
Numerical algorithms

for estimating

least squares problems

Petko Ivanov Yanev

Ph.D. Thesis

Institut d’informatique

Université de Neuchâtel

Switzerland

2005

To Desi

Acknowledgments

First, I would like to thank my Ph.D. supervisor and friend Prof. Erricos John Kon-

toghiorghes for his guidance, help and support during these years of Ph.D. study. He

introduced me to the world of research and taught me to express my ideas and the results

I obtained from the research in a scientific manner. I am also grateful to Prof. Dimitar

Mekerov (FMI, Plovdiv University), who encouraged and helped me to start this Ph.D.

and always supported me during my studies.

I extend my sincere thanks to the Department of Computer Science, University of

Neuchatel for hosting me and providing me with an excellent working environment. I

would like to acknowledge and thank as well the Swiss National Science Foundation, which

financially supported this research through the projects 2000-061875.00 and 200020-100116.

I would like to thank many of my friends and colleagues, in particular Dr. Paolo Foschi,

Dr. Cristian Gatu and Marc Hofmann for being always ready to discuss and help me with

all the problems I encountered and for their encouragement.

Last, but not least, I would like to thank my wife Desi, my brother Zlatan and my

parents Ivan and Maria for their great support, love and understanding.

Abstract

The solution of least squares estimation problems is of great importance in the areas

of numerical linear algebra, computational statistics and econometrics. The design and

analysis of numerically stable and computationally efficient methods for solving such least

squares problems is considered. The main computational tool used for the estimation of

the least squares solutions is the QR decomposition, or the generalized QR decomposi-

tion. Specifically, emphasis is given to the design of sequential and parallel strategies for

computing the main matrix factorizations which arise in the estimation procedures. The

strategies are based on block-generalizations of the Givens sequences and efficiently exploit

the structure of the matrices.

An efficient minimum spanning tree algorithm is proposed for computing the QR de-

composition of a set of matrices which have common columns. Heuristic strategies are

also considered. Several computationally efficient sequential algorithms for block down-

dating of the least squares solutions are designed, implemented and analyzed. A parallel

algorithm based on the best sequential approach for downdating the QR decomposition

is also proposed. Within the context of block up-downdating, efficient serial and parallel

algorithms for computing the estimators of the general linear and seemingly unrelated re-

gression models after been updated with new observations are proposed. The algorithms

are based on orthogonal factorizations and are rich in BLAS-3 computations. Experimen-

tal results which support the theoretical derived complexities of the new algorithms are

presented. The comparison of the new algorithms with the corresponding LAPACK rou-

tines is also performed. The parallel algorithms utilize efficient load balanced distribution

over the processors and are found to be scalable and efficient for large-scale least squares

problems.

It is expected that the proposed block-algorithms will facilitate the solution of compu-

tationally intensive statistical problems and the estimation of large scale linear models on

serial and parallel computers.

i

ii

Contents

1 Introduction 1

1.1 Least Squares and QR Decomposition . 1

1.2 Computing the QR decomposition . 3

1.3 Structure of the thesis . 7

2 QRD of a Set of Matrices with Common Columns 9

2.1 Introduction . 10

2.2 Computing the QR decomposition of RSi 11

2.3 The Minimum Spanning Tree algorithm . 13

2.4 Numerical results . 18

2.5 Conclusion . 20

3 Block Downdating of LS solutions 23

3.1 Introduction . 24

3.2 Block-downdating of the LS solutions . 25

3.3 Strategies for computing the factorization (3.12) 29

3.4 Numerical results and conclusion . 35

4 Parallel downdating of the QRD 39

4.1 Introduction . 39

4.2 Block downdating of the QRD . 41

4.3 Parallel downdating of the QRD . 43

4.4 Conclusions . 49

5 Estimating the general linear model 51

5.1 Introduction . 52

iii

5.2 Serial block Givens strategy . 53

5.3 Parallel algorithm . 57

5.4 Conclusion . 60

6 Estimating the updated-observations SUR models 63

6.1 Introduction . 64

6.2 Updating the SUR model with new observations 66

6.3 Sequential strategies for computing the UGQRD (6.14) 68

6.4 Parallel algorithm for computing the UGQRD 72

6.5 Conclusions . 77

7 Conclusions and future research 79

7.1 Future research . 81

Bibliography 83

iv

List of Figures

1.1 Column-based Givens sequence for computing the QRD of A ∈ R4×3. 5

2.1 Computing the QRD of A ∈ R12×8 using Givens rotations. 12

2.2 Computing the QRD of RSi, where R ∈ R12×12, ki=6 and

λi = (1, 2, 5, 6, 10, 12). 13

2.3 The Graph Γ(V, E, n) with all and reduced number of edges, where |V | = 9

and n = 6. 15

2.4 The Graph Γ(V, E, n) with the artificial nodes R̃9 and R̃10, where |V | = 10,

|E| = 9 and n = 6. 16

3.1 The orthogonal C(j), (j = 1, ..., 4). 32

3.2 The orthogonal C̃(j), (j = 1, ..., 4). 34

4.1 The cyclic distribution of the matrices on 4 processors, when g = 16. 44

4.2 The modified cyclic distribution of the matrices on 4 processors, when g = 16. 47

5.1 The row-block cyclic distribution of the matrices on 4 processors, when k = 18. 58

6.1 Computing the UGQRD (6.14), where G = 3 and T (s) = 2. 70

6.2 Theoretical complexity of the ith step (i = 1, ..., G) of the UQRD (6.16),

where G = 80, k = 40, v = 20 and T (s) = 50. 74

6.3 Distribution scheme for 4 processors, where ki = k (i = 1, ..., G) and G = 8. 75

v

vi

List of Tables

2.1 Theoretical complexity and execution time of the modified heuristic method

and that of re-triangularizing the G matrices one at a time, where the total

number of distinct columns of all matrices is n. 19

3.1 Theoretical complexities (Mflops) and execution times (sec). 36

3.2 Execution times of the downdating methods. 37

4.1 Execution times, communication times and efficiencies of Algorithm 7. . . . 46

4.2 Execution times (sec.) and efficiencies of Algorithm 8. 49

5.1 Execution times (sec.) and theoretical results of Algorithm 9 and LAPACK. 57

5.2 Execution times (sec.) and efficiency of Algorithm 10. 60

6.1 Execution times and theoretical complexities of Algorithm 11, ki = k, i =

1, ..., G and v = 20. 72

6.2 Execution times and theoretical complexities of Algorithm 11, v = 20 and

G = 5. 73

6.3 Execution times (sec.) and efficiencies of Algorithm 12 for ki = k

(i = 1, ..., G) and G = 32. 77

6.4 Execution times (sec.) and efficiencies of Algorithm 12 for ki = k

(i = 1, ..., G) and T (s) = 50. 78

6.5 Execution times (sec.) and efficiencies of Algorithm 12 for ki = ik (i = 1, ..., G). 78

vii

viii

List of Algorithms

1 The optimal MST algorithm. 17

2 The heuristic MST algorithm. 18

3 Downdating the least squares problem (3.3). 28

4 The third Strategy for computing (3.12). 32

5 The computation of factorization (3.27). 35

6 The sequential block downdating of the QRD. 43

7 The parallel block downdating of the QRD with cyclic distribution on p

processors. 45

8 The modified parallel block downdating of the QRD with cyclic distribution. 48

9 The sequential block Givens algorithm for solving the GLLSP (5.2). 56

10 The parallel algorithm for solving the GLLSP (5.2) on p processors. 59

11 Sequential algorithm for solving the UGQRD (6.14). 70

12 The parallel algorithm for solving the UGQRD (6.14) on p processors. . . . 76

ix

x

Chapter 1

Introduction

The linear Least Squares (LS) problem is a computational problem of great importance,

which arises in various applications, such as statistics, econometrics, optimization and sig-

nal processing to name but a few. Efficient methods for solving LS problems have been

developed during the last fifty years of active research [5, 21, 22, 32]. The orthogonal

factorizations are very important in the LS computations due to the property that the

orthogonal matrices preserve the Euclidean norm of a vector after multiplication. Specifi-

cally, the QR decomposition (QRD) is often associated with the solution of LS problems.

The QRD is one of the main computational tools in numerical linear algebra [5, 20, 32]. It

provides more accurate solution than the LU and other similar decompositions and involves

less computations than the singular value decomposition.

In this thesis sequential and parallel algorithms employing Givens rotations and House-

holder transformations for computing various LS and QRD-related problems are proposed.

The algorithms, in general, utilize block-generalizations of the sequential and parallel

Givens sequences. They exploit efficiently the structure of the computed matrices and

are rich in BLAS-3 operations.

1.1 Least Squares and QR Decomposition

The LS problem can be formulated as

x̂ = argmin
x

‖Ax − y‖2, (1.1)

1

2 CHAPTER 1. INTRODUCTION

where A ∈ Rm×n is the data matrix of full column rank, y ∈ Rm is the response vector,

x ∈ Rn is the unknown vector and ‖ · ‖ denotes the Euclidean norm. Let the QRD of the

augmented (n + 1) × (n + 1) matrix Ã ≡ (A y) be given by

QT Ã =

(
R̃

0

)
≡




n 1

R u

0 s

0 0




n

1

m − n − 1

, (1.2)

where Q ∈ Rm×m is orthogonal and R ∈ Rn×n is upper triangular and non-singular. The

LS estimator of x in (1.1) is computed by solving the triangular system

Rx̂ = u. (1.3)

The Generalized Linear Least Squares Problem (GLLSP) has the form

argmin
u,x

uT u subject to y = Ax + Cu (1.4)

and is often associated with the computation of the best linear unbiased estimator (BLUE)

of the General Linear Model (GLM)

y = Ax + ε, ε ∼ (0, σ2Ω). (1.5)

Here y ∈ Rm is the response vector, A ∈ Rm×n is the full rank exogenous data matrix,

x ∈ Rn are the coefficients to be estimated and ε ∈ Rm is the noise with zero mean and

variance-covariance matrix σ2Ω. Without loss of generality it is assumed that Ω = CCT

is non-singular. The random vector u is defined by Cu = ε, i.e. u ∼ (0, σ2Im).

The solution of the GLLSP (1.4) requires the computation of the generalized QR de-

composition (GQRD) of the augmented matrix Ã ≡ (A y) and C [35]. That is, computing

the QRD of Ã in (1.2) and the RQ decomposition

(QT C)Π = U =




n 1 m − n − 1

U1,1 r U1,2

0 δ g

0 0 U2,2




n

1

m − n − 1

. (1.6)

1.2. COMPUTING THE QR DECOMPOSITION 3

Here R̃ and U are upper triangular matrices of order n and m, respectively, and Q,Π ∈
Rm×m are orthogonal [5, 20]. Pre-multiplying both sides of the constrains in the GLLSP

(1.4) with the orthogonal matrix QT , the problem becomes equivalent to

argmin
u,x

‖ΠT u‖2 subject to QT y = QT Ax + QT CΠ ΠT u , (1.7)

which after the factorization (1.6) can be written as

argmin
v1,υ,v2,x

(‖v1‖2 + υ2 + ‖v2‖2) subject to





ỹ = Rx + U1,1v1 + rυ + U1,2v2,

η = δυ + gv2,

0 = U2,2v2.

(1.8)

Note that, here the vector uT Π is partitioned as (vT
1 υ vT

2). From the last constraint it

follows that v2 = 0 and consequently, the second constraint can be used to derive υ = η/δ.

Thus, the GLLSP (1.8) is reduced to

argmin
v1,x

‖v1‖2 subject to ỹ = Rx + U1,1v1 + rυ. (1.9)

In order to minimize the objective function of (1.9) the vector v1 is set to zero. Finally,

the BLUE of the GLM (1.5) is obtained by solving the triangular system

Rx̂ = ỹ − ηr/δ. (1.10)

1.2 Computing the QR decomposition

The QRD of a matrix A ∈ Rm×n (m > n) is given by

QT A =

(
R

0

)
n

m − n
, (1.11)

where Q ∈ Rm×m is orthogonal, i.e. it satisfies QT Q = QQT = Im, and R ∈ Rn×n is

upper triangular. The matrix A is assumed to be of full-column rank. The two most

significant methods for forming the QRD are known as Householder transformations and

Givens rotation methods.

A Householder matrix (or Householder transformation) is a symmetric orthogonal m×m

matrix of the form

H = Im − 2
hhT

‖h‖2
,

4 CHAPTER 1. INTRODUCTION

where h ∈ Rm is such that ‖h‖2 6= 0. The Householder matrices are used to annihilate

portion of elements of a vector or a matrix [5, 20]. Specifically, let x ∈ Rm be non zero. A

Householder matrix H can be constructed such that y = Hx has all elements zero except

the first one by setting h = x±αe1, where α = xT x and e1 denotes the first column of the

m × m identity matrix Im.

Consider the computation of the QRD (1.11) as a sequence of n Householder transfor-

mations. The orthogonal matrix Q is defined as the product of the Householder matrices

Q = H1H2 · · ·Hn.

At the ith step of the QRD a Householder transformation has the form

Hi =




i − 1 m − i + 1

Ii−1 0

0 H̃i


i − 1

m − i + 1
,

where H̃i = Im−i+1 − 2(hhT)/‖h‖2. For A(0) ≡ A, the ith step (i = 1, . . . , n) computes

A(i) = HiA
(i−1) ≡

(i n−i

R
(i)
11 R

(i)
12

0 Ã(i)

)
i

m − i
,

where R
(i)
11 is upper triangular. The application of Hi+1 from the left of A(i) annihilates

the last m− i− 1 elements of the first column of Ã(i). The transformation Hi+1A
(i) affects

only Ã(i) and it follows that

A(n) ≡
(

R

0

)
.

A Givens rotation is a m × m orthogonal matrix having the structural form

G
(k)
i,j =

i
↓

j

↓






Ii−1

c −s ← i

Ij−i−1

s c ← j

Im−j−1

,

1.2. COMPUTING THE QR DECOMPOSITION 5

where c = cos(θ) and s = sin(θ) for some θ, that is c2+s2 = 1 [20]. The transformation G
(k)
i,j

when applied to the left of a matrix annihilates the kth element in the jth row. The Givens

rotations are important, because they can annihilate the elements of a matrix or a vector

more selectively than the Householder transformations and affects only the ith and the

jth rows during the computations. Specifically, for A ∈ Rm×n, the Givens transformation

Ã = G
(k)
i,j A results in the element ãj,k being zero and modifies the pth (p = i, j) row of A

as follows:

Ãp,: =





cAi,: + sAj,:, if p = i,

−sAi,: + cAj,:, if p = j,

Ap,:, otherwise.

Note that, in order for aj,k to become zero, the values of c and s are given, respectively,

by c = ai,k/t and s = aj,k/t, where t2 = a2
i,k + a2

j,k.

Consider the computation of the QRD (1.11) as a sequence of n(2m− n− 1)/2 Givens

rotations. The orthogonal matrix Q is defined as the product of the Givens matrices

Q = (G
(1)
m−1,m · · ·G(1)

1,2)(G
(2)
m−1,m · · ·G(2)

2,3) · · · (G
(n)
m−1,m · · ·G(n)

n,n+1).

This sequence is referred as column-based, because it annihilates the elements below the

main diagonal from bottom to top starting with the first column. Figure 1.1 illustrates the

column-base annihilation Givens sequence, where m = 4 and n = 3.

• • •
• •
•

• • •
• •
•

• • •
• •
•

• • •
• •
•

• • •
• •
•

• • •
• •
•

◦
•
•
•
•
•

◦
•
•
•
•

◦
•
•
• ◦

•
•

◦
• ◦G

(1)
3,4

G
(1)
2,3

G
(1)
1,2

G
(2)
3,4

G
(2)
2,3

G
(3)
3,4

Zero element • Non-zero element ◦ Annihilated element

Figure 1.1: Column-based Givens sequence for computing the QRD of A ∈ R4×3.

A block generalization of the Householder and Givens sequences can be used for de-

veloping efficient sequential and parallel algorithms which are rich in BLAS-3 operations.

Instead of a sequence of Givens rotation, a single block Givens transformation can be used

6 CHAPTER 1. INTRODUCTION

to annihilate a submatrix. Let the m × n matrix A be partitioned as

A =

v v · · · v






A1,1 A1,2 · · · A1,q v

A2,1 A2,2 · · · A2,q v
...

...
. . .

...
...

Ap,1 Ap,2 · · · Ap,q v

,

where m = pv, n = qv and each block Ai,j (i = 1, ..., p and j = 1, ..., q) is a square matrix of

size v. The block Givens rotation Ḡ
(k)
i,j when applied to the left of the matrix A annihilates

the kth submatrix in the jth block row. Consider the QRD

QT

(
Ai,j

Ak,j

)
=

(
R

0

)
v

v
, (1.12)

where R ∈ Rv×v is upper triangular and Q ∈ R2v×2v is orthogonal. The block Givens

transformation matrix Ḡ
(k)
i,j has the form

Ḡ
(k)
i,j =

i
↓

j

↓






Iv(i−1)

QT
1,1 QT

2,1 ← i

Iv(j−i−1)

QT
1,2 QT

2,2 ← j

Iv(p−j−1)

,

where Q in (1.12) is defined by

Q ≡

v v()
Q1,1 Q1,2 v

Q2,1 Q2,2 v
.

Note that in general Ḡ
(k)
i,j is not a rotation matrix. Such orthogonal matrices are often

employed in the development of algorithms that efficiently exploit the structure of the

matrices, which arise in the estimation of LS problems [10, 12, 14, 24, 27, 47, 50, 48, 49].

1.3. STRUCTURE OF THE THESIS 7

1.3 Structure of the thesis

Each chapter of the thesis is self contained1. Chapter 2 investigates algorithms for com-

puting the QRD of a set of matrices which have common columns. The problem is tackled

using a directed weighted graph to express the relationship (the common columns) among

the matrices. Each node in the graph represent the triangular factor derived from the QRD

of a matrix from the set. An edge between two nodes exists if and only if the columns

of one of the matrices is a subset of the columns of the other. The weight of an edge

is the computational cost of deriving the triangular factor of the subset matrix given the

triangular factor of the larger matrix. The problem is shown to be equivalent to finding the

minimum spanning tree (MST) of the graph. An algorithm for computing the QRDs using

the MST is proposed. Alternative heuristic strategies are also considered. The theoretical

and numerical results are given.

Chapter 3 presents five computationally efficient algorithms for block downdating of

the least squares problem. The algorithms are block generalization strategies of the Givens

sequences. They exploit the specific structure of the matrices and are rich in BLAS-3

computations. The theoretical complexities and execution times of the algorithms are

derived. The experimental results confirm the theoretical ones.

Chapter 4 considers parallel algorithms for downdating the QRD. An efficient algorithm,

which is a block version of sequential Givens strategy, is proposed. The algorithm takes

advantage of the structure of the computed matrices. Furthermore, it utilizes an efficient

load-balanced distribution of the matrices over the processors which does not require inter-

processor communication. The presented theoretical and experimental results shows that

the parallel strategy is scalable and efficient for large-scale downdating problems.

In Chapter 5 efficient sequential and parallel algorithms for estimating the general lin-

ear model (GLM) are proposed. The algorithms use the GQRD as a main computational

tool and exploit efficiently the triangular structure of the Cholesky factor and the variance-

covariance matrix of the model. The sequential block algorithm is an adaptation of a known

Givens strategy. Specifically, the GLM is solved recursively, computing a series of smaller

and smaller GLLSPs. The parallel version of the serial algorithm proposes an efficient

distribution of the matrices over the processors which requires low inter-processor commu-

nication. The theoretical complexities of both, the sequential and the parallel algorithm

are derived and analyzed. Experimental results are presented which confirm the theoretical

1Each chapter has been published, or is submitted for publication in a refereed international journal.

8 CHAPTER 1. INTRODUCTION

analysis. The parallel algorithm is scalable and efficient for computing large-scale general

linear estimation problems.

Chapter 6 presents computationally efficient sequential and parallel algorithm for es-

timating the seemingly unrelated regressions model after been updated with new obser-

vations. The proposed algorithms are based on orthogonal transformations and are rich

on BLAS-3 computations. The structure of the computed matrices is efficiently exploited.

A load-balanced distribution is proposed for the parallel algorithm which leads to low

inter-processor communications. Theoretical and experimental results are presented and

analyzed. The results show the efficiency and scalability of the parallel algorithm. The

last chapter concludes the thesis and provides future research directions.

Chapter 2

Algorithms for computing the QR

decomposition of a set of matrices

with common columns

Abstract:

The QR decomposition of a set of matrices which have common columns is investigated.

The triangular factors of the QR decompositions are represented as nodes of a weighted

directed graph. An edge between two nodes exist if and only if the columns of one of

the matrices is a subset of the columns of the other. The weight of an edge denotes the

computational complexity of deriving the triangular factor of the destination node from

that of the source node. The problem is equivalent to construct the graph and find the

minimum cost for visiting all the nodes. An algorithm which computes the QR decom-

positions by deriving the minimum spanning tree of the graph is proposed. Theoretical

measures of complexity are derived and numerical results from the implementation of this

and alternative heuristic algorithms are given.

1This chapter is a reprint of the paper: P. Yanev, P. Foschi and E.J. Kontoghiorghes. Algorithms for

computing the QR decomposition of a set of matrices with common columns. Algorithmica, 39:83–93, 2004.

9

10 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

2.1 Introduction

Computationally intensive methods for deriving the least-squares estimators of seemingly

unrelated regression and simultaneous equation models have been proposed [24]. These

estimation methods require the QR decompositions of a set of matrices which have common

columns. These columns correspond to exogenous factors that occur in more than one

econometric relationship of the model. Consider the QR decomposition (QRD) of the full

column rank matrix Ai ∈ Rm×ki :

QT
i Ai =

(
Ri

0

)
ki

m − ki

, (i = 1, . . . , G) , (2.1)

where Qi ∈ Rm×m is orthogonal and Ri ∈ Rki×ki is upper triangular. The exogenous

matrices with common columns can be expressed as

Ai = ASi , (i = 1, . . . , G) , (2.2)

where A ∈ Rm×n and Si ∈ Rn×ki is a selection matrix [13, 24, 30]. It is often the case

that n ≪ ∑G
i=1 ki, i.e. the number of distinct factors is much less than the total number

of factors occurring in the whole model.

