Bil68], Theorem 5.1).

Theorem 3 (Slutsky’s Theorem). Let (M,d) be a metric space. Let(X(N)
1 ,X(N)

2 )N be
a sequence of(M×M)-valued RVs defined on a probability space(Ω(N),F (N),P(N)).

Suppose that X(N)
1 ⇒w X1 for some M-valued RV X1. If for all ε > 0,

P(N)
(

d(X(N)
1 ,X(N)

2 ) > ε
)

→ 0,

then X(N)
2 ⇒w X1 (compare e.g. [EK86], Corollary 3.3.3.).

Proof of Proposition 4. In order to re-write the dynamics of the processY(c,N) in terms
of normalised RVs, we define

Y(N)
k = 1

√

Var
P(N)

(

Z(N)
k

)

(

Z(N)
k −EP(N)(Z

(N)
k )

)

, (2.22)

so that EP(N)(Y
(N)
k ) = 0 and VarP(N)(Y

(N)
k ) = 1. Then

S(N)
k+1 = S(N)

k exp

(

α(N)∆t +β
√

∆t EP(N)(Z
(N)
k+1)+β

√

VarP(N)

(

Z(N)
k+1

)√
∆tY(N)

k+1

)

= S(N)
k exp

(

µ(N)∆t + |σ(N)|
√

∆tY(N)
k+1

)

,
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which implies that the processS(c,N) writes as

S(c,N)(t) = s0eµ(N)t+|σ(N)|
√

T Y(c,N)( t
T ), t ∈ [0,T], (2.23)

with

Y(c,N)(s) = 1√
N

(
[Ns]

∑
k=1

Y(N)
k +(Ns− [Ns])Y(N)

[Ns]+1

)

, s ∈ [0,1]. (2.24)

Let us define

X(c,N)
1 (t) :=

(
r − 1

2σ2
)
t +σ

√
T Y(c,N)

(
t
T

)

and

X(c,N)
2 (t) := ln

(

S(c,N)
t

)

= µ(N)t + |σ(N)|
√

T Y(c,N)
(

t
T

)
.

Then
∥
∥
∥X(c,N)

1 −X(c,N)
2

∥
∥
∥

∞
= sup

t∈[0,T]

∣
∣
∣(r − 1

2σ2−µ(N))t +(σ −|σ(N)|)
√

T Y(c,N)
(

t
T

)
∣
∣
∣

measures ”the impact of an asymptotic matching of moments” in terms of the sup-norm,
i.e. || f ||∞ = supt∈[0,T] | f (t)|. Let ε > 0. Apparently,

P(N)
(∥
∥
∥X(c,N)

1 −X(c,N)
2

∥
∥
∥

∞
> ε
)

≤ P(N)
(∣
∣µ(N)− (r − 1

2σ2)
∣
∣T > ε

2

)
+

P(N)
(∥
∥
∥(σ −|σ(N)|)

√
T Y(c,N)

(
t
T

)
∥
∥
∥

∞
> ε

2

)

. (2.25)

For a sufficiently large number of periodsN, the first term on the right-hand side of
equation (2.25) is zero by asymptotic moment matching. It remains to investigate the
second term. Clearly,

P(N)
(∥
∥
∥(σ −|σ(N)|)

√
T Y(c,N)

(
t
T

)
∥
∥
∥

∞
> ε

2

)

=

P(N)

(

|σ −|σ(N)||
√

T max
k=1,...,N

∣
∣
∣M

(N)
k

∣
∣
∣> ε

2

)

,
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where the discrete processM(N) is defined by

M(N)
k := 1√

N

N
∑

i=1
Y(N)

i , 1≤ k≤ N, M(N)
0 := 0. (2.26)

As M(N) is a discrete martingale, it follows from Doob’s martingaleinequality (compare
e.g. [Dur05], Theorem 4.4.2) that

P(N)

(

|σ −|σ(N)||
√

T max
k=1,...,N

∣
∣
∣M

(N)
k

∣
∣
∣> ε

2

)

≤ 4
ε2 (σ −|σ(N)|)2TEP(N)

(∣
∣
∣M

(N)
N

∣
∣
∣

2
)

= 4
ε2 (σ −|σ(N)|)2T. (2.27)

By the moment matching conditions, the right-hand side of inequality (2.27) tends to
zero asN tends to infinity, which implies that

P(N)
(∥
∥
∥X(c,N)

1 −X(c,N)
2

∥
∥
∥

∞
> ε
)

→ 0.

Consequently, according to Slutsky’s Theorem it suffices to consider the processX(c,N)
1

instead ofX(c,N)
2 .

Further, the invariance principle for triangular schemes applies to the sequence
(Y(c,N))N; i.e.

{Y(c,N)(s)}{s∈ [0,1]} ⇒w {B(s)}{s∈ [0,1]}, (2.28)

where {Bs,F̃s;0 ≤ s ≤ 1} is a Brownian motion. Define the time-change
t : [0,1] → [0,T] by

t : s → Ts

and the filtrationFt := F̃t/T indexed according to the ”new time”. Then by
the time-scaling property of Brownian paths (compare [KS98], Lemma 2.9.4),
{Wt ,Ft ;0≤ t ≤ T} with

Wt :=
√

TB(t/T) 0 ≤ t ≤ T

is again a Brownian motion. Consequently, according to the continuous mapping prin-
ciple, (2.28) implies that

s0exp
(

X(c,N)
1

)

⇒w S,
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which proves the assertion.

2.2.2 Distributional Fit

In the following, we investigate how well the processS(c,N) fits the stock price process
S for a fixed timet ∈ [0,T]; i.e. we are interested in the distance

d(N)(t,x) :=
∣
∣
∣P(N)

(

S(c,N)
t ≤ x

)

−Q(St ≤ x)
∣
∣
∣ .

The Minimal Convergence Rate

The Berry-Esśeen inequality suggests that the distanced(N)(t,x) converges to zero in
order 1/

√
N uniformly in x∈ R. Yet in our application, the moments are only asymp-

totically matched. We see in the following that if the moments themselves converge in
order 1/

√
N, the Berry-Esśeen bound is maintained.

Theorem 4 (Berry-Esśeen inequality). Let X1, . . . ,XN be independent RVs such that
EXj = 0, E|Xj |3 < ∞ ( j = 1, . . . ,N). We write

σ2
j = EX2

j , BN =
N
∑
j=1

σ2
j , F(N)(x) = P

(

B−1/2
N

N
∑
j=1

Xj < x

)

and

L(N) = B−3/2
N

N
∑
j=1

E|Xj |3.

Then,

sup
x

∣
∣
∣F(N)(x)−Φ(x)

∣
∣
∣≤ AL(N),

whereΦ(x) denotes the standard normal distribution function and A is some positive
constant (compare e.g. [Pet75], Theorem 5.3).

Proposition 5. Suppose that S(N) is the binomial process (2.2) with

|µ(N)−µ| = O
(

1√
N

)

and
∣
∣
∣

ν2

σ2(N)
−1
∣
∣
∣ = O

(
1√
N

)

(2.29)
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for some constantsµ,ν ∈R, ν > 0. Then for all times t∈ [0,T],

sup
x

∣
∣
∣
∣
∣
P(N)

(

S(c,N)(t) < x
)

−Φ

(

ln
(

x
s0

)

−µt

ν
√

t

)∣
∣
∣
∣
∣

= O
(

1√
N

)

. (2.30)

Remark 4. For µ = r −1/2σ2 andν = σ , the condition (2.29) is a sharpening of the
moment matching conditions (2.5) and (2.6). It additionally requires a minimal order
of convergence.

Proof of Proposition 5. Note that

Φ

(

ln
(

x
s0

)

−µ(N)t

|σ(N)|
√

t

)

= Φ

(

ln
(

x
s0

)

−µt

ν
√

t
ε(N)

1 + ε(N)
2

)

, (2.31)

whereε(N)
i (i = 1,2) are the correction terms

ε(N)
1 = ν

|σ(N)| and ε(N)
2 = (µ−µ(N))t

|σ(N)|
√

t

that appear because the constantsµ andν are only asymptotically matched. By the
triangular inequality,
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x

∣
∣
∣
∣
∣
P(N)
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)
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∣
∣
∣
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∣
∣
∣
∣
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∣
∣
∣
∣
+
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∣
∣
∣
∣
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√
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)∣
∣
∣
∣
∣
.

Using definition of the correction termsε(N)
1 andε(N)

2 , we further observe that

sup
x

∣
∣
∣
∣
∣
Φ

(
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(

x
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)

−µ(N)t

|σ(N)|
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∣
∣
∣
∣

=
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∣
∣
∣
∣
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√
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∣
∣
∣
∣
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∣
∣
∣Φ
(

x+ ε(N)
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)

−Φ(x)
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∣
∣ + sup

x

∣
∣
∣Φ
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xε(N)
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−Φ(x)
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∣
∣
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Thus, in total,

sup
x

∣
∣
∣
∣
∣
P(N)
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S(c,N)(t) < x
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∣
∣
∣
∣
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∣
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√
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∣
∣
∣
∣
+
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∣
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∣
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∣
∣
∣ (2.32)

In the following, we investigate each term on the right-handside of the inequality above.
The first term can be written as

sup
x

∣
∣
∣
∣
∣
P(N)
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∣
∣
∣
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∣
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∣
∣
∣
∣
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∣
∣
∣
∣
∣
,

whereY(N)
k are the normalised RVs defined in (2.22). Hence, we observe that

sup
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∣
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}

Note from applying the Berry-Esséen inequality to both arguments on the right-hand
side of the inequality above that
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∣
∣
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. (2.33)
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It remains to consider the last two terms on the right-hand side of inequality (2.32) that
are due to the presence of the correction termsε(N)

1 andε(N)
2 . By assumption (2.29), we

have

(

ε(N)
1

)2
= 1+h(N),

where for sufficiently largeN,

|h(N)| ≤ c
N

for some constantc > 0. Consequently, we obtain by the Binomial Series Theorem that

∣
∣
∣ε(N)

1 −1
∣
∣
∣ = O

(
1√
N

)

. (2.34)

Further,
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∣
∣
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∣
∣ ≤

∣
∣
∣
(µ−µ(N))t

ν
√

T

∣
∣
∣

∣
∣
∣ε(N)

1 −1
∣
∣
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. (2.35)

By the Mean-Value Theorem, there is someΘ(N)
x,1 ∈ [0,1] such that
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∣
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∣
∣
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∣
∣
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∣
∣
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∣
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As Φ′(x)x is bounded, it follows from (2.34) that
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∣Φ
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xε(N)
1

)

−Φ(x)
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. (2.36)

Similarly, there isΘ(N)
x,2 ∈ [0,1] such that
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Hence, by boundedness ofΦ′(x), (2.35) implies that
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∣
∣Φ
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x+ ε(N)
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∣= O
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. (2.37)
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Finally, the assertion follows by combining the results (2.33), (2.37) and (2.36).

Let µ = r −1/2σ2 andν = σ . As discussed previously, for the RB model the mo-
ment matching conditions (2.5) and (2.6) are satisfied exactly, i.e. they hold for any
number of periodsN. By contrast, for the CRR model the volatility is asymptotically
matched only. Hereσ2/σ2(N) converges to one in order 1/N. Further according to
Proposition 2, if we use risk-neutral transition probabilities, the corresponding charac-
teristicsµ(N) andσ2(N) of the discrete-time model converge in order 1/N if and only
if β = σ . Hence by Proposition 5, for the models under consideration, convergence
to the limiting moments is sufficiently fast to maintain the minimal convergence rate
1/
√

N suggested by the Berry-Esséen inequality:

Corollary 4. Let S(N) be the process suggested by CRR, the process suggested by RB or
any binomial process (2.2) withβ = σ and risk-neutral transition probabilities. Then
for any time t∈ [0,T],

sup
x

∣
∣
∣P(N)

(

S(c,N)(t) < x
)

−Q(S(t) < x)
∣
∣
∣ = O

(
1√
N

)

(2.38)

Remark 5. The Berry-Esśeen inequality sets a lower bound on the convergence rate
of the discretisation error in the approximation to the stock price. It depends on the
specific distribution of the discrete-time model whether this minimal convergence rate
is attained. Of course, the convergence rate of the discretisation error can also be faster.

For the RB model, it is easy to observe that the Berry-Esséen inequality is tight:

Proposition 6. Let S(N)
N be the terminal value of the RB model. Then the distributional

fit at the median of the continuous-time model x= s0e(r−1/2σ2)T is of the following
order:

∣
∣
∣P(N)

(

S(N)
N < s0e(r−1/2σ2)T

)

− 1
2

∣
∣
∣= 0 for N odd,

and

lim
N→∞
N even

∣
∣
∣P(N)

(

S(N)
N < s0e(r−1/2σ2)T

)

− 1
2

∣
∣
∣

1√
2π

√
N = 1.

Proof. The RB model is tilted in such a way that

P(N)
(

S(N)
N < s0e(r−1/2σ2)T

)

= P
(
X < N

2

)
,
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whereX is a Bin(N,1/2)-RV on some probability space(Ω,A ,P). Further, it follows
from symmetry that

P
(
X < N

2

)
= 1

2

(
1−P

(
X = N

2

))

=







1
2

(

1−
( N

N/2

) 1
2N

)

N even

1
2 N odd

Finally, by Stirling’s formula (compare e.g. [AS72], Formula 6.1.38), we have

( N
N/2

) 1
2N = 2√

2π
1√
N

+o
(

1√
N

)

,

which yields the assertion.

We see that the RB model leads to a terminal valueS(N)
N , for which the Berry-Esśeen

bound is tight in the sense that

limsup
N→∞

{

sup
x

∣
∣
∣
∣
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P(N)
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S(N)
N < x

)

−Φ

(

ln
(

x
s0

)

−(r− 1
2σ2)T

σ
√

T

)∣
∣
∣
∣
∣

√
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}

≥

limsup
N→∞

{∣
∣
∣P(N)

(

S(N)
N < s0e(r−1/2σ2)T

)

− 1
2

∣
∣
∣

√
N
}

= 1√
2π > 0.

In the general case, it is more involved to decide whether theBerry-Esśeen inequality
is tight. In the next paragraph, we investigate the asymptoptic behaviour of the dis-
cretisation error for a fairly general class of binomial processes. We will essentially
follow Chang and Palmer (2007). However, while they restrictto risk-neutral transition
probabilities, we take a more general approach, so that our results also apply to the
models suggested by CRR and by RB. In particular, we will find that the Berry-Esśeen
inequality is tight for the models under consideration.

The Asymptotic Behaviour of the Discretisation Error

For simplicity, we limit the following analysis of the discretisation error to the terminal
distribution of the stock price. For the Black-Scholes model, the distribution at maturity
is given by

Q(ST ≥ x) = Φ(d2),
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where

d2 := d2(x) := ln(s0/x)+(r−1/2σ2)T
σ
√

T
.

Let us assume that the drift in the discrete-time model is constant inN; i.e. α(N) ≡ α.
As we see in the following, even in this case there is no asymptotic expansion of

P(N)
(

S(N)
N ≥ x

)

aroundQ(ST ≥ x) = Φ(d2) in the conventional sense. That is, a func-

tion f (ε) has an asymptotic expansion in powers ofε up to orderk with constant coef-
ficients(ci)i=0,...,k, if for any m= 0, . . . ,k,

lim
ε→0+

ε−m

(

f (ε)−
m
∑

i=0
ciε i

)

= 0.

However, as suggested by Diener and Diener [DD04], the asymptotic behaviour of the
discretisation error can be described with an appropriate ”extended asymptotic calcu-
lus”. Let us explain: Apparently, the distribution of the binomial process at maturity

P(N)
(

S(N)
N ≥ x

)

writes as

P(N)
(

S(N)
N ≥ x

)

=
N
∑

i=l(N)

(N
i

)
pu(N)i(1− pu(N))N−i =: Fx(N),

where l(N) is the smallest integerl such thats0u(N)l d(N)N−l ≥ x. If α(N) is con-
stant inN, it follows from a Taylor expansion thatu(N) andd(N) admit an asymptotic
expansion in powers of 1/

√
N up to an arbitrary orderk in the conventional sense.

Consequently, we might be tempted to suppose that ifpu(N) admits an asymptotic ex-
pansion in powers of 1/

√
N in the conventional sense (which is in particular valid for

the models under consideration), the distributionFx(N) will do so, too. However, there
are problems arising froml(N): Let us introduce

a(N) := ln(x/s0)−N lnd(N)
lnu(N)−lnd(N) = 1

2N+ ln(x/s0)−αT
2β

√
T

√
N, (2.39)

which is the solution tos0u(N)ad(N)N−a = x. Then,

l(N) = [a(N)]+1 = a(N)+1−{a(N)} = a(N)+{−a(N)} , (2.40)

where{.} denotes the fractional part. Note that whilea(N) is a polynomial in
√

N
(compare (2.39)), this is not the case for the integerl(N) because the latter involves the
fractional part{−a(N)}. In particular,{−a(N)} has no limit asN tends to infinity; but
it is known to be bounded between 0 and 1. Therefore, Diener and Diener introduce the
following extended asymptotic calculus (compare [DD04], Definition 2.1):
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Definition 2. Let ( fi)i=0,...,k bebounded functionsof ε > 0; we shall say that a func-
tion f(ε) has an asymptotic expansion in powers ofε up to order k with coefficients
( fi)i=0,...,k if for any m= 0, . . . ,k,

lim
ε→0+

ε−m

(

f (ε)−
m
∑

i=0
fi(ε)ε i

)

= 0

The term fi(ε)ε i is called the term of order i of the expansion.

Remark 6. Obviously, there is no uniqueness for the expansion with bounded coeffi-
cients of a given function. Moreover, it is clear that, if thesequence( fi)i=0,...,k is a
sequence of constant functions inε, the function f has an asymptotic expansion up to
order k (in the conventional sense).

We now formulate the key result of this section which describes the asymptotics
of the discretisation error in the approximation to the terminal stock priceST for a
fairly general class of binomial processes. As motivated above, the extended asymptotic
calculus introduced by Diener and Diener is suitable for this purpose.

Proposition 7. Let S(N) be the process (2.2) withβ = σ and α(N) ≡ α constant in
N. Assume further that the one-step transition probabilitypu(N) admits an asymptotic
expansion up to order k= 3 in powers of1/

√
N in the conventional sense with constant

c1 = 1/(2σ)(r −α −1/2σ2) and c2 = 0, i.e.

pu(N) = 1
2 + 1

2σ
(
r −α − 1

2σ2
)(

T
N

)1/2
+c3

(
T
N

)3/2
+o
(

1
N3/2

)

(2.41)

for some constant c3. Then, P(N)
(

S(N)
N ≥ x

)

admits anasymptotic expansion with

bounded coefficientsaround Q(ST ≥ x) = Φ(d2) up to order k= 2 in powers of1/
√

N.
It can be written as

P(N)
(

S(N)
N ≥ x

)

= Φ(d2)+ e−
1
2d2

2√
2π b(N) 1√

T

(
T
N

)1/2
+

e−
1
2d2

2√
2π

(

g+
(

r−α−1/2σ2

3σ
√

T
− d2

12T

)

(1−d2
2)− d2

2 b2(N) 1
T

)
T
N +o

( 1
N

)
, (2.42)

where

g := 1
2σ2(r −α − 1

2σ2)2d2 +2c3
√

T

with

b(N) := 1−2{−a(N)}. (2.43)
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Remark 7. Proposition 7 is a generalisation of the main result in Chang and Palmer
([CP07], p. 93/94). They consider the caseβ = σ , as we do above. However, their
analysis is limited to risk-neutral transition probabilities. Yet in fact, the result extends
to arbitrary transition probabilities pu(N) of the form (2.41). As a consequence, the
assumption of Proposition 7 covers the RB model and the CRR model, which are not
considered by Chang and Palmer.

In the following, we give a proof to Proposition 7. It is similar to that of Chang and
Palmer in large parts. They suggest to apply the following extended version of results
by J.V. Uspensky (compare [Usp37], Chapter 7) on the approximation of the normal
distribution to the binomial distribution ([CP07], Lemma 1):

Lemma 1. Provided that pu(N) → 1/2 as N→ ∞, and0≤ l(N) ≤ N + 1 for N suffi-
ciently large,

N
∑

k=l(N)

(N
k

)
pk

u(N)(1− pu(N))N−k = 1√
2π

ξ2(N)∫

ξ1(N)

e−
1
2u2

du+

1−2pu(N)

6
√

2πNpu(N)(1−pu(N))

(

(1−ξ 2
2 (N))e−

1
2ξ 2

2 (N)− (1−ξ 2
1 (N))e−

1
2ξ 2

1 (N)
)

+

1
12N

√
2π

(

ξ2(N)e−
1
2ξ 2

2 (N)(ξ 2
2 (N)−1)−ξ1(N)e−

1
2ξ 2

1 (N)(ξ 2
1 (N)−1)

)

+o
( 1

N

)
,

where

ξ1(N) = l(N)−Npu(N)−1/2√
Npu(N)(1−pu(N))

and ξ2(N) = N−Npu(N)+1/2√
Npu(N)(1−pu(N))

.

Proof of Proposition 7. We assume thatN is sufficiently large to ensure that
0 < pu(N) < 1 and 0≤ l(N) ≤ N+1. Note from (2.39) that forβ = σ

a(N) = 1
2N+ ln(x/s0)−αT

2σ
√

T

√
N,

and hence

−2a(N)+N+2Nc1
(

T
N

)1/2
= − ln(x/s0)−αT

σ
√

T

√
N+2N

( 1
2σ (r −α − 1

2σ2)
)(

T
N

)1/2

=
√

Nd2.

It follows from the asymptotic expansion (2.41) ofpu(N) that

−2l(N)+2Npu(N)+1 = −2a(N)+2Npu(N)+b(N)

=
√

Nd2 +b(N)+2c3T
(

T
N

)1/2
+o
(

1
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)

. (2.44)
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Further, we have

pu(N)(1− pu(N)) = 1
4 −c2

1
T
N +O

(
1

N3/2

)

. (2.45)

Hence, it follows from the the Binomial Series Theorem that

1
2
√

pu(N)(1−pu(N))
= 1
√

1−4c2
1

T
N+O( 1

N3/2 )
= 1+2c2

1
T
N +O

(
1

N3/2

)

(2.46)

Combining the results (2.44) and (2.46), we get

−ξ1(N) = 1
2
√

Npu(N)(1−pu(N))
(−2l(N)+2Npu(N)+1) =

d2 +b(N) 1√
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+2
(
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1d2 +c3
√
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)

T
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( 1
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)
=
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T
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+gT

N +o
( 1

N

)
. (2.47)

We now analyse the terms in Lemma 1 one by one. Here

ξ2(N)∫

ξ1(N)

e−
1
2u2

du =
∞∫

ξ1(N)

e−
1
2u2

du−
∞∫

ξ2(N)

e−
1
2u2

du := I1(N)− I2(N).

Note that

I1(N) =
√

2πΦ(d2)+h(−ξ1(N)), (2.48)

whereh(x) =
∫ x

d2
e−u2/2du. Next we apply a third-order Taylor expansion ofh(−ξ1(N))

about the pointd2: Sinceh
′′′

is bounded, the expansion (2.47) ofξ1(N) implies that

h(−ξ1(N)) = e−
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2b(N) 1√
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+e−

1
2d2

2

(

g− d2
2 b2(N) 1

T

)
T
N +o

( 1
N

)

(a detailed Taylor expansion argument can be found in [CP07]). By (2.48), we then
obtain that

I1(N) =
√

2πΦ(d2)+e−
1
2d2

2b(N) 1√
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+e−
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(2.49)
Note next that sincepu(N) → 1/2 asN → ∞, it follows thatξ2(N)/

√
N → 1. Conse-

quently, the integralI2(N) does not contribute to the terms of order 1/N; i.e.

I2(N) = o
( 1

N

)
(2.50)
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(compare [CP07] for details). Regarding the second term in Lemma 1, note that by
(2.45),

1−2pu(N)√
Npu(N)(1−pu(N))

=
(

2√
N

+O
(

1
N3/2

))(

−2c1
(

T
N

)1/2
+O

(
1

N3/2

))

= −4c1
1√
T

T
N +O

(
1

N3/2

)

.

Since−ξ1(N) → d2 andξ2(N) → ∞ asN → ∞, we now obtain that

1−2pu(N)

6
√

2πNpu(N)(1−pu(N))

(

(1−ξ 2
2 (N))e−

1
2ξ 2

2 (N)− (1−ξ 2
1 (N))e−

1
2ξ 2

1 (N)
)

=

2c1
3
√

2π
√

T
(1−d2

2)e−
1
2d2

2 T
N +o

( 1
N

)
, (2.51)

Further, we observe that the third term in Lemma 1 admits the form

1
12N

√
2π

(

ξ2(N)e−
1
2ξ 2

2 (N)(ξ 2
2 (N)−1)−ξ1(N)e−

1
2ξ 2

1 (N)(ξ 2
1 (N)−1)

)

=

d2e−1/2d2
2(d2

2−1)

12
√

2πT
T
N +o

( 1
N

)
. (2.52)

Finally, combining the results (2.49) to (2.52) yields the assertion.

Next we wish to interpret the previous result on the asymptotic behaviour of the
discretisation error. Apparently, the factorb(N) = 1− 2{−a(N)} enters both the co-
efficient of the term of order 1/

√
N and that of the term of order 1/N. Sinceb(N)

is non-constant inN, the discretisation error converges non-smoothly, although u(N),
d(N) andpu(N) admit an asymptotic expansion in the conventional sense.

However, asb(N) is bounded by 1 and−1, we obtain the following bounds on the
oscillations of the leading error term:

Corollary 5. The leading term of the discretisation error is bounded by

−e−
1
2d2

2(x)
√

2π
1√
T
≤ e−

1
2d2

2(x)
√

2π b(N) 1√
T
≤−e−

1
2d2

2(x)
√

2π
1√
T
.

Clearly, the coefficient of the leading error term can also be bounded uniformly in
x∈R:

Corollary 6. We have

0≤
∣
∣
∣
∣

e−
1
2d2

2(x)
√

2π b(N) 1√
T

∣
∣
∣
∣
≤
∣
∣
∣

1√
2π

√
T

∣
∣
∣ for all N ∈ IN and for all x∈R.
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Note that 1/
√

2π is the maximum value of 1/(
√

2π)e−1/2d2
2(x), which is attained at

x = s0e(r−1/2σ2)T , the median of the continuous-time model. This matches the intuitive
idea that by error accumulation, the discretisation error in the approximation to the dis-
tribution function should be largest at the median.

Let us now investigate the discretisation error for the binomial models under consid-
eration. First, we consider binomial schemes with risk-neutral transition probabilities.
Then by (2.15) the assumptionβ = σ implies that the corresponding transition proba-
bility qu(N) is of the form (2.41) with

c3 = 1
2σ

(
1
2 (α − r)2 + 1

6σ2(α − r)+ 1
24σ4

)

.

Consequently, the asymptotics of the discretisation error can be determined from Propo-
sition 7:

Corollary 7. Let S(N) be the binomial process (2.2) withβ = σ andα(N)≡ α constant
in N. If the transition probabilities are defined according to the risk-neutral measure,
we have

Q(N)
(

S(N)
N ≥ x

)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

b(N)
(

T
N

)1/2
+

e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T − d2

2T b2(N)
)

T
N +o( 1

N),

where d1 := d1(x) := d2(x)+σ
√

T (compare [CP07]).

Let us recall that according to Proposition 2, for risk-neutral schemes, the assump-
tion β = σ is necessary and sufficient to ensure that the moments are asymptotically
matched. Consequently, the above result is valid for the schemes that are of relevance
for numerical option pricing.

Next we analyse the discretisation error for the models suggested by RB and by CRR.
Clearly, both models satisfy the assumption of Proposition 7. In particular, the transition
probabilities are of the form (2.41). Hence, we can formulate the following results:

Corollary 8. Let S(N) be the binomial process suggested by RB. Then,

P(N)
(

S(N)
N ≥ x

)

= Φ(d2)+
e−

1
2d2

2√
2π

√
T

b(N)
(

T
N

)1/2
+ e−

1
2d2

2√
2π

(
d3

2−d2
12T − d2

2T b2(N)
)

T
N +o

( 1
N

)
,

where in this case

b(N) = 1−2{−1
2N+ 1

2d2
√

N}.
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Corollary 9. Let S(N) be the binomial process suggested by CRR. Then,

P(N)
(

S(N)
N ≥ x

)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

b(N)
(

T
N

)1/2
+

e−
1
2d2

2√
2π

(
1

2σ2d2(r − 1
2σ2)2 +

1−d2
2

3σ
√

T
(r − 1

2σ2)+
d3

2−d2
12T − d2

2T b2(N)
)

T
N +o

( 1
N

)
,

where in this case

b(N) = 1−2{−1
2N+ ln(s0/x)

2σ
√

T

√
N}.

As we anticipate from the results observed for risk-neutraltransition probabilities,
there is a relationship between moment matching and the factthat the transition proba-
bility pu(N) is of the form (2.41). In fact, we have the following:

Proposition 8. Let S(N) be the binomial process (2.2) withβ = σ andα(N) ≡ α con-
stant in N.

1. If pu(N) is of the form (2.41), the corresponding first two moments of the one-
period logreturns converge in order

∣
∣µP(N)(N)− (r − 1

2σ2)
∣
∣= O

( 1
N

)
and

∣
∣
∣
∣

σ2

σ2
P(N)

(N)
−1

∣
∣
∣
∣
= O

( 1
N

)
.

2. Assume that the moment matching condition (2.5) on the expectation of the logre-
turns is satisfied with

∣
∣µP(N)(N)− (r −1/2σ2)

∣
∣= O

( 1
N

)
,

then pu(N) is of the form (2.41).

Proof. The first part of the assertion follows directly by computingthe corresponding
characteristics of the discrete-time modelµP(N)(N) andσ2

P(N)(N). For the second part of

the assertion note from (2.8) that if|µP(N)(N)− (r −1/2σ2)| = O( 1
N), we have

∣
∣
∣
∣
α +σ

√
N
T (2pu(N)−1)− (r − 1

2σ2)

∣
∣
∣
∣
= O

( 1
N

)
.