The main method used to compute (2.1) is by forming the QRDs of A1, . . . , AG one

at a time, without taking into account that the matrices may share common columns. Let

the QRD of A be given by

QT A =

(
R

0

)
n

m − n
, (2.3)

where Q ∈ Rm×m is orthogonal and R ∈ Rn×n is upper triangular. Thus, the upper

triangular factor Ri in (2.1) can be derived by computing the QRD

Q̃T
i RSi =

(
Ri

0

)
ki

n − ki

, (i = 1, . . . , G) , (2.4)

where Q̃i ∈ Rn×n is orthogonal [19, 20, 23]. The orthogonal matrix Qi in (2.1) is defined

by

Qi = Q

(
Q̃i 0

0 Im−n

)
. (2.5)

Notice that the QRDs in (2.4) are equivalent to the re-triangularization of a set of upper-

triangular matrices after deleting columns.

2.2. COMPUTING THE QR DECOMPOSITION OF RSI 11

Sequential and parallel strategies which compute the QRD of RSi have been proposed

[23, 24, 30]. These strategies use Givens rotations and exploit the non-full structure of RSi.

However, the occurrence of common columns among RS1, . . . , RSG has not been exploited.

The purpose of this work is to propose and investigate sequential factorization strategies

that take advantage of this possibility when n ≪ ∑G
i=1 ki. The algorithms are based on

Givens rotations [20].

A Givens rotation in plane (i, j) that reduces to zero the element bj,k when it is applied

from the left of B = [bi,j] ∈ Rm×n will be denoted by G
(k)
i,j , where 1 ≤ i, j ≤ m and

1 ≤ k ≤ n. The rotation G
(k)
i,j B affects only the ith and jth rows of B. The changes in

these rows can be written as
(

c s

−s c

)(
bi,:

bj,:

)
=

(
b̃i,1 . . . b̃i,k . . . b̃i,n

b̃j,1 . . . b̃j,k . . . b̃j,n

)
, (2.6)

where bj,k 6= 0, c2 + s2 = 1, c = bi,k/τ , s = bj,k/τ , τ2 = b2
i,k + b2

j,k, b̃i,k = τ and b̃j,k = 0.

If bj,k = 0, then G
(k)
i,j ≡ Im. Standard column notation is used to denote sub-vectors and

sub-matrices [20]. The construction of a Givens rotation requires 6 flops denoted by t.

The same time is required to apply the rotation to a 2-element vector. Thus, nt flops are

needed to compute (2.6). Notice that the rotation is not applied to the pair of elements bi,k

and bj,k used in the construction of the rotation. These are set to τ and zero, respectively.

In the next section Givens’ sequences for computing the QRD of RSi (i = 1, . . . , G)

are presented. Section 3 proposes an efficient algorithm for computing the QRDs of

RS1, . . . , RSG, which are represented as nodes of a directed graph. Within this context

the Minimum Spanning Tree (MST) terminology is used. That is, the problem of deriving

the MST in a graph is equivalent to that of finding the tree which consists of the shortest

paths for visiting all nodes, starting from the root node. Numerical results are presented

and the performance of the algorithm is evaluated. In section 4 conclusions are offered.

2.2 Computing the QR decomposition of RSi

There are many equivalent strategies for computing the QR decomposition using Givens

rotations [20]. Consider the case where the elements of a matrix below the main diagonal

are annihilated column-by-column and from bottom to the top with zero elements being

preserved throughout the annihilation process. Furthermore, let the Givens rotations be

between adjacent planes. The number of Givens rotations required to compute (2.3) is

12 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

given by
∑n

i=1(m − i) = n(2m − n − 1)/2 and QT is defined by

QT =
n∏

i=1

m−i∏

j=1

G
(i)
m−j,m−j+1 . (2.7)

v v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Figure 2.1: Computing the QRD of A ∈ R12×8 using Givens rotations.

Figure 2.1 shows the annihilation pattern corresponding to this Givens’ sequence, where

m = 12 and n = 8. An entry i (i = 1, . . . , 60) indicates that the element is reduced to

zero by the ith rotation. The complexity of computing the QRD (2.3) using this strategy

is given by

C(m, n) = t
n∑

i=1

(m − i)(n − i + 1)

= tn(3m(n + 1) − n2 − 3n − 2)/6 . (2.8)

Thus, the complexity of computing the QRDs of A1, . . . , AG simultaneously is given by

T1(m, k, G) =
G∑

i=1

C(m, ki) , (2.9)

where k = (k1, . . . , kG).

Let Si in (2.2) be expressed as Si ≡ (eλi,1 ...eλi,ki
) with λi = (λi,1, . . . , λi,ki

), where eλi,j

is the λi,jth column of the unit matrix In, i = 1, . . . , G and j = 1, . . . , ki [23, 24, 30]. Then,

the number of Givens rotations needed to compute the QRD (2.4) is given by
∑ki

j=1(λi,j−j)

2.3. THE MINIMUM SPANNING TREE ALGORITHM 13

and the orthogonal matrix Q̃T
i is defined as:

Q̃T
i =

ki∏

n=1

λi,n−n∏

j=1

G
(n)
λi,n−j,λi,n−j+1 . (2.10)

Figure 2.2 shows the Givens’ sequence when re-triangularizing RSi, where n = 12, ki = 6

and λi = (1, 2, 5, 6, 10, 12).

v v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.2: Computing the QRD of RSi, where R ∈ R12×12, ki=6 and λi =

(1, 2, 5, 6, 10, 12).

The complexity of computing the QRD (2.4) is given by

Ci(λi, ki) = t

ki∑

j=1

(λi,j − j)(ki − j + 1) . (2.11)

Thus, the total complexity of computing (2.3) followed by re-triangularization of RS1, . . . , RSG

one at a time is given by

T2(λi, ki, G) = C(m, n) +
G∑

i=1

Ci(λi, ki) . (2.12)

2.3 The Minimum Spanning Tree algorithm

The triangular factors R, R1, . . . , RG can be represented as nodes N0, N1, . . . , NG of a

weighted directed graph. An edge between two nodes Ni and Nj (denoted by Ei,j) exists

and is directed from Ni towards Nj , if and only if Ri contains all the columns of Rj

14 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

(i, j = 0, 1, . . . , G and i 6= j). The weight of Ei,j is denoted by Ci,j , the complexity of

computing Rj given Ri. The goal is to construct the graph and to find Minimum Spanning

Tree of the graph which provides the minimum computational cost for deriving R1, . . . , RG

[31, 40].

To determine the MST the properties of the graph need to be explored. Let Γ(V, E, n)

be a graph with the sets of nodes and edges denoted by V and E, respectively, and n

denotes the number of columns of the matrix R. The graph Γ(V, E, n) can be divided into

n levels L1, . . . , Ln. The matrices with k columns belong to the level Lk (k = 1, . . . , n).

Notice that R belongs to level Ln and level Ln−1 can have at most n nodes (matrices).

In general, there are at most Cn
k = n!/k!(n − k)! nodes in the level Lk (k = 1, . . . , n).

Therefore, the maximum number of nodes in Γ(V, E, n) is

|V |max =

n−1∑

i=0

Cn
i = 2n − 1 . (2.13)

Now, from the kth level exists a maximum of Cn
k (2(n−k) − 2) edges. Thus, the maximum

number of edges in the graph is

|E|max =
n−2∑

i=0

Cn
i (2(n−i) − 2)

= 3n − 2(n+1) + 1 . (2.14)

Let Ei,j exist and let pi,j denote the position of the jth column of Rj in Ri. Notice that

pi,j ≥ j for every j. Then, the cost of the edge Ci,j is given by

Ci,j = t

kj∑

j=1

(pi,j − j)(kj − j + 1) . (2.15)

Now, let Rs ∈ Lp, Rh ∈ Lq and Ri ∈ Lr, where Es,i and Eh,i exist, and p 6= q 6= r. If there

is a path from Rs to Rh, then Ch,i ≤ Cs,i. Therefore, Es,i can be deleted from the graph.

A path from Rs to Rh exists if and only if the node Rh can be reached from the node Rs.

When this rule is applied the number of the edges to be computed is reduced. Figures

2.3(a) and 2.3(b) illustrate the graph Γ(V, E, 6) with all and with the reduced number of

edges, respectively. The matrices R and Ri (i = 1, ..., G) are denoted by square and round

frames, respectively. The indexes of columns for each matrix are shown by a sequence of

digits in the frames.

2.3. THE MINIMUM SPANNING TREE ALGORITHM 15

L2

L3

L4

L5

L6

R
123456

R1

12345

R2

3456
R3

2456

R4

123
R5

124

R6

12
R7

23
R8

46

(a) The Graph Γ(V, E, 6), where |E| = 17.

L2

L3

L4

L5

L6

R
123456

R1

12345

R2

3456
R3

2456

R4

123
R5

124

R6

12
R7

23
R8

46

(b) The Graph Γ(V, E, 6), where |E| = 10.

Figure 2.3: The Graph Γ(V, E, n) with all and reduced number of edges, where |V | = 9

and n = 6.

In order to determine the MST, the cost Ci,j of each edge is computed and, for each

node, the incoming edge with minimum cost is selected. If more than one incoming edge

with equal weights exist, then one of them is selected randomly. The correctness of this

algorithm follows from the acyclic property of Γ(V, E, n) [1]. The time required to derive

Ci,j depends on the time to compute pi,1, . . . , pi,kj
and calculate the summation (2.15). At

most ki comparisons are necessary to determine pi,1, . . . , pi,kj
. A single comparison and

the summation of (2.15) requires one and 5kj flops, respectively. The total time needed to

16 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

compute Ci,j is ki + 5kj ≤ 6ki ≡ kit. Let

TEDGE = max
i=1,...,G

(kit) (2.16)

and the upper bound of the time needed for deriving the MST of a graph with |E| nodes

be given by

TMST ≤ |E|TEDGE + |E| . (2.17)

Here |E|TEDGE is the maximum time needed to compute the costs of all edges and |E| is the

maximum number of comparisons that could be done. Then, the complexity of computing

the matrices R1, ..., RG using the MST approach is:

T3(ki, m, n, pi, G) = C(m, n) +
G∑

i=1

ki∑

j=1

(pi,j − j)(ki − j + 1) + TMST , (2.18)

where C(m, n) is given by (2.8) and corresponds to the complexity of computing the QRD

(2.3) and pi = (pi,1 · · · pi,ki
).

R
123456

R1

12345
R̃9

23456

R̃10

1234
R2

3456
R3

2456

R4

123
R5

124

R6

12
R7

23
R8

46

artificial nodes
¨
§

¥
¦required nodes

Figure 2.4: The Graph Γ(V, E, n) with the artificial nodes R̃9 and R̃10, where |V | = 10,

|E| = 9 and n = 6.

The MST approach reduces the complexity in the specific case where the columns of

some of the matrices are subsets of the columns of other matrices. In order to exploit

the possibility of common columns occurring in R1, ..., RG new nodes (hereafter called

artificial nodes) are added in the graph Γ(V, E, n). An artificial node is the conjunction of

the columns of two or more matrices. The QRD of these matrices might be more quickly

2.3. THE MINIMUM SPANNING TREE ALGORITHM 17

derivable given the QRD of the artificial node. Figure 3 illustrates the graph Γ(V, E, 6),

where the two artificial nodes R̃9 and R̃10 are denoted by square frames. Thus, the problem

becomes one of finding the optimal tree which covers R1, ..., RG in the graph that includes

all artificial nodes. Algorithm 1 computes this optimal tree.

Algorithm 1 The optimal MST algorithm.

1: Construct the full graph consisting of R1, ..., RG and all possible

artificial nodes.

2: Find all the edges and their corresponding weights.

3: For all subgraphs which include R1, ..., RG find the MST of each of them.

4: Compute the complexity of each MST and choose the minimum one.

Now, let the full graph generated by the Algorithm 1 be denoted by ΓF(VF, EF, n), where

|VF| = 2G +1 and the maximum number of edges is given by |EF|MAX = 2G(2G +1)/2. The

number of all subgraphs which include the matrices R1, ..., RG is 2(2G−G). Thus, an upper

bound for the total complexity of this algorithm is

C(G) = 2(2G−G)TMST + 2G(2G + 1)TEDGE/2 + Ts , (2.19)

where TEDGE and TMST are given by (2.16) and (2.17), respectively. The time to compute

the complexities of each MST and to derive the minimum one is denoted by Ts.

Algorithm 1 implements the optimal strategy for computing R1, ..., RG, given R. How-

ever, this optimal strategy has a double exponential complexity. Thus, it is not compu-

tationally feasible. To reduce the computational cost of Algorithm 1 a heuristic approach

can be considered. The heuristic algorithm (Algorithm 2) computes the MST of the initial

matrices R1, ..., RG and then searches for artificial nodes which can reduce the weight of

the tree. An artificial node is added to the MST if and only if it reduces the complexity

between an existing node and its children. Then, a new MST is reconstructed and the

procedure is repeated. A maximum of 2G artificial nodes can be constructed from the G

initial matrices. Each of these artificial nodes is evaluated to determine whether it should

be included into the tree or not. Thus, the complexity of finding the MST using this

heuristic approach is exponential O(2G) and computationally expensive.

Algorithm 2 can be modified to reduce its high complexity. The artificial nodes are

constructed from the columns of those two child nodes which have the maximum number of

common columns. In this way not all 2G artificial nodes are considered. The total number

18 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

Algorithm 2 The heuristic MST algorithm.

1: Find the MST of R1, . . . , RG .

2: for each node with more than one outgoing edge do

3: Construct all artificial nodes from the columns of the child nodes.

4: Compute the weights of the incoming and outgoing edges of the new

artificial node.

5: Add the new artificial node to the tree if it reduces the cost.

6: Re-construct the MST until no more artificial nodes can be added.

7: end for

of computed matrices is Ḡ, where max(Ḡ) = 2G. Thus, the complexity of determining the

MST is polynomial O(kG2). The total complexity of the modified heuristic method is

T4(ki, m, n, pi, Ḡ) = C(m, n) +
Ḡ∑

i=1

ki∑

j=1

(pi,j − j)(ki − j + 1) + O(kG4) . (2.20)

2.4 Numerical results

The modified heuristic approach is most efficient in the two cases, where there are many

artificial nodes or none, but the columns of some matrices are subsets of the columns of

others. The performance of the algorithms is considered in these two cases. First, when Ri

is a sub-matrix of Rj for all i = k, k + 1, ..., G, j = 0, 1, ..., G, (i 6= j), where 1 < k < G/2

and the MST containing R1, ..., RG can not be optimized. In this case no artificial nodes

can be determined and the solution is optimal. Second, when the columns of none of the

initial matrices R1, ..., RG are subset of the columns of other initial matrix, but where they

have most of their columns common. Here many artificial nodes can be determined, but

the solution may not be the optimal. Tables 1(a) and 1(b) show the execution times of the

modified heuristic method in these two cases, respectively. The performance of computing

the QRDs (2.4) one at a time is also reported. Comparisons between the two methods are

made also using their theoretical measures of complexity.

The constructed MST of each of the matrices in Table 1(a) is a binary tree. In this case

no artificial nodes can be determined. Thus the MST strategy for factorizing the matrices

R1, ..., RG is optimal. Furthermore, the execution time of the modified heuristic algorithm

is the same as that of Algorithm 2. In Table 1(b) the matrices R1, ..., RG have a large

number of common columns, but none of them is a sub-matrix of another matrix. In this

2.4. NUMERICAL RESULTS 19

Table 2.1: Theoretical complexity and execution time of the modified heuristic method and

that of re-triangularizing the G matrices one at a time, where the total number of distinct

columns of all matrices is n.

Execution times Theoretical Complexity

Retriang. Heuristic Retriang. Retriang.

G n method method Heuristic Heuristic

14 1120 4.39 3.09 1.42 1.70

14 2560 54.29 36.90 1.47 1.70

14 2880 85.68 56.05 1.52 1.70

14 3200 120.87 82.60 1.46 1.70

30 1440 10.69 6.63 1.61 1.85

30 2240 35.70 22.25 1.60 1.85

30 2560 56.68 37.29 1.52 1.85

30 3040 120.46 74.31 1.62 1.85

62 1920 25.10 16.38 1.53 1.93

62 2560 65.66 42.89 1.53 1.93

(a) No artificial nodes exist in the graph. The MST is a binary tree

which consists of exactly G matrices.

Execution times Theoretical Complexity

Retriang. Heuristic Retriang. Retriang.

G n method method Heuristic Heuristic

16 500 0.67 0.44 1.52 1.60

16 1000 3.97 2.56 1.55 1.60

16 1500 11.79 7.53 1.57 1.60

16 2000 27.44 17.88 1.55 1.60

28 1500 8.80 5.66 1.55 1.67

28 2000 18.88 11.99 1.57 1.67

28 2500 35.39 21.91 1.61 1.67

28 3000 62.71 37.71 1.66 1.67

40 2400 27.37 18.05 1.52 1.72

40 3200 62.92 38.31 1.64 1.72

(b) The MST consists of 3G/2 nodes from which G/2 are artificial.

20 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

example G/2 artificial nodes are constructed. Thus, the MST consists of 3G/2 nodes. An

artificial node is constructed from two matrices if they have at least half of their columns

in common. Notice that, in both cases, the heuristic method executes in less than 2/3

of the time required by re-triangularization of R1, ..., RG one at a time. The discrepancy

between the theoretical and actual performance of the heuristic algorithm is due to the

implementation overheads.

2.5 Conclusion

Strategies for computing the QR decomposition (QRD) of the set of matrices A1, ..., AG

which have common columns have been considered. The first strategy computes the QRD

of each matrix independently and does not exploit the relationship that may exist among

the matrices. The second strategy expresses the matrix Ai as ASi, where A consists of

all the distinct columns of A1, ..., AG and Si is a column-selection matrix. Initially it

computes the triangular factor R of the QRD of A. Then it derives the QRD of Ai by

re-triangularizing RSi (i = 1, ..., G). This re-triangularization is equivalent to the multiple-

column downdating of the QRD [19, 24]. The second strategy is found to have better

complexity than the first.

The remaining novel strategies use a weighted directed graph to express the relation-

ship (common columns) among the matrices. The nodes represent the triangular factors

R1, ..., RG derived from the QRDs of A1, ..., AG, respectively. An edge between two nodes

exist if the columns of one of their corresponding matrices is a subset of the columns of the

other. The weight of an edge is the computational cost of deriving the triangular factor

of the subset matrix given the QRD of the larger matrix. The Minimum Spanning Tree

(MST) of this graph provides efficient strategies of computing the QRDs of A1, ..., AG when

the columns of some of them are subset of the columns of others. If no such matrices exist,

then the MST is equivalent to the second strategy which derives R1, ..., RG one at a time.

This is offset by adding new (artificial) nodes which correspond to matrices constructed

from the conjunction of columns of two or more matrices.

The algorithm for deriving the MST of the graph that includes all artificial nodes

has double exponential complexity and is thus computationally intractable. A heuristic

approach that reduces the complexity of the algorithm to polynomial time has been pro-

posed. The performance of the heuristic method has been investigated in two cases, where

2.5. CONCLUSION 21

it is most efficient. The numerical results indicate the superiority of this method compared

to that of the second strategy which re-triangularizes RS1, ..., RSG one at a time.

The re-triangularization of the matrices RSi (i = 1, ..., G) has been performed using

Givens rotations. Householder transformations and block versions of Given rotations can

also be used [11, 26, 27, 47]. Furthermore, in some econometric models the data matrices

A1, ..., AG may have special structure and properties [10, 12, 13, 14, 24]. In such cases the

efficient re-triangularization of RSi (i = 1, ..., G) will require special algorithms. This will

result in the edges of the directed graphs having different costs. However, the derivation

of the MST and heuristic strategies for factorizing the matrices will remain the same.

Currently the adaptation of the proposed strategies to compute subset regression models

is under investigation [15, 16].

Acknowledgments

The authors are grateful to Maurice Clint for his constructive comments and suggestions.

22 CHAPTER 2. QRD OF A SET OF MATRICES WITH COMMON COLUMNS

Chapter 3

Efficient algorithms for block

downdating of least squares

solutions

Abstract:

Five computationally efficient algorithms for block downdating of the least squares solu-

tions are proposed. The algorithms are block versions of Givens rotations strategies and

are rich in BLAS-3 operations. They efficiently exploit the triangular structure of the

matrices. The theoretical complexities of the algorithms are derived and analyzed. The

performance of the implementations confirms the theoretical results. The new strategies

are found to outperform existing downdating methods.

1This chapter is a reprint of the paper: P. Yanev and E.J. Kontoghiorghes. Efficient algorithms for block

downdating of least squares solutions. Applied Numerical Mathematics, 49:3–15, 2004.

23

24 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

3.1 Introduction

Consider the least squares (LS) problem

x̂ = argmin
x

‖Ax − b‖2 , (3.1)

where A ∈ Rm×(n−1) is of full column rank, b ∈ Rm, x ∈ R(n−1) and ‖ · ‖ denotes the

Euclidean norm. Let Ã = (A b) be partitioned as

Ã ≡
(

Ã1

Ã2

)
≡

(
A1 b1

A2 b2

)
d

m−d
. (3.2)

The downdating least squares problem can be defined as the solution of the least squares

problem

x̂2 = argmin
x

‖A2x − b2‖2 (3.3)

after (3.1) has been solved. Here it is assumed without loss of generality that the first d

observations are deleted, A2 has full column rank and m > d + n.