It then follows by re-arranging terms that

∣
∣
∣pu(N)−

(
1
2 + 1

2σ
(
r −α − 1

2σ2
)
√

T
N

)∣
∣
∣= O

(
1

N3/2

)

,
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which proves the assertion.

We see from the result above that if the assumption of Proposition 7 is satisfied, the
Berry-Esśeen inequality is applicable (compare Proposition 5), which yields

sup
x

∣
∣
∣P(N)

(

S(N)
N ≥ x

)

−Q(S(T) ≥ x)
∣
∣
∣= O

(
1√
N

)

;

i.e. the discretisation error converges to zero in order 1/
√

N. Due to Proposition 7, the
Berry-Esśeen bound is now known to be tight: Clearly, for allx∈ R and allα,σ ∈ R,
there is some subsequence(Nk)k∈IN ⊆ IN for which b(Nk) 6= 0. Hence, according to
Proposition 7, we have

limsup
N→∞

∣
∣
∣P(N)

(

S(N)
N ≥ x

)

−Φ(d2(x))
∣
∣
∣

√
N > 0, for all x∈R,

which implies the following result:

Corollary 10. With the assumption of Proposition 7, we have

limsup
N→∞

{

sup
x

∣
∣
∣P(N)

(

S(N)
N ≥ x

)

−Φ(d2(x))
∣
∣
∣

√
N

}

> 0.

We wish to stress that Proposition 7 readily extends to the case whereα(N) is non-
constant, but bounded inN as required by Assumption 1. This will allow to investigate
the order of convergence for advanced binomial schemes.

Proposition 9. Let S(N) be the process (2.2) withβ = σ . Assume further that the transi-
tion probability pu(N) admits an asymptotic expansion with bounded coefficients up to
order k= 3 in powers of1/

√
N with c1(N)= 1/(2σ)(r−α(N)−1/2σ2) and c2(N)≡0,

i.e.

pu(N) = 1
2 + 1

2σ
(
r −α(N)− 1

2σ2
)(

T
N

)1/2
+c3(N)

(
T
N

)3/2
+o
(

1
N3/2

)

(2.53)

for some bounded sequence(c3(N))N. Then

P(N)
(

S(N)
N ≥ x

)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

b(N)
(

T
N

)1/2
+

e−
1
2d2

2√
2π

(

g(N)+
(

r−α(N)−1/2σ2

3σ
√

T
− d2

12T

)

(1−d2
2)− d2

2 b2(N) 1
T

)
T
N +o

( 1
N

)
,
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where

g(N) := 1
2σ2(r −α(N)− 1

2σ2)2d2 +2c3(N)
√

T.

For the special case that the transition probabilities are given by the risk-neutral mea-
sure (compare also [CP07]), we have

Q(N)
(

S(N)
N ≥ x

)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

b(N)
(

T
N

)1/2
+ e−

1
2d2

2√
2π

(
1

2σ2d1(r −α(N))2
)

T
N+

e−
1
2d2

2√
2π

(
2−d1d2−d2

1
6σ

√
T

(r −α(N))+
d3

1+d1d2
2+2d2−4d1
24T − d2

2T b2(N)
)

T
N +o

( 1
N

)
.

In the next section, we investigate advanced models for which the asymptotic be-
haviour of the discretisation error is improved. In particular, we present the optimal drift
model which can lead to convergence of ordero(1/N); i.e. in this case, the discretisa-
tion error convergesstrictly faster than in order1/N. To the best of our knowledge, the
optimal drift model is new.

2.2.3 Advanced Binomial Models

As discussed above, for conventional tree methods (i.e.α(N) ≡ α constant), the
error in the approximation to the distribution of the terminal stock price converges
non-smoothly; i.e.P(N)(S(N)

N ≥ x) in general only admits an asymptotic expansion
with bounded, but non-constant coefficients. The oscillations of the coefficients are
described by the quantityb(N) defined in (2.43). This suggests that the asymptotic
behaviour of the discretisation error can be improved by controlling b(N). Firstly,
controllingb(N) can lead to smooth convergence of the leading error term. Secondly,
it can even help to improve the order of convergence.

There is a vast number of articles on the control of the leading error term, amongst
which are Leisen and Reimer (1995), Leisen (1998), Tian (1999) and Chang and
Palmer (2007). Leisen and Reimer use an odd number of steps with the tree centred
around the strike [LR96]. Leisen uses an even number of steps with the central node
placed exactly at the strike [Lei98]. These methods can require moving the centre of
the tree a long distance. By contrast, for the model suggestedby Tian and by Chang
and Palmer, the nodes in the tree are moved only a small distance so that the strike
falls onto a neighbouring node or onto the geometric averageof the two neighbouring
nodes, respectively. A different approach to improve the convergence behaviour of the
discretisation error can be found in Rogers and Stapleton (1998) [RS98].

As shown by Chang and Palmer, the discretisation error in the approximation suggested
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by Tian converges smoothly2 in order 1/
√

N, while their approach even achieves
convergence of order 1/N. We will explain the basic idea behind these models.
Afterwards, we introduce the optimal drift model that further improves the asymptotic
behaviour of the discretisation error.

Let us first follow Chang and Palmer and interpret the quantityb(N) we wish to
control in order to ”get binomial schemes into shape”. Assume that l is the integer
value for which

s(N)
N (l −1) := s0ul−1(N)dN−l+1(N) < x≤ s0ul (N)dN−l (N) =: s(N)

N (l),

then it follows from (2.39) that

ln(s(N)
N (l)/x)

ln(s(N)
N (l)/s(N)

N (l−1))
= −a(N)+ l , (2.54)

which implies by (2.40) that

{−a(N)} =
ln(s(N)

N (l)/x)

ln(s(N)
N (l)/s(N)

N (l−1))
.

Consequently, the quantity{−a(N)} admits the following interpretation: It measures
the position of x on the log-scale in relation to the two adjacent terminal values of the
binomial process(compare [CP07]). In particular,{−a(N)} is strictly decreasing on

(s(N)
N (l −1),s(N)

N (l)] with

{−a(N)} =







0 for x = s(N)
N (l)

1
2 for x =

√

s(N)
N (l)s(N)

N (l −1),
(2.55)

and {−a(N)} converges to 1 asx tends to s(N)
N (l − 1). Consequently,

b(N) = 1−2{−a(N)} is strictly increasing on(s(N)
N (l −1),s(N)

N (l)] with

b(N) =







1 for x = s(N)
N (l)

0 for x =

√

s(N)
N (l)s(N)

N (l −1),
(2.56)

andb(N) converges to−1 asx tends tos(N)
N (l −1).

2In the original article by Tian, the author illustrates smooth convergence with numerical examples,
while a mathematical proof is given by Chang and Palmer.
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According to Proposition 2, if we choose risk-neutral transition probabilities, the
asymptotic moment matching conditions are automatically satisfied forβ = σ . By
contrast, the sequence of drift parameters(α(N))N can be chosen freely. In princi-
ple, the advanced models by Tian and by Chang and Palmer, and also the optimal drift
model we suggest, exploit the flexibility of the drift parameter to modify the allocation
of probability mass, so thatb(N) is controlled. Note that the preferred drift depends on
the number of periodsN. Hence, practical relevance of these advanced models relies on
the fact that weak convergence to the stock price can also be ensured for the case that
(α(N))N is non-constant inN.

The Tian Model

Let x ∈ R be arbitrary. For binomial option valuation, the pointx will be the strike
value.

The basic idea behind the Tian model is that for any number of periodsN, the terminal
distribution of the corresponding binomial model admits a realisation that is placed
exactly at the pointx. To be precise: We start with the binomial processS(N)

α of the
form (2.2) withβ = σ andα(N) ≡ α constant inN. For eachN ∈ IN, there is some

integerlα(N) for whichx∈ (s(N)
N (lα(N)−1),s(N)

N (lα(N))]. In general,x 6= s(N)
N (lα(N)).

Then the corresponding equations0u(N)ad(N)N−a = x is solved by some valueaα(N)
with lα(N)−1 < aα(N) < lα(N) (compare (2.39)). Given the sequence(lα(N))N, we
define a sequence(α̃(N))N with

α̃(N) :=
ln(x/s0)−(2lα (N)−N)σ

√
T/N

T . (2.57)

This will become the sequence of drift parameters for the Tian model3; i.e. for any
number of periodsN, the corresponding Tian modelS(N)

α̃(N)
is defined as the process (2.2)

with β = σ and driftα̃(N). Note in particular that the new sequence of drift parameters

is non-constant inN. The processS(N)
α̃(N)

is defined such that the corresponding equation

s0u(N)ad(N)N−a = x is solved by

aα̃(N)(N) := 1
2N+ ln(x/s0)−α̃(N)T

2σ
√

T

√
N = lα(N),

where the last equality follows from definition ofα̃(N) (compare (2.57)). Consequently,
in contrast to the quantityaα(N) obtained for the original model, the corresponding
quantityaα̃(N)(N) obtained for the superimposed Tian model is integer-valued. Hence,

3In the original article by Tian, the author chooses eitherlα(N) or lα(N)−1 depending on which is
closer toaα(N) [Tia99].
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as we can observe from (2.54),

S(N)
α̃(N)

(lα(N)) = x for all N. (2.58)

In words:For any number of periods N, the terminal distribution of thecorresponding
Tian model allocates probability mass to the point x.As a consequence, the correspond-
ing quantityb(N) does not depend onN; rather,b(N) = 1 for all N.

It remains to show that the new sequence of drift parameters(aα(N))N is bounded in
N. Then the moment matching conditions will be satisfied for the risk-neutral transition
probabilities, so that the Tian model will ensure weak convergence to the stock price
process by Proposition 4. In essence, the assumption on boundedness is valid due to
the fact that the mass points are only moved a small distance compared to the original
model: This can be observed by writing the new driftα̃(N) in terms of the original drift
α. By (2.39), we get

α̃(N) = 2σ√
T
√

N
(aα(N)− lα(N))+α, (2.59)

which implies that

−2σ√
T
√

N
+α ≤ α̃(N) < α.

We observe that the new drift̃α(N) in the Tian model differs from the original drift by

α̃(N) = α +o(1). (2.60)

In particular, the new drift satisfies Assumption 1, i.e.α̃(N) = O(1), so that we can
formulate the following result:

Proposition 10. The sequence of processes
(

S(c,N)
α̃(N)

)

N
defined from the Tian model by

linear interpolation and an appropriate time-scaling (compare (2.21)) converges weakly
to the stock price process S.

Compared to conventional binomial methods with constant drift α, the Tian model
shows an improved convergence behaviour of the discretisation error in the approxima-
tion of the terminal stock price, which is due to the fact the corresponding quantityb(N)
is constant inN. By Proposition 9, we obtain the following result on the asymptotic be-
haviour of the discretisation error in the Tian model:

Proposition 11. [The Tian Model] Let x∈R. Let S(N)
α be the binomial process (2.2) with

β = σ andα(N)≡α constant in N. If we superimpose the Tian model S(N)
α̃(N)

(associated
with the given point x), the new transition states and the associated risk-neutral measure
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(denoted by Q(N)
α̃(N)

) are such that Q(N)
α̃(N)

(S(N)
α̃(N)

(N)≥ x) admits an asymptotic expansion

(in the conventional sense) in powers of1/
√

N up to order k= 2. We have

Q(N)
α̃(N)

(

S(N)
α̃(N)

(N) ≥ x
)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

(
T
N

)1/2
+

e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T − d2

2T

)
T
N +o

( 1
N

)
.

Proof. According to Proposition 9, we have

Q(N)
α̃(N)

(

S(N)
α̃(N)

(N) ≥ x
)

= Φ(d2)+ e−
1
2d2

2√
2π

√
T

(
T
N

)1/2
+

e−
1
2d2

2√
2π

(
1

2σ2d1(r − α̃(N))2 +
2−d1d2−d2

1
6σ

√
T

(r − α̃(N))+
d3

1+d1d2
2+2d2−4d1
24T − d2

2T

)
T
N +o

( 1
N

)
,

which yields the assertion by (2.60).

Hence for the Tian model, the discretisation error in the approximation to the distri-
bution of the terminal stock price converges smoothly in order 1/

√
N, where here and

in the rest of Chapter 2, the term ”smooth” is used if the coefficient of the leading error
term is constant and if oscillations of higher order terms are negligible. Thus compared
to conventional methods, the discretisation error converges smoothly, but the order of
convergence is not improved. The Berry-Esséen bound remains tight in the sense that

limsup
N→∞

{

sup
x∈R

∣
∣
∣Q

(N)
α̃(N)

(

S(N)
α̃(N)

(N) ≥ x
)

−Φ(d2(x))
∣
∣
∣

√
N

}

> 0.

Remark 8. In this thesis, the definition of the Tian model (and also of the Chang-
Palmer model discussed below) is more general than in the original papers by Tian and
by Chang and Palmer. These authors limit their analysis to advanced models that are
superimposed on the CRR model; i.e. they consider only the case α = 0. By contrast,
we allow the drift of the original model to be an arbitray constant. As we see below, this
increases flexibility to further improve the convergence rate of the discretisation error.

Next we investigate the model suggested by Chang and Palmer (for short: CP
model). In contrast to the Tian model, the discretisation error in the CP model admits a
higher order of convergence.
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The Chang-Palmer Model

Let x ∈ R. As observed by Chang and Palmer, the analysis of the quantityb(N) sug-
gests that the original driftα should be replaced by some sequence of drift param-
eters(α(N))N for which x coincides with the geometric average ofs(N)

N (l(N)) and

s(N)
N (l(N)− 1) (compare (2.56)). As a consequence, the discretisation error will ex-

hibit a higher order of convergence. This is the basic idea behind the CP model (”the
centered binomial model”). In more detail: LetS(N)

α be the binomial process (2.2) with
β = σ andα(N) ≡ α constant inN. As before,lα(N) denotes the corresponding inte-

gers for whichx∈ (s(N)
N (lα(N)−1),s(N)

N (lα(N))]. Then we determine the sequence of
new drift parameters(α(N))N by

α(N) =
ln(x/s0)−(2lα (N)−N−1)σ

√
T/N

T . (2.61)

For any number of periodsN, the superimposed CP modelS(N)
α(N)

is defined as the pro-

cess (2.2) withβ = σ and driftα(N). By (2.61), the CP model is defined such that the
equations0u(N)ad(N)N−a = x is solved by

aα(N)(N) := 1
2N+ ln(x/s0)−α(N)T

2σ
√

T

√
N = lα(N)− 1

2.

Hence, it follows from (2.54) that

(

S(N)
α̃(N)

(lα(N))S(N)
α̃(N)

(lα(N)−1)
)1/2

= x for all N. (2.62)

In words:For any number of periods N, the terminal distribution of thecorresponding
CP model is such that the point x is at the geometric average of two neighbouring mass
points. As a result, the corresponding quantityb(N) is equal to zero for allN, which
will improve the order of convergence of the discretisationerror in the approximation
to Φ(d2(x)).

Next we show thatα(N) = α +o(1). This is again a direct consequence of the fact that
the probability mass is only moved a small distance. Similarto the above results, it can
be seen that

α(N) = 2σ√
T
√

N

(
aα(N)− lα(N)+ 1

2

)
+α, (2.63)

whereaα(N) is again the solution to the equations0u(N)ad(N)N−a = x in the original
model. We then get from (2.63) that

α − σ√
T
√

N
≤ α(N) < α + σ√

T
√

N
.



2.2 Discretisation of the Stock Price and Weak Convergence 41

Consequently, we obtain the following results. Firstly, we know that the CP model
ensures weak convergences to stock price process:

Proposition 12. The sequence of processes
(

S(c,N)
α(N)

)

N
defined from the CP model by

linear interpolation and an appropriate time-scaling converges weakly to the stock price
process S.

Secondly, according to Proposition 9, the asymptotic behaviour of the discretisation
error is not only superior to that of conventional methods, but also to that of the Tian
model:

Proposition 13. [The Chang-Palmer Model (”The Centered Binomial Model”)] Let

x ∈ R. Let S(N)
α be the binomial process (2.2) withβ = σ and α(N) ≡ α constant in

N. If we superimpose the CP model S(N)
α(N)

(associated with the given point x), the new

transition states and the associated risk-neutral measure(denoted by Q(N)
α(N)

) are such

that Q(N)
α(N)

(

S(N)
α(N)

(N) ≥ x
)

admits an asymptotic expansion (in the conventional sense)

in powers of1/N up to order k= 1. We have

Q(N)
α(N)

(

S(N)
α(N)

(N) ≥ x
)

= Φ(d2)+

e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T

)
T
N +o

( 1
N

)
.

According to Proposition 13, the CP model leads to a discretisation error with a
higher order of convergence: Compared to the methods considered before, the rate of
convergence is improved from 1/

√
N to 1/N. We have

limsup
N→∞

{

sup
x∈R

∣
∣
∣Q

(N)
α(N)

(

S(N)
α(N)

(N) ≥ x
)

−Φ(d2(x))
∣
∣
∣

√
N

}

= 0

and

limsup
N→∞

{

sup
x∈R

∣
∣
∣Q

(N)
α(N)

(

S(N)
α(N)

(N) ≥ x
)

−Φ(d2(x))
∣
∣
∣N

}

> 0,

which shows in particular, thatif the binomial process is defined according to the CP
model, the Berry-Esséen bound ceases to be tight. In addition, the leading term of the
discretisation error converges monotonically; yet it is not clear whether the convergence
behaviour of the discretisation error is affected by oscillations of higher order. We give
a numerical example for binomial valuation of cash-or-nothing options below. For the
example, the oscillations of higher order are not negligible.
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Remark 9. As for the Tian model, the definition of the Chang-Palmer modelgiven
above is more general than in the original paper. While the authors fix α = 0, we
allow the drift of the embedded binomial model to be an arbitrary constant. Though
straightforward, the generalisation we suggest is the key result to introduce the optimal
drift model. Here we optimise the drift of the original process α to further improve the
rate of convergence of the discretisation error.

The Optimal Drift Model

Before we introduce the optimal drift model, let us stress that the generalisation of the
CP model we suggested above has the following impact on the asymptotic behaviour
of the discretisation error: In the original paper by Chang and Palmer, the coefficient of
the leading error term is constant; i.e. it only depends on the input parameters and on
the given pointx∈ R. By contrast, for the variant of the CP model we introduced, the
coefficient of the leading error term is a quadratic functionof the drift of the embedded
binomial processS(N)

α ; that is,

f2(α) = e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T

)

.

This suggests that we can optimise the free parameterα so that f2(α) is minimal in
absolute values. In particular, iff2(α) intercepts theα-axis, i.e.

D := −d4
1 +σ

√
Td3

1 −d2
1

(
1+σ2T

)
+5σ

√
Td1 +2≥ 0,

we chooseα0 such that

f2(α0) = 0. (2.64)

In this case, the leading term in the discretisation error cancels out, so that the rate of
convergence of the error is further improved compared to theCP model. The discreti-
sation error exhibits the rateo(1/N); i.e. we have

limsup
N→∞

∣
∣
∣Q

(N)
α(N)

(

S(N)
α(N)

(N) ≥ x
)

−Φ(d2(x))
∣
∣
∣N = 0, for x∈R with D(x) ≥ 0.

If f2(α) does not intercept theα-axis (i.e.D < 0), we choose the parameterα0 for
which f2(α0) is the vertex of the parabola, i.e. the coefficient of the leading error term
is set to

f2(α0) = e−
1
2d2

2√
2π

1
36Td1

(
d4

1 +d2
1d2

2 +5d1d2−4d2
1 −2−d3

1d2
)
.
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In this case, the discretisation error continues to converge in order 1/N, but the coeffi-
cient of its leading error term is always smaller than that obtained by the CP model. In
essence, for the original paper by Chang and Palmer, the choice α = 0 results in some
uncontrolled value on the parabolaf2(α).

Proposition 14 (The Optimal Drift Model). Let x∈ R. Assume thatα0 is such that

f2(α0) is minimal in absolute values and let S(N)
α0 be the binomial process (2.2) with

β = σ andα(N)≡ α0. The OD model S(N)
α0(N)

is an alternative to the original CP model

that is superimposed on S(N)
α0 . Consequently, if f2(α0) = 0, the new transition states and

the associated risk-neutral measure (denoted by Q(N)
α0(N)

) are such that

Q(N)
α0(N)

(

S(N)
α0(N)

(N) ≥ x
)

= Φ(d2)+o( 1
N).

If (α0, f2(α0)) is the vertex of the parabola, the new transition states and the associated

risk-neutral measure are such that Qα0
(N)(N)

(

Sα0
(N)(N)(N) ≥ x

)

admits an asymp-

totic expansion (in the conventional sense) in powers of1/N up to order k= 1; we
have

Q(N)
α0(N)

(

S(N)
α0(N)

(N) ≥ x
)

= Φ(d2)+

e−
1
2d2

2√
2π

1
36Td1

(
d4

1 +d2
1d2

2 +5d1d2−4d2
1 −2−d3

1d2
) 1

N +o( 1
N).

Since the OD model is a variant of the CP model, we know from Proposition 12 that
it ensures weak convergence to the stock price:

Proposition 15. The sequence of processes
(

S(c,N)
α0(N)

)

N
defined from the OD model by

linear interpolation and an appropriate time-scaling converges weakly to the stock price
process S.

To summarise, the OD model can further improve the order of convergence of the
discretisation error too(1/N). In any case, the coefficient of the error term of order 1/N
is smaller than that obtained by the original CP model (α = 0).

Remark 10. Essentially, the optimal drift model admits the rate o(1/N) if d1(x) is
sufficiently small in absolute values. As we see below this covers most cases of practical
relevance in numerical option pricing.

In Section 2.5, we investigate the convergence behaviour ofbinomial prices for
common types of options. We will consider the schemes by CRR andRB and also
the advanced schemes discussed above. In particular, we will analyse the impacts of
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the above results. We will see that for the options under consideration, the OD model
achieves a convergence behaviour superior to that obtainedby the methods from the
literature.

Before, we wish to justify the application of the binomial approach to numerical option
valuation. As discussed previously, the binomial processes under consideration ensure
that the corresponding sequence of processes(S(c,N))N (obtained by linear interpolation
and time-scaling) converges weakly to the stock price processS. As we see in the next
section, the above property provides the theoretical basisfor binomial option valuation.

2.3 Convergence of Binomial Option Prices

This section deals with the application of binomial models to numerical option valu-
ation. Assume that the corresponding sequence of approximating processes(S(c,N))N

converges weakly to the stock price processS, which is in particular satisfied for the
conventional and the advanced binomial models we considered previously. To apply
the binomial model to option valuation, we evaluate the payoff functional g along the
sequence of approximating processesS(c,N). By definition of weak convergence, the
resulting sequence of binomial prices converges to the exact price provided the payoff
functional is bounded and continuous.

We see in the following that the assumption of weak convergence to the stock price
process leads to much stronger consequences than the above result on bounded and
continuous payoff functions. In particular, according to Skorohod’s Theorem, weak
convergence can be identified with almost sure convergence on an appropriate proba-
bility space:

Theorem 5(Skohorod). Let X(N), 1≤ N < ∞, and X be random random variables that
take values in a separable metric space M such that X(N) ⇒w X. Then there exists a
probability space(Ω,F ,P) together with some random elements Y(N), 1≤ N < ∞ and
Y, such that Y(N) and Y have the same distribution as X(N) and X, respectively, (for
short: Y(N) ∼ X(N), Y ∼ X) and the sequence(Y(N))N converges almost surely to Y , for
short we write

Y(N) →Y a.s.

(compare e.g. [Kal01], Theorem 4.30).

Concerning practical applications, we show thatthe sequence of binomial option
prices converges to the exact price for most common Europeanand American types
of options. This justifies the application of the binomial approach to numerical option
valuation.
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2.3.1 European-Type Options

In this section, we consider the binomial approach to the pricing of European-type
options. In the next section, we will briefly discuss the maindifferences to the
American case.

Let g : C[0,T] → [0,∞) be the payoff function that describes the future payment at
maturityT. The exact option price in the Black-Scholes model is obtained as the dis-
counted expected value of the future payment with respect tothe risk-neutral measure
Q; that is, the price is given byEQ(e−rT g(S)). Similarly, we obtain the corresponding
”binomial price” EP(N)(e−rT g(S(c,N))) if we evaluate the payoff function along the
processS(c,N). To avoid misunderstandings, let us stress again that we continue to use
the term ”binomial price” in a loose sense.

In the following, we investigate the relationship between the exact option price
EQ(e−rT g(S)) and the sequence of binomial option prices(EP(N)(e−rT g(S(c,N))))N. In
particular, we discuss convergence conditions. But before we demonstrate that for
continuous payoff functions, the limes inferior of the binomial prices is an upper bound
for the option price.

An Upper Bound on the Option Price

As we anticipate from Fatou’s Lemma, the option price is bounded from above by the
limes inferior of the corresponding binomial prices if the given payoff functional is
continuous almost everywhere. To be precise on the above argument, let us first recall
the following technical fact:

Lemma 2. Let M and M′ be metric spaces, and letB(M) andB(M′) denote the cor-
responding Borelσ -fields. Then for any function f: M → M′, the set of discontinuities
of f

D f := {x∈ M | f not continuous at x} ⊆ M

is B(M)-measurable (compare e.g. [Bil68], p. 225).

Let g be the payoff function. By the above lemma, the set of discontinuitiesDg is
B(C[0,T])-measurable and we can hence determine the probability of the setDg with
respect to the law of the stock price processSdenoted byQ◦S−1(Dg).

We can now formulate the following result on the limes inferior of the sequence of
binomial option prices:

Proposition 16. Let S(N) be any binomial process (2.2) that (asymptotically) satisfies
the moment matching conditions (2.5) and (2.6), so that S(c,N) ⇒w S. Assume that the
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given payoff functional g is continuous almost everywhere; i.e. Q◦S−1(Dg) = 0. Then
we have

EQ
(
e−rT g(S)

)
≤ liminf

N→∞
EP(N)

(

e−rT g(S(c,N))
)

.

Proof. According to Skorohod’s Theorem, there is a probability space (Ω,F ,P) to-
gether with random variablesY(N), 1≤ N < ∞ andY such thatY(N) ∼ S(c,N), Y ∼ S
andY(N) → Y a.s. Consequently, asg is continuous almost everywhere, we have that
g(Y(N)) → g(Y) a.s. Thus, asg≥ 0 Fatou’s Lemma yields

EP
(
e−rT g(Y)

)
≤ liminf

N→∞
EP

(

e−rT g
(

Y(N)
))

,

which proves the assertion.

We see that if the payoff functional is continuous almost everywhere and the se-
quence of corresponding binomial prices converges to some limit, the exact option price
is never below this limit.We next discuss conditions that ensure convergence to the ex-
act option price.

Convergence Conditions

By definition of weak convergence, the sequence of binomial prices converges to the
exact price if the payoff functional is bounded and continuous. Yet with respect to
practical applications this result is clearly unsatisfactory. Many traded options have an
unbounded payoff function, the plain vanilla call being an obvious example. Further, for
many traded options the payoff functional is discontinuousin the stock price process.
A prominent example are barrier options for which the right to exercise either appears
or disappears on certain regions of the path space ofS.

As we show now, the continuity assumption can actually be weakened to the assumption
that the set of discontinuities of the payoff function has zero probability with respect to
the law ofS. This is a direct consequence of the following variant of thecontinuous
mapping principle:

Lemma 3 (Continuous Mapping Principle II). Let M and M′ be metric spaces and
let X, (X(N))N be M-valued RVs defined on probability spaces(Ω(N),F (N),P(N))
and (Ω,F ,P), respectively. Further, let h: M → M′ be Borel measurable with
P◦X−1(Nh) = 0, where P◦X−1 is the distribution of X and Nh is the set of disconti-
nuities of h. Then, if X(N) ⇒w X, it holds that h(X(N)) ⇒w h(X) (compare e.g. [Bil68],
Theorem 5.1).

Furthermore, the boundedness assumption on the payoff can be weakened to uni-
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form integrability (for short: UI) of the sequence of RVs(g(S(c,N)))N; that is,

lim
C→∞

(

sup
N∈IN

EP(N)

(∣
∣
∣g
(

S(c,N)
)∣
∣
∣1{|g(S(c,N))|>C}

))

= 0.

This a consequence of the following well-known result:

Theorem 6. Let M be a metric space. Let(X(N))N and X be M-valued RVs defined
on probability spaces(Ω(N),F (N),P(N)) and (Ω,F ,P), respectively. Assume that
X(N) ⇒w X. Then, if the sequence(X(N))N is UI,

lim
N→∞

EP(N)(X(N)) = EP(X).

(compare e.g. [Bil68], Theorem 5.4.)

Combining the new assumptions, we obtain the following result on convergence of
binomial option prices to the exact price:

Proposition 17. Let S(N) be any binomial process (2.2) which (asymptotically) satisfies
the moment matching conditions (2.5) and (2.6), so that S(c,N) ⇒w S. We assume that

• the payoff functional g is continuous almost everywhere, and

• the sequence(g(S(c,N)))N is UI.

Then the corresponding sequence of binomial option prices converges to the exact price;
i.e.

EP(N)

(

e−rT g
(

S(c,N)
))

→ EQ
(
e−rT g(S)

)
as N→ ∞.

Proof. According to the above variant of the continuous mapping principle, it follows
from weak convergence ofS(c,N) to the stock priceS that

g(S(c,N)) ⇒w g(S).

Theorem 6 then yields the assertion.

Remark 11. If the payoff function satisfies the assumption of Proposition 17, the bi-
nomial price EP(N)(e−rT g(S(c,N))) provides an estimate of the exact price if the corre-
sponding number of periods N is sufficiently large. This justifies the application of the
binomial method as a numerical pricing technique.

In certain situations, it may turn out to be difficult to establish uniform integrability.
However, the following criterion by de la Vallée-Poussin is often useful in this context:
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Lemma 4(De la Valĺee-Poussin criterion). Let(X(N))N be a sequence of integrable RVs
each defined on a probability space(Ω(N),F (N),P(N)). Assume that f: [0,∞)→ [0,∞)
is an increasing function which is such that

lim
t→∞

f (t)
t = ∞

and EP(N)( f (|X(N)|)) is uniformly bounded, i.e.

sup
N∈IN

EP(N)( f (|X(N)|)) < ∞.