Let the QR decomposition (QRD) of Ã be given by:

QT Ã =

(
R̃

0

)
=




R u

0 p

0 0




n−1

1

m−n

, (3.4)

where Q ∈ Rm×m is orthogonal and R ∈ R(n−1)×(n−1) is upper triangular. The LS estimator

of x in (3.1) is obtained from the solution of the triangular system

Rx̂ = u. (3.5)

Thus, the downdating problem can also be seen as equivalent to computing the QRD of

Ã2

QT
2 Ã2 =

(
R̃2

0

)
=




R2 u2

0 p2

0 0




n−1

1

m−d−n

(3.6)

and solving R2x̂2 = u2 after (3.4) and (3.5) have been computed. The orthogonal matrix

Q2 and the upper triangular matrix R̃2 in (3.6) are of order (m − d) and n, respectively.

3.2. BLOCK-DOWNDATING OF THE LS SOLUTIONS 25

Different sequential strategies for solving the downdating least squares problem have

been proposed [5, 19, 20, 24, 28, 32, 33]. These mainly consider Givens rotations for

downdating the LS solution by single observation, or the straightforward use of the QRD

for downdating the block of observations. In the latter case the structure of the matrices is

not exploited [8]. In this work sequential algorithms for block-downdating the LS solution

are proposed. These new methods are rich in BLAS-3 operations and take advantage of

the initial triangular structure of the matrices. The evaluation of the various methods is

performed using theoretical measures of complexity and experimental results.

It is assumed that the orthogonal matrix Q in (3.4) is available. The algorithms have

been implemented on Intel Pentium III, 800 MHz processor. The performance of the algo-

rithms has been evaluated and the execution times are reported in seconds. The complexity

of the algorithms in number of flops (floating point operations) are also reported. The next

section considers various LS block-downdating strategies. In section 3 the performance of

the algorithms is evaluated. Finally, in section 4 conclusions are drawn.

3.2 Block-downdating of the LS solutions

The downdating LS problem can be solved in three stages. Let Q in (3.4) be partitioned

as

QT ≡




d m−d

QT
1,1 QT

1,2

QT
2,1 QT

2,2

QT
3,1 QT

3,2




n

d

m−d−n

. (3.7)

The first stage computes the QRD

HT

(
QT

2,1

QT
3,1

)
=

(
Z

0

)
d

m−d−n
(3.8a)

and the product

HT

(
QT

2,2

QT
3,2

)
=

(
Q̃T

2,2

Q̃T
3,2

)
. (3.8b)

26 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

Here H is orthogonal of order (m−n) and Z ∈ Rd×d is upper triangular. The second stage

computes the row-permuted QRD

GT

(d

QT
1,1

Z

)
=

(d

0

D

)
n

d
(3.9a)

and the products

GT

(n

R

0

)
=

(n

B

E

)
n

d
and GT

(m−d

QT
1,2

Q̃T
2,2

)
=

(m−d

Q̃T
1,2

0

)
n

d
. (3.9b)

Here G is a (d + n) × (d + n) orthogonal matrix and, by construction, D ∈ Rd×d is upper

triangular, but it will be shown that |D| = Id. That is, D is diagonal with entries ±1.

Finally, the third stage computes the QRD of B, i.e.

Q̃T B = R̃2 (3.10)

with orthogonal Q̃ ∈ Rn×n and upper triangular R̃2 ∈ Rn×n. In summary,

(
Q̃T 0

0 Im−n

)(
GT 0

0 Im−d−n

) (
In 0

0 HT

)
QT Ã =




0 Q̃T Q̃T
1,2

D 0

0 Q̃T
3,2




(
Ã1

Ã2

)

≡




R̃2

E

0


 .

Here it can be seen that (0 DT 0)T is the image under an orthogonal map of an orthogonal

set of d column vectors – the first d columns of QT – and hence, D has orthogonal columns.

Since D is by construction upper triangular, its diagonal elements must be ±1. Hence,

E = DÃ1, i.e. DE = Ã1 is the deleted block of observations, and the orthogonal QT
2 in

the QRD (3.6) is given by

QT
2 =

(
Q̃T Q̃T

1,2

Q̃T
3,2

)
.

3.2. BLOCK-DOWNDATING OF THE LS SOLUTIONS 27

If Q in (3.4) is not available, but A1 and R are known, then Q1,1 and Z in (3.9a) can

be obtained from the solution of the triangular system A1 = Q1,1R and the Cholesky

factorization ZT Z = Id − Q1,1Q
T
1,1, respectively [19, 24, 28].

The computation of (3.8a) and (3.8b) can be obtained efficiently using standard QRD

methods and software, e.g. LAPACK, which are based on Householder transformations

[2, 20]. Now, consider the computation of (3.9a), i.e. the second stage of the downdating

process. Let QT
1,1 and R be partitioned, respectively, as

QT
1,1 =




d

W (1)

W (2)

...

W (g)




n1

n2

...

ng

and R =




n1 n2 ··· ng

R1,1 R1,2 · · · R1,g

R2,2 · · · R2,g

. . .
...

Rg,g




n1

n2

...

ng

, (3.11)

where n =
∑g

i=1 ni. The factorization (3.9a) is obtained in g steps block by block. Starting

from Z(0) = Z and E
(0)
g = 0, the ith (i = 1, ..., g) step computes the row-permuted QRD

GT
i

(
W (i)

Z(i−1)

)
=

(
0

Z(i)

)
ni

d
(3.12a)

and the product

GT
i

(ni ··· ng

Ri,i · · · Ri,g

0 · · · E
(i−1)
g

)
=

(ni ··· ng

R̂i,i · · · R̂i,g

E
(i)
i · · · E

(i)
g

)
, (3.12b)

where Gi is an orthogonal matrix of order (d + ni), Z(i) is upper triangular and R̂i,i is

full. Thus, in (3.9a) |D| = |Z(g)| ≡ Id, E ≡ (E
(g)
1 · · ·E(g)

g) and the matrix B has the

block-triangular structure

B =




n1 n2 ··· ng

R̂1,1 R̂1,2 · · · R̂1,g

R̂2,2 · · · R̂2,g

. . .
...

R̂g,g




n1

n2

...

ng

. (3.13)

The factorization (3.10) is obtained by computing the QRDs

Q̃T
i R̂i,i = R̃i,i (3.14a)

28 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

and

Q̃T
i

(
R̂i,i+1 · · · R̂i,g

)
=

(
R̃i,i+1 · · · R̃i,g

)
, (3.14b)

where the orthogonal Q̃i and upper triangular R̃i,i are of order ni and i = 1, ..., g. Thus,

Q̃T and R̃2 in (3.10) are given, respectively, by Q̃T = diag(Q̃T
1 , ..., Q̃T

g) and

R̃2 =




R̃1,1 R̃1,2 · · · R̃1,g

R̃2,2 · · · R̃2,g

. . .
...

R̃g,g




. (3.15)

Algorithm 3 summarizes the steps of the block strategy for computing the downdating LS

solution. The standard colon notation will be used to denote subvectors and submatrices

[20].

Algorithm 3 Downdating the least squares problem (3.3).

1: Let Q be partitioned as in (3.7)

2: Compute the QRD HT

(
QT

2,1

QT
3,1

)
=

(
Z

0

)

3: Let Z(0) = Z and E
(0)
g = 0

4: Let R̃ in (3.4) and QT
1,1 in (3.7) be partitioned as in (3.11)

5: for i = 1, . . . , g do

6: Compute the row-permuted QRD GT
i

(
W (i)

Z(i−1)

)
=

(
0

Z(i)

)

7: GT
i

(
Ri,i:g

E
(i−1)
i:g

)
=

(
R̂i,i:g

E
(i)
i:g

)

8: end for

9: for i = 1, . . . , g do

10: Compute the QRD Q̃T
i R̂i,i = R̃i,i

11: Q̃T
i R̂i,i+1:g = R̃i,i+1:g

12: end for

13: Let R̃2 = [R̃i,j] ≡
(

R2 u2

0 p2

)
as in (3.6)

14: Solve the triangular system R2x̂2 = u2

3.3. STRATEGIES FOR COMPUTING THE FACTORIZATION (3.12) 29

3.3 Strategies for computing the factorization (3.12)

The main operation of the downdating LS Algorithm 3 is the loop 5-8 which corresponds

to the factorizations (3.12a) and (3.12b). Hereafter, the particularly interesting case where

n ≫ d is considered. The theoretical complexity for computing (3.12) directly using the

standard LAPACK routines (hereafter called Strategy 1) is given by

T1,i = 2d3(5/3 + 3i) + 2d2i ≡ O(2d3(5/3 + 3i)). (3.16)

Let W (i) and Z(i) in (3.12a) be partitioned, respectively, as

W (i) =
(v1 ··· vk

W
(i)
1 · · · W

(i)
k

)
ni and Z(i) =




v1 ··· vk

Z
(i)
1,1 · · · Z

(i)
1,k

. . .
...

Z
(i)
k,k




v1

...

vk

, (3.17)

where Z
(i)
j,j (j = 1, ..., k) is upper triangular and ni =

∑k
j=1 vj . For simplicity it will be

assumed that ni = d (i = 1, ..., g) and vj = v (j = 1, ..., k), i.e. n = gd, d = kv and v is the

block size of the partitioned matrices. The updating QRD (3.12a) is obtained in k steps.

For W
(i,0)
j ≡ W

(i)
j and W

(i,k)
j ≡ 0, the jth step (j = 1, ..., k) computes the updating QRD

of smaller-in-dimension matrices

DT
j

(
W

(i,j−1)
j W

(i,j−1)
j+1 · · · W

(i,j−1)
k

Z
(i−1)
j,j Z

(i−1)
j,j+1 · · · Z

(i−1)
j,k

)
=

(
0 W

(i,j)
j+1 · · · W

(i,j)
k

Z
(i)
j,j Z

(i)
j,j+1 · · · Z

(i)
j,k

)
kv

v
, (3.18)

where DT
j is orthogonal of order (k+1)v, Z

(i)
j,j ∈ Rv×v is upper triangular and recall d = kv.

The orthogonal DT
j can be applied to the corresponding rows of the matrices in (3.12b)

without explicitly computing GT
i . That is, it computes

DT
j

(
R

(j−1)
i,i . . . R

(j−1)
i,g

0 . . . E
(j−1,j)
g

)
=

(
R

(j)
i,i . . . R

(j)
i,g

E
(j,j)
i . . . E

(j,j)
g

)
, (3.19)

where R
(0)
i,q = Ri,q, R

(k)
i,q = R̂i,q in (3.12) and E

(j,j)
q denotes the jth block row of the matrix

E
(i)
q (q = i, ..., g) during the jth (j = 1, ..., k) step of the computation. The theoretical

complexity of this method (Strategy 2) is given by

T2,i = 2d3(1 + 2i) + d2(1 + 2i)(1 + v) + dv(v/3 − 1) ≡ O(2d3(1 + 2i)). (3.20)

30 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

An alternative approach (Strategy 3) is to construct explicitly GT
i and then compute

(3.12b). The orthogonal GT
i = D̃T

k · · · D̃T
1 , where

DT
j =

(kv v

D
(j)
1,1 D

(j)
1,2

D
(j)
2,1 D

(j)
2,2

)
kv

v
, (3.21a)

with D
(j)
2,2 lower triangular [24, pages 49-53] and

D̃T
j =




kv (j−1)v v (k−j)v

D
(j)
1,1 0 D

(j)
1,2 0

0 I(j−1)v 0 0

D
(j)
2,1 0 D

(j)
2,2 0

0 0 0 I(k−j)v




kv

(j−1)v

v

(k−j)v

. (3.21b)

Theorem 1 Let C(j) = D̃T
j · · · D̃T

1 and C(0) = I2kv. The orthogonal matrix C(j) has the

structure

C(j) =




kv (j−1)v v (k−j)v

C
(j)
1,1 C

(j)
1,2 C

(j)
1,3 0

C
(j)
2,1 C

(j)
2,2 0 0

C
(j)
3,1 C

(j)
3,2 C

(j)
3,3 0

0 0 0 I(k−j)v




kv

(j−1)v

v

(k−j)v

, (3.22)

where C
(j)
2,2 and C

(j)
3,3 are lower triangular.

Proof. The proof is by induction. For j = 1 the matrix

C(1) ≡ D̃T
1 =




kv v (k−1)v

D
(1)
1,1 D

(1)
1,2 0

D
(1)
2,1 D

(1)
2,2 0

0 0 I(k−1)v




kv

v

(k−1)v

(3.23)

has the structure (3.22). Assuming that C(j) has the structure defined in (3.22). It will be

3.3. STRATEGIES FOR COMPUTING THE FACTORIZATION (3.12) 31

shown that C(j+1) has the structure (3.22) too. The matrix C(j+1) = D̃T
j+1C

(j) equals

C(j+1) =




kv jv v (k−j−1)v

D
(j+1)
1,1 0 D

(j+1)
1,2 0

0 Ijv 0 0

D
(j+1)
2,1 0 D

(j+1)
2,2 0

0 0 0 I(k−j−1)v







kv (j−1)v v (k−j)v

C
(j)
1,1 C

(j)
1,2 C

(j)
1,3 0

C
(j)
2,1 C

(j)
2,2 0 0

C
(j)
3,1 C

(j)
3,2 C

(j)
3,3 0

0 0 0 I(k−j)v




=




kv (j−1)v v v (k−j−1)v

D
(j+1)
1,1 C

(j)
1,1 D

(j+1)
1:(j−1),:C

(j)
1,2 D

(j+1)
(j−1)v+1:jv,:C

(j)
1,3 D

(j+1)
1,2 0

C
(j)
2,1 C

(j)
2,2 0 0 0

C
(j)
3,1 C

(j)
3,2 C

(j)
3,3 0 0

D
(j+1)
2,1 C

(j)
1,1 D

(j+1)
2,1 C

(j)
1,2 D

(j+1)
2,1 C

(j)
1,3 D

(j+1)
2,2 0

0 0 0 0 I(k−j−1)v




,

where

C
(j+1)
1,1 = D

(j+1)
1,1 C

(j)
1,1 , C

(j+1)
1,2 =

(
D

(j+1)
1:(j−1),:C

(j)
1,2 D

(j+1)
(j−1)v+1:jv,:C

(j)
1,3

)
,

C
(j+1)
1,3 = D

(j+1)
1,2 , C

(j+1)
2,1 =

(
C

(j)
2,1

C
(j)
3,1

)
, C

(j+1)
2,2 =

(
C

(j)
2,2 0

C
(j)
3,2 C

(j)
3,3

)
, (3.24)

C
(j+1)
3,1 = D

(j+1)
2,1 C

(j)
1,1 , C

(j+1)
3,2 =

(
D

(j+1)
2,1 C

(j)
1,2 D

(j+1)
2,1 C

(j)
1,3

)
and C

(j+1)
3,3 = D

(j+1)
2,2 .

Here, D
(j+1)
1:(j−1)v,: and D

(j+1)
(j−1)v+1:jv,: are submatrices of D

(j+1)
1,1 . Notice that C

(j+1)
2,2 and C

(j+1)
3,3

are lower triangular. Thus, C(j+1) has the structure defined in (3.22). This completes the

proof.

Figure 3.1 shows the affected submatrices during the computation of C(1), ..., C(k) ≡
GT

i , where k = 4, and a square denotes an v × v submatrix.

From Theorem 1 it follows that the orthogonal matrix GT
i in (3.12a) has the structure

GT
i ≡ C(k) =

(kv kv

C
(k)
1,1 Ĉ

(k)
1,2

Ĉ
(k)
2,1 Ĉ

(k)
2,2

)
kv

kv
, (3.25)

where

Ĉ
(k)
1,2 =

(
C

(k)
1,2 C

(k)
1,3

)
, Ĉ

(k)
2,1 =

(
C

(k)
2,1

C
(k)
3,1

)
and Ĉ

(k)
2,2 =

(
C

(k)
2,2 0

C
(k)
3,2 C

(k)
3,3

)
.

32 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

Â
Â

Â
Â

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•Â
Â

Â
Â

• • •
• • •

•
• • •

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
• Â
Â

Â
Â

•••
• •
• Â

Â
Â

Â

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•

•
•
•

•
•

•
•• •

C(1) C(2) C(3) C(4)

Zero • Non-zero Â Identity Â• Lower triangular • Affected blocks

Figure 3.1: The orthogonal C(j), (j = 1, ..., 4).

Here, Ĉ
(k)
2,2 is lower triangular and this can be exploited when it comes to the matrix

multiplication (3.12b). This strategy to compute (3.12) is summarized by Algorithm 4.

The steps 7-10 correspond to the computation of (3.12b). The complexity of Algorithm 4

(i.e. Strategy 3) is given by

T3,i = d3(3 + 7i) + 2d2(2 + 3v) + 4dv2/3 ≡ O(d3(3 + 7i)). (3.26)

Algorithm 4 The third Strategy for computing (3.12).

1: Let C(0) = I2kv

2: for j = 1, . . . , k do

3: Compute the QRD DT
j

(
W

(i,j−1)
j

Z
(i−1)
j,j

)
=

(
0

Z
(i)
j,j

)

4: DT
j

(
W

(i,j−1)
j+1:k

Z
(i−1)
j,j+1:k

)
=

(
W

(i,j)
j+1:k

Z
(i)
j,j+1:k

)

5: Compute C(j) = D̃T
j C(j−1) as in (3.24)

6: end for

7: R̂i,i = C
(k)
1,1 Ri,i

8: E
(i)
i = Ĉ

(k)
2,1 Ri,i

9: R̂i,i+1:g = C
(k)
1,1 Ri,i+1:g + Ĉ

(k)
1,2 E

(i−1)
i+1:g

10: E
(i)
i+1:g = Ĉ

(k)
2,1 Ri,i+1:g + Ĉ

(k)
2,2 E

(i−1)
i+1:g

An alternative approach is to compute the QRD of W (i) prior to the computation of

(3.12a). That is, (3.12) is computed in three stages:

QT
∗

(d ni ··· ng

W (i) Ri,i · · · Ri,g

)
=

(d ni ··· ng

U (i) Ři,i · · · Ři,g

)
, (3.27a)

3.3. STRATEGIES FOR COMPUTING THE FACTORIZATION (3.12) 33

G̃T
i

(
U (i)

Z(i−1)

)
=

(
0

Z(i)

)
(3.27b)

and

G̃T
i

(
Ři,i · · · Ři,g

0 · · · E
(i−1)
g

)
=

(
R̂i,i · · · R̂i,g

E
(i)
i · · · E

(i)
g

)
. (3.27c)

Here G̃i is orthogonal of order 2d and in (3.12), GT
i = G̃T

i diag(QT
∗ , Id).

Now, let U (i) be conformally partitioned as Z(i) in (3.17). That is,

U (i) =




v1 ··· vk

U
(i)
1,1 · · · U

(i)
1,k

. . .
...

U
(i)
k,k




v1

...

vk

, (3.28)

where U
(i)
j,j (j = 1, ..., k) is upper triangular, U

(i,0)
1:j,j ≡ U

(i)
1:j,j and U

(i,k)
1:j,j ≡ 0. The updating

QRD (3.27a) is obtained in k steps. The jth step (j = 1, ..., k) computes the updating

QRD of smaller-in-dimension matrices

DT
j

(
U

(i,j−1)
1:j,j U

(i,j−1)
1:j,j+1 · · · U

(i,j−1)
1:j,k

Z
(i−1)
j,j Z

(i−1)
j,j+1 · · · Z

(i−1)
j,k

)
=

(
0 U

(i,j)
1:j,j+1 · · · U

(i,j)
1:j,k

Z
(i)
j,j Z

(i)
j,j+1 · · · Z

(i)
j,k

)
, (3.29)

where DT
j is orthogonal of order (j + 1)v and Z

(i)
j,j ∈ Rv×v is upper triangular.

Two approaches for computing (3.12) can be considered. The first one applies DT
j to

the corresponding rows of the matrices in (3.27b) without deriving G̃T
i explicitly. The

complexity of this approach (Strategy 4) is given by

T4,i = 2d3(1 + 2i) + d2(1 + 2v + 4i + 4iv) + dv(2v/3 − 1) (3.30)

≡ O(2d3(1 + 2i)) .

Notice that Strategies 2 and 4 have the same order of complexity. The second approach

constructs G̃T
i = D̃T

k ...D̃T
1 . Now,

DT
j =




(j−1)v v v

D
(j)
1,1 D

(j)
1,2 D

(j)
1,3

D
(j)
2,1 D

(j)
2,2 D

(j)
2,3

D
(j)
3,1 D

(j)
3,2 D

(j)
3,3




(j−1)v

v

v

, (3.31a)

34 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

with D
(j)
3,2 and D

(j)
3,3 lower triangular [24, pages 49-53] and

D̃T
j =




(j−1)v v (k−1)v v (k−j)v

D
(j)
1,1 D

(j)
1,2 0 D

(j)
1,3 0

D
(j)
2,1 D

(j)
2,2 0 D

(j)
2,3 0

0 0 I(k−1)v 0 0

D
(j)
3,1 D

(j)
3,2 0 D

(j)
3,3 0

0 0 0 0 I(k−j)v




(j−1)v

v

(k−1)v

v

(k−j)v

. (3.31b)

Furthermore, as in Theorem 1, it can be proved that C̃(j) has the structure

C̃(j) =




(j−1)v v (k−j)v (j−1)v v (k−j)v

C̃
(j)
1,1 C̃

(j)
1,2 0 C̃

(j)
1,3 C̃

(j)
1,4 0

C̃
(j)
2,1 C̃

(j)
2,2 0 C̃

(j)
2,3 C̃

(j)
2,4 0

0 0 I(k−j)v 0 0 0

C̃
(j)
3,1 0 0 C̃

(j)
3,2 0 0

C̃
(j)
4,1 C̃

(j)
4,2 0 C̃

(j)
4,3 C̃

(j)
4,4 0

0 0 0 0 0 I(k−j)v




(j−1)v

v

(k−j)v

(j−1)v

v

(k−j)v

, (3.32)

where C̃
(j)
3,1 , C̃

(j)
3,2 , C̃

(j)
4,2 and C̃

(j)
4,4 are lower triangular. Figure 3.2 shows the affected subma-

trices during the computation of C̃(1), ..., C̃(k) ≡ G̃T
i , where k = 4 and a square denotes an

v × v submatrix.

Â Â Â Â
Â Â

Â Â
Â Â

Â Â

Â
Â

Â

Â
Â

Â

•

••

• •
•
Â

Â•
•
Â

Â

• • •
• • •

•
• • •

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Â•
•
•

•
•
•

•
•

•
•• •

Â

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•

•
•
•

•
•

•
•• •

C̃(1) C̃(2) C̃(3) C̃(4)

Zero • Non-zero Â Identity Â• Lower triangular • Affected blocks

Figure 3.2: The orthogonal C̃(j), (j = 1, ..., 4).

Thus, the orthogonal matrix G̃T
i in (3.27b) has the structure

G̃T
i ≡ C̃(k) =

(kv kv

C̄
(k)
1,1 C̄

(k)
1,2

C̄
(k)
2,1 C̄

(k)
2,2

)
kv

kv
, (3.33)

3.4. NUMERICAL RESULTS AND CONCLUSION 35

where

C̄
(k)
1,1 =

(
C̃

(k)
1,1 C̃

(k)
1,2

C̃
(k)
2,1 C̃

(k)
2,2

)
, C̄

(k)
1,2 =

(
C̃

(k)
1,3 C̃

(k)
1,4

C̃
(k)
2,3 C̃

(k)
2,4

)
, C̄

(k)
2,1 =

(
C̃

(k)
3,1 0

C̃
(k)
4,1 C̃

(k)
4,2

)

and

C̄
(k)
2,2 =

(
C̃

(k)
3,2 0

C̃
(k)
4,3 C̃

(k)
4,3

)
.

Algorithm 5 summarizes the steps of this 4th strategy for computing (3.12), when refor-

mulated as (3.27). The lines 9-10 compute (3.27c) by exploiting the triangular structure

of C̄
(k)
2,1 and C̄

(k)
2,2 . The complexity of Algorithm 5, i.e. Strategy 5, is given by

T5,i = d3(5/3 + 8i) + d2(3 + 8v + 2i) + dv(1 + 4v) ≡ O(d3(5/3 + 8i)). (3.34)

Algorithm 5 The computation of factorization (3.27).

1: Let C̃(0) = I2kv

2: Compute the QRD QT
∗ W (i) = U (i)

3: Ři,i:g = QT
WiRi,i:g

4: for j = 1, . . . , k do

5: Compute the QRD DT
j

(
U

(i,j−1)
1:j,j

Z
(i−1)
j,j

)
=

(
0

Z
(i)
j,j

)

6: DT
j

(
U

(i,j−1)
1:j,j+1:k

Z
(i−1)
j,j+1:k

)
=

(
U

(i,j)
1:j,j+1:k

Z
(i)
j,j+1:k

)

7: Compute C̃(j) = D̃T
j C̃(j−1) similar to (3.24)

8: end for

9: R̂i,i:g = C̄
(k)
1,1 Ři,i:g + C̄

(k)
1,2 E

(i+1)
,i+1:g

10: E
(i)
,i:g = C̄

(k)
2,1 Ři,i:g + C̄

(k)
2,2 E

(i+1)
,i+1:g

3.4 Numerical results and conclusion

The five strategies described here for computing (3.12) have been implemented and an-

alyzed. A suitable block size v has been found to be 50 on the Intel Pentium III, 800

MHz processor. Table 3.1 shows the theoretical complexities and execution times of the

36 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

five strategies. The theoretical results confirm the performance of the implementations.

Strategy 2 has the best performance. That is, the computation of (3.12) is best obtained

by computing (3.18) and (3.19) for j = 1, . . . , k.

Table 3.1: Theoretical complexities (Mflops) and execution times (sec).

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

d i T1 Time T2 Time T3 Time T4 Time T5 Time

200 2 122.82 1.05 90.35 0.90 148.82 1.36 100.68 0.94 159.62 1.44

200 3 170.90 1.46 126.43 1.27 204.82 1.90 140.84 1.36 223.70 2.02

200 4 218.98 1.87 162.51 1.64 260.82 2.41 181.00 1.79 287.78 2.61

200 6 315.14 2.81 234.67 2.38 372.82 3.45 261.32 2.69 415.94 3.78

200 8 411.30 3.92 306.83 3.14 484.82 4.38 341.64 3.64 544.10 4.90

300 2 414.36 3.58 293.18 2.95 487.36 4.49 316.29 3.01 516.64 4.73

300 3 576.54 5.03 410.36 4.15 676.36 6.54 442.65 4.46 732.82 6.79

300 4 738.72 6.31 527.54 5.32 865.36 8.21 569.01 6.07 949.00 8.70

300 6 1063.08 11.40 761.90 8.57 1243.36 12.93 821.73 10.88 1381.36 13.59

300 8 1387.44 17.32 996.26 13.01 1621.36 21.08 1074.45 14.81 1813.72 22.36

400 2 981.97 8.40 681.11 6.85 1137.97 10.39 722.08 7.01 1199.80 11.18

400 3 1366.29 11.70 953.43 9.59 1585.97 15.29 1010.72 9.94 1712.12 15.88

400 4 1750.61 17.13 1225.75 15.18 2033.97 23.51 1299.36 16.10 2224.44 23.83

400 6 2519.25 28.09 1770.39 22.95 2929.97 35.26 1876.64 24.57 3249.08 36.73

Table 3.2 shows the execution times of three methods for solving the downdating prob-

lem for various values of m, n and d. The Standard LAPACK method corresponds to

the conventional method in [8] which computes (3.7)–(3.10) using LAPACK routines, but

without exploiting the structure of Z and R in (3.9a). The Givens method uses plane

rotations to delete the d observations one at a time [19]. The new downdating method is

Algorithm 3 which employs the 2nd strategy to compute (3.12).

The Givens method outperforms the conventional one when the number of deleted

observations d is small compared to the number of variables n. Furthermore, if d ≪ n,

then the Givens method also outperforms the new downdating algorithm. However, for

not very small d the proposed block-downdating algorithm is computationally the most

efficient one. The numerical stability of the proposed algorithm should be investigated [9].

The parallelization of the new downdating algorithm using the various strategies for

computing (3.12) is currently under investigation. The adaptation of the computationally

3.4. NUMERICAL RESULTS AND CONCLUSION 37

Table 3.2: Execution times of the downdating methods.

ALGORITHMS RATIO

m n d LAPACK Givens New Down. LAPACK
New Down.

LAPACK
Givens

Givens
New Down.

1000 400 10 0.97 0.11 0.09 10.77 8.81 1.22

1000 400 20 1.09 0.23 0.17 6.41 4.73 1.35

1000 400 50 1.23 0.64 0.37 3.32 1.92 1.62

1000 400 100 1.77 1.55 0.94 1.88 1.14 1.64

1000 400 200 3.08 3.79 1.84 1.67 0.81 2.05

1000 600 10 3.34 0.24 0.22 15.18 13.91 1.09

1000 600 20 3.57 0.52 0.37 9.64 6.86 1.40

1000 600 50 3.82 1.31 0.86 4.44 2.91 1.52

1000 600 100 5.04 2.98 1.78 2.83 1.69 1.67

1000 600 200 7.43 7.66 3.84 1.93 0.96 1.99

1600 800 10 8.44 0.42 0.40 21.10 20.09 1.05

1600 800 20 8.56 0.92 0.68 12.58 9.30 1.35

1600 800 50 9.13 2.29 1.69 5.40 3.98 1.35

1600 800 100 10.86 5.40 3.37 3.22 2.01 1.60

1600 800 200 17.06 13.26 7.38 2.31 1.28 1.79

1600 800 400 31.11 35.55 16.90 1.84 0.87 2.08

2000 1200 10 24.62 0.96 1.13 21.78 25.64 0.84

2000 1200 20 34.20 2.06 2.17 15.76 16.60 0.94

2000 1200 50 36.29 4.98 4.83 7.51 7.28 1.03

2000 1200 100 40.30 11.28 8.19 4.92 3.57 1.37

2000 1200 200 51.48 25.88 15.37 3.34 1.98 1.68

2000 1200 400 83.38 153.59 37.60 2.21 0.54 4.08

efficient downdating algorithms are intended to be used in regression diagnostics and cross-

validation, where repeatedly a number of observations is deleted [3, 27, 42]. It is expected

that the improved performance of the proposed downdating methods will facilitate the

investigation (evaluation of influential data) of large-scale models. Within this context the

downdating of seemingly unrelated regression models is currently considered [10, 12, 27, 34].

Acknowledgments

The authors are grateful to Martin Gutknecht for his valuable comments and suggestions.

38 CHAPTER 3. BLOCK DOWNDATING OF LS SOLUTIONS

Chapter 4

Parallel algorithms for downdating

the QR decomposition

Abstract:

A computationally efficient parallel algorithm for downdating the QR decomposition is

proposed. The algorithm is a block version of sequential Givens strategies and efficiently

exploits the triangular structure of the matrices. An efficient distribution of matrices over

the processors is proposed. Furthermore, the algorithm does not require inter-processor

communication. The theoretical complexity of the algorithm is derived and experimental

results are presented and analyzed. The parallel strategy is scalable and highly efficient

for large-scale downdating problems.

4.1 Introduction

The recomputation of the QR decomposition (QRD) of a matrix after rows have been

deleted arises often in diverse applications [24]. Consider the QRD of the full rank A ∈

1This chapter is a reprint of the paper: P. Yanev and E.J. Kontoghiorghes. Parallel algorithms for

downdating the QR decomposition. Parallel Computing, 2004 (Submitted).

39

40 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

Rm×n matrix :

QT A =

(
R

0

)
n

m − n
, (4.1)

with

A =

(
A1

A2

)
d

m − d
and QT =




d m − d

QT
1,1 QT

1,2

QT
2,1 QT

2,2

QT
3,1 QT

3,2




n

d

m − d − n

, (4.2)

where R ∈ Rn×n is upper triangular and Q ∈ Rm×m is orthogonal. The computation of the

QRD of A2 having found the decomposition of A given by (4.1) is known as the downdating

QRD problem. Thus, assuming that m > d+n and A2 has full rank, the downdating QRD

is expressed as:

QT
2 A2 =

(
R2

0

)
n

m − d − n
, (4.3)

where Q2 is an orthogonal matrix of order (m − d) and R2 ∈ Rn×n is upper triangular.

The QRD (4.3) is derived in two stages utilizing the computations performed in (4.1)

[5, 8, 19, 20, 24]. The first stage computes the factorizations

HT

(
QT

2,1

QT
2,2

)
=

(
Z

0

)
d

m − d − n
(4.4)

and

GT




d n

QT
1,1 R

Z 0


 =




d n

0 B

D E


n

d
, (4.5)

where H and G are orthogonal matrices of order (m−n) and (d+n), respectively, Z ∈ Rd×d

is upper triangular and |D| = Id. The second stage computes the triangular factor R2 in

(4.3) by finding the QRD

Q̃T B = R2 . (4.6)

4.2. BLOCK DOWNDATING OF THE QRD 41

If Q, in (4.1), is not available, then QT
1,1 and Z in (4.5) can be computed by solving the

triangular system A1 = Q1,1R and the Cholesky factorization ZZT = Id − Q1,1Q
T
1,1 [24].

Hereafter it is assumed that Q1,1 and Z are known and only R2, in (4.3), and thus in (4.6),

is required. That is, Q2 is not explicitly computed.

Thus, the downdating problem becomes equivalent to computing (4.5) and (4.6). In

the light of this observation sequential and parallel strategies to solve the downdating

problem have been designed [4, 8, 19, 20, 24, 28, 32, 33]. A computationally efficient

block-downdating algorithm has also been recently proposed [47]. In this paper, a parallel

strategy based on this algorithm is investigated. The notation is consistent with that in

[47]. The sequential algorithm is briefly presented in the next section. Section 3 considers

various parallel strategies and presents the theoretical and computational results. Section

4 offers some conclusions.

4.2 Block downdating of the QRD

Recently an efficient block-generalization of a Givens strategy for single-row downdating

of the QRD has been proposed [47]. The algorithm is rich in BLAS-3 operations and takes

advantage of the initial triangular structure of the matrices. Let the matrices QT
1,1 and R

in (4.5) be partitioned, respectively, as

QT
1,1 =




d

W (1)

W (2)

...

W (g)




n1

n2

...

ng

and R =




n1 n2 · · · ng

R1,1 R1,2 · · · R1,g

R2,2 · · · R2,g

. . .
...

Rg,g




n1

n2

...

ng

, (4.7)

where n =
∑g

i=1 ni. The sequential algorithm computes (4.5) in g steps. For Z = Z(0) and

E
(0)
g = 0, the ith (i = 1, ..., g) step computes the row-permuted QRD

GT
i

(
W (i)

Z(i−1)

)
=

(
0

Z(i)

)
ni

d
(4.8a)

42 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

and the product

GT
i




ni · · · ng

Ri,i · · · Ri,g

0 · · · E
(i−1)
g


 =




ni · · · ng

R̂i,i · · · R̂i,g

E
(i)
i · · · E

(i)
g


 , (4.8b)

where Gi is orthogonal and of order (d + ni), Z(i) is upper triangular and B in (4.5) has

the block-triangular structure

B =




R̂1,1 R̂1,2 · · · R̂1,g

R̂2,2 · · · R̂2,g

. . .
...

R̂g,g




. (4.9)

The QRD of B in (4.6) is obtained in g steps by computing at the ith step (i = 1, ..., g)

the QRDs:

QT
i R̂i,i = R̃i,i (4.10a)

and the products

QT
i

(
R̂i,i+1 . . . R̂i,g

)
=

(
R̃i,i+1 . . . R̃i,g

)
, (4.10b)

where R̃i,i is upper triangular and QT
i is orthogonal. That is, R2 in (4.3) is given by:

R2 =




R̃1,1 R̃1,2 · · · R̃1,g

R̃2,2 · · · R̃2,g

. . .
...

R̃g,g




. (4.11)

Algorithm 6 summarizes the steps of this strategy for block downdating the QRD. House-

holder transformations are used to compute the factorizations (4.5) and (4.6) and the

orthogonal matrices Gi and Qi (i = 1, ..., g) are not explicitly constructed. The theoretical

complexity of this algorithm is given by:

TS(g, d) = 2gd2(2d(3g + 5) + 3g)/3 ≡ O(4g2d3) . (4.12)

4.3. PARALLEL DOWNDATING OF THE QRD 43

Algorithm 6 The sequential block downdating of the QRD.

1: Let QT
1,1 and R in (4.5) be partitioned as in (4.7)

2: for i = 1, . . . , g do

3: Compute the row-permuted QRD GT
i

(
W (i)

Z(i−1)

)
=

(
0

Z(i)

)

4: Compute GT
i

(
Ri,i · · · Ri,g

0 · · · E
(i−1)
g

)
=

(
R̂i,i · · · R̂i,g

E
(i)
i · · · E

(i)
g

)

5: end for

6: for i = 1, . . . , g do

7: Compute the QRD QT
i R̂i,i = R̃i,i

8: Compute QT
i

(
R̂i,i+1 · · · R̂i,g

)
=

(
R̃i,i+1 · · · R̃i,g

)

9: end for

4.3 Parallel downdating of the QRD

The design of a parallel algorithm requires the efficient distribution of matrices on the

processors such that load balancing is achieved together with low inter-processor commu-

nication. Let p denotes the number of processors. Assume for simplicity that g in (4.7)

is a multiple of p. Consider the block-partitioning of R in (4.7). The cyclic distribution

will allocate R:,i (i = 1, ..., g) to the processor Pλi
, where λi = (i − 1) mod p + 1. This

distribution results in the processor Pj being allocated the n × n/p matrix

R(j) = (R:,j R:,j+p R:,j+2p · · · R:,j+g−p).

The number of non-zero elements of R(j) is given by g(g − p)/2p2 + p(p − j). Thus, R(p),

which is allocated to the last processor, has the maximum density.

In order to reduce the inter-processor communications the factorization (4.8a) is com-

puted by each processor which then, updates its allocated matrix R(j). Furthermore, using

a Single Program Multiple Data (SPMD) paradigm the local matrices R(j) (j = 1, ..., p)

are assumed to have maximum density and thus share the structure of R(p) with the result

that the processors P1, ..., Pp−1 perform computations on zero blocks. Figure 4.1 shows

the distribution of the matrices R and E in (4.5), with p = 4 and g = 16. Note that

Q∗ = (Q1,1 ZT)T is duplicated in each processor. The shaded and blank blocks indi-

cate, respectively, the affected and unaffected blocks during the computations. The empty

shaded blocks remain zero throughout the factorization process.

44 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• • • •Â Â Â Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•

Â

•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•

Â

•
•
•
Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•

Â

•
•
Â

•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•

Â

•Â

Zero • Non-zero •Â Upper triangular Affected blocks

Q∗ R(1) Q∗ R(2) Q∗ R(3) Q∗ R(4)

P1 P2 P3 P4

Figure 4.1: The cyclic distribution of the matrices on 4 processors, when g = 16.

The parallel downdating of the QRD problem is achieved in three stages. The first

stage computes (4.8). Specifically, the factorization (4.8a) is computed by each processor

Pj which then updates its local matrix R(j), where j = 1, ..., p. The second stage computes

(4.10a), i.e. processor Pj computes the QRDs

QT
i,jR̂

(j)
i,⌈i/p⌉ = R̃

(j)
i,⌈i/p⌉, i = j, j + p, ..., j + g − p. (4.13)

The explicitly computed orthogonal matrices QT
i,j are sent to all processors. That is, Pj

sends QT
i,j to Pr and also receives QT

i,r in return, where r = 1, ..., p and r 6= j. Finally, in the

last stage each processor applies the matrices QT
i,j (j = 1, ..., p and i = j, j +p, ..., j + g−p)

to update R̂(j).

Algorithm 7 summarizes the steps of this parallel strategy for block downdating of the

QRD. The theoretical computational complexity of this algorithm is given by:

TP1(g, d, p) = 2gd2(3(g + p − 1) + d(6g + 11p + 1))/3p ≡ O(4g2d3/p). (4.14)

Recall that d and p denote the number of deleted rows and the number of processors,

respectively. The upper-triangular n × n matrix R is partitioned in g × g blocks, where

n = gd.

4.3. PARALLEL DOWNDATING OF THE QRD 45

Algorithm 7 The parallel block downdating of the QRD with cyclic distribution on p

processors.

1: Let R be block-partitioned as in (4.7), where g is a multiple of p.

2: Allocate Q1,1 and Z to all processors.

3: Allocate R(j) = (R:,j R:,j+p · · · R:,j+g−p) to processor Pj (j = 1, ..., p).

4: each processor Pj (j = 1, ..., p) do in parallel:

5: for i = 1, . . . , g do

6: Compute the row-permuted QRD GT
i

(
W (i)

Z(i−1)

)
=

(
0

Z(i)

)

7: Compute GT
i

(
R

(j)
i,⌈i/p⌉ · · · R

(j)
i,g/p

0 · · · E
(i−1)
g

)
=

(
R̂

(j)
i,⌈i/p⌉ · · · R̂

(j)
i,g/p

E
(i)
i · · · E

(i)
g

)

8: end for

9: for i = j, j + p, ..., j + g − p do Compute the QRD QT
i,jR̂

(j)
i,⌈i/p⌉ = R̃

(j)
i,⌈i/p⌉ end do

10: Send QT
i,j to processors Pr (i = j, j + p, ..., j + g − p; r = 1, ..., p and r 6= j).

11: Receive QT
k,r from processors Pr (k = r, r + p, ..., r + g − p; r = 1, ..., p and r 6= j).

12: for i = 1, . . . , g do

13: r := (i − 1) mod p + 1

14: Compute QT
i,r

(
R̂

(j)
i,⌈(i+1)/p⌉ · · · R̂

(j)
i,g/p

)
=

(
R̃

(j)
i,⌈(i+1)/p⌉ · · · R̃

(j)
i,g/p

)

15: end for

Table 4.1 shows the execution and communication times for Algorithm 7 for some g and

d. The execution times of the sequential algorithm and efficiency of the parallel algorithm

are also presented. These results show that the efficiency of Algorithm 7 degrades as the

number of processors increases because of the high communication costs. The computation

time increases more than the communication overheads for increasing g, and thus, the

efficiency of the algorithm increases. Thus, Algorithm 7 can achieve high efficiency for

relatively large d and exceptionally large g with respect to the number of processors.

In order to eliminate the inter-processor communications in the second stage of Algo-

rithm 7 the diagonal block matrices of R, i.e. R1,1, . . . , Rg,g in (4.7) are allocated to each

of the processors. Thus, the factorizations (4.13) are computed locally by each processor.

This has the disadvantage of duplicating data, i.e. the diagonal of R is allocated twice to

the processors, but it has the advantage of eliminating communication costs. A drawback

of this strategy, as well of Algorithm 7, is that the matrices allocated to the processors

have unequal numbers of non-zero blocks. The load increases with increasing the processor

46 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

Table 4.1: Execution times, communication times and efficiencies of Algorithm 7.