Then the sequence(X(N))N is UI (compare e.g. [̂S88], Lemma 6.3).

In the following we discuss the assumption of Proposition 17. We will see that
the requirements are satisfied for most common types of options. First, we consider
two special cases; namely, barrier options and plain vanilla options. Afterwards, we
show that Proposition 17 actually applies to every payoff functional that is polynomially
bounded and continuous almost everywhere.

Barrier options In this section, we show that the binomial approach can be applied
to the valuation of barrier options. We consider only barriers that are constant in the
stock price. One distinguishes between four basic forms;down-and-out, down-and-in,
up-and-outor up-and-in, which indicates whether the right to exercise originates (in) or
expires (out) on the barrier and whether the barrier is set above (up) or below (down)
the spot price. Note that by arbitrage arguments, barrier options are cheaper than the
corresponding plain vanilla option. As a consequence, barrier options are widely used
both as hedging and as speculative instruments.

We illustrate the application of the binomial approach to options with constant barri-
ers by considering a cash-or-nothing option with an up-and-out barrier. We have the
following result:

Proposition 18. Let S(N) be any binomial process (2.2) that (asymptotically) satisfies
the moment matching conditions (2.5) and (2.6), so that S(c,N) ⇒w S. Let B> s0 and
consider the payoff

g(S) = 1{St ≤B∀ t∈ [0,T]}. (2.65)

Then the corresponding sequence of binomial option prices converges to the exact price;
i.e.

EP(N)

(

e−rT g
(

S(c,N)
))

→ EQ
(
e−rT g(S)

)
as N→ ∞.
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Proof. Note first that payoff functiong given in (2.65) is bounded. Due to Propo-
sition 17, it therefore suffices to show thatg is continuous almost everywhere; i.e.
Q◦S−1(Dg) = 0. Note that its set of discontinuitiesDg contains exactly those func-
tionsw ∈ C[0,T] that hit the barrierB at some timet ≤ T, but do not cross it; i.e.

Q◦S−1(Dg) = Q

(

max
t≤T

St = B

)

We can now write

{max
t≤T

St = B} = {max
t≤T

S̃t = B̃},

where

S̃t := ( r
σ − 1

2σ)t +Wt and B̃ := 1
σ lnB/s0.

We know from the reflection principle of Brownian motions (compare e.g.
[KS98], Proposition 2.6.19) that maxt≤T Wt is continuously distributed; thus,
Q(maxt≤T Wt = B̃) = 0. Consequently, it remains to discuss whether the presence of the
drift (r/σ − 1

2σ) causes any difficulties. But, in fact this is not the case because as we
know from the Girsanov-Cameron-Martin Theorem (compare e.g. [KS98], Proposition
3.5.1), the law ofS̃ is absolutely continuous with respect to the law of the Brownian
motionW. As a result, we see that

Q◦ S̃−1(Dg) = Q(maxt≤T S̃t = B̃) = 0,

which completes the proof.

Remark 12. According to the above result, binomial option valuation can be applied to
barrier options. However, as we will show below, the corresponding binomial prices ex-
hibit an irregular convergence behaviour. Binomial pricesfor cash-or-nothing options
suffer from similar difficulties. Cash-or-nothing options are constant in the terminal
stock price, so that they have a single point of discontinuity at the strike value. Let us
anticipate at this point that the advanced models describedpreviously can significantly
improve the convergence behaviour of the corresponding binomial prices in this case.

Plain vanilla calls For plain vanilla puts, convergence of binomial prices to the Black-
Scholes price follows directly from the definition of weak convergence. By contrast, the
definition of weak convergence does not apply to plain vanilla calls because the corre-
sponding payoff function is unbounded in the terminal stockprice. In this section, we
show that by Proposition 17, binomial option valuation can be applied to plain vanilla
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calls.

Since the payoff function of a plain vanilla call is continuous in the terminal stock price,
it suffices to show that the corresponding sequence(g(S(c,N)))N is UI. This requires to
distinguish between the particular discretisation schemeunder consideration. We will
first consider a binomial processS(N) with risk-neutral transition probabilities. In this
case, we can use the fact thatS(N)

k e−rkT/N is a discrete martingale.

Proposition 19. Let S(N) be the binomial process (2.2) with risk-neutral transition prob-
abilities. Suppose that S(c,N) ⇒w S (i.e. we haveβ = σ ). We consider a plain vanilla
call; i.e.

g(S) = (ST −K)+

for some strike value K> 0. Then the corresponding sequence of binomial option prices
converges to the exact price; i.e.

EP(N)

(

e−rT g
(

S(c,N)
))

→ EQ
(
e−rT g(S)

)
as N→ ∞.

Proof. We use the de la Vallée-Poussin criterion withf (t) = tδ , δ > 1. That is, we
need to show thatEQ(N)(g(S(c,N)))δ is uniformly bounded. Note first that

EQ(N)

(

g
(

S(c,N)
))δ

≤ EQ(N)

(

S(c,N)
T

)δ
= EQ(N)

(

S(N)
N

)δ
.

Under the risk-neutral measure,S(N)
k e−rkT/N is a discrete martingale, which implies that

sup
N∈IN

EQ(N)

(

S(N)
N

)

= erT s0.

For δ > 1, we obtain that

sup
N∈ IN

EQ(N)

(

S(N)
N

)δ
= sup

N∈ IN
EQ(N)

(

s0eα(N)T+σ
√

T/N∑N
k=1Z(N)

k

)δ

= sup
N∈ IN

{

sδ−1
0 eα(N)(δ−δ 2)TEQ(N)

(

s0eα(N)δ 2T+σ
√

δ2T
N ∑N

k=1Z(N)
k

)}

= sup
N∈ IN

{

sδ
0eα(N)(δ−δ 2)Terδ 2T

}

,

where the last equality above follows from the martingale property of S(N)
k e−rkT/N

together with a re-scaling of time byδ 2 (for the re-scaling argument compare also



2.3 Convergence of Binomial Option Prices 51

[AK94]). It then follows from boundedness of(α(N))N that

sup
N∈ IN

EQ(N)

(

S(N)
N

)δ
< ∞, (2.66)

and thus

sup
N∈ IN

EQ(N)

(

g
(

S(c,N)
))δ

< ∞.

The assertion then follows from Proposition 17 together with the de la Valĺee-Poussin
criterion.

Note in particular that the above result justifies binomial valuation of a plain vanilla
call with the advanced models considered previously. Yet itremains to discuss the ap-
plication of the methods suggested by CRR and by RB, respectively. For these models,
the transition probabilities are not chosen according to the risk-neutral measure, so that
the corresponding processS(N)

k e−rkT/N is no longer a martingale. However, as observed
in Corollary 3, if the number of periodsN is sufficiently large, the probability for an
up-movementpu(N) is smaller than the corresponding risk-neutral probability qu(N).
This suggests that the corresponding sequence(EP(N)(g(S(c,N)))δ )N, δ > 1, is uniformly
bounded because this condition is already satisfied for the risk-neutral case.

Proposition 20. Let S(N) be the binomial process (2.2) suggested by CRR or by RB,
respectively. We consider a plain vanilla call with strike K> 0; i.e. g(S) = (ST −K)+.
Then the corresponding sequence of binomial option prices converges to the exact price;
i.e.

EP(N)

(

e−rT g
(

S(c,N)
))

→ EQ
(
e−rT g(S)

)
as N→ ∞.

Proof. As before, we use the de la Vallée-Poussin criterion withf (t) = tδ , δ > 1. We
know from Corollary 3 that for both the CRR model and the RB model, there exists
someN0 ∈ IN such that

qu(N) ≥ pu(N) for all N ≥ N0.

We hence obtain that forN ≥ N0,

EP(N)

(

S(c,N)
T

)δ
= EP(N)

(

S(N)
N

)δ

=
N
∏

k=1
CEP(N)

(

eσδ
√

T/NZ(N)
k

)
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= CN
(

pu(N)eσδ
√

T/N +(1− pu(N))e−σδ
√

T/N
)N

≤ CN
(

qu(N)eσδ
√

T/N +(1−qu(N))e−σδ
√

T/N
)N

= EQ(N)

(

S(N)
N

)δ
,

whereC = sδ
0eδαT with α = 0 for the CRR model andα = r−1/2σ2 for the RB model.

By (2.66), the family(S(N)
N )N is UI with respect to the risk-neutral measuresQ(N). Thus,

we have

sup
N≥N0

EP(N)

(

S(N)
N

)δ
≤ sup

N≥N0

EQ(N)

(

S(N)
N

)δ
< ∞. (2.67)

We see that the family(g(S(c,N)))N is UI with respect to the chosen probability mea-
sureP(N), which completes the proof by Proposition 17 and the de la Vallée-Poussin
criterion.

Remark 13. Clearly, in practical applications the binomial method is not used for the
valuation of a plain vanilla call because its price is readily available from the Black-
Scholes formula. However as we show in the next section, the above arguments can be
used to generalise the convergence result.

Polynomially bounded payoff functionals In this section, we show that for the mod-
els under consideration the above results on the application of binomial option valuation
to plain vanilla calls can be generalised to any type of option for which the payoff func-
tional is polynomially bounded and continuous almost everywhere.

For the special case that the binomial model exhibits risk-neutral transition probabili-
ties, the above result is shown in Amin and Khanna (1994) ([AK94], Section 5). In fact,
the result extends to any binomial process (2.2) that (asymptotically) satisfies the mo-
ment matching conditions. As a consequence, the assumptionof Proposition 21 covers,
in particular, the schemes suggested by CRR and by RB, which are not considered by
Amin and Khanna. As before, the essential difference is thatfor these methods, the
corresponding processS(N)

k e−rkT/N is not a martingale.

Proposition 21. Let S(N) be any binomial process (2.2) that (asymptotically) satisfies
the moment matching conditions (2.5) and (2.6), so that S(c,N) ⇒w S. We consider any
type of option whose payoff functional is continuous almost everywhere and bounded
above by a polynomial; i.e. there are constants C> 0 and p> 1 such that

g(S) ≤C

(

1+sup
t≤T

|St |
)p

, S∈C[0,T].
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Then the corresponding sequence of binomial option prices converges to the exact price;
i.e.

EP(N)

(

e−rT g
(

S(c,N)
))

→ EQ
(
e−rT g(S)

)
as N→ ∞.

Proof. As before, letδ > 1. By the assumption ong,

EP(N)

(

g
(

S(c,N)
))δ

≤ EP(N)

(

Cδ
(

1+sup
t≤T

S(c,N)
t

)γ)

≤ Cδ 2γ
(

1+EP(N)

(

sup
t≤T

S(c,N)
t

)γ)

,

whereγ := δ p > 1. Let us re-writeS(c,N) in terms of the normalised RVsY(N)
k , i.e.

S(c,N)(t) = s0eµ(N)t+|σ(N)|
√

T Y(c,N)( t
T ), t ∈ [0,T],

where

Y(c,N)(s) = 1√
N

(
[Ns]

∑
k=1

Y(N)
k +(Ns− [Ns])Y(N)

[Ns]+1

)

, s ∈ [0,1].

(compare (2.23)). First, we consider the case(r −1/2σ2) ≥ 0. Then by the asymptotic
moment matching condition (2.5) on the logreturns, there exists someN0 ∈ IN such that
µ(N) ≥ 0 for N ≥ N0. It follows that forN ≥ N0,

sup
t≤T

S(c,N)
t ≤ s0eµ(N)T sup

t≤T
e|σ(N)|

√
T Y(c,N)( t

T ).

We hence obtain that forN ≥ N0,

EP(N)

(

sup
t≤T

S(c,N)
t

)γ
≤ sγ

0eγµ(N)TEP(N)

(

sup
t≤T

e|σ(N)|
√

TY(c,N)( t
T )
)γ

= sγ
0eγµ(N)TEP(N)

(

max
k=1,...,N

e|σ(N)|
√

TM(N)
k

)γ
,

whereM(N) is the discrete martingale defined in (2.26); i.e.M(N)
k = 1√

N ∑N
i=1Y(N)

i ,

1≤ k ≤ N, andM(N)
0 = 0. In particular, the discrete process defined bye|σ(N)|

√
TM(N)

k ,
0 ≤ k ≤ N is a submartingale. Hence, it follows from Doob’sLp inequality (compare
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e.g. [Dur05], Theorem 4.4.3)) that

EP(N)

(

sup
t≤T

S(c,N)
t

)γ
≤

(
γ

γ−1

)γ
sγ
0eγµ(N)TEP(N)

(

e|σ(N)|
√

TM(N)
N

)γ

=
(

γ
γ−1

)γ
EP(N)

(

S(N)
N

)γ
. (2.68)

It remains to consider the case(r −1/2σ2) < 0. By the (asymptotic) moment matching
condition, there exists someN0 ∈ IN such that

2(r −1/2σ2) < µ(N) < 0 for N ≥ N0. (2.69)

Then forN ≥ N0, the drift µ(N) is negative, which implies that

sup
t≤T

S(c,N)
t ≤ s0sup

t≤T
e|σ(N)|

√
T Y(c,N)( t

T ) for N ≥ N0.

Then by similar arguments as above, we have

EP(N)

(

sup
t≤T

S(c,N)

)γ
≤
(

γ
γ−1

)γ
e−γµ(N)TEP(N)

(

S(N)
N

)γ
for N ≥ N0.

Further by (2.69), the factore−γµ(N)T on the right-hand side of the above inequality can
be bounded bye−2γ(r−1/2σ2)T , which implies

EP(N)

(

sup
t≤T

S(c,N)

)γ
≤
(

γ
γ−1

)γ
e−2γ(r−1/2σ2)TEP(N)

(

S(N)
N

)γ
. (2.70)

Combining the results in (2.68) and in (2.70) for(r −1/2σ2) ≥ 0 and(r −1/2σ2) < 0,
respectively, shows that there is always some constantK ≥ 0 such that

sup
N≥N0

EP(N)

(

g
(

S(c,N)
))δ

≤Cδ 2γ

(

1+ sup
N≥N0

EP(N)

(

sup
t≤T

S(c,N)

)γ
)

≤

Cδ 2γ

(

1+
(

γ
γ−1

)γ
K sup

N≥N0

EP(N)

(

S(N)
N

)γ
)

.

As the family(EP(N)(S
(N)
N )γ)N, γ > 1, has already been shown to be uniformly bounded



2.3 Convergence of Binomial Option Prices 55

(compare 2.67), the above result implies that

sup
N∈IN

EP(N)

(

g
(

S(c,N)
))δ

< ∞.

Consequently, the assertion follows again from Proposition17 together with the de la
Vallée-Poussin criterion.

Remark 14. With respect to practical applications, binomial option valuation is thus
justified for most common types of options.

A counterexample In principle, we can of course think of payoff functionals for
which the binomial option prices do not converge to the exactprice. For example,
consider the payoff function

g(S) =

{

1 ST ∈
{

S0exp
((

r − 1
2σ2

)
T +σ k√

N

)

|N ∈ IN,−N ≤ k ≤ N
}

0 else

Then for any number of periodsN, the RB model suggests the price

EP(N)

(

e−rT g(S(c,N))
)

= e−rT , while the exact price is given byEQ
(
e−rT g(S)

)
= 0.

In this case, the binomial prices do not converge to the option price. Note that in accor-
dance with Proposition 16, the limite−rT obtained along the sequence of RB models is
greater than the correct price.

Apparently, the above example is artificial as the payoff function is constructed in ac-
cordance with the specific distribution of the RB model. However, the example shall
serve as a warning to stress that weak convergence to the stock price processSdoes not
always imply convergence to the expected value of some functional of S. However, as
discussed above, in practical applications the binomial approach can be applied to most
common valuation problems.

2.3.2 American-Type Options

The above results focus on European options. For American-style options, similar re-
sults are not readily available because the American optionvaluation problem involves
a non-trivial timing decision. We briefly sketch the main ideas.

For a given payoff functiong, the exact price of the corresponding American op-
tion is EQ(e−rτoptg(S(τopt))), where τopt is the optimal stopping time for the val-
uation problem under consideration. Similarly, the binomial price is given by

EP(N)(e−rτ(N)
∗ g(S(c,N)(τ(N)

∗ ))), whereτ(N)
∗ is the optimal stopping time associated with
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the binomial valuation problem.

If S(c,N) converges weakly toS, the sequence(S(c,N),τ(N)
∗ )N∈IN is tight inC[0,T]× [0,T].

Thus due to Prohorov’s Theorem (compare e.g. [KS98], Theorem 2.4.7), any subse-

quence(S(c,Nk),τ(Nk)∗ )Nk has a further subsequence(S(c,Nkl
),τ

(Nkl
)

∗ )Nkl
that converges to

some weak limit. Let(S,τ) be the limit of one such subsequence. ThenS is the origi-
nal stock price. However,τ depends on the particular subsequence chosen. Further, it
is not clear whetherτ is a stopping with respect to the filtration generated byS. This
makes the analysis of binomial option valuation more complicated than in the case of
European-style options.

In order to obtain an upper bound for the binomial option prices, we next follow Amin
and Khanna (1994). For detailed arguments we refer to [AK94]. Amin and Khanna
show thatτ can be identified, in ”some appropriate sense”, with a legitimate stop-
ping time with respect to the filtration generated byS. Their arguments are essentially
based on the result by Kushner (1977) that there is a suitablefiltered probability space
(Ω,F ,Ft ,P) and a pair(Y,τY) defined on((Ω,F ,P)) such thatY is a geometric Brow-
nian motion with respect toFt , (Y,τY)∼ (S,τ) andτY is a stopping time with respect to
Ft (compare [Kus77], Theorem 8.2.4). Amin and Khanna then showthat if the payoff
satisfies the assumptions of continuity and uniform integrability, then

lim
l→∞

E
P

(Nkl
)

(

e−rτ
(Nkl

)

∗ g

(

S(c,Nkl
)(τ

(Nkl
)

∗ )

))

≤ EQ
(
e−rτoptg(S(τopt))

)
.

As the subsequence(S(c,Nk),τ(Nk)∗ )Nk is chosen arbitrarily, it follows that

limsup
N→∞

EP(N)

(

e−rτ(N)
∗ g(S(c,N)(τ(N)

∗ ))
)

≤ EQ(e−rτoptg(S,τopt)). (2.71)

The reverse implication4

liminf
N→∞

EP(N)

(

e−rτ(N)
∗ g

(

S(c,N)
))

≥ EQ
(
e−rτoptg(S(τopt))

)
(2.72)

follows from the above argument and a direct extension of Proposition 16. The result
in (2.71) then implies that the assertion of Proposition 17 extends to American-type
options.

4Amin and Khanna refer to a convergence result of Kushner (1977) to establish (2.72).
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2.4 Tree Procedures

As discussed in the previous section, the binomial method can be applied to numerical
valuation of most common types of European and American options. The correspond-
ing algorithm is called atree procedurebecause the possible realisations of the binomial
processS(N) can be identified with a tree structure: The initial values0 is designated the
root of the tree, the terminal values ofS(N) can be identified with the leaves of the tree
and each node in the interior is connected to two successor nodes.

In Section 2.4.1 we describe the tree algorithm in detail. Wesee that for many stan-
dard types of options, computational effort is of orderO(N2); and thus, in particular
polynomial inN. In Section 2.4.2 we focus on numerical valuation of path-independent
options. We find a conceptual link between binomial tree algorithms and explicit finite
difference approximations to the Black-Scholes pricing PDE. Both the method sug-
gested by CRR and by RB can be identified with an explicit finite difference approxi-
mation to the appropriately transformed Black-Scholes PDE.Of course, the above result
on numerical valuation techniques appears as a consequenceof the natural link between
the martingale approach and the PDE approach to continuous-time option pricing.

Before we consider the tree algorithm in detail, we wish to stress that in practical appli-
cations, binomial option valuation is of course only applied, if an analytic formula for
the exact price is not readily available. Then the error in the binomial option price is
not known; one may only have an intuition. Hence, how to choose the number of peri-
ods such that the pricing error in the corresponding binomial model is sufficiently small
for the valuation problem of interest? In fact, in practicalapplications, an appropriate
number of periods is often determined by computing binomialprices on gradually finer
gridsuntil subsequent estimates vary less than some threshold.

2.4.1 Variants of the Tree Algorithm

Binomial option valuation allows only for a finite number of possible payoff scenarios.
In principle, there can be 2N distinct scenarios, one for each path through the tree.
In this case, the computational effort required to compute the expected payoff is
non-polynomial inN. However, for many types of options different paths can realise
the same payoff. This is due tothe re-combining structure of the tree. That is, by
definition ofS(N), paths with the same number of up- and down-movements end at the
same node, independently of the order in which the up- and down-movements have
occurred.

The recombining structure of binomial trees is illustratedin Figure 2.1. In the example,
the red and the green path end at the same node, but differ in the order of the up- and
down-movements.
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Fig. 2.1: A five-period binomial tree
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For path-independent options, the re-combining structureof the tree implies that
there areN + 1 distinct payoff scenarios only, each belonging to a terminal node of
the tree. Computational effort is therefore only of orderO(N2). For path-dependent
options, however, it depends on the specific payoff functional whether the re-combining
structure of the tree can be used to reduce computational effort. In contrast to path-
independent options, the realised payoff can depend on the order of the up-and down-
movements. A prominent example are options on the average value of the stock price
process over time; that is,g(S) = g(1/T

∫ T
0 Stdt).

However, for many types of path-dependent options computational effort can still be
reduced to orderO(N2). This will be verified for barrier options and for American
options. We will first set up the tree algorithm for the valuation of path-independent
options. Afterwards we will discuss how to adapt the algorithm to the path-dependent
case.

Path-independent options For path-independent options, it suffices to compute the
expectation of possible terminal values. Due to the Markov property of the binomial
processS(N), we can compute the expected terminal payoff by ”stepping backwards
through the time layers of the re-combining tree”, which is formally based on the equal-
ity:

EP(N)

(

g(S(N)
N )
)

= EP(N)

(

EP(N)

(

. . .EP(N)

(

g(S(N)
N )
∣
∣
∣S

(N)
N−1

)

. . .
∣
∣
∣S

(N)
1

))

Hence, we obtain the following recursion: We start at the final time by assigning the
payoff scenarios to the terminal nodes. We then step backwards through the time layers
of the tree by computing the weighted sum of the values assigned to the successor
nodes. The algorithm is given in pseudo-code (compare Algorithm 1).
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Algorithm 1: Binomial tree for path-independent European options

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0]×exp(−r ×T)

1. Forward Step

{initialise asset prices at maturity}
Set SN[0] := s0dN

for k = 1 toN do
SN[k] := SN[k−1]× (u/d)

end for

{initialise option values at maturity}
for k = 0 toN do

SetV [k] := g(SN[k])
end for

2. Backward Induction

{step backwards through the tree}
for k = N−1 to 0do

for l = 0 tok do
V [l ] := pu×V [l +1]+ pd×V [l ]

{or under the RB scheme}
V [l ] := 0.5× (V [l +1]+V [l ])

end for
end for

In Algorithm 1, pu := pu(N), pd := pd(N), u := u(N), d := d(N) are constants to
be determined in advance. As for standard tree implementations, we ”do not span the
tree”; i.e. we do not allocate memory for each node in the tree. Instead, the memory
already reserved is overwritten at each step of the backwardrecursion in order to reduce
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the memory allocation required. Regarding computational effort, we have the following
result:

Proposition 22. Computational effort for Algorithm 1 is in general3/2N2+O(N). For
the discretisation scheme suggested by RB, computational effort reduces to N2+O(N),
which is optimal for the rate of growth of the tree (i.e. for the number of the successor
nodes n= 2).

Proof. In the backward step, the arithmetic mean has to be computed at each node of
the tree, i.e. we have to consider∑N−1

i=0 (i + 1) = N(N + 1)/2 nodes. This implies that
computational effort for backward induction is 3/2N2 +O(N) because it requires three
operations in general (two multiplications and one addition) to compute the arithmetic
mean. The forward step is negligible because the corresponding computational effort is
only of orderO(N). With respect to the second part of the assertion, note that by the
distributive law computing the arithmetic means is cheapest (one multiplication and one
addition) for the casepu(N) = pd(N) = 1/2.

Remark 15. For the numerical examples on binomial valuation of single-asset options
considered in Section 2.5, the above result does not lead to asignificant difference in
computing time. However, for our examples on multi-dimensional valuation problems
analysed in Chapter 3 and in Chapter 4, computing time will be reduced significantly if
the transition probabilities are chosen to be equal.

For path-dependent options, it depends on the specific payoff functional whether
there exists a suitable modification of the above tree algorithm. Next we show how
barriers which are constant in the stock price can be incorporated into Algorithm 1.

Barrier options To apply the binomial approach to barrier options, we have todis-
tinguish between knock-in and knock-out barriers. In the latter case, we are interested
in events of the formA := {S(N)

k < B ∀k = 1, . . . ,N} with a barrier levelB > s0 for up-

and-out options and in events of the formA := {S(N)
k > B ∀k = 1, . . . ,N} with a barrier

level B < s0 for down-and-out options. Let us first consider up-and-out options. Then
the equality

1{S(N)
k <B ∀k=1,...,N} = 1{S(N)

1 <B}1{S(N)
2 <B} . . .1{S(N)

N <B} (2.73)

and the Markovian structure ofS(N) yield

EP(N)

(

g(S(N)
N )1{S(N)

k <B ∀k=1,...,N}

)

=

EP(N)

(

EP(N)

(

. . .EP(N)

(

g(S(N)
N )1{S(N)

N <B}

∣
∣
∣S

(N)
N−1

)

. . .1{S(N)
1 <B}

∣
∣
∣
∣
S(N)

1

))

.
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As a result, the backward induction step of Algorithm 1 can still be applied (compare
Algorithm 2). Yet in addition to path-independent options,a zero option value is
assigned to the nodes above the barrier level. Similarly, for down-and-out options
a zero option value is assigned to the nodes below the barrierlevel. This means in
particular that, while stepping backwards through the timelayers of the tree, the array
of transition states needs to be adjusted to the current time. The forward step remains
unchanged. Clearly, the modified tree algorithm still requires computational effort of
orderO(N2).

For knock-in options, we are interested in events of the form
A := {∃k0 ∈ {1, . . . ,N} : S(N)(k0) ≥ B} with a barrier levelB > s0 for up-and-in
options and in events of the formA := {∃k0 ∈ {1, . . . ,N} : S(N)(k0) ≤ B} with a
barrier level B < s0 for down-and-in options. In contrast to the knock-out case
(compare (2.73)), the event A cannot be written as a simple product of one-step events.
Consequently, we cannot simply decide on the occurrence of the eventA while stepping
backwards through the tree. However, we have

P(N)
(

∃k0 ∈ {1, . . . ,N} : S(N)(k0) ≥ B
)

=

1−P(N)
(

S(N)(k) < B ∀k∈ {1, . . . ,N}
)

.

Hence, the binomial price of a knock-in option can be obtained as the difference of the
binomial price for the corresponding path-independent option and the corresponding
knock-out option; i.e.

E(N)
(

g(S(N)
N )1{∃k0∈{1,...,N}: S(N)(k0)≥B}

)

=

E(N)
(

g(S(N)
N )
)

−E(N)
(

g(S(N)
N )1{S(N)(k)<B ∀k∈{1,...,N}}

)

.

Using Algorithm 1 for the first term on the right-hand side of the above equality and
Algorithm 2 for the second term leads to a total effort ofO(N2).



62 Chapter 2. Binomial Pricing for Single-Asset Options

Algorithm 2: Binomial tree for European options with a knock-out barrier

Input: stock price parameters, risk-neutral rater, payoff functiong,
barrier levelB≥ s0 (B≤ s0) for up-and-out option (down-and-out)

Return: price estimate= V [0]×exp(−r ×T)

1. Forward Step

{remains unchanged}

2. Backward Induction

{step backwards through the tree checking whether the barrier is crossed}
for k = N−1 to 0do

for l = 0 tok do
{adjust the state array to the current time step}

SN[l ] := SN[l ]/d
{check whether the barrier level is crossed}
if SN[l ] ≥ B (SN[l ] ≤ B) then {up-and-out (down-and-out)}
{assign current option value}

V [l ] := 0
else

V [l ] := (pu×V [l +1]+ pd×V [l ])
end if

end for
end for

We next show that Algorithm 1 can also be adapted to American valuation prob-
lems. In principle, this is due to the theorem on the Snell envelope of a discrete pro-
cess. Compared to alternative techniques for numerical valuation of American options,
the resulting tree algorithm is both conceptually easy and efficient, which explains the
widespread use of the binomial approach to American option pricing in practical appli-
cations.
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American Options For the valuation of American options, the backward induction
step of Algorithm 1 has to be modified so as to allow for early exercise at each node of
the tree. That is, the values assigned to the nodes in time layerk < N are the realisations
of the RV

V(N)
k := max

{

EP(N)

(

e−rT/NV(N)
k+1

∣
∣
∣S

(N)
k

)

,g(S(N)
k )
}

(2.74)

with

V(N)
N := g(S(N)

N ).

If V(N)
k = EP(N)(e−rT/NV(N)

k+1|S
(N)
k ) the option is not exercised, whileV(N)

k = g(S(N)
k ) cor-

responds to early exercise. The modified backward inductionis justified by the Markov
property of the binomial processS(N) together with the following proposition on the
Snell envelopeof a discrete process:

Proposition 23. Let Xk, k = 0, . . . ,N, be an adapted process on a filtered probability
space(Ω,F ,Fk,P) and assume that Xk is integrable for all k= 0, . . . ,N. Define an
F (.)-adapted process Zk, k = 0, . . . ,N, by backward induction, letting

ZN := XN; Zk := max{Xk,E (Zk+1|Fk)} , k = 0, . . . ,N−1.

Then Z is anF (.)-supermartingale with Zk ≥ Xk a.s. for all k= 0, . . . ,N. Moreover,

τ∗ := min{k∈ {0, . . . ,N} : Zk = Xk}

is a discreteF (.)-stopping time such that Z.∧τ∗ is anF (.)-martingale. In particular,
τ∗ solves the optimal stopping problem for the process X; i.e.