2 processors 4 processors 8 processors 16 processors

g d Serial Time Comm Eff Time Comm Eff Time Comm Eff Time Comm Eff

160 10 2.11 1.13 0.01 0.93 0.56 0.01 0.94 1.37 1.11 0.19 1.70 1.55 0.08

240 10 4.91 2.49 0.01 0.99 1.31 0.01 0.94 1.92 1.29 0.32 2.52 2.17 0.12

320 10 8.66 4.37 0.01 0.99 2.24 0.01 0.97 2.41 1.32 0.45 2.78 2.35 0.19

480 10 10.97 5.55 0.01 0.99 2.82 0.01 0.97 2.66 2.12 0.52 4.26 3.52 0.16

640 10 13.78 6.98 0.01 0.99 3.51 0.02 0.98 5.02 3.20 0.34 5.30 4.35 0.16

32 50 5.39 2.73 0.01 0.99 1.65 0.02 0.82 1.82 0.78 0.37 5.26 4.50 0.06

48 50 11.78 5.92 0.01 0.99 3.29 0.04 0.90 3.19 1.18 0.46 6.58 5.37 0.11

80 50 32.86 16.68 0.01 0.99 8.69 0.06 0.95 6.81 1.47 0.60 7.39 5.78 0.28

160 50 153.31 77.41 0.04 0.99 40.21 0.39 0.95 23.60 2.08 0.81 34.23 22.97 0.28

240 50 586.74 301.98 0.09 0.97 155.00 0.48 0.95 81.44 4.31 0.90 72.75 32.14 0.50

320 50 736.11 371.64 0.13 0.99 189.70 0.53 0.97 100.41 5.17 0.92 86.67 36.95 0.53

16 100 9.98 5.24 0.01 0.95 3.37 0.05 0.74 3.27 0.91 0.38 8.39 6.72 0.07

32 100 35.33 18.32 0.01 0.96 10.12 0.06 0.87 7.75 1.07 0.57 12.65 8.13 0.17

64 100 163.74 82.44 0.01 0.99 44.20 0.08 0.93 27.93 3.12 0.73 28.61 14.04 0.36

128 100 642.34 323.41 0.06 0.99 169.73 0.16 0.95 93.35 6.23 0.86 94.71 46.27 0.42

256 100 3082.61 1558.44 0.14 0.99 813.44 1.08 0.95 424.16 9.91 0.91 301.10 86.32 0.64

index, so the execution time is dominated by the last processor which holds the matrices

with maximum density. An improved distribution for the matrices can offset this drawback.

An efficient load-balanced distribution allocates the the non-zero blocks of R equally

to each processor. The first g/2 block columns of R are allocated using the column cyclic

distribution scheme of Algorithm 7. The remaining g/2 block columns of R are distributed

using a reverse (counting backwards) column cyclic allocation scheme. That is, the block

column R:,i is allocated to the processor Pλi
, where

λi =

{
(i − 1) mod p + 1 if i = 1, . . . , g/2,

p − (i − 1) mod p if i = g/2 + 1, . . . , g.

This distribution results in the processor Pj being allocated the n × n/p matrix

R(j) = (R:,j R:,j+p · · · R:,g+1−j−p R:,g+1−j).

Figure 4.2 shows the distribution of the matrices in (4.5) on the processors, with p = 4

and g = 16, Q∗ = (Q1,1 ZT)T and R∗ = (R1,1 · · · Rg,g 0). The shaded blocks are the

4.3. PARALLEL DOWNDATING OF THE QRD 47

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â

• • • •Â Â Â Â

•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•

Â
•
•
•
•
•
•
•
•

Â

•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•

Â

•
•
•
Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•

Â

•
•
Â

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•
•
•
•
•
•
•
•

Â

•
•
•
•
•

Â

•Â

Zero • Non-zero •Â Upper triangular Affected blocks

Q∗ R∗ R(1) Q∗ R∗ R(2) Q∗ R∗ R(3) Q∗ R∗ R(4)

P1 P2 P3 P4

Figure 4.2: The modified cyclic distribution of the matrices on 4 processors, when g = 16.

matrices affected during the computation. Note that now each processor operates on the

same number of non-zero blocks.

This version of the parallel downdating algorithm comprises of two stages which com-

pute (4.8) and (4.10). In the first stage each processor computes locally the factorization

(4.8a) and then, for the computation of (4.8b), it applies GT
i to its allocated block subma-

trices of R and E. In the second stage, each processor computes the re-triangularization

(4.10a) of the diagonal matrices R̂i,i (i = 1, ..., g) and then updates locally the allocated

matrices R̂(j) (j = 1, ..., p). Algorithm 8 summarizes the steps of this approach. Note that

the main computations are performed by the loop at lines 9-22. The conditional statement

at lines 12-20 avoids computations on zero blocks after the factorization (4.8a) at line 11

has been computed. The second conditional statement at lines 15-19 prevents the appli-

cation of the orthogonal matrix QT
i to the matrix R̂i,i when the processor Pj has been

allocated Ri,i as part of R(j).

Algorithm 8 does not require inter-processor communication and thus, its theoretical

complexity is just the computational complexity. That is,

TP2(g, d, p) = 2gd2(3(g + p) + d(6g + 16p + 3))/3p ≡ O(4g2d3/p) . (4.15)

Notice that the latter exceeds the complexity of Algorithm 7 in (4.14) by 2gd2(3 + 5pd +

48 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

Algorithm 8 The modified parallel block downdating of the QRD with cyclic distribution.

1: Let R be block-partitioned as in (4.7), where g is a multiple of 2p.

2: Allocate Q1,1, Z and Ri,i to all processors (i = 1, ..., g).

3: Allocate R(j) = (R:,j R:,j+p · · · R:,g+1−j−p R:,g+1−j) to processor Pj (j = 1, ..., p).

4: each processor Pj (j = 1, ..., p) do in parallel:

5: for all i = 1, ..., g/p do

6: if (i + j − 1 mod p = 0) then δ
(j)
i := 1 else δ

(j)
i := p + 1 end if

7: end for

8: Let λj := 0 and σj := j − 1

9: for i = g, . . . , 1 do

10: if σj = 0 then λj := λj + 1 and σj := δ
(j)
λj

end if

11: Compute the row-permuted QRD GT
i

(
W (i)

Z(i)

)
=

(
0

Z(i−1)

)

12: if λj 6= 0 then

13: Comp. GT
i

(
Ri,i R

(j)
i,g/p+1−λj

· · · R
(j)
i,g/p

0 0 · · · E
(i)
g

)
=

(
R̂i,i R̂

(j)
i,g/p+1−λj

· · · R̂
(j)
i,g/p

T E
(i−1)
i · · · E

(i−1)
g

)

14: Compute the QRD QT
i R̂i,i = R̃i,i

15: if σj = δ
(j)
λj

then

16: Compute QT
i

(
R̂

(j)
i,g/p+2−λj

· · · R̂
(j)
i,g/p

)
=

(
R̃

(j)
i,g/p+2−λj

· · · R̃
(j)
i,g/p

)

17: else

18: Compute QT
i

(
R̂

(j)
i,g/p+1−λj

· · · R̂
(j)
i,g/p

)
=

(
R̃

(j)
i,g/p+1−λj

· · · R̃
(j)
i,g/p

)

19: end if

20: end if

21: Let σj := σj − 1

22: end for

2d)/3p flops. However, Algorithm 8 unlike Algorithm 7, has no inter-processor communi-

cation cost. From (4.12) and (4.15) it follows that the efficiency of Algorithm 8 approaches

one for very large g, i.e. limg→∞ TS(g, d)/(p × TP2(g, d, p)) ≈ 1.

Table 4.2 shows the execution times and actual (and in brackets the theoretical) ef-

ficiencies of Algorithm 8 for some g and d. The theoretical complexity is confirmed by

the experimental results. Comparing the results of Tables 4.1 and 4.2 it will be observed

that Algorithm 8 outperforms Algorithm 7 for larger numbers of processors. Furthermore,

4.4. CONCLUSIONS 49

Algorithm 8 is scalable, i.e. the efficiency remains the same when the number of block

columns g and the number of processors p are doubled.

Table 4.2: Execution times (sec.) and efficiencies of Algorithm 8.

2 processors 4 processors 8 processors 16 processors

g d Serial Time Eff. Time Eff. Time Eff. Time Eff.

160 10 2.11 1.12 0.94 (0.98) 0.58 0.91 (0.95) 0.32 0.82 (0.89) 0.27 0.49 (0.80)

240 10 4.91 2.56 0.96 (0.98) 1.33 0.92 (0.96) 0.74 0.83 (0.93) 0.48 0.64 (0.86)

320 10 8.66 4.38 0.99 (0.99) 2.32 0.93 (0.97) 1.27 0.85 (0.94) 0.79 0.69 (0.89)

480 10 10.97 5.55 0.99 (0.99) 2.90 0.95 (0.98) 1.59 0.86 (0.96) 0.85 0.81 (0.92)

640 10 13.78 6.94 0.99 (0.99) 3.56 0.97 (0.99) 1.90 0.91 (0.97) 1.01 0.86 (0.94)

32 50 5.39 3.08 0.88 (0.89) 1.85 0.73 (0.78) 1.12 0.60 (0.63) 0.83 0.41 (0.45)

48 50 11.78 6.62 0.89 (0.92) 3.68 0.80 (0.84) 2.22 0.66 (0.71) 1.41 0.52 (0.55)

80 50 32.86 17.41 0.94 (0.95) 9.45 0.87 (0.90) 5.28 0.78 (0.80) 3.19 0.64 (0.66)

160 50 153.31 79.49 0.96 (0.97) 41.71 0.92 (0.94) 22.39 0.86 (0.89) 12.45 0.77 (0.80)

240 50 586.74 303.68 0.97 (0.98) 158.53 0.93 (0.96) 81.46 0.90 (0.92) 43.73 0.84 (0.85)

320 50 736.11 372.96 0.99 (0.99) 191.98 0.96 (0.97) 99.11 0.93 (0.94) 53.06 0.87 (0.89)

16 100 9.98 6.33 0.79 (0.81) 3.95 0.63 (0.65) 2.68 0.47 (0.47) 2.13 0.29 (0.30)

32 100 35.33 19.94 0.89 (0.89) 11.78 0.75 (0.78) 6.96 0.63 (0.63) 5.03 0.44 (0.45)

64 100 163.74 87.87 0.93 (0.94) 47.32 0.87 (0.87) 27.12 0.75 (0.77) 17.78 0.58 (0.61)

128 100 642.34 331.60 0.97 (0.97) 176.68 0.91 (0.93) 93.20 0.86 (0.87) 53.98 0.74 (0.76)

256 100 3082.61 1592.49 0.97 (0.98) 821.98 0.94 (0.96) 428.01 0.90 (0.93) 229.60 0.84 (0.86)

4.4 Conclusions

Two parallel strategies for downdating the QR decomposition have been proposed. These

are parallel versions of a recently proposed sequential algorithm which efficiently exploits

the triangular structure of the matrices and is rich in BLAS-3 operations [47]. The al-

gorithms have been implemented on a shared memory SUN Enterprise 10 000 (16 CPU

UltraSPARC of 400 MHz) using the single-program multiple-data paradigm. Theoretical

and experimental results for both strategies have been presented and analyzed. The per-

formance of the first algorithm is degraded by the communication costs which increases

significantly with the number of processors. The second strategy has no inter-processor

communications, but has some duplicated computations. It is found to outperform the first

50 CHAPTER 4. PARALLEL DOWNDATING OF THE QRD

parallel strategy (Algorithm 7) when the number of processors is not small. Generally, the

second parallel strategy (Algorithm 8) achieves perfect load balancing, scalability and can

reach an efficiency close to one when the number of block columns g is reasonably big. In

addition, the theoretical complexities have confirmed the computational experiments.

Currently, within the context of cross-validation, the adaptation of the parallel Algo-

rithm 8 to compute a series of downdating least squares problems is being considered.

Chapter 5

Efficient algorithms for estimating

the general linear model

Abstract:

Computationally efficient serial and parallel algorithms for estimating the general linear

model are proposed. The sequential block-recursive algorithm is an adaptation of a known

Givens strategy that has as a main component the Generalized QR Decomposition. The

proposed algorithm is based on orthogonal transformations and exploits the triangular

structure of the Cholesky factor of the variance-covariance matrix. Specifically, it com-

putes the estimator of the general linear model by solving recursively a series of smaller

and smaller generalized linear least squares problems. The new algorithm is found to

outperform significantly the corresponding LAPACK routine. A parallel version of the

new sequential algorithm which utilizes an efficient distribution of the matrices over the

processors and has low inter-processor communication is developed. The theoretical com-

putational complexity of the parallel algorithms is derived and analyzed. Experimental

results are presented which confirm the theoretical analysis. The parallel strategy is found

to be scalable and highly efficient for estimating large-scale general linear estimation prob-

lems.

1This chapter is a reprint of the paper: P. Yanev and E.J. Kontoghiorghes. Efficient algorithms for

estimating the general linear model. Parallel Computing, 2004 (Submitted).

51

52 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

5.1 Introduction

Consider the General Linear Model (GLM)

y = Xβ + ε, ε ∼ (0, σ2Ω), (5.1)

where y ∈ Rm is the response vector, X ∈ Rm×n is the full rank exogenous data matrix,

β ∈ Rn are the coefficients to be estimated and ε ∈ Rm is the noise with zero mean and

variance-covariance matrix σ2Ω. It is assumed that the matrix Ω = CCT , C ∈ Rm×m is

known, upper triangular and non-singular, while the scalar σ is unknown [30]. The basic

linear unbiased estimator (BLUE) of β is obtained by solving the generalized linear least

squares problem (GLLSP)

argmin
u,β

uT u subject to y = Xβ + Cu, (5.2)

where u is a random vector defined by Cu = ε, i.e. u ∼ (0, σ2Im). The GLLSP can be

solved using the generalized QR decomposition (GQRD) of X̃ ≡ (X y) and C:

QT X̃ =

(
R̃

0

)
≡




n 1

R ỹ

0 η

0 0




n

1

m − n − 1

(5.3a)

and

(QT C)Π = UT =




n 1 m − n − 1

U1,1 r U1,2

0 δ g

0 0 U2,2




n

1

m − n − 1

. (5.3b)

Here R̃ and U are upper triangular matrices of orders n and m, respectively, and Q,Π ∈
Rm×m are orthogonal [5, 20]. The GLLSP (5.2) is equivalent to

argmin
u,β

‖ΠT u‖2 subject to QT y = QT Xβ + QT CΠ ΠT u ,

5.2. SERIAL BLOCK GIVENS STRATEGY 53

which can be written also as

argmin
v1,υ,v2,β

(‖v1‖2 + υ2 + ‖v2‖2) subject to





ỹ = Rβ + U1,1v1 + rυ + U1,2v2,

η = δυ + gv2,

0 = U2,2v2,

(5.4)

where the vector uT Π is partitioned as (vT
1 υ vT

2) and ‖ · ‖ denotes the Euclidean norm.

The values of v2 = 0 and υ = η/δ can be derived from the last two constraints in (5.4).

Then, setting v1 = 0, the BLUE of β is obtained by solving

Rβ = ỹ − ηr/δ. (5.5)

The triangular structure of C (which is assumed to be available) facilitates the devel-

opment of efficient algorithms for solving the GLLSP [25, 35, 36, 37]. In this work block

recursive sequential and parallel strategies which exploit the structure of the matrices are

proposed. The new methods are rich in BLAS-3 operations and solve a series of reduced

size GLLSPs.

The algorithms have been implemented on 32 CPUs IBM’s p690+ high-end compute

node with 27 GB distributed memory. The communications between the processors are

realized using the MPI library. The performance of the algorithms has been evaluated

experimentally. In addition, the theoretical complexities of the algorithms in number of

flops (floating point operations) are also presented. The serial block-Givens strategy is

then described and compared with the existing LAPACK routine for estimating the GLM.

In section 3 the parallel algorithm is considered and the theoretical and computational

results are presented. In section 4 some conclusions are drawn.

5.2 Serial block Givens strategy

An efficient sequential algorithm based on Givens rotations for estimating the GLM has

been proposed by Paige [35]. Here a block version based on this sequential strategy is

investigated [47]. Consider the GLLSP (5.2), where the matrices X̃ ≡ (X y) and C are

54 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

partitioned, respectively, as

X̃ =




n 1

X1 y1

X2 y2

...

Xk yk




n

n
...

n

and C =




n n · · · n

C1,1 C1,2 · · · C1,k

C2,2 · · · C2,k

. . .
...

Ck,k




n

n
...

n

. (5.6)

Here Ci,i (i = 1, ..., k) are upper triangular where, for simplicity, it is assumed that m = kn.

The sequential block algorithm computes the solution of the GLLSP (5.2) in k steps. The

GQRD (5.3) is computed during the first (k−1) steps. For j = k−i the ith (i = 1, ..., k−1)

step computes the smaller GQRD of

(
Xj y

(i)
j

X̃j+1 y
(i)
j+1

)
and

(
Cj,j C̃j,j+1

0 C̃j+1,j+1

)
, (5.7)

where y
(1)
k−1 = yk−1, y

(1)
k = yk, X̃k = Xk, C̃k−1,k = Ck−1,k and C̃k,k = Ck,k. That is, initially

the QRD of the first matrix in (5.7) is computed by:

QT
i

(
Xj y

(i)
j

X̃j+1 y
(i)
j+1

)
=




X̃j ỹ
(i)
j

0 ηi

0 0




n

1

n − 1

, (5.8)

where Qi ∈ R2n×2n is orthogonal and X̃j is upper triangular. Then, the orthogonal matrix

QT
i is applied from the left of the second matrix in (5.7) which is then re-triangularized

from the right, i.e.

(
QT

i

(
Cj,j C̃j,j+1

0 C̃j+1,j+1

))
Πi =




n 1 n − 1

C̃j,j r
(i)
j Cj,j+1

0 δi gi

0 0 Cj+1,j+1




n

1

n − 1

. (5.9)

Here Πi is orthogonal and of order 2n; C̃j,j and Cj+1,j+1 are upper triangular. Once the

ith GQRD of (5.7) has been computed, Πi is applied from the right of the affected jth and

5.2. SERIAL BLOCK GIVENS STRATEGY 55

(j + 1)th block-columns of C, i.e. the product




n n

C1,j C̃1,j+1

C2,j C̃2,j+1

...
...

Cj−1,j C̃j−1,j+1




Πi =




n 1 n − 1

C̃1,j r
(i)
1 C1,j+1

C̃2,j r
(i)
2 C2,j+1

...
...

...

C̃j−1,j r
(i)
j−1 Cj−1,j+1




n

n
...

n

(5.10)

is computed. Note that this is the most time consuming task in each step of the computa-

tion of the GQRD (5.3), especially when k is large, i.e. when m ≫ n.

Now let (uT
i−1 ũT

i−1)Πi be partitioned conformably as (uT
i ũT

i υi ūT
i), where (uT

0 ũT
0) ≡

u. The GLLSP (5.2) after the ith step of computing the GQRD (5.3) can be written as

argmin
ui,ũi,υi,ūi,β

(‖ui‖2 + ‖ũi‖2 + υ2
i + ‖ūi‖2) subject to




y
(i)
1:j−1

ỹ
(i)
j

ηi

0




=




X1:j−1

X̃j

0

0




β +




C1:j−1,1:j−1 C̃1:j−1,j ri
1:j−1 C1:j−1,j+1

0 C̃j,j ri
j Cj,j+1

0 0 δi gi

0 0 0 Cj+1,j+1







ui

ũi

υi

ūi




.

From this it follows that Cj+1,j+1ūi = 0, i.e. ūi = 0 and ηi = δiυi + giūi, i.e. υi = ηi/δi.

Thus, the GLLSP (5.2) is equivalent to the reduced GLLSP

argmin
ui,ũi,β

(‖ui‖2 + ‖ũi‖2) s.t.

(
y

(i+1)
1:j−1

y
(i+1)
j

)
=

(
X1:j−1

X̃j

)
β +

(
C1:j−1,1:j−1 C̃1:j−1,j

0 C̃j,j

) (
ui

ũi

)
,

where
(

y
(i+1)
1:j−1

y
(i+1)
j

)
=

(
y

(i)
1:j−1

ỹ
(i)
j

)
− υi

(
r
(i)
1:j−1

r
(i)
j

)
. (5.11)

Equation (5.11) shows the size-reduction of the GLLSP after each step of the computation.

Following the completion of the (k − 1)th step the final, smallest GLLSP has the form:

argmin
ũk−1,υk−1,β

(‖ũk−1‖2 + ‖υk−1‖2) s.t.

(
ỹ(k−1)

ηk−1

)
=

(
X̃1

0

)
β +

(
C̃1,1 r

(k−1)
1

0 δk−1

)(
ũk−1

υk−1

)

or

argmin
ũk−1,β

‖ũk−1‖2 s.t. y
(k)
1 = X̃1β + C̃1,1ũk−1,

56 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

where X̃1 and C̃1,1 are upper triangular and are derived from the QRD (5.8) and RQD

(5.9), respectively, and y
(k)
1 = ỹ

(k−1)
1 − ηk−1r

(k−1)
1 /δk−1. Thus, the kth step computes the

BLUE of β by setting ũk−1 = 0 and solving the upper triangular system X̃1β = y
(k)
1 .

Algorithm 9 The sequential block Givens algorithm for solving the GLLSP (5.2).

1: Let X̃ and C in (5.3) be partitioned as in (5.6), where m = kn

2: Let y
(1)
k−1 = yk−1, y

(1)
k = yk, X̃k = Xk, C̃k−1,k = Ck−1,k and C̃k,k = Ck,k.

3: for i = 1, . . . , k − 1 do

4: Set j := k − i

5: Compute the GQRD of

(
Xj y

(i)
j

X̃j+1 y
(i)
j+1

)
and

(
Cj,j C̃j,j+1

0 C̃j+1,j+1

)
as in (5.8) and (5.9)

6: if i 6= k − 1 then

7: Compute
(
C1:j−1,j C̃1:j−1,j+1

)
Πi =

(
C̃1:j−1,j r

(i)
1:j−1 C1:j−1,j+1

)

8: end if

9: Update the vector y:

(
y

(i+1)
1:j−1

y
(i+1)
j

)
=

(
y

(i)
1:j−1

ỹ
(i)
j

)
− ηi

δi

(
r
(i)
1:j−1

r
(i)
j

)

10: end for

11: Solve X̃1β = y
(k)
1

Algorithm 9 summarizes the steps of this block Givens strategy for estimating the

GLM. For the factorizations (5.8) and (5.9) Householder transformations are employed.

The orthogonal matrices Qi and Πi (i = 1, ..., k − 1) are not explicitly constructed. The

theoretical complexity of this algorithm is given by:

TBG(m, n) ≈ 4m2n + 14mn2 − 18n3 . (5.12)

Table 5.1 shows the execution times in seconds and the theoretical complexities in number

of flops of Block-Givens Algorithm 9 (BG) and the LAPACK (LP) routine DGGGLM

which estimates the GLM for some values of n and k, where m = kn [2]. The theoretical

complexity of LAPACK is given by:

TLP(m, n) ≈ (4m3 + 12m2n − 2n3)/3 . (5.13)

Note that, theoretically, Algorithm 9 is approximately m/3n times faster than the LA-

PACK routine, which is confirmed by the experimental results. This improvement is due

to the fact that the Algorithm 9 exploits the triangular structure of the large and computa-

tionally expensive matrix C in (5.2), while the LAPACK routine assumes that C is dense.

5.3. PARALLEL ALGORITHM 57

The experimental results (LP/BG) confirm the theoretical ones (TLP/TBG). There is a

negligible discrepancy between the two ratios when k is big and n is relatively much smaller.

This is due to the increasing overheads which occur from the frequent data exchanges of

the submatrices in (5.6).

Table 5.1: Execution times (sec.) and theoretical results of Algorithm 9 and LAPACK.

n 25 50 100

k − 2 128 256 384 64 128 192 32 64 96

LP 25.77 213.35 601.58 26.25 216.62 603.03 27.77 223.35 605.58

BG 0.76 2.88 6.59 1.44 5.32 9.71 2.62 10.56 19.04

LP/BG 33.91 74.08 91.29 18.23 40.72 62.10 10.60 21.15 31.81

TLP/TBG 42.69 85.35 128.01 21.38 42.69 64.02 10.77 21.39 32.04

5.3 Parallel algorithm

The computation of the product (5.10) is the most time consuming task in Algorithm 1.

This cost can be reduced by applying the orthogonal matrices Πi (i = 1, ..., k − 1) to the

block columns of C (see line 7 of Algorithm 9) in parallel. An efficient parallel algorithm

requires a load-balanced distribution of the matrices over the processors and low inter-

processor communication [48]. Let p denotes the number of processors and assume that

(k − 2) is a multiple of p, where m = kn.

Consider the partitioning of the matrices X̃ and C as in (5.6). To achieve low inter-

processor communication, the GQRDs computed in line 5 of Algorithm 9 are executed

simultaneously by all processors. That is, the data matrix X, the last two block rows of y

and the main, sub- and super-block diagonals of C are duplicated on each processor. The

remaining (k − 2) block-rows of C and y are allocated to the processors using a block-row

cyclic distribution. Specifically, Ci,: (i = k − 2, ..., 1) is allocated to the processor Pλi
,

where λi = p− (i−1) mod p. The same distribution scheme is used for the vector y. This

distribution will result in the processor Pj (j = 1, ..., p) being allocated the vector

γ(j) =
(
yT

p+1−j yT
2p+1−j · · · yT

k−1−j

)T
(5.14)

and the matrix

C(j) =
(
CT

p+1−j,: CT
2p+1−j,: · · · CT

k−1−j,:

)T
, (5.15)

58 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

where γ(j) ∈ Rn(k−2)/p×1 and C(j) ∈ Rn(k−2)/p×m. Figure 5.1 shows the distribution of the

matrices X̃ and C over the processors, with p = 4 and k = 18. The shaded blocks indicate

those copied to all processors. The blank, unshaded, blocks are null and are unaffected

during the computation.

• @
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• • • • • • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • •

• • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • •

• • • • • • •

• • •

• • • • • • • • • • • • • •

• • • • • • • • • •

• • • • • •

• •

• • • • • • • • • • • • •

• • • • • • • • •

• • • • •

•

X y C

- P1

- P1

- P1

- P1

- P2

- P2

- P2

- P2

- P3

- P3

- P3

- P3

- P4

- P4

- P4

- P4

Figure 5.1: The row-block cyclic distribution of the matrices on 4 processors, when k = 18.

The parallel algorithm solves the GLLSP (5.2) in k steps. During the first (k − 1)

steps, all processors initially compute the same factorizations (5.8) and (5.9). Then each

processor updates its allocated submatrix C(j) and subvector γ(j). Note that, at the ith

step, each processor updates ⌈q/p⌉ blocks, where q = k − i − 1. Thus, the processors

have equal computational loads. When the local computations have been completed one

processor, Pj say, sends one block from C(j) and γ(j), which are required for the next

step, to the other processors Pr (r = 1, . . . , p and r 6= j). That is, at each step only one

processor broadcasts an n×n submatrix and an n-element subvector. This broadcast acts

as a barrier-synchronization point for the processors before the next step commences. The

parallel strategy is summarized in Algorithm 10. The broadcast performed by processor

Pj is shown in lines 13-17 of the parallel algorithm.

The theoretical computational complexity of this algorithm is given by:

TP(m, n, p) ≈ (4m2n − 16mn2 + 16n3)/p + 30mn2 + 34n3. (5.16)

From (5.12) and (5.16) it follows that the computational efficiency of Algorithm 10 ap-

proaches one for very large m, i.e. limm→∞ TBG(m, n)/(p × TP(m, n, p)) ≈ 1. This does

5.3. PARALLEL ALGORITHM 59

Algorithm 10 The parallel algorithm for solving the GLLSP (5.2) on p processors.

1: Let X̃ and C be partitioned as in (5.6), where m = kn and k − 2 is a multiple of p.

2: Allocate X, yk−1, yk, Ck,k, Ci,i and Ci,i+1 (i = 1, ..., k − 1) to all processors.

3: Allocate γ(j) and C(j) as in (5.14) and (5.15), respectively, to processor Pj (j = 1, ..., p).

4: each processor Pj (j = 1, ..., p) do in parallel:

5: for i = 1, . . . , k − 1 do

6: Set t := k − i

7: Compute the GQRD of

(
Xt y

(i)
t

X̃t+1 y
(i)
t+1

)
and

(
Ct,t C̃t,t+1

0 C̃t+1,t+1

)
as in (5.8) and (5.9).

8: Compute y
(i+1)
k−i = ỹ

(i)
k−i − ηi/δir

(i)
k − i.

9: if i 6= k − 1 then

10: Set q := k − i − 1

11: Compute C
(j)
1:n⌈q/p⌉,nq+1:nq+2n = C

(j)
1:n⌈q/p⌉,nq+1:nq+2nPi.

12: Compute γ
(j)
1:n⌈q/p⌉ = γ

(j)
1:n⌈q/p⌉ − υiC

(j)
1:n⌈q/p⌉,nq+n+1.

13: if j = (i − 1) mod p + 1 then

14: Send y
(i+1)
t−1 and C̃t−1,t to Pr, where r = 1, ..., p and r 6= j.

15: else

16: Receive y
(i+1)
t−1 and C̃t−1,t from Pr, where r = (i − 1) mod p + 1.

17: end if

18: end if

19: end for

20: Solve X̃1β = y
(k)
1

not take into account, however, the inter-processor communication. Table 5.2 shows the

execution times and actual (and in brackets the theoretical) efficiency of Algorithm 10 for

some µ and n, where µ = m/n− 2. The experimental results confirm the theoretical com-

plexities. Note that, the communication time increases with the number of the processors

which affects the efficiency of the algorithm for small size problems. Furthermore, Algo-

rithm 10 is scalable. That is, the efficiency remains constant when the size of the problem

m, and consequently µ, is multiplied by
√

2 and the number of the processors p is doubled.

60 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

Table 5.2: Execution times (sec.) and efficiency of Algorithm 10.

Algorithm 10

2 processors 4 processors 8 processors 16 processors 32 processors

µ n Serial Time Eff. Time Eff. Time Eff. Time Eff. Time Eff.

128 25 0.76 0.41 .93 (.95) 0.24 .79 (.86) 0.16 .59 (.72) 0.13 .37 (.54) 0.19 .13 (.37)

256 25 2.88 1.54 .94 (.97) 0.82 .88 (.92) 0.50 .72 (.83) 0.36 .50 (.70) 0.38 .24 (.53)

384 25 6.59 3.47 .95 (.98) 1.75 .94 (.95) 1.08 .76 (.88) 0.63 .65 (.78) 0.72 .29 (.63)

512 25 11.95 6.09 .98 (.99) 3.17 .94 (.96) 1.81 .83 (.91) 1.12 .67 (.82) 1.01 .37 (.69)

640 25 18.77 9.51 .99 (.99) 4.82 .97 (.97) 2.69 .87 (.92) 1.50 .78 (.85) 1.28 .46 (.74)

768 25 26.49 13.54 .98 (.99) 6.82 .97 (.97) 3.75 .88 (.94) 2.02 .82 (.87) 1.61 .51 (.77)

896 25 36.23 18.51 .98 (.99) 9.35 .97 (.98) 4.96 .91 (.95) 2.65 .85 (.89) 1.94 .58 (.80)

64 50 1.44 0.79 .91 (.90) 0.49 .73 (.76) 0.36 .50 (.57) 0.31 .29 (.39) 0.34 .13 (.23)

128 50 5.32 2.83 .94 (.95) 1.58 .84 (.86) 0.97 .69 (.72) 0.77 .43 (.54) 0.86 .19 (.37)

192 50 9.71 5.18 .94 (.96) 2.76 .88 (.90) 1.88 .65 (.79) 1.26 .48 (.64) 1.27 .24 (.36)

256 50 17.47 9.09 .96 (.97) 4.80 .91 (.92) 2.82 .77 (.83) 1.97 .55 (.70) 1.70 .32 (.53)

320 50 27.13 14.14 .96 (.98) 7.45 .91 (.94) 4.22 .80 (.86) 2.76 .61 (.74) 2.12 .40 (.58)

384 50 39.35 20.07 .98 (.98) 10.76 .91 (.95) 5.95 .83 (.88) 3.78 .65 (.78) 2.61 .47 (.63)

448 50 53.71 27.38 .98 (.98) 14.34 .94 (.95) 7.83 .86 (.90) 4.62 .73 (.80) 3.04 .55 (.66)

32 100 2.62 1.61 .81 (.84) 1.11 .59 (.63) 0.88 .37 (.42) 0.81 .20 (.26) 0.83 .10 (.14)

64 100 10.56 5.94 .89 (.90) 3.61 .73 (.76) 2.47 .53 (.57) 1.98 .33 (.39) 1.78 .19 (.23)

96 100 19.04 10.39 .92 (.93) 5.92 .80 (.82) 3.81 .62 (.66) 2.76 .43 (.48) 2.56 .23 (.31)

128 100 26.67 14.27 .93 (.95) 8.06 .83 (.86) 4.89 .68 (.72) 3.45 .48 (.54) 3.15 .26 (.37)

160 100 41.18 21.78 .95 (.96) 11.91 .86 (.88) 7.08 .73 (.76) 4.86 .53 (.60) 3.63 .35 (.42)

192 100 58.91 30.93 .95 (.96) 16.76 .88 (.90) 9.83 .75 (.79) 6.47 .57 (.64) 4.75 .39 (.46)

224 100 79.85 41.65 .96 (.97) 22.40 .89 (.91) 12.86 .78 (.81) 8.02 .62 (.67) 5.68 .44 (.50)

5.4 Conclusion

Computationally efficient sequential and parallel algorithms for computing the best linear

unbiased estimator of the general linear model (5.1) have been proposed. The sequential

algorithm is a block version of an efficient serial approach that employs as a main com-

putational component the Generalized QR Decomposition [35]. The new block Givens

algorithm exploits the triangular structure of the Cholesky factor C of the dispersion ma-

trix Ω and is rich in BLAS-3 operations. It is found to be m/3n times faster than the

5.4. CONCLUSION 61

corresponding LAPACK routine DGGGLM for estimating the GLM [2].

The parallel approach is based on the new sequential strategy. The parallel algorithm

copies the augmented matrix X̃ and the main, sub- and super-block diagonals of C to

all processors. The rest of the matrix C is evenly distributed across the processors. The

algorithm duplicates parts of the computation. However, this is compensated for the load

balanced distribution of the computationally expensive matrix C resulting in minimal inter-

processor communication. The algorithms have been implemented on a parallel computer

with distributed memory. The theoretical complexities of both algorithms are stated and

experimental results are presented and analyzed. Overall, the parallel algorithm is found

to be scalable and capable of solving large scale GLM estimation problems, where m ≫ n.

Currently, an adaptation of the parallel algorithm to estimate Seemingly Unrelated

Regressions -a special class of a GLM which involving Kronecker structures- is being in-

vestigated [10, 24, 29, 43, 51].

62 CHAPTER 5. ESTIMATING THE GENERAL LINEAR MODEL

Chapter 6

Computationally efficient methods

for estimating the

updated-observations SUR models

Abstract:

Efficient serial and parallel algorithms for estimating the seemingly unrelated regressions

model after been updated with new observations are proposed. The sequential block al-

gorithm is based on orthogonal transformations and exploits the sparse structure of the

data matrix and the Cholesky factor of the variance-covariance matrix. A parallel version

of the new sequential block algorithm is developed. It utilizes an efficient distribution of

the matrices over the processors and has low inter-processor communication. Theoretical

and experimental results are presented and analyzed. The parallel algorithm is found to

be scalable and efficient.

1This chapter is a reprint of the paper: P. Yanev and E.J. Kontoghiorghes. Computationally efficient

methods for estimating the updated-observations SUR models. Applied Numerical Mathematics, 2005

(Submitted).

63

64 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

6.1 Introduction

Consider the seemingly unrelated regressions (SUR) model, defined by the set of G regres-

sions

yi = Xiβi + εi, i = 1, ..., G, (6.1)

where yi ∈ RT are the response vectors, Xi ∈ RT×ki are full column rank data matrices,

βi ∈ Rki are the coefficients to be estimated and εi ∈ RT are the disturbance vectors,

which have zero mean and variance-covariance matrix σi,iIT . Note that, the disturbances

in the SUR model are contemporaneously correlated across the regression equations, i.e.

E(εiε
T
j) = σi,jIT (i, j = 1, ..., G) [24, 43, 44].

The compact form of the SUR model is given by



y1

...

yG


 =




X1

. . .

XG







β1

...

βG


 +




ε1

...

εG


 , (6.2)

which can be equivalently written as

vec(Y) = (⊕G
i=1Xi)vec({βi}G) + vec(E), (6.3)

where Y = (y1 · · · yG), E = (ǫ1 · · · ǫG), ⊕G
i=1Xi = diag(X1, ..., XG), {βi}G denotes a set of

G vectors and vec(·) is the vector operator that stacks the columns of a matrix or set of

vectors. The disturbances, vec(E) in (6.3), have zero mean and variance-covariance matrix

Σ⊗IT , i.e. vec(E) ∼ (0, Σ⊗IT), where Σ = [σi,j] ∈ RG×G is symmetric positive semidefinite

matrix [24, 43, 44, 45, 51]. For simplicity, the data matrix ⊕G
i=1Xi is abbreviated to ⊕iXi

and the coefficients {βi}G to {βi}. The notation is consistent with that in [27].

The best linear unbiased estimator (BLUE) of {βi} can be obtained by solving the

generalized linear least squares problem (GLLSP)

argmin
U,{βi}

‖U‖2
F subject to vec(Y) = (⊕iXi)vec({βi}) + vec(UCT), (6.4)

where Σ = CCT , the matrix U ∈ RT×G is such that UCT = E and the ‖ · ‖F is the

Frobenius norm, defined as ‖U‖2
F =

∑T
i=1

∑G
j=1 U2

i,j [10]. It will be assumed that the

matrix C ∈ RG×G is the upper-triangular Cholesky factor of Σ and is part of the original

data. From the properties of the Kronecker product and the vec(·) operator follows that

vec(E) ≡ vec(UCT) = (C ⊗ IT)vec(U), and thus, vec(U) ∼ (0, IGT) [39, 41].

6.1. INTRODUCTION 65

The GLLSP (6.4) can be solved using the generalized QR decomposition (GQRD) of

⊕iXi and (C ⊗ IT), which first computes the QR decomposition (QRD)

QT (⊕iXi) =

(
⊕iRi

0

)
K

GT − K
(6.5a)

and then the RQ decomposition (RQD)

(QT (C ⊗ IT))Π = W ≡




K GT − K

W1,1 W1,2

0 W2,2


K

GT − K
, (6.5b)

where K =
∑G

i=1 ki, Ri and W are upper triangular matrices of order ki and GT , respec-

tively, and Q,Π ∈ RGT×GT are orthogonal [29, 37, 38].

The GLLSP (6.4) is equivalent to

argmin
U,{βi}

‖ΠT vec(U)‖2 s.t. QT vec(Y) = QT (⊕iXi)vec({βi}) + QT (C ⊗ IT)ΠΠT vec(U),

which after the computation of the GQRD (6.5) can be written as

argmin
ũi,ûi,{βi}

G∑

i=1

(‖ũi‖2 + ‖ûi‖2) subject to

(
vec({ỹi})
vec({ŷi})

)
=

(
⊕iRi

0

)
vec({βi}) +

(
W1,1 W1,2

0 W2,2

) (
vec({ũi})
vec({ûi})

)
, (6.6)

where ‖ · ‖ denotes the Euclidean norm and the vectors QT vec(Y) and ΠT vec(U) are

partitioned, respectively, as

QT vec(Y) =

(
vec({ỹi})
vec({ŷi})

)
K

T − K
and ΠT vec(U) =

(
vec({ũi})
vec({ûi})

)
K

T − K
.

From the constrains in (6.6) it follows that vec({ŷi}) = W2,2vec({ûi}), i.e. vec({ûi}) can

be computed. Then, setting vec({ũi}) = 0, the BLUE of the SUR model is given by

⊕iRivec({β̂i}) = vec({˜̃yi}), (6.7)

where vec({˜̃yi}) = vec({ỹi}) − W1,2vec({ûi}).

66 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

Often the SUR model is updated by new observations [6, 7, 24]. The estimation of the

updated SUR model has been discussed in [27]. The purpose of this work is to design effi-

cient strategies to compute the updated estimators. The next section reviews the updated

SUR model estimation procedure. Section 3 considers sequential strategies for computing

the main matrix factorizations arising in the estimation procedure. Parallel algorithms are

considered in Section 4. The algorithm is implemented on a virtual shared memory parallel

machine SUN Enterprise 10 000 (16 CPU UltraSPARC of 400 MHz) using a single-program

multiple-data (SPMD) programming paradigm. Finally, Section 5 concludes.

6.2 Updating the SUR model with new observations

The updated-observation SUR (UO-SUR) model is defined as the original SUR model (6.1)

with an equal number of new observations added to each regression equation. Let the new

observations be denoted by

y
(s)
i = X

(s)
i βi + ε

(s)
i , i = 1, ..., G, (6.8)

which can be written equivalently as

vec(Y (s)) = (⊕iX
(s)
i)vec({βi}) + vec(E(s)), (6.9)

where vec(E(s)) ∼ (0, Σ(s) ⊗ IT (s)), Σ(s) ∈ R(G×G) is positive definite and non-singular and

T (s) is the number of observations added to each equation. The problem of estimating the

UO-SUR model is the solution of the SUR model
(

yi

y
(s)
i

)
=

(
Xi

X
(s)
i

)
βi +

(
εi

ε
(s)
i

)
, i = 1, ..., G, (6.10)

after (6.1) has been solved. The UO-SUR model can be equivalently written as

(
vec(Y)

vec(Y (s))

)
=

(
⊕iXi

⊕iX
(s)
i

)
vec({βi}) +

(
vec(E)

vec(E(s))

)
. (6.11)

Note that, the disturbances vec(E(s)) and vec(E) are not correlated, i.e.

(
vec(E)

vec(E(s))

)
∼

(
0,

(
Σ ⊗ IT 0

0 Σ(s) ⊗ IT (s)

))
.

6.2. UPDATING THE SUR MODEL WITH NEW OBSERVATIONS 67

The BLUE of the UO-SUR model is obtained by solving a similar to (6.4) GLLSP (UO-

GLLSP), which is given by

argmin
U,U(s),{βi}

‖U‖2
F + ‖U (s)‖2

F subject to

(
vec(Y)

vec(Y (s))

)
=

(
⊕iXi

⊕iX
(s)
i

)
vec({βi}) +

(
C ⊗ IT 0

0 C(s) ⊗ IT (s)

)(
vec(U)

vec(U (s))

)
,(6.12)

where C(s) ∈ RG×G is the upper-triangular Cholesky factor of Σ(s) and U (s)(C(s))T = E(s).

Using the GQRD (6.5), the constraints (6.12) becomes equivalent to




vec(ỹi)

vec(ŷi)

vec(Y (s)


 =




⊕iRi

0

⊕iX
(s)
i


 vec({βi}) +




W1,1 W1,2 0

0 W2,2 0

0 0 C(s) ⊗ IT (s)







vec(ũi)

vec(ûi)

vec(U (s))




and from the solution of the GLLSP (6.6), it follows that the UO-GLLSP can be reduced

to

argmin
ũi,U(s),{βi}

G∑

i=1

‖ũi‖2 + ‖U (s)‖2
F subject to

(
vec({˜̃yi})
vec(Y (s))

)
=

(
⊕iRi

⊕iX
(s)
i

)
vec({βi}) +

(
W1,1 0

0 C(s) ⊗ IT (s)

)(
vec({ũi})
vec(U (s))

)
, (6.13)

where vec({˜̃yi}) is computed as in (6.7). The reduced in size UO-GLLSP can be solved

using the updated GQRD (UGQRD)

(Q(s))T

(
⊕iRi

⊕iX
(s)
i

)
=

(
⊕iR

(s)
i

0

)
K

GT (s)
(6.14a)

and

(
(Q(s))T

(
W1,1 0

0 C(s) ⊗ IT (s)

))
Π(s) = W (s) =




K GT (s)

W
(s)
1,1 W

(s)
1,2

0 W
(s)
2,2


K

GT (s)
, (6.14b)

where Q(s), Π(s) ∈ RK+GT (s)×K+GT (s)
are orthogonal and ⊕iR

(s)
i and W (s) are upper tri-

angular of order K and K + GT (s), respectively. Note that after the UGQRD (6.14) the

UO-GLLSP becomes similar to the GLLSP (6.6) and can be solved equivalently.