E (X(τ∗)) = sup
τ∈Σ0,N

E (X(τ)) ,

whereΣ0,N is the class ofF (.)-stopping times taking values in{0, . . . ,N} (compare e.g.
[CRS71], Theorem 3.2).

In our context, we chooseXk := e(T−tk)rg(S(N)
k ), k= 0, . . . ,N, with tk = kT/N, which

implies thatV(N)
k = e−(T−tk)rZk. AsV(N)

0 = e−rT Z0, it follows that withtτ = τT/N,

V(N)
0 = e−rT sup

τ∈Σ0,N

EP(N)

(

e(T−tτ )rg(S(N)
τ )
)

= sup
τ∈Σ0,N

EP(N)

(

e−tτ rg(S(N)
τ )
)

.



64 Chapter 2. Binomial Pricing for Single-Asset Options

This argument justifies the modified backward induction suggested in (2.74). The tree
procedure is attached in pseudo-code (compare Algorithm 3).

Algorithm 3: Binomial tree for American options

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0]

Pre-step

{incorporate the discount factor into transition probabilities}
Setdpu:= pu×exp(−r ×T/N)
Setdpd := pd×exp(−r ×T/N)

1. Forward Step

{remains unchanged}

2. Backward Induction

{step backwards through the tree applying the early exercisecondition}
for k = N−1 to 0do

for l = 0 tok do
{adjust the state array to the current time step}

SN[l ] := SN[l ]/d
{assign current option value}

V [l ] := (dpu×V [l +1]+dpd×V [l ])
{apply the early exercise condition}

V [l ] := max(V [l ],g(SN[l ]))
end for

end for

Let us add some remarks concerning implementation: We see that binomial pric-
ing of American options results in a tree algorithm based on abackward induction step
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that requires computational effort of orderO(N2). As for barrier options, the array of
transition states needs to be adjusted to the current time layer of the tree. However,
discounting must not be delayed to the end of tree procedure;rather, the option value
has to be discounted while stepping backwards through the tree. In order to improve
efficiency, the transition probabilities can be pre-multiplied by the one-period discount
factor exp(−r ×T/N). This saves one multiplication at every node of the tree.

For American knock-out options, we can combine Algorithm 2 and Algorithm 3 (com-
pare Algorithm 4). Let us illustrate this with an up-and-outoption. The values assigned
to the nodes in time layerk < N are the realisations of the RV

V(N)
k := max

{

EP(N)

(

e−rT/NV(N)
k+1

∣
∣
∣S

(N)
k

)

,g(S(N)
k )
}

1{S(N)
k <B} (2.75)

with

V(N)
N := g(S(N)

N )1{S(N)
N <B}.

The suggested backward induction (2.75) can again be justified by Proposition 23 on
the Snell envelope. Here we choose

Xk := e(T−tk)rg(S(N)
k )1{S(N)

l <B∀l=1,...,k}, for k = 0, . . . ,N,

which implies that

V(N)
k = e−(T−tk)rZk on {S(N)

l < B, ∀l = 1, . . . ,k−1},

where, as before,tk = kT/N. Trivially, V(N)
0 = e−rT Z0, which implies that the backward

induction (2.75) leads to

V(N)
0 = e−rT Z0 = sup

τ∈Σ0,N

EP(N)

(

e−rtτ g(S(N)
τ )1{S(N)

l <B∀l=1,...,τ}

)

.
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Algorithm 4: Binomial tree for American knock-out options

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0]

Pre-step

{remains unchanged (as in Algorithm 3)}

1. Forward Step

{remains unchanged}

2. Backward Induction

{step backwards through the tree checking whether the barrier is
crossed and applying the early exercise condition}
for k = N−1 to 0do

for l = 0 tok do
{adjust the state array to the current time step}

SN[l ] := SN[l ]/d
{check whether the barrier level is crossed}
if SN[l ] ≥ B (SN[l ] ≤ B) then {up-and-out (down-and-out)}

V [l ] := 0
else

V [l ] := (dpu×V [l +1]+dpd×V [l ])
{apply the early exercise condition}

V [l ] := max(V [l ],g(SN[l ]))
end if

end for
end for

Binomial valuation of American knock-in options is more involved than for
European-type options because the sum of the American knock-in and knock-out price
does not equal the price of the corresponding standard American option. This is due
to the fact that the options differ in the optimal exercise time. As a consequence, for
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American options we can no longer value a knock-in option by the difference between
the standard option price and the knock-out price. To apply the binomial method to
American knock-in options, AitSahlia, Imhof and Lai (2004)suggest an approach that
involves the first passage density of a Brownian motion, whichis known explicitly. They
use the following representation of the priceVin of an American knock-in put option:

Vin =
∫ T

0 e−rtV(t,B) fS(t)dt,

whereV(t,B) is the time-t price of the corresponding standard American option if the
time-t stock price isSt = B. Further, fS is the first passage density of the stock priceS
associated with the barrier levelB. Approximating the integral by a Riemann sum over
M equally spaced time intervals[tk, tk+1] leads to

Vin ≈ T/M
M
∑

k=1
e−rt (M)

k V(t(M)
k ,B) fS(t

(M)
k ), (2.76)

where t(M)
k = kT/M. Consequently, the price of an American knock-in op-

tion can be approximated by computing the binomial prices corresponding to
V(t(M)

1 ,B), . . . ,V(t(M)
M ,B). This requiresM calls to Algorithm 3. However, by an ap-

propriate choice of the grid, i.e. an appropriate choice of the binomial processS(N),
computational effort can be reduced to a single run of an appropriate backward induc-
tion algorithm. For details we refer to [AIL04].

In the above, we have discussed how to adapt the binomial treealgorithm to the val-
uation of specific types of options. Next we focus on numerical valuation of path-
independent options. We wish to demonstrate an important conceptual property of the
tree algorithm: its connection to explicit finite difference methods (for short: explicit
FDMs).

2.4.2 Connection to Explicit Finite Difference Methods

This section deals with the connection between tree algorithms and explicit finite dif-
ference schemes for numerical valuation of path-independent options, which was first
observed by Brennan and Schwartz (1978) [BS78]. Of course, theabove relation can
be anticipated from the fact that in the Black-Scholes setting, the martingale approach
is naturally linked to the PDE approach via the Feynman-Kac Theorem. Hence, we first
wish to recall some main results on the connection between these two approaches to
option pricing in a Black-Scholes market. Afterwards, we transfer results to binomial
option pricing.
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The martingale approach and the PDE approach We consider a path-independent
option with payoff5 g : (0,∞) → [0,∞). Let us defineV : [0,T]× (0,∞) →R by

V(t,S) := Et,S
Q

(

e−r(T−t)g(ST)
)

= EQ

(

e−r(T−t)g(ST)
∣
∣
∣St = S

)

= EQ

(

e−r(T−t)g
(

Se(r−1/2σ2)(T−t)+σWT−t

))

. (2.77)

ThenV(t,S) is the time t-price of the option if the stock trades atS at time t. As a
fundamental result in mathematical finance,V(t,S) is the solution to an appropriate
Cauchy problem6:

Proposition 24. Assume that g is polynomially bounded, i.e.

g(S) ≤ C
(

1+Sβ
)

for all S∈ (0,∞),

where C,β are positive constants.
Then V(t,S) ∈ C∞,∞ ([0,T)× (0,∞))∩C([0,T]× (0,∞)) and V(t,S) is the unique poly-
nomially bounded solution to the Cauchy problem

Vt +
1
2σ2S2VSS+ rSVS− rV = 0, (t,S) ∈ [0,T)× (0,∞)

V(T,S) = g(S) S∈ (0,∞).
(2.78)

For completeness, we give a proof of Proposition 24 below. Wewill refer to the
following result:

Lemma 5. Let X and Y be independent RVs. Letϕ be a function with E|ϕ (X,Y)| < ∞
and let g(x) := E (ϕ (x,Y)). Then

E (ϕ (X,Y) |X ) = g(X)

(compare e.g. [Dur05], Example 4.1.5).

5Note that in contrast to previous notations, the domain ofg has been changed to(0,∞) as we consider
only path-independent options.

6In this thesis, we assume the martingale representation of the option price to be given (compare
(2.77)) and we derive a pricing PDE (compare (2.78)) from thestochastic representation of the price.
Let us emphasise that in the history of option pricing, the two approaches appeared in opposite order. In
the groundbreaking work of Black and Scholes and Merton (1973), the risk-neutral valuation principle
was introduced. Based on this principle, they identified thevaluation problem with a Cauchy problem.
Their ansatz is often referred to as the ”delta-hedging approach”. The ”martingale approach” to option
pricing was later suggested by Harrison and Kreps (1979) andHarrison and Pliska (1981) who showed
that option pricing is naturally linked with martingale theory [HK79], [HP81]. Since then, the martingale
approach has played a dominating role.
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Proof of Proposition 24. Note first that

V(t,S) → g(S) ast ↑ T.

As we will see, smoothness of the option price directly follows from smoothness of the
Gauss kernel. In order to prove existence of the partial derivatives with respect toS, we
hence consider the following representation forV(t,S):

V(t,S) = 1√
2π e−r(T−t)

∫

R

e
− 1

2

(

y− ln(S)

σ
√

T−t

)2

g
(

e(r−1/2σ2)(T−t)+σ
√

T−t y
)

dy.

As g is polynomially bounded, it follows from the Differentiation Lemma (compare e.g.
[Bau92], Lemma 16.2) that for anyp∈ IN,

∣
∣
∣

∂ pV
∂Sp (t,S)

∣
∣
∣= 1√

2π e−r(T−t)

∫

R

∣
∣
∣
∣
∣

∂ p

∂Sp

(

e
− 1

2

(

y− ln(S)

σ
√

T−t

)2
)∣
∣
∣
∣
∣
g
(

e(r−1/2σ2)(T−t)+σ
√

T−t y
)

dy

≤ C

∫

R

e
− 1

2

(

y− ln(S)

σ
√

T−t

)2
∣
∣Pp(S,y)

∣
∣

(

1+eβσ
√

T−t y
)

dy

(2.79)

for some positive constantsC and β . For S fixed, Pp(S, .) is a polynomial. As the

kernel decreases essentially bye−y2
, the integral on the right-hand side of inequality

(2.79) exists, which shows thatV(t,S) is infinitely often differentiable with respect to
S. Similarly, we can use the representation

V(t,S) =
∫

R

1√
2πσ

√
T−t

e−r(T−t) e
−(y−(r−1/2σ2)(T−t))

2

2σ2(T−t) g(Sey)dy

in order to show thatV(t,S) is infinitely often differentiable with respect tot for t < T.
Thus,V(t,S) ∈ C∞,∞ ([0,T)× (0,∞)) ∩C([0,T]× (0,∞)). Let us now show thatV(t,S)
solves the Cauchy problem (2.78). Note first that the terminalcondition is trivially
satisfied. For the dynamics, we use standard tools on stochastic processes: Let us define
the process

Mt := EQ
(
g(ST)

∣
∣F S

t

)
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whereF S
t := σ (Ss;0≤ s≤ t). Then by the Markov property ofS,

Mt = EQ

(

g
(

Ste(
r−1/2σ2)(T−t)+σ(WT−Wt)

)∣
∣
∣St

)

.

Applying Lemma 5 withX = St , Y = WT −Wt and

ϕ (St ,WT −Wt) = g
(

Ste(
r−1/2σ2)(T−t)+σ(WT−Wt)

)

shows thatMt = er(T−t)V(t,St). AsV(t,S) ∈ C1,2, Ito’s Formula leads to the following
dynamics forMt :

dMt = er(T−t)
(
Vt (t,St)+ 1

2σ2S2
t VSS(t,St)+ rStVS(t,St)− rV (t,St)

)
dt

+er(T−t)σStVS(t,St)dWt (2.80)

Define

h(t) := Vt (t,St)+ 1
2σ2S2

t VSS(t,St)+ rStVS(t,St)− rV (t,St) 0≤ t < T.

Recalling that every continuous local martingale of finite variation is a.s. constant (com-
pare e.g. [Kal01], Proposition 17.2, p. 330), we see from (2.80) that

t∫

0

h(s)ds= 0 a.s. for all t ∈ [0,T).

As h is continuous, applying the Fundamental Theorem of Calculusshows that

h≡ 0 a.s.

Now it follows again by continuity ofh and the fact that the distribution ofSt , 0≤ t < T,
has support(0,∞) that

Vt +
1
2σ2S2VSS+ rSVS− rV = 0, (t,S) ∈ [0,T)× (0,∞).

It remains to show uniqueness: Sinceg is assumed to be polynomially bounded, we see
from the definition ofV that it is polynomially bounded with respect toSuniformly in
t ∈ [0,T], i.e.

max
0≤t≤T

|V(t,S)| ≤ C
(

1+Sβ
)

for all S∈ (0,∞) (2.81)
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for some positive constantsC andβ . Consequently, it follows from the Feynman-Kac

Theorem (compare e.g. [KS98], Theorem 5.7.6) thatEt,S
Q

(

e−r(T−t)g(ST)
)

is the unique

solution to the PDE (2.78) within the class of functions thatsatisfy the polynomial
growth condition (2.81).

We now present the implications of the above result to binomial option pricing. As
shown e.g. in Heston and Zhou (2000), there exists a suitabletransformation of vari-
ables so that the tree algorithm associated with the RB model can be identified with
an explicit finite difference approximation to the transformed Cauchy problem [HZ00].
We follow the approach of Heston and Zhou, but we keep notations general so that the
result additionally covers the CRR model. Clearly, the variable transform then depends
on the particular choice of the driftα.

As suggested by the form of the binomial schemes, we use the transformation of vari-
ables

S= s0eαt+σx

with α = r −1/2σ2 for the RB scheme andα = 0 for the CRR scheme. Further, we
introduce the functions

u(t,x) := er(T−t)V(t,S) (2.82)

and

g̃(x) := g
(
s0eαT+σx

)
. (2.83)

If the payoff functiong is polynomially bounded, it follows from Proposition 24 that u
is of classC∞,∞ ([0,T)× (0,∞)) ∩ C([0,T]× (0,∞)). Moreover, it is straightforward to
verify thatu solves the transformed Cauchy problem7

ut +
r−1/2σ2−α

σ ux + 1
2uxx = 0 (t,x) ∈ [0,T)× (−∞,∞)

u(T,x) = g̃(x) x ∈ (−∞,∞).
(2.84)

By means of the transformed Cauchy problem (2.84), we can now link the binomial tree
algorithm to an explicit FDM.

The binomial approach and the explicit FDM The link between the martingale ap-
proach and the PDE approach leads to the following result on numerical option pricing

7In the original paper by Heston and Zhou, the choiceα = r −1/2σ2 results in the heat equation.
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techniques:

Proposition 25. Let S(N) be the binomial process suggested by RB or by CRR, respec-
tively. Then the corresponding tree algorithm for the valuation of path-independent
options can be identified with an explicit FDM that approximates the solution to the
transformed Cauchy problem (2.84). Here we use finite differences of first order in t
and second order in x.

Proof. Note first that if we replace the derivatives in (2.84) by finite differences of first
order in t and second order in x, and neglect the error terms, we obtain the approximation

−
(

u(t,x)−u(t−∆t,x)
∆t

)

≈ r−1/2σ2−α
σ

(
u(t,x+∆x)−u(t,x−∆x)

2∆x

)

+ 1
2

(
u(t,x+∆x)−2u(t,x)+u(t,x−∆x)

(∆x)2

)

, (2.85)

where∆t > 0 and∆x > 0 are the increments in the time and in the space domain, re-
spectively. In order to identify the binomial method with anexplicit FDM based on the
approximation above, we have to fix the following grid:

(
t j ,xi

)
:= ( j ∆t, i ∆x) j = 0, . . . ,N; i = − j,− j +2, . . . , j

with grid size

∆t = (∆x)2 = T/N. (2.86)

Then (2.85) leads to an explicit FDM that approximates the theoretical solution to the
Cauchy problem(2.84) at the grid points specified above. That is, starting from the
terminal values

ûN,i = g̃
(

i
√

T
N

)

, for i = −N,−(N−2), . . . ,N,

we assign an appropriate value to each grid point by the following backward recursion:
For all j = N, . . . ,1 and for alli = − j +1,− j +3, . . . , j −1, we set

û j−1,i = p1û j,i+1 + p2û j,i−1, (2.87)

where

p1(N) := 1
2 + 1

2σ
(
r − 1

2σ2−α
)
√

T
N

p2(N) := 1
2 − 1

2σ
(
r − 1

2σ2−α
)
√

T
N .
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Here û j,i approximates the theoretical solutionu at the grid point(t j ,xi) In particu-
lar, V̂0,0 := e−rT û0,0 is the finite difference approximation to the option priceV(0,s0).
As we note by inspection, the backward recursion (2.87) obtained from finite differ-
ences is identical to that specified by the binomial algorithm. In particular, we have
pu(N) = p1(N) andpd(N) = p2(N).

Remark 16. If we consider the above binomial schemes under the risk-neutral measure,
there is only an asymptotic equivalence between the backward recursion (2.87) and the
backward recursion specified by the binomial method in the sense that

qu(N) = p1(N)+O
(

1
N3/2

)

qd(N) = p2(N)+O
(

1
N3/2

)

(compare Proposition 3).

To conclude, the tree procedure suggested by CRR or by RB can be identified with
an explicit finite difference approximation to the Cauchy problem (2.84). The corre-
sponding explicit finite difference scheme is special in thesense thatit incorporates
distributional information that specifies the underlying grid. By contrast, for a pure
PDE approach, it is necessary to specify the underlying gridexogenously, i.e. one has
to decide how to truncate theSdomain, how to choose grid points, how to relate the grid
sizes in the time and in the space domain, etc. For the binomial tree algorithm, these
issues are settled endogenously by definition of the discrete model, which is of course
advantageous for practical applications.

2.5 The Convergence Behaviour of Binomial Option
Prices

This section deals with the convergence behaviour of binomial option prices for the
different discretisation schemes considered previously.As we will demonstrate both
theoretically and by many numerical examples, the optimal drift model shows superior
performance compared to the alternative methods.

Let us first stress that the convergence behaviour of binomial option prices depends cru-
cially on the valuation problem under consideration, and inparticular on the specific
payoff function. Hence, we analyse the convergence behaviour of binomial trees sep-
arately for the two most common payoff structures; first, forpayoffs that are constant
in the terminal valueS(T) (i.e. cash-or-nothing options); and second, for payoffs that
are linear inS(T) (i.e. plain vanilla options). For the European case, these simple types
of options admit an explicit pricing formula. Hence, in practical applications numeri-
cal option pricing would not be applied to these options. However, their simple payoff
structure allows to derive an asymptotic expansion of the pricing error around the Black-
Scholes value, so that the convergence behaviour of the corresponding binomial prices
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can be analysed theoretically. Importantly,the convergence behaviour observed often
carries over to related, but more complex types of options for which an explicit pricing
formula is not known.Hence regarding practical applications, one can benefit a lot from
analysing these simple payoff structures. This is illustrated for American plain vanilla
puts. In this case, the convergence behaviour of binomial prices can be (partially) antic-
ipated from the asymptotic expansion of the pricing error inits European counterpart.

As for any discrete model, the rate of convergence is a central property of the conver-
gence behaviour of binomial option prices. It measures the (asymptotic) speed/accuracy
trade-off of a numerical method. Regarding practical applications, it is important to
know the order of convergence [HZ00]: Firstly, the rate of convergence helps to rank
competing numerical methods. Almost any method can give fast inaccurate results,
and, given enough computing time, many methods can give arbitrarily accurate results.
Knowing the order of convergence helps to decide which of thecompeting models
should be preferred. Secondly, the rate of convergence indicates whether extrapola-
tion is useful. That is, extrapolation techniques can increase accuracy, but they are only
applicable provided convergence is smooth; i.e. if the rateof convergence is known, if
the coefficient of the leading error term is a fixed constant and if oscillations of higher
order terms are known to be negligible. Consequently, our analysis on the convergence
behaviour of binomial prices is mainly focused on the rate ofconvergence achieved for
the different schemes.

For cash-or-nothing options, the convergence behaviour ofbinomial prices can be de-
duced directly from our results on the fit of the binomial distribution to the lognormal
distribution (compare section 2.2.2). Hence, the binomialprices obtained from con-
ventional schemes converge in general no faster than 1/

√
N, as suggested by the Berry-

Esśeen inequality (compare Corollary 10). For plain vanilla options, the payoff function
exhibits a kink in the terminal stock price, i.e. a discontinuity in the first derivative. As
shown by Diener and Diener and by Chang and Palmer, this payoffstructure leads to
cancellation effects in the asymptotic expansion of the pricing error. We will see that in
this case conventional schemes admit convergence of order 1/N, which is in particular
above the Berry-Esséen bound.

As mentioned above, the order of convergence can be increased by extrapolation pro-
vided convergence is smooth. However, as discussed in Section 2.2.2,the discretisation
error in conventional binomial schemes converges non-smoothly. As a consequence,
for non-smooth payoff functionals, the convergence behaviour of the corresponding se-
quence of binomial option prices is also oscillatory and non-monotone.Thus, there
is low-frequency shrinking according to the rate of convergence, but in addition, there
are high-frequency oscillations. In principle, the presence of oscillations can be traced
back to the fact that when grid size changes, the position of nodes in the tree varies in
relation to some fixed discontinuity or kink in the payoff. A prominent example is the
so-calledsawtooth effectwhich was first observed for barrier options by Boyle and Lau
(1994) [BL94]. In the following, we analyse the non-monotoneconvergence behaviour
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of conventional schemes both theoretically and in practical examples.

The irregular convergence behaviour of conventional schemes is a serious issue for their
application to option valuation. Obvious problems caused by oscillations are the facts
that a finer discretisation does not necessarily provide a better estimate, and that the
option price cannot be obtained by extrapolation methods.

There are many advanced schemes in the literature that are especially designed and op-
timised to a specific valuation problem in order to improve the convergence behaviour
of the pricing error. In Section 2.2.3, we presented advanced binomial schemes that can
be adapted to a given pointx, so that the discretisation error aroundx exhibits a superior
asymptotic behaviour. That is, they establish smooth convergence or they even increase
the rate of convergence. This suggests that these schemes are advantageous for the
practical application of binomial option valuation. In thefollowing, this is discussed in
detail. We will see that the Tian model and the Chang and Palmermodel can be adapted
to the strike value of interest so as to improve the convergence behaviour for both cash-
or-nothing options and plain vanilla options. In particular, extrapolation methods can
be applied to increase the order of convergence. However, the optimal drift model we
suggest can admit convergence of ordero(1/N) without extrapolation for both types
of options. We will demonstrate thatby virtue of its superior rate of convergence, the
optimal drift model is advantageous compared to the conventional schemes and to the
advanced schemes presented.

2.5.1 Constant Payoff Structures (Cash-or-Nothing Options)

This paragraph deals with the convergence behaviour of binomial prices for cash-or-
nothing options, i.e. options that pay a constant amount of money. In this case, the
convergence behaviour of binomial prices is only affected by the discontinuity in the
payoff function.

A cash-or-nothing call (put) with strikeK > 0 pays a cash amountG > 0 if the terminal
value lies aboveK (belowK); i.e.

g(S) = G1{ST≥K} (g(S) = G1{ST<K}).

With Vcash(K) denoting the Black-Scholes price andV(N),cash(K) denoting the binomial
price, we have

∣
∣
∣Vcash(K)−V(N),cash(K)

∣
∣
∣= Ge−rT

∣
∣
∣P(N)

(

S(N)
N ≥ K

)

−Q(ST ≥ K)
∣
∣
∣ .

Consequently, the pricing error is readily available from the distributional fit of the
binomial model to a Brownian motion (compare Section 2.2.2).In particular, according
to the Berry-Esśeen inequality, the sequence of price estimates converges in order 1/

√
N
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(compare Corollary 4):

Proposition 26. Let S(N) be the process suggested by CRR, the process suggested by RB
or any binomial process (2.2) withβ = σ and with risk-neutral transition probabilities.
Then

sup
K

∣
∣
∣Vcash(K)−V(N),cash(K)

∣
∣
∣= O

(
1√
N

)

(2.88)

Remark 17. Note that if the payoff function is piecewise constant with a finite number
of discontinuities, the corresponding binomial prices converge also in order1/

√
N.

We first discuss the convergence behaviour of conventional schemes; i.e. binomial
schemes with constant driftα. This will be illustrated with the schemes suggested
by RB and by CRR. For conventional schemes, the Berry-Esséen inequality is tight.
Furthermore, these schemes suffer heavily from an irregular convergence behaviour.
This will be discussed in detail. Afterwards, we demonstrate the superior convergence
behaviour of the advanced methods discussed in Section 2.2.3.

Conventional Binomial Models

According to Proposition 7, the Berry-Esséen bound (2.88) is tight for the conventional
models; to be precise, we have

Proposition 27. Let S(N) be the process suggested by CRR, the process suggested by
RB or any binomial process (2.2) withβ = σ , α(N) ≡ α constant in N and with
risk-neutral transition probabilities. Then with Ccash(K) (Pcash(K)) denoting the Black-
Scholes price for the cash-or-noting call (put) and C(N),cash(K) (P(N),cash(K)) denoting
the corresponding binomial price,

C(N),cash(K) = Ccash(K)+Ge−rT e−
1
2d2

2√
2πT

b(N)
(

T
N

)1/2
+O

( 1
N

)

and

P(N),cash(K) = Pcash(K)−Ge−rT e−
1
2d2

2√
2πT

b(N)
(

T
N

)1/2
+O

( 1
N

)

with

b(N) = 1−2{−a(N)} = 1−2{−1
2N+ ln(s0/K)+αT

2σ
√

T

√
N}, (2.89)

where, as before,{.} denotes the fractional part.
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Remark 18. Note that the point x at which the binomial distribution function is eval-
uated throughout Section 2.2.2 and Section 2.2.3 is now interpreted as the strike value
of the option. In particular, the advanced schemes will laterbe optimised according to
strike value of the specific valuation problem.

According to our previous analysis, we see from Proposition27 that convergence is
non-smooth because the oscillating factorb(N) enters the coefficient of the leading error
term. As explained above, this has undesirable consequences for practical applications.
We will see next that the irregular convergence behaviour for cash-or-nothing options
suffers from two main effects;the sawtooth effectandthe even-odd problem.

Before, we wish to add that as−1< b(N)≤ 1, the oscillations of the leading error term
are bounded by

−Ge−rT ϕ(d2)
1√
N

< c1(N) 1√
N
≤ Ge−rT ϕ(d2)

1√
N
, (2.90)

whereϕ(.) is the lognormal density (compare Corollary 5). We can hence formulate
the following result on the amplitude of the oscillations:

Corollary 11. The smaller e−rT ϕ(d2), the tighter the bounds on the leading error term,
i.e. the smaller the amplitude of the oscillations.

The sawtooth effect In this section, we analyse the convergence behaviour of bino-
mial prices along values ofN that are of the same parity. The general case is analysed
in the next paragraph on the even-odd problem.

Figure 2.2 shows the binomial prices for a cash-or-nothing call obtained from the CRR
tree and from the RB tree, respectively. The estimates are computed for even values of
N; that is,N = 10 : 2 : 4000. The dashed red lines indicate the bounds on the leading
error term observed in (2.90).
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Fig. 2.2: Convergence pattern for a cash-or-nothing call (Neven)
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

As we see in Figure 2.2, the binomial prices are neither consistently greater nor
less than the Black-Scholes price; rather, they alternate between over- and underesti-
mation with some highly accurate values in between. The behaviour observed is called
the sawtooth effect. Let us remark that we will see a similar pattern if we restrict the
sequence of price estimates to odd values ofN. We next explain this pattern by the
asymptotics of the pricing error derived in Proposititon 27. Further, these rigorous re-
sults are illustrated with intuitive arguments on the specific allocation of probability
mass in the binomial model under consideration; i.e. the location of terminal nodes in
the corresponding tree.

For any number of periodsN, there is some integerl(N) such that the strike valueK
falls between the terminal node corresponding tol(N)−1 up-movements and that cor-
responding tol(N) up-movements; i.e.

s(N)
N (l −1) = s0ul−1(N)dN−l+1(N) < K ≤ s0ul (N)dN−l (N) = s(N)

N (l).

Assume first that the strike valueK is close tos(N)
N (l); that is, there is a terminal node

in the corresponding binomial tree which is just above the strike. Intuitively, in this
case the probability to end up in the money is expected to be too high compared to the
continuous-time model, which results in an overestimationof the exact price. In fact, the
above argument can be verified from the asymptotics of the discretisation error because
if K is close tos(N)

N (l), we have thatb(N)≈ 1 (compare (2.56)). Consequently, the lead-
ing error term is close to its upper boundGe−rT ϕ(d2)/

√
N. By contrast, in case thatK

is close tos(N)
N (l −1), we have thatb(N)≈−1, so that the leading error term is close to

its lower bound−Ge−rT ϕ(d2)/
√

N. Hence, in the latter case the asymptotic expansion
of the discretisation error indicates that the binomial model underestimates the exact
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price. This, too, is coherent with intuition: ForK close tos(N)
N (l −1), we anticipate that

the likelihood to end up in the money is too low compared to thecontinuous-time situa-
tion, which then implies that the option price is underestimated. Let us finally consider
the caseK = (s(N)

N (l −1)s(N)
N (l))1/2. Then according to (2.56), the leading term in the

asymptotic expansion of the pricing error is equal to zero. Hence, this situation leads
to a highly accurate price estimate. In this case, the strikevalue falls on the geometric
average between the two neighbouring nodes.

In the above, we have considered the number of periodsN to be fixed.If we now assume
that the step size changes, the position of nodes in tree varies in relation to the strike
value. This leads to the observed oscillations in the convergence pattern.In particular,
the above situations occur as the three extreme cases; that is, the price estimate touches
the upper bound, it is highly accurate or it touches the lowerbound.

To further illustrate the above effect, let us definem as the effective number of up-
movements, i.e.

m= ♯up-movements− ♯down-movements.

In our example, the CRR model withN = 94 periods has a terminal node at 100.028.
Hence, the strike value (K = 100) falls just below that node. The node corresponds
to the paths with an effective number of up-movements given by m = 2 (l = 48). If
the number of periods is increased toN = 96, the distance between adjacent possible
realisations shrinks. Here a path withm= 2 (l = 49) effective up-movements ends at
99.9738, which is now below the strike valueK. Consequently, the location of nodes
is such that the risk-neutral probability to end up in the money (.5278) is overestimated
for N = 94 (.5677), but it is underestimated forN = 96 (.4904). We therefore observe a
sudden drop in the corresponding binomial prices from 47.7604 £ to 44.3732 £.

The specific oscillations observed in our example can be interpreted as follows: As the
step size increases, the CRR model leads to price estimates that increase in absolute
value until a sudden downward drop. This is again followed byan increase in absolute
value in successive discretisation steps. By contrast, the price estimates obtained from
the RB tree decrease in absolute value until an abrupt rise. Let us stress thatthe specific
form of the sawtooth pattern observed for our example is not generic; rather, it depends
on the parameter setting. This is easy to see: Note first that for even values ofN, each
terminal node corresponds to an even number of effective up-movements. Letm be the
effective number of up-movements and suppose thatF(m) > 0 is such that

exp
(

mσ
√

T
F(m)

)

= K
s0eαT . (2.91)

In our example, the input parameters are such thatK/s0 > 1, while

K/s0e(r−1/2σ2)T < 1. Hence, we see from (2.91) that for the CRR model (i.e.
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α = 0), the strike always lies between two nodes that exhibit apositive effective
number of up-movements. By contrast, for the RB model (i.e.α = r − 1/2σ2), the
strike always lies between two nodes that exhibit anegativeeffective number of
up-movements. The specific form of the sawtooth effect observed for our example can
now be explained by the fact that while

e|m|σ
√

T/N+2 < e|m|σ
√

T/N,

we have

e−|m|σ
√

T/N < e−|m|σ
√

T/N+2.

Consequently, ifN approachesF(|m|) (along the sequence of even integers),

s0e|m|σ
√

T/N approachesK from above. Yet, if N approachesF(−|m|),
s0e(r−1/2σ2)Te−|m|σ

√
T/N approachesK from below. This explains why in our exam-

ple, the binomial prices obtained from the CRR model are piecewise increasing, while
those obtained from the RB model are piecewise decreasing. IfN rises aboveF(|m|) or
F(−|m|), respectively, the sequence of price estimates faces a sudden downward drop
or an abrupt rise. We observe from (2.91) that

F(−|m|) = F(|m|) = m2
(

σ
√

T
ln(K/s0)−αT

)2
.

This shows that in our example the oscillation frequency is higher for
the CRR model than for RB model becauseσ

√
T/| ln(K/s0)| ≈ 4.9, while

σ
√

T/| ln(K/s0)− (r −1/2σ2T)| ≈ 14.3.

In general, the above arguments imply that the specific form of the sawtooth effect is
determined according to the following result:

Proposition 28. Suppose we limit the sequence of price estimates to values of the
same parity (either even or odd). Then the leading error termis piecewise increas-
ing if s0eαT < K and piecewise decreasing for s0eαT > K. Moreover, the greater
σ
√

T/| ln(K/s0)−αT|, the lower the frequency of the oscillations.

Remark 19. Clearly, the above result can alternatively be deduced from the formula
(2.89) for b(N).

Corollary 12. If the stock price parameters are fixed, the frequency of oscillations de-
pends on the strike value only. Then, the smaller the distance between K and s0eαT , the
lower the frequency of the oscillations.

We anticipate from Corollary 12 that the conventional schemes admit smooth con-
vergence for the limit caseK = s0eαT . This will be verified later. Before, we wish
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to demonstrate a second main effect of irregular convergence behaviour other than the
sawtooth-effect: the even-odd effect.

The even-odd problem In the above, we have limited our analysis to values ofN
that are of the same parity. We next investigate the convergence behaviour of binomial
prices along integers of alternating parity. We will see that in this case, the convergence
pattern exhibitsmicro oscillationsbetween even and odd values ofN. This effect is
often called the even-odd problem. The micro oscillations are superimposed on the
marco oscillationsinvestigated previously; i.e. they are superimposed on thesawtooth
pattern along the even integers and the sawtooth pattern along the odd integers. This is
illustrated forN = 150 : 1 : 300 in Figure 2.3.

Fig. 2.3: Convergence pattern for a cash-or-nothing call: Micro oscillations
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100
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The presence of micro oscillations can be deduced from the asymptotic expansion of
the pricing error becauseb(N) involves the fractional part of−1/2N (compare (2.89)).
To give an intuitive argument on the presence of micro oscillations, let us recall from
(2.39) that the root ofs0u(N)ad(N)N−a = K is of the form

a(N) = 1
2N+c

√
N

for some appropriate constantc. Hence for reasonable large values ofN, the roota(N)
increases approximately according toa(N+1) ≈ a(N)+1/2. However, in the discrete
model an increase by 1/2 is not possible. As a consequence, the relative number of
terminal nodes in the in-the-money region is approximatelythe same forN andN +2,
while it is significantly different forN+1. This difference affects the probability mass
assigned to the in-the-money region and hence causes the even-odd problem (compare
Table 2.1).
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Table 2.1: The even-odd problem for the RB tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

N 200 201 202 BS value

a(N) 99.5062 100.0050 100.5038 —
b(N) 0.0125 -0.9900 0.0075 —
l(N) 100 101 101 —

Nodes in the money/ total nodes 0.50249 0.50000 0.50246 —
Probability to end up in the money 0.5282 0.5000 0.5280 0.5278

Binomial price 47.7912 45.2419 47.7786 47.7604

It remains to consider the convergence behaviour of cash-or-nothing calls for the
border caseK = s0eαT . As discussed above, we expect that in this situation, the conven-
tional schemes behave differently than in the general case.In particular, we anticipate
that convergence is smooth. This is demonstrated next.

The border case K= s0eαT Note first that the border case associated with the CRR
model occurs for the at-the-money situation; i.e.K = s0 (for an analysis of this case
compare also [DD04]). By contrast, the border case associated with the RB model cor-
responds to the situationK = s0e(r−1/2σ)T .

We first investigate the corresponding binomial prices along even integers. In this
case, as we observe from the asymptotic expansion of the discretisation error, we have
b(N) = 1, so that the coefficient of the leading error term always coincides with its
upper bound. Consequently, the price estimates converge smoothly according to

C(N),cash(s0eαT) = Ccash
(
s0eαT

)
+Ge−rT e−

1
2d2

2√
2πT

(
T
N

)1/2
+O

( 1
N

)
, N even,

whered2 is evaluated ats0eαT .

Smooth convergence is illustrated for the CRR tree in Figure 2.4. The plot shows the
convergence pattern for an at-the-money cash-or-nothing call with N = 10 : 2 : 4000.
Except for the strike value, the parameters are kept as before.
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Fig. 2.4: Convergence pattern for an at-the-money cash-or-nothing call(N even)
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100,strike K = 95

As in the above, we wish to add an intuitive argument on smoothconvergence in the
border case by means of the specific allocation of probability mass. Since we limit our
analysis to even values ofN, it follows from symmetry that the terminal nodeS(N)(N/2)
corresponding to zero effective up-movements (i.e. the centre of tree) coincides with
K = s0eαT ; that is,K = S(N)(N/2). As a result, the centred node always contributes to
the probability mass assigned to the in-the-money region. Consequently, for any even
number of periodsN, the binomial price overestimates the exact price to the maximum
extent. Let us emphasise that the benefits due to smooth convergence overcompensate
the fact that the price estimates are at the maximal distanceto the exact price. In partic-
ular, smooth convergence allows for extrapolation methods.

Let us now consider the border case for any odd value ofN. Then the strikeK = s0eαT

is again located at the centre of the tree; yet, asN is odd, the tree is centred around the
geometric average of the terminal nodesS(N)(N+1

2 ) andS(N)(N−1
2 ) corresponding to the

effective number of up-movementsm= 1 andm= −1, respectively. Hence, we have

K =
(

S(N)
(

N+1
2 −1

)
S(N)

(
N+1

2

))1/2
. (2.92)

Consequently, the strike value is always optimally located in relation to its neighbouring
nodes, so that we expect a higher order of convergence. To verify the above conjecture
by the asymptotic expansion of the pricing error, note that according to (2.92),b(N) = 0
for any odd value ofN. As a result, the first error term cancels out, so that the rateof
convergence is now 1/N. Further, it is clear from previous results that the leadingterm
in the discretisation error converges monotonically (compare Corollary 8 and Corollary
9).

Figure 2.5 illustrates the price estimates obtained from the CRR tree along
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N = 9 : 2 : 3999. Convergence is obviously faster than in the previous case (note that
the scaling of the y-axis is not the same as in Figure 2.4). Apparently, convergence is
smooth.

Fig. 2.5: Convergence pattern for an at-the-money cash-or-nothing call(N odd)
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100,strike K = 95

To conclude, we have seen that for the conventional schemes suggested by RB and
by CRR, the binomial prices of cash-or-nothing options converge in general no faster
than in order 1/

√
N. Further, convergence is non-smooth; it suffers from the sawtooth

effect and from the even-odd problem. The only exception is the situationK = soeαT .
In this case, both schemes admit smooth convergence along integers of the same parity.
In particular, if the binomial prices are evaluated along odd values ofN, we achieve
convergence of order 1/N.

Let us stress that we obtain superior convergence properties for the border case
K = soeαT because the corresponding valuation problem matchescoincidentallywith
the definition of the binomial model under consideration. Wenext illustrate the con-
vergence behaviour of cash-or-nothing prices obtained from the advanced binomial
schemes presented in Section 2.2.3; that is, the models suggested by Tian and by Chang
and Palmer as well as the optimal drift model we suggest. These models are advan-
tageous for the practical application of binomial option pricing because they can be
adapted to the strike value of interest. For cash-or-nothing options, they achieve smooth
convergence or increase the rate of convergencefor any specific strike value.

Advanced Binomial Models from Literature

The advanced binomial schemes presented in Section 2.2.3 can be adapted to a given
pointx so that the discretisation error aroundx exhibits a superior asymptotic behaviour.
In principle, this is based on the following idea: We start from some binomial process
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with constant driftα(N) = α andβ = σ . For any number of periodsN, the drift is then
individually corrected for in order to improve the positionof the pointx in relation to
its neighbouring nodes. Clearly, the resulting model does nolonger exhibit a constant
drift; yet, it achieves a superior asymptotic behaviour of the discretisation error around
x. For application to numerical option pricing,we simply identify the point x with the
strike value of interest. This is illustrated in the following.

The Tian model Let S(N)
α be the binomial process (2.2) withβ = σ andα(N) ≡ α

constant inN. Further, letlα(N) denote the number of up-movements such that the

strike valuesK lies between the nodess(N)
N (lα(N)−1) ands(N)

N (lα(N)). According to
the results from Section 2.2.3, the Tian model can be adaptedto the strike value of
interest so that the strike always falls onto the neighbouring upper nodes(N)

N (lα(N))
(compare (2.58)). The Tian model hence achievesb(N) = 1 for any number of periods
N, so that the leading error term always admits its upper bound. As a consequence, the
pricing error converges smoothly (compare Proposition 11):

Proposition 29. For the Tian model, the binomial price of a cash-or-nothing call admits
the following asymptotic behaviour:

C(N),cash(K) = Ccash(K)+Ge−rT e−
1
2d2

2√
2πT

(
T
N

)1/2
+O

( 1
N

)
.

Remark 20. Note that the original driftα does not enter the leading term of the pricing
error.

Figure 2.6 illustrates smooth convergence of the Tian tree for N = 10 : 1 : 4000. As
in the original paper, the Tian tree is superimposed on the CRR tree (i.e.α = 0); yet as
mentioned above, the drift does not significantly influence the convergence pattern.

Fig. 2.6: Convergence pattern for a cash-or-nothing call: The Tian tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100
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Due to smooth convergence, extrapolation methods can be applied to the Tian
model. This is illustrated next. Before, let us give a short reminder on Richardson
extrapolation: Suppose thatC(N) converges smoothly to the Black-Scholes priceCBS,
i.e. there are some orderr and some constantar such that

C(N) = CBS+ar
1

Nr +O
( 1

Ns

)
, s> r.

Then the error ratio is of the form

ρ(2N) =
C(N)−CBS
C(2N)−CBS

= 2r +O
( 1

Ns

)
.

It hence converges toρ = 2r . Extrapolating the observed values (2-point Richardson
extrapolation) leads to the aggregated price estimate

Ĉ(2N) := ρC(2N)−C(N)
ρ−1 ,

which admits a pricing error of orderO(1/Ns). This means that the aggregated price
estimate is ofhigher orderof accuracy than the original price estimates (for details on
Richardson extrapolation see [Tia99]).

According to Proposition 11, applying Richardson extrapolation to the Tian model leads
to aggregated estimates of the form

C(2N),cash(K) = Ccash(K)+
√

2−2√
2−1

a1
T
2N +o

( 1
N

)
, (2.93)

where

a1 = Ge−rT e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T − d2

2T

)

.

The aggregated estimates hence converge in order 1/N. However, as we illustrate next,
convergence is no longer smooth. The leading error term converges monotonically; yet
the fluctuations of ordero(1/N) are not negligible. Consequently, a further extrapola-
tion step cannot be applied.

Figure 2.7 illustrates the sequence of aggregated estimates Ĉ(2N). Recall that in our
numerical example, the Tian tree is superimposed on the CRR model (i.e. α = 0). In
contrast to the original estimates, for the aggregated estimates the particular choice of
α enters the coefficient of the leading error term. The left plot shows the aggregated
estimates along even values ofN; i.e. 2N = 200 : 4 : 4000 (N = 100 : 2 : 2000). The
plot on the right-hand side illustrates the aggregated estimates along odd values ofN;
i.e. 2N = 202 : 4 : 3998 (N = 101 : 2 : 1999). Apparently, the aggregated estimates are
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exposed to an even-odd effect.

Fig. 2.7: Convergence pattern for a cash-or-nothing call: The Tian tree with 2-point Richardson extrapo-
lation (superimposed on CRR)
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

The dashed red curve illustrates the leading error term of order 1/N. The aggregated
price estimates oscillate around that curve in ordero(1/N). The oscillations observed
involve the difference between the constant driftα and the modified drift̃α(N). With
the notations from Section 2.2.3, we have

α̃(N) =
2σ
√

T/N
T (aα(N)− lα(N))+α

(compare (2.59)). In particular, due to the factoraα(N)− lα(N), we anticipate an even-
odd effect.

We next consider the convergence behaviour of cash-or-nothing calls for the model
suggested by Chang and Palmer. The CP model can be adapted to thestrike value of
interest so that convergence of order 1/N is achieved without extrapolation.

The Chang-Palmer model As in the above, letS(N)
α be the binomial process (2.2)

with β = σ and α(N) ≡ α constant inN. Further, letlα(N) denote the number of

up-movements for whichK ∈ (s(N)
N (lα(N)− 1),s(N)

N (lα(N))]. According to previous
results, the CP model can be adapted to the strike value of interest so that the strike al-
ways falls onto the geometric average of the two neighbouring nodes (compare (2.62)).
Consequently, for any number of periodsN, we haveb(N) = 0. This implies that the
first error term in the asymptotic expansion of the pricing error cancels out (compare
Proposition 13):
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Proposition 30. Let S(N) be any binomial process (2.2) withα(N) ≡ α constant and
β = σ . For the superimposed CP model, the binomial price of a cash-or-nothing call
admits the following asymptotic expansion:

C(N),cash(K) = Ccash(K)+

Ge−rT e−
1
2d2

2√
2π

(
1

2σ2d1(r −α)2 +
2−d1d2−d2

1
6σ

√
T

(r −α)+
d3

1+d1d2
2+2d2−4d1
24T

)
T
N +o

( 1
N

)
.

Remark 21. As for the extrapolated Tian model, convergence of cash-or-nothing prices
obtained from the CP model is of order1/N. However, for the CP model, this order is
achieved without extrapolation.

Figure 2.8 illustrates the convergence behaviour of the CP tree for even
(N = 200 : 2 : 4000) and for odd values ofN (N = 201 : 2 : 3999). As in the orig-
inal paper by Chang and Palmer, the CP tree is superimposed on the CRR tree (i.e.
α = 0).

Fig. 2.8: Convergence pattern for a cash-or-nothing call: The CP tree (superimposed on CRR)
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

Apparently, we observe oscillations and an even-odd effect. As in the above, we
anticipate the presence of oscillations from the fact that the distance between the original
drift α and the modified driftα(N) varies inN. With the notations from Section 2.2.3,
we have

α̃(N) =
2σ
√

T/N
T

(
aα(N)− lα(N)+ 1

2

)
+α

(compare (2.63)).
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We next investigate the convergence behaviour of cash-or-nothing call prices obtained
from the OD model we suggest. If we adapt the OD tree to the strike value of interest,
we can achieve convergence of ordero(1/N).

The Optimal Drift Model

Let S(N)
α be the binomial process (2.2) withβ = σ andα(N) ≡ α constant inN. As

explained previously, the optimal drift model is based on the CP model. In contrast
to the CP model, the driftα of the embedded processS(N)

α is adapted to the valuation
problem under consideration. This further improves the convergence behaviour of cash-
or-nothing call prices. In particular, the OD model can achieve convergence of order
o(1/N) (compare Proposition 14):

Proposition 31. For the optimal drift model, the binomial price of a cash-or-nothing
call admits the following asymptotic behaviour: If

D(K) = −d4
1(K)+σ

√
Td3

1(K)−d2
1

(
1+σ2T

)
+5σ

√
Td1(K)+2≥ 0,

we have

C(N),cash(K) = Ccash(K)+o
( 1

N

)
;

otherwise, we have

C(N),cash(K) = Ccash(K)+

Ge−rT e−
1
2d2

2√
2π

1
36Td1

(
d4

1 +d2
1d2

2 +5d1d2−4d2
1 −2−d3

1d2
) 1

N +o
( 1

N

)
.

Remark 22. The OD tree converges in order o(1/N) if d1(K) is reasonably small in
absolute value. In essence, this condition excludes deep-in-the-money and deep-out-of-
the money situations only. Further, even if the convergencerate cannot be improved,
the OD tree is still advantageous compared to the CP model. In this case, the OD
model always exhibits a smaller constant of the leading errorterm: Recall that in our
generalisation of the Chang and Palmer model, the coefficientof the leading error term
is a quadratic function inα. In the OD model, the constant of leading error term is
defined as the vertex of the corresponding parabola.

Figure 2.9 illustrates the convergence behaviour of the OD tree for even
(N = 200 : 2 : 4000) and for odd values ofN (N = 201 : 2 : 3999). For our numerical
example, the strike value is close to the present stock price; consequently, convergence
of the OD tree is of ordero(1/N). While the estimates obtained from the CP tree os-
cillate around a monotonically decreasing function of order 1/N, those obtained from
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the OD tree oscillate around the Black-Scholes value. Consequently, amongst the com-
peting models, the OD tree is clearly the preferred one by virtue of its superior rate of
convergence (compare Table 2.2).

Fig. 2.9: Convergence pattern for a cash-or-nothing call: The OD tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100
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Table 2.2: Cash-or-nothing call prices under conventionaland advanced binomial schemes:
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

N CRR tree RB tree Tian CP tree OD tree
Tian

with extrapolation

200 47.5257 47.7912 50.3228 47.7798 47.7596 47.6913
300 48.9204 47.3242 49.8476 47.7713 47.760391 47.7253
400 46.1524 47.0456 49.5701 47.7717 47.7607 47.7529
500 47.1027 46.8554 49.3772 47.7685 47.7607 47.7556
640 48.0365 46.6682 49.1881 47.7661 47.7608 47.7574
820 48.8635 46.5021 49.0207 47.7644 47.7608 47.7484
1000 47.1805 48.6610 48.9022 47.7644 47.7608 47.7555
2000 47.9034 47.6615 48.5669 47.7623 47.760355 47.7574
3000 47.9178 47.2180 48.4187 47.7617 47.760428 47.7596
4000 47.7477 48.0926 48.3304 47.7614 47.760450 47.7594
5000 47.5104 47.7922 48.2702 47.7612 47.760384 47.7594
10000 47.5869 47.7666 48.1208 47.7608 47.760427 47.7601
15000 47.7984 47.8921 48.0546 47.7607 47.760418 47.7602

BS value 47.760425
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2.5.2 Linear Payoff Structures (Plain Vanilla Options)

In the following, we consider the convergence behaviour of binomial prices for plain
vanilla options; i.e. in case of a call (put), we have

g(S) = (ST −K)+ (g(S) = (K−ST)+)

with strike valueK. While cash-or-nothing options exhibit a discontinuity at the strike
value, plain vanilla options exhibit a kink; i.e. a discontinuity in the first derivative with
respect to the terminal stock priceS(T). In the following, we will demonstrate how the
specific structure of a plain vanilla option influences the asymptotic behaviour of the
discretisation error in the corresponding binomial prices.

Our theroretical analysis of the pricing error will be limited to the risk-neutral case. In
this case (and only in this case), the binomial price of a plain vanilla option can be rep-
resented as the weighted difference of two binomial distribution functions. As a result,
the Berry-Esśeen inequality remains applicable. This will be explained in detail. Yet,
the two binomial distribution functions representing the price of a plain vanilla option
are related to one another, so that cancellation effects occur. As analysed by Chang
and Palmer and by Diener and Diener, the leading term in the pricing error cancels
out. Consequently,any risk-neutral binomial model admits convergence of order 1/N.
In particular, in contrast to cash-or-nothing options, theBerry-Esśeen inequality is no
longer tight for a constant driftα. However, conventional methods still suffer from an
irregular convergence behaviour.

We will further see that the advanced schemes from literature remain superior to conven-
tional methods: For plain vanilla options, they do not increase the rate of convergence,
but they can achieve smooth convergence by adapting the treeto the strike value of in-
terest. This will be explained in detail.

In contrast to the advanced schemes suggested by Tian and by Chang and Palmer, the
optimal drift model improves the rate of convergence. We will demonstrate thatthe op-
timal drift model can again admit convergence of order o(1/N). Further, we will briefly
discuss the application of the OD model to the American case.For an American put, an
explicit pricing formula is not available. The above results suggest that the OD model
will be of great practical value for American option valuation by virtue of its superior
rate of convergence. This issue will be illustrated numerically.

The Pricing Error for Risk-Neutral Transition Probabilities

In the following, we restrict our attention to binomial models with risk-neutral transition
probabilities. Thus, in this case, the binomial call price can be written as the weighted
sum of two binomial distribution functions. Consequently, the pricing error can be
analysed using previous results.
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Recall first that according to the Black-Scholes formula, the call price in the continuous-
time setting is of the form

C(K) = e−rT EQ
(
ST1{ST≥K}

)
−Ke−rT Q(ST ≥ K)

= s0Φ
(

ln(s0/K)+(r+1/2σ2)T

σ
√

T

)

−Ke−rT Φ
(

ln(s0/K)+(r−1/2σ2)T

σ
√

T

)

(compare e.g. [KK01], p. 101) or equivalently

C(K) = s0Q̃(ST ≥ K)−Ke−rT Q(ST ≥ K) ,

whereQ̃ is the unique equivalent martingale measure if prices are expressed in units of
St (compare e.g. [KK01], Theorem III.38 on numeraire invariance). It is well-known
that we have a similar result for the call price in the binomial model8: The binomial call
price is given by

C(N) (K) = e−rT EQ(N)

(

S(N)
N 1{S(N)

N ≥K}

)

−Ke−rT Q(N)
(

S(N)
N ≥ K

)

. (2.94)

There exists a suitable probability measureQ̃(N) under which the first term on the right-
hand side of equation (2.94) can be determined from the distribution of S(N) evaluated
at the strikeK. Similarly as in the continuous-time situation, the required change-
of-measure involves introducingS(N) as the numeraire. To be precise on the above
arguments, note that

e−rT EQ(N)

(

S(N)
N 1{S(N)

N ≥K}

)

=

e−rT
N
∑

j=l(N)

(N
j

)
qu(N) j (1−qu(N))N− j s0u(N) jd(N)N− j =

s0
N
∑

j=l(N)

(N
j

)(

qu(N)u(N)e−rT/N
) j (

(1−qu(N))d(N)e−rT/N
)N− j

,

where as beforequ(N) is the risk-neutral probability for an up-movement, andl(N)
is the smallest integerl such thats0u(N)l dN−l (N) ≥ K (compare [CRR79]). We now
observe that

e−rT EQ(N)

(

S(N)
N 1{S(N)

N ≥K}

)

= s0Q̃(N)
(

S(N)
N ≥ K

)

, (2.95)

8In the above, we have agreed to use the term binomial price ”ina loose sense”. Yet in this section,
we have to be more precise using this term.



94 Chapter 2. Binomial Pricing for Single-Asset Options

whereQ̃(N) :=
⊗N

k=1Q̃(1,N) with

Q̃(1,N)(1) := q̃u(N) := qu(N)e−rT/Nu(N) (2.96)

and

Q̃(1,N)(−1) := q̃d(N) := (1−qu(N))e−rT/Nd(N).

Note that ˜qu(N)+ q̃d(N) = 1. Further, we have absence of arbitrage opportunities for
N sufficiently large (compare Corollary 1). By (AAO), we haved(N) < erT/N < u(N),
which implies that 0≤ q̃u(N) ≤ 1. Consequently, if the number of periodsN is suffi-
ciently large,Q̃(N) is a well-defined probability measure. The binomial call price can
hence be represented as the weighted difference of two binomial distribution functions;
that is,

C(N) (K) = s0Q̃(N)
(

S(N)
N ≥ K

)

−Ke−rT Q(N)
(

S(N)
N ≥ K

)

. (2.97)

Remark 23. Let us stress that the above representation of the binomial call price de-
pends crucially on the assumption of risk-neutrality. For other probability measures
P(N) different from the risk-neutral measure Q(N), we cannot give an analogue to the
representation (2.97) because the definitions

P̃(1,N)(1) := p̃u(N) := pu(N)e−rT/Nu(N) (2.98)

and

P̃(1,N)(−1) := p̃d(N) := (1− pu(N))e−rT/Nd(N)

do not result in a well-defined probability measureP̃(N) :=
⊗N

k=1 P̃(1,N). We always
havep̃u(N)+ p̃d(N) 6= 1.

The above result suggests in particular that the Berry-Esséen bound9 remains appli-
cable for plain vanilla options in the risk-neutral case; i.e. binomial prices converge in
orderO(1/

√
N):

Proposition 32. Let S(N) be any binomial process (2.2) withβ = σ and with risk-
neutral transition probabilities. Then for any strike value K, the binomial price of a

9For plain vanilla options, the minimal convergence rate is of course not uniform in the strike value.
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plain vanilla call converges in order1/
√

N; i.e.

∣
∣
∣C(K)−C(N) (K)

∣
∣
∣= O

(
1√
N

)

.

Proof. The following proof is based on the representation (2.97) for the binomial call
price. We consider the two terms in the above representationseparately. Clearly, the
second termKe−rT Q(N)(S(N)

N ≥ K) is the binomial price of a cash-or-nothing call with
strikeK and promised cash amountK. Hence, for any strike valueK,

Ke−rT
∣
∣
∣Q(ST ≥ K)−Q(N)

(

S(N)
N ≥ K

)∣
∣
∣= O

(
1√
N

)

.

To deal with the first term on the right-hand side of equation (2.97), we show that if the
measure is changed fromQ(N) to Q̃(N), the assertion of Proposition 5 is satisfied with
µ =

(
r +1/2σ2

)
(instead ofµ = r −1/2σ2). Consequently, we need to show that

∣
∣
∣µQ̃(N)(N)−

(
r +1/2σ2

)
∣
∣
∣

!
= O

(
1√
N

)

(2.99)

and

∣
∣
∣
∣

σ2

σ2
Q̃(N)

(N)
−1

∣
∣
∣
∣

!
= O

(
1√
N

)

(2.100)

where the characteristicsµQ̃(N)(N) and σ2
Q̃(N)(N) are computed with respect tõQ(N)

following (2.8) and (2.9), respectively. Note from the asymptotic expansion ofqu(N)
(see (2.15)) that

q̃u(N) = 1
2 + 1

2σ
(
r −α(N)+1/2σ2

)(
T
N

)1/2
+O

(
1

N3/2

)

(compare also [DD04], Prop. 3.3). Consequently,

µQ̃(N)(N)
(2.8)
= α(N)+σ

(
N
T

)1/2
(2q̃u(N)−1) =

(
r + 1

2σ2
)
+O

( 1
N

)

and

σ2
Q̃(N)(N)

(2.9)
= 4σ2q̃u(N)(1− q̃u(N)) = σ2 +O

( 1
N

)
,

which shows that the requirements (2.99) and (2.100) are satisfied. Hence, it follows
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from Proposition 5 that

sup
K

∣
∣
∣
∣
Q̃(N)

(

S(N)
N ≥ K

)

−Φ
(

ln( s0
K )+(r+ 1

2σ2)T

σ
√

T

)∣
∣
∣
∣

=

sup
K

∣
∣
∣Q̃(N)

(

S(N)
N ≥ K

)

− Q̃(ST ≥ K)
∣
∣
∣ = O

(
1√
N

)

,

which completes the proof.

Remark 24. It is clear that Proposition 32 generalises to any piecewise linear payoff
structure and in particular to plain vanilla puts.

As discussed previously, the above result follows essentially from the fact that
the binomial call price can be written as a weighted sum of twobinomial dis-
tribution functions both evaluated atl(N), which is the smallest integer such that
s0u(N)l d(N)N−l ≥ K. The corresponding success probabilities are related to each other
according to definition (2.96). We expect this relationshipto cause cancellation effects
if we expand the discretisation error of the two distribution functions. In fact, as shown
by Diener and Diener and by Chang and Palmer, in total the leading term of the pricing
error cancels out. As a result, binomial prices of plain vanilla options converge in order
1/N (compare [DD04] Thm. 2.1., [CP07], p. 93):

Proposition 33. Let S(N) be any binomial process (2.2) withβ = σ and risk-neutral
transition probabilities. Then the binomial price of a plain vanilla option (call or put)
admits the following asymptotic behaviour:

V(N)(K) = V(K)+ s0e−
1
2d2

1

24σ
√

2π
√

T

(
f (N)−12σ2

(
b2(N)−1

))
T
N +o

( 1
N

)
,

where

f (N) = −12T(r −α(N))2 +4
(
d2

1 −d2
2

)
(r −α(N))−σ2

(
6+d2

1 +d2
2

)
.