68 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

6.3 Sequential strategies for computing the UGQRD (6.14)

The serial algorithms proposed here take advantage of the sparse structure of the matrices

in (6.14) and are rich in BLAS-3 operations [47, 50]. Sequentially, the computation of the

UGQRD is performed in two stages. Let the upper-triangular Cholesky matrices W1,1 and

C(s) ⊗ IT (s) be partitioned, respectively, as

W1,1 =




k1 · · · kG

A1,1 · · · A1,G

. . .
...

AG,G




k1

...

kG

and C(s) ⊗ IT (s) =




T (s) · · · T (s)

C1,1 · · · C1,G

. . .
...

CG,G




T (s)

...

T (s)

, (6.15)

where Ai,i and Ci,i (i = 1, ..., G) are upper triangular. The first stage computes the UQRD

(6.14a) in G steps. The ith (i = 1, ..., G) step derives the QRD

QT
i

(
Ri

X
(s)
i

)
=

(
R

(s)
i

0

)
ki

T (s)
(6.16a)

and computes the product

QT
i




ki · · · kG T (s) · · · T (s)

Ai,i · · · Ai,G 0 · · · 0

0 · · · 0 Ci,i · · · Ci,G


 =




ki · · · kG T (s) · · · T (s)

Âi,i · · · Âi,G Bi,i · · · Bi,G

Di,i · · · Di,G Ĉi,i · · · Ĉi,G


ki

T (s)
, (6.16b)

where R
(s)
i ∈ Rki×ki is upper triangular and QT

i is orthogonal and of order (ki + T (s)).

Note that, after the UQRD (6.14a) is completed, the orthogonal matrix Q(s) is given by

Q(s) =




K GT (s)

⊕iQ
(1,1)
i ⊕iQ

(1,2)
i

⊕iQ
(2,1)
i ⊕iQ

(2,2)
i


 K

GT (s)
, where Qi =




ki T (s)

Q
(1,1)
i Q

(1,2)
i

Q
(2,1)
i Q

(2,2)
i


 ki

T (s)

6.3. SEQUENTIAL STRATEGIES FOR COMPUTING THE UGQRD (6.14) 69

and the modified Cholesky matrix in (6.14b) has the form

(Q(s))T

(
W1,1 0

0 C(s) ⊗ IT (s)

)
=




k1 · · · kG T (s) · · · T (s)

Â1,1 · · · Â1,G B1,1 · · · B1,G

. . .
...

. . .
...

ÂG,G BG,G

D1,1 · · · D1,G Ĉ1,1 · · · Ĉ1,G

. . .
...

. . .
...

DG,G ĈG,G




k1

...

kG

T (s)

...

T (s)

.

The second stage computes the URQD (6.14b), i.e. it annihilates the matrices Di,j (i, j =

1, ..., G , i ≤ j) from the right in G steps. The ith (i = 1, ..., G) step annihilates the matrices

Dt,t+j−1 by computing (for t = G − i + 1 and j = 1, ..., i) the RQD

(
D

(i−1)
t,t+j−1 Ĉ

(j−1)
t,t

)
Πi,j =

(
0 Ĉ

(j)
t,t

)
(6.17a)

and the product




kt+j−1 T (s)

Â
(i−1)
1,t+j−1 B

(j−1)
1,t

...
...

Â
(i−1)
t+j−1,t+j−1 B

(j−1)
t+j−1,t

D
(i−1)
1,t+j−1 Ĉ

(j−1)
1,t

...
...

D
(i−1)
t−1,t+j−1 Ĉ

(j−1)
t−1,t




Πi,j =




kt+j−1 T (s)

Â
(i)
1,t+j−1 B

(j)
1,t

...
...

Â
(i)
t+j−1,t+j−1 B

(j)
t+j−1,t

D
(i)
1,t+j−1 Ĉ

(j)
1,t

...
...

D
(i)
t−1,t+j−1 Ĉ

(j)
t−1,t




k1

...

kt+j−1

T (s)

...

T (s)

, (6.17b)

where Ĉ
(j)
t,t ∈ RT (s)×T (s)

is upper triangular, Â
(0)
m,n = Âm,n, B

(0)
m,n = Bm,n, D

(0)
m,n = Dm,n

Ĉ
(0)
m,n = Ĉm,n (m, n = 1, ..., G , m ≤ n) and B

(i−1)
m,n = 0 when i > 1 and m ≥ n + i − 1.

After the computation of the URQD (6.14b), the matrices W
(s)
1,1 , W

(s)
1,2 and W

(s)
2,2 are given,

respectively, by

W
(s)
1,1 =




Â
(G)
1,1 · · · Â

(G)
1,G

. . .
...

Â
(G)
G,G


 , W

(s)
1,2 =




B
(G)
1,1 · · · B

(G)
1,G

...
...

B
(G)
G,1 · · · B

(G)
G,G


 and W

(s)
2,2 =




Ĉ
(G)
1,1 · · · Ĉ

(G)
1,G

. . .
...

Ĉ
(G)
G,G


 .

70 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

Figure 6.1 illustrates the process of computing the UGQRD (6.14). An arc between

two blocks denotes an UQRD or an URQD done in stage 1 and stage 2, respectively. The

orthogonal matrices Q
(s)
i and Π

(s)
i,j are not explicitly computed (i, j = 1, ..., G , i ≤ j).

◦ ◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

(
⊕iRi

⊕iX
(s)
i

) (
W1,1 0

0 C(s)
⊗ I

T (s)

)

k1 k2 k3 k1 k2 k3

k1

k2

k3

T (s)

T (s)

T (s)

T (s)T (s)T (s)

•
•
•
•
•
•
•
•
•
•

•

•
•
•

•
•
•
•

••
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•

•
•

•
•
•
•
•
•

•

•
•
•
•

•
•

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆

⋆
⋆

⋆
⋆

⋆
⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
⋆

⋆

⋆
⋆

⋆
⋆

⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆
⋆
⋆
⋆

⋆
⋆
⋆

⋆
⋆

⋆

⋆
⋆

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

◦

◦

◦

(
⊕iR

(s)
i

0

)
(Q(s))T

(
W1,1 0

0 C(s)
⊗ I

T (s)

)

k1 k2 k3 k1 k2 k3

k1

k2

k3

T (s)

T (s)

T (s)

T (s)T (s)T (s)

•
•
•
•
•
•
•
•
•
•

•

•
•
•

•
•
•
•

••
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•

•
•

•
•
•
•
•
•

•

•
•
•
•

•
•

• • • • • •
• • • • • •

•

•
•
•
•
•

• • • •
• • • •
• • • •

•
•
•

•
•
•

• •
• •
• •
• •
• •

•
•
•
•

•
•
•

•
•
•

•

⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

STAGE 1 STAGE 2

Zero element • Non-zero element ◦ Annihilated element ⋆ Filled-in element

Figure 6.1: Computing the UGQRD (6.14), where G = 3 and T (s) = 2.

Algorithm 11 Sequential algorithm for solving the UGQRD (6.14).

1: Let W1,1 and C(s) × IT (s) in (6.13) be partitioned as in (6.15).

2: Let ∀ i D
(i)
t,t = Dt,t and Ĉ

(0)
t,t = Ĉt,t (t = 1, ..., G).

3: for i = 1, . . . , G do

4: Compute the UQRD (6.16a) and the product (6.16b).

5: end for

6: for i = 1, . . . , G do

7: Let t := G − i + 1

8: for j = 1, . . . , i do

9: Compute the URQD of
(
D

(i−1)
t,t+j−1 Ĉ

(j−1)
t,t

)
as in (6.17a) and the product (6.17b).

10: end for

11: end for

Algorithm 11 summarizes the steps of the sequential strategy for solving the UGQRD

(6.14). The main computational tools utilized throughout the computations is the UQRD

(at line 4) and the equivalent URQD (at line 9). Hereafter only the UQRD will be con-

sidered. Two different strategies for computing this factorization are proposed. The first

approach is to compute the updating of the QRD using the standard LAPACK QRD rou-

tine. Note that this strategy does not take into account the upper triangular structure of

6.3. SEQUENTIAL STRATEGIES FOR COMPUTING THE UGQRD (6.14) 71

the submatrix used in the updating. The theoretical complexity of this approach is given

by

TLAPACK(n, s, m) = 2n2(s + 2n/3) + 2mn(n + 2s + 1). (6.18)

Here the updated upper-triangular matrix is of dimension (n× n), s is the number of new

rows added to this matrix and m is the number of columns of the matrix multiplied with

the orthogonal factor after the updating.

The second approach to compute the URQD is a block updating strategy and takes

advantage of the initial upper-triangular structure of the matrix, which has to be updated.

It partitions the matrices in blocks of size (v×v), where n, m and s are multiples of v. The

updating of the QRD is computed in n/v steps, where in each step a QRD of a (v + s)× v

matrix is derived and then the orthogonal matrix is multiplied with a matrix of dimensions

(v + s) × m. The theoretical complexity of this approach is given by

TBLOCK(n, s, m, v) = 2nv(s + 2v/3) + n(2m + n − v)(v + 2s + 1). (6.19)

Note that TLAPACK(n, s, m) ≥ TBLOCK(n, s, m, v), for n ≥ v ≥ 1. The equality holds if and

only if v = n. The theoretical complexity of Algorithm 11 can be calculated using each

of the two aforementioned strategies. Specifically, in line 4, the UQRD of a matrix with

dimensions (ki + T (s))× ki is computed and the orthogonal matrix is then multiplied with

a (ki + T (s)) × (
∑G

j=i kj + T (s)(G − i + 1)) matrix, for i = 1, ..., G. Finally, in line 9, the

URQD of a T (s) × (T (s) + kG+j−i) matrix is computed and the orthogonal factor is applied

to a matrix with dimensions (
∑G+j−i

t=1 kt + T (s)(G − i)) × (T (s) + kG+j−1), for i = 1, ..., G

and j = 1, ..., i. The overall complexity of the Algorithm 11, is given by:

TS =
G∑

i=1

TL/B(ki, T
(s),

G∑

j=i

kj + T (s)(G − i + 1)) +
G∑

i=1

i∑

j=1

TL/B(T (s), kr,
r∑

t=1

kt + T (s)(G − i)),

where r = G + j − i and TL/B is either the TLAPACK or TBLOCK complexity (the block-size

parameter v of TBLOCK has been omitted).

The BLOCK algorithm for the two important cases of the SUR model is investigated.

In the first case, all equations have the same number of variables, i.e. ∀i ki = k. The

second case, the ith equation has ki = ik variables, where k = k1 and i = 1, . . . , G. The

theoretical order of complexities of these two cases are given, respectively, by:

TBS1(G, k, T (s), v) ≈ G2(2GkT (s)(2k + T (s)) + v(3k2 + 2GkT (s) + G(T (s))2))/3 (6.20)

72 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

and

TBS2(G, k, T (s), v) ≈ G4k(5v(k + T (s)) + 2T (s)(4Gk + T (s)))/20. (6.21)

Table 6.1 and 6.2 show the execution times and the theoretical complexities of Algo-

rithm 11 for different values of G and ki (i = 1, . . . , G). The values of the theoretical

complexity in hundred millions of floating point operations (flops) of Algorithm 11 are

presented in brackets. Table 6.1 considers the SUR model, where ki = k (i = 1, ..., G) and

G varies from 5 to 40. Table 6.2 presents the results for the SUR model comprising 5 equa-

tions, i.e. G = 5. The number of variables ki is the same for all equations in the first two

columns, i.e. k = k1 = · · · = kG, while in the last two columns ki = ik (i = 1, ..., G). The

best block size for the BLOCK approach is found to be v = 20. The experimental results

show that the BLOCK algorithm outperforms the LAPACK algorithm. For larger dimen-

sions the BLOCK strategy is found to be up to twice faster than the LAPACK strategy.

The obtained results are confirmed by the theoretical complexities.

Table 6.1: Execution times and theoretical complexities of Algorithm 11, ki = k, i = 1, ..., G

and v = 20.
k = 5 k = 20 k = 40

T (s) G BLOCK LAPACK BLOCK LAPACK BLOCK LAPACK

25 5 0.02 (0.02) 0.02 (0.02) 0.09 (0.07) 0.09 (0.08) 0.23 (0.20) 0.23 (0.23)

25 10 0.14 (0.11) 0.15 (0.13) 0.53 (0.43) 0.51 (0.49) 1.41 (1.20) 1.38 (1.35)

25 15 0.45 (0.33) 0.48 (0.42) 1.61 (1.33) 1.60 (1.49) 4.22 (3.65) 4.11 (4.05)

25 20 1.02 (0.75) 1.18 (0.95) 3.61 (2.99) 3.56 (3.36) 10.10 (8.19) 9.67 (9.02)

25 40 7.95 (5.59) 8.34 (7.15) 27.34 (21.95) 28.32 (24.84) 75.67 (60.06) 72.50 (65.58)

50 5 0.08 (0.06) 0.11 (0.11) 0.22 (0.20) 0.27 (0.28) 0.54 (0.50) 0.60 (0.64)

50 10 0.48 (0.37) 0.76 (0.76) 1.38 (1.22) 1.80 (1.79) 3.22 (2.98) 3.65 (3.88)

50 15 1.51 (1.16) 2.37 (2.38) 4.25 (3.72) 5.38 (5.54) 10.04 (9.06) 11.44 (11.86)

50 20 3.49 (2.64) 5.45 (5.45) 9.71 (8.36) 12.51 (12.55) 23.88 (20.35) 25.99 (26.70)

50 40 26.83 (19.81) 42.33 (41.31) 73.53 (61.65) 93.76 (93.78) 176.98 (149.76) 197.49 (197.26)

6.4 Parallel algorithm for computing the UGQRD

The computational steps of the UQRD (6.16) can be performed independently and thus,

in parallel (see the first stage of Figure 6.1). In order to construct an efficient parallel

6.4. PARALLEL ALGORITHM FOR COMPUTING THE UGQRD 73

Table 6.2: Execution times and theoretical complexities of Algorithm 11, v = 20 and G = 5.

ki = k ki = ik

T (s) k BLOCK LAPACK BLOCK LAPACK

25 5 0.02 (0.02) 0.02 (0.02) 0.06 (0.05) 0.06 (0.06)

25 10 0.04 (0.03) 0.04 (0.04) 0.16 (0.14) 0.16 (0.16)

25 20 0.09 (0.07) 0.09 (0.08) 0.50 (0.45) 0.54 (0.55)

25 40 0.23 (0.20) 0.23 (0.23) 1.76 (1.56) 2.23 (2.32)

50 5 0.08 (0.06) 0.11 (0.11) 0.18 (0.16) 0.22 (0.23)

50 10 0.11 (0.10) 0.16 (0.16) 0.39 (0.37) 0.44 (0.47)

50 20 0.22 (0.20) 0.27 (0.28) 1.10 (1.03) 1.18 (1.27)

50 40 0.54 (0.50) 0.60 (0.64) 3.56 (3.33) 4.07 (4.35)

100 5 0.27 (0.22) 0.74 (0.75) 0.57 (0.52) 1.06 (1.12)

100 10 0.39 (0.34) 0.87 (0.92) 1.16 (1.09) 1.69 (1.82)

100 20 0.67 (0.63) 1.22 (1.30) 2.77 (2.70) 3.39 (3.76)

100 40 1.44 (1.39) 2.14 (2.26) 8.72 (7.81) 9.32 (10.13)

200 5 1.12 (0.84) 4.98 (5.39) 2.11 (1.87) 6.37 (6.72)

200 10 1.49 (1.26) 5.48 (6.00) 3.97 (3.59) 8.17 (8.97)

200 20 2.41 (2.18) 6.67 (7.32) 8.71 (7.97) 13.24 (14.51)

200 40 4.86 (4.36) 9.66 (10.35) 22.96 (20.45) 27.83 (30.05)

algorithm, a load-balanced distribution of the matrices over the processors should be em-

ployed, which also provides low inter-processor communication [50, 48]. Let the number of

processors is denoted by p and assume for simplicity that G is multiple of 2p.

The distribution of the matrices depends mainly on the number of variables in each

regression equation ki (i = 1, ..., G). As in the sequential algorithm, the two cases of ki = k

and ki = ik (i = 1, . . . , G) are considered. In order to choose a load-balanced distribution,

the theoretical complexities of the different steps during the computation of the UQRD

(6.16) and the URQD (6.17) are investigated. The number of flops performed at the ith

step of the UQRD (6.16) using the faster BLOCK approach, is given by:

TBLOCKi
= 2kiv(2v + 3T (s)) + 3ki(2

G∑

j=i

kj + 2T (s)(G − i + 1) + ki − v)(v + 2T (s) + 1).

Here ki is a multiple of the block size v. Figure 6.2 shows how the complexity change in

each step of the computation of the UQRD (6.16). Note that, the shape of the curves will

74 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

remain the same for different values of G, k, v or T (s).

20 40 60 80

5·107

1·108

1.5·108

2·108

(a) ki = k

20 40 60 80

2·1010
4·1010
6·1010
8·1010
1·1011

1.2·1011

(b) ki = ik

Figure 6.2: Theoretical complexity of the ith step (i = 1, ..., G) of the UQRD (6.16), where

G = 80, k = 40, v = 20 and T (s) = 50.

An efficient load-balanced distribution allocates the G equations to the processors, in

such a way, that the overall computational complexity assigned to each processor is the

same. For the case shown in Figure 6.2(a), i.e. where ki = k (i = 1, ..., G), a completely

load-balanced distribution can be achieved when G is a multiple of 2p. Specifically, the

matrices computed during the first G/2 steps of the UQRD (6.16) are allocated to the pro-

cessors using the cyclic distribution scheme. The matrices computed during the remaining

G/2 steps are distributed using a reverse (counting backwards) cyclic allocation scheme.

That is, the matrices affected in the ith step




ki

Ri

X
(s)
i


ki

T (s)
and




ki · · · kG T (s) · · · T (s)

Ai,i · · · Ai,G 0 · · · 0

0 · · · 0 Ci,i · · · Ci,G


ki

T (s)
(6.22)

are allocated to the processor Pγi
, where

γi =

{
(i − 1) mod p + 1 if i = 1, . . . , G/2,

p − (i − 1) mod p if i = G/2 + 1, . . . , G.
(6.23)

Figure 3 shows the distribution of the matrices over the processors, with p = 4, G = 8 and

ki = k (i = 1, ..., G).

The second case of the SUR model shown in Figure 6.2(b), i.e. where ki = ik (i =

1, ..., G) and k = k1, utilizes the same distribution scheme (6.23), as that illustrated in

6.4. PARALLEL ALGORITHM FOR COMPUTING THE UGQRD 75

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • •
• • • • • • • • •
• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
• • • •
• • •
• •
•
• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
• • • •
• • •
• •
•

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ - P1

- P2

- P3

- P4

- P4

- P3

- P2

- P1

- P1

- P2

- P3

- P4

- P4

- P3

- P2

- P1

Figure 6.3: Distribution scheme for 4 processors, where ki = k (i = 1, ..., G) and G = 8.

Figure 3. Note that the distribution does not achieve a perfect load balance among the

processors. As shown in Figure 6.2(b), during the computation of the UQRD (6.16) the

execution time will be dominated by the last processors. However, the distribution achieves

load balanced computations during the solution of the URQD (6.17), which is the most

significant time consuming operation of the GQRD (6.5). Note that, for ki = ik (i =

1, ..., G) each processor has been allocated exactly kG(G + 1)/2p + T (s)G/p rows.

The parallel algorithm computes the UGQRD (6.14) in two stages. During the first

stage, the UQRD (6.16) is computed in G/p steps. Each processor derives the UQRD

(6.16a) of its allocated matrices and then computes the product (6.16b). The second stage

computes the URQD (6.17) in G steps. At the ith step (i = 1, ..., G), the processor, Pγ say,

which has locally the matrices (D
(i−1)
t,t · · · D

(i−1)
t,G) and Ĉ

(i−1)
t,t as in (6.17) (for t = G−i+1)

sends them to the other processors Pr (r = 1, ..., p and r 6= γj). Then, similarly to (6.17),

each processor computes the URQD (6.17a) and updates locally the corresponding allocated

block-columns. The parallel strategy is summarized in Algorithm 12.

The theoretical order of computational complexities of Algorithm 12, when ki = k and

ki = ik (i = 1, ..., G) is given, respectively, by

TBP1(G, k, T (s), v, p) ≈ G2(4GkT (s)(2k + T (s)) + 3v(2k2 + 2kT (s) + p(T (s))2))/6p (6.24)

and

TBP2(G, k, T (s), v, p) ≈ G3(24G2k2T (s) + 5v(3Gk(k + T (s)) + 4(T (s))2))/60p. (6.25)

76 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

Algorithm 12 The parallel algorithm for solving the UGQRD (6.14) on p processors.

1: Let W1,1 and C(s) × IT (s) in (6.13) be partitioned as in (6.15).

2: Let ∀ i D
(i)
t,t = Dt,t and Ĉ

(0)
t,t = Ĉt,t (t = 1, ..., G).

3: Allocate the matrices in (6.14) to the processors with respect to the values of ki.

4: each processor Pγ (γ = 1, ..., p) do in parallel:

5: for j = 1, . . . , G/p do

6: if j > G/2p and ki = ik (i = 1, ..., G) then

7: Compute the UQRD (6.16a) and the product (6.16b) for i = jp + 1 − γ.

8: else

9: Compute the UQRD (6.16a) and the product (6.16b) for i = (j − 1)p + γ.

10: end if

11: end for

12: for i = 1, . . . , G do

13: Let t := G − i + 1

14: if Pγ has the matrix Ĉt,t then

15: Send (D
(i−1)
t,t · · ·D(i−1)

t,G Ĉt,t) to Pr, where r = 1, ..., p and r 6= γ.

16: else

17: Receive (D
(i−1)
t,t · · ·D(i−1)

t,G Ĉt,t) from the broadcasting processor.

18: end if

19: for j = 1, . . . , i do

20: Compute the factorization of (D
(i−1)
t,t+j−1Ĉ

(j−1)
t,t) as in (6.17a).