Conventional Schemes

According to Proposition 33, binomial prices of plain vanilla options converge faster
than suggested by the Berry-Esséen inequality. Note that the above result also applies
to binomial prices obtained from conventional schemes; i.e. for schemes with constant
drift α. By contrast, we have seen that for cash-or-nothing options,convergence of order
1/N can only be achieved if the driftα is non-constant and adapted to the valuation
problem of interest, as is done in the advanced models considered previously. On the
other hand, Proposition 33 also indicates that if the driftα is constant, binomial prices
of plain vanilla options still suffer from non-monotone convergence and the presence of
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an even-odd effect.

Let us stress that the above result does not cover the schemessuggested by CRR and by
RB because these schemes do not assume risk-neutral transition probabilities (compare
Remark 23). However, numerical results suggest that the corresponding sequence of
price estimates converges also non-smoothly in order 1/N (compare Figure 2.10).

Fig. 2.10: Convergence pattern for a plain vanilla put: The CRR tree and the RB tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, strikeK = 100

Apparently, in contrast to cash-or-nothings options, a sawtooth pattern is not
present. Rather, the CRR and RB price estimates oscillate in formof scallops. In fact,
the presence of scallops suggests that the sequenceb(N) enters the leading error term
quadratically, so that the price estimates oscillate in form of parabolas.Note that this
observation matches with the asymptotic expansion of the pricing error obtained for
the risk-neutral case. By contrast, for cash-or-nothing options, the sawtooth effect is
due to the fact thatb(N) enters the leading term of the pricing errorlinearly.

Advanced Schemes from Literature

For the advanced schemes suggested by Tian and by Chang and Palmer, Proposition 33
leads to the following asymptotic expansion of the pricing error:

Proposition 34. Let S(N) be any binomial process (2.2) withα(N) ≡ α constant and
β = σ . For the superimposed Tian model, the binomial price of a plain vanilla option
admits the following asymptotic expansion:

V(N)(K) = V(K)+ s0e−
1
2d2

1

24σ
√

2π
√

T
f T

N +o
( 1

N

)
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with

f = −12T(r −α)2 +4
(
d2

1 −d2
2

)
(r −α)−σ2

(
6+d2

1 +d2
2

)
.

For the superimposed CP model, we have

V(N)(K) = V(K)+ s0e−
1
2d2

1

24σ
√

2π
√

T
f̃ T

N +o
( 1

N

)
,

where f̃ = f +12σ2.

Remark 25. The above result is a generalisation of the results in Chang and Palmer
for the caseα 6= 0 (compare [CP07], Corollary 1 and 2). Hence, Proposition 34 allows
to apply the optimal drift model to the valuation of plain vanilla options by optimising
the drift α of the embedded binomial process.

According to Proposition 34, the Tian model and the CP model donot differ quali-
tatively when applied to plain vanilla options. For both models, the rate of convergence
is not improved compared to conventional schemes, i.e. the rate of convergence is in
general no faster than 1/N. However, the leading term of the pricing error converges
monotonically.

Figure 2.11 illustrates the put prices obtained from the twomodels for our example
(N = 10 : 2 : 4000). We see that higher order oscillations are essentially negligible,
so that Richardson extrapolation can be applied. Figure 2.12shows the corresponding
aggregated estimates for 2N = 300 : 4 : 4000.

Fig. 2.11: Convergence pattern for a plain vanilla put: The Tian tree (superimposed on CRR)
s0 = 95,σ = 0.25, r = 0.1, T = 1, strikeK = 100
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Fig. 2.12: Convergence pattern for a plain vanilla put: The CP tree (superimposed on CRR)
s0 = 95,σ = 0.25, r = 0.1, T = 1, strikeK = 100

The Optimal Drift Model

As discussed in the above, the OD model is based on the CP model.In contrast to the
latter, it optimises the drift of the embedded binomial model. It follows from Proposi-
tion 34 that the OD model can be adapted to the valuation of plain vanilla options so
that the convergence rate is improved too(1/N):

Proposition 35. For the optimal drift model, we have

V(N)(K) = V(K)+o
( 1

N

)

if

D(K) = 9−d2
1(K)+σ

√
Td2(K) ≥ 0.

Otherwise, we have

V(N)(K) = V(K)+ 2
3T σ2

(
9−d2

1(K)+σ
√

Td2(K)
)

T
N +o

( 1
N

)
.

According to Proposition 35, when applied to the valuation of plain vanilla options,
the OD model admits a superior rate of convergence compared to both conventional
schemes and the advanced schemes suggested Tian and by Chang and Palmer.

Remark 26.

1. Note that the condition on convergence of order o(1/N) is even weaker than for
cash-or-nothing options. In fact, we may say that with respectto practical appli-
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cations, the condition is satisfied for most interesting cases. In our example with
parameters s0 = 95, σ = 0.25, r = 0.1, T = 1, the condition only excludes the
cases K≤ 49and K≥ 222.

2. For plain vanilla options, the OD model could in principlealso be based on the
Tian model. However, in this case, the resulting model would obtain convergence
of order o(1/N) only if DTian(K) = −9−d2

1(K)+σ
√

Td2(K) ≥ 0.

Figure 2.13 illustrates the put price obtained from the OD model along even and
odd values ofN for our example. According to the above remark, the rate of conver-
gence is known to be faster than 1/N as the strike value is set toK = 100. In fact, as
we observe from the plot, the pricing error is approximatelyof the same magnitude as
that obtained from extrapolation of the CP or the Tian model. However, for these meth-
ods, the application of Richardson extrapolation clearly requires additional computing
time. Consequently, the OD tree is again the most advantageous choice amongst the
competing methods; it possesses the best time/accuracy trade-off. This is illustrated in
Table 2.13. Here in each row, computing time for the binomialtree algorithms is set
to 100% and computing time for the two methods involving extrapolation is given as a
percentage.

Fig. 2.13: Convergence pattern for a plain vanilla put: The OD tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, strikeK = 100
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Table 2.3: Plain vanilla put prices under conventional and advanced binomial schemes:
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

N CRR tree RB tree Tian CP tree OD tree
Tian (CP)

with extrapolation

200 7.15025 7.15222 7.12590 7.14961 7.13902 7.14608 (7.14414) -
300 7.14268 7.14787 7.13157 7.14715 7.14219 7.14344 (7.14255) -
400 7.13674 7.14491 7.13333 7.14504 7.14146 7.14077 (7.14047) -
500 7.14332 7.14272 7.13512 7.14443 7.14100 7.14088 (7.14068) -
640 7.14375 7.14045 7.13660 7.14382 7.14090 7.14095 (7.14083) -
820 7.13916 7.13832 7.13769 7.14330 7.14094 7.14182 (7.14163) -
1000 7.14179 7.14049 7.13816 7.14277 7.14092 7.14120 (7.14111) -
2000 7.14196 7.14217 7.13967 7.14196 7.14114 7.14119 (7.14115) 125 %
3000 7.14163 7.14081 7.14015 7.14167 7.14111 7.141066 (7.14105) 118 %
4000 7.14156 7.14126 7.14039 7.14152 7.141074 7.14110 (7.14109) 128 %
5000 7.14125 7.14153 7.14052 7.14143 7.14109 7.14111 (7.14110) 126 %
10000 7.14117 7.14131 7.14081 7.14126 7.14109 7.14110 (7.14109) 124 %
15000 7.14121 7.14118 7.14091 7.14121 7.14109 7.14109 (7.14109) 124 %

BS Value 7.141079564
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American Put Prices A basic approach to the valuation of American options is the
decomposition technique proposed by MacMillan (1986) and Barone-Adesi and Wha-
ley (1987). Here the American option price is divided into that of a similar European op-
tion plus the early exercise premium [Mac86], [BAW87]. The decomposition approach
suggests that the methods preferred for the European case may often be advantageous
for the valuation of the corresponding American option. Consequently, we anticipate
that the OD model will also admit strong performance properties when applied to the
valuation of American puts.

To confirm the above conjecture by means of our numerical example, Table 2.4 shows
the corresponding binomial put prices obtained from the methods under consideration.
In fact, as for the European case, the OD tree is the preferredchoice amongst the com-
peting binomial methods. Only the methods that include extrapolation lead to a compa-
rable discretisation error, but they require additional computing time.

Let us remark that the Leisen-Reimer tree is currently amongst the most efficient meth-
ods for American option pricing (compare e.g. [Sta04], [Sta05]). We wish to stress that
for our numerical example, the OD tree also outperforms the LR tree10 (compare Figure
2.14).

Fig. 2.14: Convergence pattern for an American plain vanilla put: The OD tree vs the LR tree
s0 = 95,σ = 0.25, r = 0.1, T = 1, strikeK = 100

To conclude, due to the widespread use of the binomial approach in American option
pricing, the above numerical results promise a great potential of the OD model for
practical applications. A profound analysis of this issue is left for future research.

10Here (as in Table 2.4), results from the LR tree are obtained with the Preizer-Pratt method 2 inversion
[LR96].
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Table 2.4: American plain vanilla put prices under conventional and advanced binomial schemes:
s0 = 95,σ = 0.25, r = 0.1, T = 1, G = 100, strikeK = 100

N CRR tree RB tree Tian CP tree OD tree
Tian (CP)

with extrapolation

200 8.77498 8.77567 8.76571 8.77438 8.76929 8.77330 (8.77139) -
300 8.77133 8.77406 8.76782 8.77350 8.77152 8.77190 (8.77152) -
400 8.77016 8.77297 8.76866 8.77309 8.77119 8.77162 (8.77180) -
500 8.77247 8.77115 8.76918 8.77264 8.77099 8.77136 (8.77139) -
640 8.77235 8.77079 8.76973 8.77240 8.77100 8.77125 (8.77107) -
820 8.77048 8.76971 8.77010 8.77217 8.77107 8.77146 (8.77134) 133 %
1000 8.77176 8.77050 8.77030 8.77202 8.77109 8.77143 (8.77140) 120 %
2000 8.77167 8.77165 8.77081 8.77167 8.771277 8.77132 (8.77131) 129 %
3000 8.77153 8.77110 8.77098 8.77154 8.771277 8.771294 (8.771290) 128 %
4000 8.77151 8.77131 8.77106 8.77148 8.77126 8.77130 (8.77130) 126 %
5000 8.77139 8.77143 8.77110 8.77145 8.771275 8.77131 (8.77130) 126 %
10000 8.77134 8.77136 8.77120 8.77137 8.771289 8.77130 (8.77130) 126 %
15000 8.77135 8.77132 8.77123 8.77135 8.771288 8.771294 (8.771294) 120 %

LR tree
(N=100.001)

8.771281982



104 Chapter 2. Binomial Pricing for Single-Asset Options

2.6 Conclusion

To conclude, we finally wish to summarise the main aspects of the optimal drift model:

• In the OD model,the transition probabilities are defined with respect to the risk-
neutral measure.

• The OD model can be adapted to the strike value of interest. In contrast to the
Tian model and to the Chang and Palmer model, we optimise the drift of the
embedded binomial process. Consequently, the shape of the tree constructed by
the OD model further exploits the structure of the valuationproblem of interest.
This leads to asuperior convergence behaviour of the corresponding binomial
option prices.

• Both for cash-or-nothing options and for plain vanilla options, the prices obtained
from the optimal drift model can exhibit convergence of order o(1/N). For these
two common payoff structures,the superior convergence rate of the OD model
has been verified rigorously.

• We anticipate that the OD model will also show strong performance for the valua-
tion of American options. As a major use of binomial methods is in the valuation
of American options, we wish to stressthe significance of the strong performance
of the OD method for practical applications.



Chapter 3

The Standard Approach to
Multi-Dimensional Trees

We consider anm-dimensional Black-Scholes model with stock price dynamicsunder
the risk-neutral measureQ given by

dSi(t) = Si(t)(rdt +σidWi
t ), Si(0) = si,0 > 0 for i = 1, . . . ,m (3.1)

for Brownian motionsWi andW j with correlationρi j for i 6= j. Then the instantaneous
returns of stocki and j satisfy

Corr
[

dSi(t)
Si(t)

,
dSj (t)
Sj (t)

]

= ρi j dt.

The correlations are assumed to be such that the corresponding variance-covariance ma-
trix is positive-definite.

In the last two chapters of this thesis, we focus on binomial pricing of multi-asset op-
tions. The underlying stocks are assumed to follow them-dimensional Black-Scholes
dynamics defined above.

3.1 Introduction

This chapter deals with the standard approach to valuing options onm correlated (log-
normally distributed) stocks by multivariate binomial trees. In principle, this approach
works as follows: One approximates thejoint evolution of the m stocks by anm-
dimensional Markov chain appropriate in the sense that its transition states and proba-
bilities (asymptotically) match the drifts, variances andcorrelations of the increments
of the price processes.

In addition to the one-dimensional (for short: 1D) setting,the entire correlation struc-
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ture of the continuous-time model has to be matched. This often leads to difficulties in
the construction of them-dimensional tree, and it is sometimes even impossible. More
precisely, the main drawbacks of standard multi-dimensional tree procedures are as fol-
lows:

• Since the number of moment matching conditions grows quadratically in the di-
mension, setting up an appropriate binomial model soon getstedious.

• To ensure that the correlation structure between the stocks is matched, correla-
tion parameters typically enter the transition probabilities. This has the effect that
transition probabilities can become negative for certain model parameters. Theo-
retically, application of the tree procedure cannot be justified in this situation.

• Research on 1D trees is not directly applicable.

Although there is a vast amount of literature on 1D trees, there is not so much literature
on the standard approach to multi-dimensional trees; a widely known example in 2D
is Boyle (1988) (see [Boy88]). Boyle, Evnine and Gibbs (1989) (for short: BEG) sug-
gest an approximation of anm-dimensional geometric Brownian motion by a 2m-step
Markov chain that can be seen as the canonical extension of the 1D CRR tree [BEG89].
However, the transition probabilities in the BEG model are not necessarily well-defined,
and in contrast to the 1D CRR model, this problem cannot always be fixed by choosing
a sufficiently large number of periods. Kamrad and Ritchken (1991) hence modify the
BEG model by introducing horizontal jumps [KR91]. This leads to an additional degree
of freedom that can be used to ensure non-negative transition probabilities, but it also
increases complexity of the model.

In Chapter 4, we suggest the decoupling method as an alternative approach to multi-
dimensional trees that does not suffer from the drawbacks listed above. Let us stress
that this approach is conceptually different to the advanced multi-dimensional model
suggested by Kamrad and Ritchken. The decoupling approach results in well-defined
multi-dimensional trees by separation of the correlation structure from the tree structure.
As a consequence, the correlation structure enters transition states rather than transition
probabilities. In particular, this approach does not increase the number of degrees of
freedom.

In the following, we illustrate the standard approach to multi-dimensional trees with
multi-dimensional variants of both the CRR tree and the RB tree.We also highlight the
main drawbacks of these models when applied in a multi-dimensional setting.

3.2 Discretisation of the Stock Price

The basic idea of the BEG model is that transition states are made up of components,
each of which describes the possible evolution of a component of the discretisedm-
dimensional stock price process. The joint distribution ofthe m-dimensional discrete
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process is such that projecting onto a component results in the 1D discretisation scheme
suggested by CRR [BEG89]. As we see in the following, this construction technique
can also be used to extend the 1D RB tree to anm-dimensional framework. We next
present the resultingm-dimensional variant of the RB tree and compare it to the BEG
model.

To guarantee weak convergence to the continuous-time priceprocess, the first two mo-
ments of the log-returns must be (asymptotically) matched;i.e. the approximating pro-
cessS(N) has to be defined on some probability space(Ω(N),F (N),P(N)) so that as grid
size tends to zero,

µi(N) := 1
∆t

[

EP(N)

(

ln

(
S(N)

k,i

S(N)
k−1,i

)∣
∣
∣
∣
S(N)

k−1,i

)]

→ r − 1
2σ2

i for i = 1, . . . ,m (3.2)

σ2
i (N) := 1

∆t

[

VarP(N)

(

ln

(
S(N)

k,i

S(N)
k−1,i

)∣
∣
∣
∣
S(N)

k−1,i

)]

→ σ2
i for i = 1, . . . ,m (3.3)

and

ci j (N) := 1
∆t

[

CovP(N)

(

ln

(
S(N)

k,i

S(N)
k−1,i

)

, ln

(
S(N)

k, j

S(N)
k−1, j

)∣
∣
∣
∣
S(N)

k−1,i,S
(N)
k−1, j

)]

→ σiσ jρi j

for i = 1, . . . ,m, j < i. (3.4)

The ith component process coincides with the RB model if

S(N)
0,i = s0,i

S(N)
k,i =

{

S(N)
k−1,ie

(r− 1
2σ2

i )∆t+σi
√

∆t with prob. 1
2

S(N)
k−1,ie

(r− 1
2σ2

i )∆t−σi
√

∆t with prob. 1
2

(3.5)

It coincides with the CRR model if

S(N)
0,i = s0,i

S(N)
k,i =







S(N)
k−1,ie

σi
√

∆t with prob. 1
2

(

1+
(
r − 1

2σ2
i

) √
∆t

σ

)

S(N)
k−1,ie

−σi
√

∆t with prob. 1
2

(

1−
(
r − 1

2σ2
i

) √
∆t

σ

)

As we recall from Section 2.2, for both models the discrete components (asymptoti-
cally) satisfy the moment matching conditions (3.2) and (3.3). These conditions are
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satisfied exactly for the RB model. For the CRR model, the variance is only matched
when ignoring some term of order∆t (compare (2.19)).

If we take a simple product of the embedded 1D trees, the correlation condition (3.4)
will in general not be satisfied. Rather, we have to define appropriate one-step transi-
tions that take into account the correlation structure of the continuous-time model. This
is discussed next.

Let us consider some periodk ≤ N. Since each component can either increase or de-
crease, we introduce the set of all possibleup-down-scenarios, i.e.

Ek =
{

ωk =
(
ωk,1, . . . ,ωk,m

)
| ωk,i ∈ {−1,1} ∀ i = 1, . . . ,m

}
.

To obtain appropriate transitions in them-dimensional RB model, we define
Pk : Ek → R by

Pk (ωk) := 1
2m



1+
m
∑

i, j=1
i< j

ρi j δi j (ωk)



 , (3.6)

where

δi j (ωk) =

{
1 if ωk,i = ωk, j

−1 if ωk,i 6= ωk, j
(3.7)

(a similar construction appears in [Ami91], [HW94]). Note that by symmetry

∑
ωk∈Ek

m
∑

i, j=1
i< j

ρi j δi j (ωk) = 0 (3.8)

and hence,

Pk(Ek) = ∑
ωk∈Ek

Pk (ωk)
(3.6)
= 1+ 1

2m ∑
ωk∈Ek

m
∑

i, j=1
i< j

ρi j δi j (ωk)
(3.8)
= 1.

Apparently, as the setEk is finite, Pk can be extended to a probability measure on the
corresponding discrete probability space if the correlation structure is such thatPk is
non-negative.

While Pk is always non-negative in dimensionm= 1 andm= 2, there are restrictions
on the correlation structure in higher dimensions. As an example, consider an option on
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three underlyingsS1, S2, S3 with ρ12 = −0.7, ρ23 = 0.1 andρ13 = −0.5; then

Pk
(
ωk,1 = ωk,2 = ωk,3 = −1

)
= −0.0125< 0.

Clearly,for these model parameters the construction technique doesnot result in a well-
defined discrete model.

It is known from BEG that we obtain appropriate transitions ina m-dimensional CRR
model if we set

Pk (ωk) := 1
2m



1+
m
∑

i, j=1
i< j

ρi j δi j (ωk)+
√

∆t
m
∑

i=1
δi (ωk)

r− 1
2σ2

i
σi



 (3.9)

with δi j (.) defined as in (3.7) andδi (ωk) := 1 (−1) if ωk,i is an up-scenario (down-
scenario). As in the 1D setting, the transition probabilities chosen depend on the grid
size. As the grid size tends to zero, each transition probability converges to the corre-
sponding transition probability in the multi-dimensionalvariant of the RB tree, i.e.

PCRR
k (ωk) → PRB

k (ωk) ∀ωk ∈ Ek.

Consequently, the two models will be applicable under the same restrictions on the
model parameters, but on top of this, the BEG tree requires a sufficiently small grid
size.

In the following, we assume that the model parameters are such thatPk can be extended
to a well-defined probability measure. Let us introduce the generic elementω describ-
ing the up-down-behaviour of a path of the multi-dimensional discrete asset price

ω = (ω1,1, ...,ω1,m, ...,ωN,1, . . . ,ωN,m) ∈ E1× . . .×EN

and let us introduce the coordinate mappings

Zk,i (ω) = ωk,i, for k = 1, ...,N, i = 1, ...,m.

Then we can define the one-step transition in them-dimensional variant of the RB model
by

S(N)
k :=







S(N)
k,1
...

S(N)
k,m







:=







S(N)
k−1,1e(r− 1

2σ2
1 )∆t+Zk,1σ1

√
∆t

...

S(N)
k−1,me(r− 1

2σ2
m)∆t+Zk,mσm

√
∆t







.
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Finally, we equip the path spaceE with the probability measure

P(N) =
N⊗

k=1
Pk

under whichZk,i and Zl , j are independent fork 6= l . In particular,S(N) is a Markov
process.

By summing over all possible combinations withωk,i fixed, it follows from symmetry
arguments that

P(N)
(

S(N)
k,i = S(N)

k−1,ie
(r− 1

2σ2
i )∆t+σi

√
∆t
∣
∣
∣ S(N)

k−1,i

)

=
1
2

P(N)
(

S(N)
k,i = S(N)

k−1,ie
(r− 1

2σ2
i )∆t−σi

√
∆t
∣
∣
∣ S(N)

k−1,i

)

=
1
2

Hence, as desired, each component coincides with the one-step transition in the RB
model (compare to (3.5)).

It remains to show that the covariance of the log-returns is matched underP(N): When
we sum over the relevant elements ofEk, it follows again by symmetry that

P(N)(Zk,i = 1, Zk, j = 1) = P(N)(Zk,i = −1, Zk, j = −1) = 1
4(1+ρi j )

P(N)(Zk,i = 1, Zk, j = −1) = P(N)(Zk,i = −1, Zk, j = 1) = 1
4(1−ρi j )

which gives us

CovP(N)

(
Zk,i, Zk, j

)
= ρi j .

Figure 3.1 illustrates the one-step transitions for the 2D RBtree.

Fig. 3.1: One-step transition for the 2D RB model
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For the BEG model, one-step transitions are defined as

S(N)
k :=







S(N)
k−1,1eZk,1σ1

√
∆t

...

S(N)
k−1,meZk,mσm

√
∆t







.

As for the variances, the BEG model matches the correlation structure of the
continuous-time model only asymptotically when ignoring some term of order∆t; to
be precise,

ci j (N) = σiσiρi j −
(
r − 1

2σ2
i

)(

r − 1
2σ2

j

)
T
N .

Figure 3.2 shows one-step transitions for the 2D CRR model.

Fig. 3.2: One-step transition for the 2D CRR model (=2D BEG)
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Clearly, for the BEG tree and for the suggestedm-variant of the RB tree, each node
has 2m successor nodes. The log-BEG tree inherits symmetry around the starting value
from its 1D components, while the multi-dimensional variant of the RB tree possesses
symmetry properties with respect to the transition probabilities. As a consequence, for
the latter the number of distinct weights is reduced to 2m−1.

Remark 27 (Incompleteness of the discrete market). Let us stress that the discrete mar-

ket model associated with the binomial processes S(N)
1 , . . . ,S(N)

m defined as above and a
bond with one-period return er∆t is not complete (compare e.g. [Bjö04], Section 3).
Consequently, in the discrete model there is no unique optionprice. However, in the
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context of binomial option pricing, there is no impact of themodel being complete
or incomplete on convergence to the exact price. For an approximation of the multi-
dimensional Black-Scholes model by a complete multinomialmodel, we refer to He
(1990) (see [He90]).

To conclude, we have seen that as one-step transition probabilities are not simply
products of marginal probabilities, it is tedious to define alaw of the discrete process
that suitably approximates the joint distribution of the continuous-time process. The
correlation structure of the continuous-time model entersthe one-step transition prob-
abilities (compare (3.6), (3.9)). This implies that each set of model parameters leads
to a particular specification of the measureP(N), which is not always well-defined in
dimensionsm≥ 3.

3.3 Option Valuation with Standard Multi-Dimensional
Trees

As seen in the above, provided the BEG tree and the suggested multi-dimensional vari-
ant of the RB tree are well-defined, they (asymptotically) satisfy the moment matching
conditions (3.2) - (3.4). As a consequence, due to Donsker’sTheorem, the continuous
process obtained fromS(N) by linear interpolation and appropriate time-scaling con-
verges weakly to the stock price process in anm-dimensional Black-Scholes setting. As
explained previously, this provides the theoretical basisfor numerical option valuation.
Using a loose terminology (compare Remark 27), the resultingestimates for the exact
option price are again referred to as ”binomial prices”.

In Section 3.3.1, we briefly discuss the main aspects of the corresponding tree algo-
rithm for numerical option valuation. In Section 3.3.2, we investigate the convergence
behaviour of binomial prices obtained from the standard multi-dimensional schemes
considered above. Our analysis is focused on payoff functions that exhibit disconti-
nuities. We will see that the multi-dimensional binomial schemes inherit the irregular
convergence behaviour observed for their 1D variants.

3.3.1 The Tree Algorithm

For the standard multi-dimensional schemes considered above, the corresponding tree
algorithm is conceptually the same as for the 1D case: First,we assign possible payoff
scenarios to the terminal nodes. Afterwards, we step backwards through the tree, as
suggested by the Markov property of the processS(N). The tree algorithm for the valu-
ation of path-independent options with two underlyings canbe found below (compare
Algorithm 5). In accordance with Figures 3.1 and 3.2,p1 denotes the weight assigned
to state(u1,u2), p2 denotes the weight assigned to state(u1,d2), etc. The weights are
determined in advance. For path-dependent options, it depends again on the specific
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Algorithm 5: The standard approach to binomial trees for a path-
independent European option with two underlyings

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0][0]×exp(−r ×T)

1. Forward Step

{initialise asset prices at maturity}
Set SN[0][1] := s0,1dN

1
Set SN[0][2] := s0,2dN

2
for k = 1 toN do

SN[k][1] := SN[k−1][1]× (u1/d1)
SN[k][2] := SN[k−1][2]× (u2/d2)

end for

{initialise option values at maturity}
for k1 = 0 toN do

for k2 = 0 toN do
SetV [k1][k2] := g(SN[k1][1],SN[k2][2])

end for
end for

2. Backward Induction

{step backwards through the tree}
for k = N−1 to 0do

for l1 = 0 tok do
for l2 = 0 tok do

V [l1][l2] := p1×V [l1 +1][l2 +1]+ p2×V [l1 +1][l2]+

p3×V [l1][l2 +1]+ p4×V [l1][l2]

{or under the 2D RB scheme}
V [l1][l2] := p1× (V [l1 +1][l2 +1]+V [l1][l2])+

p2×V [l1 +1][l2]+V [l1][l2 +1])
end for

end for
end for
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payoff functional whether there exists a suitable modification of the above algorithm.

As for the 1D case, computational effort required for Algorithm 5 can essentially be
attributed to the backward induction step. We have the following result:

Proposition 36. In the general m-dimensional situation, Algorithm 5 requires compu-
tational effort of order O(Nm+1). The leading constant is in general2m+1−1

m+1 . For the

m-dimensional RB tree, the leading constant is reduced to3/2 2m−1
m+1 .

Proof. Excluding the terminal layer, we have to consider∑N−1
k=0 (k+1)m nodes. Hence,

the number of relevant nodes is of orderO(Nm+1) with constant 1/(m+ 1). In the
backward step, the arithmetic mean is computed at each of these nodes, which in general
requires 2m+1−1 operation counts per node (2m multiplications and 2m−1 addition).
However, as seen above, for them-dimensional RB tree, the number of distinct weights
is reduced to 2m−1. It follows from the distributive law that the number of operation
counts per node is reduced to3

22m−1.

Remark 28.

• According to Proposition 36, computational effort grows exponentially in the
number of the underlying stocks. Therefore, the above multi-dimensional tree
algorithm is currently not practically useful for high-dimensional valuation prob-
lems.

• We have seen that the tree algorithm associated with the multi-dimensional vari-
ant of the RB tree requires less computational effort than that associated with the
BEG tree. As we illustrate below, the difference in operationcounts is reflected in
computing time. Note that by contrast, for the one-dimensional examples consid-
ered previously, the tree algorithms do not differ significantly in computing time.
Nevertheless, computational effort required by the multi-dimensional RB tree is
still suboptimal for the rate of growth of the tree.

3.3.2 The Convergence Behaviour of Binomial Option Prices

As observed in the above, the standard approach to multi-dimensional trees suffers
from several conceptual drawbacks: the construction of trees is tedious, its applica-
tion is restricted by model parameters, etc. These drawbacks are specific to the multi-
dimensional situation. On top of that, the irregular convergence behaviour of conven-
tional 1D schemes is inherited to their multi-dimensional tree variants. This is illustrated
next.

We investigate the convergence behaviour of the above schemes for payoff functions
that exhibit discontinuities; first, for cash-or-nothing options; and second, for barrier
options. For the examples considered below, an explicit pricing formula is known. As
discussed previously, such simples examples will give an intuition on the convergence
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behaviour of similar types of options for which an explicit pricing formula is not known.
Note in this context that the pricing formula we will use for an analytic valuation of bar-
rier options is only valid under restrictions on the correlation structure.

Cash-or-Nothing Options We consider a two-asset cash-or-nothing call; i.e.

g(S1,S2) = G1{S1(T)≥K1 , S2(T)≥K2}

with strike valuesK1 > 0 andK2 > 0 and with a promised cash-amountG > 0. Figure
3.3 illustrates the convergence pattern obtained for the 2DRB tree and for the BEG tree
for N = 100 : 2 : 1000.

Fig. 3.3: Convergence pattern for a two-asset cash-or-nothing call;
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100

For our numerical example, both methods suffer heavily froman irregular conver-
gence behaviour. As for cash-or-nothing options with a single underlying, the price
estimates are neither consistently greater nor less than the exact price; rather, they alter-
nate in a sawtooth pattern between over- and underestimation with some highly accurate
values in between (compare Figure 2.2). In contrast to the 1Dcase, the amplitude of the
oscillations does not decrease monotonically in the numberof periodsN.

Similar to the 1D situation, the sawtooth effect can be traced back to the fact that when
grid sizes changes, the position of nodes in the tree varies in relation to the strike values
K1 andK2. As a consequence, there is typically either too much probability mass in the
in-the-money or in the out-of-the money area, respectively. This is illustrated next.



116 Chapter 3. The Standard Approach to Multi-Dimensional Trees

Fig. 3.4: 2D RB tree: Realisations of(S(N)
1 ,S(N)

2 );
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100

As we see from Figure 3.4, the terminal values of the two-dimensional processS(N)

form a rectangular grid. This is due to the fact that the transition states are defined as a
Cartesian product of the two components. The rectangular grid structure of the terminal
nodes is illustrated above for the 2D RB tree, but we will observe a similar pattern for
the BEG tree. The coloured rectangle illustrates the in-the-money region. Its border-
lines are given by the strike valuesK1 = 17 andK2 = 20. Due to the rectangular grid
structure, there are ”columns” and ”rows” parallel to the borderlines of the in-the-money
area. ForN = 18, there is a column (S(N)

N,1 = 17.2489) and a row (S(N)
N,2 = 20.5953) right

abovethe borderlines. In contrast, forN = 22 there is a column (S(N)
N,1 = 16.7894) and a

row (S(N)
N,2 = 19.689) rightbelowthe borderlines. Consequently, if we count the nodes

in the coloured rectangle and weight them with respect toP(N), the risk-neutral proba-
bility to end up in-the-money (1.4819%) is heavily overestimated forN = 18 (2.1433
%) and it is heavily underestimated forN = 22 (0.9354 %). As a result, the option price
(1.34087 £) is heavily overpriced in the first case (1.93932 £) and heavily underpriced
in the second case (0.84634 £).

For the number of periodsN in the above example, both components simultaneously
lead to an over- or underestimation of the probability mass in-the-money region. Yet
this is not necessarily the case. Rather, for many values ofN, the likelihood of the event
that the first stock ends up in-the-money is overestimated, while the likelihood of the
event that the second stock ends up in-the-money is underestimated, or vice versa. This
is due to the fact that the corresponding 1D cash-or-nothingoption on the first asset
oscillates in general with a different frequency than that on the second asset. Due to the
superposition of oscillations with different frequencies, the amplitude of the oscillation
observed for a multi-asset cash-or-nothing option ceases to decrease monotonically.
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As illustrated in the above, for cash-or-nothing options the convergence pattern ob-
served for the multi-dimensional variant of the RB tree does not differ significantly
from that observed for the BEG model. However, there is a significant difference in
computing time. In fact, in the above example,computing time required by the multi-
dimensional RB tree is reduced to approximately 80% of that required by the BEG tree.
Let us stress that we also observe a reduction in computing time for other types of op-
tions. Note that by contrast, for our examples on options with a single underlying, the
different tree algorithms do not differ significantly in computing time (a difference in
computing time is observed only if an additonal extrapolation step is used).

Barrier Options In the following, we deal with the convergence behaviour of barrier
options, as a special type of path-dependent options. Two examples will be presented.
The first example is a barrier option with two knock-out barriers. In the second example,
we consider two barriers of different type, a knock-in barrier on stock 1 and a knock-
out barrier on stock 2. For both cases, the barriers are assumed to be constant in the
underlying stocks. As for the cash-or-nothing option considered above, both examples
are such that the option promises a cash amount ofG > 0 paid at maturity.

Example 1 Let us consider a knock-out barrier option on two stocks withpayoff

g(S1,S2) = G1{S1(t)<B1 ∀ t∈ [0,T] , S2(t)>B2 ∀ t∈ [0,T]}.

Figure 3.5 shows the convergence pattern of the methods under consideration for
N = 10 : 2 : 1000. For the parameter setting given, the Black-Scholes value can be
calculated explicitly as suggested in He et al. (1998)1.

1The explicit formula suggested is applicable if the correlation is of the formρ = cos(Π/n) with
n = 3,4, . . .. Otherwise (in particular for a negative correlation!) there is only a semi-analytical formula
involving an infinite sum of Bessel functions [HKR98].
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Fig. 3.5: Convergence pattern for a barrier option with an up-and-out barrier on stock 1 and a down-and-
out barrier on stock 2;
S1(0) = 20.0, S2(0) = 30.0, σ1 = 0.2, σ2 = 0.25, T = 1.0 r = 0.1, B1 = 33.0, B2 = 15.0, G = 100 and
correlation ρ = 0.5

Apparently, both methods overestimate the exact price. Furthermore, convergence
of binomial prices is again exposed to oscillations. For theBEG model, fluctuations
exhibit a sawtooth pattern with some cusp points that are already reasonably accurate
for small values ofN. For the 2D RB tree, there are no optimal choices for the grid
size. However, the oscillations are of lower amplitude. Thepatterns observed will be
analysed next. Before, let us stress that for the above example, the 2D RB tree is again
advantageous with respect to computing time: For fixed grid size, the computing time
is reduced to approximately 90% of that required by the BEG tree. Apparently, time
reduction is not as good as for the previous example. This is due to the knock-out fea-
ture, so that a zero value is assigned to the nodes above/below the corresponding barrier.
For these nodes, neither the RB tree nor the BEG tree requires any computional effort.
Consequently, compared to path-independent options, the RB tree saves computional
effort only for the nodes for which the option is not knocked out.

We wish to add that the above patterns are generic for any knock-out option with barri-
ers constant in the underlying; in particular, we observe similar patterns for the 1D case.

Let us first consider the pattern observed for the BEG tree. Forany number of periods
N, the specified barriers will in general lie between two horizontal layers of nodes in
the corresponding tree. To be precise, the up-and-out barrier on stock 1 lies between the
corresponding binomial process afterm−1 effective up jumps and the binomial process
aftermeffective up jumps, i.e.

s0,1um−1
1 < B1 < s0,1um

1 ,

whereu1 = eσ
√

T/N denotes the corresponding upward jump size in the BEG model.
Consequently, the binomial tree first ”feels” the effect of the barrier ats0,1um

1 , which is
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therefore referred to as the effective barrier (compare [DKEB95]). Clearly,the effective
barrier is larger than the specified barrier B1.

Figure 3.6 illustrates the possible transition states of the first component of the BEG
tree forN = 20 and the corresponding effective barrier. In the example,the effective
barrier corresponds tom= 12 effective up-movements.

Fig. 3.6: The BEG tree: The specified up-and-out barrierB1 and the effective barrier induced by the first

componentS(N)
1 ;

S1(0) = 20.0, σ1 = 0.2, T = 1.0 r = 0.1, B1 = 33.0

Similarly, the down-and-out barrier on stock 2 lies betweenthe corresponding bino-
mial process afterk effective down jumps and afterk−1 effective down jumps, i.e.

s0,2dk−1
2 > B2 > s0,2dk

2,

whered2 = e−σ
√

T/N denotes the corresponding downward jump size. Hence, the ef-
fective barrier is given bys0,2dk

2, which is in particularbelow the specified barrier B2.

The location of the effective barriers in relation to the specified barriers indicates that
the binomial treeunderestimates the risk of being knocked out. As a result, the tree
tends to overestimate the exact price of a knock-out option.

Furthermore, the oscillations observed are due to the fact that the distance between the
effective barriers and the specified barriers varies with grid size. In particular, if the grid
size is such that the effective barriers are both close to thecorresponding specified bar-
rier, the BEG tree leads to accurate estimates. For the first component, the up-and-out
barrierB1 is just below a layer of horizontal nodes in the tree ifN is the largest integer
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smaller than

F1(m) := m2σ2
1T

(ln(B1/s0,1))
2 , m= 1,2, . . .

Similarly, for the second component, the down-and-out barrier B2 is just above a layer
of horizontal nodes in the tree ifN is the largest integer smaller than

F2(k) := k2σ2
2T

(ln(s0,2/B2))
2 , k = 1,2, . . .

(compare [BL94]). Consequently, we obtain an accurate estimate if the corresponding
number of periodsN is such that there is somem= 1,2, . . . and somek = 1,2, . . . with

N = [F1(m)] = [F2(k)] .

For our numerical example,N = 500 is a preferred choice for the number of periods
in the discrete model. Then the up-and-out barrierB1 = 33 is just below the corre-
sponding effective barrier (33.0034) and the down-out-barrierB2 = 15 is just above the
corresponding effective barrier (14.9995). In the example, the effective barriers corre-
spond tom= 28 effective up-movements of the first component andk = 31 effective
down-movements of the second component. In the above situation, the binomial price
obtained for the BEG model (87.4211 £) is already close to the exact price (87.4192 £).

We now discuss the difference in the convergence behaviour observed for the 2D RB
tree. By definition, the log-component processes are no longer symmetric around the
corresponding starting value. Rather, they are tilted upwards or downwards (depend-
ing on the sign ofr −1/2σ2

i ). As the tilt increases in the number of performed tran-
sitions, the corresponding effective barrier is non-constant along the discretised asset
path, while the specified barrier is. For our numerical example, Figure 3.7 illustrates
the effective barrier for the first component of the 2D RB tree for N = 20. Apparently,
the effective barrier is non-constant. The fact that the effective barrier is non-constant
implies, on the one hand, that there are no specific small values ofN for which we get
accurate estimates; on the other hand, it also results in oscillations that are of lower
amplitude than those obtained for the BEG tree. However, extrapolation methods can
be used neither for the BEG tree nor for the RB tree.
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Fig. 3.7: The (2D)-RB tree: The specified up-and-out barrierB1 and the effective barrier induced by the

first componentS(N)
1 ;

S1(0) = 20.0, σ1 = 0.2, T = 1.0 r = 0.1, B1 = 33.0

Example 2 We next consider a barrier option with a knock-in barrier on stock 1 and
a knock-out barrier on stock 2; i.e. the payoff is given by

g(S1,S2) = G1{S1(t0)≥B1 for somet0∈ [0,T] , S2(t)≥B2 ∀ t∈ [0,T]}.

Figure 3.8 shows the binomial prices obtained for the two models forN = 10 : 2 : 1000.
Parameters are kept unchanged, except forB1 = 25.

Fig. 3.8: Convergence pattern for a cash-or-nothing optionwith an up-and-in barrierB1 on stock 1 and a
down-and-out barrierB2 on stock 2;
S1(0) = 20.0, S2(0) = 30.0, σ1 = 0.2, σ2 = 0.25, T = 1.0 r = 0.1, B1 = 25.0, B2 = 15.0, G = 100 and
correlation ρ = 0.5

Apparently, the 2D RB tree again leads to a more regular convergence behaviour
than the BEG tree. However, convergence remains non-monotone. Unlike the binomial
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price estimates obtained for a pure knock-out option, the price estimates obtained in the
second example are typically smaller than the Black-Scholesprice. Let us explain this
in decomposing the option priceV in the following way:

V (’Up/in barrierB1 onS1’,’Down/out barrierB2 onS2’) =

V (’Down/out barrierB2 onS2’)−V (’Up/out barrierB1 onS1’,’Down/out barrierB2 onS2’) (3.10)

Note that the options appearing on the right-hand side of equation (3.10) both exhibit
pure knock-out features. Consequently, according to the results in the above, the
two tree methods tend to overestimate each term. In total, the price estimates for the
option on the left-hand side are typically smaller than the Black-Scholes price because
mispricing is largely due to the second term. This is illustrated in Figure 3.9, in which
the total error in the BEG price is decomposed according to (3.10).

Fig. 3.9: Convergence pattern for a cash-or-nothing optionwith an up-and-in barrierB1 on stock 1 and a
down-and-out barrierB2 on stock 2: Decomposition of the total error

To summarise our numerical results, both for cash-or-nothing options and for the
barrier options considered, the BEG tree and the multi-dimensional variant of the RB
tree exhibit an irregular convergence behaviour. For the latter, the oscillations are of
lower amplitude, yet extrapolation methods cannot be applied.

In the last chapter, we present the decoupling approach as analternative to the stan-
dard approach to multi-dimensional trees investigated above. The decoupling approach
is based on a transformation method that results in multi-dimensional binomial trees
which are well-defined for an arbitrary correlation structure of the multi-dimensional
Black-Scholes model. In addition, it will often yield superior performance of the cor-
responding trees. In particular, the convergence behaviour is more regular, which can
even make the oscillations vanish so that extrapolation methods can be applied.



Chapter 4

The Decoupling Approach to
Multi-Dimensional Trees

4.1 Introduction

In this section, we introduce thedecoupling approachto binomial option pricing in an
m-dimensional Black-Scholes setting. The model we suggest contains the 2D example
by Hull as a special case [Hul06]. The main idea is to transform the original stock price
processSto a processY with independent component processesbeforethe approximat-
ing binomial tree is constructed. This allows to definea multi-dimensional tree that is
in principle a product of 1D trees.

The specific advantages of the decoupling approach are as follows:

• Due to the separation of the correlation structure from thetree structure, it is easy
to guarantee non-negative transition probabilities.

• Easy construction of the tree (in particular, we present a special product form that
easily allows the enlargement of the tree by a further stock with full use of the
tree already constructed).

• The decoupling approach can be combined with any 1D discretisation scheme for
the individual stocks. This implies that we can make full re-use of results obtained
for 1D trees.

• Excellent numerical performance.

In the context of option pricing, decoupling of correlated processes goes back to Hull
and White (1990). They consider the 2D log-asset priceφ = (φ1,φ2) with dynamics

dφi = αidt +σidWi
t for i = 1,2,
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whereW1,W2 are Brownian motions with correlationρ. Hull and White suggest to
transform the original processφ to a new processψ with independent components via

ψ :=

(
σ2 σ1

σ2 −σ1

)

φ .

In Hull and White (1990), this transformation is applied in combination with finite dif-
ference methods [HW90]. It is presented prior to 2D tree procedures in Hull’s textbook
”Options, Futures and Other Derivatives”[Hul06]. An extension to higher dimensions
is not given.

Clewlow and Strickland (1998) present a transformation method based on the Spectral
Theorem; i.e. they gain independence of the component processes by multiplication
with a rotation matrix. The appropriate angle is determinedby a spectral decomposi-
tion of the variance-covariance matrix [CS98]. Clearly, thistransformation can easily
be extended to arbitrary dimensions. Clewlow and Stricklanduse the transformation in
combination with finite difference schemes. Natcheva (2006) applies their idea to tree
procedures. She analyses the impact of a rotation prior to a quadrinomial tree method
for pricing contingent claims on the interest rate in a two-factor setting. The interest
rates are modelled as Ornstein-Uhlenbeck processes [Nat06]. In this case, the trans-
formed component processes are driven by independent Brownian motions, but they
are not mutually independent because they are still coupledvia the drift vector. Amin
(1991) suggests a discretisation scheme form correlated assets, where each asset is
driven by a vector of independent Brownian motions [Ami91].

In the following, we present a general decoupling method foranm-dimensional Black-
Scholes model. The transformations suggested by Hull and White and by Clewlow and
Strickland appear as special cases of our general method inm= 2.

4.2 A General Decoupling Method

Let us consider them-dimensional stock price processS following the Black-Scholes
dynamics (3.1). In this section, we focus on how to transformthe m correlated ge-
ometric Brownian motions to independent Brownian motions. First we remove state
dependence in the diffusion coefficient via a log-transformation, i.e. we define a pro-
cessX by Xt := (ln(S1

t ), . . . , ln(Sm
t ))T. Its dynamics underQ are given by

dXi(t) = (r − 1
2σ2

i )dt +σi dWi
t , Xi(0) = ln(si,o) for i = 1, . . . ,m.
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Then we decompose the variance-covariance matrix via

Σ =






σ2
1 . . . ρ1mσ1σm

. . .
ρ1mσ1σm . . . σ2

m




= GDGT (4.1)

with G ∈ Rm×m andD ∈ Rm×m diagonal. AsΣ is assumed to be positive-definite, it
is in particular invertible. Thus,G andD are invertible, and the diagonal elements ofD
are non-zero. By symmetry, (4.1) is a system of1

2m(m+ 1) equations and it re-writes
elementwise as

σiσ jρi j =
m
∑

k=1
gikdkkg jk for i, j = 1, . . . ,m. (4.2)

As there arem2 +m free parameters, we have an infinite number of solutions and thus
also an infinite number of possible decompositions. In particular, spectral decompostion
as well as Cholesky decomposition can be used.

Proposition 37. With the notation G−1 := (g(−1)
ji ) j,i=1,...,m we introduce Y:= G−1X,

i.e.

Yj(t) = ∑m
i=1g(−1)

ji Xi(t) for j = 1, . . . ,m. (4.3)

Its dynamics are given by

dYj(t) = α j dt +
√

d j j dW̄ j
t , Y(0) = G−1X(0) for j = 1, . . . ,m (4.4)

whereW̄t = (W̄1
t , . . . ,W̄m

t )T is a vector of independent Brownian motions. The drift
vectorα is given by

α = G−1
(
r1− 1

2 σ2
)

with σ2 := (σ2
1 , . . . ,σ2

m)T.

Proof. Applying Itô’s Formula to (4.3) yieldsY(0) = G−1X(0) and

dY(t) = G−1
(
r1− 1

2σ2
)

dt +









m
∑

i=1
g(−1)

1i σidWi
t

...
m
∑

i=1
g(−1)

mi σidWi
t









.
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For all j = 1, . . . ,mwe calculate the quadratic variation process:

〈
m
∑

i=1

∫

g(−1)
ji σidWi

〉

t
=

m
∑

i=1

m
∑

r=1

t∫

0

g(−1)
ji g(−1)

jr σiσr
〈
dWi,dWr

〉

s

=

t∫

0

m
∑

i=1

m
∑

r=1
g(−1)

ji g(−1)
jr σiσrρir ds

(4.2)
=

m
∑

i=1

m
∑

r=1
g(−1)

ji g(−1)
jr

m
∑

k=1
gikdkkgrk t

=
m
∑

k=1

(
m
∑

i=1
g(−1)

ji gik

)(
m
∑

r=1
g(−1)

jr grk

)

dkkt

=
m
∑

k=1
δ 2

jkdkkt = d j j t

Thus, by Lévy’s Characterisation Theorem for Brownian motion (compare e.g. [KS98],
Theorem 3.3.16)

W̄ j
t := 1√

d j j

m
∑

i=1

t∫

0

g(−1)
ji σidWi

s

is a one-dimensional Brownian motion. As forj 6= i, we have

〈
W̄i ,W̄ j

〉

t = 1√
dii d j j

m
∑

k=1

m
∑

r=1
g(−1)

ik g(−1)
jr σkσrρkr t

(4.2)
= 1√

dii d j j

m
∑

k=1

m
∑

r=1
g(−1)

ik g(−1)
jr

m
∑

l=1
gkldll grl t

= 1√
dii d j j

m
∑

l=1

(
m
∑

k=1
g(−1)

ik gkl

)(
m
∑

r=1
g(−1)

jr grl

)

dll t

= 1√
dii d j j

m
∑

l=1
δil δ jl dll t = 0,

Lévy’s Theorem also yields independence of the components.

Note that the Hull and White transformation can easily be embedded into our frame-
work by

G−1 =

(
σ2 σ1

σ2 −σ1

)

⇒ G =

( 1
2σ2

1
2σ2

1
2σ1

− 1
2σ1

)

.
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Hence, we obtain the decompositionΣ = GDGT with

D =

(
2(1+ρ)σ2

1σ2
2 0

0 2(1−ρ)σ2
1σ2

2

)

.

Decoupling with the spectral decomposition By the Spectral Theorem there is an
orthogonal matrixG ∈ Rm×m with

Σ = GDGT ,

whereD ∈ Rm×m is diagonal and each elementd j j =: λ j is an eigenvalue ofΣ. The j th

column ofG is given by the corresponding normalised eigenvector. AsΣ is symmetric
and positive-definite, the eigenvalues are real and positive. By orthogonality we have
G−1 = GT . According to Proposition 37, the dynamics of the transformed process are

dYj(t) = α j dt +
√

λ j dW̄ j
t for j = 1, . . . ,m,

α j =
m
∑

i=1
gi j
(
r − 1

2 σ2
i

)

with Y(0) = GTX(0). Note that the new diffusion coefficients are the roots of theeigen-
values of the variance-covariance matrix.

Spectral decomposition is not unique.D can obviously be forced to be unique by ar-
ranging the eigenvalues in a certain order, e.g. in a non-increasing manner, which we
assume from now on. However,G is still not unique because we can choose an arbitrary
orthonormal basis of each eigenspace. Given that the eigenvalues are distinct, only the
sign of each drift component is not uniquely determined.

In dimension two, there is a simple formula for the eigenvalues of the variance-
covariance matrix andG is simply a rotation matrix. Consequently, the dynamics of
the transformed process are given explicitly in terms of thevariances and the correla-
tion (compare [Nat06]). By contrast, determining the eigenvalues is more involved for
higher dimensions. In particular, if the dimension is higher than four, there is in general
no closed-form solution for the eigenvalues1; the eigenvalues have to be determined by
aniterativealgorithm instead. The QR algorithm is an efficient method todetermineall
eigenvalues and eigenvectors at once[Fra61], [Fra62].

Decoupling with the Cholesky decomposition Since the variance-covariance matrix
is symmetric and positive-definite, it admits a unique Cholesky factorisation; i.e. it can

1Generally, the roots of polynomial equations higher than fourth degree cannot be written in terms of
finite number of operations of addition, subtraction, multiplication, division and root extraction (Abel‘s
Theorem (1826)).
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be decomposed by

Σ = GGT ,

whereG ∈ Rm×m is a lower triangular matrix with positive diagonal entries. In contrast
to the general decomposition rule (4.1), the transformation matrix is sparse, and the
triangular structure will lead to further advantages. Unlike Spectral decomposition,
Cholesky factorisation is a direct procedure for any dimension of the problem; i.e. it
terminates after a finite number of steps.

By Proposition 37, the processY has dynamics

dYj(t) =
j

∑
k=1

g−1
jk

(
r − 1

2 σ2
k

)
dt +dW̄ j

t , Yj(0) =
j

∑
k=1

g−1
jk ln(Sj(0)) (4.5)

for j = 1, . . . ,m. Hence, all diffusion coefficients are equal to 1. Moreover,the sums in
the drift component and in the starting value run up to the component’s index only.

Observe that Cholesky factorisation is distributive and incremental in the following
sense. IfA∈Rm×m is symmetric and positive-definite andA= LLT denotes its Cholesky
factorisation, then

ai j =
j

∑
k=1

l ikl jk for i ≥ j.

As the diagonal elements are required to be positive,

l ii =
√

aii −∑i−1
k=1 l2ik.

As presented e.g. in Hanke-Bourgeois, the originallym-dimensional problem can be
split into two lower-dimensional problems: the problem of finding the Cholesky decom-
position of an(m−1)×(m−1) matrix, plus that of finding the Cholesky decomposition
of a positive scalar (compare [HB06], Theorem 5.4). As we see below, Cholesky fac-
torisation is in fact distributive for any dimensionp < m.

Lemma 6. Let A∈ Rm×m be symmetric and positive-definite, let1≤ p≤ m and let A
be split into the following blocks

A =

(
A11 A12

A21 A22

)
} p
}m− p

︸︷︷︸

p
︸︷︷︸

m−p
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Then A11 is symmetric and positive-definite. Moreover,

S:= A22−A21A
−1
11 A12 ∈R(m−p)×(m−p)

is well defined and it is also symmetric and positive-definite2 (compare e.g. [HB06],
Lemma 5.1).

Proposition 38. According to Lemma 6, the matrices A11 and S can be decomposed by
Cholesky factorisation, which will be denoted by A11 = LpLT

p and S= Lm−pLT
m−p. Then

for the m× m matrix

M :=

(
Lp 0

A21(LT
p)−1 Lm−p

)

,

we have L= M.

Proof. M is obviously lower triangular andMMT = A. By positivity of the diagonal
elements inLp and inLm−p, the diagonal elements ofM are positive, too. Thus, the
assertion follows from uniqueness of the Cholesky decomposition.

According to Proposition 38, determining the Cholesky decomposition of a size
m× m matrix can be split into two subproblems: to determine the Cholesky decompo-
sition of a size(m− p) × (m− p) matrix, and to determine the Cholesky decomposition
of a sizep× p matrix.

Corollary 13. The matrix Lp in Proposition 38 is the leading p× p submatrix of L.

Corollary 13 implies that the distributive structure goes hand-in-hand with incre-
mentality of the Cholesky algorithm, i.e. the solution of theproblem in dimensionm
already contains the solutions of the problem in dimensionp < m. Regarding our ap-
plication, we note that incrementality is inherited to the transformed process:

Proposition 39. Consider an m-dimensional Black-Scholes model. When using
Cholesky factorisation for decoupling, the first p< m components of the decoupled
process coincide with the decoupled process corresponding to a Black-Scholes model
consisting of the first p stocks only.

Proof. Let Σ11 = GpGT
p denote the Cholesky factorisation of the leadingp× p subma-

trix of the variance-covariance matrix. It follows from Proposition 38 thatG−1
p is the

leadingp× p submatrix ofG−1. However,G−1
p is also the transformation matrix in a

Black-Scholes world consisting of the firstp stocks only. Combining these observations
with formula (4.5) for the dynamics of the decoupled processshows that the assertion
holds true.

2S is called the Schur complement ofA with respect toA11.
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Corollary 14. Consider an m-dimensional Black-Scholes model. Each component Yi of
the transformed model involves original variances and correlations with indices up to i
only.

Note that under decoupling via spectral decomposition, thetransformation matrix is
not triangular. Hence, there is no analogue to Proposition 39. We analyse the resulting
impact on tree methods below.

4.3 Discretisation of the Decoupled Process and Back-
transformation

In the following, we suggest a discretisation scheme for thedecoupled process

Y = G−1X

given in equation (4.3). We demonstrate that if we apply a backtransformation to the
corresponding tree, we obtain an approximation to the original stock price process, so
weak convergence is ensured.

A discrete approximation of the decoupled process In principle, the decoupled
process is approximated as follows: After having established independence, each 1D
component processYi can be approximated separately by a 1D Markov chainY(N)

i that
matches the mean and the variance of the log-returns ofYi. If we take the product of the
measures induced byY(N)

1 , . . . ,Y(N)
m , we get a law forY(N) := (Y(N)

1 , . . . ,Y(N)
m )T which

approximates the distribution ofY. In particular, the correlation structure need not be
considered. By moment matching, there is weak convergence toeach component pro-
cessYi. Furthermore, there is also weak convergence to them-dimensional processY,
which we can infer from the following theorem:

Theorem 7. Let M1,M2 be separable metrisable topological spaces and let(P1
N)N, P1,

(P2
N)N, P2 be probability measures on(M1,B(M1)) and (M2,B(M2)), respectively.

Then we have

P1
N ⊗P2

N ⇒w P1⊗P2

if and only if

P1
N ⇒w P1 and P2

N ⇒w P2

(compare e.g. [Bil68], Theorem 3.2.).
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We will see below that as the backtransformation is continuous, we will also obtain
weak convergence to the original stock price processS.

Of course, we can use any 1D discretisation scheme for the approximation of the com-
ponent processes, and the schemes can even differ componentwise. In the following,
we suggest approximating each component by a 1D RB scheme. In this case, all paths
of the resultingm-dimensional process are equally likely. Let us anticipatethat compu-
tational effort for backward induction will therefore be optimal for the rate of growth of
the tree.

As in Section 3.2,

Ek =
{

ωk =
(
ωk,1, . . . ,ωk,m

)
| ωk,i ∈ {−1,1} ∀ i = 1, . . . ,m

}

denotes the set of all possible up-down-scenarios for period k≤ N and

ω = (ω1,1, ...,ω1,m, ...,ωN,1, . . . ,ωN,m) ∈ E1× . . .×EN =: E

denotes the path space. FurtherZk,i : E → {1,−1} is the coordinate mapping. Ac-
cording to the discretisation scheme suggested by RB, we have to define a probability
measureP(N) onE such that

Y(N)
k =







Y(N)
k−1,1 +α1∆t +Zk,1

√
d11

√
∆t

...

Y(N)
k−1,m+αm∆t +Zk,m

√
dmm

√
∆t







, Y(N)
0 = Y(0) =: y0 (4.6)

matches the first two moments of the incrementY (k∆t)−Y ((k−1)∆t). Below we
denote the one-period transitions of componenti by

uY
i = uY

i (N) = αi∆t +
√

dii
√

∆t and dY
i = dY

i (N) = αi∆t −
√

dii
√

∆t.

Note that there is no correlation structure that needs to be matched because we have
already decoupled the originally correlated Brownian motions by the transformation
which definesY. As a consequence, moment matching has to be done componentwise
only! We definePk (and thus the joint distribution of theZk,i, i = 1, . . . ,m) as the measure
determined by

Pk ({ωk}) := 2−m ∀ωk ∈ Ek.
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Then in accordance with the RB discretisation, we have

Zk,i =

{
1 with prob. 1/2
−1 with prob. 1/2.

Finally, we define the probability measureP(N) on the path spaceE as the product of
the measuresPk, k = 1, . . . ,N. Note that underP(N), the 1-step transition probabilities
all are equal to(1/2)m and each path has probability(1/2)Nm.

If the transformation matrixG−1 is obtained by Cholesky decomposition, we have the
following analogue to Proposition 39 for the discrete model:

Proposition 40. Suppose the transformation matrix G−1 is obtained by Cholesky de-
composition. Then the first p< m components of the discrete process Y(N) coincide with
the discrete process approximating the decoupled process obtained in a Black-Scholes
world consisting of the first p stocks only.