21: Update locally the corresponding block-columns similarly to (6.17b).

22: end for

23: end for

From (6.20) and (6.24) it follows that the computational efficiency approaches one for very

large G, i.e. limG→∞ TBS1(G, k, T (s), v)/(p×TBP1(G, k, T (s), v, p)) ≈ 1, which is also true in

the case for (6.21) and (6.25), i.e. limG→∞ TBS2(G, k, T (s), v)/(p × TBP2(G, k, T (s), v, p)) ≈
1. Note that, these theoretical complexities do not take into account the inter-processor

communications. Table 6.3, 6.4 and 6.5 shows the execution times and actual (and in

brackets the theoretical) efficiencies of Algorithm 12 for some T (s) and k. In Table 6.3

ki = k (i = 1, ..., G) and G = 32. Table 6.4 shows the scalability of the algorithms for

larger G and fixed value of k. That is, the efficiency remains constant when the size of the

6.5. CONCLUSIONS 77

number of equations in the SUR model, i.e. G and the number of processors are doubled.

In Table 6.5 ki = ik (i = 1, ..., G) for k = 5 and k = 10. The theoretical complexity is

confirmed by the experimental results.

Table 6.3: Execution times (sec.) and efficiencies of Algorithm 12 for ki = k (i = 1, ..., G)

and G = 32.
2 processors 4 processors 8 processors 16 processors

T (s) k Serial Time Eff. Time Eff. Time Eff. Time Eff.

25 5 4.35 2.39 .91 (.93) 1.35 .81 (.82) 0.81 .67 (.67) 0.61 .45 (.47)

25 10 7.05 3.84 .92 (.94) 2.21 .80 (.85) 1.28 .69 (.70) 0.86 .51 (.52)

25 20 14.27 7.63 .94 (.95) 4.32 .83 (.88) 2.4 .74 (.75) 1.65 .54 (.58)

25 40 37.65 20.33 .93 (.96) 11 .86 (.90) 6.03 .78 (.80) 3.96 .59 (.65)

50 5 14.79 8.24 .90 (.93) 4.58 .81 (.81) 2.92 .63 (.64) 2.04 .45 (.45)

50 10 21.01 11.43 .92 (.94) 6.66 .79 (.83) 3.97 .66 (.67) 2.7 .49 (.49)

50 20 38.21 20.83 .92 (.95) 11.82 .81 (.85) 6.86 .70 (.71) 4.71 .51 (.53)

50 40 88.99 47.55 .94 (.96) 26.14 .85 (.88) 14.77 .75 (.76) 10.11 .55 (.59)

100 5 55.11 30.77 .90 (.93) 18.35 .75 (.81) 11.27 .61 (.64) 8.12 .42 (.44)

100 10 77.78 43.19 .90 (.93) 23.58 .82 (.82) 14.94 .65 (.65) 11.05 .44 (.46)

100 20 121.89 66.64 .91 (.94) 38.19 .80 (.83) 22.68 .67 (.68) 16.12 .47 (.49)

100 40 251.53 137.09 .92 (.95) 75.75 .83 (.86) 44.78 .70 (.72) 31.33 .50 (.54)

200 5 220.99 123.51 .89 (.92) 69.67 .79 (.80) 45.07 .61 (.63) 32.52 .42 (.43)

200 10 288.5 161.75 .89 (.93) 92.21 .78 (.81) 58.46 .62 (.64) 43.91 .41 (.45)

200 20 455.97 253.19 .90 (.93) 143.76 .79 (.82) 88.47 .64 (.66) 63.12 .45 (.47)

200 40 875.92 488.03 .90 (.94) 268.43 .82 (.84) 162.8 .67 (.68) 115.07 .48 (.49)

6.5 Conclusions

The computational aspects of estimating the SUR model after it has been updated by new

observations have been considered. Sequential and parallel algorithms to compute the main

tool of the estimation procedure -the generalized QR decomposition of the data matrices-

have been proposed. The algorithms are rich in BLAS-3 operations and exploit efficiently

the triangular structure of the matrices. For reasonably big matrices the BLOCK sequential

strategy is found to outperform the LAPACK sequential strategy. The parallel algorithm

is based on a SPMD programming paradigm and employs different partitioning techniques

78 CHAPTER 6. ESTIMATING THE UPDATED-OBSERVATIONS SUR MODELS

Table 6.4: Execution times (sec.) and efficiencies of Algorithm 12 for ki = k (i = 1, ..., G)

and T (s) = 50.
2 processors 4 processors 8 processors 16 processors

k G Serial Time Eff. Time Eff. Time Eff. Time Eff.

5 32 14.79 8.24 .90 (.93) 4.58 .81 (.81) 2.92 .63 (.64) 2.04 .45 (.45)

5 64 105.62 57.3 .92 (.96) 30.96 .85 (.89) 17.67 .75 (.78) 11.05 .60 (.61)

5 96 363.43 189.32 .96 (.97) 99.79 .91 (.92) 55.76 .81 (.84) 33.32 .68 (.70)

5 128 866.26 445.09 .97 (.98) 235.1 .92 (.94) 130.9 .83 (.87) 71.86 .75 (.76)

10 32 21.01 11.43 .92 (.94) 6.66 .79 (.83) 3.97 .66 (.67) 2.7 .49 (.49)

10 64 161.56 84.78 .95 (.97) 45.42 .89 (.90) 26.22 .77 (.80) 15.68 .64 (.64)

10 96 540.02 280.07 .96 (.98) 148.55 .91 (.93) 81.56 .83 (.85) 47.06 .72 (.73)

10 128 1348.72 685.66 .98 (.98) 358.55 .94 (.95) 195.7 .86 (.88) 111.13 .76 (.78)

Table 6.5: Execution times (sec.) and efficiencies of Algorithm 12 for ki = ik (i = 1, ..., G).

G = 32 2 processors 4 processors 8 processors 16 processors

k T (s) Serial Time Eff. Time Eff. Time Eff. Time Eff.

5 25 158.05 84.9 .93 (.95) 46.61 .85 (.87) 26.22 .75 (.76) 16.32 .61 (.63)

5 50 345.72 183.23 .94 (.95) 102.02 .85 (.86) 59.27 .73 (.74) 37.26 .58 (.60)

10 25 640.32 345.41 .93 (.94) 185.69 .86 (.87) 104.8 .76 (.77) 61.29 .65 (.66)

10 50 1206.51 653.09 .92 (.95) 351.46 .86 (.87) 202.7 .74 (.76) 121.45 .62 (.63)

G = 64

5 25 4929.9 2529 .97 (.98) 1341 .92 (.93) 736.4 .84 (.86) 432.75 .71 (.75)

10 25 18646 9645 .97 (.98) 5139 .91 (.93) 2765 .84 (.86) 1603 .73 (.76)

with respect to the values of ki (i = 1, ..., G), i.e. the number of variables in the regressions

of the SUR model, in order to achieve load balancing. The two main cases ki = k and

ki = ik (i = 1, ..., G) have been considered. Some small parts of the computations are

duplicated. However, this is compensated by the minimal interprocessor communication.

The execution times and the theoretical complexities of the sequential and the parallel

algorithms are presented and analyzed. The theoretical results confirm the numerical

experiments, which have illustrated the efficiency and scalability of the proposed parallel

algorithm.

Chapter 7

Conclusions and future research

Computationally efficient algorithms for computing the estimation of Least Squares (LS)

problems have been proposed and analyzed. The algorithms have the QR decomposition

(QRD), or the Generalized QRD (GQRD), as the main computational tool. This allowed

the design of computationally efficient and numerically stable implementations. Specifi-

cally, the block generalization of the Givens sequence have been employed for computing

the QRD and the GQRD. In each problem which has been investigated the structure and

the properties of the matrices involved in the estimation procedures have been exploited.

The computational details of the implemented algorithms have been discussed. In or-

der to assess the computational efficiency and scalability of the proposed algorithms the

theoretical complexities and numerical results have been derived and analyzed.

Various strategies for computing the QRD of the set of matrices A1, ..., AG which have

common columns have been investigated in Chapter 2. The novel strategies use a weighted

directed graph to express the common-columns relationship among the matrices. The

nodes of the graph represent the triangular factors R1,, RG derived from the QRDs of

A1, ..., AG, respectively. An edge between two nodes exists if and only if the columns of

one of the matrices is a subset of the columns of the other. The weight of an edge is

the computational complexity of deriving the triangular factor of the subset matrix given

the QRD of the larger matrix. The problem is equivalent to construct a graph and to

find the minimum cost for traversing all the nodes. The proposed algorithm computes the

QRD of the matrices A1, ..., AG by deriving the minimum spanning tree of the graph. The

theoretical complexity of this strategy is found to be of double exponential order. Two

alternative heuristic strategies have also been considered. The heuristic algorithms for

79

80 CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

deriving the minimum spanning tree of the graph include some artificial nodes which are not

present in the initial set of matrices. The artificial nodes are introduced in order to reduce

the total computational cost. The first strategy had an exponential order of complexity

which made it computational infeasible. The second heuristic approach had a linear order

of complexity. Experimental results found that this heuristic strategy outperformed the

straight forward approach of re-triangularizing the matrices one at a time.

In Chapter 3, five computational strategies for block downdating of the LS solutions

have been proposed. The new strategies, which are block version of Givens rotations, are

rich in BLAS-3 operations and exploit the sparsity of the orthogonal matrix Q. The numer-

ically reliable method require that columns of the orthogonal matrix must be available [8].

The Givens strategy uses plane rotations to delete the new observations one at a time. The

Givens method outperforms the downdating LAPACK routine when the number of deleted

observations d is small compared to the number of variables n. It also outperforms the

new block-downdating algorithm for very small d ≪ n. For not very small d the proposed

block-downdating algorithm is computationally most efficient.

The parallelization of the new block-downdating algorithm using various distributions

of the computed matrices over the processors has been discussed in Chapter 4. Two

parallel strategies for downdating the QRD have been proposed. The algorithms have been

implemented using the single-program multiple-data (SPMD) paradigm. The performance

of the first strategy is degraded by the communication cost which increases exponentially

with the number of processors. The second strategy has no inter-processor communication,

but has some duplicated computations which makes it suitable for large-scale problems

on bigger number of processors. Generally, the second algorithm achieves perfect load

balancing, scalability and efficiency close to one for large-scale problems.

In Chapter 5, computationally efficient serial and parallel algorithms for estimating the

general linear model (GLM) have been proposed. The serial block Givens algorithm is an

adaptation of a known recursive Givens strategy. It presents the GLM as a generalized

linear least squares problem (GLLSP). The recursive algorithm is based on orthogonal

factorization and uses the GQRD as a main computational tool. The triangular struc-

ture of the Cholesky factor of the variance-covariance matrix is efficiently exploited. The

estimation of the GLM is derived recursively by solving a series of smaller and smaller

GLLSP problems. This reduces significantly the computational burden of the standard

estimation procedure. The new algorithm is found to be m/3n times faster than the cor-

7.1. FUTURE RESEARCH 81

responding LAPACK routine for estimating the GLM, where m and n denote the number

of observations and variables, respectively. A parallel approach based on the new sequen-

tial strategy has been also designed. It copies the main, sub- and super-block diagonals

of the augmented Cholesky factor to all processors and distributes the remaining matrix

evenly. The algorithm duplicates parts of the computations, but it gains from the minimal

inter-processor communication. Overall, the parallel algorithm is found to be scalable and

efficient for large-scale least-squares problems.

An adaptation of these parallel algorithms to estimate the updated-observation seem-

ingly unrelated regressions model (SUR) have been proposed in Chapter 6. An efficient

serial algorithm has been also developed. The best linear unbiased estimator of the SUR

model has been computed after formulating the SUR as a GLLSP. The parallel algorithm

exploits the block-sparse structure of the computed matrices and computational experi-

ments indicated its scalability and efficiency.

7.1 Future research

Parallel algorithms to compute all possible subset models of the ordinary, general and SUR

model have been considered. Furthermore, a branch and bound algorithm for computing

the best subset regression models have been developed [15, 16, 17, 18]. The minimum

spanning tree approach and the heuristic strategies that have been proposed in [46] can

be adapted for the computation of all possible subset regression models. This promising

approach merits investigation.

Computationally efficient methods for updating the SUR models with new observations

have been proposed. The problems of adding and deleting exogenous variables from the

SUR models have also been addressed [27]. The non straightforward problem of deleting

observations from the SUR model (downdating) needs to be considered [10, 12, 27]. Special

attention should be given to the numerical stability of the downdating algorithms [30].

Within the framework of investigating influential data, various methods to solve the SUR

model after unequal number of observations have been added or deleted from some of the

regressions should be investigated.

Furthermore, the application of the various techniques for up-downdating the LS prob-

lem and QRD should be investigated in the context of regression diagnostics and cross-

validation, where repeatedly a number of observations is added and/or deleted [3, 27].

82 CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

The estimation of the SUR model subject to linear constraints needs to be pursued.

The estimation of these constrained models implies the solution of a particular quadratic

programming problem. Existing procedures should be adapted to exploit the structure

of the model. The special case of separable inequality constraints should be considered.

Within this context the design of efficient sequential and parallel techniques for solving

augmented systems which exploit the structure of the matrices need to be developed.

Block-recursive algorithms based on the GQRD are currently under investigation. The

algorithms should be adapted to handle the special structures of the matrices which are

found in various estimation problems.

The various parallel algorithms need to be considered when the models are sparse and

which is very often the case. Direct factorization strategies such as multifrontal QRD and

iterative methods need to be considered. The problem of estimating ill-conditioned SUR

models need to be addressed as well.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and

applications. Prentice-Hall, Englewood Cliffs NJ, 1993.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’

Guide. SIAM, Philadelphia, 1992.

[3] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics: Identifying Influ-

ential Observations and Sources of Collinearity. John Wiley and Sons, 1980.

[4] C. Bendtsen, C. Hansen, K. Madsen, H. B. Nielsen, and M. Pinar. Implementation

of QR up– and downdating on a massively parallel computer. Parallel Computing,

21:49–61, 1995.

[5] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[6] W. M. Bolstad. An estimation of seemingly unrelated regression model with con-

temporaneous covariances based on an efficient recursive algorithm. Comm. Statist.

Simulation Comput., 16(3):689–698, 1987.

[7] J.-P. Chavas. Recursive estimation of simultaneous equation models. Journal of Econo-

metrics, 18:207–217, 1982.

[8] L. Eldén and H. Park. Block downdating of least squares solutions. SIAM Journal on

Matrix Analysis and Applications, 15(3):1018–1034, 1994.

[9] L. Eldén and H. Park. Perturbation and error analyses for block downdating of a

Cholesky decomposition. BIT Numerical Mathematics, 36(2):247–263, June 1996.

83

84 BIBLIOGRAPHY

[10] P. Foschi, D. Belsley, and E.J. Kontoghiorghes. A comparative study of algorithms

for solving seemingly unrelated regressions models. Computational Statistic & Data

Analysis, 44(1-2):3–35, 2003.

[11] P. Foschi, L. Garin, and E. J. Kontoghiorghes. Numerical and computational methods

for solving sur models. In E.J. Kontoghiorghes, B. Rustem, and S.Siokos, editors,

Computational Methods in Decision-Making, Economics and Finance, volume 74 of

Applied Optimization, pages 405–427. Kluwer Academic Publishers, 2002.

[12] P. Foschi and E. J. Kontoghiorghes. Solution of seemingly unrelated regression mod-

els with unequal size of observations. Computational Statistics and Data Analysis,

41(1):211–229, 2002.

[13] P. Foschi and E. J. Kontoghiorghes. Estimation of VAR models: computational as-

pects. Computational Economics, 21(1-2):3–22, 2003.

[14] P. Foschi and E.J. Kontoghiorghes. Estimating seemingly unrelated regression models

with vector autoregressive disturbances. Journal of Economic Dynamics and Control,

28(1):27–44, 2003.

[15] C. Gatu and E. J. Kontoghiorghes. Parallel algorithms for computing all possible

subset regression models using the QR decomposition. Parallel Computing, (29):505–

521, 2003.

[16] C. Gatu and E. J. Kontoghiorghes. Branch-and-bound algorithms for computing the

best-subset regression models. Journal of Computational and Graphical Statistics,

2005. (Forethcoming).

[17] C. Gatu and E. J. Kontoghiorghes. Efficient strategies for deriving the subset VAR

models. Computational Management Science, 2005. (In press).

[18] C. Gatu and E. J. Kontoghiorghes. Estimating all possible SUR models with permuted

exogenous data matrices derived from a VAR process. Journal of Economic Dynamics

and Control, 2005. (In press).

[19] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying

matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

BIBLIOGRAPHY 85

[20] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University

Press, Baltimore, Maryland, 3ed edition, 1996.

[21] G. H. Golub and J. H. Wilkinson. Note on the iterative refinement of least squares

solution. Numerische Mathematik, 9:139–148, 1966.

[22] I. Karasalo. A criterion for truncation of the QR decomposition algorithm for the

singular linear least squares problem. BIT, 14:156–166, 1974.

[23] E. J. Kontoghiorghes. Parallel strategies for computing the orthogonal factorizations

used in the estimation of econometric models. Algorithmica, 25:58–74, 1999.

[24] E. J. Kontoghiorghes. Parallel Algorithms for Linear Models: Numerical Methods and

Estimation Problems, volume 15 of Advances in Computational Economics. Kluwer

Academic Publishers, Boston, MA, 2000.

[25] E. J. Kontoghiorghes. Parallel Givens sequences for solving the general linear model

on a EREW PRAM. Parallel Algorithms and Applications, 15(1-2):57–75, 2000.

[26] E. J. Kontoghiorghes. Parallel strategies for rank–k updating of the QR decomposition.

SIAM Journal on Matrix Analysis and Applications, 22(3):714–725, 2000.

[27] E. J. Kontoghiorghes. Computational methods for modifying seemingly unrelated

regressions models. Journal of Computational and Applied Mathematics, 162(1):247–

261, 2004.

[28] E. J. Kontoghiorghes and M. R. B. Clarke. Solving the updated and downdated

ordinary linear model on massively parallel SIMD systems. Parallel Algorithms and

Applications, 1(2):243–252, 1993.

[29] E. J. Kontoghiorghes and M. R. B. Clarke. An alternative approach for the numerical

solution of seemingly unrelated regression equations models. Computational Statistics

& Data Analysis, 19(4):369–377, 1995.

[30] E. J. Kontoghiorghes and E. Dinenis. Computing 3SLS solutions of simultaneous

equation models with a possible singular variance–covariance matrix. Computational

Economics, 10:231–250, 1997.

86 BIBLIOGRAPHY

[31] J. B. Kruskal. On the shortest spanning tree of graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

[32] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice–Hall

Englewood Cliffs, 1974.

[33] S. J. Olszanskyj, J. M. Lebak, and A. W. Bojanczyk. Rank–k modification methods

for recursive least squares problems. Numerical Algorithms, 7:325–354, 1994.

[34] S. Orbe, E. Ferreira, and J. Rodriguez-Poo. An algorithm to estimate time varying

parameter SUR models under different type of restrictions. Computational Statistics

& Data Analysis, 42(3):363–383, 2003.

[35] C. C. Paige. Numerically stable computations for general univariate linear models.

Communications on Statistical and Simulation Computation, 7(5):437–453, 1978.

[36] C. C. Paige. Computer solution and perturbation analysis of generalized linear least

squares problems. Mathematics of Computation, 33(145):171–183, 1979.

[37] C. C. Paige. Fast numerically stable computations for generalized linear least squares

problems. SIAM Journal on Numerical Analysis, 16(1):165–171, 1979.

[38] C. C. Paige. Some aspects of generalized QR factorizations. In M. G. Cox and S. J.

Hammarling, editors, Reliable Numerical Computation, pages 71–91. Clarendon Press,

Oxford, UK, 1990.

[39] D. S. G. Pollock. The Algebra of Econometrics (Wiley series in Probability and Math-

ematical Statistics). John Wiley and Sons, 1979.

[40] R. C. Prim. Shortest connection networks and some generalizations. Bell Systems

Technical Journal, 36:1389–1401, 1957.

[41] P. A. Regalia and S. K. Mitra. Kronecker products, unitary matrices and signal

processing applications. SIAM Review, 31(4):586–613, 1989.

[42] J. Shao. Linear model selection by cross-validation. Journal of the American Statistical

Association, 88:486–494, 1993.

[43] V. K. Srivastava and T. D. Dwivedi. Estimation of seemingly unrelated regression

equations Models: a brief survey. Journal of Econometrics, 10:15–32, 1979.

BIBLIOGRAPHY 87

[44] V. K. Srivastava and D. E. A. Giles. Seemingly Unrelated Regression Equations Models:

Estimation and Inference (Statistics: Textbooks and Monographs), volume 80. Marcel

Dekker, Inc., 1987.

[45] L. G. Telser. Iterative estimation of a set of linear regression equations. Journal of

the American Statistical Association, 59:845–862, 1964.

[46] P. Yanev, P. Foschi, and E. J. Kontoghiorghes. Algorithms for computing the QR

decomposition of a set of matrices with common columns. Algorithmica, 39:83–93,

2004.

[47] P. Yanev and E. J. Kontoghiorghes. Efficient algorithms for block downdating of least

squares solutions. Applied Numerical Mathematics, 49(1):3–15, 2004.

[48] P. Yanev and E. J. Kontoghiorghes. Parallel algorithms for downdating the QR de-

composition. Parallel Computing, 2004. (Submitted).

[49] P. Yanev and E. J. Kontoghiorghes. Computationally efficient methods for estimat-

ing the updated-observations SUR models. Applied Numerical Mathematics, 2005.

(Submitted).

[50] P. Yanev and E. J. Kontoghiorghes. Efficient algorithms for estimating the general

linear model. Parallel Computing, 2005. (Forethcoming).

[51] A. Zellner. An efficient method of estimating seemingly unrelated regression equations

and tests for aggregation bias. Journal of the American Statistical Association, 57:348–

368, 1962.