In order to use the machinery of weak convergence of stochastic processes, we map
the discrete processY(N) to a continuous processY(c,N) on [0,T] via

Y(c,N)
i (t) := Y(N)

k−1,i +
t−(k−1)∆t

∆t

(

Y(N)
k,i −Y(N)

k−1,i

)

for i = 1, . . . ,m

for t ∈ [(k−1)∆t,k∆t]. Note that the components{Y(c,N)
i }i=1,...,m remain independent.

Since moment matching is ensured for each component process, we obtain the following
result from Donsker’s Theorem:

Proposition 41. We have

Y(c,N)
i ⇒w Yi for i = 1, . . . ,m.

Finally, as the family{Y(c,N)
i }i=1,...,m is independent and each processY(c,N)

i con-
verges weakly to its continuous counterpart, we can apply Billingsley’s Theorem on
weak convergence of product measures, which yields the following result:

Corollary 15. We have

Y(c,N) ⇒w Y.

Apparently, proving weak convergence inm dimensions is just a 1D task under
decoupling.

Backtransformation Corollary 15 justifies the approximation of the transformed pro-
cessY by a binomial tree based on the discretisation scheme (4.6).Yet since the option
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payments are defined in terms of the original asset price processS, we have to apply the
inverse of the decoupling rule to each node of the tree. More precisely, leth :Rm→R

m

denote the inverse of the decoupling rule, i.e.

h(x) := (eG1.x, . . . ,eGm.x)T (4.7)

whereGi. ∈ R1×m is the ith row of G. Then{h(Yt)}t∈[0,T] coincides with the original
processS. The nodes of the tree are mapped to

S(N)
k := h

(

Y(N)
k

)

for k = 0, . . . ,N, (4.8)

and the stochastic processS(c,N) defined as

S(c,N)(t) := h(Y(c,N)(t)) for t ∈ [0,T]

yields an approximation to the stock price. As the backtransformation is continuous,
weak convergence is preserved, i.e. the following result holds:

Proposition 42. We have

S(c,N) ⇒w S.

Hence, according to Proposition 42, the above model can be applied for numerical
option valuation.

Remark 29. Let us stress that for the decoupling approach, the correlation structure of
the continuous-time model enters the discrete model via thetransformation map. It af-
fects transition states and consequently possible payoff scenarios. By contrast, we have
seen that for the standard tree procedures described in Section 3, the correlations enter
transition probabilities. The possible payoff scenarios remain unaltered. The structural
difference between the competing methods leads to effects infavour of decoupled trees
regarding numerical performance; this is described below.

4.4 Binomial Option Valuation via the Decoupling Ap-
proach

The following section deals with the application of the decoupling approach to numer-
ical option valuation. In Section 4.4.1, we discuss the mainaspects of the correspond-
ing tree algorithm. Section 4.4.2 deals with numerical performance of the decoupling
approach to multi-dimensional option valuation. The standard methods considered in
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Chapter 3 serve as benchmarks. We consider both decoupling with the spectral decom-
position (for short: orthogonal tree) and decoupling with the Cholesky decomposition
(for short: Cholesky tree).

4.4.1 The Tree Algorithm

Binomial option pricing via the decoupling approach consists of the following basic
steps:

Basic Steps: Decoupled Tree Option Pricing

Input: payoff function g; relevant model parameters (in particular, the variance-
covariance matrixΣ); number of periodsN

1. Decompose the variance-covariance matrix asΣ = GDGT as in (4.1).

2. Transform the stock priceS into a new processY as in (4.3). The new component
processes are independent Brownian motions with drift.

3. Set up anm-dimensional RB tree with independent components using the discrete
processY(N) defined in (4.6).

4. Apply the backtransformation (4.7) toeach node of the treeas in (4.8).

5. Evaluate the payoff functional along the transformed nodes using backward in-
duction. Exploit the fact that all scenarios are equally likely.

Path-independent options For path-independent options, step 4 collapses to

4’. Apply the transformation (4.7) to theterminal nodes of the treeonly; i.e. compute

S(N)
N (ωN) = h

(

Y(N)
N (ωN)

)

∀ωN ∈ EN.

The tree algorithm for the valuation of path-independent options with two underlyings
is given below (compare Algorithm 6). Note that by storing intermediate calculation
results, the number of multiplications required by backtransformation is reduced from
orderm2(N+1)m to orderm2(N+1).
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If we use decoupling with Cholesky factorisation, we have thespecial form

S(N)
N =

(

eg11Y
(N)
N,1 , . . . ,e∑m−1

i=1 gm−1,iY
(N)
N,i ,e∑m

i=1gm,iY
(N)
N,i

)T

(4.9)

asG is triangular. Note that in this case,S(N)
N,i depends on the random variablesY(N)

N, j
with indices 1≤ j ≤ i only. Consequently, performing backtransformation is faster than
in the general case (compare Algorithm 6 for details). Moreover, by Proposition 40 and
Corollary 13, we can state the following result:

Proposition 43. Consider an m-dimensional Black-Scholes model. If we use Cholesky
factorisation for decoupling, the first p< m components of the decoupled tree coincide
with the decoupled tree corresponding to a Black-Scholes model consisting only of the
first p stocks. In particular, the underlying 1D trees are such that the component i
involves variances and correlations with indices up to i only.

Remark 30. Let us stress that according to Proposition 43, we can re-use the tree
already constructed if additional assets enter the market (e.g. when the set of assets
underlying a basket option is enlarged).

As for the methods described in Section 3, the rate of growth for the decoupled
tree procedure is(N+1)m. However, the above tree algorithm prices path-independent
options more quickly; i.e. it requires less operation counts for a fixed tree size. In fact,
computational effort is optimal for the rate of growth of thetree:

Proposition 44. In the general m-dimensional situation, Algorithm 6 requires compu-
tational effort of order O(Nm+1). The leading constant is2

m

m+1.

Proof. Computing the arithmetic mean at each node of the tree requires 2m operation
counts per node (2m−1 additions and asinglemultiplication.) Consequently, the total
effort for backward induction is of orderO(Nm+1) with constant 2m

m+1. Of course, the
decoupled tree requires additional operation counts for backtransformation. However
for path-independent options, the additional effort does not contribute to the leading
term of the total effort.

Recall that by contrast, for the methods described in Chapter 3, computational effort
is also of orderO(Nm+1), but with constant(2m+1−1)/(m+ 1) for the BEG tree and
with constant(3/2× 2m− 1)/(m+ 1) for the m-dimensional RB tree. Note that the
difference in operation counts grows in the dimension of theproblem. This is illustrated
in the following example: We consider the product option

g(S(T)) =

((
m
∏
i=1

Si(T)

) 1
m

−K

)+

.
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Algorithm 6: The decoupling approach to binomial trees for a path-
independent European option with two underlyings

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0][0]×exp(−r ×T)

1. Decomposition of the Variance-Covariance Matrix

Choose a decomposition of the variance-covariance matrix
Σ = GDGT as in (4.1).

2. Decoupling

Transform the stock priceS into a new processY as in (4.3).

3. Forward Step

{initialise possible scenarios ofY(N) at maturity}
Set YN[0][1] := y0,1 +N×dY

1
Set YN[0][2] := y0,2 +N×dY

2
for k = 1 toN do

YN [k][1] := YN [k−1][1]+uY
1 −dY

1
YN [k][2] := YN [k−1][2]+uY

2 −dY
2

end for

{store intermediate calculation results}
for k = 0 toN do

temp[1][1][k] := g11×YN [k][1]
temp[1][2][k] := g12×YN [k][2]
temp[2][1][k] := g21×YN [k][1]
temp[2][2][k] := g22×YN [k][2]

{or under Cholesky factorisation}
temp[1][1][k] := g11×YN [k][1]
temp[2][1][k] := g21×YN [k][1]
temp[2][2][k] := g22×YN [k][2]

end for
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4. Backtransformation at Maturity and Forward Step Continued

for k1 = 0 toN do
for k2 = 0 toN do

{backtransformation of possible scenarios ofY(N) at maturity}
SN[k1][k2][1] := exp(temp[1][1][k1]+ temp[1][2][k2])
SN[k1][k2][2] := exp(temp[2][1][k1]+ temp[2][2][k2])

{initialise option values at maturity}
SetV [k1][k2] := g(SN[k1][k2][1],SN[k1][k2][2])

end for
end for

{or under Cholesky factorisation}
for k1 = 0 toN do

SN[k1][1] := exp(temp[1][1][k1])
for k2 = 0 toN do

SN[k1][k2][2] := exp(temp[2][1][k1]+ temp[2][2][k2])

SetV [k1][k2] := g(SN[k1][1],SN[k1][k2][2])
end for

end for

5. Backward Induction

{step backwards through the tree}
for k = N−1 to 0do

for l1 = 0 tok do
for l2 = 0 tok do

V [l1][l2] := 0.25× (V [l1 +1][l2 +1]+V [l1 +1][l2]+

V [l1][l2 +1]+V [l1][l2])
end for

end for
end for
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Tables 4.1 and 4.2 show the price estimates obtained for the competing methods and the
corresponding computing times. In each row of the tables, computing time required by
the BEG tree is set to 100 % and computing time required by the other methods is given
as a percentage. Note that, in fact, the option is a single-asset option whose drift rate,
initial value and variance are compounded values of the model parameters. Clearly, it
admits an explicit valuation formula in the Black-Scholes setting, which allows us to
compare the binomial price estimates with the exact value. It is therefore considered as
a simple test case.

Table 4.1: Product option (m= 2): Accuracy and computing time;
T = 1, r = 0.1, σ1 = 0.2, σ2 = 0.25,ρ = 0.5, S1(0) = 22,S2(0) = 20 andK = 20

N BEG tree 2D RB tree Orth tree Chol tree

10 3.26143 3.26926 - 3.25587 - 3.26747 -
30 3.2606 3.26369 - 3.26469 - 3.26323 -
50 3.26151 3.26323 - 3.26332 - 3.26241 -
100 3.26181 3.26271 80 % 3.26278 80 % 3.26256 40 %
200 3.26197 3.26243 81 % 3.26246 65 % 3.26223 65 %
300 3.26203 3.26232 79 % 3.26235 63 % 3.26231 57 %
400 3.26204 3.26227 80 % 3.26229 63 % 3.26227 62 %
500 3.26207 3.26225 80 % 3.26227 62 % 3.26221 61 %
1000 3.26210 3.26219 79 % 3.26220 63 % 3.26219 61 %

BS Value 3.26214
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Table 4.2: Product option (m= 3): Time/accuracy trade-off;
T = 1, r = 0.1, σ1 = 0.2, σ2 = 0.25, σ3 = 0.15, ρ12 = 0.5, ρ13 = −0.2, ρ23 = −0.4, S1(0) = 22,
S2(0) = 20,S3(0) = 25 andK = 20

N BEG tree 3D RB tree Orth tree Chol tree

10 3.89311 3.90280 - 3.90251 - 3.90264 -
30 3.90065 3.90379 100 % 3.90375 100 % 3.90381 50 %
50 3.90210 3.90398 86 % 3.90396 68 % 3.90400 46 %
75 3.90282 3.90406 57 % 3.90406 47 % 3.90409 36 %
100 3.90317 3.90412 68 % 3.90411 50 % 3.90413 42 %
125 3.90340 3.90414 65 % 3.90414 46 % 3.90416 39 %
150 3.90353 3.90416 67 % 3.90416 44 % 3.90418 43 %
175 3.90364 3.90418 67 % 3.90418 43 % 3.90419 43 %
200 3.90371 3.90419 67 % 3.90419 42 % 3.90420 37 %

BS Value 3.90427

For the above example, the alternative methods do not differsignificantly in the
magnitude of the discretisation error. Yet, as we anticipate from previous results, there
is a significant difference in computing time. Apparently, the multi-dimensional RB
tree achieves a better time/accuracy trade-off than the BEG tree. However, in accor-
dance with Proposition 44, computing time is further reduced by using decoupled trees.
In dimensionm = 2, the decoupled trees need approximately 60% - 65% of the time
required by the BEG tree. In dimensionm= 3, the computing time is reduced to ap-
proximately 40% - 45%. Furthermore, we note that the Choleskytree is slightly faster
than the orthogonal tree, which is due to the fact that it requires less operation counts
for the backtransformation of terminal nodes.

While for product options convergence is quite smooth for allmethods under consid-
eration, this is not the case for multi-dimensional optionswith strike levels/barriers on
each of the underlying assets. Let us stress that for these types of options, the methods
typically differ significantly in the discretisation error. We have seen that for two-asset
cash-or-nothing options, the standard tree methods sufferheavily from the sawtooth ef-
fect. However for the decoupled tree methods, oscillationsin the convergence pattern
are dampened. This is explained below.

Path-dependent/American options For path-dependent options, the backtransfor-
mation has to be applied to all time-layers in the tree that are relevant for the spe-
cific payoff function of interest. In particular, for American options every time-layer
of the tree has to be transformed. Consequently, by contrast to the valuation of path-
independent options, the computational effort required for backtransformation is typi-
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Algorithm 7: The decoupling approach to binomial trees for a European
knock-out option with two underlyings

Input: stock price parameters, risk-neutral rater, payoff functiong
Return: price estimate= V [0][0]×exp(−r ×T)

1. Decomposition of the Variance-covariance Matrix
- 4. Backtransformation at Maturity and Forward Step

{remains unchanged}

5. Backward Induction

{step backwards through the tree}
for k = N−1 to 0do

for l = 0 tok do
{adjust the YN-array to the current time step}

YN [l ][1] := YN [l ][1]−dY
1

YN [l ][2] := YN [l ][1]−dY
2

{store intermediate calculation results}
temp[1][1][l ] := g11×YN [l ][1]
temp[1][2][l ] := g12×YN [l ][2]
temp[2][1][l ] := g21×YN [l ][1]
temp[2][2][l ] := g22×YN [l ][2]

end for

for l1 = 0 tok do
for l2 = 0 tok do

{backtransformation of possible scenarios ofY(N) at
the current time step}

SN[l1][l2][1] := exp(temp[1][1][l1]+ temp[1][2][l2])
SN[l1][l2][2] := exp(temp[2][1][l1]+ temp[2][2][l2])
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{check whether barrier levels are crossed}
if SN[l1][l2][1] < B1 and SN[l1][l2][2] < B2 then {up-and-out}
{assign current option value}

V [l1][l2] := 0.25× (V [l1 +1][l2 +1]+V [l1 +1][l2]+

V [l1][l2 +1]+V [l1][l2])

else
V [l1][l2] := 0

end if
end

end
end
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cally not negligible. Thus, the total effort is no longer optimal for the rate of growth of
the tree. However, as we see below, the fact that decoupled trees are relatively costly
in the valuation of path-dependent options can be overcompensated for by advanced
performance properties. In particular, for barrier options, we can exploit benefits due to
monotonicity of convergence.

As an example, the tree algorithm for a European knock-out option with two underly-
ings can be found below (compare Algorithm 7).

High-dimensional options As discussed previously, tree methods are currently not
suitable for the valuation of high-dimensional options. Yet the decoupling approach
is perfectly suited to restrict these valuation problems tothe ”important dimensions”,
which may provide a fast first guess on the option price. This aspect of the decoupling
approach is sketched in the following.

Filtering out important factors or important dimensions bya principal component anal-
ysis (for short: PCA) is a well-known method in statistics or in high-dimensional nu-
merical integration. We anticipate that it may also be fruitful to apply such a method
to numerical valuation of multi-asset options. Of course, the main motivation is a high
correlation between certain stocks or submarkets. Moreover, the dynamics of stock
markets (or interest rate markets) can often be explained bya relatively small number
of random factors (i.e. by the dimension of the underlying Brownian motion) that is
less than the number of traded stocks. In such a situation, itseems reasonable to value
an option on a big basket of assets by a tree of lower dimensionthan the number of
assets entering it. Since the orthogonal tree is based on a spectral decomposition of the
variance-covariance matrix, it is especially suited to that purpose. It essentially con-
siders the underlying independent risk factors (rather than the stocks) as the important
ingredients. Moreover, it already incorporates PCA in an implicit way.

Let us recall that under decoupling with spectral decomposition, the dynamics of the
transformed processY are

dYj(t) = α jdt +
√

λ jdW̄ j
t for j = 1, . . . ,m

Y(0) = GTX(0)

with λ j , j = 1, . . . ,m, the eigenvalues of the variance-covariance matrix. Assume that
the variance-covariance matrix is nearly singular. Then there are volatilities that are
close to zero; sayλm−r+1, . . . ,λm. Hence, when we represent the originalm-dimensional
random object (the stock priceS) with respect to its basic driving random factors that are
orthogonal to each other, there remain essentiallym− r relevant random factors only.
Assuming the other factors to be deterministic, the transformed processY is replaced
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by some process̃Y with dynamics

dỸj(t) = α j dt +
√

λ j dW̄ j
t for j = 1, . . . , r,

dỸj(t) = α j dt for j = m− r +1, . . . ,m.

Consequently, if we approximate the dynamics of the processỸ by an appropriate bi-
nomial scheme, the number of possible scenarios at maturitywill be reduced from
(N + 1)m to (N + 1)m−r . As a result, computational effort decreasesexponentially in
the number of ”non-relevant” stochastic factors. Note that this approach works inde-
pendently of the particular type of option. Moreover, as PCA is already incorporated
implicitly in the orthogonal tree procedure, we do not need to spend any extra effort;
we just check for non-relevant stochastic factors.

Although the reduction in computational effort is impressive, we should keep in mind
that fixing some factors as deterministic leads to less accurate results; in particular, the
sequence of price estimates no longer converges to the exactprice. However, if the
number of relevant stochastic factors is small, the approach can give afast first guess
on high dimensional valuation problems. We hence wish to stress the significance of
this application for practical purposes. We suggest to analyse this issue for options on
prominent indices; this is left for further research.

4.4.2 The Convergence Behaviour of Binomial Option Prices

This section deals with the convergence behaviour of decoupled trees. As in the previ-
ous chapter, our analysis is focused on multi-asset optionsthat exhibit discontinuities in
the underlyings. The results obtained for standard multi-dimensional trees will serve as
benchmarks. We will demonstrate that the decoupling approach leads to a more regu-
lar convergence behaviour of the corresponding trees. In particular, for barrier options,
convergence can be (approximately) monotone, so that extrapolation methods can be
applied.

Cash-or-nothing options We first investigate the convergence behaviour of decou-
pling trees for cash-or-nothing options. This illustratedwith our example from the
previous chapter (parameters are kept unchanged). Figure 4.1 shows the corresponding
price estimates obtained for the orthogonal tree forN = 100 : 2 : 1000. The 2D RB tree
is used as a benchmark. The Cholesky tree is considered below.
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Fig. 4.1: The orthogonal tree: Convergence pattern for a two-asset cash-or-nothing call
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100

Apparently, the amplitude of the oscillations is significantly reduced by decoupling.
Let us explain: As discussed in the above, the correlation structure of the continuous-
time model affects the position of terminal nodes in the orthogonal tree (compare Re-
mark 29). In the backtransformationh, the nodes are dislocated in such a way that the
rectangular grid structure is destroyed; i.e. in contrast to standard multi-dimensional
trees, there are no longer ”columns” and ”rows” that are parallel to the strike values
(compare Figure 4.2). Consequently, the fraction of nodes inthe in-the-money region is
more stable inN than under standard methods, so thatthe orthogonal tree is automati-
cally ”in shape”. As a result, oscillations in the convergence pattern are dampened.

Fig. 4.2: The orthogonal tree: Realisations of(S(N)
1 ,S(N)

2 );
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100
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Figure 4.3 shows the price estimates obtained for the Cholesky tree for
N = 100 : 2 : 1000. Apparently, the performance of the Cholesky tree is better than
that of the 2D RB tree, but it is not as good as that of the orthogonal tree. In particular,
the sawtooth pattern is still present; yet with a lower amplitude of the oscillations.

Fig. 4.3: The Cholesky tree: Convergence pattern for a two-asset cash-or-nothing call
S0 = (12,12)T , σ1 = 0.2, σ2 = 0.25,ρ = 0.5, r = 0.1, K = (17,20)T andG = 100

For the Cholesky tree, the backtransformationh dislocates the terminal nodes in
such a way that the rectangular grid structure is only partially destroyed: By backtrans-
formation, the second component of the terminal valueS(N)

N,2 depends on bothY(N)
N,1 and

Y(N)
N,2 , while the first component of the terminal valueS(N)

N,1 depends exclusively onY(N)
N,1

(compare equation (4.9)). Consequently, when we fix a possible realisation ofS(N)
N,1,

there areN+1 possible realisations ofS(N)
N,2, but not the other way around. As a result,

we obtain a ”columnwise grid”, i.e. the probability mass is smeared relative to the strike
on stockS2, but it is concentrated in bunches ofN + 1 nodes relative to the strike on
stockS1 (compare Figure 4.4). Hence, the structure of the Cholesky tree has features
of both the multi-dimensional RB tree and the orthogonal tree. Clearly, for a cash-or-
nothing option with a single strike on stockS1, the convergence pattern of the Cholesky
tree will be similar to that of the 2D RB tree, while it will be similar to that of the
orthogonal tree for an option with a single strike on stockS2.
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Fig. 4.4: The Cholesky tree: Realisations of(S(N)
1 ,S(N)

2 );
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100

Table 4.3 illustrates accuracy and computing time for the valuation of the two-asset
cash-or-nothing option with the alternative methods. We see that the decoupling ap-
proach leads to better results in less time. In accordance with the results above, the
orthogonal tree performs best.

Table 4.3: Two-asset cash-or-nothing option: Accuracy andcomputing time;
S1(0) = 12.0,S2(0) = 12.0,σ1 = 0.2,σ2 = 0.25,ρ = 0.5,T = 1.0 r = 0.1,K1 = 17.0,K2 = 20.0,G= 100

N BEG tree 2D RB tree Orth tree Chol tree

50 1.02019 1.27041 - 1.38673 - 1.41077 -
100 1.25755 1.57154 75 % 1.31009 75 % 1.35354 50 %
200 1.27876 1.33817 83 % 1.31146 66 % 1.33912 62 %
300 1.31285 1.31208 82 % 1.34208 64 % 1.35734 63 %
400 1.31009 1.36935 78 % 1.33433 63 % 1.32219 62 %
500 1.40518 1.46723 81 % 1.34317 63 % 1.39960 62 %
700 1.21216 1.35047 82 % 1.34315 63 % 1.36423 62 %
1000 1.31603 1.37889 82 % 1.33373 62 % 1.31235 62 %

BS Value 1.34087
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Barrier options This paragraph deals with the convergence behaviour of decoupled
trees for barrier options. This is again illustrated with our examples from the previous
chapter. As seen in Chapter 3, the corresponding prices obtained for standard multi-
dimensional tree methods suffer heavily from an irregular convergence behaviour. For
the decoupling approach, the valuation of these options requires applying the back-
transformation (4.7) to every time-layer of the tree. This affects, on the one hand, that
computing time is increased, but, on the other hand, the probability mass is smeared for
every period of the discrete-time model. This induces anaveraging effecton the effec-
tive barriers. As a result, the decoupling approach can leadto monotone convergence.
As we explain next, the additional computational effort is overcompensated for by the
benefits due to monotonicity of convergence.

Figure 4.5 shows the price estimates obtained for the orthogonal tree for
N = 10 : 2 : 1000. Apparently, convergence is (approximately) monotone, so that ex-
trapolation methods can be applied. Let us remark that as discussed for cash-or-nothing
options, the smoothing effect will be weaker for the Choleskytree.

Fig. 4.5: Convergence pattern for a barrier option with an with an up-and-out barrierB1 on stock 1 and
a down-and-out barrierB2 on stock 2 (left) / up-and-in barrierB1 on stock 1 and a down-and-out barrier
B2 on stock 2 (right)
S1(0) = 20.0, S2(0) = 30.0, σ1 = 0.2, σ2 = 0.25, T = 1.0 r = 0.1, B1 = 33.0 / B1 = 25.0, B2 = 15.0,
G = 100 and correlationρ = 0.5

In accordance with the Berry-Esséen inequality, Figure 4.5 suggests that the se-
quence of price estimates obtained by the orthogonal tree converges in order 1/

√
N.

Then Richardson extrapolation leads to a sequence of aggregated price estimates given
by

Ĉ(2N) =
√

2C(2N)−C(N)√
2−1

.

Figure 4.6 shows the sequence of aggregated price estimatesfor 2N = 20 : 20 : 1000.
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Fig. 4.6: Convergence pattern for a barrier option with an with an up-and-out barrierB1 on stock 1 and
a down-and-out barrierB2 on stock 2 (left) / up-and-in barrierB1 on stock 1 and a down-and-out barrier
B2 on stock 2 (right): Aggregated Estimates

We see that the improvement in accuracy is enormous. Yet, thetotal effort has mul-
tiplied compared to standard procedures (compare Tables 4.4 and 4.5). However, the
results indicate that the aggregated estimates achieve a superior time/accuracy trade-
off: The estimates obtained by the 2D RB tree are consistentlyfar above/below the
exact price. ForN = 2500, the prices obtained for 2D RB tree are 87.497 £ for the
first example (exact price=87.4192 £) and 35.3717 £ for the second example (exact
price=35.75 £). This corresponds to a relative error3 of 0.09% and 1.06%, respectively.
By contrast, the aggregated estimate obtained for the orthogonal tree already achieves a
relative error of 0.009% and 0.11%, respectively, forN = 500. Note that computing the
aggregated estimate forN = 500 requires less than 20 s, while it takes approximately
5 min to run the 2D RB tree withN = 2500. Hence, the orthogonal tree clearly outper-
forms the 2D RB tree.

As discussed in the previous chapter, the BEG tree leads to highly accurate results if the
grid size is optimally located in relation to the barriers. In the first example,N = 500
is a preferred choice for the number of periods in the discrete model. However, the
preferred grid size always depends both on the payoff structure and on the model pa-
rameters. By contrast, decouplingconsistently leads to small relative errors without
assuming knowledge of the problem under consideration.

Remark 31.

1. The results observed rely on the assumption that the barriers are constant in the
underlying stocks. In principle, we could think of a payoff structure, for which dis-
locating nodes by the transformation h leads to more oscillations. However, this
is rather a theoretical objection as for traded options the barriers are typically
constant in the underlyings.

3The relative error computes as|Price Estimate−BS Value|/BS Value×100.
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Table 4.4: Barrier option with an with an up-and-out barrierB1 on stock 1 and a down-and-out barrierB2 on stock 2: Time4 /accuracy trade-off

N BEG tree 2D RB tree Orth tree
Orth tree

with extrapolation

100 88.0402 87.8670 100 % 87.8486 650 % 87.5334 750 %
200 87.7317 87.5988 86 % 87.7267 476 % 87.4326 538 %
300 87.7021 87.6300 91 % 87.6718 500 % 87.4365 564 %
400 87.7647 87.6450 90 % 87.6399 505 % 87.4304 571 %
500 87.4211 87.6133 90 % 87.6167 518 % 87.4273 (16 s) 583 %
700 87.6407 87.5315 90 % 87.5874 522 % 87.4280 592 %
1000 87.6007 87.5292 89 % 87.5605 529 % 87.4247 597 %
1500 87.4416 87.5043 90 % 87.5353 547 % 87.4247 612 %
2000 87.4225 87.5161 92 % 87.5202 554 % 623 %
2500 87.5344 (336 s) 87.4970 (305 s) 91 % 87.5098 552 % 87.4217 621 %

BS Value 87.4192

4platform=Toshiba Satellite notebook; machine=Intel Centrino Duo processor, 1.6 GHz, 1.0 GB RAM;
operating system=Linux; source=C++; compiler=g++-4.0.1.
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Table 4.5: Barrier option with an with an up-and-in barrierB1 on stock 1 and a down-and-out barrierB2 on stock 2: Time4 /accuracy trade-off

N BEG tree 2D RB tree Orth tree
Orth tree

with extrapolation

100 32.4044 33.7137 100 % 33.2753 700 % 35.2636 800 %
200 35.2165 34.1574 95 % 33.9422 595 % 35.5523 653 %
300 34.1478 34.5878 89 % 34.2597 583 % 35.6879 673 %
400 34.2484 34.7124 90 % 34.4525 607 % 35.6845 684 %
500 35.6530 34.6848 91 % 34.5847 631 % 35.7098 (19 s) 696 %
700 34.9990 34.9840 89 % 34.7586 640 % 35.7047 700 %
1000 34.7874 35.1509 90 % 34.9177 632 % 35.7219 710 %
1500 34.8805 35.2693 90 % 35.0680 637 % 35.7312 718 %
2000 35.6708 35.2334 91 % 35.1600 647 % 35.7450 729 %
2500 35.5809 (329 s) 35.3717 (298 s) 91 % 35.2225 646 % 35.7455 728 %

BS Value 35.7500
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2. In contrast to the optimal drift model suggested for a single asset option, the de-
coupling approach does not require adjusting the location of nodes to the param-
eter setting or to the option type of interest. We therefore claim that decoupling
is an easy and universal recipe to cope with the sawtooth effectin multiple di-
mensions. Of course, we do not claim that the corresponding trees perform best
for every particular type of (exotic) option; but in contrast to more complicated
multi-dimensional models as that suggested by Kamrad and Ritchken, decoupled
trees show superior performance compared to standard methods without increas-
ing the complexity of the model.

4.5 Conclusion

To conclude, let us summarise the major advantages of the decoupling approach:

• Non-negativity of transition probabilities can be ensured independently of the
correlation structure. Hence, there is no restriction on the applicability of the
method regarding the parameter setting. Thus, decoupled trees have abroader
range of application.

• Decoupling can be used to construct a tree in whichevery path has the same
probability.

• If the payoff functional exhibits discontinuities in the underlyings, oscillations
in the sequence of price estimates can be dampened significantly by decoupling.
Thus, decoupled trees often exhibita more regular convergence behaviour.

• Due to the decoupling of the components, one can use different underlying 1D
trees for individual components of a decoupled tree. As an extreme case, one
can use a constant (!) for those components that show nearly no variation. Thus,
decoupled trees offerthe possibility to give a fast first guess on high-dimensional
valuation problems.

• When applying decoupling with the Cholesky decomposition, it is possible to re-
use the original tree if additional assets enter the market.Thus, decoupled trees
aremore flexible.
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